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Waiblinger, Kirk S. (B.A., Physics)

Optimizing Association of Heteronuclear Feshbach Molecules in Microgravity with a Mag-

netic Field Quench

Thesis directed by Prof. Jose P. D’Incao

This work presents a computational comparison of two magnetic field manipulation

schemes for creating heteronuclear 87Rb41K Feshbach molecules. We focus on analysis of

the parameters relevant to the NASA Cold Atom Laboratory experiments performing atom

interferometry, which will require maximizing production of molecules at low densities, and

extremely low temperatures (< 1 nK). It is found that a scheme involving a magnetic field

quench potentially offers substantial benefits over a direct linear magnetic field sweep across

a Feshbach resonance.
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Chapter 1

Introduction

Currently aboard the International Space Station is a multi-user facility known as the

Cold Atom Laboratory (CAL), whose purpose is to study ultracold atoms in microgravity,

and the applications that they have for fundamental sciences and precision measurement.

Due to the microgravity environment, lifetimes of ultracold gases of 10 seconds or more,

and temperatures below 100 pK are achievable, significantly improving on Earth-bound

experiments [1]. The experiment which we will analyze is a proposal to perform atom

interferometry using two species of ultracold atoms, which would enable tests of the Weak

Equivalence Principle (WEP), the principle from classical gravity and general relativity that

inertial mass, i.e. the mass appearing in
∑

F = ma, is the same as gravitational mass, i.e.

the mass appearing in F = mg, with g representing a gravitational field. It may be seen

that the Universality of Free Fall (UFF), the well-known principle that any two bodies have

the same acceleration in a gravitational field, is equivalent to the WEP.

No violation of the WEP has been observed to date, however, several proposed quan-

tum gravity theories predict small violations of the WEP [2, 3]. The NASA CAL facility

will attempt to verify the WEP at these levels, through dual-species atom interferometry

techniques (see Fig. 1.1). Testing the WEP at the precision it is predicted to be violated re-

quires production of clouds of two species of atoms (87Rb and 41K will be used) with common

centers of mass, to within nm-accuracy [4].
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Figure 1.1: A schematic of atom interferometry, used with permission from [5]. An initial

cloud of ultracold atoms is spatially separated into a coherent superposition of spatially

distinct components at point a. During the free evolution of the components, between t = 0

and t = T and between t = T and t = 2T , the spatially separated components acquire a

phase determined by the forces acting on them. At point d, the components of the system

are recombined, exhibiting an interference pattern that can be measured. In the NASA CAL

experiment the initial cloud will be composed of two species of atoms, 87Rb and 41K.

The following scheme has been proposed for creating such clouds with high-accuracy

common centers of mass [4]. One begins with the system in a state consisting purely of free

atoms. Then, bonding exclusively between pairs of Rb and K atoms is induced. When all

remaining free atoms have been expelled, one breaks all bonds between Rb-K pairs, leaving

the desired overlapping Rb and K clouds, illustrated in Fig. 1.2.
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Figure 1.2: A schematic for creation of common-cm clouds of 87Rb and 41K atoms, used

with permission from [5]. In A), an initial cloud of free Rb and K atoms is created. Then,

bonding between Rb-K pairs is induced in B), creating molecules. After expelling free atoms,

and breaking molecular bonds between Rb-K pairs, the resulting system in C) is composed

of free Rb and K atoms with highly correlated center of mass.

We are concerned exclusively with the first part of this process; the goal of this thesis

is to analyze schemes to maximize the number of Rb-K pairs produced from an ultracold

gas consisting of free Rb and K atoms. To this end, we provide a computational comparison

of two feasible schemes to produce RbK molecules via magnetically tunable interactions

between atoms that occur as a result of Feshbach resonances. Our analysis allows us to

determine the most efficient scheme to produce such molecules in the unique experimental

conditions provided by the CAL’s microgravity environment.



Chapter 2

Theoretical Background

In this chapter, we give an overview of some of the theoretical principles underlying this

work. In order to study formation of molecules at zero temperature, the major theoretical

subjects involved will be Bose-Einstein condensation, low-energy scattering processes, and

atomic interactions via Feshbach resonance. Since each of these topics is extremely vast, we

confine the discussion for the most part to the aspects most relevant to our study.

2.1 Bose-Einstein Condensation

At extremely low temperatures, atoms behave in novel ways that allow experimenters

to fully control the fundamental interatomic interactions and make extraordinarily precise

measurements. This is due to sudden phase transitions from ordinary thermal gases of

particles to regimes in which macroscopic quantum effects define the collective behavior of

particles. In the case of 87Rb and 41K, both are bosonic particles (particles having integer

spin), whose quantum regimes exhibit the phenomenon of Bose-Einstein condensation.

