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Abstract

Dynamics is often described as the evolution of spaces in time. This field is vast and often
leads us to fascinating areas such as deterministic chaos, fractals, and applications to other fields
of mathematics and science. Many dynamical systems are too chaotic or complicated to study
their behavior through direct computation so we often use probabilistic or topological tools to
understand them. This thesis will be primarily on the chaotic and hyperbolic systems known
as Smale Spaces. Loosely speaking, hyperbolic in the context of dynamics is when an open
ball expands in one direction and contracts in another. Their expansive/contractive behavior
gives us a plethora of useful properties to study their behavior. In this thesis we will give a
brief introduction to the main definitions of topological dynamics. Then, we shall follow Smale
and Ruelle’s work to give a rigorous introduction to Smale spaces and the main theorems that
determine their structure. After this, we shall discuss one of the more important examples known
as a shift of finite type which has a totally disconnected topology and can be used to construct
a continuous, surjective, dynamic preserving map (factor map) onto any Smale space. We will
then introduce Putnam’s homology theory for Smale spaces. Finally, discuss new methods of
computing this invariant using results obtained during an REU at CU Boulder in 2021 and results
of Proietti and Yamashita.
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Introduction

Dynamical systems is one of the most diverse fields of mathematics. One can study solutions to
differential equations, number theory, geometric properties, Hamiltonian mechanics, statistical
mechanics, and countless more areas of research. The study of a repeated transformation or rule
f : X → X can be applied to almost any field. However, this simple idea can lead to complicated
theory and beautiful results. One such example are chaotic dynamical systems where points in
X can map to every part of X as time moves forward. Another such example is when X is a
fractal-like object and understanding the dynamics can be extraordinarily difficult. We can use
topological tools to understand the behaviors of these systems.

An important question in topology is “When are two spaces homeomorphic.” If two spaces
are homeomorphic, then it is a lot easier to work with the simplest model of the space. We have
developed tools like fundamental group and (co)homology to attempt to answer this question.
A similar question can be asked in dynamical systems. When are there dynamic preserving
invertible maps between dynamical systems. That is, when are two dynamical systems topological
conjugate?

In this thesis, we will be studying a particular chaotic type of dynamical system known
as a Smale space. The Smale space is a compact topological space X with discrete dynamics
f : X → X such that sufficiently small balls simultaneously expand and contract. This behavior
allows us to apply a multitude of tools to tame the chaos and understand Smale spaces. One
particularly important example of Smale spaces is the shift of finite type which are the sets
of bi-infinite sequences of edges along an infinite path of a graph. Shifts of finite type have
an algebraic invariant known as the dimension group which can be generalized into Putnam’s
Homology for Smale spaces.

This thesis will start off with an introduction to topological dynamics. Following that, we
will cover the main definitions, properties, and major theorems of the how Smale spaces behave.
We will then focus on shifts of finite types and how they interact with dynamic preserving maps.
Lastly, we will define Putnam’s Homology for Smale spaces and discuss recent advancements in
its computation.

1 Preliminaries

A dynamical system is loosely understood as “A system that changes in time.” Of course, the
sets that represents “time” can be different depending on the situation. One such example is
a function that is applied to a set φ : X → X multiple times. As such, time is represented
by N. As another example, if we had a vector field on an manifold, M , we would get a flow
φt : M → M which would represent a solution to an ordinary differential equation. In this case
we would have some open subset of R as our time. We have have a multitude of representations
of “time.” As such this leads us to a general definition of a dynamical system.

Definition 1.1. Let X be a set and T be an abelian semi-group. We define a dynamical system
as as a function φ : T ×X → X such that φ obeys a semi-group law φ(s, φ(t, x)) = φ(s+ t, x).

In this work, we will mostly be considering a discrete and invertible dynamical system by
letting T = Z. When the semi-group is Z we can view this type of dynamical system as (X,φ)
where φ : X → X is an isomorphism of a category and X is an object of that category. For
our purposes, φ will typically either be a homeomorphism or a diffeomorphism depending on
whether X is topological space or a manifold.

In order to get a concrete understanding and to motivate some definitions, we will consider
the following simple example.
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Example 1.2. Consider the circle S1 and the map φ : S1 → S1 defined via e2πix 7→ e2πi(α+x)

where α ∈ R. This map rotations all points by 2πα.

α

φ

Figure 1: Circle Map of Example 1.2

Now, there are two possibilities, α can be rational or irrational. In the case where α = p
q ∈ Q,

then for every point φq(e2πx) = e2πi(p+x) = e2πix. As we can see, after a finite number of
iterations of φ, the point x returns to x. However, if α is irrational, there is no such integer that
points can return after some number of iterations. Yet, if we follow any point e2πix ∈ S1 the
point will eventually get close to x.

More formally, let ϵ > 0 and consider S1 embedded in C as the unit circle. Let

Bϵ(x) = {y ∈ S1 : d(x, y) < ϵ}

be the open ball where d is the induced metric from the Euclidean metric of C. Now for every y ∈
S1 there exists n ∈ N such that the respective ball Bϵ(y) has the property φn(Bϵ(y))∩Bϵ(y) ̸= ∅

p φn(p)

Figure 2: Non-wandering Point. For any sized ball, the point will return to it.

Example 1.2 highlights two important properties that related to points returning close to their
starting position in our dynamical system. Returning to the general situation, we introduce the
following definitions.

Definition 1.3. Let X be a set and φ : X → X be a bijection. We say x is a periodic point
if there exists an integer n such that φn(x) = x. Moreover, define the set of periodic points of
period n as

Pern(X,φ) = {x ∈ X : φn(x) = n}

5



An Introduction to Smale Spaces and their Homology R. Huq

And the set of all periodic points of any period as⋃
n∈N

Pern(X,φ) = Per(X,φ)

Definition 1.4. Let X be a topological space and φ : X → X be a homeomorphism. We say
x is a non-wandering point if for every neighborhood U of x there exists an integer n ≥ 1 such
that φn(U) ∩ U ̸= ∅. Denote the set of non-wandering points as NW(X,φ).

Definition 1.5. Let X be a set and φ : X → X be a bijection. Take x ∈ X. Define the orbit of
X to be

Orb(x) = {y ∈ X : φn(x) = y for some n ∈ Z} = {. . . , φ−1(x), x, φ1(x), . . .}

Remark. Next, we can apply these definitions to the circle map in Example 1.2. If α = p
q is

rational, then
S1 = Perq(S

1, φ) = Per(S1, φ)

Since it is clear that Per(S1, φ) ⊆ NW(S1, φ), it also follows that NW(S1, φ) = S1. Moreover,
due to every point being a periodic point with period q, we have

Orb(x) = {φ−q(x), . . . φq(x)}

which is finite.
If α is irrational, then there is no integer n such that φn(e2πix) = e2πix as it would contradict

the irrationality of α. Thus we have Per(S1, φ) = ∅. Since there are no periodic points, Orb(e2πix)
must be infinite for each e2πix ∈ S1. As discussed, for every y ∈ S1, there exists n ∈ N such that
Bϵ(e

2πix) has the property φn(Bϵ(e
2πix)) ∩Bϵ(e

2πix) ̸= ∅ and thus every point is nonwandering
and we once again have NW(S1, φ) = S1.

For our next example, we shall investigate a more chaotic dynamical systems and define this
chaotic behavior.

Example 1.6 (Baker’s Map). The baker’s map is a map that emulates the idea of folding dough
onto itself to mix ingredients. We define this map as φ : [0, 1]2 → [0, 1]2

φ(x, y) =

{(
2x, 1

2y
)

0 ≤ x < 1
2(

2(1− x), 1− 1
2y
)

1
2 ≤ x ≤ 1

To illustrate this map, we will take random points on [0, 1]2 and use Mathematica to apply the
Baker’s map and plot said points.
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(a) 0 Iterations

(b) 1 Iterations (c) 2 Iterations (d) 3 Iterations

(e) 4 Iterations (f) 5 Iterations (g) 6 Iterations

Figure 3: Baker’s Map Applied to Some Points

Notice if we take any open set of the form (a, b)× (c, d) ⊆ [0, 1]2, then for any other open set
U ⊆ [0, 1]2 after a suitable number of iterations, φn

(
(a, b)× (c, d)

)
∩ U ̸= ∅. This motivates the

idea of mixing.

Definition 1.7. Let X be a topological space and f : X → X be a homeomorphism. f is
said to be mixing if for every open non-empty sets U, V ⊆ X, there exists a N ∈ Z such that
fn(U) ∩ V ̸= ∅ for all n ≥ N

Lastly, we would like to define some notion of equivalence on dynamical systems. In other
words, we want to define some sort of morphism between topological dynamical systems.

