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Spatio-temporal variability of snow water equivalent in the extra-tropical Andes 1 

Cordillera from distributed energy balance modeling and remotely sensed snow 2 

cover 3 

 4 

S1     Definition of homogenous regions 5 

Figure S1 shows the outcome of the clustering process based on spring and summer 6 

(September to March) season total river flow volume (SSRV). The procedure consists 7 

on grouping catchments in the Andes cordillera between 27 ° S and 38 ° S and 8 

calculating the SSRV (natural regime) for each one, performing a clustering procedure 9 

using an algorithm for variance minimization (Rubio-Álvares y McPhee, 2010; Wilks, 10 

2005). SSRV values are computed for 2001 – 2014, seeking minimum data loss for this 11 

purpose (Sawicz et al., 2011). After defining a consistency threshold for both Andes 12 

slopes - by identifying an abrupt slope change in the cumulative distance / algorithm-13 

step curve - a total of eight clusters are defined: three (C1, C2 and C3) on the western 14 

slope and five (C4 through C8) on the eastern slope of the Andes range. The northern 15 

clusters (C1 and C4) correspond to arid to semi-arid climates, whereas C2, C5 and C6 16 

are characterized predominantly by Mediterranean conditions. C3, C7 and C8 include 17 

basins in the southern domain, where the Andes display a lower elevation and where 18 

liquid precipitation inputs during the winter and spring seasons are more frequent. Note 19 

that each cluster contains only adjacent basins which highlights the hydro-climatic 20 

character of this classification.  21 



 22 

Figure S1. Clusterization process and outcomes for both eastern and western central Andes sides. 23 

 24 

Figure S2 shows the elevation distribution within each cluster, and illustrates the 25 

elevation of the available meteorological stations for forcing data extrapolation. It is 26 

apparent that station locations on the western slope of the domain (clusters C1, C2 and 27 

C3) are more representative of average cluster conditions under the assumption that 28 

elevation plays a major role in controlling each cluster’s climate. Eastern slope (Clusters 29 

C4 through C8) stations are located at lower elevations, which may impact the spatial 30 

extrapolation of model parameters as discussed in the main manuscript. 31 



 32 
Figure S2. Hypsometric curves of clusters in the model domain, and approximate elevation of 33 
meteorological stations. 34 
 35 

S2 Air temperature spatial distribution 36 

Figure S3 illustrates the linear correlation between air temperature differences among 37 

pairs of high elevation and valley meteorological stations and the corresponding land 38 

surface temperature differences between matching pixels in the MODIS LST product. A 39 

consequence of the strong linear relation is that it is possible to extrapolate air 40 

temperature differences across model pixels based on the spatial distribution of 41 

remotely sensed surface temperatures. 42 



 43 
Figure S3. Linear regression between MODIS LST and index station observed air temperature. 44 
Symbols refer to each modeling cluster, C1 - C3 are cluster on the western slope, C4 - C8 are 45 
clusters on the eastern slope of the mountain range. 46 

 47 

S3     Timing peak SWE for eastern and western slopes of the central Andes range 48 

Peak SWE timing estimation is carried out to in order to define a specific date for 49 

modeled SWE comparison with snow pillow data and river flow. Figure S4a shows 50 

timing peak SWE frequency between 15Aug - 15 Sep for stations on the western side of 51 

the continental divide. For eastern slope locations, peak SWE shifts into 15 Sep - 15 52 

Oct.  Notwithstanding elevation controls, a general behavior could be observed by 53 

averaging snow pillows time series fortnightly. A generalized peak SWE date could be 54 

assumed from Figure S4b as follows: for the western side we adopted September first as 55 

date for peak SWE (MSWE) validation; whereas for the eastern slope we assume 56 

October first. Note that in the case of snow surveys we considered the exact date of the 57 

field campaign. The literature reports similar behavior for MSWE (Masiokas et al., 58 

2006), showing variable timing MSWE frequency for several snow pillows located at 59 

