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Abstract
Ant diversity shows a variety of patterns across elevational gradients, though the patterns

and drivers have not been evaluated comprehensively. In this systematic review and

reanalysis, we use published data on ant elevational diversity to detail the observed pat-

terns and to test the predictions and interactions of four major diversity hypotheses: thermal

energy, the mid-domain effect, area, and the elevational climate model. Of sixty-seven pub-

lished datasets from the literature, only those with standardized, comprehensive sampling

were used. Datasets included both local and regional ant diversity and spanned 80° in lati-

tude across six biogeographical provinces. We used a combination of simulations, linear

regressions, and non-parametric statistics to test multiple quantitative predictions of each

hypothesis. We used an environmentally and geometrically constrained model as well as

multiple regression to test their interactions. Ant diversity showed three distinct patterns

across elevations: most common were hump-shaped mid-elevation peaks in diversity, fol-

lowed by low-elevation plateaus and monotonic decreases in the number of ant species.

The elevational climate model, which proposes that temperature and precipitation jointly

drive diversity, and area were partially supported as independent drivers. Thermal energy

and the mid-domain effect were not supported as primary drivers of ant diversity globally.

The interaction models supported the influence of multiple drivers, though not a consistent

set. In contrast to many vertebrate taxa, global ant elevational diversity patterns appear

more complex, with the best environmental model contingent on precipitation levels. Differ-

ences in ecology and natural history among taxa may be crucial to the processes influenc-

ing broad-scale diversity patterns.

Introduction
Over the last two decades, a resurgence of interest in the large-scale patterns and drivers of spe-
cies diversity has shown that elevational diversity is quite variable within and among taxa [1–
4]. Myriad hypotheses have been proposed to explain the variation in diversity observed across
latitudinal and elevational gradients [5–7]. Global analyses of the diversity of vertebrate and
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plant taxa across elevational gradients suggest some combination of the taxon's biology [4,8,9],
geometric constraints [10], and the current climate [11,12] as the most likely drivers. Ants, like
other taxa, show a variety of elevational diversity patterns globally [13–16], though neither the
patterns nor the underlying drivers have been evaluated comprehensively across replicated
gradients.

Elevational gradients provide compact, globally replicated systems for assessing the relative
support for hypothesized diversity drivers [1,7,17]. Because different mountain ranges vary in
characteristics such as climate and area distribution, comparisons of mountain ranges can
decouple the variables and constraints that are confounded along the latitudinal gradient [7].
Global elevational gradients thus provide a robust system for evaluating diversity patterns and
drivers [7,12].

Most research effort has been on vertebrate and plant taxa, though the majority of animal
species are insects [18–21]. Ants in particular are ecologically diverse, relatively well-described,
and have a wide variety of impacts as competitors, predators, scavengers, and seed-dispersers
among others [22,23]. Unlike most insect taxa, the ants used in species-level identifications are
wingless workers. Their restricted mobility heavily reduces the impact of windblown acciden-
tals in estimating a species' elevational range since workers are unlikely to become airborne.
Rather, long-range dispersal requires a queen who must then found a colony and rear the first
brood to produce the workers that are typically collected for identification. Workers are conse-
quently unlikely to be detected at elevations where their species cannot persist at least through
a season. A range of factors have been implicated as drivers of ant diversity along elevational
gradients by various studies, although no comprehensive analysis of single factors or the com-
plexity of their interactions across all suitably-sampled datasets exists to date.

Hypotheses
Thermal energy. Thermal energy has seen support as a driver of ant diversity [24,25] with

several proposed mechanisms. Warmer temperatures may allow longer foraging periods [22]
or increased food resources through increased productivity [26]. Alternatively, the metabolic
theory of ecology (MTE) posits that metabolic rates drive ecological and evolutionary pro-
cesses. Metabolic rates and chemical reactions increase with temperature, so speciation may
increase correspondingly [27,28]. Regardless of mechanism, temperature-based hypotheses all
predict a close relationship between temperature and diversity across the elevational gradient
[5,26,27]. Because temperature declines on average 6°C for each 1000m gained in elevation
[29], these hypotheses predict a corresponding monotonic decline in diversity from the moun-
tain base to the summit.

Mid-domain effect. The mid-domain effect (MDE) is a null model based on the geometric
constraints imposed by a bounded spatial domain [30,31]. It predicts the pattern of diversity
that would be expected if these geometric constraints were the only factor affecting the distri-
bution of species’ ranges. For example, if species ranges were placed randomly on an island
with the only condition being that each range is wholly contained on the island, diversity
would tend to be higher in the interior and decline toward the island boundaries. On eleva-
tional gradients, the simulated random placement of observed elevational ranges between the
mountain base and summit results in highest diversity at the middle elevations with symmetric
declines toward the low- and high-elevational boundaries [31–33]. In simulations using the
empirical range size distribution, the expected mean range size at each elevation can be pre-
dicted across the elevational gradient [34]. If ant elevational diversity is driven by the MDE,
such simulations should predict empirical diversity and mean range size across the gradient
[34].