Definition 1.8. Let X and Y be topological spaces with f : X → X and g : Y → Y being
homeomorphisms. A map between these dynamical systems φ : (X, f) → (Y, g) is defined to be
a continuous function φ : X → Y such that φ ◦ f = g ◦ φ. Furthermore,

1. If φ is surjective, φ is known as a factor map.

2. If φ is a homeomorphism, φ is known as a topological conjugacy.

If there exists a topological conjugacy between (X, f) and (Y, g), then (X, f) and (Y, g) are
said to be topologically conjugate

A particularly useful case is when there the number of pre-images for every point in the
codomain is bounded. We define this case as follows.
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Definition 1.9. A map φ : (X, f) → (Y, g) is said to be finite-to-one if there exists M ≥ 1 such
that |φ−1(y)| ≤ M for every y ∈ Y .

This case will prove quite useful in the later sections. But a simple result can be extracted
on the periodic points

Proposition 1.10. Suppose that φ : (X, f) → (Y, g) is finite-to-one. Then x ∈ X is perodic if
and only if φ(x) also is.

Proof. Suppose that x ∈ X is periodic. Then there exists an n such that fn(x) = x. Since φ is
a map,φ ◦ fn(x) = gn ◦ φ(x) = φ(x). Thus, φ(x) is a periodic.

Conversely, suppose that φ(x) is periodic. Take

φ({fn(x) : n ∈ Z ∈}) = {gn ◦ φ(x) : n ∈ Z}

Since φ is finite to one, it follows that {fn(x) : n ∈ Z} is finite if and only if φ({fn(x) : n ∈ Z})
is.

2 Smale Spaces

We will now introduce the main subject of study in this thesis. Instead of going straight to
the definition, we shall introduce a simple example that allows us to visualize the main ideas
and behaviors of a Smale space without making them seem overtly abstract. Once we have the
motivation and definition, we shall go into the properties of their hyperbolic behavior where one
set is expanding and other the contracting. We will also cover the most important theorems
such as the decomposition theorem and the shadowing lemma. This section heavily relies off of
Ruelle[13] and Putnams[10].

2.1 Motivating Example: Hyberbolic Toral Automorphism

We shall consider a famous example of a Smale space, the hyperbolic toral automorphism. This
example often also goes by Arnold’s Cat Map.

Example 2.1. Consider the linear transformation f : R2 → R2 defined by the matrix multipli-
cation:

f(v) =

[
2 1
1 1

]
v

Let A =

[
2 1
1 1

]
. An easy computation shows that the eigenvalues and corresponding eigenvectors

are

v1 =

(
1+
√
5

2
1

)
ω1 =

3 +
√
5

2

v2 =

(
1−
√
5

2
1

)
ω2 =

3−
√
5

2

Notice that 1 < ω1 and 0 < ω2 < 1. Moreover, ω−11 = ω2. So let λ = ω2 = ω−11

Using linear algebra, we can determine the action of A on vectors in R2 through the eigenbasis
of A. We can represent any vector in R2 as c1v1 + c2v2 for c1, c2 ∈ R. By linearity,

f(c1v1 + c2v2) = c1f(v1) + c2f(v2) = c1λ
−1v1 + c2λv2
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Given that the eigenvalues are either greater than or less than one, we can the effect of f on the
norm of an eigenvector to be.

∥c1v1∥ < ∥f(c1v1)∥ = λ−1∥c1v1∥ and ∥c2v2∥ > ∥f(c2v2)∥ = λ∥c2v2∥

In summary, f expands the eigenspace of ω1 and contracts the eigenspace of ω2

Now, we will use this map to induce a dynamical system on the torus T 2 which is a compact
space. We will regard the torus as the usual quotient space R2/Z2. More explicitly, for u1, u2 ∈ R2

u1 ∼ u2 if u1 + n = u2 for some n ∈ Z2

We first want to show that f descends to a well defined function on the quotient space T 2 =
R2/Z2. Suppose we had u1 ∼ u2. Since A consists of integer entries, f(Z2) ⊆ Z2

f

((
x2

y2

))
= f

((
x1

y1

)
+

(
n
m

))
= f

((
x1

y1

))
+ f

((
n
m

))

Since f

((
n
m

))
∈ Z2, it follows that f

((
x1

y1

))
∼ f

((
x2

y2

))
.

Using this knowledge let q : R2 → T 2 be the quotient space, we can define f̃ : T 2 → T 2 by

f̃(q(v)) = q(Av)

Since u1 ∼ u2 implies that f(u1) ∼ f(u2), the map is well defined. Moreover, f̃ is also invertible.
Since det(A) = 1, there exists an inverse

A−1 =

(
1 −1
−1 2

)
Also since A−1 also integer entries, by the same argument, it induces a well defined map on T 2.
Moreover, A−1 induces an inverse to f̃ defined as f̃−1(q(v)) = q(A−1v).

f̃ ◦ f̃−1(q(v)) = q(AA−1v) = q(v)

f̃−1 ◦ f̃(q(v)) = q(A−1Av) = q(v)

This gives us a dynamical system (T 2, f̃) where f̃ is a diffeomorphism. Locally, that is for
a small ϵ-ball of T 2, we have the same map v 7→ Av. As such, the total derivative in local
coordinates is simply (Df̃)x(v) = Av. We can consider the eigenbasis from earlier and let
Es

x = span{v2} and Eu
x = span{v1} at each point, we get

TxT
2 ∼= Es

x ⊕ Eu
x

And if we recall the expanding/contracting behavior for the eigenbasis with 0 < λ < 1:

∥(Df̃n)xv∥ < λn∥v∥ v ∈ Eu
x

∥(Df̃−n)xv∥ < λn∥v∥ v ∈ Es
x

Based on this expanding/contracting behavior, we can justly call Es and Eu the stable and
unstable subspaces respectively. Moreover, if we follow one of these tangent spaces, the property
expanding/contracting behavior is maintained.

9
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(Df̃n)xE
s
x = Es

f̃(x)

(Df̃n)xE
u
x = Eu

f̃(x)

Eu
x

Es
x

Eu
f̃(x)

Es
f̃(x)

f̃

Figure 4: Decomposition of Hyperbolic Toral Automorphisms Tangent Spaces

The fact that the tangent space can be decomposed into a stable and unstable vector subspace
is the underlying theme of hyperbolic dynamical systems when the underlying space is a manifold.

It is important to note that the majority of manifolds can not exhibit the same behavior as
the hyperbolic toral automorphismin discussed in Example 2.1. However, there are often subsets
of a manifold that do exhibit this behavior that do not have a manifold structure associated
to them. These are known as hyperbolic sets. Smale originally kicked off this field by defining
dynamical systems on non-wandering hyperbolic sets as Axiom A systems in [14]. More often
than not, these hyperbolic sets were not manifolds and could be of a fractal like nature. Ruelle
was able to extend the idea of a hyperbolic dynamical system in [13] to dynamical systems on a
metric space with similar behavior which we now call Smale Spaces.

2.2 Smale Space Definition

The definition of a Smale space can be rather cumbersome and unintuitive because the axioms
themselves never explicitly mention unstable and stable sets. So we will go through the axioms
and attempt to illustrate the purpose of each one.

Let (X, d) be a metric spaces and φ : X → X be a homeomorphism. We want to define the
correct axioms such that φ is hyperbolic. Recall in Example 2.1 that the hyperbolic behavior
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was captured in the tangent space. Unfortunately, a metric space need not have a tangent space,
so we must make a generalization. Again, the hyperbolic behavior is local. So to capture this
local behavior, let ϵ > 0 and define

∆ϵ = {(x, y) ∈ X : d(x, y) ≤ ϵ} (1)

The goal is to follow a small ball Bδ(x) through iterations of φ. To capture expand-
ing/contracting behavior we must determine how the distance between points within Bδ(x)
change under iterations of φ. If we return to Example 2.1 (the hyperbolic toral automorphism),
we can plot the span of the stable/unstable vectors and look at the local behavior of a ball. We
will label the span of the eigenvalues as red and blue.

(a) 0 Iterations (b) 1 Iterations

(c) 2 Iterations (d) 3 Iterations

Figure 5: Hyperbolic Matrix effect on Ball

Now, given any two sufficiently close points x, y, there exists a third point z such that x and
y lie on the stable/unstable spans respectively. Bδ(z) then follows the same process illustrated in
Figure 5 while x and y stay on their respective lines. This leads us to the idea of the bracket map

11
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which in essence finds this point given two points close enough together. Following Ruelle[13],
we will center the definition of the Smale Space around this Bracket axiom

Definition 2.2 (Smale Space). Suppose (X, d) is a metric space, ϵX > 0 is fixed, f : X → X is
a homeomorphism, and ∆ϵX ⊆ X ×X as defined in (1) with the subspace topology. Let [−,−]
be a continuous function.