2.1.1 Bose-Einstein Distribution

We begin by introducing the theory of Bose-Einstein condensation, largely following

the derivations in references [6, 7]. We shall first derive the Bose-Einstein distribution, then

discuss how this leads to condensation.
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Recall from statistical mechanics the grand partition function for a system consisting

of a single species of particles,

Z =
∑
s

exp

[−(E(s)− µN(s))

kBT

]
, (2.1)

where the summation is taken over all available states s of a system, E(s) is the energy of

each state, µ the chemical potential, N(s) is the number of particles in the state, kB the

Boltzmann constant, and T the temperature. Each term in the summation is known as the

Gibbs factor for the state, which has the property that the probability of the state being

occupied is simply the ratio of its Gibbs factor to the partition function. When considering

a single-particle state with energy ε that may be occupied by an arbitrary number n of

indistinguishable, noninteracting bosons (note the absence of any combinatorial terms), the

partition function becomes

Z =
∑
n∈N

exp

[−(nε− µn)

kBT

]
Z =

∑
n∈N

(
exp

[−(ε− µ)

kBT

])n
Z =

1

1− exp
[
−(ε−µ)
kBT

] ,
where, in the last line, we have resolved the summation by identifying the Taylor expansion

1
1−x =

∑
n∈N x

n, noting that we have ε > µ, so the summation is convergent. We can use this

to evaluate the probability of a given number of particles occupying a state, using the fact

that the probability of a given state being occupied is simply the ratio of its Gibbs factor to

the partition function,

P (n) =
exp

[
−n(ε−µ)
kBT

]
1− exp

[
−(ε−µ)
kBT

] . (2.2)
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Now, in order to find the mean occupation number of the state, n, we shall evaluate

n =
∑
n∈N

nP (n)

n =
∑
n∈N

n exp
[
−n(ε−µ)
kBT

]
1− exp

[
−(ε−µ)
kBT

]
n =

1

exp
[
ε−µ
kBT

]
− 1

,

which is the well-known Bose-Einstein distribution1 :

nBE(ε;T, µ) =
1

exp
[
ε−µ
kBT

]
− 1

. (2.3)

In Fig. 2.1, one can see that the mean number of particles in a particular state increases

as µ approaches ε, and as T → 0.

0.0 0.5 1.0 1.5 2.0 2.5
x0

1

2

3

4

5

6
n

Figure 2.1: The Bose-Einstein distribution, with x = ε−µ
kBT

. Note that x < 0 would correspond
to µ > ε, which is unphysical.

1 To resolve the final summation, an easy method is to set x = (ε − µ)/kBT , and note that

n =
∑
n exp(−nx)

Z = − 1
Z
∑

∂
∂x exp(−nx) = − 1

Z
∂
∂x

∑
exp(−nx) = − 1

Z
∂Z
∂x
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2.1.2 Transition Temperature

In principle, if the temperature and chemical potential of a system are given, Eq. (2.3)

allows us to calculate the occupation number of a given state. Unfortunately, however, the

temperature and chemical potential are not independent and generally only the temperature

is known. So, we shall take as given the temperature, and calculate the chemical potential,

which depends nontrivially on temperature, particle number, and confining potential of a

system. In particular, the chemical potential is determined by the constraint that the mean

occupation numbers of all single-particle states sum to the fixed, total number of particles

in the system, in other words,

N =
∑
s

nBE(ε(s);T, µ)

=
∑
s

1

exp
[
ε(s)−µ
kBT

]
− 1

.

This sum is not generally tractable, but it may be simplified by introducing a continuous

density of states g(ε), determined by the particular confining potential, and reformulating

the summation as an integral, yielding

N = N0 +

∫ ∞
0+

dε

g(ε)
1

exp
[
ε−µ
kBT

]
− 1

 , (2.4)

in which the ground state energy has been chosen to be 0 (or, more precisely, a small

positive quantity such that εmin � kBT . We have separated the ground-state occupancy

N0 ≈ 1

exp
[
− µ
kBT

]
−1

from the integral because continuous densities of states fail to accurately

represent discrete spectra at ε = 0, where physical spectra are sparse. In particular, densities

of states generally go to 0 as ε → 0, neglecting any contribution due to the ground state

with ε ≈ 0 [6, 7]. For a given confining potential, Eq. (2.4) could be solved numerically to

find µ.

