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Dispersive hydrodynamics in viscous fluid conduits

Thesis directed by Dr. Mark Hoefer

Viscous fluid conduits provide an ideal system for the study of dissipationless, dispersive

hydrodynamics. A dense, viscous fluid serves as the background medium through which a lighter,

less viscous fluid buoyantly rises. If the interior fluid is continuously injected, a deformable pipe

forms. The long wave interfacial dynamics are well-described by a dispersive nonlinear partial

differential equation called the conduit equation.

Experiments, numerics, and asymptotics of the viscous fluid conduit system will be presented.

Structures at multiple length scales are characterized, including solitary waves, periodic waves, and

dispersive shock waves. A more generic class of large-scale disturbances is also studied and found

to emit solitary waves whose number and amplitudes can be obtained. Of particular interest is the

interaction of structures of different scales, such as solitary waves and dispersive shock waves. In

the development of these theories for the conduit equation, we have uncovered asymptotic methods

that are applicable to a wide range of dispersive hydrodynamic systems.

The conduit equation is nonintegrable, so exact methods such as the inverse scattering trans-

form cannot be implemented. Instead, approximations of the conduit equation are studied, includ-

ing the Whitham modulation equations, which can be derived for any dispersive hydrodynamic

system with a periodic wave solution family and at least two conservation laws. The combination

of the conduit equation’s tractability and the relative ease of the associated experiments make this

a model system for studying a wide range of dispersive hydrodynamic phenomena.
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Chapter 1

Introduction

This dissertation is an amalgamation of several papers from the author [56, 55, 54, 5]. These

will be heavily drawn on in this and other chapters.

1.1 Dispersive Hydrodynamics

Long wavelength, hydrodynamic theories abound in physics, from fluids [48] to optics [9],

condensed matter [28] to quantum mechanics [88], and beyond. Such theories describe expansion

and compression waves until wavebreaking occurs, which is when characteristics cross, and the

solution may become multivalued. In classical fluids where dissipation is the driving force, this

results in a shock wave, a disturbance that moves faster than the local speed of sound [21]. When

the physics at shorter wavelengths are predominantly dispersive, wavebreaking is regulated by the

dispersion, and dispersive hydrodynamic theories [87, 21] are used to describe shock waves of a

spectacularly different character than their dissipative counterparts.

Solitary waves and dispersive shock waves (DSWs) are key coherent structures in dispersive

hydrodynamic systems. Model equations include the integrable Korteweg-de Vries (KdV) and

Nonlinear Schrödinger (NLS) equations as well as non-integrable counterparts that are important

for applications to superfluids, geophysical fluids, and laser light. A generic initial value problem

(IVP) for a scalar dispersive hydrodynamic equation is of the form [54]

ut + V (u)ux = D[u]x, x ∈ R, t > 0, u(x, 0) = u0(x). (1.1)
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V (u) is the long-wave speed, D[u] is an integro-differential operator, and equation (1.1) admits a

real-valued, linear dispersion relation with frequency ω(k, u) where k is the wavenumber and u is

the background mean field. We assume V ′(u) > 0 so that the dispersive hydrodynamic system has

convex flux [22].

Throughout this section, we will illustrate dispersive hydrodynamic concepts using the well-

studied KdV equation

vt + vvx + vxxx = 0. (1.2)

We chose the KdV equation because it is the simplest equation with both nonlinear and dispersive

terms, so it is a commonly used example in the field [21]. Although the KdV equation is integrable,

integrability will not be used in this introduction, except for comparison with the results found.

Instead, the focus will be on results from Whitham modulation theory, which can also be applied

to nonintegrable systems. In this chapter, we will use u(x, t) to represent a generic hydrodynamic

system (1.1) and v(x, t) when showing results for the KdV equation (1.2) in particular.

While we present some results for KdV in chapter 5 for KdV, the majority of this thesis is

focused on results for the conduit equation,

at +
(
a2
)
z
−
(
a2
(
a−1at

)
z

)
z

= 0, (1.3)

which is the focus of section 1.2.

1.1.1 Solitary Waves

Solitary waves or solitons are localized travelling waves that may travel with an amplitude-

dependent speed. These waves are hallmarks of dispersive hydrodynamic systems, and their study

dates back to the beginning of the field, when a solitary wave was observed in a shallow water canal

and followed on horseback [67]. This observation led to a series of experiments and eventually the

derivation of the (1+1)-dimensional KdV equation (1.2), first as a footnote by Boussinesq [8] and

later more elaborately by Korteweg and de Vries [47].
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(a) (b)

Figure 1.1: (a) KdV soliton on background v = 1/2, with amplitude above background A = 3/2
and subsequent speed c = 1. (b) Evolution over time of the soliton from (a) in the (x, t)-plane.
The color represents amplitude of the solution.

The terminology “soliton” versus “solitary wave” relates to the integrability of the governing

equation (1.1) [1]. In addition to the above conditions, a true soliton interacts with other solitons

elastically, with the only result of the interaction a spatial/temporal phase shift. Many waves exhibit

the localization and speed-amplitude property, but there exists other residue from interactions, such

as a small dispersive tail [51]. The term solitary wave is used to describe these ‘near-solitons’ that

do not interact elastically.

Solitary wave solutions for a generic equation (1.1) can be found by assuming the ansatz

u(x, t) = f(ξ), ξ = x− ct, lim
|ξ|→∞

f(ξ) = u, lim
|ξ|→∞

f (n)(ξ) = 0, n = 1, 2, 3, . . . (1.4)

where u, c ∈ R. Inserting this ansatz into (1.2) and integrating results in an explicit expression for

f , with background v

f(ξ) = v + 3(c− v) sech2

(√
c− v
2

ξ

)
. (1.5)

The speed-amplitude relation is readily realized as c(A, v) = A/3 + v. An example profile and its

behavior over time is given in figure 1.1.

The phase shift for interactions of KdV solitons is known explicitly via the inverse scattering



4

transform to be [1]

φ(η1, η2) =
1

η1
log

∣∣∣∣
η1 + η2

η1 − η2

∣∣∣∣ , η1 > η2, (1.6)

where ηj is termed the spectral parameter and relates to the amplitude Aj of the jth soliton,

j = 1, 2, via A(η) = 12η2.

Solitary waves play a central role in this thesis, and will be represented in some capacity

in every chapter. New results pertaining to solitary waves mainly concern their interactions with

hydrodynamic structures, which will be covered in detail in chapter 5.

1.1.2 Periodic Waves

Periodic traveling waves are another class of important traveling wave solutions to dispersive

hydrodynamic equations. The ansatz

u(x, t) = f(θ), θ = kx− ωt, f(θ + 2π) = f(θ) (1.7)

inserted into the KdV equation (1.2) leads to the first-order ordinary differential equation

(f ′)2 = − 1

3k2
(f − f1)(f − f2)(f − f3) (1.8)

with roots of the right-hand side f1, f2, f3. When there are two complex conjugate roots, the

solution is unbounded, as can be seen in figure 1.2(a). A real periodic wave can therefore exist

only when all three roots are real and that solution oscillates between the two larger roots, as can

be seen when plotting the phase plane, as in figure 1.2(b). When two roots are equal, either the

amplitude of the wave is zero or the wave has an infinite period; these limiting cases are discussed

in more detail below. Since we have three real roots, we can order them such that f1 ≤ f2 ≤ f3, so

the wave solution exists for f between f2 and f3. When the solution exists, the solution to (1.8)

can be written in terms of a Jacobi elliptic function [21]

f(θ) = f1 + (f3 − f1) dn2

[
K(m)

π
θ;m

]
, m =

f3 − f2

f3 − f1
, 0 ≤ m ≤ 1, (1.9)

where K(m) is the complete elliptic integral of the first kind. There are two limiting cases of

equation (1.9). First, when f2 → f3, we have m → 0, and the amplitude of the cnoidal wave
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(a) Two complex conjugate roots, one real root.
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f

(f ′)2

(b) Three real roots

Figure 1.2: Possible phase planes for equation (1.8). Note in (a) the solution is unbounded. In (b),
the solution is bounded between the three roots, but the derivative is only real between the latter
two (x = 1/2 and x = 3/2).
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Figure 1.3: Three cnoidal waves in the form of equation (1.9) with (solid black) (f1, f2, f3) =
(1.5, 2.9, 3), (dashed dark blue) (f1, f2, f3) = (1, 2, 3), and (dotted light blue) (f1, f2, f3) =
(1, 1.01, 3). Note the limiting cases are cosine-like and soliton-like.

f3 − f2 also approaches zero. The cnoidal wave becomes a vanishingly small linear cosine wave

with frequency ω =
√
f3 − f1. Second, when f2 → f1, note m→ 1, and by properties of the elliptic

function, we arrive back at the soliton solution (1.5) with amplitude A = (f3 − f2). A sample

cnoidal wave and its limiting cases are shown in figure 1.3.

The main purpose of introducing periodic waves in this thesis is to explore modulations of

these waves, which will be introduced next.

1.1.3 Modulations of Periodic Waves

Nonlinear wave modulation is a major mathematical component of the description of dis-

persive hydrodynamics. Modulation theory assumes the existence of a multi-parameter family of

nonlinear, periodic traveling wave solutions whose parameters change on different length and time

scales relative to the wavelength and period of the periodic solution under perturbation.

There are many methods used in modulation theory, a few of which will be explored in

this work. Weakly nonlinear, long waves are generically modeled by KdV, and weakly nonlinear,

quasimonochromatic, short-wave oscillations are generically modeled by the NLS envelope equation.

These reductions are explored for our system in [83] and in section 2.2. The bulk of this work,
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however, concerns the Whitham equations. The Whitham equations describe slow modulations

of, for example, the wave’s mean, amplitude, and wavenumber [87]. At leading order, they are a

dispersionless system of quasi-linear equations. We invoke two methods of derivation: averaging

conservation laws over a periodic wave period and a formal derivation via multiple scales. The KdV-

Whitham equations are found by averaging two of the KdV conservation laws over the periodic

wave solution family (1.7) and then closing with the equation for conservation of waves. Using the

notation f =
∫ 2π

0 f dθ, the KdV-Whitham equations are (note that f ′′ = 0).





f t +
(

1
2f

2
)
x

= 0,

(
f2
)
t
+
(

2
3f

3 − 3k2(f ′)2
)
x

= 0,

kt + ωx = 0.

(1.10)

We have parameterized the wave family with physical parameters: the mean v, wavenumber k, and

amplitude A, and invoked the dispersion relation ω = ω(k,A, v). The derivation of the Whitham

equations for the conduit equation 1.3 will be detailed in section 2.3.

While reductions of the Whitham equations appear in most chapters, the full conduit-

Whitham equations will be studied extensively in chapter 2.

1.1.4 Modulations of Linear and Solitary Waves in a Mean Flow

There are two important reductions of the Whitham equations which apply to the linear

wave and solitary wave regimes. We assume a general equation (1.1) satisfies the prerequisites for

Whitham theory which are, for a system of N th order, the existence of an N -parameter family of

periodic solutions and the availability of N − 1 conservation laws [21, 54, 87]. The modulation

variables used here are the physical parameterization (u, k,A). Then the linear and solitary wave

regimes correspond to when A → 0 and k → 0, respectively. For KdV, which will continue to be

our example system, V (u) = u, D[u] = −uxx, and the linear dispersion relation can be found by

assuming the ansatz u(x, t) ≈ u+ ε cos (kx− ω0t), ε� 1

ω0(k, u) = uk − k3. (1.11)
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For the linear wave regime, the A → 0 limit means the vanishing amplitude oscillations do not

contribute to the averaging, so F (u) = F (u) for any differential operator F . Thus all θ derivatives

of u are zero under the averaging operator, which reduces the first two equations into one equation

for the mean flow

ut + V (u)ux = 0. (1.12)

The oscillations are fully characterized by the conservation of waves equation for linear waves

kt + ω0,kkx + ω0,uux = 0, (1.13)

where ω0(k, u) is the system’s linear dispersion relation. For the KdV equation, the system for

modulated linear waves in a mean flow v is

vt + vvx = 0,

kt +
(
v − 3k2

)
kx + kvx = 0.

(1.14)

We next consider the Whitham equations in the solitary wave limit k → 0. Here, the

wavelength 2π/k tends to infinity, so again the contribution of oscillations to averaging vanishes

and F (u) = F (u). Then the equation again reduces to the dispersionless equation (1.12) and the

second equation becomes an equation for the solitary wave amplitude A

At + c(A, u)Ax + g(A, u)ux = 0, (1.15)

where c(A, u) is the solitary wave speed-amplitude relation for the system, and g(A, u) is a coupling

function. Equations (1.12) and (1.15) combined describe modulated solitary waves (k ≡ 0) in a

mean flow, but we can describe a ‘soliton train,’ or a periodic wave with 0 < k � 1, approximately

with these two equations and the approximate equation for conservation of waves in this regime,

kt + [c(a, u) k]x = 0. (1.16)

This approximation gives additional information about the waves, including position information

unavailable with just the first two equations. For the KdV equation the system for modulated
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Figure 1.4: Example KdV soliton train interacting with a rarefying mean flow.

solitary waves in a mean flow v is

vt + vvx = 0,

At + (A/3 + v)Ax + (2A/3)vx = 0.

(1.17)

A soliton train for the KdV equation interacting with a mean flow is shown in figure 1.4.

The interaction of small- and large-scale structures are explored in chapter 5 [54]. A general

solitary wave-mean field theory is introduced, and invariants are identified that predict trapping or

transmission of solitons by hydrodynamic states. The result of solitons incident upon rarefaction or

dispersive shock waves is the same, an effect termed hydrodynamic reciprocity. We further extend

this theory to a general mean field. Experiments on viscous fluid conduits quantitatively confirm

the soliton-mean field theory. Work on linear wave-mean field theory is ongoing; early results are

mentioned in the conclusion (chapter 6).

1.1.5 Dispersive Shock Waves

A DSW is an expanding, oscillatory train of amplitude-ordered nonlinear wave with two

distinguishing edges. Such a DSW is usually composed of a large amplitude solitary wave adjacent

to a monotonically decreasing wave envelope that terminates with a packet of small amplitude

dispersive waves [21, 34]. Thus, DSWs coherently encapsulate a range of fundamental features
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Figure 1.5: DSW generated from full numerics of the KdV equation (1.2), with an initial step at
0 with v− = 1 and v+ = 0, at time t = 200. Note the leading edge is approaching the predicted
amplitude of 2.

of nonlinear wave systems. A sample DSW generated from full numerics of the KdV equation is

shown in figure 1.5.

More broadly, DSWs occur in dispersive hydrodynamic media that exhibit three unifying

features: i) nonlinear self-steepening, ii) wave dispersion, and iii) negligible dissipation [21]. Obser-

vations in a wide range of physical media that include quantum systems (ultra-cold atoms [17, 42],

semiconductor cavities [4], electron beams [60]), optics [66, 79, 89], classical fluids [56, 77], undu-

lar bores in geophysical fluids [27, 36], collisionless shocks in rarefied plasma [75] and magnetic

materials [43] demonstrate the prevalence of DSWs.

Because DSWs are well-modeled as modulated nonlinear periodic waves, Whitham theory

gives invaluable insights into key features of dispersive shock waves. First consider the GP problem,

named for Gurevich and Pitaevskii [34], which is the following initial value problem for the KdV-

Whitham equations (1.10)

v(x, t) = v±, ±x > 0. (1.18)

If v− < v+, wavebreaking does not occur, and an approximate solution can be found based on the

dispersionless KdV equation, or the Hopf equation vt+vvx = 0. The solution is called a rarefaction
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wave and takes the form

v(x, t) =





v−, x < v−t

x/t, v−t < x < v+t

v+, x > v+t

. (1.19)

If v− > v+, the Hopf solution is multivalued, and the regularizing force of dispersion must

be included. Numerics of this problem suggest the solution is a slowly modulated wavetrain, given

enough time to develop. The leading edge separates sufficiently from the wavetrain to be considered

a solitary wave (k → 0), and the trailing edge consists of oscillations of small amplitude so that

they can be considered in the linear wave limit A → 0. Thus the long-time resolution of a DSW can

be readily studied using the reduced Whitham modulation equations for the governing equation of

interest, with these above assumptions guiding the study.

Recalling the linear wave system (1.12, 1.13), we look for a special solution to the hyperbolic

system of equations [87] in the form of k = k(u). If we restrict to only evolving along a characteristic

d/dτ = ∂t + ω0,k∂x, k and u can only change with respect to the differential relation

ω0,u du+ (ω0,k − V (u)) dk = 0.

For KdV, this has the solution

k−(v) =

√
2

3
(v + c), (1.20)

where c is a constant of integration. Similarly, if we use the solitary wave system (1.12, 1.15) and

assume a solution in the form A = A(u), along d/dτ = ∂t + c(A, u)∂x the differential relation

satisfied is

g(A, u) du+ (c(A, u)− V (u)) dA = 0.

For KdV, this is also easily solved

A(v) = d− 2v, (1.21)

where d is another constant of integration.
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For the additional degree of freedom in c, d, it was shown in [18] that this is resolved by

requiring the two simple wave solutions (from the reduced equations) have to match. We use the

boundary condition k−(v+) = 0 to find c = −v+, and the condiiton A(v−) = 0 to find d = 2v−.

Then we evaluate k−(v) at the trailing edge v = v− to find an expression for the trailing edge

wavenumber

k− =
1

3

√
6(v− − v+), (1.22)

and A(v+) gives an expression for the leading edge amplitude

A+ = 2(v− − v+). (1.23)

1.1.6 Soliton Fission

Another fundamental problem in fluid dynamics is the long time resolution of a large, localized

disturbance. In inviscid fluids, a prominent feature of this resolution is the emergence of a solitary

wavetrain. This process is generally referred to as soliton fission and has been observed in a variety

of fluid contexts [29, 6, 63, 78].

Despite the prevalence of soliton fission in fluid dynamics, its theoretical description has

primarily been limited to completely integrable partial differential equations (PDEs) such as the

KdV equation, a classical weakly nonlinear, long wave model [90, 44, 14]. From [2], for initial data

for the KdV equation (1.2) consisting of a box of width w and height 1, assuming no radiation, the

resulting number of solitons are

NIST =
w

π
√

6
. (1.24)

The spectral parameters ηi > 0, i = 1, 2, . . . ,N (Recall A(η) = 12η2) of the resulting solitons are

the zeros of

tan
(√

1/6− η2w
)

=
2η
√

1/6− η2

1/6− 2η2
. (1.25)

A new method based on Whitham averaging theory that does not require integrability was

first applied to the Serre/Su-Gardner/Green-Naghdi equations for fully nonlinear shallow water

waves in [24]. The method draws upon principles first developed to describe DSWs that result
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from step initial data [18]. The formulae for the expected number of solitons N and the amplitude

density function f(A) for a broad initial profile v(x, 0) = v0(x) for the KdV equation (1.2) are [24]

N =
1

π
√

6

∫ ∞

−∞

√
v0(x) dx,

f(A) =
1

4π
√

6

∫ x2

x1

dx√
v0(x)−A/2

, 0 ≤ A ≤ 2vm.

(1.26)

Here, x1 and x2 are the intersections of A/2 with the initial condition v0(x), which is assumed to

be on a zero background with a single maximum vm = max v0(x). For initial data consisting of a

box of width w and height um, eq. (1.26) becomes

for v0(x) =





vm −w < x < 0

0 else

,

N =
w
√
vm

π
√

6
, f(A) =

w

4π
√

6
√
vm −A/2

, 0 ≤ A ≤ 2vm.

(1.27)

The number of solitons agrees with that obtained by the IST equations (1.24) and (1.25) in its

asymptotic regime of validity N ∼ w
√
vm � 1. We also observe agreement in the amplitude

distributions, as shown in their normalized cumulative density functions (cdfs) in figure 1.6. The

cdfs are defined in terms of f(A) and N as

F(A) =
1

N

∫ A

minA
f(A) dA. (1.28)

Application of this method to the nonintegrable Serre equations also showed excellent agreement

with numerical simulations [24]. This method can be applied to any dispersive nonlinear wave

equation that admits a Whitham modulation description [21].

We explore solitary wave fission for viscous fluid conduits in chapter 4. The method detailed

in [24] is used to resolve the fission of an initial disturbance into solitary waves and predicts the

relationship between the disturbance profile, the number of emergent solitary waves, and their

amplitude distribution. When compared to both numerics and experiments, these predictions

accurately captured the long-time resolution of the system. This is the first known experimental

confirmation of this theory.
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(a) (b)

Figure 1.6: Normalized soliton amplitude cumulative distribution functions (cdfs) in the spectral
parameter η for IST box prediction equation (1.25) [2] (solid black) and soliton fission (1.27) (dashed
blue) for box-like initial conditions with um = 1 and (a) w = 50, (b) w = 400.



15

1.2 The Conduit Equation

The model system for our experimental setup is the conduit equation 1.3

at +
(
a2
)
z
−
(
a2
(
a−1at

)
z

)
z

= 0.

This equation approximately models the evolution of the circular interface, with cross-sectional

area a at time t and vertical spatial coordinate z, separating a light, viscous fluid rising buoyantly

through a heavier, more viscous, miscible fluid at small Reynolds numbers [69, 50]. Our motivation

for studying eq. (1.3) is two-fold. First, the conduit equation is not integrable [38] so there are

mathematical challenges in analyzing its rich variety of nonlinear wave features. Second, equation

(1.3) is an accurate model of viscous fluid conduit interfacial waves where hallmark experiments

have been performed on solitary waves [62, 81, 40], their interactions [69, 84, 51],and DSWs [56]. We

therefore believe the conduit system is an ideal model for the study of a broad range of dispersive

hydrodynamic phenomena. In what follows, we will highlight various work done by others on the

conduit equation itself and the implications of this work.

1.2.1 Derivation of the Conduit Equation

The conduit equation is a specific case of the generalized magma equations, which describe

the dynamics of melted rock within a solid rock matrix was derived by treating molten rock and

its solid, porous surroundings as two fluids with a large density and viscosity difference [59]

φt + (φn +mφn−m−1φtφz − φn−mφtz)z = 0, (1.29)

where φ represents the volume fraction of melted rock [65, 71]. There are two constitutive model

parameters (n,m) that relate the porosity of the rock matrix to its permeability and viscosity,

respectively. Generally, physically permissible parameter values for (1.29) are 0 ≤ m ≤ 1, 2 ≤ n ≤

5. The conduit equation (1.3) coincides with the magma equation (1.29) when (n,m) = (2, 1) [69].

The conduit equation was derived for our experimental system in [50], and the derivation will

be summarized here. The derivation begins with the Navier-Stokes equation and the continuity
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equation for the interaction between two incompressible fluids [50]

∇ · u(i,e) = 0

ρ(i,e) Du(i,e)

Dt = −∇p(i,e) +∇ · σ(i,e)

, 0 < r < Lw, z > 0, t > 0 (1.30)

where u is the flow velocity, (i,e) represents the interior or exterior fluid, respectively, ρ is the

density, p is the pressure, t is time, D
Dt is the material derivative

D

Dt
=

∂

∂t
+ u · ∇, (1.31)

Lw is a far-field boundary assumed far from the fluid interface, and σ is the stress tensor (for an

incompressible fluid, it depends only on the deformation rate of a fluid element). Everything is

described in axisymmetric, cylindrical coordinates, which eliminates any angular dependence for

the equations. Therefore, the velocity vectors for the intrusive and exterior fluids can be defined,

respectively, as

u(i,e) =



u

(i,e)
r

u
(i,e)
z


 . (1.32)

As shorthand, let any quantity evaluated at the fluid-fluid interface be denoted

[f ]j = f (e) − f (i).

Finally denote the viscosity ratio ε = µ(i)/µ(e). This ratio will be assumed small 0 < ε � 1 for

the asymptotic calculation. Initially looking at steady-state pipe (Pouseuille) flow with no-slip

boundary conditions at the interior/exterior interface and no surface tension, we find expressions

for the intrusive pressure and fluid based on a conduit radius of R0:

p(i) = (ρ(i) − ρ(e))gz + p0

u(i)
z =

g

4µ(i)
(ρ(e) − ρ(i))(R2

0 − r2)

(1.33)

In this case, the vertical velocity of the exterior fluid turns out to be O (ε). In actuality, the no-slip

bounday condition should be applied to the outer boundary at r = Lw and stress velocity continuity

applited at the two-fluid interface.
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Next, we assume perturbations around this steady state that depend on appropriate slow-

time and slow-space variables, assuming that the length of the perturbation is large relative to its

radius R0. These assumptions provide the following scalings for nondimensionalization

r̃ = r/L z̃ = ε1/2z/L L = R0/
√

8,

ũ(i,e) = u(i,e)/U U =
gR2

0(ρ(e)−ρ(i))
8µ(i)

t̃ = ε1/2t/(L/U)

p̃(i,e) = P̃ (i,e) + p̃h
(i,e) = ε1/2 p(i,e)−p0

Π Π = µ(i)U/L p̃h
(i,e) = −ε1/2 ρ(i,e)gz

Π = −ρ(i,e)z̃
ρ(e)−ρ(i)

(1.34)

Tildes will be dropped after this point. Note in the transverse direction, the scaling is L, but in

the longitudinal direction, the scaling is L/
√
ε, 0 < ε � 1. Thus the amplitude deviation from

R0 can be arbitrarily large, provided the waves are sufficiently long. Velocities are normalized to

the radially averaged vertical velocity of the uniform conduit, U . The Reynolds numbers for this

system are

Re(i,e) =
ρ(i,e)(ε−1/2L)U

µ(i,e)
.