[−,−] : ∆ϵX → X

Such that the following axioms hold

Bracket Axioms

(B1) [x, x] = x

(B2) [x, [y, z]] = [x, z]

(B3) [[x, y], z] = [x, z]

(B4) [f(x), f(y)] = f([x, y])

Where in each of the cases above, the expression is defined

Contraction Axioms

There exists some 0 < λX < 1

(C1) For y, z such that x = [y, x] = [z, x] and d(x, y), d(x, z) < ϵX ,

d(f(y), f(z)) ≤ λXd(y, z)

(C2) For y, z such that x = [x, y] = [x, z] and d(x, y), d(x, z) < ϵX ,

d(f−1(y), f−1(z)) ≤ λXd(y, z)

Then (X, d, f, [−,−], ϵX , λX) is known as a Smale Space. We will often refer to Smale spaces as
simply (X, f) or (X, d, f, [−,−]) when appropriate.

To connect our motivation with our definition, we will informally consider the definition of
the Smale space for next two pages. Let’s try to visualize what this bracket map is doing. First
consider Axioms (C1) and (C2). Consider the point x ∈ X reasonably close to y, z ∈ X such
that x = [y, x] = [z, x]. By the axiom, the distance between y and z will shrink and exhibit
contracting behavior. Intuitively, this is because the bracket condition is implying that they are
both in the contracting part of a neighborhood around x. Likewise, if we follow the conditions of
(C2) instead, we have contracting behavior in the inverse direction, that is expanding behavior
in the positive direction which is illustrated in Figure 6 for the hyperbolic toral automorphism.

12
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[y, x] = [z, x] = x

y

z

[x, y] = [x, z] = x

yz

Figure 6: Axioms C1 and C2 in action

For the hyberbolic toral automorphism, the bracket map is the intersection of the span of Es
x

and Eu
y for the particular points input into the bracket. It can be illustrated in Figure 7 where

the dotted lines are the part of span of the unstable/stable spaces.

13
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x

y

[x, y]

[y, x]

Figure 7: Bracket Map

Now building off of the idea that the bracket map encodes the hyperbolic behavior in the
axioms, we shall now attempt to visualize Axioms B1-B4. Given x, y ∈ X, intuitively, [x, y] is
the point such that if we follow a small enough neighborhood, then x moves away from [x, y] and
y moves towards [x, y] as we iterate the neighborhood through f . In other words, x is unstable
with respect to [x, y] and y is stable with respect to [x, y], we can visualize the bracket as in
Figure 7

Remark. It is important to note that the local stable and unstable sets (which we will rigorously
define later) need not have a unique intersection point. The illustrations shown are meant for
intuition purposely only.

We now return to consider Smale spaces and dynamical systems rigorously. Before, we talk
about the stable/unstable sets of Smale spaces, we shall state a basic property that falls out of
our definition for later proofs.

Proposition 2.3. Let (X, f) be a Smale Space. Then

1. [x, y] = x if and only if [y, x] = y

2. [x, y] = y if and only if [y, x] = x

Proof. To prove both these statements, one simply needs to apply the first three bracket axioms.
Since the proofs are almost the same, we will only prove 1.

14
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Suppose that [x, y] = x. Under the assumption we get

[y, x] = [y, [x, y]]

= [y, y] By axiom (B2)

= y By axiom (B1)

Which is what we wanted to show. Conversely, suppose that [y, x] = y. This implies

[x, y] = [x, [y, x]]

= [x, x] By axiom (B2)

= x By axiom (B1)

2.3 Stable/Unstable Behavior of Smale Spaces

Using the definition of the Smale space, we will now rigorously introduce the stable and unstable
sets that we have been discussing informally. We will also rigorously justify, the illustrations
from the previous subsection to demonstrate that we can use the stable/unstable behaviors to
create a coordinate systems via the bracket map.

Definition 2.4 (Local Stable and Unstable Sets). For x ∈ X, and 0 < ϵ ≤ ϵX , the local stable
and unstable sets for this x respectively are defined as

Xs(x, ϵ) = {y ∈ X : d(x, y) < ϵ, [y, x] = x}

Xu(x, ϵ) = {y ∈ X : d(x, y) < ϵ, [x, y] = x}

Similar to what was discussed earlier in the previous section, [x, y] picks out a stable point
with respect to x and an unstable point with respect to y. More precisely, we have the following.

Proposition 2.5. Let x, y ∈ X for a Smale space (X, f) such that d(x, y) < ϵX . Then for all
0 < ϵ ≤ ϵX

1. If d(x, [x, y]) < ϵ, then [x, y] ∈ Xs(x, ϵ)

2. If d(y, [x, y]) < ϵ, then [x, y] ∈ Xu(y, ϵ)

Proof. We will assume that d(x, [x, y]), d(y, [x, y]) < ϵ ≤ ϵX and thus the bracket is defined.
Now, take

[[x, y], x] = [x, x] By axiom (B3)

= x By axiom (B1)

Since d(x, [x, y]) < ϵX and [[x, y], x] = x, by definition [x, y] ∈ Xs(x, ϵX). Likewise,

[y, [x, y]] = [y, y] By axiom (B2)

= y By axiom (B1)

and once again [x, y] ∈ Xs(y, ϵX)
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Despite the expanding/contracting behavior not being directly in the definition of the local
stable/unstable sets, these sets do indeed exhibit said behavior. The following lemma demon-
strates that points move together forwards or backwards in time and can become arbitrarily close
given enough time.

Lemma 2.6. Let (X, d, f, [−,−]) be a Smale space. There exists a ϵ1 > 0 such that for all
0 < ϵ ≤ ϵ1, and all x, y ∈ X

1. d(fn(x), fn(y)) < ϵ for all n ≥ 0 if and only if y ∈ Xs(x, ϵ)

2. d(fn(x), fn(y)) < ϵ for all n ≤ 0 if and only if y ∈ Xu(x, ϵ)

Proof. We will only prove the first statement because the second statement requires an almost
identical argument. First, using the continuity of [−,−], there exists 0 < ϵ1 ≤ ϵX such that

d(x, y) < ϵ1 =⇒ d(x, [y, x]), d(x, [x, y]) < ϵX

Take 0 < ϵ ≤ ϵ1. Now fix some x, y ∈ X such that d(fn(x), fn(y)) < ϵ for all n ≥ 0. We want to
show that y ∈ Xs(x, ϵ). Notice

d(fn(x), fn(y)) < ϵ ≤ ϵX By assumption

Which implies [fn(y), fn(x)] is well defined.
By axiom (B2) x = [x, x] = [x, [y, x]]. By axiom (B4), we also have fn(x) = [fn(x), fn(x)] =

[fn(x), fn([y, x])]. Due to this property, we have

d(f−1 ◦ fn(x), f−1 ◦ fn([y, x])) ≤ λXd(fnx, fn([y, x])) By axiom (C2)

We can apply this process n times to get

d(x, [y, x]) ≤ λn
Xd(fn(x), fn([y, x]) By n applications of C2

< λn
XϵX By choice of ϵ1

Since this holds for any n, we can take n to infinity to get d(x, [y, x]) = 0 which of course
implies x = [y, x] and y ∈ Xs(x, ϵ).

Conversely, now assume that y ∈ Xs(x, ϵ). By definition x = [y, x] = [x, x] By axiom (C1),
we have

d(fn(y), f(x)) < λn
Xd(y, z) < ϵ ≤ ϵX

Thus, [fn(y), fn(x)] is defined. Now, fix any n and apply axiom (B4) n times to get, fn(x) =
[fn(y), fn(x)] = [fn(x), fn(x)]. Then once again,

d(fn(y), fn(x)) ≤ λn
Xd(y, x) By n applications of axiom (C1)

≤ λn
Xϵ By definition of Xs(x, ϵ)

< ϵ

Which is what we wanted to show.
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These stable and unstable sets hold important topological information. When restricted to a
small enough ϵ, Xu(x, ϵ) ×Xs(x, ϵ) is a neighborhood of x ∈ X. This was illustrated in Figure
7 which we will rigorously state and prove in the following theorem.

Theorem 2.7. There exists 0 < ϵ′X ≤ ϵX
2 such that for every 0 < ϵ < ϵ′X the bracket map

restricted to
[−,−] : Xu(x, ϵ)×Xs(x, ϵ) → X

is a homeomorphism onto its image which is open in X

Proof. Fix some x ∈ X. Since [−,−] is continuous in both variables, both [x,−] and [−, x] are
continuous. Thus, there exists some 0 < δ ≤ ϵX such that d(x, y) < δ implies d([x, x], [x, y]) <
ϵX/2 and d(x, y) < δ implies d([x, x], [y, x]) < ϵX/2 . And of course by axiom (B1), [x, x] = x.
In summary, this gives us a δ such that

d(x, y) < δ ≤ ϵX =⇒ d(x, [x, y]) <
ϵX
2

d(x, y) < δ ≤ ϵX =⇒ d(x, [y, x]) <
ϵX
2

Once again, by definition of continuity for [−,−], there exists 0 < ϵX ≤ ϵ′X/2 such that

d(x, y), d(x, z) < ϵ′X =⇒ d(x, [y, z]) < δ ≤ ϵX

Now, we wish to show that the bracket map restricted to Xu(x, ϵ)×Xu(x, ϵ) is well defined for
any 0 < ϵ ≤ ϵ′X . By definition, for y ∈ Xu(x, ϵ) and z ∈ Xs(x, ϵ), we have d(x, y), d(x, z) <
ϵ ≤ ϵ′X ≤ ϵX

2 . By the triangle inequality, d(y, z) ≤ d(x, y) + d(x, z) < ϵX and thus [y, z] is well
defined.