Ultimately, however, we are more interested in N0 than in µ for the purposes of Bose-

Einstein condensation. In order to estimate the transition temperature TC below which the
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number of condensed atoms N0 becomes non-negligible, we suppose N0 = 0, then determine

the minimal temperature at which there exists a value of the chemical potential such that

the integral for the number of particles in excited states equals the total number of particles.

In other words, we will find the minimal T such that

N = Nexc(T, µ) =

∫ ∞
0+

dε

g(ε)
1

exp
[
ε−µ
kBT

]
− 1

.
for some value of µ. It is straightforward to observe that Nexc(T, µ) increases with µ. Since

µ ≤ ε for all ε, and εmin ≈ 0, we find that the minimum temperature at which N0 is negligible

occurs when µ = 0, implying the condition

N = Nexc(TC , µ = 0). (2.5)

To demonstrate a model computation of TC , we shall use a 3D square well potential,

with density of states given by2 g(ε) =
(

m3/2

π2
√
2~2

)
V
√
ε, in which V is the confining volume,

m the mass of a single particle, and ~ the reduced Planck constant, or simply g(ε) = C
√
ε,

with C representing the appropriate constants [6]. We have

Nexc(T, µ = 0) =

∫ ∞
0+

dε
C
√
ε

exp [ε/kBT ]− 1

= C(kBT )3/2
∫ ∞
0+

dx

√
x

expx− 1

= C (kBT )3/2 Γ(3/2)ζ(3/2)

≈ 2.315C(kBT )3/2 (2.6)

after evaluating the integral numerically3 . Setting N = Nexc at TC , evaluating pure numer-

ical factors and introducing the number density n = N/V , we find

kBTC ≈ 3.31
~2n2/3

m
. (2.7)

2 Note that at ε = 0 this gives a density of states of 0, effectively ignoring the ground state as previously
claimed, hence the importance of counting the ground state separately.

3 In general, one has
∫∞
0

tα−1

exp x−1 = Γ(α)ζ(α) for Reα > 1, with Γ the gamma function and ζ the Riemann

zeta function [7].
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Additionally, the result that Nexc(T, µ = 0) ∝ T 3/2 in Eq. (2.6), combined with the

constraint that N = N0 +Nexc immediately yields the convenient relations

Nexc ≈
(
T

TC

)3/2

N (2.8)

N0 ≈
[

1−
(
T

TC

)3/2
]
N (2.9)

when T < TC (since then µ = 0). This striking behavior, that below a certain temperature

TC the many-particle system quickly collapses into a collection of particles mostly inhabiting

the same state, is the defining feature of Bose-Einstein condensation.

α = 3/2 (3D Square Well)

α = 3 (3D Harmonic Oscillator)

TC

T0

1
N0

Figure 2.2: Condensate fraction as a function of temperature relative to TC

Although these results were derived with a 3D square well potential, we men-

tion for completeness that any confining potential with g(ε) ∝ εα−1, α > 1, will have

Nexc(T, µ = 0) ∝ Tα, and therefore exhibit the same condensation phenomenon [7], only

with a different exponent, namely

N0 ≈
[
1−

(
T

TC

)α]
N. (2.10)

For instance, the other ubiquitous potential, the 3D harmonic oscillator, has α = 3. Fig. 2.2

shows the relationship between N0 and T for both of those potentials. One can see quite

clearly that one has N0 → 1 as T → 0, in each case, which is also true for any α > 1 [7].
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Therefore, when we model Bose-Einstein condensates (BECs) at zero temperature, we will

assume an initial state with 100% of atoms populating the ground state. Lastly, we mention

that there are physical potentials resulting in densities of states with α ≤ 1, such as the 2D

harmonic oscillator, but these are not capable of exhibiting condensation [7].

2.2 Low-Energy Scattering

Throughout Sec. 2.1, we assumed that all atoms in a BEC were noninteracting and

independent. However, real atoms do interact, of course, and in this study we are quite

interested in the interactions, since they are responsible for forming molecules. Therefore, in

this section, we establish some of the simplifying assumptions used to model the low-energy

scattering processes in a BEC. Because the particles within a BEC are each assumed to

be in their ground state, we are interested in understanding their interactions in the zero-

energy limit, E = ~2k2
2µ
→ 0, or, equivalently, when the relative momentum between particles

tends to 0, k → 0. In the following discussion, we appeal to an intuitive physical argument,

although we note that far more comprehensive and rigorous asymptotic analyses can be and

have been done (see e.g. Refs. [7, 8]).