Drivers of Ant Elevational Diversity
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Area. The geographical area hypothesis, based on the species-area relationship, predicts
that as the area in an elevational band increases, diversity in that band should increase [35,36].
Typically, this relationship is linear on a log-log scale [10,37,38]. Over broad spatial scales,
larger areas allow for larger ranges, decreasing extinction probability and increasing speciation
probability through the introduction of a barrier ([37] and references therein). Over narrow
spatial scales, larger areas will likely include more habitats, increasing the probability of detect-
ing additional species from adjacent habitats [35,37,39]. However, the effect of area may be
greater over the larger spatial scales described by regional studies since sampling area is stan-
dardized across elevations in local studies [38,40].

Elevational climate model. The elevational climate model (ECM) approximates produc-
tivity and proposes that the combination of temperature and precipitation drives diversity, pre-
dicting highest diversity at the warmest, wettest elevations [12]. The diversity pattern predicted
by the ECM consequently depends on the local mountain climate. On arid mountains, water
availability is typically highest at middle elevations due to the dry climate at the base and
increased runoff toward the summit [2,41]. Thus, water limitation restricts diversity toward
the base while temperature restricts diversity toward the summit, resulting in a mid-elevation
diversity peak. On mountains in wet climates water is plentiful, so temperature drives diversity,
resulting in highest diversity at the base and declining diversity toward the summit [12]. The
ECM offers testable predictions where fine-scale, reliable global productivity data are lacking.

We employ a set of selection criteria for datasets used in the main analyses [4,9,42]. These
criteria, each of which targets a source of bias, restrict the datasets used to those that capture
the underlying diversity pattern across the elevational gradient as a whole with reasonable
accuracy. While datasets not meeting our criteria can be used to address other questions, for
our purposes they unfortunately do not reliably contribute the appropriate, unbiased
information.

Our aim is a synthetic understanding of what environmental factors, independently and
simultaneously, are key drivers of ant diversity. We reanalyze published studies of montane ant
diversity, assessing the impact of sampling completeness and bias, such as undersampling at
low elevations, elevationally-biased sampling, and large-scale deforestation effects [11,17,42].
With appropriately-sampled ant datasets, we evaluate various predictions of diversity theory,
including energetic, mid-domain effect, area, climate hypotheses, and their interactions.

Materials and Methods

Data
To identify local-scale datasets of ant diversity sampled along elevational transects, we con-
ducted literature searches (2014) using combinations of 'ant', 'elevation(-al)', 'altitud(-inal)',
'gradient', 'diversity', 'richness’, and 'insect' as keywords using Web of Knowledge and Google
Scholar. To locate regional-scale datasets of ant diversity, we searched for publications with
'ants of' in the title; this search returned guides to the ant fauna of a geopolitical region, typi-
cally compiled from museum records and data collected over many years, detailing each
recorded occurrence of each ant species in that region. Sixty-seven datasets were identified as
possible sources for ant diversity across elevations (Fig 1; S1 and S2 Tables; S2 Text). In two
cases, the authors sampled both sides of a mountain range with no shared sample sites, so the
two transects were treated as separate transects [15,43]. Two datasets described just a scattering
of sites spread across multiple gradients (M) and 17 provided insufficient elevational diversity
data (I). For example, some regional datasets did not include elevations for many localities or
for many species. Some local datasets sampled only 2–3 sites along a gradient or included

Drivers of Ant Elevational Diversity

PLOS ONE | DOI:10.1371/journal.pone.0155404 May 13, 2016 3 / 18



abundances but not diversity. See S1 Text for additional details. Forty datasets were unique and
provided data on ant diversity for a single gradient or region.

To identify datasets robust for a comparative analysis of elevational diversity, we required
that a study describe ant diversity along an elevational gradient or within a mountainous region
and meet five a priori criteria: (1) high sampling effort with standardized methods across

Fig 1. PRISMA flow diagram. Flow diagram showing the selection process for studies on ant elevational
diversity. Database searches returned 67 possible data sources. Several studies used previously published
data, leaving 59 unique datasets. Of those, 19 were excluded due to either insufficient elevational diversity
data (I) or just a scattering of sampling sites spread across multiple gradients (M). The remaining 40 were
evaluated using the a priori criteria (see text), with 20 excluded due to heavy disturbance (D), elevational
sampling gaps >500m (G), lack of sampling within the lowest 400m (L), sampling of less than 70% of the
gradient (P), elevationally biased or minimal sampling (S), or some combination. See additional transect
details in S2 Table and additional PRISMA details in S2 Text.