Then the interior fluid equations (1.30) are rescaled to, dropping tildes,

1
r
∂
∂r (ru

(i)
r ) + ε1/2 ∂u

(i)
z
∂z = 0

Re(i) D(i) u
(i)
r

Dt = −ε−3/2 ∂p(i)

∂r +∇2u
(i)
r − ε−1 u

(i)
r
r2

Re(i) D(i) u
(i)
z

Dt = −ε−1 ∂p(i)

∂z +∇2u
(i)
z

, 0 < r < Lw/L, Lw/L� 1, z > 0, t > 0

(1.35)

where the superscripted material derivative means the material derivative for that particular fluid,

and

∇ = ∇̃ = ε−1/2 ∂

∂r
+

∂

∂z
, ∇2 = ε−1 1

r

∂

∂r

(
r
∂

∂r

)
+

∂2

∂z2
.

For the exterior fluid, the continuity equation is the same other than superscripts, and Navier-Stokes

is similar, except for the pressure coefficients:

ε−3/2∂ρ
(i)

∂r
7→ ε−1/2∂ρ

(e)

∂r
, ε−1∂ρ

(i)

∂z
7→ ∂ρ(e)

∂z

For r = 0, we continue to assume an even solution with no radial velocity and a pressure extrema,

and as r → Lw/L, we require the fluid velocities and modified pressure decay. For the kinematic



18

boundary condition, which here will be defined at r = R0 +R(z, t), we have

u(i)
r = ε1/2

(
∂R

∂t
+ u(i)

z

∂R

∂z

)
.

Then the continuity equation is:

(u(e)
r − u(i)

r ) = ε1/2∂R

∂z

(
u(e)
z − u(i)

z

)
.

And the no-slip boundary condition is:

(u(e)
z − u(i)

z ) = ε1/2∂R

∂z

(
u(i)
r − u(e)

r

)
.

Neglecting surface tension, continuity of the stress tensor in the normal and tangential directions

at the interface imply, respectively,
[
−‖nc‖P + κ

(
σrr − 2ε1/2∂R

∂z
σrz + ε

(
∂R

∂z

)2

σzz

)]

j

= 0

[
κ

{
−
(

1− ε
(
∂R

∂z

)2
)
σrz + ε1/2∂R

∂z
(σzz − σrr)

}]

j

= 0,

(1.36)

where nc is the unit normal vector to the fluid interface, and κ is a fluid-specific coefficient such

that κ(e) = ε−1 and κ(i) = 1.

All pressures and velocities will be expanded in powers of ε, but the scaling for each of these

expansions depend on the Poiseuille flow initial state and/or the length scaling ratio. The interior

pressure and vertical velocity start at O (1) (cf. equation (1.33))

p(i) = p
(i)
0 + εp

(i)
1 + · · · ,

u(i)
z = u

(i)
z,0 + εu

(i)
z,1 + · · · .

(1.37)

The exterior pressure and vertical velocity are at O (ε).

p(e) = εp
(e)
1 + ε2p

(e)
2 + · · · ,

u(e)
z = εu

(e)
z,1 + ε2u

(e)
z,2 + · · · .

(1.38)

The radial velocities are O
(
ε1/2

)
.

u(i)
r = ε1/2u

(i)
r,1 + ε3/2u

(i)
r,2 + · · · .u(e)

r = ε1/2u
(e)
r,1 + ε3/2u

(e)
r,2 + · · · . (1.39)
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Note that this means for the equation to hold, perturbations of the conduit must be longer than

they are wide by a factor of ε−1/2, as assumed in the scalings (1.34). These specific scalings are

taken so that a dominant balance involving nonlinearity and dispersion unfolds, as we now show.

To leading order, these equations can be solved; see equations 44-55 in [50]. Of note is the

expression for the vertical velocity (the subscript 0 denotes leading order)

u
(i)
z,0 ≈

1

4

[
1− ∂

∂z

(
2

R

∂R

∂t

)]
(R2 − r2),

which can be used to solve for the volumetric flow rate in terms of the conduit area A(z, t) =

πR2(z, t), and the vertical fluid flux in the conduit with normal vector nd

Q(z, t) = 2π

∫ R(z,t)

0
u(i) · ndr dr (1.40)

=
A2

8π

{
1− ∂

∂z

(
A−1∂A

∂t

)}
(1.41)

Then using the relation At + Qz = 0 (from conservation of mass), and rescaling a = A/8π, we

arrive at the conduit equation (1.3).

We can also deduce the length and temporal scales from equation (1.34) to a few key param-

eters based on µ(i,e), ρ(i,e), and R0

a = 1
πR2

0
A, z =

√
8ε
R0
Z, t = gR0∆

√
ε√

8µ(i)
T. (1.42)

Then for 0 < ε� 1 and ρ(i) < ρ(e), the dimensional circular cross-sectional area A of this pipe can

be described as a function of dimensional time T and vertical space Z by the dimensional conduit

equation

AT +
g∆

8πµ(i)

(
A2
)
Z
− µ(e)

8πµ(i)

(
A2
(
A−1AT

)
Z

)
Z

= 0. (1.43)
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1.2.2 Reduction to KdV

The conduit equation (1.3) can be reduced to KdV in the proper regime [83]. To show this,

rewrite the conduit equation in the variables B(ζ, t) = a(z, t) and Q(ζ, t) = −at(z, t), so (1.3)




Bt +Qζ = 0

Q = B2

[
1 +

(
Qζ
B

)
ζ

]
,

(1.44)

Note substituting the first equation into the second yields the nondimensional conduit equation in

terms of B(t, ζ). Then we expand the dependent variables in integer powers of ε� 1,

B = B0 + εB1 + ε2B2 + · · · ,

Q = Q0 + εQ1 + ε2Q2 + · · · .
(1.45)

and change to a slow-time, slow-space, and a moving reference frame, i.e. σ = ε3/2t, Z = ε1/2(ζ −

c0t). To leading order, 



−c0B1Z = Q1Z

Q1 = 2B1

Thus c0 = 2, which is the speed of linear waves in the conduit equation. Then at the next order,

substituting in c0 = 2 and Q1 = 2B1, we have




2B2Z +B1σ = −Q2Z

Q2 = 2B1ZZ +B2
1 + 2B2

Therefore,

B1σ + 2B1B1Z + 2B1ZZZ = 0, (1.46)

which is a scaled version of the KdV equation (1.2) [83].

This rescaling is useful for comparing results for the KdV and the conduit equations, which

will be done in chapter 4. To that end, the rescaling from the conduit equation (1.3) to the KdV

equation (1.2) is given by

t = δ3/2t, x = δ1/22−1/3 (z − 2t) , v = 22/3δ(a− 1). (1.47)
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1.2.3 Conservation Laws and Integrability

The magma equation family (1.29) was of great interest as a magma model in the 1980s-1990s,

and the questions of conservation laws and integrability were studied [37, 38]. The conservation

laws were assumed to have the form Tt +Xz = 0, where T only depends on z-derivatives of φ and

X holds no such restrictions. Note they exclude the trivial cases

T = Ωz, X = −Ωt,

and linear combinations of such a form. The first conservation law for any of the magma equations

is the equation itself. In general, there are only two conservation laws for general m and n, unless

either i) m = 1, n 6= 0, where, there are at least two conservation laws, and ii) m = n + 1, n 6= 0,

where, there is a third law [37]. The conduit equation is a part of case (i), so it is unknown if there

are more than two conservation laws.

Further work on the conduit equation’s integrability has also been undertaken [38]. By

taking the travelling wave ansatz φ(x, t) = ψ(x − ct) := ψ(ξ) to reduce the problem to an ODE,

then changing the ansatz to ψ = α(ξ − xi0)p, the equation is

cα3p[p(1−m)− 1][p(1−m+ n)− 2](z − z0)3p−3 (1.48)

+ npαm+2(z − z0)p(m+2)−1 − cpαm−n+3(z − z0)p(m+n+3)−1 = 0. (1.49)

Assuming this is valid in the neighborhood of a movable singularity, the authors examined possible

dominant balances, and for each case, added an additional term to ψ (ψ = ψ + β(ξ − z0)p+r).

If branch point-like behavior is observed (see §3.1 of [38]), then the equation is not of Painlevé

type. If an equation is of Painlevé type, then it can generally be rescaled to a known integrable

equation, so if an equation is not of Painlevé type, this is another indication of nonintegrability.

The conduit equation had a repeated resonance (r = 0), which indicates a logarithmic branch

point [38]. Further analysis determined there were exactly two cases of m and n that do not fail

the Painlevé test: (m,n) = (0,−1), (m,n) =
(

1
2 ,−1

2

)
. Note these fall under exception (ii) in

the conservation laws paper [37]. These equations can be related to other completely integrable
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equations: the Hirota-Satsuma and the Maxwell-Bloch equations, respectively.

To summarize, the conduit equation is known to have at least two conservation laws [7, 37]





at + (a2 − a2(a−1at)z)z = 0,

(
1

a
+
a2
z

a2

)

t

+
(atz
a
− azat

a2
− 2 ln a

)
z

= 0,

(1.50)

and its failure of the Painlevé tes is evidence for its nonintegrability [38].

1.2.4 Other Properties of the Conduit Equation

The conduit equation obeys the scaling invariance

ã = a/a0, z̃ = a
−1/2
0 z, t̃ = a

1/2
0 t ⇒ ãt̃ +

(
ã2
)
z̃
−
(
ã2
(
ã−1ãt̃

)
z̃

)
z̃

= 0. (1.51)

The linearization of the conduit equation upon the background φ admits trigonometric traveling

wave solutions subject to the linear dispersion relation

ω0(k, φ) =
2kφ

1 + k2φ
, (1.52)

with wavenumber k, similar to the bounded dispersion law of the Benjamin-Bona-Mahony equation.

This leads to the linear phase cp and group cg velocities

cp(k, φ) =
ω0(k, φ)

k
=

2φ

1 + k2φ
, cg(k, φ) = ω′0(k, φ) =

2φ
(
1− k2

)
(
1 + k2φ

)2 . (1.53)

Note that cg < cp for k > 0. While the phase velocity is always positive, the group velocity

is negative for k > 1. We note that the conduit equation is globally well-posed for initial data

a(·, 0)− 1 ∈ H1(R) with a(z, 0) physically-relevant initial data bounded away from zero in order to

avoid a singularity [70].

1.2.5 Solitary Waves

Solitary waves have been studied numerically for the more general magma equation (1.29)

where it has been found that they exhibit near-elastic interactions resulting in a phase-shift and a
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Figure 1.7: (solid, blue) Solitary wave solution to the conduit equation (1.3) with As = 3 on a
background φ = 1. This wave has speed cs ≈ 2.94. For comparison, the KdV soliton solution from
equation (1.5) with the same parameters is also shown, and has a nondimensional speed of 5/3.

physically negligible dispersive tail [68, 61, 51]. Since the conduit equation is nonintegrable, true

solitons are not possible. However, solitary waves that act as approximate solitons do exist, and the

wave profiles can be found numerically as solutions of the ordinary differential equation resulting

from the ansatz (1.4) with φ = u (lim|z|→∞ f(ξ) = φ) to yield

(
f ′
)2

= −2

c
f2 log f +

(
φ− c+ 2 log φ

c
+

2

φ

)
f2 − 2f − φ

2 − cφ
c

(1.54)

If we further assume the solution is of amplitudeAs measured from f = 0 at a maximum (f(ξ0) = As

where f ′(ξ0) = 0), we find the solitary wave speed-amplitude relation [62]

cs(As, φ) =
φ
(

2A2
s

(
logAs − log φ

)
−A2

s + φ
2
)

(As − φ)2
. (1.55)

An example solitary wave is shown in figure 1.7.

Much of the previous work done on this equation has focused on solitary waves, or solitons,

and their interactions with each other and with changes in the background flow [62, 51, 54]. For

example, solitary waves were shown to convey mass up the conduit [40]. This can be observed

by comparing the difference in speeds between the solitary wave and the background conduit, and

concluding that there exist stagnation points on either side of the solitary wave (in a reference

frame moving with the wave). Furthermore, there are closed streamlines inside the solitary waves,
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which can be shown by defining a streamfunction in the (r, ξ) coordinate system (ξ is the moving

reference frame coordinate, r the radial coordinate), then finding the streamline that encloses the

trapped fluid [40]. Our own experiments confirm this; a still from an experiment with bicolored

interior fluid is shown in figure 1.8. Of interest is the volume of fluid this streamline encircles is

less than, but the same order of magnitude as, the volume of the solitary wave itself. At larger

amplitudes, the two converge. The asymptotic stability of solitary waves has also been proven

[72]. It’s also notable that conduit solitary waves exhibit KdV-like interaction behavior including

almost elastic interactions and the three Lax interaction categories, even for strongly nonlinear,

large amplitude solitary waves [51].

New results for conduit solitary waves will be presented in chapter 5.

1.2.6 Whitham Modulation Equations

Much of the work in this thesis relies on the Whitham modulation framework, which has

previously been leveraged to describe dispersive shock waves (DSWs) in the conduit system [52].

General (unmodulated) periodic wave solutions have been found, and an implicit dispersion relation

has been computed for these waves [62]. Such a solution for the conduit equation can be found

using the ansatz (1.7). Inserting this ansatz into equation (1.3) and integrating twice results in

(φ′)2 = g(φ) = − 2

k2
φ− 2

ωk
φ2 log φ+ C0 + C1φ

2, (1.56)

where C0 and C1 are real constants of integration. The right side of the equation can have up to

three roots, φ1 ≤ φ2 ≤ φ3. As for the KdV equation, if three real roots exist, then so does the

periodic wave solution.

We will use the physically relevant parameterization of φ is given by the wavenumber k, the

wave amplitude A, and the wave mean φ rather than the parameterization C0, C1, and k. The

wave frequency ω is dependent on (k,A, φ).

Allowing for slow modulations of φ, k, and A in space and time results in the conduit-

Whitham equations. Whitham’s original formulation invoked averaged conservation laws [86], later
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Figure 1.8: Still from an experiment where two interior fluids were used. The two fluids were
identical except for the difference in the dye used. Note there are two solitons in the image and the
closed streamlines inside [40].
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shown to be equivalent to a perturbative, multiple-scales reduction [53]. We use the averaging

method to obtain the conduit-Whitham equations from the conduit equation’s two conservation

laws in (1.50) [7, 37] by averaging over the periodic wave family and appending the equation for

conservation of waves [55]. Using the notation for averaging over a wave period

f =
1

2π

∫ 2π

0
f(θ) dθ, (1.57)

the Whitham equations are




φt +
(
φ2 − 2kωφ2

θ

)
z

= 0
(

1
φ + k2 φ

2
θ
φ2

)

t

− 2
(
lnφ

)
z

= 0

kt + ωz = 0

. (1.58)

We are interested in large t = T/ε, x = X/ε where 1/ε� 1 is a time-space scale of interest.

There have been several works applying Whitham modulation theory to the magma equations

(1.29). Reference [57] considered equation (1.29) with (n,m) = (3, 0), describing DSWs and some

structural properties of the Whitham equations. Modulations of periodic traveling waves in the

magma equation (1.29) and a generalization of it were investigated in the weakly nonlinear, KdV

regime [26]. Modulated periodic waves in the form of DSWs were investigated for the entire family

of magma equations (1.29) in [52]. What is different here is we will focus on the conduit equation

(1.3).

This thesis takes a comprehensive look at modulated periodic waves in the context of dis-

persive hydrodynamics broadly and viscous fluid conduits particularly. We begin with analysis

of the conduit equation through our study of the structural properties of the conduit-Whitham

equations in chapter 2 [55]. Periodic waves are characterized by wavenumber and amplitude to

have modulational stability or instability. Dark and bright envelope solitons are found to persist

in long-time numerical solutions of the conduit equation with numerical evidence for the existence

of large-amplitude envelope solitons. In the large amplitude regime, structural properties of the

Whitham equations are computed, including strict hyperbolicity, genuine nonlinearity, and linear

degeneracy.
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1.2.7 Dispersive Shock Waves

Dispersive shock waves are the result of a step increase in background conduit area, taken

without loss of generality to be from 1 to φ−, and can be characterized by a modulated periodic

wave described by the conduit-Whitham equations. Then a DSW can be viewed as connecting two

distinguished limits of these wave parameters: as A → 0 and k → 0. When A → 0, the solution

limits to small amplitude harmonic waves with the linear dispersion relation (1.52). When k → 0,

the solution limits to a leading edge that bears the same characteristics as a solitary wave, with

the speed-amplitude relation (1.55).

A simple wave solution to the conduit-Whitham equations results in expressions for the

leading (solitary wave) and trailing (harmonic) edge speeds in terms of the jump parameter φ−,

labeled s+ and s−, respectively [52]

s+ =
√

1 + 8φ− − 1, s− = 3 + 3φ− − 3
√
φ−(8 + φ−). (1.59)

The solitary wave amplitude A+ is implicitly determined from the solitary wave speed-amplitude

relation (1.55), and the trailing wavenumber k− can be explicitly determined by equating the group

velocity ∂kω0 to s−

k2
− =

1

4

(
1− 4

φ−
+

√
1

φ−
(8 + φ−)

)
. (1.60)

The group velocity of the harmonic edge is always less than the speed of the solitary wave

edge. Thus, a DSW in the conduit system is always led by a solitary wave, with a trailing,

continually expanding, oscillating wavetrain, similar to figure 1.5. Other quantifiable features of

conduit DSWs include the onset of backflow, where the group velocity of the trailing edge goes

negative, and the onset of implosion, where the trailing edge of the DSW is nonmonotonic in the

modulation variables due to gradient catastrophe in the conduit-Whitham equations [52].

We look at the generation and observation of dispersive shock waves in a viscous fluid conduit

experiment in chapter 3 [5, 56]. For DSW generation, we can consistently achieve desired jump

ratios and breaking heights. We also find excellent agreement with DSW-theory post-breaking,

namely theoretical predictions of the leading edge speeds and amplitudes as a function of jump
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height as well as the observation of backflow at the trailing edge for sufficiently large jumps. This

remarkable agreement motivates further study of dispersive hydrodynamics through this experi-

mental setup.

1.3 Experiments in Viscous Fluid Conduits

Conduits generated by the low Reynolds number, buoyant dynamics of two miscible fluids

with differing densities and viscosities were first studied in the context of geological and geophysical

processes [82]. Viscous fluid conduits, contrary to magma, are easily accessible in a laboratory

setting, typically with a sugar solution or glycerine for the exterior fluid, and a dyed, diluted

version of the same for the interior fluid [5, 40, 50, 54, 56, 62, 69, 84]. Early experiments primarily

explored the development of the conduit itself, which results in a diapir followed by a periodic

wavetrain [62, 82].

1.3.1 Solitary Wave Observation

Previous experiments used a raised reservoir of interior fluid to generate a pressure head that

maintained a constant conduit [40]. Moving the reservoir up and down resulted in modulations of

that conduit. Similar to our experiments [56], it was reported in [40, 62] that the solitary waves have

a constant speed (R = 0.999), but the speeds diverge from the expected speed-amplitude relation

(1.55) for large-amplitude waves. It was posited in [62] that the slowly-varying assumption of the

conduit equation has likely been violated. Interactions of solitary waves have also been studied

[51].

1.4 Experimental Setup and Methods

In our experiment, the steady injection of an intrusive viscous fluid (dyed, diluted corn syrup

or glycerine) into an exterior, miscible, much more viscous fluid (pure corn syrup or glycerine) leads

to the formation of a stable fluid filled pipe or conduit [82]. Due to high viscosity contrast, there

is minimal drag at the conduit interface so the flow is well approximated by the Poiseuille or pipe
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flow relation. From section 1.2.1, we insert the Poiseuille flow relation for uz from equation (1.33)

into equation (1.40) for volumetric flow rate and evaluate at the steady-state radius R0

Q0 = 2π

∫ R0

0

g∆

4µ(i)

(
R2

0 − r2
)
r dr

=
πg∆

2µ(i)

(
R2

0

2
r2 − 1

4
R4

0

∣∣∣∣
R0

r=0

=
πg∆

23µ(i)
R4

0.

We more commonly write this in terms of the diameter D0

D0 = αQ
1/4
0 , α =

(
27µ(i)

πg∆

)1/4

(1.61)

By modulating the injection rate, interfacial wave dynamics ensue. Negligible mass diffusion im-

plies a sharp conduit interface and conservation of injected fluid. Typical experiment setup and

processing will be laid out in detail here and referenced throughout this work.

1.4.1 Setup

The experimental apparatus shown in figure 1.9(a) consists of a square acrylic column with

dimensions 4 cm×4 cm×183 cm; the column is filled with the exterior fluid, either glycerine or corn

syrup, both highly viscous, transparent fluids. A nozzle is installed at the base of the column to

allow for the injection of the interior fluid. To eliminate surface tension effects, the interior fluid is

a matching solution of corn syrup or glycerine, diluted with deionized water, and dyed black with

food coloring. As a result, the interior fluid has both lower viscosity and density than the exterior

fluid (µ(i) � µ(e) , ρ(i) < ρ(e)) and we assume mass diffusion is negligible. This will later be verified

for corn syrup in section 3.2.3.

Interior fluid is drawn from a separate reservoir and injected through the nozzle via a high

precision computer controlled piston pump. The interior fluid rises buoyantly. By injecting at a

constant rate, a vertically uniform fluid conduit is established. This uniform steady state is referred

to as the background conduit, and is well-approximated as pipe (Poiseuille) flow, verified in section

3.2.2. A perturbed conduit schematic is shown in figure 1.9(b). Data acquisition is performed using
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high resolution cameras equipped with macro lenses aimed at the regions of interest. For images of

the full conduit, a high resolution camera with a zoom lens is mounted on a tripod an appropriate

distance from the apparatus. A ruler is positioned beside the column within camera view for

calibration purposes. Correction for the refractive index of glycerin is calibrated via images of a

cylinder of known height and width dropped into the center of the apparatus before the experiment.

1.4.2 Methods

Inputs for this system are in the form of a boundary condition a(0, t). Then to utilize a given

boundary condition, we transform from the nondimensional conduit equation (lower case variables)

to physical parameters (upper case variables). Following the scaling in (1.42) and the Poiseuille flow

relation equation (1.61), volumetric flow rate profile Q(t) is generated for the desired configuration

and programmed into a computer-controlled piston pump.

The macro lens cameras take images before, during, and after the times of interest, so conduit

diameters can be measured. The fluid column is backlit with strip LED lights behind white diffusion

filter paper. The conduit edges are extracted from filtered camera images in Matlab by identifying

extreme intensity differences. The approximately white background and the opaque, black conduit

yield sufficient contrast for edge detection via horizontal intensity slices, as illustrated in figure

1.10. The edge data is then processed with a low-pass filter to reduce noise due to pixelation of

the photograph and any impurities (such as bubbles) in the exterior fluid. The number of pixels

between the two edges is identified as the conduit diameter, which is squared and normalized by

the squared background conduit diameter to obtain the dimensionless cross-sectional area a [56, 5].

From here, processing techniques diverge due to experimental differences and thus will be explained

in the relevant chapters.
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(a) (b)

Figure 1.9: (a) Schematic of a possible experimental setup. (b) Schematic of a perturbed conduit
[5].
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Figure 1.10: Processed images from a glycerine trial [5]. Measured parameter values are µ(i) =
72 ± 1cP, ρ(i) = 1.222 ± 0.001g/cm3, µ(e) = 1190 ± 20cP, ρ(e) = 1.262 ± 0.001g/cm3, and Q0 =
0.25± 0.01ml/min. The grayscale images are overlayed with the extracted conduit edges.



Chapter 2

Modulations of Periodic Waves

In this chapter, we study nonlinear wave phenomena predicted by equation (1.3) by analyzing

its weakly nonlinear Stokes wave and NLS reductions as well as the structural properties of the large

amplitude modulation (Whitham) equations, and then compare these predictions with numerical

simulations. An example non-modulated periodic wave is shown in figure 2.1. We identify long-lived

bright and dark envelope soliton solutions in both the weakly nonlinear, NLS regime and the large

amplitude, strongly nonlinear regime. The weakly and strongly nonlinear quasi-linear Whitham

equations are analyzed asymptotically and with numerical computation. Regions in parameter

space of strict hyperbolicity, ellipticity, and linear degeneracy are identified. The elliptic regime

corresponds to modulationally unstable periodic waves and a maximally unstable wave is identified.

This chapter is a lightly edited version of [55], formatted to fit the style of this thesis.

As mentioned in the introduction, there have been several previous studies on the Whitham

modulation equations for the family of magma equations. This work differs from previous studies

by concentrating on the case (n,m) = (2, 1) for the conduit equation, identifying new coherent
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Figure 2.1: A computed periodic wave solution to the conduit equation with wavenumber k = 2,
amplitude A = 1.5, and unit mean φ.
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structures (envelope solitons), and determining structural properties of the associated Whitham

equations (hyperbolicity, ellipticity, linear degeneracy). By focusing on the (n,m) = (2, 1) case, we

lay the groundwork for future analytical, numerical, and experimental studies in this thesis.