2.2.1 Central Potential

Consider two distinguishable particles in free space interacting through a potential V ,

which depends only on the distance between them (known as a “central potential”). Then,

the time-independent Schrödinger equation, Ĥ |ψ〉 = E |ψ〉 may be written [9] as[
p̂2
1

2m1

+
p̂2
2

2m2

+ V̂ (|r2 − r1|)
]
ψ(r1, r2) = Eψ(r1, r2). (2.11)

We suppose ψ(r1, r2) = ψCM(R)ψrel(r), where we have defined center of mass and relative

coordinates, namely r = r2 − r1 and R = m1r1+m2r2
m1+m2

. We also define total mass M = m1 +m2

and reduced mass µ = m1m2

m1+m2
. By applying the canonical substitution p̂→ i~∇, it may be
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proven that the system Hamiltonian may be rewritten in fully separable form as

Ĥ =

(
P̂2

2M

)
+

(
p̂2

2µ
+ V̂ (r)

)
(2.12)

= ĤCM + Ĥrel (2.13)

in which the momentum operators represent derivatives with respect to the corresponding

transformed coordinates. Treating the center of mass motion first, we solve the corresponding

Schrödinger equation:

P̂2

2M
ψCM(R) = ECMψCM(R) (2.14)

=⇒ −~2∇2
R

2M
ψCM(R) = ECMψCM(R) (2.15)

=⇒ ψCM(R) = exp(iK ·R), (2.16)

satisfying ECM = ~2K2

2M
, and where we will not be particular about normalization of contin-

uum states. This is a plane wave state that is independent of the scattering potential, and

therefore unimportant to all following discussion.

We turn now to the relative motion, with Hamiltonian

Ĥ =
p̂2

2µ
+ V̂ (r). (2.17)

Note that we drop the subscripts for relative motion, since this is the only part of the

wavefunction that will concern us from now on. After substituting the Laplacian in spherical

coordinates, one finds that the Hamiltonian may be further rewritten

Ĥ = − ~2

2µ

1

r

∂2

∂r2
r +

1

2µr2
L̂2 + V̂ (r). (2.18)

Observing that this equation depends on angular coordinates only through the angular mo-

mentum operator simplifies our task greatly. We write ψ(r) = f(r)Y m
l (θ, φ), where Y m

l (θ, φ)

are the usual spherical harmonics, and apply the Schrödinger equation again, using the
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well-known eigenvalues of the spherical harmonics, L̂2Y m
l (θ, φ) = ~2l(l + 1)Y m

l (θ, φ) [9]:[
− ~2

2µ

1

r

∂2

∂r2
r +

1

2µr2
L̂2 + V (r)

]
f(r)Y m

l (θ, φ)=Ef(r)Y m
l (θ, φ) (2.19)

Y m
l (θ, φ)

[
− ~2

2µ

1

r

∂2

∂r2
r +

~2

2µr2
l(l + 1) + V (r)

]
f(r) =Ef(r)Y m

l (θ, φ) (2.20)[
− ~2

2µ

1

r

∂2

∂r2
r +

~2

2µr2
l(l + 1) + V (r)

]
f(r) =Ef(r) (2.21)

which is the radial Schrödinger equation. To understand low-energy scattering, it will be

valuable to recast Eq. (2.21) in the form[
− ~2

2µ

1

r

∂2

∂r2
r + V l

eff (r)

]
f(r) = Ef(r), (2.22)

with V l
eff (r) = ~2

2µr2
l(l + 1) + V (r). For us, Eq. (2.22) will be the fundamental equation

governing time-independent scattering processes.

2.2.2 S-wave scattering

By analogy to the naming conventions for atomic orbitals, scattering processes with

angular momentum quantum number l = 0, 1, 2, etc. are referred to as s-wave, p-wave,

d-wave, etc. processes [7]. We will argue that in the limit of zero relative momentum,

only s-wave processes contribute to the long-range behavior, and particularly, formation of

molecules.

Generally speaking, interaction potentials V (r) will take the form of a steep repulsion

at short interatomic distance, followed by a potential well, which will asymptote to 0 from

below [7], such as in Fig. 2.3. Note that for l = 0, this implies that the potential well is

energetically accessible to particles even at zero energy. However, for any l 6= 0, the effective

potential has a repulsive centrifugal barrier, which must be tunneled through in order to

access the potential well, as shown in Fig. 2.4. As k → 0, the corresponding tunnelling

probability approaches 0 [9], meaning that the particles do not interact via non-s-wave

processes.
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Potential, V(r)

Interatomic Distance0

Energy

Figure 2.3: Typical shape of interaction potential between atoms, with short-range repulsion
and potential well. The dashed lines represent possible bound states.