doi:10.1371/journal.pone.0155404.g001
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elevations; (2) sampling of� 70% of the elevational gradient; (3) sampling within the lowest
400m of the gradient; (4) no sampling gaps> 500m in elevation; and (5) relatively little anthro-
pogenic disturbance (e.g., widespread deforestation). These criteria were adapted from previ-
ous studies (e.g., [4,9]) and are necessary to ensure an accurate description of the naturally
occurring pattern [11,17,18,42,44,45]. While these criteria do reduce the sample size, they are
essential for this type of analysis. For example, because diversity patterns differ primarily across
the lower portion of the mountain and all common patterns show a decline from intermediate
elevations to the summit (Fig 2; S1 Fig), reliable estimates of the diversity across the lower half
of the gradient is essential. Datasets violating the third criterion, consequently, may not con-
tribute constructive information and are in fact biased toward showing a declining trend. Simi-
larly, an overall pattern cannot be confidently discerned with large elevational gaps in
sampling. However, violations of the second criterion were allowed when the unsampled
region was primarily at high elevations where declining diversity had been sufficiently demon-
strated. See S1 Text for further details.

Twenty datasets met the a priori sampling criteria (Fig 2), representing six biogeographical
provinces in both temperate and tropical regions, and consisting of eleven local studies and
nine regional studies. Additionally, eight studies were in arid climates and twelve were in wet
climates. This number of suitable well-sampled datasets is similar to some harder to survey ver-
tebrate taxa, like bats (e.g., 22 bat datasets: [12]), and comparable proportions of appropriately
sampled studies (20/40 = 50%) have been found for birds (41%: [4]), bats (44%: [12]), and ver-
tebrate ectotherms (51%: [46]), with higher proportions for reptiles (67%: [9]) and small non-
volant mammals (73%: [11]). Of the ant datasets that were excluded due to sampling issues,
60% either did not sample>70% of the gradient or did not sample the lowest 400m (S2 Table).
Because diversity typically decreases beyond a certain elevation, lack of sampling across the
lower portions of an elevational gradient creates a bias toward detecting decreases in diversity
(panel ‘b’ in S1 Fig; S2 Table), regardless of the underlying pattern [42,45]. Similarly, minimal
sampling at the mountain base may bias detection toward mid-elevation peaks in diversity.
Such biases preclude the robust determination of the underlying pattern. The use of rigorous a
priori standards is crucial to understanding and disentangling the drivers of diversity.

Elevational ranges of ant species in each study were interpolated. That is, a species was
assumed present at all elevations between the lowest and highest observed elevations. Although
interpolation may artificially inflate the reported diversity at middle elevations [47], the major-
ity of species in these datasets were detected at all sampled elevational bands within their eleva-
tional range. Thus, the impact of interpolation was minimal and did not alter any overall
diversity patterns. We therefore employed interpolation uniformly to account for potential

Fig 2. Map of ant elevational diversity datasets (n = 20). The distribution of ant study sites (circles), the
three main elevational richness patterns for the eastern (n = 11) and western (n = 9) hemispheres (bars), and
the number of patterns on wet and dry based mountains (black & white). (D = decreasing, LP = low plateau,
MP = mid-elevational peak; see embedded figures and text for definitions).

doi:10.1371/journal.pone.0155404.g002
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undersampling and for standardization among datasets. Each elevational gradient was divided
into 100m bands (i.e., 0−99m, 100−199m, etc.), and diversity was estimated as the number of
species' ranges in each band.

Sampling methods varied among studies, though most used mini-Winkler traps, pitfall
traps, or both (S1 Table). If authors reported data from both standardized and non-standard-
ized methods (e.g., haphazard hand collection), only the former was included in this reanalysis.
In some cases, authors reported diversity based on rarefaction methods. While rarefaction bet-
ter accounts for rare or difficult to detect species and may allow more accurate comparisons
[48–50], many studies did not report these values and did not provide sufficient information
for their calculation. Additionally, rarefied diversity does not allow for hypothesis testing using
species ranges (i.e., MDE and EGCM). Therefore, we used only interpolated diversity of sam-
pled species.

Ant elevational diversity was classified into five broad patterns using previous definitions
(S1 Fig)[4,9]. Decreasing patterns show highest diversity in the lowest elevational band with
diversity declining as elevation increases. Low plateaus have consistently high diversity across
at least the lowest 300m followed by a monotonic decline in diversity. Mid-elevation peaks
have the highest diversity at middle elevations (> 300m from the base) and with 25% greater
diversity than at the base. Increasing patterns have increasing diversity with increasing eleva-
tion. Lastly, no pattern was detected when none of these definitions was met. More patterns are
possible [4], but the observed ant patterns were characterized by these five classifications and
the latter two only for datasets that did not meet our sampling criteria.