2.1 Periodic Traveling Wave Solutions

We seek periodic traveling wave solutions to equation (1.3) in the form a(z, t) = φ(θ), θ =

kz − ωt, φ(θ + 2π) = φ(θ) for θ ∈ R. Inserting this ansatz into equation (1.3) yields

− ωφ′ + k(φ2)′ + ωk2(φ2(φ−1φ′)′)′ = 0. (2.1)

Integrating twice results in

(φ′)2 = g(φ) ≡ − 2

k2
φ− 2

ωk
φ2 lnφ+ C0 + C1φ

2, (2.2)

where C0 and C1 are real integration constants.

Equation (2.2) exhibits at most three real roots [52]. When there are three distinct roots, a

periodic solution oscillates between the largest two. The solution can be parameterized by three

independent variables. Defining the wave minimum φ0 according to φ0 = minθ φ(θ), we utilize the

following physical parametrization

wavenumber: k,

wave amplitude: A = max
θ∈[0,π]

φ(θ)− φ0,

wave mean: φ ≡ 1

π

∫ π

0
φ(θ) dθ =

1

π

∫ φ0+A

φ0

φ dφ√
g(φ)

.

(2.3)

The requirement that φ is 2π-periodic is enforced through

π =

∫ π

0
dθ =

∫ φ0+A

φ0

dφ√
g(φ)

, (2.4)

where in (2.3) and (2.4) we have used the even symmetry of solutions to equation (2.2). Given

(k,A, φ), the relations (2.3) and (2.4) determine the wave frequency ω = ω(k,A, φ) and the wave

minimum φ0 = φ0(k,A, φ). The extrema requirements g(φ0) = g(φ0 + A) = 0 determine C0 and

C1 from equation (2.2).
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Due to the scaling invariance equation (1.51), the wave mean can be scaled to unity. This

implies that only ω(k,A, 1) and φ0(k,A, 1) need be determined. Then the general cases follow

according to

ω(k,A, φ) = φ
1/2
ω
(
φ

1/2
k, φ

−1A, 1
)
, φ0(k,A, φ) = φφ0

(
φ

1/2
k, φ

−1A, 1
)
. (2.5)

We therefore define the unit-mean nonlinear dispersion relation and traveling wave solution accord-

ing to

ω̃(k̃, Ã) = ω(k̃, Ã, 1), φ̃(θ; k̃, Ã) = φ(θ; k̃, Ã, 1). (2.6)

We will use the variables (φ̃, ω̃, k̃, Ã) whenever we are assuming a unit mean solution.

2.1.1 Stokes Expansion

We can obtain approximate periodic traveling wave solutions in the weakly nonlinear regime

via the Stokes wave expansion [85]:

φ̃ = 1 + εφ̃1 + ε2φ̃2 + · · · , (2.7)

ω̃ = ω̃0 + ε2ω̃2 + · · · , (2.8)

where 0 < ε � 1 is an amplitude scale. Inserting this ansatz into equation (2.1), equating like

coefficients in ε, and enforcing solvability conditions yields the approximate solution

φ̃1(θ) = cos θ, ω̃0(k) = 2k̃
1+k̃2

, φ̃2(θ) = 1
6k̃ω̃0

cos 2θ, ω̃2(k̃) = 1−8k̃2

48k̃(1+k̃2)
, (2.9)

where ω̃0 is the unit mean linear dispersion relation (equation (1.52) with φ = 1). Setting the

amplitude Ã = 2ε, the approximate periodic wave solution is

φ̃(θ, k̃, Ã) = 1 +
Ã
2

cos θ +
Ã2(1 + k̃2)

48k̃2
cos 2θ +O(Ã3), (2.10)

ω̃(k̃, Ã) =
2k̃

1 + k̃2
+ Ã2 1− 8k̃2

48k̃(1 + k̃2)
+O

(
Ã3
)
. (2.11)

In figure 2.2, this solution is compared to numerically computed periodic waves (numerical methods

are described in Appendix A.1). The frequency and wave profile of the Stokes expansion accurately
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Figure 2.2: Comparison of the Stokes wave expansion solution (dashed lines) to the numerically
computed solution (solid lines) for three different waves with unit mean. (k̃, Ã) are (1/4, 1) (black),
(2, 2) (blue), and (1, 0.5) (red). The approximate and numerical solutions for (k̃, Ã) = (1, 0.5) are
indistinguishable.

describe some periodic conduit waves, even for O(1) amplitudes provided the wavenumber is ap-

propriately chosen. However, even at moderately small wavenumbers, the expansion rapidly breaks

down. This is quantified in figure 2.3. Figures 2.3(a,b) show the dispersion and phase velocities

for numerically computed periodic waves, and figure 2.3(c) compares the full, nonlinear dispersion

ω̃(k̃, Ã) to ω̃0(k̃) + Ã2ω̃2(k̃). The dispersion relation agrees exceedingly well for k̃ > 1 and Ã . 1,

but deviates for larger amplitudes and wavenumbers less than 0.5. To retain asymptotic ordering,

we need Ã � k̃2/(1 + k̃2).

Note that the approximate solution (2.10) can result in an unphysical, negative conduit cross-

sectional area. The minimum of the approximate solution φ̃(θ) occurs when θ = π. Equating the

minimum to zero, we find that physical, positive values for approximate φ̃ are restricted to Ã < A0,

where A0 > 4(3−
√

6) ≈ 2.20, which is well beyond our assumption of small amplitude 0 < Ã � 1.

2.2 Weakly Nonlinear, Dispersive Modulations

The aim of this section is to describe wave modulation in the weakly nonlinear, dispersive

regime. First, we derive an approximation of wave modulations in the small-amplitude, weakly

nonlinear regime with the NLS approximation using the method of multiple scales. Consider the
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ã

 

 

1.5 2 2.5 3 3.5 4

0.5

1

1.5

2

2.5

I
m
c̃
2

0

0.012

0.024

0.036

0.048

0 1 2 3 40

1

2

3

4

k̃

ã
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ansatz

a(z, t) = 1 + εA0 + ε2A1 + ε3A2 + · · · , ε→ 0, (2.12)

where Ai = Ai(θ, Z, T ) for i = 0, 1, ..., θ = k̃z − ω̃0(k̃)t, Z = εz, and T = εt, where ω̃0(k̃) is the

linear dispersion relation (1.52) for unit mean. Note that the amplitude in the NLS approximation

is small, O (ε). Then, at O (ε), we obtain a linear, homogeneous equation for A0: LA0 := −ωA0,θ+

2kA0,θ + k2ωA0,3θ = 0, with solution A0 = ψ(Z, T )eiθ + c.c. if ω = ω̃0, k = k̃, (c.c. denotes the

complex conjugate of the previous terms). At O
(
ε2
)
, LA1 = F1 where

F1 = e2iθ
[
−2ik̃ψ2

]
− eiθ(1 + k̃2)[ψT + ω̃′0(k̃)ψZ ] + c.c.

Solvability therefore implies −(1 + k̃2)
[
ψT + ω̃′0(k̃)ψZ

]
∼ εg1 + · · · , where we have introduced the

higher order correction g1. Solving for A1, we include second harmonic and mean terms A1 =

ψ2(Z, T )e2iθ/(3k̃ω̃) + c.c + M(Z, T ) with M to be determined at the next order. Solvability with

respect to constants at O
(
ε3
)

yields M = (3k̃ − 1)(1 + k̃2)k̃−2(k̃2 + 3)−1 |ψ|2 . Solvability with

respect to the first harmonic yields for g1,

−(1 + k2)
[
AT + ω′(k)AZ

]
= ε





2ikm |A|2A− ik2ωm |A|2A− 2ikAZT

+iωAZZ + 2ikBA∗ − 9ik2BωA∗

Upon entering the moving reference frame and scaling to long time ξ = Z− ω̃′0T, τ = εT, yields the

Nonlinear Schödinger equation in the form

iψτ +
ω̃′′(k̃)

2
ψξξ + n(k̃) |ψ|2 ψ = 0, (2.13)

where

n(k̃) =
3 + 5k̃2 + 8k̃4

3k̃(k̃2 + 1)(k̃2 + 3)
. (2.14)

Rescaling according to

τ = ε2t, ζ =
ε√
|ω̃′′0 |

(z − ω̃′0t), B =
ψ√
n
, (2.15)

yields the NLS Equation for the complex envelope B(ζ, τ)

iBτ +
σ

2
Bζζ + |B|2B = 0, (2.16)
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where σ = sgn ω̃′′0(k̃) denotes the dispersion curvature. Then given a solution B of the NLS equation,

an approximate solution to the conduit equation is

a(z, t) ≈ 1 + ε
[√

nBeiθ + c.c.
]

+ ε2

[
nB2

3k̃ω̃0

e2iθ + c.c.+M

]
,

M =
(3k̃ − 1)(1 + k̃2)

k̃2(k̃2 + 3)
n |B|2 , n(k̃) =

3 + 5k̃2 + 8k̃4

3k̃(k̃2 + 1)(k̃2 + 3)

(2.17)

where ε is an amplitude scale.

Since

ω̃′′0(k̃) =
4k̃(k̃2 − 3)

(1 + k̃2)3
,

and n(k̃) > 0 in equation (2.14), the NLS equation (2.16) is defocusing when 0 < k̃ <
√

3, and

focusing for k̃ >
√

3. This result effectively splits periodic wave solutions of the conduit equation

into two regimes. For the defocusing case, weakly nonlinear periodic waves are modulationally

stable, and dark envelope soliton solutions are predicted, which, when combined with the ansatz

(2.17), take the form (see, e.g., [1])

B(ζ, τ) = eiτ+iψ0 [i cosα+ sinα tanh[sinα (ζ − cosα τ − ζ0)]] , (2.18)

with arbitrary, real constants ζ0, ψ0, and α, where 0 < α ≤ π/2 is half the phase jump across the

soliton. This “gray soliton” reduces to the “black soliton” when α = π/2 because B = 0 at the

soliton center.

For the focusing case, periodic waves are modulationally unstable [87, 91]. Bright envelope

soliton solutions for the NLS equation exist, which have the form

B(ζ, τ) = eiτ/2+iΘ0 sech(ζ − ζ0), (2.19)

where ζ0 and Θ0 are arbitrary, real constants.

In order to validate these approximate solutions, we numerically simulate the conduit equation

(1.3) with envelope soliton initial conditions (2.17) and (2.18) or (2.17) and (2.19), depicted in figure

2.4(a,b). In figure 2.4(a), a black soliton is observed to coherently propagate, maintaining essentially

the same shape. The NLS approximation is asymptotically valid up to times t = O(1/ε2). For the



40

1000

250

750

500t

0

1000

250

750

500t

0 0.6

1

1.6

250 750500
z

0.6

1.6

0.6

1.6

0.9

1

1.1

0.9

1.1

275 675475
z

0.9

1.1

0.6

1

1.6

0 500250
z

0.6

1.6

0.6

1.6

0.9

1

1.1

200 600400
z

0.9

1.1

0.9

1.1

1000

250

750

500t

0

1000

250

750

500t

0

a b

a b

aa

a a

Figure 2.4: Evolution of weakly nonlinear envelope soliton initial conditions for the conduit equation
(1.3). (a) Approximate black soliton initial condition (2.18) with Ã = 0.2, k̃ = 1. (b) Approximate
bright soliton initial condition (2.19) with Ã = 0.2, k̃ = 3.
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simulation in figure 2.4(a), ε = Ã/4 = 0.05 so that 1/ε2 = 400. The black envelope soliton shows

no sign of instability over times up to t = 1000. Figure 2.4(b) shows the long-time evolution of an

envelope bright soliton with the same ε = 0.05. The envelope appears to steepen and become peaked

by t = 1000 but otherwise maintains its envelope structure. The observed speeds of propagation of

the black and bright solitons are 0.0002 and -0.1589, respectively, very close to the predicted group

velocities 0 and -0.16, respectively.

We also numerically studied the large amplitude regime with dark and bright envelope soliton

initial conditions. Figure 2.5(a) shows the numerical evolution of dark envelope soliton initial

data for Ã = 1.6, k̃ = 1. The initial data apparently breaks up into three coherent structures.

Two shallow amplitude modulations propagate in opposite directions and a large amplitude dip

propagates very slowly. In order to verify the coherence of this large amplitude structure, we isolate

it from the fast nonlinear waves by extracting the solution at t = 750 over the truncated domain

z ∈ [100, 275] and use this as an initial condition for the conduit equation. Additional periods of

the unmodulated wave were prepended to the profile in order to increase the spatial domain. The

evolution is shown in figure 2.5(b), displaying a remarkable persistence out to t = 1000.

Figure 2.6(a) depicts the evolution of bright envelope soliton initial conditions with Ã = 0.6,

k̃ = 3. The initial envelope appears to split into two coherent bright envelope structures and small

amplitude dispersive radiation. The large amplitude wave is extracted from the solution at t = 1000

over the truncated domain z ∈ [350, 360] and superimposed on a unit background then used as a

new initial condition for the conduit equation. The result is shown in figure 2.6(b) that shows the

persistence of a large amplitude envelope structure accompanied by the emission of small amplitude

dispersive radiation.

These results reflect the fact that the NLS approximation models the envelope of a weakly

nonlinear, dispersive carrier wave. Yet numerical evolution of large amplitude initial data present

intriguing coherent structures deserving of further study. We now turn to the Whitham equations

for an asymptotic description of nonlinear wave modulations in the moderate to large amplitude

regime. However, the tradeoff for using these quasi-linear equations is their lack of dispersion at
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up into multiple coherent “dark” wave structures. (b) The large amplitude dark structure from (a)
is isolated and evolved, maintaining its coherence.

1000

250

750

500t

0

1000

250

750

500t

0 0.6

1

1.6

250 750500
z

0.6

1.6

0.6

1.6

0.9

1

1.1

0.9

1.1

275 675475
z

0.9

1.1

0.6

1

1.6

0 500250
z

0.6

1.6

0.6

1.6

0.9

1

1.1

200 600400
z

0.9

1.1

0.9

1.1

1000

250

750

500t

0

1000

250

750

500t

0

a b

a b

aa

a a

Figure 2.6: Evolution of large amplitude bright envelope soliton initial conditions for the conduit
equation (1.3). (a) Approximate bright soliton initial condition (2.18) with Ã = 0.6, k̃ = 3 breaking
up into two coherent “bright” wave structures and small amplitude dispersive radiation. (b) The
largest amplitude bright structure from (a) is isolated and evolved, maintaining its coherence.



43

the first order of approximation, consequently they cannot describe envelope solitons.

2.3 Whitham Equations

In order to describe modulated, large amplitude periodic waves, we appeal to the Whitham

modulation equations. We have already introduced the conduit-Whitham equations in section 1.2.6

as equation (1.58). Note that the time scale of validity for the leading order Whitham equations

is O (1/ε), shorter than the O
(
1/ε2

)
time scale of the NLS equation (2.16). The benefit of the

Whitham equations is that there is no amplitude restriction whereas the NLS equation considers

O (ε) amplitudes.

For completeness, we supply a synopsis of the multiple scales asymptotic derivation of the

Whitham moduation equations. For the formal derivation here, we introduce slow space and time

scales Z = εz, T = εt and consider the ansatz a(z, t) = A0(θ, Z, T ) + εA1(θ, Z, T ) + · · · , 0 < ε� 1,

where θz = k and θt = −ω. Note that there is no amplitude restriction on A0. Equality of mixed

partials θzt = θtz implies the conservation of waves kT + ωZ = 0, one of the Whitham equations.

We insert the asymptotic ansatz into the conduit equation (1.3) and equate like orders in ε. The

O (1) equation is

− ωA0,θ + 2kA0A0,θ − k2ωA0,θA0,θθ + k2ωA0A0,θθθ = 0. (2.20)

Equation (2.20) is solved with a family of periodic traveling waves parameterized by (k,A, φ) (see

section 2.1) where the parameters are assumed to depend on the slow variables (Z, T ). Note that in

order to remove secularity at this order, the period of the solution in θ must be scaled to a constant

[53, 87], which we choose to be 2π without loss of generality: A0(θ + 2π, Z, T ) = A0(θ, Z, T ).

At the next order, O (ε), we obtain the linear problem LA1 = f where

LA1 = −ωA1,θ +
(
−k2ωA0,θA1,θ + 2kA0A1

)
θ

+ k2ω(A1,θθθA0 +A0,θθθA1),

f = −A0,T − k2A0,θθA0,T + k2A0A0,θθT − 2A0A0,Z + 2kωA0,θA0,θZ − 2kωA0A0,θθZ .

There are two solvability conditions in the form 〈w, f〉 ≡
∫ 2π

0 w(θ)f(θ)dθ = 0, where w ∈ KerL∗ =
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span{1, A−2
0 } for the the adjoint operator

L∗w = ωwθ + k2ω[−(A0,θw)θθ + (A0,θθw)θ +A0,3θw − (A0w)3θ] + 2k[A0,θw − (A0w)θ],

with 2π-periodic boundary conditions. Note that there is a third, linearly independent function

that is annihilated by L∗, but it is not 2π-periodic. Applying the two solvability conditions 〈1, f〉 =

〈A−2
0 , f〉 = 0, performing some simplifications (primarily integration by parts), and adding the

conservation of waves, we arrive at the Whitham equations

(
A0

)
T

+
(
A2

0 − 2kωA2
0,θ

)
Z

= 0, (2.21)
(

1

A0
+ k2

A2
0,θ

A2
0

)

T

− 2
(
lnA0

)
Z

= 0, (2.22)

kT + ωZ = 0, (2.23)

where g = 〈1, g〉. We can set ε = 1, and equivalently consider the Whitham equations in the long

time t � 1 regime. Replacing A0 with the periodic solution φ of equation (1.56), we obtain the

Whitham equations in conservative form

P t + Qz = 0, P =




φ

I1

k



, Q =




I2

I3

ω



, (2.24)

where we have introduced the averaging integrals

I1 = φ−1 + k2g(φ)/φ2, I2 = φ2 − 2kωg(φ), I3 = −2lnφ. (2.25)

Alternatively, averaging of the conservation laws (1.50) is achieved by inserting the ansatz

a(z, t) = φ(θ; k(z, t)A(z, t), φ(z, t)) and averaging the densities and fluxes over a period:

φt +
(
φ2 + ωkφ2 (φ−1φθ)θ

)
z

= 0,
(

1

φ
+ k2

φ2
θ

φ2

)

t

+

(
−ωkφθθ

φ
+ ωk

φθφθ
φ2
− 2 lnφ

)

z

= 0.

Integration by parts and the addition of conservation of waves yields the Whitham equations in

the conservative form (2.24). Consequently we have shown that multiple scales and conservation

law averaging yield the same modulation equations.
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The density P and flux Q can be expanded in terms of the modulation variables q =

(k,A, φ)T to obtain the quasi-linear form of the Whitham equations

qt + Mqz = 0, (2.26)

where

M =

(
∂P
∂q

)−1 ∂Q
∂q

=




ωk ωA ωφ
I3,k−I1,kωk−I2,kI1,φ

I1,A

I3,A−I1,kωa−I2,AI1,φ
I1,A

I3,φ−I1,kωφ−I2,φI1,φ
I1,A

I2,k I2,A I2,φ



.

(2.27)

This non-conservative form of the Whitham equations is only valid where the matrix ∂P/∂q is

invertible, which is the case for the parameter regimes considered in this thesis.

The scaling invariance (1.51) can be used so that the dependence on φ in the Whitham

equations is explicit and the averaging integrals need be computed only over the scaled variables k̃

and Ã. Then the integrals (2.25) can be written

I1 = Ĩ1/φ, I2 = φ
2
Ĩ2, I3 = Ĩ3 − 2 lnφ, (2.28)

where Ĩi = Ĩi(k̃, Ã), i = 1, 2, 3. Therefore, computation of the averaging integrals is only required

for (k̃, Ã). The Whitham equations in the scaled variables q̃ = (k̃, Ã, φ) are

q̃t + M̃q̃z = 0, M̃ =

(
∂q

∂q̃

)−1

M∂q

∂q̃
,
∂q

∂q̃
=




φ
−1/2

0 −1
2φ
−3/2

k̃

0 φ Ã

0 0 1



. (2.29)

We will be interested in structural properties of the Whitham equations such as hyperbolicity

(strict or non-strict), ellipticity, and genuine nonlinearity. All of these criteria rely on the eigenvalues

c and eigenvectors r of the Whitham matrix M satisfying

(M− cI)r = 0. (2.30)
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In general, we expect three eigenpairs {(cj , rj)}3j=1 with either all real eigenvalues c1 ≤ c2 ≤ c3

when the Whitham equations are hyperbolic or, in the case of one real and two complex conjugate

eigenvalues, the Whitham equations are elliptic. If the eigenvalues are all real and they are strictly

ordered c1 < c2 < c3, then the Whitham equations are strictly hyperbolic.

The coefficient matrix M̃ is a similarity transformation of M so its eigenvalues are the same

as those of M. M̃ exhibits the following property

M̃(k̃, Ã, φ) =




1 0 0

0 1 0

0 0 φ



M̃(k̃, Ã, 1)




φ 0 0

0 φ 0

0 0 1



, (2.31)

which can be used to show

c(k̃, Ã, φ) = φc(k̃, Ã, 1), r(k̃, Ã, φ) =




φ
−1

0 0

0 φ
−1

0

0 0 1




r(k̃, Ã, 1). (2.32)

Therefore, the hyperbolicity/ellipticity of the Whitham equations is independent of the mean φ.

The unit mean eigenvalues c̃ and eigenvectors r̃ are defined according to

c̃(k̃, Ã) = c(k̃, Ã, 1), r̃(k̃, Ã) = r(k̃, Ã, 1). (2.33)

Utilizing the identities in (2.32), we find that the quantity

µ ≡ ∇q̃c(k̃, Ã, φ) · r(k̃, Ã, φ) =




c̃k̃

c̃Ã

c̃



· r̃ (2.34)

is independent of φ, i.e., µ = µ(k̃, Ã). If µ 6= 0, then the Whitham equations are genuinely nonlinear

[87]. For those values of k̃ and Ã where µ = 0, the Whitham equations are linearly degenerate. The

sign definiteness of µ corresponds to a monotonicity condition that is required for the existence of

simple wave solutions to the Whitham equations, of particular importance for the study of DSWs

[21].
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2.3.1 Weakly Nonlinear Regime

Now consider equation (2.27) in the small A regime by inserting the Stokes expansion (2.10),

(2.11), yielding

M =




ω0,k 2Aω2 ω0,φ

A
2 ω0,kk ω0,k

A
2

4(1+φk2+3φ
2
k4+φ

3
k6)

(1+φk2)3

0 2A 1−3φk2

8(1+φk2)
2φ




+O(A2). (2.35)

The eigenvalues of M (characteristic velocities) via (2.32) evaluated at unit mean φ = 1 are

c̃1 = ω̃0,k̃ −
Ã
4

√
−nω̃0,k̃k̃ +O

(
Ã2
)
,

c̃2 = ω̃0,k̃ +
Ã
4

√
−nω̃0,k̃k̃ +O

(
Ã2
)
, (2.36)

c̃3 = 2 +O
(
Ã2
)
,

where n = n(k̃) is from equation (2.14). The complex characteristic velocities occur precisely when

the NLS equation (2.16) is in the focusing regime, i.e., when k̃ >
√

3. This is to be expected [87].

The requirement −nω̃0,k̃k̃ > 0 for modulational stability is sometimes referred to as the Benjamin-

Feir-Lighthill criterion [91]. Note that we must use −n(k̃), as opposed to ω̃2(k̃) from the Stokes

expansion (2.9), in the criterion because of the generation of a mean term (cf. [87]).

Next, we determine the approximate eigenvectors r̃j associated with the approximate eigen-

values (2.36) using standard asymptotics of eigenvalues and eigenvectors (see, e.g., [41]). These

approximate results are used to compute µj , j = 1, 2, 3 for 0 < Ã � 1 (2.34) (each µj is associated

with its cj)

µ1 =
6k(k2 − 3)

(1 + k2)3
+

(
2k10 + 43k8 + 35k6 + 99k4 + 243k2 − 54

)

6k (k2 + 1)3 (k2 + 3)3/2
√
−8k6

3 + 19k4

3 + 4k2 + 3
Ã+O

(
Ã2
)
,

µ2 =
6k(k2 − 3)

(1 + k2)3
−

(
2k10 + 43k8 + 35k6 + 99k4 + 243k2 − 54

)

6k (k2 + 1)3 (k2 + 3)3/2
√
−8k6

3 + 19k4

3 + 4k2 + 3
Ã+O

(
Ã2
)
,

µ3 = 2.
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We find that µ1 = 0 when

Ã = 6

√
2

5
33/4

(√
3− k̃

)3/2
+O

((√
3− k̃

)5/2
)
, 0 <

√
3− k̃ � 1. (2.37)

Along the curve (2.37), the weakly nonlinear Whitham equations are linearly degenerate in the first

characteristic field.

We also find linear degeneracy in the second characteristic field: µ2 = 0 when Ã = 18k̃2 +

O
(
k̃4
)

, 0 < k̃ � 1. But the weakly nonlinear Whitham equations are nonstrictly hyperbolic

when Ã = 12k̃2 + O
(
k̃4
)

, 0 < k̃ � 1, as shown by equating c̃2 = c̃3 from equation (2.36).

Because nonstrict hyperbolicity implies linear degeneracy [13], there is apparently a contradiction.

The reason for this is due to the Stokes approximation that requires Ã � k̃2 to maintain an

asymptotically well-ordered approximation of equation (2.10) so that both µ2 = 0 and c̃2 = c̃3 are

outside the asymptotic regime of validity.