We now wish to defined an inverse of [−,−] restricted to Xu(x, ϵ) × Xu(x, ϵ). Define the
following function

F (y) = ([y, x], [x, y])

which is continuous due to the bracket being continuous. Now, compose the bracket and F for
d(x, y) < ϵ′X to get

[−,−] ◦ F (y) =
[
[y, x], [x, y]

]
=
[
y, [x, y]

]
By axiom (B3)

= [y, y] By axiom (B2)

= y By axiom (B1)

Now, for the opposing composition, pick y ∈ Xu(x, ϵ) and z ∈ Xs(x, ϵ) to get

F ([y, z]) =
([

[y, z], x
]
,
[
x, [y, z]

])
=
(
[y, x], [x, z]

)
By axioms (B2) and (B3)

By definition, of Xu(x, ϵ) and Xs(x, ϵ), [x, y] = x and [z, x] = x. It follows that

= (y, z) By Proposition 2.3

Thus, [−,−] restricted to Xu(x, ϵ) × Xs(x, ϵ) is a homeomorphism onto it’s image. We now
wish to show that the image of this map is an open set in X. Once again, let y ∈ Xu(x, ϵ) and
z ∈ Xs(x, ϵ). Since [−,−] is continuous with an inverse of F , we have

F (B([y, z], δ′(y,z))) ⊆ B(x, ϵ− d(x, y))×B(x, ϵ− d(x, z)) ⊆ Xu(x, ϵ)×Xs(x, ϵ)
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We can then apply F−1 = [−,−] to determine that B([y, z], δ′(y,z)) is contained within the

image of [−,−]. Now, take ⋃
(y,z)∈Xu(x,ϵ)×Xs(x,ϵ)

B([y, z], δ′(y,z))

To get the image of [−,−] which of course is a union of open balls and is thus open.

Theorem 2.8. Let (X, d, f, [−,−]) be a Smale Space. There exists some ϵ1 such that d(x, y) ≤ ϵX
and d(x, [x, y]), d(y, [x, y]) < ϵ1,

{[x, y]} = Xs(x, ϵ1) ∩Xu(y, ϵ1)

=
⋂
n∈Z

{z ∈ X : d(f−n(y), f−n(z)), d(fn(x), fn(z)) < ϵ1}

Proof. Let ϵ1 be the one defined in Lemma 2.6. We have the following set equivalence

⋂
n∈Z

{z ∈ X : d(f−n(y), f−n(z)), d(fn(x), fn(z)) < ϵ1}

=

∞⋂
n=0

{z ∈ X : d(f−n(y), f−n(z)), d(fn(x), fn(z)) < ϵ1}

=

∞⋂
n=0

(
{z ∈ X : d(f−n(y), f−n(z)) < ϵ1} ∩ {z ∈ X : d(fn(x), fn(z)) < ϵ1}

)
=

( ∞⋂
n=0

(
{z ∈ X : d(f−n(y), f−n(z)) < ϵ1}

)

∩

( ∞⋂
n=0

(
{z ∈ X : d(fn(x), fn(z)) < ϵ1}

)
= Xu(y, ϵ1) ∩Xs(x, ϵ1) By Lemma 2.6

We now would like to show that the set above is a singleton. By Proposition 2.5, we must have
[x, y] ∈ Xu(y, ϵ1) and [x, y] ∈ Xs(x, ϵ1). Thus {[x, y]} ⊆ Xu(y, ϵ1) ∩Xs(x, ϵ1).

Now take z ∈ Xu(y, ϵ1) ∩Xs(x, ϵ1). By definition, [y, z] = y and [z, x] = x. Furthermore,

[z, y] = z [x, z] = z By Proposition 2.3

It then follows that

z = [z, y]

= [[x, z], y]

= [x, y] By axiom (B2)

Thus, it follows that Xs(x, ϵ1) ∩Xu(y, ϵ1) = {[x, y]} which is what we wanted to show.

Now, we shall return our attention to global stable/unstable sets. Recall the stretching of a
ball in the hyperbolic toral automorphism in Figure 5. The ball rapidly flattens until it almost
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looks like a line. In Figure 5, we do not take the ball in the quiotent space. If we were to follow
a ball on T 2, it would look like

(a) 0 Iterations (b) 1 Iterations (c) 2 Iterations

(d) 3 Iterations (e) 4 Iterations (f) 5 Iterations

(g) 6 Iterations

Figure 8: Hyperbolic Toral Automorphism on Ball

We can see the ball flatten itself extremely thin and wrap around the torus. Now, if we also
focus on the ball itself, and the unstable/stable sets (T 2)u(x, ϵ) and (T 2)s(x, ϵ)
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(a) -2 Iterations (b) -1 Iterations

(c) 0 Iterations

(d) 1 Iterations (e) 2 Iterations

Figure 9: Hyperbolic Toral Automorphism Ball Stable/Unstable Growth
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Notice that in Figure 9, we denote the stable local set (T 2)s(x, ϵ) as blue and the unstable local
set (T 2)u(x, ϵ) as red. The entire ball B(x, ϵ) squashes down into into the other sets depending
if the iterations increase or decrease. Then, this ball wraps around the entire torus as illustrated
in 8. This brings up multiple properties we will further investigate. The first being, how does
the local stable/unstable sets related to global stable/unstable behavior? This of course requires
us to define global/unstable sets which we will do shortly. Then what would this global set look
like? Would it always be dense in the entire space?

We shall now rigorously define the global stable/unstable set.

Definition 2.9 (Stably/Unstably Equivalence). We define the following relations to be stably
equivalent and unstably equivalent respectively

x
s∼ y ⇐⇒ lim

n→∞
d(fn(x), fn(y)) = 0

x
u∼ y ⇐⇒ lim

n→∞
d(f−n(x), f−n(y)) = 0

Moreover, if two points are both stably and unstably equivalent, they are said to be homoclinic

x
h∼ y ⇐⇒ lim

|n|→∞
d(fn(x), fn(y)) = 0

Definition 2.10 (Global Stable/Unstable Sets). Take some x ∈ X, the global stable/unstable

sets are defined to be the equivalence classes of
s∼ and

u∼ respectively. We will denote these by
Xs(x) and Xu(x). Likewise, the equivalence class points homoclinic to x is denoted Xh(x)

The sets are crucial to understanding the behavior of a Smale space. One such example where
the proof can be found in [11]. It gives a necessary and sufficient condition for when the Smale
space is mixing.

Theorem 2.11. (X, f) is a mixing Smale space if and only if the global unstable and stable sets
Xs(x) and Xu(x) are dense for every x ∈ X and any x, y ∈ X, Xs(x) ∩Xu(y) is also dense in
X

Now, in order to draw a connection to the global and local behavior, we will rigorously
investigate the stretching of the stable/unstable sets illustrated in Figure 9 with the following
lemma

Lemma 2.12. Let (X, f) be a Smale space, 0 < ϵ ≤ ϵX , and x ∈ X. Then

f(Xs(x, ϵ)) ⊆ Xs(f(x), λXϵ) ⊆ Xs(f(x), ϵ) (2)

f−1(Xu(x, ϵ)) ⊆ Xu(f−1(x), λXϵ) ⊆ Xu(f−1(x), ϵ) (3)

Proof. We will once again only prove one of the statements as the second one has am almost
identical proof. Take any f(y) ∈ f(Xs(x, ϵ)). By definition we have d(x, y) < ϵ and [y, x] = x.
Since d(f(y), f(x)) ≤ λXd(y, x) < λXϵ < ϵX , [f(y), f(x)] By axiom (C1) is defined. Moreover,
by axiom (B4), we also have [f(y), f(x)] = f(x).

Since d(f(x), f(y)) < λXϵ and [f(y), f(x)] = f(x), it follows that f(y) ∈ Xs(f(x), λXϵ) ⊆
Xs(f(x), ϵ) which is what we wanted to show.