For area analyses, digital elevation models (DEMs) were downloaded from CGIAR-CSI
(srtm.csi.cgiar.org). These rasters are derived from the USGS/NASA SRTM data at ~90m x
90m resolution with a vertical error of< 16m. Using ArcGIS, rasters were converted into an
Albers Equal Area projection centered on each study site. For regional studies, the boundary of
the study area was the corresponding geopolitical region. For local studies, the study area
boundary was determined by using mountain ridges and major watersheds to isolate the focal
mountain within a 30km buffer around the sampling locations [38]. Alternative delineation
methods and buffer sizes did not qualitatively alter area profiles. To estimate the area within
each 100m elevational band, we calculated the area of the hypotenuse plane of each raster cell
and then, within each 100m band, summed the calculated areas of all cells.

Rasters of climate data at 1km x 1km resolution were downloaded fromWorldClim
(worldclim.org) and converted into Albers Equal Area projections as above. Only mean annual
temperature and annual precipitation were used because of high collinearity among other vari-
ables. Though the resolution is relatively coarse, the quality was consistent across the globe.
Additionally, finer resolution would likely have little qualitative effect because the climatic vari-
ables were averaged within each 100m band in a study area. The actual climatic conditions
experienced by the ants depend on local conditions, including variables such as slope, aspect,
and vegetation structure. However, many studies sampled across multiple habitats at each ele-
vation, so an average is frequently more appropriate. In the absence of climate measurements
at the point of collection, metrics like mean annual temperature serve as a reasonable approxi-
mation. Studies were classified into two broad climate categories based on the climate of the
mountain base (arid: humidity index< 0.5, wet: humidity index> 0.5; [51]).

Hypothesis Tests
Thermal energy. If thermal energy is the primary driver of ant diversity, then diversity

should decline monotonically on each elevational gradient, mirroring the declining tempera-
ture. Though ants experience variable microclimates at any elevation, such microhabitat
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temperature is variability around the general decline of temperature with increasing elevation
at the scales considered in these analyses. Decreasing patterns should consequently be most
common regardless of other mountain characteristics such as precipitation or area. We evalu-
ated three predictions based on the thermal energy hypothesis. First, simple linear regressions
were used to test for a positive, linear relationship between mean annual temperature and
diversity for each study. Additionally, two predictions of the metabolic theory of ecology
(MTE) were tested: (1) a linear relationship according to the equation ln(S) = b�(kT)-1 + c,
where S is the diversity within an elevational band, k is Boltzmann's constant (k = 8.62x10-5

eV�K-1), and T is the annual mean temperature in Kelvin, and (2) a slope of -0.7< b< -0.6
[28,46,52]. To test the MTE predictions, we combined all ant datasets and used a simple linear
regression [46,52]. All temperature analyses were repeated using area-standardized diversity
(below).

Mid-domain effect. To test the MDE predictions, we randomized the placement of eleva-
tional ranges using the observed range size distribution within the spatial boundaries of each
elevational gradient [53]. We used the empirical range size distributions because the distribu-
tion of elevational range sizes drives the steepness of the expected hump-shaped diversity curve
[33]. Four studies did not provide the elevational range of each species and were not included
in tests of the MDE predictions (S1 Table). In 100,000 simulations for each study, we calculated
predicted diversity as the number of ranges occurring in each elevational band and mean range
size as the average size of those ranges. The predictive ability of the MDE was assessed in four
ways. We performed simple linear regressions of the mean MDE-predicted diversity values
with the observed diversity values. We also calculated the proportion of observed diversity val-
ues falling within the middle 95% of the simulated diversity values. We repeated both of these
analyses using mean range size at each elevation in place of diversity. The MDE may only be
evident when diversity is standardized for area at each elevation [11,38]. This was tested only
with simple linear regressions of area-standardized diversity (detailed below) and mean pre-
dicted diversity values because area-standardized diversity values are not on a natural scale,
precluding direct comparisons of magnitude.

Area. We evaluated four predictions of the area hypothesis. First, to test the strength of the
species-area relationship, we used simple linear regressions after log-transforming diversity
and area [10,37,54]. Second, the area hypothesis predicts that standardizing diversity for eleva-
tional area should alter the diversity pattern [38]. Third, standardizing diversity for area should
also alter the elevation of the diversity peak [38]. To standardize for area, we first estimated an
overall z for montane ants using S = cAz with all studies combined. This method reduces bias
from extreme z values occasionally observed on mountains [38], though varying z beyond the
95% confidence limits had little qualitative effect on the resulting patterns. Using this averaged
z, we calculated area-standardized diversity for each elevation in each study as S/Az, where S
and A are the interpolated diversity and area for a given elevational band. The area-standard-
ized diversity patterns were then characterized using the descriptions above. A paired t-test
was used to determine whether area-standardization significantly altered the elevation of the
diversity peak. Fourth, to test whether the species-area relationship was stronger in regional
studies than in local studies [40], we used a Mann-Whitney U-test to compare coefficients of
determination.