With this in mind, we make a few qualitative arguments to summarize the analysis

in Ref. [7]. The relative motion in a scattering process may be described by an ansatz

wavefunction of the form

ψ(r) = exp(ikz) + ψsc(r), (2.23)

representing the momentum plane wave of the particles’ approach, taken to be in the z-

direction and the wave with which they scatter off one another4 . Spherical symmetry in the

scattering potential implies azimuthal symmetry in the scattered wave, and at large r, the

particles are assumed to be noninteracting for our purposes, so we can write the scattered

wave as

ψsc(r, θ) ∼ f(θ)
exp(ikr)

r
, r →∞ (2.24)

which asymptotically solves the radial wave equation. Upon assuming pure s-wave interac-

4 Since these are, generally, continuum states, we shall not bother with normalization
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Incoming Particle

Interatomic Distance

Energy ℓ = 0

Effective Potential, Veff
ℓ=0(r)

Incoming Particle

Interatomic Distance

Energy ℓ = 1

Effective Potential, Veff
ℓ=1(r)

Incoming Particle

Interatomic Distance

Energy ℓ = 2

Effective Potential, Veff
ℓ=2(r)

Interatomic Distance

Energy ℓ = 3

Effective Potential, Veff
ℓ=3(r)

Figure 2.4: Semiclassical analogy for scattering at low energy. If one considers an incoming
particle with sufficiently low energy, its classical turning points forbid it to interact with the
binding potential well due to the centrifugal barrier for l 6= 0. Therefore we expect that the
incoming plane wave has negligible projection onto the bound state. Note that for l = 3 the
classical turning point does not even appear on the same scale.

tion, which imposes spherical symmetry on the scattered wave, and applying the low-energy
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limit kr → 0 the asymptotic wavefunction becomes simply

ψ(r) = 1− a

r
, (2.25)

and the scattering process is determined entirely by the real parameter a, known as the

(s-wave) scattering length5 . The scattering length is an extremely important parameter

of the system; its magnitude describes the strength of interactions between atoms, among

many other properties of the scattering process. For instance, one may show that the total

scattering cross section is given simply by

σ = 4πa2 (2.26)

2.2.3 Universality

The most crucial result of the two previous sections is that short-range, low-energy

scattering processes are, to first approximation, entirely determined by the scattering length.

As a result, when modelling a 2-body scattering problem, different potentials give the same

results, granting us significant flexibility when performing computations [7, 10]. One very

general result is that for a system with a→ +∞, there exists a weakly bound state with

binding energy given by EB = ~2
2µa2

+O(k2) [7, 10]. This is straightforward to verify for some

simple potentials, such a spherical finite square well, and, importantly for our purposes, can

be shown for to be true for a scattering potential given by a van der Waals expansion [7]

V (r) = −C6

r6
− C8

r8
− C10

r10
+ . . . (2.27)

Therefore, as long as we know the scattering length for a low-energy scattering process, we

may substitute another, simpler potential which has the same scattering length and expect

to find the same results.

5 The scattering length is formally defined by the limit − 1
a = limk→0 k cot(δ0(k)), where δ0 is the phase

shift in the asymptotic l = 0 radial wavefunction.
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2.3 Feshbach Interaction

Within the condensates we consider in this study, the interaction between particles

can be controlled due to a phenomenon known as Feshbach resonance, which is the result of

coupling between hyperfine levels, which are magnetically tunable via the Zeeman effect [11].

From 2nd order perturbation theory, it may be shown that by changing the magnetic B-field,

a molecular state can be brought near resonance with the energy of the colliding atoms

(E ≈ 0), resulting in a scattering process whose scattering length near a resonance at B0 is

given by the formula

a(B) = abg

(
1− ∆B

B −B0

)
, (2.28)

in which B0 is the center of the resonance, ∆B the width of the resonance, and abg is the

background scattering legnth, i.e. the scattering length between particles in the absence

of a resonance [7, 11]. Note that the scattering length, which measures the strength of

interaction between particles, diverges exactly at B = B0. Therefore we introduce the

notion of “unitarity”, the regime in which |na3| ≥ 1, in which a Feshbach resonance causes

significant interactions.