Lemma 2.12 demonstrates that the local unstable/stable sets do indeed contradict/expand
in the way we expect them to. As we take our iterations to infinity in the positive direction, the
local unstable sets should stretch out to encapsulate the global unstable set. This connection
between the global and local sets comes from the following proposition.
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Proposition 2.13. Let x ∈ X and 0 < ϵ ≤ ϵX , then

Xs(x) =

∞⋃
n=0

f−n(Xs(fn(x), ϵ))

Xu(x) =

∞⋃
n=0

fn(Xu(f−n(x), ϵ))

Proof. We will only show one of the properties above. Suppose that y ∈ Xs(x) or in other words,

x
s∼ y. Let ϵ1 be from Lemma 2.6 and define ϵ′ = min{ϵ, ϵ1}. By definition, there exists N ∈ N

such that

d(fn(x), fn(y)) < ϵ′ for all n ≥ N

Hence, by Lemma 2.6, fN (y) ∈ Xs(fN (x), ϵ). Thus, y ∈ f−N (Xs(fN (x), ϵ)). It follows that
Xs(x) ⊆

⋃∞
n=0 f

−n(Xs(fn(x), ϵ)).
Conversely, notice that from Lemma 2.12 that if y ∈ Xs(x, ϵX), then for every n, fn(y) ∈

Xs(fn(x), ϵX) and
d(fn(y), fn(x)) ≤ λn

Xd(x, y)

Taking n → ∞ gives limn→∞ d(fn(y), fn(x)) = 0 and x ∼ y. Thus we have Xs(x, ϵX) ⊆ Xs(x).
This implies f−n(Xs(fn(x), ϵ)) ⊆ Xs(x).

One immediate consequence of the previous proposition is that our bracket map is contained
within the stable and unstable sets of their respect arguments. We get an analogous statement
to Theorem 2.8, but this time for the global sets

Proposition 2.14. For a Smale Space (X, f) and x, y ∈ X such that d(x, y) < ϵX , then [x, y] ∈
Xs(x) ∩Xu(y)

Proof. From Proposition 2.5, we have [x, y] ∈ Xs(x, ϵ) and [x, y] ∈ Xu(y, ϵ) for small enough
0 ≤ ϵ ≤ ϵX . It follows from Proposition 2.13 that [x, y] ∈ Xs(x) and [x, y] ∈ Xu(y) which is
what we wanted to show.

We would like to look at the structure of the global stable and unstable sets. Once again,
recall the hyperbolic toral automorphism. We have

(T 2)u(q(x), ϵ) = {q(x+ tv1) : |t| ≤ ϵ}

(T 2)s(q(x), ϵ) = {q(x+ tv2) : |t| ≤ ϵ}
Just as we illustrated earlier, we get the global sets

(T 2)u(q(x)) = {q(x+ tv1) : t ∈ R}
(T 2)s(q(x)) = {q(x+ tv2) : t ∈ R}

and since both v1 and v2 have irrational components, the global stable and unstable sets are
dense within T 2. Moreover, each of these sets are in one-to-one correspondence to R defined by
q(x + tv1) 7→ t. This function is invertible and its inverse t 7→7→ q(x + tv1) is an immersion. It
is clear that these global sets are non-embedded submanifolds which imply that we cannot use
the subspace topology on these sets.

For a less smooth example, we shall introduce another famous example known as the n-
solenoid.
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Example 2.15 (n-Solenoid). Let S1 = R/Z be the circle. We shall denote elements of S1

as equivalence classes using the notation [z]Z for z ∈ R. Let n ≥ 2 and define the functions
gn : S1 → S1

gn([z]Z) = [nz]Z

Now, define the n-solenoid as the inverse limit:

Sn = lim
←−

(S1, gn) = {(z0, z1, . . . ) : gn(zk+1) = zk, k ≥ 1}

With the metric

d((xi)i∈n, (yi)i∈n) =

∞∑
i=0

1

ni
inf{|xi − yi +m| : m ∈ Z}

We can also define a function fn : Sn → Sn via fn =
∏

i∈N gn. So,

(z0, z1, z2, . . . )
fn7→ (gn(z0), gn(z1), gn(z2), . . . )

= (gn(z0), z0, z1, . . . )

Define f−1n to be the shift to the left map. Notice that this is indeed an inverse.

(z0, z1, z2, . . . )
fn7→ (gn(z0), z0, z1, . . . )

f−1
n7→ (z0, z1, z2, . . . )

(z0, z1, z2, . . . )
f−1
n7→ (z1, z2, z3, . . . )

fn7→ (gn(z1), gn(z2), gn(z3), . . . )

= (z0, z1, z2, . . . )

The left shift is clearly continuous. Since fn is the product of continuous functions restricted to
Sn, it is also continuous. Thus fn is a homeomorphism. Moreover, we can define the bracket
map for ϵSn = 1/2,

[(xi)i∈N, (yi)i∈N] =

(
yi +

x0 − y0
ni

)
i∈N

It is left as an exercise to show that Sn, fn, ϵSX
, λ < n−1, and [−,−] above define a Smale

space. Once that is done, the next reasonable step is to look at what kind of stable/unstable sets
there are. So fix some (xi)i∈N ∈ Sn and consider the case in which [(yi)i∈N, (xi)i∈N] = (xi)i∈N,
we get

(xi)i∈N = [(yi)i∈N, (xi)i∈N] =

(
xi +

y0 − x0

ni

)
i∈N

By comparing each index, we get xi = xi +
y0−x0

ni
which implies that x0 = y0. This gives us

Ss
n((xi)i∈N, ϵ) = {(yi)i∈N ∈ Sn : y0 = x0, d((xi)i∈N, (yi)i∈N) < ϵ}
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Notice if we fix K ≥ 1

Ss
n((xi)i∈N, n

−K) = {(yi)i∈N : yi = xi, 0 ≤ i ≤ K}

Similarly, if [(xi)i∈N, (yi)i∈N] = (xi)i∈N. We can note that

(xi)i∈N = [(xi)i∈N, (yi)i∈N] =

(
yi +

x0 − y0
ni

)
i∈N

And
Su
n(x, ϵ) = {(yi)i∈N ∈ Sn : yk = xk + t−nk, |t| < ϵ}

Notice for the stable set, for each i > K, there are n possibilities for yK+1, then each of these
n possibilities yield n possibilities, meaning that there are nn possible values for (yK+1, yK+1).
Using this fact, one can show that Ss

n((xi)i∈N, n
−K) is a Cantor set. Likewise, we can notice

that Ss
n(x, ϵ) is in one-to-one correspondence with an interval. Proposition 2.13 tells us that

the global unstable set is euclidean and the stable set is cantor which varies greatly from the
topology of the solenoid itself.

There are a huge amount of solenoid examples. Wieler was able to come up with a condition
in which one could construct a Smale space out of an inverse limit. Moreover, she discovered
that a Smale space would have to be topologically conjugate to a space of this form if the local
stable sets is totally disconnected. The following two theorems can be found in [15]

Theorem 2.16 (Wieler’s Theorem A). Let (Y, d) a compact metric space and g : Y → Y be
continuous and surjective. If there exists constants β > 0, K ≥ 1, and 0 < γ < 1 such that

1. If d(x, y) ≤ β
d(gK(x), gK(y)) ≤ γKd(g2K(x), g2K(y))

2. For all x ∈ Y and 0 < ϵ ≤ β,

gK(B(gK(x), ϵ)) ⊆ g2K(B(x, γϵ))

Then (
lim
←−

(Y, g),
∏
n∈N

g

)
is a Smale Space with totally disconnected local stable sets

Theorem 2.17 (Wieler’s Theorem B). Let (X, f) be an irreducible Smale space with totally
disconnected local stable sets. Then (X, f) is topologically conjugate to a Smale space constructed
as in Wieler’s Theorem A.

With the two examples above, one may note that the subspace topology on the global stable
and unstable sets may not give us useful information due the density or behavior of the sets.
We wish to define a different topology on Xs(x) and Xu(x) and we will rely off on union in
Proposition 2.13 by using the the inductive limit topology of this union. We conclude this
section by listing off the important point set topological properties of our global stable/unstable
sets[11].

Theorem 2.18. Let the topology of the global stable and unstable be define by the basis in 1,2.
The following properties also follow.
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1. Xs(y, ϵ) for 0 ≤ ϵ ≤ ϵX form a basis for the topology of Xs(x)

2. Xu(y, ϵ) for 0 ≤ ϵ ≤ ϵX form a basis for the topology of Xu(x)

3. Xs(x) and Xu(x) are locally compact and Hausdorff

4. A sequence yn ∈ Xs(x) converges to y if and only if yn → y in X and [yn, y] = y for all
n ≥ N for some N

5. A sequence yn ∈ Xu(x) converges to y if and only if yn → y in X and [y, yn] = y for all
n ≥ N for some N

6. f : Xs(x) → Xs(f(x)) is a homeomorphism

7. f : Xu(x) → Xu(f(x)) is a homeomorphism

2.4 The Shadowing Lemma

In the previous section, we have built up the main structure of Smale spaces. These ideas and
tools will prove invaluable for unraveling important properties of these systems. Dynamical
systems, Smale spaces included, can often be quite chaotic. This makes dynamical difficult to
simulate on computers. However, the extra structure of stable/instability allows us to extract
information about these systems using the tools we just developed.

We will first introduce the idea of shadowing and pseudo-orbits which allow us to track the
trajectory of points. Then, we will connect it the concept of mixing.