Elevational climate model (ECM). We tested four predictions of the ECM. First, to test
the prediction that mid-peaks are more common on arid than wet mountains, we used a Fish-
er's Exact Test to detect if wet and arid climates were positively associated with high diversity
at the base (decreasing and low plateaus) and low diversity at the base (mid-peaks) respectively.
Second, to test whether temperature predicts diversity better on wet than arid mountains, we
used simple linear regressions and compared the coefficients of determination with a Mann-
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Whitney U-test. Third, to evaluate whether diversity at the mountain base is higher on wet
than arid mountains, we compared the proportion of diversity at the base (Sbase/Sgradient) using
a Mann-Whitney U-test. Using proportions allows for better comparison of the diversity pat-
tern shape and accounts for large differences in total diversity across studies. Fourth, to test
whether precipitation limits diversity at the base of arid mountains, we correlated base precipi-
tation with the proportion of diversity at the base using Spearman's Rho.

Interactions: environmentally & geometrically constrained model (EGCM) and multiple
regression. We used two methods to assess the effects of each hypothesized driver simulta-
neously: an environmentally and geometrically constrained model (EGCM) and multiple
regression. We used an EGCM [55] to incorporate MDE constraints in addition to the other
potential drivers. The EGCM framework relies on the prediction that the geometric constraints
imposed by a bounded domain (i.e., the MDE) affect large-ranged species more than small-
ranged species. Small-ranged species therefore better reflect the influence of the environmental
gradient in the absence of any mid-domain effects. We explored range-size cutoffs of 1/4, 1/5,
1/6, and 1/7 of the mountain gradient to define the small-ranged species group. Excluding ele-
vations near the boundaries where mid-domain effects are strongest [55], we used the diversity
of small-ranged species at each cutoff to fit an environmental model with the log diversity of
each elevational band predicted by log area, mean annual temperature, and annual precipita-
tion, using AIC to determine the optimal model for each cutoff. We used the predictions from
the optimal environmental models as probability distributions for 5,000 simulations, randomly
placing the elevational midpoints of the large-ranged species along the corresponding gradient.
This method for placing large-ranged species is identical to the method for the MDE, but with
the placement of their range mid-points biased by the environmental model predictions rather
than being drawn from a uniform distribution. We selected the optimal cutoff based on the
strength of the fit between these simulations and the observed large-ranged species diversity
for each transect [55]. The EGCM analysis used the same subset of datasets used to evaluate
the MDE. For the multiple linear regression, we used the same model structure as the environ-
mental component of the EGCM, but fit the models using all species rather than just the small-
ranged species. We determined the optimal model with AIC.

We assessed specific predictions of each hypothesis rather than performing formal meta-
analyses. Meta-analyses of effect sizes use weights based on the strength of the results, ideally
representing the sampling effort. However, standard metrics of sampling effort, such as sample
size, do not translate well for these elevational studies. In this case, the sample size in each
study is the number of elevational bands. Thus, the sample size reflects the height of the moun-
tain rather than the actual sampling effort. Additionally, studies used a variety of sampling
techniques (S1 Table) and included compilations based on museum records, rendering a uni-
versal estimate of sampling effort somewhat discretionary. Conducting a formal meta-analysis
using arbitrary weights may lead to erroneous results [45,56] and was consequently avoided
here.

Results
Appropriately sampled ant diversity datasets showed three of the patterns detailed above. Most
transects showed mid-elevation peaks, while monotonic declines and low plateaus occurred in
equal proportion (Fig 2; panel ‘a’ in S1 Fig). The distribution of patterns was nearly identical
between local and regional scales: both showed primarily mid-peaks with equal numbers of
low plateau and decreasing patterns (panel ‘a’ in S1 Fig; S1 Table).

The excluded datasets showed five patterns (panel ‘b’ in S1 Fig). Mid-peaks were most com-
mon as in the well-sampled gradients, though a substantial number of decreasing patterns were
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detected. These were observed largely in studies that did not sample within the lowest 400m.
Low plateaus, increases, and no pattern occurred in equal, low numbers (panel ‘b’ in S1 Fig; S2
Table).

Hypothesis Tests
Thermal energy. Thermal energy was not well supported as an independent driver of ant

diversity. Only 15% of studies detected a monotonic decrease with increasing elevation. No
area-standardized patterns showed monotonic decreases. Though a positive, significant rela-
tionship with temperature was detected in 60% of studies, the r2 distribution was bimodal with
many studies showing a very poor fit (Fig 3A; Fig 4A; r2mean = 0.465, median = 0.550) reflect-
ing a poor ability to predict diversity based on temperature. With area-standardization, 70% of
studies showed a positive, significant relationship, though fits were similarly poor (r2

mean = 0.462, median = 0.458). Additionally, the individual relationships were predominantly
curvilinear rather than the linear relationships predicted by a strong temperature driver. In
support of the first prediction of the MTE, a linear relationship between log-transformed diver-
sity and the inverse of temperature fit the data better than a curvilinear relationship (delta
AIC = 12.06), but the slope did not fall within the predicted bounds (P< 0.001, 95% CI: -0.487
< β< -0.258, predicted: -0.7< β< -0.6). Area-standardized diversity showed similar results
(P< 0.001, 95% CI: -0.384< β< -0.198).