2.3.2 Large Amplitude Regime

We now investigate modulations of large amplitude, periodic waves by direct computation

of the Whitham equations. For this, we examine the Whitham equations in the form (2.29),

so that the dependence on φ is explicit. We numerically compute periodic solutions φ̃ and the

corresponding nonlinear dispersion relation ω̃(k̃, Ã) and unit-mean averaging integrals {Ĩj(k̃, Ã)}3j=1

for the equispaced, discrete values (k̃j , Ãl), k̃j = j∆, Ãl = l∆, j, l = 1, 2, . . . , N . We chose N =

4000, ∆ = 0.001 so that k̃N = ÃN = 4. Derivatives of ω̃ and Ĩj with respect to k̃ and Ã, required

in (2.26), are estimated with sixth order finite differences, yielding a numerical approximation of

the coefficient matrix M̃ on the discrete grid.

Using our direct computation of the coefficient matrix M̃, we determine its eigenvalues

{c̃j(k̃, Ã)}3j=1 and plot in figure 2.7(a) the region in the k̃-Ã plane where the Whitham equations

are hyperbolic or elliptic. As shown by our weakly nonlinear analysis (2.36), the elliptic region

appears for k̃ >
√

3, independent of Ã for small Ã. But our computations show that the region

depends strongly on the wave amplitude for larger Ã.
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Ã Ã

Figure 2.7: (a) Elliptic (gray) and hyperbolic (white) parameter regimes for the Whitham equations
corresponding to complex or real characteristic velocities, respectively. Identified stable (dots) and
unstable (squares) periodic waves according to direct numerical simulation of the conduit equation.
(b) Contour plot of the imaginary part of the characteristic velocity c̃2, the MI growth rate. The
maximum, 0.04795, occurs for (k̃, Ã) = (2.711, 1.204).
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As noted earlier, ellipticity of the Whitham equations implies modulational instability of

the periodic traveling wave [87]. In agreement with our weakly nonlinear analysis (2.36), we find

that in the elliptic region, c̃1 = c̃∗2 (∗ denotes complex conjugation) and c̃3 ∈ R. We confirm

the hyperbolic/elliptic boundary by direct numerical simulation of the conduit equation (1.3) with

slightly perturbed, periodic initial data. Random, smooth noise (band-limited to wavenumber 512

on a grid with at minimum 4000 points) of magnitude O
(
10−3

)
was added to a periodic traveling

wave initial condition on a domain of over 100 spatial periods. This initial data was evolved either

100 temporal periods or to t = 500, whichever was longer. Some waves, especially those in the

small-amplitude regime, were evolved for even longer time periods. The modulational (in)stability

of several of these runs are shown in figure 2.7(a). We find excellent agreement with the MI

predictions from Whitham theory. The long-time evolution of two particular waves are shown in

figure 2.8, showing both a stable and an unstable case. The unstable case in figure 2.8(b) appears

to show the formation of large amplitude, bright envelope coherent structures. This is additional

numerical evidence for the existence of bright envelope soliton solutions of the conduit equation.

A periodic traveling wave solution of the conduit equation (1.3) corresponds to a constant

solution q̃(z, t) = q̃0 of the Whitham equations (2.29). If we consider the stability of this solution
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by linearizing the Whitham equations according to q̃(z, t) = q̃0 + beiκz+σt, |b| � 1, we obtain the

growth rates

Reσi = κ Im ci, (2.38)

for each component of the perturbation in the eigenvector basis of M̃. The physical growth

rate requires knowledge of the perturbation wavenumber κ. Because the Whitham equations are

quasi-linear, first order equations, any wavenumber is permissible (determined by the initial data),

suggesting that the physical growth rate (2.38) is unbounded. In practice, there is a dominant

wavenumber associated with the instability that is determined by higher order effects, which in this

case is dispersion. The NLS equation (2.16) resolves this feature in the weakly nonlinear regime

but we are interested in large amplitude modulations. We therefore identify the imaginary part of

the characteristic velocity c̃2 as a proxy for the growth rate of the instability and observe in figure

2.7(b) that there is a maximum of Im(c̃2) for unit-mean periodic waves that occurs for the wave

parameters (k̃, Ã) = (2.711, 1.204). We confirm that these parameters do indeed approximately

correspond to a maximally unstable periodic wave by performing numerical simulations of the

conduit equation (1.3) with initially perturbed periodic traveling waves, utilizing the same process

as that used in the determination of modulational (in)stability. The envelopes of these waves were

extracted for each time step and then compared to the envelope of the initial condition, giving a

deviation from the expected periodic wave evolution. The growth rate was calculated by fitting

an exponential to the maximum of this deviation. From these numerics, the maximally unstable

parameters are closer to (k̃, Ã) = (2.7, 1.35) than the expected (k̃, Ã) = (2.7, 1.2). The maximal

growth rate for these parameters was found to be 0.0457, which is within 5% of the maximal growth

rate found via the Whitham equations. Thus the perturbation wavenumber κ does not drastically

affect the maximal growth rates.

Next, we compute the quantities {µj(k̃, Ã)}3j=1 from equation (2.34) on the discrete grid

{(k̃j , Ãl)}Nj,l=1 using sixth order finite differencing. The results are depicted in figure 2.9(a) where

the curves correspond to the largest value of k̃, given Ã, such that µ changes sign. The curve
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where µ1 changes sign bifurcates from the edge of the elliptic region at the point (k̃, Ã) = (
√

3, 0),

agreeing with the weakly nonlinear result (2.37) for sufficiently small Ã. The curve where both µ2,3

change sign apparently bifurcates from (0, 0) and occurs for small k̃. These results demonstrate that

the Whitham equations lack genuine nonlinearity when considered in the whole of the hyperbolic

region.

In order to understand the small k̃ results better, we show in figure 2.9(b) a zoom-in of this

region. The accurate determination of the loss of genuine nonlinearity in this region is numerically

challenging because the characteristic velocities c̃2,3 get very close to one another. A more numer-

ically stable calculation is shown by the black dashed curve in figure 2.9(b) where, for each Ã, it

corresponds to the largest k̃ at which |c̃3− c̃2| < 10−5. For parameters to the left of this curve, the

characteristic velocities remain very close to one another. It is well-known that, for example, in the

KdV-Whitham equations, the characteristic velocities get exponentially close to one another yet

remain distinct in the small wavenumber regime [49, 33]. Because non-strict hyperbolicity implies

loss of genuine nonlinearity [13], the proximity of c̃2 and c̃3 may be affecting the numerical results.

It remains to definitively determine if the Whitham equations lose strict hyperbolicity and/or gen-

uine nonlinearity in the small k̃ regime. Note that the curve for which µ1 = 0 in figure 2.9(a) occurs

in a strictly hyperbolic region.

2.4 Discussion and Conclusion

Our study of the structural properties of the conduit Whitham equations sheds some light

on recent theoretical and experimental studies of dispersive shock waves. The DSW fitting method

allows one to determine a dispersive shock’s harmonic and soliton edge speeds, even for non-

integrable systems [18]. However, the method is known to break down when the Whitham equations

lose genuine nonlinearity in the second characteristic field [52, 21]. It was observed in [52] that the

fitting method failed to accurately predict conduit DSW soliton edge speeds for sufficiently large

jump heights. Our results here suggest that this could be due to the loss of strict hyperbolicity

and/or genuine nonlinearity in the small wavenumber (soliton train) regime.
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Figure 2.9: (a) Loss of genuine nonlinearity in the Whitham equations. The curves correspond to
regions in the k̃-Ã plane where the computed quantities µ2,3 (solid) or µ1 (dashed) change sign. To
the right of the solid (dashed) curve, µ3 > 0, µ2 < 0 (µ1 > 0). The dash-dotted curve corresponds
to the prediction µ1 = 0 from the weakly nonlinear analysis equation (2.37). The elliptic region
from figure 2.7 is also depicted (gray). (b) Zoom-in of the small k̃ region of (a) where µ2,3 ≈ 0
(red) approximately corresponds to the largest k̃, to the left of which |c̃3 − c̃2| < 10−5 (black), i.e.,
approaching non-strict hyperbolicity.
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In addition to the hyperbolic modulation regime where DSWs, and dark envelope solitons

are prominent coherent structures, we have found an elliptic regime where the periodic wave breaks

up into coherent wavepackets or bright envelope solitons. The accessibility of both hyperbolic

and elliptic modulation regimes in one system motivates further study of each and the transition

between the two. One potential future, novel direction is to explore the possibility of creating a

soliton gas [23].

It remains to generate a periodic wave from an initially uniform conduit and explore its

properties experimentally. Accurate control of wavebreaking via a dispersionless simple wave (a

rarefaction wave) has been achieved by slow modulation of the conduit area from a boundary

[56, 5]. One possibility is to utilize simple wave solutions of the Whitham equations to efficiently

and smoothly transition between a constant conduit Ã = 0 to a periodic conduit Ã > 0. This also

suggests the theoretical and experimental exploration of Riemann problems, step initial data, for

the Whitham equations themselves. Our determination of linearly degenerate curves will inform

the ability to construct simple waves connecting two generic wave states.

We have presented strong numerical evidence for the existence of large amplitude dark and

bright envelope solitary waves in viscous fluid conduits, bifurcating from weakly nonlinear NLS

solutions. Dark envelope solitons can have either positive or negative velocities. All bright envelope

solitons for NLS associated with the conduit equation have negative velocities. It remains to be

determined if this is true in the large amplitude case. Existing laboratory studies of viscous fluid

conduits implement control of the conduit interface by varying the injected flow rate through a

nozzle at the bottom of a fluid column, as detailed in section 1.4. This allows for the creation

of waves with positive (upward) propagation velocities such as dark envelope solitons. If bright

envelope solitons only have negative velocities, then an alternative experimental approach will be

required to create them.

We have shown that the non-convexity of the conduit linear dispersion relation leads to the

existence of elliptic Whitham equations and modulational instability. This is just one possible

implication of non-convex dispersion in dispersive hydrodynamics. We note that non-convex dis-
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persion in other, higher order equations, has also been found to give rise to a resonance between the

DSW soliton edge and linear waves, leading to the generation of radiating DSWs [11, 25, 73].



Chapter 3

Generation and Observation of Dispersive Shock Waves

The Whitham theory developed in chapter 2 and [52] is spectacularly realized during the

process of wave breaking into dispersive shock waves for the viscous fluid conduit system. This sys-

tem enables high fidelity studies of large amplitude DSWs, which are found to agree quantitatively

with Whitham theory [87, 34, 50]. The following chapter is a reformatting of [56] and [5] to fit the

scope and style of this thesis.

Figure 3.1(a) displays a typical time-lapse of our experiment. At time 0 s, the conduit exhibits

a relatively sharp transition between narrower and wider regions. Due to buoyancy, the interface

of the wider region moves faster than the narrower region. Rather than experience folding over on

itself, the interface begins to oscillate due to dispersive effects as shown in figure 3.1(a) at 30 s. As

later times in figure 3.1(a) attest, the oscillatory region expands while the oscillation amplitudes

maintain a regular, rank ordering from large to small. By extracting the spatial variation of the

normalized conduit cross-sectional area a from a one frame per second image sequence, we display

in figure 3.1(b) the full spatio-temporal interfacial dynamics as a space-time contour plot. This

plot reveals two characteristic fronts associated with the oscillatory dynamics: a large amplitude

leading edge and a small amplitude, oscillatory envelope trailing edge.

3.1 Generation of Wavebreaking Profiles

A major challenge for the experimental study of DSWs is the controlled realization of wave-

breaking, e.g. generating the profile seen at T = 0 s in figure 3.1(a). One obstacle to the laboratory
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generation of a desired wavebreaking profile is its reliable initiation from only boundary control.

Laboratory nonlinear dispersive wave environments constrained by boundary control include fluid

environments such as shallow water wave tanks (see, e.g. [77]) and viscous fluid conduits [69].

Also included are non-fluid systems such as intense laser light propagation in optical fibers [89],

magnetic spin waves [43], and granular crystals [10]. It can be difficult to achieve step-like condi-

tions without boundary interactions. Here, we report on a simple mathematical observation that

yields a feasible way to achieve a variety of wavebreaking profiles away from boundaries [5]. We

track the dispersionless (long-wave) characteristics of the conduit equation backwards in time from

the desired wavebreaking profile. The resulting solution is then used as a boundary condition for

conduit experiments to realize a variety of wavebreaking profiles at desired spatial locations.

Changing between boundary and initial conditions is a useful tool in the study of nonlinear

waves. The piston shock problem is a canonical boundary value problem in the theory of classical

shock waves. G. B. Whitham reformulated the problem by tracing characteristics back from the

piston to an equivalent initial value problem that was then solved via the method of characteristics

[86]. Here, we do the reverse by converting a desired initial value problem into a boundary value

problem in the context of dispersive shock waves. We use this approach to precisely realize several

wavebreaking profiles in experiment: step, box, triangle, and N-wave configurations. We find

that, despite neglecting short-wave dispersion, we can precisely control the location and time of

wavebreaking as well as the long-wave characteristics that lead up to breaking. This is supported

both theoretically by numerical simulations of the conduit equation and experimentally with our

viscous conduit setup.

3.1.1 Theory

The simplest wavebreaking configuration is a step decrease in (dimensional) conduit area

A(Z, Tb) =





A2, Z < Zb

A1, Z ≥ Zb
, (3.1)
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for some A2 > A1 = πR2
0, where R0 is the conduit radius, Zb is the breaking location, and Tb is

the breaking time. We can nondimensionalize the equation and rescale the leading area to unity

via the scalings (1.42) to arrive at the conduit equation (1.3)

at +
(
a2
)
z
−
(
a2
(
a−1at

)
z

)
z

= 0.

We represent the desired wavebreaking profile via the data a(z, tb) = a0(z). For example the

step profile (3.1) is

a0(z) =





ab, z < zb

1, z ≥ zb
, z ∈ R, (3.2)

where ab = A2/A1 > 1 is the jump ratio and zb, tb are the nondimensional breaking height and

time, respectively. We also consider the box profile of amplitude ab and width w,

a0(z) =





ab, zb − w < z < zb

1, else

, z ∈ R, (3.3)

the triangle profile of amplitude ab, width w, and hypotenuse slope m = ab−1
w ,

a0(z) =





mz + (ab −mzb), zb − w < z < zb

1, else

, z ∈ R, (3.4)

and the N-wave profile of maximum amplitude amax, minimum amplitude amin, width w, and slope

m = amax−amin
w ,

a0(z) =





mz + (ab −mzb), zb − w < z < zb

1, else

, z ∈ R. (3.5)

For example profiles, see figure 3.2.

3.1.1.1 Inviscid Burgers Equation

In order to approximately realize the breaking confirgurations that give rise to a0(z), e.g.

(3.2)–(3.5), we seek to identify the spatio-temporal profile for times prior to breaking t < tb.
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(a) step (b) box (c) triangle

(d) N-wave

Figure 3.2: Characteristic plots (large plots) and wavebreaking profiles at time of breaking (small
plots). The gray regions are areas where wavebreaking has occured and small-scale dispersion is
important so the inviscid Burger’s solution is no longer valid. Shown here are step (a), box (b),
triangle (c), and N-wave (d) wavebreaking profiles.
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We assume that prior to DSW formation, the third order dispersive term is negligible, which we

justify with numerical and physical experiments. This is a long-wave assumption that is valid when

|az|/|a| ∼ |at|/|a| � 1, so that nonlinear effects dominate wave dispersion effects. We therefore

neglect the dispersive term, (a2(a−1at)z)z in (1.3), and reverse time and shift space via

z = ζ + zb, t = −(τ − tb), a = u, (3.6)

where u(ζ, τ) now satisfies the time-reversed inviscid Burgers equation,

uτ −
(
u2
)
ζ

= 0, τ > 0, ζ ∈ R, (3.7)

u(ζ, 0) = u0(ζ) = a0(ζ − zb), (3.8)

which has the implicit solution

u(ζ, τ) = u0(ζ + 2u(ζ, τ)τ). (3.9)

Then, converting (3.9) back to conduit equation variables and evaluating at the boundary z = 0,

we have an implicit form of the boundary condition in terms of the known initial condition a0(z),

a(0, t) = a0(−2a(0, t) t). (3.10)

Observe the ζ-derivative of u(ζ, τ) in equation (3.9) is

uζ =
u′0(ζ + 2u(ζ, τ)τ)

1 + 2u′0(ζ + 2u(ζ, τ)τ)τ
.

Thus a necessary condition that precludes breaking for 0 < t < tb is a′0(z) < 1/2tb for all z.

We now consider the specific case of step data (3.2). For this case, the self-similar, rarefaction

wave solution is operable

u(ζ, τ) =





u− : ζ ≤ 2u−τ,

ζ
2τ : 2u−τ ≤ ζ ≤ 2u+τ,

u+ : ζ ≥ 2u+τ.

(3.11)

The substitution (3.6) along with

tb = zb
2
ab−1
ab

, u− = 1, u+ = ab (3.12)
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(a) Boundary temporal pro-
file.

(b) Spatio-temporal devel-
opment of the wavebreaking
profile.

Figure 3.3: (a) Temporal profile of the boundary condition equation (3.13). (b) Evolution of the
rescaled rarefaction wave equation (3.13). As time moves forward, the wave approaches the desired
step. The dots in (a) correspond to the times depicted in (b), from left to right.

yields the sought for boundary condition

a(0, t) =





1 : t ≤ 0

(1− 2t/zb)
−1 : 0 < t < (ab−1)

2ab
zb

ab : t ≥ (ab−1)
2ab

zb

. (3.13)

This solution and its evolution are shown in figure 3.3. Note that we have chosen the specific

breaking time tb in (3.12) so that a(0, t) = 1 for t ≤ 0. Any desired breaking time can be achieved

by a simple time shift.

3.1.1.2 Generalizations to Piecewise Linear Profiles

This method of neglecting the dispersive term can be used to generate a variety of initial

conditions, the formulae for which are included in table 3.1.

In figure 3.2, we show characteristic plots based on the dispersionless approach to generate

a step in figure 3.2(a), a box in figure 3.2(b), a triangle in figure 3.2(c), and an N-wave in figure

3.2(d).

There are some restrictions on the types of profiles we can generate. In order for an entire

profile to be above the z = 0 boundary at the time of breaking, we require the width of the profile



63

P
ro

fi
le

F
or

m
u

la
R

es
tr

ic
ti

on
s

S
te

p
a
(0
,t

)
=

    

1
:

t
≤

0

(1
−

2t
/z
b
)−

1
:

0
<

t
<

(a
b
−

1
)

2
a
b
z b

a
b

:
t
≥

(a
b
−

1
)

2
a
b
z b

n
on

e

B
ox

a
(0
,t

)
=

        

1
:

t
≤

0

(1
−

2t
/z
b
)−

1
:

0
<

t
<

(a
b
−

1
)

2
a
b
z b

a
b

:
(a
b
−

1
)

2
a
b
z b
≤

t
<

z b 2

1
:

t
≥

z b 2

t b
=
z b
/
2.

T
ri

a
n

gl
e

a
(0
,t

)
=

        

1
:

t
<

0

(1
−

2t
/z
b
)−

1
:

0
≤

t
<

(a
b
−

1
)

2
a
b
z b

−
m
z b

+
a
b

1
−
m
z b

+
2
m
t

:
(a
b
−

1
)

2
a
b
z b
≤

t
<

w 2

1
:

t
≥

w 2

1
≤

z b w
≤

1
a
b
−

1

N
-w

av
e

a
(0
,t

)
=

            

1
:

t
<

0

(1
−

2t
/z
b
)−

1
:

0
≤

t
<

(a
m
a
x
−

1
)

2
a
m
a
x
z b

−
m
z b

+
a
m
a
x

1
−
m
z b

+
2
m
t

:
(a
m
a
x
−

1
)

2
a
m
a
x
z b

≤
t
<

w
−

(1
−
a
m
in

)z
b

2
a
m
in

z b
−
w

z b
−

2
t

:
w
−

(1
−
a
m
in

)z
b

2
a
m
in

≤
t
<

w 2

1
:

t
≥

w 2

1
≤

z b w
≤

1
a
m
a
x
−
a
m
in

T
a
b

le
3
.1

:
B

o
u

n
d

a
ry

co
n

d
it

io
n

s
a
(0
,t

)
re

su
lt

in
g

in
ap

p
ro

x
im

at
e

p
ro

fi
le

s
of

in
te

re
st

.
A

ll
p

ro
fi

le
s

h
av

e
a

b
re

ak
in

g
ti

m
e
t b

b
as

ed
on

th
e

b
re

a
k
in

g
h

ei
g
h
t
z b

o
f
t b

=
z b
/
2.



64

to be less than or equal to zb. For triangle waves and N-waves, there is an additional width-height

ratio that must be satisfied in order for the diagonal portions to be fully realized. These conditions

are listed in table 3.1.

3.1.2 Experimental Methods

The experimental setup is as described in 1.4, using glycerine. An example of conduit breaking

is shown in figure 3.4.

In order to use the results from section 3.1.1, we rescale (3.13) from the nondimensional

conduit equation (lower case variables) to physical parameters (upper case variables) as outlined in

section 1.4.2 and map a(0, t) to the volumetric flow rate profile Q(t) for the desired wavebreaking

configuration; see table 3.1. A camera near the nozzle takes images before and after the initiation

of the boundary volumetric flow profile, so background conduit diameters are measured. Another

camera near the breaking height takes several high-resolution images before, during, and after the

time of breaking. After breaking occurs, the pump is reduced to the background rate Q0, and the

conduit is left to equilibrate before the next trial while fluid is extracted from the top of the fluid

column.

The images from the camera are processed in Matlab as described in 1.4.2. We calibrate the

ratio µ(i)/∆ by fitting the observed diameter data to the Poiseuille flow relation (1.61). We then

determine the experimental breaking height zb and time tb. Note that near the point of breaking,

dispersion is no longer negligible; as a result, a perfect Riemann step is not realized in the conduit

system. Instead, we observe the generation of a DSW as seen in the experimental figure 3.4 and the

numerical simulation of figure 3.5. Therefore, we introduce a definition of dispersive wavebreaking

as follows.

By analyzing numerical simulations of the conduit equation (1.3), e.g. the countour plot

in figure 3.5, we developed a robust method to determine the space-time location of wavebreaking

using the slope of the wave front. We observe an inflection point in the slope over time that roughly

corresponds to the expected breaking time, tb, as shown in figure 3.6. Then, we interpolate the
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(a) (b)

Figure 3.4: (a) Processed images from a glycerine trial. Measured parameter values are µ(i) =
72 ± 1cP, ρ(i) = 1.222 ± 0.001g/cm3, µ(e) = 1190 ± 20cP, ρ(e) = 1.262 ± 0.001g/cm3, and
Q0 = 0.25±0.01ml/min. The grayscale images are overlayed with the extracted conduit edges. (b)
Nondimensional area plot corresponding to the images in (a). The vertical line indicates the mea-
sured breaking height obtained by the inflection criterion. The dashed line indicates the expected
step in a dispersionless system. Predictions were fit to the found Poiseuille flow relation (1.61).

Figure 3.5: Numerical simulation of the conduit equation with initial condition a(z, 0) = 1 and the
boundary condition equation (3.13) with zb = 100 and ab = 2. The predicted zb and tb = 50 are
marked.
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0 100 200
1

2

3

Figure 3.6: Numerics: slope of the front of the evolving structure over time. Inset: three profiles in
space corresponding to the marked points in time. Observe dispersion is in full effect by the time
the slope of the leading edge has ‘leveled out.’ The expected breaking time of the input boundary
condition was tb = 50.

conduit profile to t = tb and define the point of breaking as the location of the maximum area

(leading wave height) of the conduit for the trial.

3.1.3 Results for Wavebreaking Profiles

For the step profile, thirteen trials were taken over the course of four hours. The main results

of this experiment are shown in figure 3.7. The predicted breaking heights and times (zb,in and tb,in)

are very close to the experimentally observed values (zb,out and tb,out). Figure 3.7 includes theory,

numerics, and experiment for the breaking height (a) and the breaking time (b). All experiments

were under 5% relative error in breaking height zb and 2.5% relative error in breaking time tb.

Therefore, a high degree of wavebreaking control is achieved by our approach.

Experiments were also performed for other wavebreaking profiles. The box profile generation

and evolution will be covered in detail in chapter 4. Experiments on boundary conditions for

generating triangle waves and N-waves showed qualitative fidelity to the expected shapes, as shown

in figure 3.8. For the figure, we fit zb and tb to those found experimentally, then generated the

predicted characteristics (contours) based on these values. We find this fitting method is equivalent



67

(a) (b)

(c) (d)

Figure 3.7: Comparison of dispersionless (long-wave) theory (dashed lines), full conduit equation
numerics (triangles) and glycerine experiments (squares) for the step wavebreaking configuration.
(a) Breaking height results and (b) relative error for experiments as a function of jump ratio ab,
with the same fluid parameters as those in figure 3.4. (c) Breaking time results and (d) relative
error for those same experiments. Note the breaking time error bars are smaller than the symbols
used. The black squares correspond to an expected zb = 15.3 cm, the gray to zb = 20.5 cm, and the
white to zb = 25.6 cm.
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to fitting µ(i)/∆ to the data, similar to what was done for the step profile.