The idea of a pseudo-orbit is similar to the idea of an orbit. We will slightly reword the
definition of a orbit from Definition 1.5 for some dynamical systems (X, f). An orbit is a
countable set of points {xn}n∈Z such that xn+1 = f(xn). That is, for this countable set of
points, the function f points towards the next point. We can then generalize this statement to
a pseudo-orbit by allowing f(xn) to be close to xn+1. To make a hazy analogy, one can image
that a countable set of points {xn} want to be an orbit, but f is slightly inaccurate and f shoots
xn to a point nearby xn+1. We illustrate this in Figure 10 by allowing red points to be f(xi)
and black points being element of the sequence {xn}

x1

x2

x3

x4

x5

x6

f(x1)

f(x2)
f(x3)

f(x4)

f(x5)
ϵ

Figure 10: ϵ-Pseudo-orbit
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Definition 2.19 (Interval in Z). I = (a, b) is said to be an interval in Z, if it is of the form

I = (a, b) = {n ∈ Z : a < n < b}

For a ∈ Z ∪ {−∞} and b ∈ Z ∪ {∞}
Definition 2.20 (ϵ-Pseudo-Orbit). Let (X, d) be a metric space and f : X → X be a homeo-
morphism. Let ϵ > 0. An ϵ-pseudo-orbit over a non-empty interval I over Z is a collection of
points {xn}∈I such that for each n, n+ 1 ∈ I,

d(f(xn), xn+1) ≤ ϵ

Of course, we can see that the Orb(x) = {xn}n∈I is an ϵ-psuedo orbit since d(f(xn), xn+1) =
d(xn+1, xn+1) = 0.

Definition 2.21 (δ-Shadowing). Let ϵ > 0 and δ > 0. Let xn be an ϵ-pseudo orbit over I. We
say that xn is δ-shadowed by (the orbit of) x if for all n ∈ I

d(xn, f
n(x)) ≤ δ

Pseudo orbits that are shadowed by an orbit are an incredible useful tool. We wish to prove
that pseudo-orbits can be shadowed in Smale spaces. In order to do so, we must prove a statement
about the behavior of the local stable set of points if we have the behavior of an pseudo-orbit.
Namely, when d(f(xn), xn+1) < ϵ.

Lemma 2.22. Let 0 < δ1 ≤ ϵX . There exists an ϵ > 0 such that if d(f(x), x′) < ϵ, then for all
z ∈ Xs(x, δ1), d(x

′, f(z)) ≤ ϵX and [x′, f(z)] ∈ Xs(x′, δ1).

Proof. Define the compact set

A = {(x, y, z) : d(x, y), d(y, z) ≤ ϵX/2, [y, z] = z}

Also define the function g : A → R as

g(x, y, z) = d(x, [x, z])− d(y, z)

Since both the bracket and the metric are continuous so is g. Moreover, since A is compact, g is
uniformly continuous. If x = y in A, then

g(y, y, z) = d(y, [y, z])− d(y, z)

= d(y, z)− d(y, z)

= 0

Thus, by uniformly continuity, there exists 0 < ϵ < δ1(1− λX) such that

d(x, y) < ϵ =⇒ |h(x, y, z)| < δ1(1− λX)

Now, take z ∈ Xs(x, δ1), x, x′ ∈ X such that d(f(x), x′) < ϵ. It follows from the prior
statements that

d(x′, f(z)) ≤ d(x′, f(x)) + d(f(x), f(z)) Triangle inequality

≤ ϵ+ λXd(x, z) Axiom C1 and assumption

≤ ϵ+ λXδ1 Since z ∈ Xs(x, δ1)

≤ (1− λX)δ1 + λXδ1

= δ1

≤ ϵX
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This gives us that [x′, f(z)] is well defined and d(x′, f(z)) ≤ ϵX which is the first thing we wanted
to show. Also notice that d(x′, f(x)), d(f(x), x) ≤ ϵX/2 and [f(x), f(z)] = f([x, z]) = z. Thus,
(x′, f(x), f(z)) ∈ A. By our uniform continuity argument, since d(x′, f(x)) < ϵ, we get

|h(x′, f(x), f(z))| = |d(x′, [x, f(x)])− d(f(x), f(z))|
< δ1(1− λX)

We can then use this inequality to get

d(x′, [f(x), f(z)]) ≤ |d(x′, [x, f(x)])− d(f(x), f(z))|+ d(f(x), f(z))

≤ δ1(1− λX) + λXd(x, z)

≤ δ1(1− λX) + λXδ1

= δ1

And lastly, [x′, f(z)] ∈ Xs(x′, δ1) from Proposition 2.5

Using this lemma, we can show that δ-shadowing is common in Smale spaces which attests
to the accuracy of pseduo-orbits. When used in the differential scenario, the following theorem
is often called the ”Shadowing Lemma.”

Theorem 2.23. Let (X, f) be a Smale space. For any δ > 0, there exists a ϵ > 0 such that
every ϵ-psuedo orbit in X is δ-shadowed by an orbit of X

Proof. Let δ > 0. We may choose a 0 ≤ δ1 ≤ ϵX/2 such that

[Xu(x, δ1), X
s(x, δ1)] ⊆ B(x, δ)

For any x ∈ X. Given this δ1, we can choose an ϵ > 0 according to Lemma 2.22 and let xn be
an ϵ-pseduo-orbit in X

Consider the case in which I = (a, b) is finite. Without loss of generality, suppose that a < 0
and b > 0. Now according the previous lemma, the following functions are well defined

gs,n : Xs(xn, δ1) → Xs(xn+1, δ1) gs,n(y) = [xn+1, f(y)] a < n < b− 1

gu,n : Xu(xn, δ1) → Xs(xn−1, δ1) gu,n(y) = [f−1(y), xn−1] a+ 1 < n < b

Now, let gs and gu be defined by the respective functions above as follows.

gs :
⋃
n∈I

Xs(xn, δ1) →
⋃
n∈I

Xs(xn+1, δ1) gu
⋃
n∈I

: Xu(xn, δ1) →
⋃
n∈I

Xs(xn−1, δ1)

gs|Xs(xn,δ1) = gs,n gu|Xu(xn,δ1) = gu,n

For each a < n < b define

Sn = [hb−1+n(Xu(xb−1, δ1)), g
1−a+n(Xs(xa+1, δ1))]

We clearly have for all a < n < b,

gb−1+n
u (Xu(xb−1, δ1)) ⊆ Xu(xn, δ1) g1−a+n

s (Xs(xa+1, δ1)) ⊆ Xs(xn, δ1)

Moreover, from our initial choice of δ1, Sn ⊆ B(xn, δ).

27



An Introduction to Smale Spaces and their Homology R. Huq

We want to show that f(Sn) = Sn+1. Take any y ∈ Xs(xa+1, δ1) and z ∈ Xu(xb−1, δ1) and
set y′ = gn−a−1s (y) and z′ = gn−bu (z). This gives us [gu(z

′), y′] ∈ Sn and [z′, gs(y
′)] ∈ Sn+1. Any

element of Sn and Sn+1 can be found this way. All is that is left to show is that f takes one to
the other. Through multiple usages of our assumptions, we get

f([gu(z
′), y′] = f

([
[f−1(z′), xn], y

′])
=
[
f
(
[f−1(z′), xn]

)
, f(y′)

]
= [[z′, f(xn)], f(y

′)]

= [z′, f(y′)]

= [z′, [xn+1, f(y
′)]]

= [z′, g(y′)]

However, this implies that any x ∈ S0 will have an orbit that δ-shadows the pseudo-orbit.
Now consider the case in which I = Z. Define the set

S(n) = [gn−1u (Xu(xn−1, δ1)), g
n−1
s (Xs(x1−n, δ1))]

By the previous case, all elements of S(n) will δ-shadow the pseudo orbit over (−n, n). Moreover,

the same property holds for the closure S(n). Thus, we have S(n) ⊇ S(n+1) ⊇ S(n+2) ⊇ . . .
for any n. This gives us

⋂
n∈Z S

(n) is non-empty and will have elements that δ-shadow the
pseudo-orbit over Z.

Due to computational error, the calculations of a computer on a dynamical system are pseudo
orbits. The shadowing lemma tells us that these pseudo-orbits can still be somewhat trusted as
they are shadowed by an orbit of (X, f).

2.5 Decompositions of Smale Spaces

Suppose we had two Smale spaces (X, f) and (Y, g). It is clear that if we take the disjoint union,
then (X ⊔ Y, f ⊔ g) is also a Smale space. An important question to ask is when can we do this
in the opposing direction? That is, given a Smale space (X, f) does there exist a partition of X,
{Ai}ni=1 such that each (Ai, f |Ai

) is a Smale space? In order to answer this question, we shall
first introduce a definition that hints at the criterion of such a procedure.