MDE. There was little support for the MDE as an independent driver. The MDE generally
predicted diversity poorly with either the proportional or linear model method (Fig 3B; Fig 5A
and 5B; proportion of points within 95% bands: mean = 0.257, median = 0.218; linear models:
r2 mean = 0.354, median = 0.274). Standardizing for area slightly improved the linear model fit
(r2 mean = 0.396, median = 0.318). The MDE predicted mean range size somewhat better than
it did diversity, but overall fits were still generally low (Fig 5C and 5D; proportion within 95%
bands: mean = 0.335, median = 0.278; linear models: r2 mean = 0.384, median = 0.387).

Area. There was mixed support for the area hypothesis. A positive, significant relationship
between area and diversity was seen in 80% of studies (Fig 3C; Fig 4B; r2 mean = 0.585,
median = 0.685). With area standardization, the diversity pattern changed in 50% of studies
and the diversity peak shifted significantly upward (P = 0.01, t19 = 2.77), though only 35% of
studies showed a shift> 300m. The effect of area did not differ with scale (P = 0.82,W = 46).

ECM. There was mixed support for the ECM. Mid-peaks were not more likely on arid
mountains (Fig 2; P = 0.32, ω = 4.63). However, temperature predicted diversity significantly
better on wet mountains (Fig 4A; P = 0.003,W = 85), and a significant relationship between
temperature and diversity was detected on 83% of wet mountains and 25% of arid mountains.
The proportion of diversity at the base was significantly higher on wet mountains (P = 0.025,

Fig 3. Scatterplots with regression lines for temperature, area, and MDEmean predictions with
observed diversity showing wet and areamountains. Points represent elevational sites (black: wet
mountains; gray: arid mountains) and lines are the regression lines for each study. Panels show the ant
diversity predicted by (a) mean annual temperature, (b) mid-domain effect mean predicted diversity, and (c)
log-transformed area. The dotted line in (b) represents the 1:1 relationship that would be expected with a
perfect MDE fit.

doi:10.1371/journal.pone.0155404.g003
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W = 19). There was no significant correlation on arid mountains between the proportion of
diversity at the base and the precipitation at the base (P = 0.096).

Interactions. In the EGCM, small-ranged species diversity was predicted reasonably well
by the best environmental models (r2 mean = 0.661, median = 0.723, range = 0.189–0.982).
The large-ranged species diversity pattern was very well predicted by the EGCM simulations
in most studies, though the fit was rather poor in two studies (r2 mean = 0.843,
median = 0.957, range = 0.197–0.988). Additionally, inclusion of geometric constraints
improved fit in 62.5% of studies, though there was no significant improvement of fit
(P = 0.093). Each possible environmental model (e.g.: ‘temp’; ‘temp + area’; ‘precip + area’;
etc.) was the optimal model for at least one study (Fig 6, left bars). With the exception of one
dataset, the optimal models for all wet-based mountains included just one environmental
variable. In contrast, the optimal models for all arid-based mountains included multiple vari-
ables. The multiple regression fit was comparable to that of the EGCM (r2 mean = 0.830,
median = 0.923, range = 0.041–0.997). The optimal regression model was different than the
optimal EGCMmodel for all but three studies (Fig 6, lines). Each possible model was the
optimal regression model for at least one study, with a similar distinction in model complex-
ity between wet- and arid-based mountains, though ‘precip + temp’ was the best regression
model on many wet gradients (Fig 6, right bars).

Fig 4. Regression analyses of temperature-diversity and area-diversity relationships in well-sampled
ant datasets. (a) Fits to the temperature-ant diversity relationship (n = 20) with mean r2 = 0.465 ± 0.076 (SE).
Wet mountains showed a significantly better fit than did arid mountains (r2wet = 0.635 ± 0.078, n = 12; r2arid =
0.210 ± 0.095, n = 8; P = 0.003). (b) Fits to the area-ant diversity relationship (n = 20) with mean r2 =
0.585 ± 0.068 (SE).

doi:10.1371/journal.pone.0155404.g004
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Discussion
None of the four broad drivers assessed individually were universally supported in these ant
diversity datasets. Rather, evaluation of interactions showed support for the influence of multi-
ple drivers, including temperature, precipitation, and area, though the supported combination
varied among mountain ranges. The supported drivers seem to be largely contingent on
whether the mountain base is wet or arid, as shown in both the EGCM and the multiple
regressions.