3.1.4 Conclusions about Wavebreaking Profiles

We have performed numerical and physical experiments to validate the use of a long-wave

hyperbolic model (inviscid Burgers’ equation) of nonlinear wave propagation at the interface of

a viscous fluid conduit prior to wavebreaking. The pre-breaking validity of the hyperbolic model

enables the precise creation of desired wavebreaking profiles in the interior of the dispersive hy-

drodynamic domain with only boundary control. Characteristics are propagated backward in time

from a desired profile until they reach the boundary. So long as the backward characteristics do

not overlap, it is possible to obtain a bounday condition whose forward propagation approximately

results in the desired wavebreaking profile. For a step profile, the observed breaking values are

within 5% and 2.5%, respectively, of their expected values. For more complex profiles—the triangle

and N-wave configurations—we obtain good characteristic control observed in measured space-time

contour plots. The method holds promise for other dispersive hydrodynamic media.

3.2 Post-Wavebreaking Interpretation

We can interpret the dynamics of a step post-wavebreaking as a DSW resulting from the

physical realization of the Gurevich-Pitaevskii (GP) problem [34], a standard textbook problem for

the study of DSWs [21] that has been inaccessible in other dispersive hydrodynamic systems. Here,

the GP problem is the dispersive hydrodynamics of an initial jump in conduit area. Although

we have only boundary control of the conduit width, our carefully prescribed injection protocol

from section 3.1 enables delayed breaking far from the injection site. This allows for the isolated

creation and long-time propagation of a “pure” DSW connecting two uniform, distinct conduit

areas. Related excitations in the conduit system were previously interpreted as periodic wave

trains modeling mantle magma transport [69]. As we now demonstrate, the interfacial dynamics

observed here exhibit a solitary wave-like leading edge propagating with a well-defined nonlinear

phase velocity, an interior described by a modulated nonlinear traveling wave, and a harmonic wave
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(a) (b)

Figure 3.8: Experimental data for (a) triangle wave and (b) N-wave boundary conditions. Overlay
lines: fitted characteristic data for the respective experiments.
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trailing edge moving with the linear group velocity. The two distinct speeds of wave propagation

in one coherent structure are a striking realization of the double characteristic splitting from linear

wave theory [87].

The long wavelength approximation of the interfacial fluid dynamics is the conduit equation

(1.3) [69, 52]. Both the interface of the experimental conduit system and equation (1.3) exhibit the

essential features of frictionless, dispersive hydrodynamics: nonlinear self-steepening (second term)

due to buoyant advection of the intrusive fluid, dispersion (third term) from normal stresses, and no

dissipation due to the combination of intrusive fluid mass conservation and negligible mass diffusion.

The analogy to frictionless flow corresponds to the interfacial dynamics, not the momentum diffusion

dominated flow of the bulk.

The study of DSWs involves Whitham modulation theory [87], as studied in chapter 2, as

we treat a DSW as an adiabatically modulated periodic wave [34, 21]. Key conduit DSW physical

features such as leading solitary wave amplitude and leading/trailing speeds have been determined

[50]. For the jump in downstream to upstream area ratio a−, the conduit-Whitham equations

(1.58) predict relatively simple expressions for the DSW leading s+ and trailing s− edge speeds (cf.

equations (1.59))

s+ =
√

1 + 8a− − 1, s− = 3 + 3a− − 3
√
a−(8 + a−), (3.14)

in units of the characteristic speed U in equation (1.34). The leading edge moving at speed s+ ap-

proximately corresponds to an isolated solitary wave where the modulated periodic wave exhibits a

zero wavenumber. Given the speed s+, the solitary wave amplitudeA+ is implicitly determined from

the solitary wave speed-amplitude relation s+ = [A2
+(2 lnA+−1)+1]/(A+−1)2 in equation (1.55).

At the trailing edge, the modulated wave limits to zero amplitude, corresponding to harmonic waves

propagating with the group velocity s− = ω′(k−), where ω(k) is the linear dispersion relation (1.52)

of equation (1.3) on a background conduit area a− and k2
− = (a−− 4 +

√
a−(8 + a−))/(4a−) is the

distinguished wavenumber determined from modulation theory [50] (see also [21]).
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3.2.1 Methods

The conduit experimental data are obtained using the methods described in 1.4.2, with the

interior fluid an approximately 7:2:1 mixture of corn syrup, water, and black food coloring and

the exterior fluid pure corn syrup. The fluid temperature near the top of the fluid column was

measured to be 22.2± 0.7 deg C across all experimental trials. We allowed the conduit to stabilize

(straighten) by steady injection over a period of 36 hours for the data in figure 2 and 15 hours

for the other data. Three cameras were utilized, two outfitted with macro lenses positioned just

above the injection site and at approximately 120 cm above the injection site. The third camera,

outfitted with a zoom lens, was used to image the entire vertical length of 120 cm from the injection

site. Digital images of the conduit are processed as described in 1.4.2. Since these are the first

experiments done using the setup in 1.4.2, we confirmed various assumptions, including Poiseuille

flow and negligible mass diffusion.

3.2.2 Poiseuille Flow

The quantitative data presented here exhibits typical conduit diameters of one to four millime-

tres and Reynolds numbers in the range Re = ρ(i)U0L0/µ
(i) ∈ (0.06, 2.6), where ρ(i) is the intrusive

fluid density. We confirm the Poiseuille flow relation D = αQ1/4 = (27µ(i)Q)1/4/(πg∆ρ)1/4 by

measuring the conduit diameter D approximately 6 cm above the fluid injection site with no fitting

parameters (figure 3.9) [82]. In figure 3.10, we show the fit of the Poiseuille flow relation to the

same conduit, imaged approximately 120 cm above the injection site. The difference between the

externally measured viscosity µ(i) = 80.4 cP and the value µ(i) = 104 cP from a fit to the Poiseuille

flow relation can be explained by the non-Newtonian, thixotropic (shear thinning) properties of

corn syrup. At the injection site, the diluted corn syrup experiences heightened shearing, similar

to our rotational viscometer measurements. Further up the fluid column, there is less shearing so

the fluid increases in viscosity and leads to a dilation of the conduit. The conduit consistently has

a measured diameter in the upper fluid column that is 7% larger than its value near the injection
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site as shown in figure 3.11. The results reported here use the measured value of ∆ρ and the fitted

value µ(i) = 104 cP. Although corn syrup is thixotropic, later experiments with glyercine appears

to show this behavior as well, and we interpret this effect in a different way in chapters 4 and 5.

3.2.3 Mass Diffusion

The injected and external fluids are miscible so there is unavoidable mass diffusion across

an interface between the two. Using a procedure similar to that described in [64], we estimate the

diffusion constant D̃ between a 7:3 corn syrup, water mixture and pure corn syrup (Karo brand

light) to be approximately 1.2 × 10−6 cm2/s. Combining this with typical flow parameters, we

estimate the Péclet numbers, which are the ratios of the thermal energy convected to the fluid

to the thermal energy conducted within the fluid, and Schmidt numbers, which are the ratios of

momentum diffusivity and mass diffusivity for the fluid flow. For the trials of figure 2, these lie in

the range Pe = L0U0/D̃ ∈ (2.1× 104, 7.9× 105) and Sc = Pe/Re ≈ 5.2× 105. The advective time

scale for figure 2 trials is in the range T0 ∈ (1.6, 5.6) s. We therefore estimate that mass diffusion

begins to play a role after approximately 9 hours (Sc·T0), whereas the time scale of an experimental

trial is less than 10 minutes.

3.2.4 Results and Discussion

The leading edge of the DSW amplitude, normalised to the downstream area, is determined

from the digital images of the upper camera without appealing to any fluid parameters. The

number of pixels across the diameter of the leading edge DSW peak is calculated and normalized

by the diameter of the downstream conduit. Squaring this quantity gives the leading edge DSW

amplitude shown in figure 3.12. We calculated the leading edge DSW speed from the images of the

full camera images toward the end of the trial. We nondimensionalise the speed by the characteristic

speed U = L/T = gA0∆ρ/(8πµ(i)) (cf. equation (1.34)), where we use the measured values of the

downstream flow area A0 from the upper camera and ∆ρ. The fitted value for µ(i) is used, as

described in the earlier section on Poiseuille flow.
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Figure 3.9: Demonstration of Poiseuille flow in a steady viscous fluid conduit. Log-log plot of
measured conduit diameter D near injection site versus volumetric flow rate Q (dots) and the
relation D = αQ1/4 with the measured value α = 0.2557 (cm·min)1/4 (solid) corresponding to
µ(i) = 80.4 cP, ∆ρ = 0.1305 g/cm3. A least squares fit gives α = 0.2548 (cm·min)1/4, which
translates to the fitted viscosity µ(i) = 79.0 cP, within the 2% error tolerance of our rotational
viscometer.
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Figure 3.10: Poiseuille flow fit approximately 120 cm up the fluid column. Downstream conduit
diameters D extracted from digital images (dots) and a least squares fit to the Poiseuille flow
relation D = αQ1/4 with α = 0.2688 (cm·min)1/4 (solid). The fit corresponds to the interior
viscosity µ(i) = 104 cP, an increase from its measured value µ(i) = 80.4 cP. This can be explained
by the shear thinning properties of corn syrup.
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Figure 3.11: Comparison of conduit diameter at different locations along the fluid column. Mea-
surements (dots) and the linear fit Dtop = mDbottom (solid) with m = 1.07 corresponding to a 7%
increase in the conduit diameter. The lower (upper) diameter was measured approximately 6 cm
(120 cm) above the injection site.
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In figure 3.12, we compare the leading edge amplitude and speed predictions with experiment,

demonstrating quantitative agreement for a range of jump values a−. Whitham theory is known

to break down at large amplitudes [50] so we also include direct determination of the speed and

amplitude from numerical simulation of equation (1.3), demonstrating even better agreement (for

numerical methods see Appendix A.2). In order to obtain the reported dimensionless speeds of

figure 3.12(a), we divide the measured speeds by U with µ(i) determined by fitting the downstream

conduit area to a Poiseulle flow relation. This enables us to self-consistently account for the shear-

thinning properties of corn syrup. All the remaining fluid parameters take their nominal, measured

values. The deviation between experiment and theory at large jump values is consistent with

previous measurements of solitary waves, where the solitary wave dispersion relation was found to

underpredict observed speeds at large amplitudes [62].

In addition to single DSWs, our experimental setup allows us to investigate exotic, coherent

effects predicted by equation (1.3) for the first time. For example, backflow is a feature of dispersive

hydrodynamic systems whereby a portion of the DSW envelope propagates upstream. This feature

occurs here when the group velocity of the trailing edge wave packet is negative. From the expression

for s− in (3.14), we predict the onset of backflow when a− exceeds 8/3. In figure 3.13, we utilize

our injection protocol to report the observation of this phenomenon in the viscous conduit setting.

Waves with strictly positive phase velocity are continually generated at the trailing edge but the

envelope group velocity is negative. This behavior is reminiscent of slow light in optical systems

where manipulation of the propagation medium’s dispersion properties enables the effective slowing

down or stopping of light [39]. We estimate the crossover to backflow for the experiments reported

in figure 3.12 at a− ≈ 3, consistent with a slightly larger crossover than theory (8/3) due to

sub-imaging-resolution of small amplitude waves.

Viscous liquid conduits are a model system for the coherent dynamics of one-dimensional

superfluid-like media with microscopic-scale fluid dynamics [84], mesoscopic-scale solitary waves

[40] and macroscopic-scale DSWs as fundamental nonlinear excitations. The viscous liquid conduit

system is a new environment in which to investigate complex, coherent dispersive hydrodynamics
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Figure 3.12: Comparison of observed and predicted leading edge DSW amplitude and speed. Ob-
servations (circles), Whitham modulation theory (solid), and numerical simulation of the conduit
equation (dashed) for (a) DSW leading edge speeds s+ and (b) DSW leading amplitude A+ versus
downstream area ratio a−. Nominal experimental parameters: ∆ρ = 0.1305 g/cm3, µ(i) = 80.4 cP
(measured), µ(i) = 104 cP (fitted as described in section 3.2.2), ε = 0.0024.
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Figure 3.13: Time-lapse images (aspect ratio 1:1) of large amplitude wave breaking leading to
upstream propagation of the DSW trailing edge envelope: DSW backflow. Nominal experimental
parameters: ∆ρ = 0.0983 g/cm3, µ(i) = 93.5 cP, ε = 0.029, a− = 4, and Q0 = 0.50 mL/min.
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that have been inaccessible in other superfluid-like media. We show here the fidelity of this exper-

iment to predictions for conduit equation dispersive shock waves and accessibility for more exotic

initial conditions.



Chapter 4

Solitary Wave Fission of a Large Disturbance in a Viscous Fluid Conduit

Solitary wave fission or soliton fission covers a wide range of problems with a multitude of

applications. For example, while intense earthquakes can lead to the vertical displacement of the

ocean surface by several meters, its horizontal extent can reach 10–100 kilometers [29], which, under

appropriate shallowness conditions, can evolve into a large number of surface solitary waves [58, 6].

Another important example is the generation of large amplitude internal ocean solitary waves with

two identified soliton fission mechanisms: 1) an initial, broad displacement of internal temperature

and salinity [63] and 2) the propagation of a large internal solitary wave onto a shelf [27, 78]. In

both scenarios, the result is the same—the generation of a large number of rank-ordered solitary

waves. In fact, the well-known soliton fission law by [16] for scenario 2 was obtained by modeling

it with an initial, broad disturbance to the constant coefficient Korteweg-de Vries (KdV) equation.

More generally, the disintegration of a broad disturbance into solitary waves is the inevitable result

of boundary or topography interaction with an undular bore or dispersive shock wave (DSW) that

results from a sharp gradient [22].

Because of its ubiquity, we seek a deeper understanding of soliton fission that results from

a broad initial condition. Because the method used to describe solitary wave fission in [24] is not

reliant on integrability of the underlying PDE and yields concrete predictions for the number of

solitary waves and their amplitude distribution that resolve from broad initial disturbances, we

refer to it as the “solitary wave resolution method.”

We will first study the solitary wave fission problem experimentally. The work presented
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here is part of a manuscript in preparation. Previous laboratory observations were primarily in

water waves in the weakly nonlinear, long-wave KdV regime [35, 36, 76]. More recent water wave

experiments were performed in a wave tank and physically recreated the Zabusky-Kruskal numerical

experiment, observing recurrence as well as soliton fission [76]. These experiments exhibit excellent

agreement with WKB theory applied to the inverse scattering transform, which in turn aligned

with the original numerical experiment [14]. The IST-WKB approach has also been applied to

NLS, resulting in the number and amplitudes of emergent solitons [15]. However, none of these

methods are applicable to non-integrable equations.

This chapter presents soliton fission experiments and theory for the conduit equation (1.3)

at +
(
a2
)
z
−
(
a2
(
a−1at

)
z

)
z

= 0.

Equation (1.3) fails the so-called Painlevé test for integrability [38] and has a finite number (two)

conservation laws [37], therefore it is an excellent candidate to test the more broadly applicable

solitary wave resolution method on the initial value problem consisting of (1.3) and

a(z, 0) = 1 + a0(z), lim|z|→∞ a0(z) = 0, (4.1)

where a0(z) is a broad, localized disturbance with exactly one critical point at the maximum

am = max
z∈R

a0(z). (4.2)

Note that a = am+1 at the maximum, i.e., am measures the amplitude of the disturbance exceeding

the unit background area ratio a = 1. We will quantify the profile’s broadness more precisely later

on but for a0(z) in the shape of a box, then a sufficiently wide box will do. Formally, a0 ∈ C∞(R)

(infinitely continuously differentiable functions of a real variable) as well, but the relaxation of this

assumption still aligns with the theoretical results. We shall assume that the support of a0(z) is

[−w, 0] where w > 0 is the box width. The method utilizes the characteristics of the Whitham

modulation equations to estimate the number of solitary waves and the solitary wave amplitude

distribution resulting from a large-scale initial condition. An example initial condition and its

numerically evolved state according to the conduit equation (1.3) are shown in figure 4.1. The
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12

Figure 4.1: A box initial condition (inset) and its long-time numerical evolution according to the
conduit equation (1.3). The number denotes the predicted number of solitary waves from that initial
condition, and the black circles with vertical bars denote the ranges from a quantiled distribution
of the predicted solitary wave amplitudes, both derived later in this chapter.

theoretically predicted solitary wave number (12) is correct and the predicted amplitudes fall well

within the ranges determined from the quantization of the continuous amplitude distribution. These

predictions will be derived in section 4.2.

As shown in section 1.2.2, the conduit equation (1.3) can be approximated by the KdV equa-

tion (1.2) in the small-amplitude, long-wavelength regime by the transformation [83] (cf. (1.47))

t = δ3/2t, x = δ1/22−1/3 (z − 2t) , v = 22/3δ(a− 1), (4.3)

where the small parameter δ > 0 is the wave amplitude above a background of 1. Thus the KdV

results for soliton fission in equation (1.27) can be applied to the conduit equation when rescaled

according to equation (4.3), provided δ is small. We seek an approximate solution outside of this

relatively narrow regime through the application of the solitary wave resolution method to the

conduit equation, with results for the number of solitary waves and amplitude distribution for

initial conditions of the class outlined above.

4.1 Observation of Solitary Wave Fission

We motivate our analysis by first presenting viscous fluid conduit experiments on solitary

wave fission.
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µ(i) 36.6 cP

µ(e) 1296 cP

ρ(i) 1.198± 0.001, g cm−3

ρ(e) 1.260± 0.001, g cm−3

ε 0.0283
Q0 0.5 mm min−1

Table 4.1: Densities, viscosities, viscosity ratio, and background flow rate from the experiments
reported in chapter 4.

4.1.1 Experimental Setup

The experimental setup is the same as that in section 1.4, and the fluids consist of a glycerine

base. One camera fitted with a macro lens is used to capture the initial box profile and another

is near the top of the apparatus (the far-field) to capture the long-time dynamics. The parameter

values used in the experiments presented here are those in table 4.1. The area of the full conduit

over time was captured by a camera with a zoom lens, and a representative trial is shown in the

contour plot figure 4.2.

4.1.2 Methods

We use the characteristic method described in [5] and section 3.1 to generate a volumetric

flow rate profile resulting in a box-like structure in the lower part of the column with a specified

width w and nondimensional cross-sectional area am + 1. The lower camera takes several images

before, during, and after the predicted box development time. After the box forms, the pump rate

is reduced to the background rate Q0, and the box evolves into oscillations, rising up the conduit.

Once the leading oscillation reaches the upper camera imaging window, images are taken at 0.2 Hz

for several minutes, to ensure all waves that originated from the box have had time to propagate

through the viewing window. Images are processed via the method detailed in section 1.4.2.

We use the lower camera to determine the box shape. Note that near the point of breaking,

dispersion is no longer negligible; as a result, a pure box is difficult to realize in the conduit system

[5]. We use the method defined in [5] and section 3.1.2 to extract the time of box profile formation,
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Figure 4.2: Experimental development and dispersion of a box over the full experiment.
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Figure 4.3: (a) Example of an experimental box. Note wavebreaking (DSW formation) has already
initiated at the leading edge. (b) Conduit area over time at a fixed distance in the upper part of
the apparatus.

and use the nondimensionalized version of that profile as the initial condition in further analyses

of the conduit equation. An example, approximate box profile is shown in figure 4.3(a).

For the upper camera, a wave-tracking algorithm was implemented to follow all wave peaks

across the imaging window. An experimental time-trace of a solitary wave train is shown in figure

4.3(b). Each candidate peak’s amplitude and position are validated against the conduit equation’s

(1.3) solitary wave amplitude-speed relation (1.55) during the temporal window that the peak is

in view. The elevation solitary wave amplitude As > 1 is measured from zero area, hence must be

larger than the background area a = 1. Since solitary waves in the conduit equation exhibit the

speed lower bound c(As) > 2, any wave peak with a speed lower than that was discarded as small

amplitude, dispersive wave phenomena.

4.1.3 Results

A total of 30 experimental trials were executed according to the experimental protocol de-

scribed in section 3.1.2. We generated the box widths {20, 25, 30, 35, 40} cm, corresponding to

nondimensional widths w ∈ {90, 112, 134, 156, 178}, and box heights am ∈ {1, 2, 3}. The results are
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Figure 4.4: Observed number of solitary waves N from experimental boxes of differing dimensional
widths and nondimensional heights am. Least-square linear fits for each dataset are included.

shown in figures 4.4 and 4.5. Figure 4.4 depicts the observed number of solitary waves as a function

of box width and amplitude. For fixed amplitude, the data exhibit an approximately linear increase

with width. Figure 4.5 reports the normalized cumulative distribution functions (cdfs) Fam(A;w)

for solitary wave amplitudes resulting from a box of fixed amplitude am and variable width w. In

particular, Fam(A;w) is the number of observed solitary waves with amplitude less than or equal to

A and Fam(A) = Fam(A;w)/Nam(w), where Nam(w) is the total number of observed solitary waves

from a box of amplitude am and width w. The coincidence of the normalized cdfs is remarkable

and will be explained with theory.

4.2 Conduit Equation Solitary Wave Fission

Initially, the edges of the initial value problem (4.1) can be treated as two Riemann problems.

In short time, the leading edge will evolve similar to a DSW, and the trailing edge similar to a

rarefaction wave (RW). However, the evolution in both directions results in interactions with the

other structure due to the finite size of the box. Then neither DSW or RW expands indefinitely,

and the difference in this analysis as opposed to that done for DSWs is that the box is of finite

width and thus will have a finite number of oscillations.
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(a) am = 1 (b) am = 2

(c) am = 3

Figure 4.5: Experimental cdfs for solitary wave amplitudes Fam (A;w), for different boxes. Each
plot corresponds to a different input am and darker lines correspond to narrower boxes.
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4.2.1 Number of Solitary Waves

We assume the initial value problem (4.1) will result in a slowly modulated wavetrain [24].

Given enough time, the individual wave crests will separate with minimal overlap, i.e., will result in

a non-interacting solitary wavetrain. To count these waves, note that they are separated by exactly

their wavelength, defined in terms of the wavenumber as 2π/k. Thus k/2π is a wave density and

the total number of waves in a wavetrain at time t can be computed according to

N (t) =
1

2π

∫ ∞

−∞
k(z, t) dz, (4.4)

if we treat k as a slowly varying modulation variable. This integral is finite for t = 0, as the localized

nature of the disturbance means k → 0 as |z| → ∞. Within the context of modulation theory, N

is conserved in time. Then the total number of waves are determined by simply the wavenumber

function associated with the initial condition.

Whitham modulation theory can now be utilized to find a relationship between the initial

condition–interpreted here as the initial wave mean φ and the wavenumber k. The Whitham

equations (1.58) are supplemented with conditions that ensure continuity of the modulation solution

at the leading and trailing edges of the wavetrain for all t. Denoting these edges z+(t) and z−(t),

respectively,

z = z−(t) : A = 0, φ = β−(t),

z = z+(t) : k = 0, φ = β+(t) = 1,

(4.5)

Here, β±(t) = β(z±(t), t), where β(z, t) is a solution of the Hopf equation

βt + 2ββz = 0, β(z, 0) = 1 + a0(z). (4.6)

This is the dispersionless conduit equation, which has been shown to approximate the system

behavior when there are no oscillations [5]. Therefore, this equation is assumed to be valid outside

the region influenced by the disturbance, i.e. (−∞, z−(t)) ∪ (z+(t),∞).

Note that there exist only two ways for the modulation solution to continuously match the

dispersionless limiting equation for β: k → 0 or A → 0. The choice k → 0 in the solitary wave
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limit and A → 0 is the small amplitude, harmonic wave limit. These limits both manifest in the

modulation solution for a DSW, with k → 0 at the rightmost edge and A → 0 at the leftmost edge

[52]. Because the early time evolution leads to the generation of a DSW, k → 0 at z = z+(t) and

A → 0 at z = z−(t). When A → 0, the modulation system then reduces to (see section 1.1.4):

A = 0 : φt + 2φφz = 0, kt +
(
ω0(φ, k)

)
z

= 0. (4.7)

Since the disturbance is initially non-oscillatory, we have φ(z, 0) = 1 + a0(z), z ∈ R. However,

because there are no initial oscillations, A(z, 0) = 0, z ∈ R, the initial wavenumber is not well-

defined. We must appeal to properties of the disturbance’s evolution in order to uniquely define

k(z, 0). We do so by identifying a simple wave relationship k = k−(φ) between the wavenumber and

mean so that k(z, 0) = k−(φ(z, 0)). The rationale for the use of the simple wave relation is detailed

in [22] and is based on the fact that the DSW trailing edge is a characteristic. Equation (4.7) has

two families of characteristics,

dz

dt
= 2φ,

dz

dt
= ω0,k. (4.8)

The first family corresponds to evolution of the mean flow equation (4.6) and coincides with the

slowly varying evolution of the disturbance, e.g. the initial RW, while the second family charac-

terizes the small amplitude oscillations that emerge from the disturbance with an envelope that

moves with the group velocity. It is the second characteristic family that captures the evolution

of the emergent solitary wavetrain. In order to obtain the relationship between k and φ along the

second characteristic family, we make the simple wave assumption k = k−(φ) along z−(t) where

dz/dt = ω0,k, which combined with the modulation equations (4.7) results in the ODE (recall the

differential form in section 1.1.4)

dk−

dφ
=

[
ω0,φ

2φ− ω0,k

]

k=k−

. (4.9)

Substituting the linear dispersion relation (1.52) into this equation and integrating yields an ex-

pression for k− in terms of the wave mean φ and an integration constant, λ

k−(φ;λ)2 =
1

2

(
λ− 2

φ
+

√
λ

φ
(4 + φλ)

)
. (4.10)
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Figure 4.6: Wavenumber k− versus the wave mean φ, with fixed integration constant λ = 1/2.
The solid line shows k− from the conduit equation, and the dashed line is the result from the KdV
equation (1.26), rescaled for the conduit equation via (4.3). This monotonic relationship determines
the mean-to-wavenumber mapping of the initial box disturbance.