Definition 2.24 (Irreducible). Let X be a topological space and f : X → X be a homeomor-
phism. (X, f) is said to be irreducible if for every ordered pair of non-empty open sets U, V ⊆ X,
there exists a positive integer n such that fn(U) ∩ V ̸= ∅

Notice that this is a slightly weaker of version of mixing in Definition 1.7 where there only
needs to be a single n in question. Notice that mixing, non-wandering, and irreducible all have
similar definitions and have the following relationship.

mixing =⇒ irreducible =⇒ non-wandering

The converses of the above relationship do not hold. Two counter examples that demonstrate
this are as follows

Example 2.25. Let (X, f) and (Y, g) are irreducible Smale spaces. Now, consider the Smale
space (X ⊔ Y, f ⊔ g). We will show that (X ⊔ Y, f ⊔ g) is non-wandering. Take x ∈ X ⊔ Y
and suppose that x ∈ X. Take any non-empty open neighborhood of x, U ⊔ V ⊆ X ⊔ g with
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U ⊆ X and V ⊆ X. Since f is non-wandering, there exists an n such that fn(U)∩U ̸= ∅ which
implies that fn ⊔ gn(U ⊔ V ) ∩ (U ⊔ V ) = fn(U) ⊔ gn(V ) ̸= ∅. If x ∈ Y , the proof is similar and
hence omitted. This shows that (X ⊔ Y, f ⊔ g) is non-wandering. However, (X ⊔ Y, f ⊔ g) is not
irreducible.

Secondly, we can show that this Smale space is not irreducible. If we choose U ⊆ X and
V ⊆ Y , since fn(U) ∩ Y = ∅ for every n, then fn(U) ∩ V = ∅ for every n and we cannot be
irreducible.

Let (X, f) is a mixing Smale space, we can define F : X × Z/nZ → X × Z/nZ, define by
F (x, k) = (f(x), k + 1) with the metric induced from viewing X × Z/nZ as

⊔n
i=1 X. Now, if we

take U × kU ⊆ X × Z/nZ and V × kV ⊆ X × Z/nZ, notice that for large enough N , and i ≥ N
fn(U × kU ) ∩ V × kV ̸= ∅ if kU + i ≡ kV mod n. Thus it is nonempty every n iterations and
empty in the other cases. This mean that F is irreducible but not mixing.

What is incredible about the construction of the Smale spaces in Example 2.25 is that all
non-wandering Smale spaces decompose into a finite set of disjoint irreducible Smale spaces.
Similarly, an irreducible Smale space can be decomposed into a finite set of mixing Smale spaces
where the function cyclically permutes through them.
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f |X1

f |X2

f |X3

f |X4

f |X5

f |X6

f |X7

Figure 11: Decomposition of an Non-wandering Smale Space in Irreducible Sets

Theorem 2.26. Let (X, f) be a non-wandering Smale space. Then there exists clopen, pairwise
disjoint, f -invariant subsets unique up to relabeling X1, ..., Xn ⊆ X such that for each i,

(1)
⊔n

i=1 Xi = X

(2) (Xi, f |Xi
) is irreducible

f

f

f

Figure 12: Decomposition of an Irreducible Smale Space into Cyclic Permuting sets

Theorem 2.27. Let (X, f) be an irreducible Smale space. There exists clopen pairwaise disjoint
sets X1, ..., Xn such that
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(1) The sets are cyclicly permuted by f

(2) (Xi, f
n) is mixing for every i

The proofs of these theorems are rather technical, but can be found in [13] and [1]. But the
key is that we can focus on mixing Smale spaces as non-wandering and irreducible Smale spaces
can be decomposed into such spaces.

2.6 Axiom A Systems

Historically, the hyperbolic behavior where we contract and expand in different directions was
first observed on subsets of manifolds. Following Ruelle, we’ve managed to generalize to arbitrary
metric spaces, the study of this flavor of dynamics is very much alive and we can apply the theory
of Smale spaces to subsets of manifolds.

Definition 2.28. Let M be smooth Riemannian manifold and f : M → M be a diffeomorphism.
Let Λ ⊆ M . Λ is said to be hyperbolic if it is closed and for each x ∈ Λ, f(Λ) = Λ, there exists
a splitting

TxM = Eu
x ⊕ Es

x

such that

(a) Df(Eu
x ) = Eu

f(x) and Df(Es
x) = Es

f(x)

(b) there exists constants c > 0 and 0 < λ < 1 such that

∥Dfn(v)∥ ≤ cλn∥v∥ when v ∈ Es
x, n ≥ 0

and
∥Df−n(v)∥ ≤ cλn∥v∥ when v ∈ Eu

x , n ≥ 0

Remark. It is important to note that hyperbolic sets of M are often not submanifolds.

Proposition 2.29. Let (M, g) be a smooth Riemannian manifold, f : M → M be a diffeomor-
phism and Λ ⊆ M be hyberbolic. Then Λ is hyperbolic with respect to any Riemmanian metric
on M . Furthermore, there exists a metric such that c = 1.

Remark. Since there always exists a metric such that c = 1, whenever referring to a hyperbolic
set, we will make the assumption that the metric has c = 1.

Recall that NW(X, f) denotes the set of non-wandering points in a dynamical system.

Definition 2.30. f : M → M is said to satisfy Axiom A if NW(M,f) is hyperbolic and
NW(M,f) = Per(M,f)

Many of the theorems we have already discussed were first proven for Axiom A systems. The
bracket first being defined by Smale in [14]. It was known as the canonical coordinates before
Smale spaces were defined.

Theorem 2.31. If f : M → M is said to satisfy Axiom A, then (NW(M,f), f) is a Smale
space.
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Example 2.32. Once again, we can refer to our poster child example, the hyperbolic toral
automorphism. However, this time we can present it in more generality. Let Tn = Rn/Zn be
the n-torus. Let A be a n×n invertible matrix with eigenvalues λ1, ..., λn such that 0 < |λi| ≠ 1
for all i and there exists at least one |λj | > 1 and at least one |λk| < 1. Then the induced map

f̃ on Tn once again has the splitting property

TxT
n = Eu

x ⊕ Es
x

where Eu
x corresponds to the span of the eigenvalues with magnitude greater than 1, and Es

x

corresponds to the span of the eigenvalues with magnitude less than 1. Since the dervative is
precisely the matrix A at this point, we get the expanding and contracting behavior of an axiom
A system. Moreover, another important aspect is that the hyperbolic set is the entire manifold.

Definition 2.33. f : M → M is said to be an Anosov diffeomorphism if M itself is hyberbolic.

It is currently still an open problem to classify which manifolds can admit Anosov diffeo-
morphisms as the majority of manifolds cannot. A powerful theorem in this pursuit is the
Franks-Newhouse Theorem[6]

Theorem 2.34 (Franks-Newhouse Theorem). Let f : M → M is an Anosov differomorphism
on a compact Riemmannian manifold. If each such that each Eu

x is codimension one or each Es
x

is codimension one, then f is topologically conjugate to an hyperbolic toral automorphism.

3 Shifts of Finite Type and Maps Between Smale Spaces

Shifts of finite type are crucial example of Smale Spaces. Not only do they have interesting
properties and play a major role in the theory of Smale spaces, they are an important tool in all
sorts of dynamical systems. There is an entire field known as a symbolic dynamics dedicated to
the study of shift spaces. For many dynamical systems there exists a factor map from a shift of
a finite type to the dynamical system. We recommend the reader recall that we defined maps
for dynamical systems in Definition 1.8 which are continuous maps that preserve the dynamics.
For a more in depth treatment of symbolic dynamics alone, we suggest the reader to take a look
at [8]. We will study how shifts of finite type can be used in a way analogous to covering spaces
in point set topology and discuss an algebraic invariant associated with the shift of finite type.
The connection between this algebraic invariant for shifts of finite type lie in the fact that we
can “disconnect” global stable and unstable sets through s/u-bijective maps which is the key to
understanding Putnam’s Homology Theory [10] in the next section.

3.1 Graphs and Their Shift Spaces

We will define a shift of finite slightly differently than how most symbolic dynamics books define
shifts of finite types. A large part of our studies of shifts of finite type will be grounded in graph
theory, so we will place a large emphasis on a graph theoretic perspective.

Due the variety of vocabulary used throughout graph theory, we shall introduce some basic
definitions.

Definition 3.1. Let G = (V, E , i, t) be a directed graph. The finite set V(G) is said to be the
set of vertices. The finite set E(G) is said to be the set of edges.

The functions i : E(G) → V(G) and t : E(G) → V(G) are call the initial state and terminal
state functions.
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Often, when the graph is understood, we will abbreviate V(G) = V and E(G) = E . We will
also suppress the i and t functions in the graph G = (V, E) when they are understood. Lastly,
we will assume that all graphs are directed. Graphs are commonly illustrated using diagrams of
arrows and nodes.

Example 3.2. Consider the following graph G = (V, E) with V = {1, 2} and E = {a, b, c, d}.
Defined by 

(i(a), t(a)) = (1, 1)

(i(b), t(b)) = (1, 2)

(i(c), t(c)) = (2, 1)

(i(d), t(d)) = (2, 1)

We illustrate this as the following picture

1 2

b

c

d

a

From now on, we may simple draw a graph and then the set of vertices and edges is implied.
Now, suppose we change the characters that label the graph above. In essence, the graph is still
the same, but the sets change. So we must come up with some form of isomorphism between
graphs and along the way we can discuss the maps between them. As the labeling does not
matter, we will follow the convention that vertices are labeled alphabetically and edges are
labeled numerically.