Additional factors may affect patterns of ant diversity, although they were not evaluated
here due to lack of data availability across all gradients. Habitat complexity, vegetation struc-
ture, and leaf litter depth have been suggested in several systems [57–60]. Complications arise,
however, both in identifying and quantifying the relevant habitat features [17], particularly in
analyses spanning the globe. Biotic interactions have long been speculated to affect patterns of
diversity [7], though the extent to which local interactions among individuals affect large scale
patterns of diversity remains unclear [61,62]. Detailed data on potential competitors along
each elevational gradient, paired with sufficient knowledge of species-specific interactions, are
required to assess this hypothesis. Finally, evolutionary history may impact diversity patterns
[63]; rigorous evaluation relies on the development of species-level, time-calibrated phyloge-
nies. However, evolutionary models based on range sizes and niche spaces predict consistent
elevational diversity patterns within a region and primarily mid-elevation peaks in diversity
[4,64], rather than the variation observed. Additionally, past climatic fluctuations may have
resulted in lowland biotic attrition which would affect the observed elevational diversity

Fig 5. Evaluation of mid-domain effect (MDE) predictions (n = 16).MDE simulations poorly predicted
diversity both in (a) the proportion of observed values falling within the 95% predictive bands
(mean = 0.257 ± 0.044 (SE)) and in (b) the r2 values from linear regressions of the MDE-predicted means and
observed diversity values (mean r2 = 0.354 ± 0.067). Mean range size was poorly predicted by the MDE
simulations measured both by (c) the mean range sizes falling within the 95% predictive bands
(mean = 0.335 ± 0.055) and by (d) linear regressions of the MDE-predicted means and observed mean range
size values (mean r2 = 0.384 ± 0.059).

doi:10.1371/journal.pone.0155404.g005
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patterns [65]. During interglacial periods, species would be expected to shift upward in eleva-
tion due to warmer temperatures. At the lowest elevations, no species would exist to replace
those that moved uphill, depressing the diversity at low elevations and resulting in low plateaus
or mid-peaks [65,66]. Finally, these analyses are of course observational rather than experi-
mental, limiting the scope of mechanistic inferences.

Temperature generally does not predict ant diversity well across these elevational gradients
regardless of area standardization. Further, we failed to find convincing evidence for the MTE
or any simple relationship with thermal energy. This is contrary to expectations based on the
ectothermic physiology of ants and their thermophilic foraging behavior (e.g.,
[13,14,24,25,67,68]). While local ant diversity may be consistent with one formulation of the
MTE along a latitudinal gradient [69], the controversial hypothesis has not seen broad support
[46,70]. There are several reasons that ant elevational diversity may not show a linear relation-
ship with temperature. Ants behaviorally moderate the temperatures they experience through
nest site and architecture [71] and by altering temporal patterns of foraging [22] to minimize

Fig 6. Optimal environmental models for the EGCM (n = 16) and the multiple regression (n = 20). The
EGCMmodels were fit using only small-ranged species in each transect while the multiple regression used
the diversity of all species. In the full model, log diversity in each elevational band was predicted by log area
(A), mean annual temperature (T), and annual precipitation (P). Generally, wet mountain ant diversity (dark
gray) was best predicted by one environmental variable, most often either area or temperature. In contrast,
arid mountain ant diversity (light gray) was best predicted by models that included two or three variables,
most often with area or temperature as one of the variables. Along most transects (lines), the optimal model
differed between the EGCM and the multiple regression. Bars with transects included in the multiple
regression but not in the EGCM are marked with (*).

doi:10.1371/journal.pone.0155404.g006
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exposure to extreme temperatures, potentially obfuscating the effects of temperature. The tem-
peratures experienced by many ants would be more closely approximated by soil temperature,
which could be affected by elevational changes in the vegetation structure, though soil tempera-
tures still generally decline with elevation. Further, these individual-level effects of temperature
may not scale up directly or linearly to communities of ants spread along an entire elevational
gradient.

Perhaps more likely is that the effect of temperature is contingent upon water availability.
Energy and water have been implicated as important drivers of diversity and abundance in
both plants and animals [3,26,72], with direct physiological effects and indirect effects through
productivity and food resources [4,6,12,26,72]. Previous work has shown that local ant com-
munity diversity is affected by temperature both directly and indirectly through productivity
[69], suggesting that, when comparing globally distributed elevational gradients, the relation-
ships may be complex. Indeed, while ant diversity across elevations was largely consistent with
the predictions of the ECM, the effects of temperature and precipitation appear to be more
nuanced.