C2, C3 and C5 clusters. 60 



 61 

Figure S4. Average timing peak SWE for eastern and western cordillera. 62 

 63 

S4  fSCA cloud cover post-processing 64 

A post-processing algorithm was applied over raw MOD10A1 fractional snow cover 65 

area (fSCA) satellite product (and also to MOD11A1 Land Surface Temperature) in 66 

order to minimize the effect generated by cloud cover and missing pixel values. The 67 

algorithm used in this work is an adaptation from Gafurov and Bárdossy (2009), 68 

extended for fractional values. Given a pixel p(x y,t, r), where x = latitude position, y = 69 

longitude position, t = day and y = year; the first step (s1) includes temporal 70 

interpolation pixel fill for consecutively ± 1, 2 and 3 days over valid pixels: 71 

𝑝𝑝(𝑥𝑥, 𝑦𝑦, 𝑡𝑡, 𝑟𝑟)𝑠𝑠1 = �
𝑝𝑝(𝑥𝑥, 𝑦𝑦, 𝑡𝑡 + 𝑛𝑛, 𝑟𝑟) − 𝑝𝑝(𝑥𝑥, 𝑦𝑦, 𝑡𝑡 − 𝑚𝑚, 𝑟𝑟)

|𝑛𝑛 + 𝑚𝑚| � |𝑡𝑡 − 𝑚𝑚| + 𝑝𝑝(𝑥𝑥, 𝑦𝑦, 𝑡𝑡 − 𝑚𝑚, 𝑟𝑟) 

 with 1 ≤ 𝑛𝑛,𝑚𝑚 ≤ 3 

[1] 

Values of n and m are chosen in order to minimize |𝑛𝑛 + 𝑚𝑚|. The second step (s2) 72 

includes a spatial kernel-average pixel filling with x ± 1, y ±1 setting considering only 73 

those valid pixels with lower elevation 𝑧𝑧 = (𝑥𝑥,𝑦𝑦) than the central pixel: 74 



𝑝𝑝(𝑥𝑥, 𝑦𝑦, 𝑡𝑡, 𝑟𝑟)𝑠𝑠2 = � �
1
𝑘𝑘
𝑝𝑝(𝑖𝑖, 𝑗𝑗, 𝑡𝑡, 𝑟𝑟)𝑖𝑖≠𝑗𝑗

𝑠𝑠1
𝑖𝑖=𝑗𝑗

𝑖𝑖=−𝑗𝑗

𝑖𝑖=1

𝑖𝑖=−1

 

where 𝑘𝑘 = �1 𝑖𝑖𝑖𝑖 𝑧𝑧(𝑥𝑥,𝑦𝑦)𝑥𝑥≠𝑦𝑦 ≤ 𝑧𝑧(𝑥𝑥,𝑦𝑦) 
 0        otherwise

 

[2] 

The third step includes filling with the average value over the 2001- 2014 period over 75 

valid pixels if steps 1 and 2 are infeasible. This step ensures the absence of null pixels: 76 

𝑝𝑝(𝑥𝑥, 𝑦𝑦, 𝑡𝑡, 𝑟𝑟)𝑠𝑠3 = �
1
𝑘𝑘
𝑝𝑝(𝑥𝑥, 𝑦𝑦, 𝑡𝑡, 𝑟𝑟)𝑠𝑠2   ,   where 𝑘𝑘 = �1 for null values 

 0 otherwise

𝑟𝑟=2014

𝑟𝑟=2001

 [3] 

For MOD11A1 Land Surface Temperature, algorithm uses (1) temporal interpolation 77 

pixel fill considering 2 days prior and posterior to the estimated day. Subsequently, 78 

MOD11A1 post-processing algorithm uses an alternative step 2 based on skin 79 

temperature – elevation linear correlation (Colombi, 2007) over 𝑝𝑝(𝑥𝑥,𝑦𝑦, 𝑡𝑡, 𝑟𝑟)𝑠𝑠1  null 80 

pixels: 81 

𝑝𝑝(𝑥𝑥, 𝑦𝑦, 𝑡𝑡, 𝑟𝑟)𝑠𝑠2 = 𝑎𝑎 𝑧𝑧(𝑥𝑥,𝑦𝑦) + 𝑏𝑏 [4] 