Matching to equation (4.6) at the disturbance’s initial termini z ∈ {0, w}, k−(φ = 1;λ) = 0, thus

λ = 1/2. This choice of integration parameter results in the same expression for k− as found at the

DSW’s harmonic edge from DSW fitting theory; see equation (1.60). Figure 4.6 shows the change

in k− based on varying φ. The number of solitary waves are asymptotically determined by this

relationship and equation (4.4)

N =
1

2π

∫ ∞

−∞
k(z, 0) dz

=
1

2π

∫ ∞

−∞
k−

(
1 + a0(z);

1

2

)
dz.

(4.11)

For the case of a box of height am and width w above a background of 1, this can be integrated

exactly

a0(z) =





am, −w < z < 0,

0, else

,

N =
w

4π

√
am − 3

1 + am
+

√
9 + am
1 + am

.

(4.12)

We can now precisely state the asymptotic requirement for the applicability of the solitary wave

resolution method: N � 1, guaranteeing a large number of solitary waves. The small am approxi-
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mation depends on both w and am

N ∼ w

π

√
am
6
− 5w

9π

√
a3
m

6
+O

(
w a5/2

m

)
(4.13)

whose leading order behavior agrees with the result for KdV in equation (1.27). The large am

approximation, on the other hand, only weakly depends on am

N ∼ w

4π

(
√

2− 2
√

2

a2
m

)
+O

(
w

a3
m

)
(4.14)

Otherwise, equation (4.11) can be integrated numerically for generic disturbances a0(z).

4.2.2 Distribution of Solitary Wave Amplitudes

Next, we seek an estimate for the amplitudes of the generated solitary waves. We can

assume after sufficiently long time the overlap between waves is exponentially small, and thus each

wave crest can be treated as a solitary wave. Because the conduit solitary wave speed (1.55) is

monotonically increasing with amplitude, the solitary waves are rank-ordered.We find a relationship

between the initial condition 1 + a0(z) and the solitary wave amplitude distribution via analysis

of the level curve k−(φ;λ) = 0 because k → 0 is the solitary wave limit. Solving equation (4.10)

for k− = 0 yields λ = 1/(2φ), a monotone decreasing function of φ, as shown in figure 4.7. For an

initial profile described by equation (4.1) and am = maxz a0(z) ≥ 0, if we let φ vary with a0, then

λ has range [1/(2(1 + am)), 1/2].

We can now extend the calculation of the total number of solitary waves N to the number

of solitary waves G(φmin) that emerge from the section of the initial profile of amplitude of at

least φmin. We truncate the initial condition to that profile section and integrate k− over z with

λ = 1/(2φmin) obtained from the level curve k−(φmin;λ) = 0. Then

G(φmin) =
1

2π

∫ z2(φmin)

z1(φmin)
k−

(
1 + a0(z);

1

2φmin

)
dz, for φmin ∈ [1, 1 + am],

z1(φmin) ≤ z2(φmin) such that 1 + a0(z1,2(φmin)) = φmin.

(4.15)

The goal now is to relate φmin to A, the solitary wave amplitude. We will use the intermediate

variable λ to relate the two. With a slight abuse of notation, we define z1(λ), z2(λ) as the z-values
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k− ∈ R

ik− ∈ R

Figure 4.7: Plot of the solitary wave level curve corresponding to k− = 0 in (λ, φ)-space.
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(a)

(b)

Figure 4.8: (a) Truncation of the initial profile from figure 4.1 for different values of λ. (b) Expected
contribution of each λ-truncation in terms of the produced solitary waves.

at which φ = 1/(2λ) and G(λ) as the total number of solitary waves that emerge from the section

of the initial profile of total amplitude at least 1/(2λ)

G(λ) =
1

2π

∫ z2(λ)

z1(λ)
k−(1 + a0(z);λ) dz,

z1(λ) ≤ z2(λ) such that 1 + a0(z1,2(λ)) = 1/(2λ).

(4.16)

Note G(λ) is a decreasing function of λ, and its maximum is N , so we define the normalized

cumulative density function (cdf) G(λ) in λ as

G(λ) = 1− G(λ)

N ∈ [0, 1], for λ ∈
[

1

2(1 + am)
,
1

2

]
. (4.17)

Taking the box and its evolution from figure 4.1 as an example, truncations of the profile for different

values of λ are shown in figure 4.8(a) and the expected solitary waves from each truncation are

shown color-coded in figure 4.8(b). The integral endpoints z1 and z2 for the initial condition of

figure 4.1 are shown as a function of λ in figure 4.9.

We now perform an analysis of the solitary wave limit of the Whitham equations that is

analogous to the harmonic limit analysis of equation (4.7). We seek a relationship A = A(φ) valid

along the characteristic family associated to the propagation of solitary waves. From DSW fitting
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Figure 4.9: Integral endpoints z1,2 as a function of the integration constant, λ, for the initial
condition of figure 4.1.
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theory, we obtain this relationship by a convenient change of variables.

We consider equation (1.58) in the solitary wave limit k → 0, where the first two equations

reduce to (see section 1.1.4)

k = 0 : φt + 2φφz = 0, At + c(A, φ)Az + g(A, φ)φz = 0, (4.18)

where g is a coupling function that we can bypass determining. A convenient change of variables

is to use the conjugate wavenumber,

k̃ = π

(∫ φ2

φ1

dφ√
−g(φ)

)−1

, (4.19)

where φ1,2 are the two smaller roots of the right side of the periodic wave ODE equation (1.56).

The modulation parameter k is then replaced with Λ = k/k̃.

This conjugate wavenumber is a construction based on the idea of a conjugate conduit equa-

tion, where ã(z̃, t̃) = a(iz̃, it̃) is substituted into equation (1.3)

ãt̃ + ããz̃ +
(
ã2
(
ã−1ãt̃

)
z̃

)
z̃

= 0. (4.20)

The parameter k̃ is the wavenumber of the conjugate traveling wave,

(
φ̃θ̃

)
= −g(φ̃), φ̃(θ̃ + 2π) = φ̃(θ̃) θ̃ = k̃z̃ − ω̃t̃, (4.21)

with the conjugate linear dispersion relation

ω̃0(k̃) =
2k̃φ

1− k̃2φ
. (4.22)

We require that periodic solutions φ(θ) and φ̃(θ̃) to equations (1.7) and (4.21) have identical phase

velocities cp = ω/k = ω̃/k̃, thus ω = Λω̃. The benefit of this formulation is the solitary wave

limit of the conduit equation is the harmonic limit of the conjugate conduit equation, and can be

leveraged as such. By substituting k = Λk̃, ω = Λω̃ into the equation for conservation of waves

kt + ωz = 0, we obtain.

k̃Λt + ω̃Λz + Λ
(
k̃t + ω̃z

)
= 0. (4.23)
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Taking the k → 0 limit, Λ→ 0 and assuming Λ� Λt,Λx for the solutions of interest (see [18]), the

equation to leading order is

Λt +
ω̃0

k̃
Λz = 0. (4.24)

This equation is satisfied along the characteristic

dz

dt
=
ω̃0(φ, k̃)

k̃
= cp. (4.25)

The specific characteristic where Λ = 0 corresponds to k = 0 and is the solitary wave edge of

the DSW. Along Λ = 0, the characteristic speed cp is equal to the solitary wave speed given by

the speed-amplitude relation (1.55). This relation cp = ω̃(k̃)/k̃ = cs(A, φ) relates k̃ and A for

well-separated solitary waves

k̃2 =
1

φ
− 2

cs(A, φ)
. (4.26)

The next order equation is the equation for conservation of waves in this limit

k̃t + (ω̃0)z = 0, on
dz

dt
=
ω̃0(φ, k̃)

k̃
. (4.27)

Similar to k− for harmonic waves, the combination of the simple wave assumption (k̃ = k̃+(φ)),

ω̃0(k̃), and integration results in the relationship

k̃+

(
φ, λ̃

)2
=

1

2


λ̃+

4

φ
+

√
λ̃

φ
(4 + λ̃φ)


 , (4.28)

where λ̃ is the integration constant. The full system of equations for the wavenumber in the two

distinguished limits of the modulated wave can now be written

I1 =

{
A = 0, k2

− =
1

2

(
λ− 2

φ
+

√
λ

φ
(4 + φλ)

)
, on

dz

dt
=
ω0(φ, k)

k
, (4.29)

I2 =



k = 0, k̃2

+ =
1

2


λ̃+

4

φ
+

√
λ̃

φ
(4 + λ̃φ)


 , on

dz

dt
=
ω̃0(φ, k̃)

k̃
. (4.30)

For compatibility between the short-time prediction of I1 and the long-time prediction of I2, these

equations must agree when k−(φ;λ) = 0 = k̃+(φ; λ̃). By eliminating φ, this yields an expression

relating the integration constants of λ̃ = −8λ.
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In long time, the solitary waves are traveling on unit background, so inserting φ = 1, λ̃ = −8λ

into equation (4.28) relates λ to k̃:

− 8λ(k̃) =
(k̃2 − 1)2

k̃2 − 2
. (4.31)

Equations (4.26) and (4.31) combined describe a relationship between λ and A, the total solitary

wave amplitude

λ(A) =
1

2cs(A, 1)2 + 4cs(A, 1)
. (4.32)

Note since λ ∈ [1/2(1 + am), 1/2], A is limited to the values [1,Amax], where Amax is defined such

that λ(Amax) = 1/2(1 + am). Then G(λ) from equation (4.16) can be written in terms of A

F (A) = G(λ(A)) =
1

2π

∫ z2(λ(A))

z1(λ(A))
k−(1 + a0(z);λ(A)) dz, A ∈ [1,Amax] (4.33)

And the normalized cdf of the amplitude distribution is

F(A) = 1− F (A)

N , A ∈ [1,Amax]. (4.34)

Since this distribution is continuous, and we have an integer number of solitary waves, we will use

the quantiled discretization of this distribution for comparison with experiment and numerics.

We now attempt to explain what is seen in figure 4.10(b), that initial conditions of differing

widths but the same height have the same normalized cdf. To do so, we approximate the initial

condition as a box of width w and height am. Thus the cdf in λ is

G(λ) = 1−
∫ 0
−w k−(1 + am, λ) dz

N . (4.35)

Since there is no variation in z, the numerator can be integrated exactly

G(λ) = 1− w

2π

√√√√1

2

(
λ− 2

1 + am
+

√
λ

1 + am
(4 + (1 + am)λ)

)
/N . (4.36)

Then N from equation (4.12) leads to no w-dependence in the normalized cdf

G(λ) = 1−
√

2λam + 2λ− 4 + 2
√
λ(1 + am)(4 + (1 + am)λ)

am − 3 +
√

(9 + am)(1 + am)
, λ ∈ [1/(2(1 + am)), 1/2]. (4.37)
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This approximation is valid as long as the edges of the disturbance transition over a small z relative

to w.

Then the normalized cdf of the amplitude distribution is

F(A) = 1−
√

2λ(A)am + 2λ(A)− 4 + 2
√
λ(A)(1 + am)(4 + (1 + am)λ(A))

am − 3 +
√

(9 + am)(1 + am)
, A ∈ [1,Amax] (4.38)

where λ(A) is from equation (4.32).

4.2.3 General Method

The above derivation is readily generalized. Consider the initial value problem for a general

dispersive hydrodynamic equation

ut + V (u)ux = D[u]x, x ∈ R, t > 0,

u(x, 0) = u0(x), u0(x)→ u∞,

(4.39)

with linear dispersion relation ω0(k, u). Then introduce k−(u, λ) as the solution of the ODE

dk−
du

=

[
ω0,u

V (u)− ω0,k

]

k=k−

, (4.40)

with λ a constant of integration The number of solitary waves can then be calculated

N =
1

2π

∫ ∞

−∞
k (u0(x);λ∞) dx, (4.41)

where λ∞ is found from k−(u∞;λ∞) = 0. For a box of width w and height um,

N =
w

2π
k(um;λ∞). (4.42)

For the solitary wave amplitudes, we have the generic formula in terms of the relationship

between the integration constant λ and the cutoff mean u

F(A) = 1− 1

2πN

∫ x2(λ)

x1(λ)
k−(u0(x);λ) dx,

x1(λ) ≤ x2(λ) such that u0(x1,2(λ)) = u(λ).

(4.43)

Then to obtain λ = λ(A), one first solves the ODE

dk̃+

du
=

[
ω̃0,u

V (u)− ω̃0,k̃

]

k̃=k̃+

, (4.44)
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where ω̃0(k̃, u) = −iω̃0(ik̃, u). The solution of equation (4.44) is k̃+(u, λ̃), where λ̃ is a constant

of integration. Setting k(u;λ) = k̃(u, λ̃) = 0 gives the relation between λ and λ̃. Substituting

k̃ = k̃(u; λ̃(λ)) into ω̃/k̃ = cs(A, u) yields the desired λ = λ(A).

Two of the main results of this paper do not depend on the system under study. When using

equation (4.4) on a pure box initial condition, the result is always linear in the box width. Finally,

the normalized cumulative amplitude distribution for a box F(A) is independent of box width.

4.2.4 Numerical Methods

Direct numerical simulations of the conduit equation were undertaken following the method

described in Appendix A.2 [55]. Numerical results presented show how the box evolution changes

with width in figure 4.10 and with height in figure 4.11. We observe the number of solitary waves

produced changes linearly with the width but does not change very much with box height past a

certain height. We observe the normalized cdfs change with box height but not with width.

4.2.5 Comparison to Experiment

Theory predictions for the physical experiments are shown in figures 4.12 and 4.13. The

prediction from KdV analysis is also shown in figure 4.13. We calculate N from a smoothed version

of the profile at the time of wavebreaking (see figure 4.3(a)). We observe excellent agreement

between experiment and theory, with the observed number of solitary waves being at most two

away from the predicted value. We therefore observe a clear decrease in the relative error as the

total number of solitary waves increases, as shown in figure 4.12(b). Filled dots and the vertical

axis in figure 4.12(a) report the number of observed solitary waves for each trial. The number of

emergent solitary waves ranges from 8 to 20, well within the large N regime where Whitham theory

applies [24].

For the normalized cdf F(A), any non-monotone decrease from the initial profile’s maximum

results in unphysical predictions, which is unavoidable in experiment. Therefore, instead of using

the observed initial condition, we use an idealized version, similar to that used in numerical exper-
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(a) (b)

Figure 4.10: (a) Numerical simulations of boxes of different widths w = 100, 200, 300, 400 with fixed
am = 2 and the ensuing solitary waves. Note the evolutions here are at different times and shifted to
align, to better illustrate the similarities and differences in the amplitude distributions. (b) (solid)
Amplitude distributions from the same simulations, (dashed) Predicted amplitude distribution
from equation (4.34) for the smoothed box, and (dash-dotted) predicted amplitude distribution
from equation (4.38) for a pure box.

(a) (b)

Figure 4.11: (a) Numerical simulations of boxes of different heights am ∈ 1, 2, 3, 4 with fixed w = 150
and the ensuing solitary waves. The evolutions here are at different times, to better illustrate the
similarities and differences in the amplitude distributions. The expected solitary wave counts do
not change much past a certain initial condition amplitude, as expected from equation (4.14).
(b) (solid) Amplitude distributions from the same simulations, and (dashed) Predicted amplitude
distribution from equation (4.34) for the smoothed box.
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(a) (b)

Figure 4.12: (a) Number of solitary waves from experiment (circles) versus the number expected
from equation (4.4). The dashed and dot-dashed lines represent one and two solitary waves away
from the expected 1:1 relationship. (b) Relative error versus the expected number of solitary waves.
Note the relative error goes down dramatically as N increases.

Figure 4.13: Cdfs of amplitude distributions from selected experiments (solid line), with the asymp-
totic expectation from using the conduit equation (4.34) for the smoothed box (dashed line) and
KdV (dotted line). Each step in the experimental cdf corresponds to a solitary wave. Box param-
eters: (a) width=20 cm, am = 2 (b) width=40 cm, am = 4.
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Figure 4.14: Experimental amplitude cdfs (stairs) versus (dashed) Predicted amplitude distribution
from equation (4.34) for the smoothed box, and (dash-dotted) predicted amplitude distribution from
equation (4.38) for a pure box. Color scale corresponds to initial conditions where am = 2 and
(light to dark) widths 25, 30, 35, 40 cm.

iments (see the inset of figure 4.1). We fit the box amplitude am, width w, and steepness of the

edges to the experimental profile via least squares.

We also observe a change in conduit diameter of roughly 15% from the bottom of the appa-

ratus to the location of solitary wave data-taking. While this does not affect N , this is observed

to have a profound affect on F(A). To mitigate this, we use the amplitude prediction from [54]

for a solitary wave on a changing background for the conduit equation. We measure error via the

∞-norm, as this relates to the Kolmogorov-Smirnov test for comparing cdfs. Across all trials, the

conduit prediction has roughly half the error as the prediction from rescaled KdV.

We also compare our results to the explicit formula (4.37) in figure 4.14. We observe as the

initial condition width increases, we approach the expected distribution.

4.3 Conclusion

Characterizing large disturbances in dispersive hydrodynamic systems, including noninte-

grable ones, can be done effectively by treating the disturbance as a slowly modulated wavetrain.

By assuming matching conditions at the ends of the disturbance we can get a full picture of the

long-time asymptotic evolution of the initial condition into a train of rank-ordered solitary waves.
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Predictions from this solitary wave resolution method are the number of solitary waves in the train

as well as a model for the distribution of their amplitudes.

We have performed physical experiments to validate this method, which, to the best of our

knowledge, have not previously been undertaken in any medium. We find the long-time evolution

of the initial profiles is well captured by the solitary wave resolution method, particularly for boxes

of large width. All observed solitary wave counts are within 1-2 waves of their expected values, or

to within 10% relative error for boxes producing at least 12 waves. Amplitude predictions agree

reasonably well and those coming directly from the conduit equation have more predictive power

than those rescaled from KdV. These promising results in the model conduit system will hopefully

encourage future studies on this category of initial conditions in more complex systems.



Chapter 5

Solitonic Dispersive Hydrodynamics: Theory and Observation

Despite their common origins, solitons and dispersive hydrodynamic structures such as DSWs

have been primarily studied independently. Motivated by the ease with which DSWs and solitons

can be created in the viscous liquid conduit system, we now investigate novel coherent, nonlinear

wave interactions. The focus here is on solitary waves that exhibit solitonic behavior, i.e., elastic

or near-elastic interaction, henceforth we refer to them as solitons. This chapter is primarily from

[54], with some experimental results reported in [56], as well as some previously unpublished results

in section 5.4. Unlike other chapters, here the wave amplitude will be represented by a instead of

A and the field variable for the conduit equation (cross-sectional area) will be u(x, t) instead of

a(z, t).

5.1 Observation of Soliton Interactions with Dispersive Hydrodynamic

Structures

In figure 5.1, we report solitary wave-DSW and DSW-DSW interactions from our conduit

experiment [56]. As in previous experiments [62, 40], an isolated conduit solitary wave is created

by the pulsed injection of fluid on top of the steady injection that maintains the background

conduit. Figures 5.1(a,b) depict the generation of a DSW followed by a solitary wave. Because

solitons propagate with a nonlinear phase velocity larger than the linear wave phase and group

velocities [62], the solitary wave eventually overtakes the DSW trailing edge. The solitary wave-

DSW interaction results in a sequence of phase shifts between the solitary wave and the crests
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of the modulated wavetrain. The solitary wave emerges from the interaction with a significantly

increased amplitude and decreased speed due to the smaller downstream conduit upon which it is

propagating. The initial and final slopes of solitary wave propagation in figure 5.1(b) demonstrate

that the solitary wave has been effectively refracted by the DSW. Meanwhile, the DSW experiences

a small–relative to the large, expanding width–phase shift, and is otherwise unchanged.

The opposite problem of a solitary wave being overtaken by a DSW is displayed in figure

5.1(c). After multiple phase shifts during interaction, the solitary wave is slowed down and effec-

tively absorbed within the interior of the DSW, while the DSW is apparently unchanged except for

a phase shift in its leading portion. Such behavior is consistent with the interpretation of a DSW

as a modulated wavetrain with small amplitude trailing waves that will always move slower than a

finite amplitude solitary wave.

Figure 5.1(d) reveals the interaction of two DSWs. The interaction region results in a series

of effective phase shifts due to solitary wave-like interactions that form a quasiperiodic or two-phase

wavetrain as shown in the inset. This nonlinear mixing eventually subsides, leaving a single DSW

representing the merger of the original two. The trailing DSW has effectively been refracted by the

leading DSW.

We may consider the overtaking interaction of two DSWs using an extension of DSW the-

ory. Denote the midstream and upstream conduit areas a1 < a2 relative to the downstream

area a0 = 1. Equation (3.14) implies the leading edge speeds of the first and second DSWs are

s1 =
√

1 + 8a1− 1, s2 = a1(
√

9 + 8(a2 − 1)/a1− 1). Motivated by previous DSW interaction stud-

ies [2], we assume merger of the two DSWs and thus obtain the leading edge speed of the merged

DSW sm = 4
√

1
2(a1 + a2)− 1−1 connecting conduit areas a0 to a2. One can verify the interleaving

property s1 < sm < s2, demonstrating the refraction (slowing down) of the second DSW.

While we can assume the solitary wave is a limiting case of a DSW, we found it is more

illuminating to use the solitary wave limit of the Whitham equations themselves for a detailed

analytical study [54].
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µ(i) 51± 1 cP

µ(e) 1200± 200 cP

ρ(i) 1.2286± 0.0001, g cm−3

ρ(e) 1.2587± 0.0001, g cm−3

ε 0.0425
Q0 0.25 mm min−1

Table 5.1: Densities, viscosities, viscosity ratio, and background flow rate from the experiments
reported in chapter 5.

5.1.1 Experiment Setup and Methods

To further focus our interest, experiments are performed using the viscous fluid conduit setup

described in 1.4, with glycerine-based fluids with the parameters given in table 5.1. For each trial,

a volumetric flow rate profile Q(t) is generated based on these fluid properties that results in a

long box followed by a soliton of chosen amplitude (cf. chapter 3). The smaller conduit diameter

is set by the background flow rate Q = 0.25 mL/min. The maximum flow rate for the long box is

Q = 0.7656 mL/min. These two flow rates correspond to a nondimensional jump in cross-sectional

area from u− = 1 to u+ = 1.75. The box is sufficiently long that the trailing edge acts as a RW

and leading edge acts as a DSW at the time of their respective interactions with the soliton.

Data acquisition of u± and a± is performed using three high resolution cameras, two equipped

with macro lenses and one with a zoom lens. The macro lens cameras are near the bottom and

top of the conduit, and the zoom lens near the middle, for extracting precise conduit diameter and

soliton amplitude information. The cameras take several high-resolution images of the soliton as it

passes through their respective viewscreens, as well as pictures of the background conduit before

and after the hydrodynamic structure has passed.

Calculations suggest that density variations of 1% in the exterior fluid can lead to a 10%

change in the background conduit diameter. We observe an increase in the conduit diameter for

the top camera, relative to the bottom and middle cameras by 10.1%, which we attribute to density

variation of the external glycerine fluid, as opposed to the non-Newtonian, thixotropic effects in

the corn syrup used in previous experiments [56]. Because the model assumes no density variation,
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we accommodate this discrepancy by scaling all amplitude measurements from the top camera by

the factor 1.1012 = 1.212.

5.1.2 Results

Observations of the hydrodynamic transmission and trapping of solitons resulting from their

interaction with RWs and DSWs are depicted in figure 5.2. The contour plots in 5.2(b,f) show

that transmitted solitons exhibit a smaller (larger) amplitude and faster (slower) speed post inter-

action with a RW (DSW). The transmitted solitons experience a phase shift due to hydrodynamic

interaction, defined as the difference between the post and pre interaction spatial intercept. Our

measurements show a negative (positive) phase shift for the soliton transmitted through a RW

(DSW). Sufficiently small incident solitons in figure 5.2(d,h) do not emerge from the RW or DSW

interior during the course of experiment, remaining trapped inside the hydrodynamic state. We

now develop a mathematical description of these highly nontrivial nonlinear wave dynamics.

5.2 Solitonic Dispersive Hydrodynamics

Utilizing the scale separation between extended hydrodynamic states and localized solitons

(see figure 5.3), we propose a general theory of solitonic dispersive hydrodynamics encapsulated

by a set of effective partial differential equations for the hydrodynamic mean field u, the soliton’s

amplitude a, and its phase. We identify two adiabatic invariants of motion and show that they

lead to two pivotal predictions. First, the soliton trajectory is a characteristic of the governing

equations that is directed by the mean field, a nonlinear analogue of wavepacket trajectories in

quantum mechanics [88]. This implies that solitons are either trapped by or transmitted through

a hydrodynamic state, depending on the relative amplitudes of the soliton and the hydrodynamic

“barrier”.