Because the significance of the scattering length is measured in relation to density, it

is convenient at this point to introduce a density-dependent system of units, given by

En = (6π2n)2/3
~2

2µ

kn =

√
2µEn
~

tn =
~
En

,

where the single-particle number density n is assumed to be the same for both atoms (even

if they are different species of atoms). This allows, for instance, to rewrite the unitarity

condition as |kna| ≥ (6π2)
1/3 ≈ 3.90

Furthermore, the scattering length determines the existence of a two-particle bound

state. When the scattering length is large and negative, and there is no weakly bound
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state. However, with magnetic field below resonance, with large positive scattering length,

there exists a weakly bound state, whose binding energy goes as EB = ~2
2µa

[10]. Rewriting

this as well in terms of the density-dependent units, one finds the delightfully simple result

EB
En

= 1
(kna)

2 . In this sense, the Feshbach energy spectrum as a function of scattering length

for every Feshbach resonance is the same. We plot this spectrum in Fig. 2.5, where we

parameterize the system in terms of 1
a
, because 1

a
varies continuously as a function of B, as

opposed to a itself, which diverges, and because it is precisely the divergence of a which we

are interested in, thus mapping it to the origin makes it possible to plot. In Fig. 2.5, one

clearly sees the bound state whose energy depends quadratically on 1
a

for 1
a
→ 0+.
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/E
n

Figure 2.5: Energy spectrum of atoms interacting in free space due to a Feshbach resonance.
The blue shaded region represents continuum (atomic) states, and the curve represents the
bound (molecular) state with EB

En
= 1

(kna)
2 . Also, the dashed region in the center signifies the

region of unitarity.

To model Feshbach interactions, we benefit from the concept of universality and are are

free to use any potential which gives the correct scattering length and binding properties [11,

10]. A common, accurate model potential is the Lennard-Jones potential [10, 11, 7], whose
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shape is adjusted to reproduce the appropriate scattering length.



Chapter 3

Calculations and Results

Having established the theoretical concepts used in our study, we now apply them to

the scenario we wish to analyze: formation of interspecies Feshbach molecules in an ultracold

Rb-K gas for the NASA CAL facility. We shall first describe the model we use to represent

the behavior of the ultracold atoms, and then describe the results and analysis we obtained

after computing the model for various parameters.

3.1 Model

In this study, we estimate the association of 87Rb and 41K atoms into Feshbach

molecules in a dual-species ultracold gas. Following previous studies [4, 10], we adopt an

effective model approach, focusing on the scattering behavior of a single Rb and single K

atom. We will assume throughout that the number densities of Rb an K are equal. Then,

after the B-field manipulation, the population of the 2-body wavefunction in a bound-state

is taken to be equal to the molecular fraction of the entire gas.

3.1.1 Hamiltonian

We model the relative motion in the two-body scattering process by a Hamiltonian

with an effective potential chosen to emulate two effects. Firstly, we impose a finite den-

sity constraint onto the system, by including a potential term for an artificial, spherically

symmetric harmonic oscillator (in the relative frame), whose frequency is recast in terms of
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trap length aho, an approach which has been demonstrated to be effective and accurate in

Refs. [4, 12, 13, 14, 15, 16]. Specifically, we have

Vho(r) =
~2

8µa4ho
r2, (3.1)

in which aho may be shown to be related to the (single-species) number density as

aho =

√
π

8

(
4πn

3

)−1/3
. (3.2)

With respect to the interatomic interactions, we use the standard Lennard-Jones po-

tential (see Fig. 3.1),

VLJ(r) = −C6

r6

(
1− λ6

r6

)
, (3.3)

in which C6 = 4274 in atomic units for 41K-87Rb [17], and λ is a tunable parameter adjusted

to produce the desired value of the s-wave scattering length. Therefore, for a given B-field

value to be modeled, we determine numerically the corresponding value of λ to produce the

appropriate scattering length, according to Eq. (2.28).
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Figure 3.1: The Lennard-Jones potential for various values of λ. Note that λ determines the
intercept on the r-axis.

Combining these potentials, we may write the 41K-87Rb relative Hamiltonian as

Ĥ = − ~2

2µ
∇2 +

~2

8µa4ho
r2 − C6

r6

(
1− λ6

r6

)
. (3.4)
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The spectrum of this Hamiltonian is shown in Fig. 3.2, in which one sees the discretization

of the continuum arising from the harmonic oscillator potential, as well as the characteristic

molecular state, like in Fig. 2.5.

Conversion of molecules from a (discretized) continuum state to a molecular state is

only possible through a time-dependent process, since population in an eigenstate of the

Hamiltonian cannot transfer to an eigenstate with different energy via a time-independent

Hamiltonian. Therefore, in order to change atoms into molecules one must change the B-

field in time from a configuration with a < 0 to a configuration with a > 0 admitting a

weakly bound molecular state, a process in which energy is not conserved, and transfer from

a continuum state to the ground state approaching 100% may occur. In order to determine

the population of Feshbach molecules formed by a time-dependent process, we therefore solve

numerically the time-dependent s-wave radial equation [18][
− ~2

2µ

1

r

∂2

∂r2
r +

~2

8µa4ho
r2 − C6

r6

(
1− λ(t)6

r6

)]
ψ(r, t) = i~

∂

∂t
ψ(r, t) (3.5)

beginning with the atoms entirely in the lowest energy state (since BECs are taken to be

entirely in the ground state). This study will compare different schemes for the value of the

B-field as a function of time.