Area likewise was not consistently supported, though it predicted diversity well along the
majority of transects and likely plays a role in shaping elevational patterns of ant diversity. Sev-
eral regional datasets included here are remarkably well-described by geometric drivers [73].
However, several other regional datasets showed very poor fits. We detected no difference
between regional and local gradients contrary to predictions. This emphasizes the importance
of comprehensive, global analyses. Further it suggests that local studies along elevational gradi-
ents may occur at intermediate scales for ants, resulting in similar dynamics in local and
regional studies of elevational diversity rather than in clear differences among the spatial reso-
lutions [17]. Alternatively, the local species diversity may be influenced by regional area indi-
rectly via the regional species pool [39,74].

In contrast to area, no support was found for the MDE, whether assessed independently or
with area-standardized diversity. The MDE has had a highly contentious history with highly
variable predictive ability across multiple taxa [4,11,73,75,76]. Studies evaluating elevational
gradients globally, however, have generally found poor support for the MDE [4,9,12,19,33].
The MDE is not useful for predicting ant elevational diversity.

Diversity hypotheses are not mutually exclusive, of course, and likely act in tandem to shape
the patterns observed across elevational gradients [33,55,63]. The EGCM and multiple regres-
sion both predicted diversity quite well along most gradients, with no significant difference
with the inclusion of geometric constraints in the EGCM. Along nearly all gradients, the opti-
mal environmental model differed between the EGCM, fit with just small-ranged species, and
the multiple regression, fit with all species (Fig 6). Thus, while incorporating geometric effects
did not improve the overall predictive power, the differences between the EGCM and the mul-
tiple regression suggest that large- and small-ranged species are responding differently. The
EGCM assumes that the environmental drivers of large- and small-ranged species are identical,
attributing any differences to the impacts of geometric constraints, which theoretically and
empirically have more influence on large-ranged species [33,55]. Given the broader ecological
tolerances of large-ranged species compared to elevationally-restricted species, the validity of
this assumption is arguable. Additionally, the EGCMmethod assumes that the observed eleva-
tional ranges accurately reflect each species’ environmental tolerance. However, the elevational
ranges of rare or patchily distributed species are more likely to be underestimated, potentially
biasing which species are used in fitting the environmental model. Consequently, the disparity
in optimal models between the EGCM and the multiple regression has two possible interpreta-
tions. All species along a transect may be driven by the same environmental variables, captured
by the EGCM by removing any effects of geometric constraints on broadly distributed species.
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The multiple regression, by ignoring geometric constraints, would not accurately estimate the
effects of the environmental variables. Alternatively, environmental effects may vary among
species. The multiple regression effectively marginalizes across all species to estimate the over-
all response. Under this interpretation, the intentionally biased subset used by the EGCM
would fail to estimate the true impacts of each environmental driver.

Regardless, both the EGCM and the multiple regression indicate a dichotomy based on the
precipitation levels at the mountain base. That is, the distribution of optimal models is sharply
divided between wet and arid climates. The EGCM shows that one dominant factor drives ant
diversity on most wet-based gradients. This was most often either area or temperature. In con-
trast, the best environmental models for arid climates always included multiple variables. The
multiple regression similarly shows diversity in arid climates as generally driven by a combina-
tion of factors, typically including area. This suggests a broad, underlying influence of precipi-
tation with the diversity pattern further modified by area, temperature, or a combination
depending on the gradient.

Ant diversity is similar to that of other taxa in that a variety of elevational patterns is seen
globally. The diversity patterns of vertebrate taxa investigated so far, however, seem to be
driven by a more cohesive combination of factors. The elevational diversity patterns of birds,
bats, and small non-volant mammals are all likely shaped by both temperature and precipita-
tion [4,11,12,38] despite each taxon showing a different overall distribution of diversity pat-
terns. Reptile diversity is more closely tied to temperature, though precipitation and area seem
to play a role as well [9,46]. Although ants, as ectotherms, would intuitively be affected largely
by temperature, the robust patterns of ant diversity across elevational gradients instead suggest
a complex interplay of multiple drivers.

In conclusion, ant elevational diversity is shaped by several factors, with the current precipi-
tation regime altering both their number and identity. Ant gradients, in conjunction with those
of other taxa, suggest that a taxon’s ecology and natural history may be critical to the processes
influencing broad-scale patterns. The rigorous analysis of more insect and invertebrate taxa at
a global extent in addition to a focus on gathering key data to test other potential drivers (e.g.,
biotic interactions and natural history) will provide the perspective required to understand
how diversity is distributed and how to better predict future changes.
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(n = 20) most often showed highest ant diversity at intermediate elevations, though both
decreasing and low plateau patterns occurred. Local and regional datasets did not differ in the
pattern distribution. (b) Excluded datasets (n = 20; reasons for exclusion = D, G, L, P, S in Fig 1
& S2 Table) were more varied, with mid-peaks, decreasing patterns, low plateaus, increasing
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