The second prediction we term hydrodynamic reciprocity. Given an incident soliton ampli-

tude and the far-field mean conditions, the adiabatic invariants are used to predict when the soliton

is trapped or transmitted and, in the latter case, what its transmitted amplitude and phase shift
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DSW

rarefaction

Figure 5.3: Representative initial configuration and evolution (top to bottom) for solitonic dis-
persive hydrodynamics. The narrow soliton on the uniform mean field u− is transmitted through
the broad hydrodynamic flow if it reaches and propagates freely on the uniform mean field u+.
The hydrodynamic flow exhibits expansion (rarefaction) and compression that leads to a dispersive
shock wave.

are. Hydrodynamic reciprocity means that the trapping, transmission amplitude/phase relations

are the same for soliton interactions with smooth, expanding rarefaction waves (RWs) and com-

pressive, oscillatory DSWs. We stress that the theory presented is general and applies to a wide

range of physical media [42, 79, 60, 56, 77, 89, 43].

We begin by considering a general dispersive hydrodynamic medium with nondimensional

scalar quantity u(x, t) (e.g., conduit cross-sectional area) governed by

ut + V (u)ux = D[u]x, x ∈ R, t > 0. (5.1)

V (u) is the long-wave speed, D[u] is an integro-differential operator, and equation (5.1) admits a

real-valued, linear dispersion relation with frequency ω(k, u) where k is the wavenumber and u is

the background mean field. We assume V ′(u) > 0 so that the dispersive hydrodynamic system has

convex flux [22]. The dispersion is assumed negative (ωkk < 0) for definiteness. We also assume

that equation (5.1) satisfies the prerequisites for Whitham theory, an approximate description of

modulated nonlinear waves that accurately characterizes dispersive hydrodynamics in a wide-range

of physical systems [87, 21].

Many models can be expressed in the form (5.1). We will perform calculations for the

Korteweg-de Vries (KdV) equation (1.2), which has V (u) = u, D[u] = −uxx, a universal model

of weakly nonlinear, dispersive waves, and the conduit equation (1.3), which has V (u) = 2u,
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D[u] = u2(u−1ut)x, an accurate model for our experiments [52].

The dynamics of DSWs, RWs, and solitons for equation (5.1) can be described using Whitham

theory [87], where a nonlinear periodic wave’s mean u, amplitude a, and wavenumber k are assumed

to vary slowly via modulation equations. The modulation equations admit an asymptotic reduction

in the non-interacting soliton wavetrain regime 0 < k � 1 [30, 33]

ut + V (u)ux = 0, (5.2a)

at + c(a, u)ax + f(a, u)ux = 0, (5.2b)

kt + [c(a, u) k]x = 0. (5.2c)

The first equation is for the decoupled mean field, which is governed by the dispersionless, D → 0,

equation (5.1). The second equation describes the soliton amplitude a, which is advected by the

mean field according to the soliton amplitude-speed relation c(a, u) and the coupling function

f(a, u). The final equation expresses wave conservation [87] and describes a train of solitons with

spacing 2π/k � 1. The soliton train here is a useful, yet fictitious construct because we will only

consider the soliton limit k → 0 of solutions to equation (5.2). Equation (5.2) with c(a, u) = a/3+u

and f(a, u) = 2a/3 corresponds to the soliton limit of the KdV-Whitham system of modulation

equations, shown in [19] to be equivalent to the soliton modulation equations determined by other

means [30] with application to shallow water soliton propagation over topography in [30, 20, 32, 31].

For the conduit equation, we have (5.2) with cs given in equation (1.55) and some f(a, u) that can be

calculated but we will not need it here. The general case of equation (5.2) was derived in [33] and can

be interpreted as a mean field approximation for the interaction of a soliton with the hydrodynamic

flow. In contrast to standard soliton perturbation theory where the soliton’s parameters evolve

temporally [46], solitonic dispersive hydrodynamics require the soliton amplitude a(x, t) be treated

as a spatio-temporal field. We note that the equations in (5.2) can be solved sequentially by the

method of characteristics [30].
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5.2.1 Riemann Invariants

It will be physically revealing to diagonalize the system of equations in (5.2) by identifying

its Riemann invariants [87]. First, we notice that equations (5.2a) and (5.2b) are decoupled from

(5.2c), and have two distinct, real characteristic velocities V < c. This 2 × 2 subsystem of quasi-

linear equations is thus strictly hyperbolic and can be diagonalized for any coupling function f(a, u)

[87].

The mean field equation (5.2a) is already in diagonal form with the Riemann invariant u

associated with the velocity V . The second Riemann invariant, q = q(a, u) is associated with the

characteristic velocity c. It can be found by integrating fdu+ (c− V )da (see, e.g., [87]).

The coupling function f(a, u) is not always readily available, and its direct computation

generally requires the determination of a singular, soliton limit in the full system of Whitham

modulation equations (5.1) [33]. Below, we use a convenient change of variables proposed in Ref. [18]

that enables one to circumvent explicit determination of the coupling function f in the derivation of

the Riemann invariant q, utilizing only the known linear dispersion relation ω(k, u) and the soliton

amplitude-speed relation c(a, u).

Following Ref. [18], and similar to chapter 4, we introduce a conjugate (soliton) wavenumber

k̃ = K̃(a, u), implicitly determined via the soliton amplitude-speed relation

c(a, u) = ω̃(k̃, u)/k̃, (5.3)

where ω̃(k̃, u) = −iω(ik̃, u) is the conjugate dispersion, whose phase velocity coincides with the

speed of a soliton. The conjugate dispersion relation is realized by linearizing the governing disper-

sive hydrodynamic equation (5.1) with respect to the soliton solution in the far-field. Very often,

one can explicitly determine the soliton amplitude-speed relation c(a, u) hence also the change of

variables k̃ = K̃(a, u) via equation (5.3).

As a simple example, for the KdV equation we have ω = ku−k3, c(a, u) = u+a/3, therefore

k̃2 = a/3.
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For the conduit equation, recall the dispersion and soliton amplitude-speed relations are [56]

ω(k, u) =
2uk

1 + uk2
,

cs(a, u) =
u

a2
(a+ u)2

(
2 ln(1 + a/u)− 1] + u2

)
.

(5.4)

The conjugate wavenumber transformation (5.3) then yields k̃2 = 1/u− 2/cs(a, u).

In the variables (k̃, u), simple wave solutions of equations (5.2a) and (5.2b) satisfy the ordinary

differential equation (ODE) [18]

dk̃

du
=

ω̃u
V (u)− ω̃k̃

. (5.5)

For the KdV equation, the ODE (5.5) is readily integrated to yield 2u + 3k̃2 = q, where q is a

constant. For the conduit equation, integration of (5.5) gives an implicit determination of k̃(u)

u(2− uk̃2)

(uk̃2 − 1)2
= q, (5.6)

where q, again, is a constant of integration.

Generally, q = q(a, u) is constant along the characteristic dx/dt = C(q, u), where C(q(a, u), u) ≡

c(a, u), and so is a Riemann invariant. For the KdV equation, we find q = a+2u and C = (q+u)/3.

For the conduit equation, we obtain

q(a, u) = c(a, u)[c(a, u) + 2u]/u,

C(q, u) = −u+
√
u(q + u).

(5.7)

The change of variables q = q(a, u) diagonalizes (5.2)

ut + V (u)ux = 0, (5.8a)

qt + C(q, u)qx = 0, (5.8b)

For mean flows u(x, t) that evolve according to equation (5.2a), the Riemann invariant q(a, u) is

an adiabatic invariant of the dynamics. It is the dispersive hydrodynamic analog of the conserved

soliton amplitude in soliton-soliton interactions. Under these conditions, there is a second adiabatic

invariant, labeled r(q, u, k), also associated with the characteristic velocity C(q, u). It is readily
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found in the form r = kp(q, u) where p(q, u) is given by the general expression

p(q, u) = exp

(
−
∫ u

u0

Cu(q, u)

V (u)− C(q, u)
du

)
, (5.9)

where C(q(a, u), u) ≡ c(a, u). For KdV, p(q, u) = (q − u)−1/2, and for the conduit equation,

p(q, u) =
exp

(
1
2 arctanh 3

√
u
q+u

)√
u√

u+
√
q+u

(8u− q)1/4
. (5.10)

5.2.2 Initial Value Problem for Diagonalized System

We seek solutions to equation (5.8) subject to an initial mean field profile u(x, 0) = u0(x) and

an initial soliton of amplitude a0 located at x = x0. But we require initial soliton and wavenumber

fields a(x, 0) and k(x, 0) for all x in order to give a properly posed problem for (5.2). Admissible

initial conditions are obtained by recognizing this as a special solution, a simple wave in which q

and r are constant [87]. The mean flow therefore satisfies u = u0(x − V (u)t). The initial soliton

amplitude and position determine the constant Riemann invariant q0 = q(a0, u0(x0)). An initial

wavenumber k0 determines the other constant adiabatic invariant k0p0 = k0p(q0, u0(x0)). As we

will show, the value of k0 > 0 is not relevant so can be arbitrarily chosen. We now show how this

solution physically describes soliton-mean field interaction.

A smooth, initial mean field, e.g., in figure 5.3, will evolve according to the obtained implicit

solution until wavebreaking occurs. Our interest is in the interaction of a soliton with the expansion

and compression waves that result. In dispersive hydrodynamics, the simplest examples of these

are RWs and DSWs, respectively, which are most conveniently generated from step initial data [34].

We therefore analyze the obtained general solution subject to step initial data

u(x, 0) = u±, a(x, 0) = a±, k(x, 0) = k±, ± x > 0, (5.11)

that model incident and transmitted soliton amplitudes a− and a+ through the mean field transition

u− to u+ for soliton train wavenumbers k− and k+. The mean field dynamics depend upon the

ordering of u− and u+. When u− < u+, the mean field equation admits a RW solution, otherwise
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an unphysical, multi-valued solution. Short-wave dispersion regularizes such behavior and leads to

the generation of a DSW. We consider each case in turn.

5.2.3 Rarefaction Wave Results

The transmission of a soliton through a RW is shown experimentally in figure 5.2(a,b). The

incident soliton “climbs” the RW and emerges from the interaction with altered amplitude and

speed. Our aim is to determine the range of parameter values a±, u± for such an interaction to

occur and, if so, the amplitude a+ of the transmitted soliton in terms of the other parameters. If

not transmitted, we show that the soliton decays and is trapped by the RW.

The mean field is the self-similar, RW solution with u(x, t) = u± for ±x > ±V±t and

u(x, t) = V −1(x/t), V−t ≤ x ≤ V+t, (5.12)

where V± = V (u±) and V −1 is the inverse of V . Constants q and kp correspond to adiabatic

invariants of the soliton-mean field dynamics that yield constraints on the amplitude, mean field,

and wavenumber parameters we call the transmission and phase conditions

q(a−, u−) = q(a+, u+),
k−
k+

=
p(q+, u+)

p(q−, u−)
. (5.13)

The first adiabatic invariant q(a, u) determines the transmitted soliton amplitude a+ in terms

of the incident soliton amplitude a− and the mean fields u±. The second adiabatic invariant

determines the ratio k−/k+, which in turn yields the soliton’s phase shift due to hydrodynamic

interaction. Equation (5.13) is the main theoretical result of this chapter and describes the trapping

or transmission of a soliton through a RW and a DSW.

The necessary and sufficient condition for soliton transmission is a positive transmitted soliton

amplitude a+ > 0, which places a restriction on the incident soliton amplitude a−. For the conduit

equation, equation (5.7) implies c− > ccr = −u− + (u2
− + 8u+u−)1/2. For KdV, a− > acr =

2(u+ − u−). In both cases, we find that the transmitted soliton’s amplitude is decreased, a+ < a−

and its speed is increased, c+ > c−. We now derive the extension of this result to the general

dispersive hydrodynamic system equation (5.1), assuming V ′(u) > 0.
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In the mean field, simple wave approximation, the transmission of a soliton through a RW

is determined by the conservation of the second Riemann invariant, q(a, u), of the solitonic hydro-

dynamic system (5.8). We are interested in the sign of the derivative ax in the course of soliton

transmission. Expressing a(q, u), we obtain ax = auux (since q is constant). Now, using equation

(5.12), we have ux = 1/(tV ′(x/t)) > 0. Next, au = −qu/qa. Hence, sgn ax = −sgn (qu qa) and

therefore, sgn (a+ − a−) = −sgn (qu qa) assuming qu 6= 0, qa 6= 0. Say, for KdV q = a + 2u so

sgn (a+ − a−) = −1 as already observed.

In a similar manner, the acceleration or deceleration of soliton-RW transmission can be

determined by the positivity or negativity of Cx. By a similar argument, sgn[Cx] = sgn (Cu). For

KdV, Cu = 1/3, and for the conduit equation, Cu = c2/[2u(c + u)] > 0, so a transmitted soliton

in both cases is accelerated by the RW. Thus we have shown sgn(a+ − a−) = −sgn(quqa) and

sgn(c+ − c−) = sgn(Cu).

The soliton phase shift is ∆ = x+−x− where x± are the x-intercepts of the soliton pre (−) and

post (+) hydrodynamic interaction. Given the initial soliton position x−, the contraction/expansion

of the soliton train determines the phase shift as ∆/x− = k−/k+ − 1 = p+/p− − 1. Hence, the

ratio k−/k+ in the phase condition (5.13), not the arbitrary initial wavenumber k−, determines the

soliton phase shift. Our use of a fictitious soliton train is therefore justified.

We also determine the soliton-RW trajectory. A soliton with position x(t) propagates through

the mean field along a characteristic of the modulation system (5.2)

dx

dt
= C(q, u(x, t)), x(0) = x−, (5.14)

where the soliton amplitude a(x, t) varies along the trajectory according to the adiabatic invariant

q(a(x, t), u(x, t)) = q(a−, u−). The phase shift from integration of (5.14) equals ∆ from the adia-

batic invariant in (5.13), as expected. When a+ ≤ 0 in (5.13), the soliton is trapped by the RW,

as in experiment, figure 5.2(c,d).
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5.2.4 Dispersive Shock Wave Results

If u− > u+, a DSW is generated. Soliton-DSW transmission is experimentally depicted in

figure 5.2(e,f). An incident soliton propagates through the DSW, exhibiting a highly non-trivial

interaction, ultimately emerging with altered amplitude and speed.

In contrast to the soliton-RW problem, the modulation equations (5.2) are no longer valid

throughout the soliton-DSW interaction. Instead, the mean field equation is replaced by the DSW

modulation equations [34, 21]. We seek a simple wave solution for soliton-DSW modulation. Be-

cause DSW generation occurs only for t > 0, the soliton-DSW modulation system for t < 0 reduces

exactly to equation (5.2), i.e., that of soliton-RW modulation. For t < 0, the adiabatic invariants

(5.13) hold. By continuity of the modulation solution, these conditions must hold for t ≥ 0 as well.

In particular, soliton-RW and soliton-DSW interaction both satisfy the same transmission and

phase conditions (5.13). This fact, termed hydrodynamic reciprocity, is due to time reversibility of

the governing equation (5.1) and is depicted graphically in figure 5.4.

Equations (5.7) and (5.13) for the conduit equation indicate that solitons incident upon DSWs

exhibit a decreased transmitted speed ccr < c+ < c− and an increased transmitted amplitude

a+ > acr > a−. The amplitude and speed of the DSW’s soliton leading edge are precisely acr

and ccr[50]. Hydrodynamic reciprocity therefore implies that the transmitted soliton’s amplitude

is decreased (increased), its speed is increased (decreased), and its phase shift is negative (positive)

relative to the soliton incident upon the RW (DSW), as observed experimentally in figure 5.2. Using

the transmission and phase conditions (5.13), we accurately predict the conduit soliton trajectory

post DSW interaction without any detailed knowledge of soliton-DSW interaction.

In contrast to soliton-RW transmission, solitons with amplitude a+ initially placed to the

right of the step will interact with the DSW if a+ < acr. Then the transmission condition (5.13)

implies a− < 0, i.e., the soliton cannot transmit back through the DSW. Instead, the soliton is

effectively trapped as a localized defect in the DSW interior as observed experimentally in figure

5.2(g,h).
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(b) jump from 2 to 1, a_- = 2 
(c) jump from 1 to 2, a_- = 2 

(d) jump from 1 to 2; a_- = 1.5
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Error bars are standard error based on errors in fluid properties and calibration images

Background Correction: before each trial, a few 
(10ish) pictures of the conduit were taken.  I 

extracted the edge data for these images, converted 
to non-dimensional area, then averaged the data 

over time. Next, I found the deviation at each point 
in space from the mean area of the time-averaged 

data. I subtracted (added?) this deviation from each 
that point in space over all time

3

regime 0 < k ⌧ 1

ut + V (u)ux = 0, at + c(a, u)ax + f(a, u)ux = 0,

kt + [c(a, u) k]x = 0.
(2)

The first equation is for the decoupled mean field, which
is governed by the dispersionless, D ! 0, equation (1).
The second equation describes the soliton amplitude a,
which is advected by the mean field according to the
soliton amplitude-speed relation c(a, u) and the coupling
function f(a, u). The final equation expresses wave con-
servation [5] and describes a non-interacting train of soli-
tons with spacing 2⇡/k � 1. The soliton train is a useful,
yet fictitious construct because we will only consider the
soliton limit k ! 0 of solutions to Eq. (2). Equation (2)
with c(a, u) = a/3 + u and f(a, u) = 2a/3 corresponds
to the soliton limit of the KdV-Whitham system of mod-
ulation equations [26], as originally shown in [27] with
application to shallow water soliton propagation over to-
pography in [26, 28–30]. The general case of Eq. (2) was
derived in [31] and can be interpreted as a mean field
approximation for the interaction of a soliton with the
hydrodynamic flow. In contrast to standard soliton per-
turbation theory where the soliton’s parameters evolve
temporally [32], solitonic dispersive hydrodynamics re-
quire the soliton amplitude a(x, t) be treated as a spatio-
temporal field. We note that the equations in (2) can be
solved sequentially by the method of characteristics [26].

It will be convenient and physically revealing to di-
agonalize the system of equations in (2) by identifying
its Riemann invariants [5]. Owing to the special struc-
ture of system (2) with just two characteristic velocities
V < c, it is always possible to find a change of variables
to Riemann invariant form that diagonalizes the system.
The mean field equation is already diagonalized with u
the Riemann invariant associated to the velocity V . The
second Riemann invariant, q, depends on u, a and is asso-
ciated with the velocity c. q can be found by integrating
the perfect di↵erential fdu + (c � V )da [5]. See also the
Supplemental Material [25] for additional details. For the
KdV equation, q(a, u) = a/2+u whereas for the conduit
equation

c(a, u) = [u2 + (a + u)2(2 ln(1 + a/u) � 1)]u/a2,

q(a, u) = c(a, u)[c(a, u) + 2u]/u.
(3)

The third Riemann invariant is found by direct inte-
gration of the wavenumber equation to be the quantity
kp(q, u) given by

p(q, u) = exp

 
�
Z u

u0

Cu(q, u)

V (u) � C(q, u)
du

!
, (4)

where C(q(a, u), u) ⌘ c(a, u). For the KdV equation,
p(q, u) = (q�u)�1/2. The change of variables q = q(a, u)
and p = p(q, u) diagonalizes (2)

ut + V (u)ux = 0, qt + C(q, u)qx = 0,

(kp)t + C(q, u)(kp)x = 0.
(5)

FIG. 3. Placeholder

We seek solutions to Eq. (2) or, equivalently, Eq. (5)
subject to an initial mean field profile u(x, 0) = u0(x),
�1 < x < 1 and an initial soliton of amplitude a0

located at x = x0. But we require initial soliton and
wavenumber fields a(x, 0) and k(x, 0) for all x in order to
give a properly posed problem for (2). Admissible initial
conditions are obtained by seeking a special solution in
the form of a simple wave in which all but one of the
Riemann invariants are constant [5]. The non-constant
Riemann invariant must be u to satisfy the initial con-
dition and therefore is solved with the method of char-
acteristics implicitly as u = u0(x � V (u)t). The initial
soliton amplitude a0 and position x0 determine the con-
stant Riemann invariant q0 = q(a0, u0(x0)). An initial
wavenumber k0 determines the other constant Riemann
invariant k0p0 = k0p(q0, u0(x0)). As we will show, the
value of k0 is not relevant for the problems we study here
so can be arbitrarily chosen. We now show how this so-
lution physically describes soliton-mean field interaction.

A smooth, initial mean field, e.g., in Fig. 1, will evolve
according to the obtained implicit solution until wave-
breaking occurs. Our interest is in the interaction of a
soliton with the expansion and compression waves that
result. In dispersive hydrodynamics, the simplest exam-
ples of these are RWs and DSWs, respectively, which are
most conveniently generated from step initial data. We
therefore analyze the obtained solution subject to step
initial data

u(x, 0) = u±, a(x, 0) = a±, k(x, 0) = k±, ± x > 0, (6)

(a) (b)

x xx
0

Figure 5.4: Graphical depictions of hydrodynamic reciprocity. (a) Space-time contour plot of
soliton-DSW (t > 0) and soliton-RW (t < 0) interaction with two solitons satisfying the transmis-
sion condition (5.13). For |t| sufficiently large, the soliton speeds are the same. (b) If the soliton
post DSW interaction (top, left to right) is used to initialize soliton-RW interaction (bottom, right
to left), the post RW interaction soliton has the same properties as the pre DSW interaction soliton.
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5.3 Comparison to Experiment

The transmission and phase conditions (5.13) for the conduit equation are shown in figure

5.5. For soliton-RW interaction, the abscissa and ordinate are a− and a+, respectively reversed

for soliton-DSW interaction. Hydrodynamic reciprocity implies that the transmission condition

on these axes is the same for soliton-RW and DSW transmission. Reciprocity is confirmed by

experiment and numerical simulations of the conduit equation in figure 5.5(a), that slightly deviate

from soliton-mean field theory as the amplitudes increase, consistent with previously observed

discrepancies [50, 56]. Reciprocity of the phase shift is also confirmed by conduit equation numerics

in figure 5.5(b). Our experiments provide definitive evidence of soliton-hydrodynamic transmission,

trapping, reciprocity, and the theory’s efficacy.

5.4 Soliton Phase Shift through a General Disturbance

The following work is new and not part of the paper [56]. We have found that the phase

condition from equation (5.13) can be used for more generic initial profiles. Recall the soliton phase

shift is ∆ = φ+ − φ−, where φ± are the x-intercepts of the soliton post- and pre- hydrodynamic

interaction (x± has been changed to φ± for clarity in later equations). Then the phase shift can be

determined for the general equation (5.1) as

∆ = φ−

(
k−
k+
− 1

)
= φ−

(
p+

p−
− 1

)
, (5.15)

where p± = p(q±, u±), and subsequently the soliton’s new x-intercept is

φ+ = ∆ + φ− =
φ−p+

p−
. (5.16)

Note that this equation assumes the hydrodynamic jump is at x = 0 and must be shifted ac-

cordingly for jumps at other locations. Recall for KdV, p =
√

2/a, which when combined with

the transmission condition (5.13) gives p+ =
√

2/(a− + (u− − u+)). For the conduit equation, the

expression for p was given in equation (5.10). Then, for a box of height am with support [0, w], we

can calculate the x-intercept φBox of the soliton post interaction with a box by assuming the back



119

(a)

Theory

Expt-DSWs

Expt-RWs

Numerics-DSWs
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50(b)

Theory-RW
Theory-DSW
Numerics-RW
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Figure 5.5: Transmitted soliton properties due to conduit soliton-RW and DSW interaction for a
hydrodynamic transition from u = 1 to u = 1.75. a) Soliton amplitude from eq. (5.13) (curve),
experiment (filled squares, triangles), and numerical simulations (open squares, triangles). b)
Soliton phase shift from eq. (5.13) (curves) and numerical simulations (symbols).
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of the box acts as a RW and the front as a DSW. Letting the mean flow and adiabatic invariants

on the background be (u0, q0, k0p0) and those on top of the box be (u1, q1, k1p1), and using the

soliton’s initial x-intercept φ0, we first directly calculate the soliton phase shift from the step up

(RW) to be φRW = φ0p1
p0

, as in equation (5.16). The soliton phase shift from a DSW of the same

size centered at 0 would be φDSW = φ0p0
p1

. Then, in order to calculate φBox, we must insert into

φDSW the new x-intercept φRW and shift everything by w, the actual location of the step down in

the mean flow

φBox − w = (φRW − w)
p0

p1

= φ0 − w
p0

p1
.

Therefore

φBox = φ0 + w

(
1− p0

p1

)
.

For a KdV soliton with initial total amplitude a0, the phase shift is

∆ = φBox − φ0 = w


1−

√
a0 − 2(u1 − u0)

a0


 . (5.17)

An additional benefit of this method is that it can be generalized. Consider a disturbance

u(x) with support on [0,W ] connecting constant states u0 for x < 0 and uW for x > W . First,

if u(x) consists of n boxes of width w and heights uk, k = 1, . . . , n, then the new phase φn for a

soliton with initial phase φ0 < 0 and invariants (u0, q0, k0p0) can be found in a similar way to the

box, by inserting the previous phase shift into equation (5.16) and shifting by the box width w.

This results in a recursive relation for φk+1 of

φk+1 − kw = (φk − w)
pk+1

pk
. (5.18)

It can be shown via induction that the solution to this relation is

φk+1 = φ0
pk+1

p0
+ w

k∑

i=1

(
1− pk+1

pi

)
. (5.19)
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Then for a continuous u(x), i.e. sending n→∞, w = W/n→ 0, we obtain the Riemann integral

φ(x) = φ0
p(x)

p(φ0)
+

∫ x

φ0

(
1− p(x)

p(x′)

)
dx′. (5.20)

where p(x) = p(q(a0, u(x)), u(x)) is the associated with the adiabatic invariant kp evaluated on the

initial disturbance u(x).