The outcomes from fSCA post-processing are shown in Figure S5. Cluster 3 (C3) and 82 

cluster 4 (C4) represent most wet (southern) and dry (northern) zones in the spatial 83 

domain. The dots represent raw data and the continuous line represents post-processed 84 

time series from a spatial average estimation. Cloudy conditions in C3 impose 85 

significant uncertainty between August and November. Post-processed fSCA seems to 86 

alleviate this problem (15% or lower cloud cover area) especially in 2005, 06, 08, 09, 87 

10, 11 and 12 for peak and lower values. C3 maximum fSCA reaches 70% – 90% 88 

unlike C4, where fSCA reaches up to 25% - 50%. In this zone, cloud cover introduces 89 

less uncertainty than C3, showing good agreement with raw data (also for 15% or lower 90 

cloud cover area) almost every year. Temporal dynamics from fSCA reveals partial 91 

SCA decay interrupted by occasional spring snowfall events and high frequency noise. 92 



 93 
Figure S5a. Cloud cover post-processing for cluster 3 – southern Chile fSCA (spatial average). 94 

 95 
Figure S5b. Cloud cover post-processing for cluster 4 – northern Argentina fSCA (spatial average). 96 

 97 

S5 Turbulent energy flux analysis at meteorological stations 98 

In order to diagnose differential performance of the model across the hydrologic units 99 

defined in this study, we estimate latent and sensible heat fluxes at point scale from data 100 

available only at the few high elevation meteorological stations in the region (with 101 

recorded relative humidity). Our analysis confirms that for the stations located within 102 

cluster C1, latent heat fluxes have opposite sign and dominate over sensible heat fluxes 103 

(Figure S6), which results in net turbulent cooling of the snowpack. On the other hand, 104 

data from stations located on the eastern side of the continental divide show positive 105 

latent heat fluxes, indicating predominance of condensation over sublimation at those 106 

sites. 107 

 108 



 109 
Figure S6. Computed from meteorological records at index stations associated with each basin 110 
cluster. 111 
 112 

S6      Modeled SWE decay and spatial patterns 113 

Figure S7 presents a time series evaluation of reconstructed SWE at two snow pillow 114 

sites. Portillo (POR) shows the worst model skill in terms of R2 with a value of 0.32, 115 

whereas Lo Aguirre (LOA) shows the best performance with a value of R2 of 0.88. The 116 

series compared are simply the observation at the snow pillow instrument versus the 117 

closest pixel-wide value obtained from the reconstruction, with no downscaling 118 

attempted. Comparisons between point-scale and pixel-scale variables are always 119 

problematic, and in the case of SWE this is specially true given the high spatial 120 

variability to be expected at lengths higher that a few tens of meters. In areas of abrupt 121 

topography, as is the case of the model domain, the discrepancies may increase because 122 

even small offsets in the grid position can result in areas of preferential accumulation 123 

being over- or under-represented, thus introducing a systematic bias in the estimation 124 

from fSCA. 125 

 126 



 127 

Figure S8 shows spatial modeled SWE spatial average (2001 – 2014) for 1 Sep, 1 Oct, 1 128 

Nov, 1 Dec and 1 Jan. From September to October, SWE depth is reduced, keeping an 129 

almost invariant snow line from C2 – C5 and southern units. For C1 and C4, the snow 130 

line experiments a notorious ablation to higher elevation areas. Starting in October, 131 

SWE depth and snow line vary abruptly. At regional scale, most of the SWE depletion 132 

process is observed from September to November in C1 and C4 (northern zones). Units 133 

C2, C5 and C6 shows a delayed SWE depletion, which stabilizes in January. Units C3, 134 

C7 and C8 show an intermediate behavior between the northern and central zones 135 

possibly due to the elevation decrease of the Andes cordillera south of 35 ° S. Some 136 

differences in the SWE spatial pattern are notorious in both sides of the continental 137 

divide: the eastern side experiments slightly faster SWE depletion than the western side, 138 

process that is clearly evident in southern (C3, C7, C8) and central (C2, C5, C6) 139 

clusters.  140 



 141 

Figure S8. Evolution of SWE depletion (spatial pattern) – 2001 – 2014 average. 142 

 143 

  144 
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