To determine numerical solutions to Eq. (3.5), we first defined a discrete grid of scatter-

ing length values, at which to solve the corresponding time-independent Schrödinger equation

(TISE). By expressing the basis functions φβ(r) in a basis of B-splines, and truncating the

basis states to a finite number of states (20 was found to be sufficient for the calculations in

this study), one converts continuous operations to discrete matrix operations, thus allowing

for one to solve the TISE as a matrix system. Thus, one may compute the eigenenergies (as

seen in Fig. 3.2) and corresponding basis functions in the B-spline basis for each point in the

scattering length grid.

Then, to solve the Time-Dependent Schrödinger Equations (TDSE) for this study,

we follow methods based on the “Slow Variable Discretization” (SVD) method proposed in
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Figure 3.2: The energy levels of the Hamiltonian are shown parameterized by the inverse
two-body scattering length a of the Lennard-Jones potential alone (determined by λ). In the
limit of small |a| (large | 1

a
|), the spectrum consists of pure harmonic oscillator levels, whose

energies are plotted as dashed lines. Due to two-body universality, all densities have identical
spectra when scaled by the density-dependent units. Positive energies correspond to atomic
states, and negative energies represent molecular states. Note the similarities between this
spectrum and that in Fig. 2.5

Ref. [19, 20]. To promote numerical stability, this method introduces another basis, the “Dis-

crete Variable Representation” (DVR) basis, in which to express the time propagator. Thus,

the time evolution is also converted to a matrix system which may be solved numerically.

To find the molecular fraction after changing B, at t = tf , we expand the final

state into the basis of eigenfunctions φβ(r) of the Hamiltonian at times t ≥ tf , as

ψ(r, t) =
∑

β∈N cβφβ(r)e−iEβ(t−tf)/~, by computing the projections cβ = 〈φβ(r)|ψ(r, tf )〉.

Then, if the final B-field has a > 0 (as is typically chosen), β = 0 corresponds to the

Feshbach molecule state having EB = − ~2
2µa2

, and we find that the molecular fraction of the

K-Rb condensate is given simply by |c0|2.

3.1.2 B-field Sweeps and Quenches

Ultimately, the purpose of this study is to compare two molecule-creation schemes

and investigate the trends of each. In order to create a basis for comparison, we choose
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based on reasonable experimental parameters to study the properties of the first 41K-87Rb

Feshbach resonance with both atoms in the |F = 1,mF = 1〉 Zeeman level, occurring at

B = 39.4 G [21], shown in Fig. 3.3. In each case, we select the initial and final scattering

lengths to be ai = −2rvdW and af = 100rvdW , respectively, where the van der Waals length

rvdW is defined by rvdW = 1
2

(
2µC6

~2
)1/4

[10]. This corresponds to B-field values of Bi = 63.92 G

and Bf = 37.89 G. We note that the qualitative trends in our results do not depend on the

particular choices of Bi and Bf , so long as they are chosen off resonance, i.e. |a| ∼ rvdW .
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Figure 3.3: Scattering length as a function of applied B-field for the 41K-87Rb Feshbach
resonance that occurs at 39.4 G. This resonance has ∆B = 37 G and abg = 284 a0, where a0
is the Bohr radius [21].

First, we explore a scheme consisting of a direct, linear sweep, characterized by sweeping

the applied B-field linearly in time from Bi to Bf , passing over the resonance at B0, where we

parameterize the sweep by tsw, the time spent sweeping. This is the scheme most commonly

used at present in experiments.

The second scheme which we investigate consists of an instantaneous quench from Bi

to B0, followed by a period of dwell time tdw spent with B = B0, after which a linear sweep

from B0 to Bf is applied in time tsw. Note that, although both schemes will be characterized

by tsw, it does not have identical meaning. This second scheme has been used experimentally

before, though as far as we are aware, only with tsw = 0 [22].
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The two schemes are summarized graphically in Fig. 3.4. For this study, we wish to

analyze which scheme can be more efficient at producing interspecies Feshbach molecules,

particularly in short times, and at low densities.

0 tsw

Bf
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Time

B
-
fi
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d

(a) Linear Sweep

0 tdw tdw+tsw

Bi

B0

Bf

Time

B
-
fi
el
d

(b) Quench

Figure 3.4: Schematic of magnetic field vs time in the linear sweep and quench schemes. In
(a), the linear sweep changes the B-field directly from Bi to Bf linearly in time. In (b), the
quench involves and instantaneous quench from Bi to B0, followed by a linear sweep from
B0 to Bf . This schematic is not to scale, and Bi and Bf will not, in general, be equidistant
from B0, nor will tsw and tdw bear any particular relationship to each other.