The most general case is when u(x) has support [a, b] and the soliton is large enough to

travel entirely through it, i.e. the transmission condition is satisfied for all u(x), x ∈ [a, b]. If we

assume the initial and final mean are u(a) and u(b), respectively, then there is no contribution to

the integral term outside of x ∈ (a, b). Additionally, p(x) = p(a) for x ∈ (−∞, a), and p(x) = p(b)

for x ∈ (b,∞), so the phase shift is

∆φ = φ0

(
p(b)

p(a)
− 1

)
+

∫ b

a

(
1− p(b)

p(x)

)
dx (5.21)

For KdV, the phase shift is

∆φ = φ0



√
a0 − 2(u(b)− u(a))

a0
− 1


+

∫ b

a


1−

√
a0 − 2(u(x)− u(a))

a0


 dx. (5.22)

We have tested both the KdV box formula (5.17) and the KdV general formula (5.22) numeri-

cally; the results are shown in figures 5.6 and 5.7. We find remarkable agreement when compared to

other methods, such as approximating the box as a train of solitons with amplitudes from solitary

wave fission (for KdV, equation (1.27)) or using IST, neglecting the contribution from radiation as

in equation (1.25) to gain a similar result [2]. The total soliton phase shift is then estimated by

the sum of all two-soliton phase shifts with the soliton train. The relative error associated with

these approximations is shown in figure 5.7. The error in the soliton tunneling general prediction

is consistently under 5%, and within 0.1% for all but one trial. The error is maximized for narrow

boxes and large solitons. Other methods of prediction exhibit considerably more error and require

knowledge of the two-soliton phase shift formula, e.g. equation (1.6) for KdV.

The KdV phase shift equation (5.22) can be readily applied to a wide variety of initial

conditions. It has no dependence on whether the initial condition is positive or negative; the only
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Figure 5.6: Comparison of predicted soliton phase shifts from the soliton fission prediction equation
(1.27) (x’s), IST box approximation (neglecting radiation) equation (1.25) (squares), equation (5.17)
(o’s), and (5.22) (triangles) with numerics.

(a) (b)

Figure 5.7: Percent relative error associated with predicted soliton phase shifts from the soliton
fission prediction equation (1.27) (x’s), IST box approximation (neglecting radiation) equation
(1.25) (squares), equation (5.17) (o’s), and (5.22) (triangles) compared to numerics as a function
of (a) box width w, with soliton amplitude as = 5 and (b) test soliton amplitude as, with width
w = 200.
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restriction is a0 ≥ 2 maxx u(x). To test this, we took the initial condition and soliton shown in

figure 5.8 and evolved numerically. We observed a numerical phase shift of approximately 17.24,

which is within 0.3% of the predicted 17.29 from equation (5.21). For other generic, slowly varying

profiles, we observe similar accuracy.

5.5 Conclusion

We have introduced a general framework for soliton-mean field interaction. The dynamics

exhibit two adiabatic invariants that describe soliton trapping or transmission. The existence of the

same adiabatic invariants for soliton-mean field interactions of compression (DSW) and expansion

(RW) imply hydrodynamic reciprocity. This describes a conceptually new notion of hydrodynamic

soliton “tunneling” where the potential barrier is the mean field, obeying the same equations as the

soliton [74]. We have found through extensive study of these formulae that they apply to a wide

range of initial disturbances, far beyond the case considered of an initial step. This theory presents

an appealing methodology to control soliton propagation by manipulation of the mean field.
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(a) (b)

Figure 5.8: Example of a generic localized profile evolving according to KdV and its interaction
with a soliton. (a) At different times (b) Space-time contour plot. Note the subtle phase shift
identified by the difference between the t-intercepts of the dashed curve and solid line.



Chapter 6

Conclusion

This thesis is pushing forward the analytical description and physical interpretation of non-

integrable dispersive hydrodynamics. Many of the results here were previously known only for

integrable systems through IST, but we have bypassed the requirement of complete integrability

here. The structures and interactions studied appear in a multitude of areas, including fluids, op-

tics, condensed matter, and quantum mechanics. This thesis has set up a general framework for

exploring these types of problems.

Whitham modulation theory has been shown to not only posit simple predictions for a wide

range of phenomena, but also shows excellent agreement with both numerics and experiment. This

invites further investigation of dispersive hydrodynamic problems. We highlight one such problem

currently being studied: linear wavepacket-mean flow interaction [12]. This is currently under

investigation for viscous fluid conduits, where diagonalization of the 2× 2 system

φt + 2φφz = 0,

kt +
(
ω0(k, φ)

)
z

= 0,

(6.1)

results in an adiabatic invariant describing the change in the wavenumber k due to the mean φ

q(φ, k) =

(
1 + φk2

)2

φ
(
2 + φk2

) . (6.2)

Preliminary numerical studies of the conduit equation confirm that q is invariant to changes in the

mean flow. It remains to study this problem experimentally.



126

This work has broad implications for more complex dispersive hydrodynamic systems. While

we studied a scalar dispersive hydrodynamic equation here, this framework can be extended to a

system of (1+1)-dimensional equations (e.g. NLS) or for (2+1)-dimensional equations, such as the

KP equation, which describes, for example, two-dimensional shallow water waves

(ut + uux + uxxx)x + λuyy = 0, λ = ±1, x, y ∈ R, t > 0, (6.3)

where λ = −1 is called the KPI equation, and λ = 1 is the KPII equation. Work on these

types of equations are already underway in the Dispersive Hydrodynamics Laboratory. NLS has

been studied in the context of solitonic dispersive hydrodynamics [74], and a study of KPII soliton

modulations using the KP-Whitham equations derived in [3] is presently underway. The modulation

theory framework generalizes neatly to fundamental problems in dispersive hydrodynamics.
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R. Houdré, E Giacobino, C. Ciuti, and A. Bramati. Polariton superfluids reveal quantum
hydrodynamic solitons. Science, 332(6034):1167–1170, 2011.

[5] D. V. Anderson, M.D. Maiden, and M.A. Hoefer. Controlling dispersive hydrodynamic wave-
breaking in a viscous fluid conduit. in preparation, 2018.

[6] Diego Arcas and Harvey Segur. Seismically generated tsunamis. Philosophical Transactions
of the Royal Society of London A: Mathematical, Physical and Engineering Sciences,
370(1964):1505–1542, 2012.

[7] Victor Barcilon and Frank M. Richter. Nonlinear Waves in Compacting Media. Journal of
Fluid Mechanics, 164(-1):429–448, 1986.

[8] J. Boussinesq. Essai sur la theorie des eaux courantes. l’Acad. des Sci. Inst. Nat. France,
23:1–680, 1877.

[9] Iacopo Carusotto and Cristiano Ciuti. Quantum fluids of light. Rev. Mod. Phys., 85:299–366,
Feb 2013.

[10] C. Chong, M. A. Porter, P. G. Kevrekidis, and C. Daraio. Nonlinear coherent structures in
granular crystals. Journal of Physics: Condensed Matter, 29(41):413003, 2017.

[11] Matteo Conforti, Fabio Baronio, and Stefano Trillo. Resonant radiation shed by dispersive
shock waves. Phys. Rev. A, 89(1):013807, January 2014.

[12] T. Congy, G. A. El, and M. A. Hoefer. Interaction of linear modulated waves with unsteady
dispersive hydrodynamic states, 2018.



128

[13] Constantine M. Dafermos. Hyperbolic Conservation Laws in Continuum Physics. Springer,
3rd edition, December 2009.

[14] Guo Deng, Gino Biondini, and Stefano Trillo. Small dispersion limit of the Korteweg–de Vries
equation with periodic initial conditions and analytical description of the Zabusky-Kruskal ex-
periment. Physica D: Nonlinear Phenomena, 333:137 – 147, 2016. Dispersive Hydrodynamics.

[15] Guo Deng, Sitai Li, Gino Biondini, and Stefano Trillo. Recurrence due to periodic multisoliton
fission in the defocusing nonlinear schrödinger equation. Phys. Rev. E, 96:052213, Nov 2017.

[16] V. D. Djordjevic and L. G. Redekopp. The Fission and Distintegration of Internal Solitary
Waves Moving over Two-Dimensional Topography. J Phys. Oceanogr., 8:1016–1024, 1978.

[17] Zachary Dutton, Michael Budde, Christopher Slowe, and Lene Vestergaard Hau. Observation
of quantum shock waves created with ultra- compressed slow light pulses in a bose-einstein
condensate. Science, 293(5530):663–668, 2001.

[18] G. A. El. Resolution of a shock in hyperbolic systems modified by weak dispersion. Chaos:
An Interdisciplinary Journal of Nonlinear Science, 15(3):037103, 2005.

[19] G. A. EL, R. H. J. GRIMSHAW, and A. M. KAMCHATNOV. Evolution of solitary waves
and undular bores in shallow-water flows over a gradual slope with bottom friction. Journal
of Fluid Mechanics, 585:213–244, 2007.

[20] G. A. El, R. H. J. Grimshaw, and W. K. Tiong. Transformation of a shoaling undular bore.
Journal of Fluid Mechanics, 709:371–395, 2012.

[21] G. A. El and M. A. Hoefer. Dispersive shock waves and modulation theory. Physica D,
333:11–65, 2016.

[22] G. A. El, M. A. Hoefer, and M. Shearer. Dispersive and diffusive-dispersive shock waves for
nonconvex conservation laws. SIAM Rev, 59(1):3–61, 2017.

[23] G. A. El and A. M. Kamchatnov. Kinetic Equation for a Dense Soliton Gas. Phys. Rev. Lett.,
95(20), November 2005.

[24] G.A. El, R.H.J. Grimshaw, and N.F. Smyth. Asymptotic description of solitary wave trains
in fully nonlinear shallow-water theory. Physica D, 237, 2008.

[25] Gennady A. El and Noel F. Smyth. Radiating dispersive shock waves in non-local optical
media. P. Roy. Soc. A-Math Phy., 472(2187):20150633, March 2016.

[26] T. Elperin, N. Kleeorin, and A. Krylov. Nondissipative shock waves in two-phase flows. Physica
D, 74:372–385, 1994.

[27] David Farmer and Laurence Armi. The Generation and Trapping of Solitary Waves over
Topography. Science, 283(5399):188–190, 1999.

[28] E. Fradkin. Field Theories of Condensed Matter Physics. Cambridge UP, Cambridge, UK, 2
edition edition, 2013.



129

[29] E. L. Geist, V. V. Titov, D. Arcas, F. F. Pollitz, and S. L. Bilek. Implications of the 26
December 2004 Sumatra-Andaman Earthquake on Tsunami Forecast and Assessment Models
for Great Subduction-Zone Earthquakes. Bull. Seis., 97(1A):S249–S270, 2007.

[30] R. Grimshaw. Slowly varying solitary waves. i. Korteweg-De Vries equation. Proc. R. Soc.
Lond. A, 368:359, 1979.

[31] R. Grimshaw and C. Yuan. Depression and elevation tsunami waves in the framework of the
korteweg–de vries equation. Natural Hazards, 84(2):493–511, Nov 2016.

[32] R. Grimshaw and C. Yuan. The propagation of internal undular bores over variable topography.
Physica D: Nonlinear Phenomena, 333:200 – 207, 2016. Dispersive Hydrodynamics.

[33] A. V. Gurevich, A. L. Krylov, and G. A. El. Nonlinear modulated waves in dispersive hydro-
dynamics. Sov. Phys. JETP, 71(5):899–910, 1990.

[34] A. V. Gurevich and L. P. Pitayevskii. Nonstationary structure of a collisionless shock wave.
Sov. Phys. JETP, 38(2):291–297, 1974.

[35] Joseph L. Hammack and Harvey Segur. The Korteweg-de Vries equation and water waves.
part 2. comparison with experiments. Journal of Fluid Mechanics, 65(2):289–314, 1974.

[36] Joseph L. Hammack and Harvey Segur. The Korteweg-de Vries equation and water waves.
Part 3. Oscillatory waves. Journal of Fluid Mechanics, 84(2):337–358, 1978.

[37] S. E. Harris. Conservation laws for a nonlinear wave equation. Nonlinearity, 9(1):187–208,
January 1996.

[38] S. E Harris and P. A Clarkson. Painleve analysis and similarity reductions for the magma
equation. SIGMA. Symmetry, Integrability and Geometry: Methods and Applications, 2:068,
2006.

[39] Lene V. Hau, S. E. Harris, Zachary Dutton, and Cyrus H. Behroozi. Light speed reduction to
17 metres per second in an ultracold atomic gas. Nature, 397:594–598, 1999.

[40] Karl R. Helfrich and John A. Whitehead. Solitary waves on conduits of buoyant fluid in a
more viscous fluid. Geophysical & Astrophysical Fluid Dynamics, 51(1):35–52, 1990.

[41] E. J. Hinch. Perturbation Methods. Cambridge Texts in Applied Mathematics. Cambridge
UP, Cambridge, UK ; New York, 1 edition edition, 1991.

[42] M. A. Hoefer, M. J. Ablowitz, I. Coddington, E. A. Cornell, P. Engels, and V. Schweikhard.
Dispersive and classical shock waves in bose-einstein condensates and gas dynamics. Phys.
Rev. A, 74:023623, Aug 2006.

[43] P. A. Praveen Janantha, Patrick Sprenger, Mark A. Hoefer, and Mingzhong Wu. Observation
of self-cavitating envelope dispersive shock waves in yttrium iron garnet thin films. Phys. Rev.
Lett., 119:024101, Jul 2017.

[44] V.I. Karpman. An asymptotic solution of the Korteweg-de Vries equation. Physics Letters A,
25(10):708 – 709, 1967.

[45] C. T. Kelley. Iterative methods for linear and nonlinear equations. SIAM, Philadelphia, 1995.



130

[46] Yuri S. Kivshar and Boris A. Malomed. Dynamics of solitons in nearly integrable systems.
Rev. Mod. Phys., 61:763–915, Oct 1989.

[47] D. J. Korteweg and G. de Vries. On the change of form of long waves advancing in a rectangular
canal, and on a new type of long stationary wave. Philosophical Magazine, 39:422–433, 1895.

[48] L. D. Landau and E. Lifshitz. Fluid Mechanics. Butterworth-Heinemann, Oxford, UK, 2
edition edition, 1987.

[49] David Levermore. The hyperbolic nature of the zero dispersion KdV limit. Commun Part Diff
Eq, 13(4):495–514, 1988.

[50] N. K. Lowman and M. A. Hoefer. Dispersive hydrodynamics in viscous fluid conduits. Phys.
Rev. E, 88(2):023016, 2013.

[51] N. K. Lowman, M. A. Hoefer, and G. A. El. Interactions of large amplitude solitary waves in
viscous fluid conduits. Journal of Fluid Mechanics, 750:372–384, 2014.

[52] Nicholas K. Lowman and M. A. Hoefer. Dispersive shock waves in viscously deformable media.
Jornal of Fluid Mechanics, 718:524, 2013.

[53] J. C. Luke. A perturbation method for nonlinear dispersive wave problems. P. Roy. Soc. Lond.
A-Mat., 292(1430):403–412, 1966.

[54] M. D. Maiden, D. V. Anderson, N. A. Franco, G. A. El, and M. A. Hoefer. Solitonic dispersive
hydrodynamics: Theory and observation. Phys. Rev. Lett., 120:144101, Apr 2018.

[55] M. D. Maiden and M. A. Hoefer. Modulations of viscous fluid conduit periodic waves.
Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering
Sciences, 472(2196), 2016.

[56] Michelle D. Maiden, Nicholas K. Lowman, Dalton V. Anderson, Marika E. Schubert, and
Mark A. Hoefer. Observation of dispersive shock waves, solitons, and their interactions in
viscous fluid conduits. Phys. Rev. Lett., 116(17):174501, 2016.

[57] T. R. Marchant and N. F. Smyth. Approximate techniques for dispersive shock waves in
nonlinear media. 1250035, 21(3):18, 2012.

[58] M. Matsuyama, M. Ikeno, T. Sakakiyama, and T. Takeda. A study of tsunami wave fission in
an undistorted experiment. Pure Appl. Geophys., 164:617–631, 2007.

[59] D McKenzie. Generation and compaction of partially molten rock. J. Petrol., 25(3):713–765,
1984.

[60] Y. C. Mo, R. A. Kishek, D. Feldman, I. Haber, B. Beaudoin, P. G. O’Shea, and J. C. T.
Thangaraj. Experimental observations of soliton wave trains in electron beams. Phys. Rev.
Lett., 110:084802, Feb 2013.

[61] M. Nakayama and D. P. Mason. Compressive solitary waves in compacting media. Int. J.
Nonlinear Mech., 26(5):631–640, 1991.

[62] Peter Olson and Ulrich Christensen. Solitary wave propagation in a fluid conduit within a
viscous matrix. Journal of Geophysical Research, 91(B6):6367–6374, 1986.



131

[63] A. R. Osborne and T. L. Burch. Internal Solitons in the Andaman Sea. Science, 208:451–460,
May 1980.

[64] E. Ray, P. Bunton, and J. A. Pojman. Determination of the diffusion coefficient between corn
syrup and distilled water using a digital camera. American Journal of Physics, 75:903–906,
October 2007.

[65] Frank M. Richter and Dan McKenzie. Dynamical models for melt segregation from a de-
formable matrix. The J. Geophys. Res., 92(6):729–740, November 1984.

[66] Joshua E. Rothenberg and D. Grischkowsky. Observation of the formation of an optical inten-
sity shock and wave breaking in the nonlinear propagation of pulses in optical fibers. Phys.
Rev. Lett., 62:531–534, Jan 1989.

[67] J. Scott Russell. Report on waves, 1845.

[68] David R. Scott and David J. Stevenson. Magma solitons. Geophys. Res. Lett., 11(11):1161–
1164, 1984.

[69] David R. Scott, David J. Stevenson, and John A. Whitehead. Observations of solitary waves
in a viscously deformable pipe. Nature, 319(6056):759–761, February 1986.

[70] G Simpson, M Spiegelman, and M I Weinstein. Degenerate dispersive equations arising in the
study of magma dynamics. Nonlinearity, 20(1):21–49, January 2007.

[71] G. Simpson, M. Spiegelman, and M. I. Weinstein. A Multiscale Model of Partial Melts 1:
Effective Equations. J. Geophys. Res., 115:B04410, 2010.

[72] G Simpson and MI Weinstein. Asymptotic stability of ascending solitary magma waves. SIAM
J. Math. Anal., 40(4):1337–1391, 2008.

[73] P. Sprenger and M. A. Hoefer. Shock waves in dispersive hydrodynamics with nonconvex
dispersion. SIAM J Appl Math, 77(1):26–50, 2017.

[74] P. Sprenger, M. A. Hoefer, and G. A. El. Hydrodynamic optical soliton tunneling. Phys. Rev.
E, 97:032218, Mar 2018.

[75] R. J. Taylor, D. R. Baker, and H. Ikezi. Observation of collisionless electrostatic shocks. Phys.
Rev. Lett., 24:206–209, Feb 1970.

[76] S. Trillo, G. Deng, G. Biondini, M. Klein, G. F. Clauss, A. Chabchoub, and M. Onorato.
Experimental observation and theoretical description of multisoliton fission in shallow water.
Phys. Rev. Lett., 117:144102, Sep 2016.

[77] S. Trillo, M. Klein, G. F. Clauss, and M. Onorato. Observation of dispersive shock waves
developing from initial depressions in shallow water. Physica D: Nonlinear Phenomena, 333:276
– 284, 2016. Dispersive Hydrodynamics.

[78] Vasiliy Vlasenko, Nataliya Stashchuk, Mark E. Inall, and Joanne E. Hopkins. Tidal energy
conversion in a global hot spot: On the 3-D dynamics of baroclinic tides at the Celtic Sea shelf
break. Journal of Geophysical Research: Oceans, 119:3249–3265, 2014.



132

[79] Wenjie Wan, Shu Jia, and Jason W. Fleischer. Dispersive superfluid-like shock waves in
nonlinear optics. Nature Physics, 3(1):46–51, 01 2007.

[80] Zhongde Wang and B.R. Hunt. The discreteW transform. Appl. Math. Comput., 16(1):19–48,
January 1985.

[81] J. A. Whitehead and K. R. Helfrich. Magma waves and diapiric dynamics. In M. P. Ryan,
editor, Magma Transport and Storage, pages 53–76. John Wiley & Sons, Chichester, UK, 1990.

[82] J. A. Whitehead and D. S. Luther. Dynamics of Laboratory Diapir and Plume Models. Journal
of Geophysical Research, 80(5):705–717, 1975.

[83] John A. Whitehead and Karl R. Helfrich. The Korteweg-deVries equation from laboratory
conduit and magma migration equations. Geophysical Research Letters, 13(6):545–546, June
1986.

[84] John A. Whitehead and Karl R. Helfrich. Wave transport of deep mantle material. Nature,
336(6194):59–61, November 1988.

[85] G. B. Whitham. A general approach to linear and non-linear dispersive waves using a La-
grangian. J. Fluid Mech., 22(02):273–283, June 1965.

[86] G. B. Whitham. Non-linear dispersive waves. Proc. Roy. Soc. Ser. A, 283:238–261, 1965.

[87] G.B. Whitham. Linear and Nonlinear Waves. John Wiley & Sons, 1974.

[88] R. E Wyatt and C. J. Trahan. Quantum Dynamics with Trajectories: Introduction to Quantum
Hydrodynamics. Number 28 in Interdisciplinary Applied Mathematics. Springer, New York,
2005.

[89] Gang Xu, Matteo Conforti, Alexandre Kudlinski, Arnaud Mussot, and Stefano Trillo. Disper-
sive dam-break flow of a photon fluid. Phys. Rev. Lett., 118:254101, Jun 2017.

[90] N. J. Zabusky and M. D. Kruskal. Interaction of “solitons” in a collisionless plasma and the
recurrence of initial states. Physical Review Letters, 15(6):240, 1965.

[91] V.E. Zakharov and L.A. Ostrovsky. Modulation instability: The beginning. Physica D:
Nonlinear Phenomena, 238(5):540–548, March 2009.



Appendix A

Numerical Methods

A.1 Periodic Solutions

We compute unit-mean conduit periodic traveling wave solutions φ̃(θ) for specified (k̃, Ã)

with a Newton-GMRES iterative method [45] on the first integral of equation (2.1)

A+ ω̃φ̃− k̃φ̃2 − ω̃k̃2φ̃φ̃′′ + ω̃k̃2(φ̃′)2 = 0, (A.1)

where A ∈ R is an integration constant. We use a spectral method to compute the unit-mean cosine

series representation φ̃(θ) = 1 +
∑N

n=1 2an cosnθ. Equation (A.1) is discretized in spectral space

{an}Nn=1 with the fast and accurate computation of derivatives achieved via fast cosine transforms

(DCT II in [80]). The projection of (A.1) onto constants determines A, which we do not require

because of our imposition of unit mean. Projection of equation (A.1) onto cos(nθ) for n = 1, . . . , N

yields N equations for the N + 1 unknowns
(
(an)Nn=1, ω̃

)
. The amplitude constraint φ̃(π)− φ̃(0) =

−4
∑

n odd an = Ã closes the system of equations. We precondition the spectral equations by

dividing each by the sum of linear coefficients, shifted by 2k + 1, i.e., by ω̃ + n2ω̃k̃2 + 1. The

accurate resolution of each solution is maintained by achieving an absolute tolerance of 10−13 in

the 2-norm of the residual and choosing N so that |an| is below 5 ·10−12 for n > 3N/4. The number

of coefficients required strongly depends on the wavenumber k̃. For example, when 0.5 ≤ k̃ ≤ 4,

we find N = 26 provides sufficient accuracy whereas for 0.002 ≤ k̃ ≤ 0.01, we use N = 212.

With the cosine series coefficients of φ̃(θ) in hand, we compute the unit-mean averaging

integrals Ĩj , j = 1, 2, 3 in equations (2.28), (2.25) using the spectrally accurate trapezoidal rule. We
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Figure A.1: Maximum absolute error in the direct numerical simulation of the conduit equation,
achieving fourth order spatial accuracy as expected. The solution used in validation was a periodic
wave with k = 3 and a = 0.5 generated with accuracy 10−8, and was simulated over 50 spatial
periods and 5 temporal periods. The reference line is C(∆z)−4.

then use sixth order finite differencing to compute derivatives of Ĩj and ω̃ on a grid of wavenumbers

and amplitudes as explained in section 2.3.2. This numerically determines the Whitham equations

in the form (2.29).

A.2 Time Stepping

For the direct numerical simulation of the conduit equation (1.3), it is convenient to write it

in the form of two coupled equations:





P = A−1At,

AP + (A2)z − (A2Pz)z = 0.

(A.2)

The first equation is a temporal ODE in time and the second equation is a linear, elliptic problem

L(A)P = −(A2)z in space. We solve for P using an equispaced fourth-order finite difference

discretization and direct inversion of the resulting banded linear system. We implement time-

dependent boundary conditions with prescribed A(0, t) and A(L, t) so that the first equation in

(A.2) yields the boundary conditions for P . Time-stepping is achieved with a fourth-order, explicit

Runge-Kutta method with variable timestep (Matlab’s ode45). The solver was validated against

computed periodic traveling wave solutions. The maximum error between the numerical solution

and the periodic traveling wave solution is reported in figure A.1.