As a result of the quantum adiabatic theorem, we should expect that, as tsw →∞, the

direct linear sweep will result in a molecular fraction approaching unity. Also, for the limit

tsw → 0, we find the molecular fraction will be given by the projection of the initial state

onto the Feshbach molecule eigenstate, usually approximately 0. Therefore, what we will be

interested in understanding is whether in relatively short, finite time, the quenching scheme

is capable of producing more molecules than a direct linear sweep.

3.2 Results

In order to investigate the trends of molecular creation in the linear scheme and quench

scheme, we chose to compute the molecular formation rates for four different single-particle

densities n = nRb = nK : n = 108 cm−3, n = 109 cm−3, n = 1010 cm−3, and n = 1011 cm−3.

For the CAL, lower densities are preferable, so we are most concerned with production of
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molecules in the case that n = 108 cm−3. In the following sections, we present both the

results of our computations and a brief analysis of why they arise.

3.2.1 Absolute time analysis

We present the results of our computations solving the time-dependent Schrödinger

equations in Fig. 3.5. These calculations yield two crucial observations, valid for all densities

considered. First, when tsw = 0 the fraction of molecules produced increases with tdw,

agreeing with the observations in Ref. [22].

Second, a nonzero tsw in the quenching scheme improves the molecular fraction rate

much more than the corresponding tsw for a linear ramp. This immediately implies the

most significant result of this thesis: within a given amount of time, a quench with finite

tdw followed by a non-instantaneous sweep away from unitarity will always produce a larger

molecular fraction than the optimal (slowest) linear ramp in the same amount of time.

Therefore, in order to produce as large a fraction of molecules as possible at low densities,

we recommend that such a quench scheme be used, optimized to the loss timescales within

a given experiment.
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Figure 3.5: Fraction of molecules produced as a function of tsw for various densities. The

dashed curve is a direct sweep from Bi = 63.92 G to Bf = 37.89 G, and the dashed curves

are quenches from Bi to B0 = 39.4 G, followed by a sweep to Bf . Note that at tsw = 0, the

direct sweep is identical to a quench with tdw = 0, so the corresponding curves intersect.

3.2.2 Unitarity analysis

To provide a qualitative argument why the results in Sec. 3.2.1 occur, we propose that

one of the important factors that drives a 2-body system to produce Feshbach molecules

is the time spent sweeping at unitarity, where the interactions between particles are most

important. Therefore, we define tu to be the amount of time spent sweeping at unitarity

(but not including dwelling), and reformulate the results from Sec. 3.2.1 in terms of the

ratio tu/tn, plotted in Fig. 3.6. On this timescale, one sees that, except for n = 1011 cm−3,
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Figure 3.6: Fraction of molecules produced as a function of tu, the amount of time with
|na3| ≥ 1. These are the same results as shown in Fig. 3.5, but with the sweeps and
quenches rescaled by the proportion of time spent at unitarity during the sweep. One finds
some noticeably different behavior for the linear sweep in (d) compared to the other curves.
This is due to the large density, which is not the focus of this study.

there is a strong correspondence between the quench with tdw = 0 and the linear sweep at

the same tu/tn for small times. Furthermore the quench curves with nonzero tdw provide

primarily a constant offset, and exhibit closely matching trends in molecular fraction as a

function of tu/tn relative to each other.
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Conclusion

This thesis has investigated methods to produce molecules via Feshbach resonance,

focusing on the regime relevant to production of molecules at low density in a microgravity

environment. Based on the trends discovered from our computations, we conclude that a

quench scheme can generally be made superior to a linear sweep. In addition to agreeing

qualitatively with the results in Ref. [22], we predict that further optimization is possible by

introducing a linear sweep after the quench. With respect to the NASA CAL experiment,

this will be essential, since insufficient molecules (< 20%) are created in reasonable amounts

of time using the linear sweep at the desired low density of n = 108 cm−3.

In further studies of molecular production, several more complicated aspects of the

system could be investigated. For instance, one could introduce various loss rate models

dependent on scattering length, and attempt to optimize molecular production constrained

by the loss timescales. Also, while the analysis in this thesis considered purely 2-body inter-

actions, one could extend the analysis by computing 3-body effects, which would then have

to consider both Rb-Rb-K and Rb-K-K interactions, as well as introduce a loss mechanism.
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