Definition 3.3. Let G and H be graphs. A graph homomorphism from G to H is defined to be
two functions (both denoted as Φ)

Φ : E(G) → E(H) Φ : V(G) → V(H)

such that
i(Φ(e)) = Φ(i(e)) t(Φ(e)) = Φ(t(e))

We often write Φ : G → H and

(a) If Φ is injective (in both edges and vertices), then it is said to be a graph embedding

(b) If Φ is bijective (in both edges and vertices), then it is said to be a graph isomorphism

(c) If there exists a graph isomorphism between G and H, they are said to be isomorphic which
is denoted as G ∼= H

Just like many other mathematical objects, we will consider graphs up to isomorphism and
consider isomorphic graphs to be the same. Now, we will consider an important tool to analyze
the behavior of graphs using linear algebra.
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Definition 3.4. Let G be a graph with a vertex set V. For α, β ∈ V, let

Aαβ = |{e ∈ E : i(e) = α, t(e) = β}|

If there are r vertices, this defines an r × r matrix known as the adjacency matrix A = (Aαβ),
which is sometimes denoted AG.

Likewise, if A is a r×r matrix, then the graph of A is the graph with vertex set V = {1, . . . , r}
and an edge set such that [Aαβ = |{e ∈ E : i(e) = α, t(e) = β}|

We can construct the adjacency matrix for Example 3.2. We simple count the edges to get

AG =

(
1 1
2 0

)
With some basic graph theory defined. We will now introduce the bi-infinite paths associated

to a graph. There are two ways to do this, we can either track the edges or the vertices. If there
are two distinct edges e and e′ that initiate and terminate at the same vertices Vi and Vt, then
there are two ways to go from Vi to Vt. Thus, a bi-infinite list of vertices is not enough to capture
this path due to (Vi, Vt) introducing some ambiguity. So the edges are a more general approach
to understanding bi-infinite paths.

Definition 3.5. Let G = (E ,V) be a graph. The edge shift of G is defined as (Σ, σ), where

Σ = {e = (en)n∈Z ∈ EZ : t(en) = i(en+1) for all n ∈ Z}

and σ : Σ → Σ is defined via
σ((an)n∈Z) = (an+1)n∈Z

Suppose that a graph G had no repeated edges, that is, no distinct edges e1, e2 ∈ E such
that i(e1) = i(e2) and t(e1) = t(e2). In this case, every element of the edge shift would uniquely
determine a bi-infinite sequence of vertices and there would be no ambiguity in a bi-infinite
sequence of vertices. So, we can in a similar way defined as the vertex shift.

Definition 3.6. Let G = (E ,V) be a graph with no repeated edges. The vertex shift of G is
defined as (Σ, σ) where

Σ = {v = (vn)n∈Z ∈ VZ : i−1(vn) ∩ t−1(vn+1) ̸= ∅ for all n ∈ Z}

σ : Σ → Σ
σ((an)n∈Z) = (an+1)n∈Z

There is an easy understanding of distance within bi-infinite sequences. Let A be a finite
non-empty set. If we define a metric on AZ, we can consider the shift spaces to be the subspaces
of AZ where A is either the vertex or edge set. Moreover, it is easy to see that the shift map is
a homeomorphism under this metric, which is defined as follows.

Proposition 3.7. Let A be a finite non-empty set, the function d : AZ × AZ → R defines a
metric.

d((an)n∈Z, (bn)n∈Z) = inf

{
1

2k
: k ≥ 0, an = bn for all |n| < k

}
Moreover, the shift map σ((an)n∈Z) = σ((an+1)n∈Z) is a homeomorphism with respect to the
metric space topology.
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Proposition 3.8. Let G = (E ,V) be a graph with no repeated edges. The vertex shift and edge
shift are topological conjugate.

Notice that bi-infinite paths must go in loops if we want them to be infinite on a finite vertex
set. So consider the following graph

1 2
c

ab

Let Σ be the associated edge shift of the graph above. For (en)n∈Z ∈ Σ, if eN = c, then
there does not exist a eN+1 ∈ E such that t(eN ) = i(eN+1) = 2 It follows that we cannot have a
eN = c. Thus, the edge shift is equivalent to the edge shift of the graph constructed by removing
the vertex 2.

1ab

Σ = {a, b}Z

A similar argument can be made for when the direction of c is reversed. This leads us to the
following proposition.

Proposition 3.9. Let G be a finite graph and ΣG be the edge shift associated to G

(a) ΣG is non-empty if and only if there exists an ordered list of edges (en)
N
n=0 such that

i(e0) = t(vN ) and t(en) = i(en+1). A list such as this is known as a cycle

(b) Let v ∈ V be a vertex such that t−1(v) or i−1(v) is empty. Let H be the graph obtained by
deleting all vertices of this form and edges initiated or terminated at vertices of this form.
Then ΣH = ΣG

Proof. First, we will show (a). By considering the contrapositive, suppose that there were no
ordered lists of this form, then ΣG must be empty since if there are no finite lists, then there
cannot be infinite lists of this form due E being finite. Now, suppose there existed a (en)

N
n=0 of

this form. Define the bi-infinite sequence (ξk)k∈Z by ξk = ek mod N . Then we have (ξk)k∈Z ∈ ΣG

and thus ΣG is non-empty.
To show (b). We know that ΣH ⊆ ΣG. Let (en)n∈Z ∈ ΣG. We will show that (en)n∈Z consists

of edges only in H .Take any v ∈ V such that t−1(v) or i−1(v) is empty. Let t−1(v) be empty.
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Suppose for the sake of contradiction that there was a ξ ∈ E such that i(ξ) = v and ek = ξ for
some k. Then i(ek) = t(ek+1) = v but his means that ek+1 ∈ t−1(v) which is non-empty and
a contradiction. Likewise, if i−1(v) was empty, suppose for the sake of contradiction that there
was a ξ ∈ E such that t(ξ) = v and ek = ξ for some k. Then we have i(ek−1) = t(ek) = v and
once again i−1(v) is non-empty and this contradicts our assumption.

Thus (en)n∈Z only consists of edges in ΣH and thus (en)n∈Z ∈ ΣH and ΣH = ΣG

With some basic properties now introduced, we can now introduce the idea of the shift of
finite type itself. The edge and vertex shifts were specific examples of such a space.

Definition 3.10. Let A be a finite non-empty set. Finite sequences (a1, . . . , an) for ai ∈ A are
known as words of A. Let the forbidden words, F be a finite set of words of A. The shift of
finite type associated to A and F is defined as (ΣF , σ) where

ΣF = {a ∈ AZ : no finite subsequence of a is in F}

and σ is the shift map
σ((an)n∈Z) = (an+1)n∈Z

It is easy to see that the edge and vertex shifts are shifts of finite type since we can disallow
paths of edges/vertexes that do not exist in the graph. For a vertex shift, we can define F =
{(v, p) : i−1(v) ∩ t−1(p) = ∅}. For the edge shift, F = {ef : t(e) ̸= i(f)}. These sets are both
finite due to V and E being finite.

Theorem 3.11. Every shift of finite type is topologically conjugate to an edge shift.

Proof. Let F be a finite list of works of a finite non-empty set A. Let M be an integer such that
M > {length(w) : w ∈ F}. We will construct the following graph G = (V, E),

V = {(a1, . . . , aM ) : (an)n∈Z ∈ ΣF}

E = {(a1, . . . , aM+1) : (an)n∈Z ∈ ΣF}

In other literature, these are known as the sets of allowed M or M + 1 blocks. Now note that
since A is finite , both V and E are finite. Also define

i(a1, . . . , aM+1) = (a1, . . . , aM )

t(a1, . . . , aM+1) = (a2, . . . , aM+1)

This gives us our graph. Now, define the map from the shift of finite type to the edge shift,
φ : ΣF → ΣG. via

φ ((an)n∈Z)k = (ak, . . . , ak+M )

It is clear from the definition that this is a continuous, injective open map with σ ◦ φ = φ ◦ σ.
All that is left to show is that this map is surjective. Take any (en)n∈Z ∈ ΣG. Since each edge
is an M + 1 block, write this as

en = (b1n, . . . , b
M+1
n )

Now, let an = a1n for each n ∈ Z. We want to show that this defines a pre-image for (en)n∈Z
First, we must show that for any 0 ≤ m ≤ M , an+m = bm+1

n for all n. This is true for m = 0
just by definition. Now, we shall make an inductive hypothesis and assume this is true for some
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m < M . We want to show that it is true for m+ 1. Since we are taking elements from an edge
shift, we have

t(en) = i(en+1)

(b2n, . . . , b
M+1
n ) = (b1n+1, . . . , b

M
n+1)

This shows that bm+2
n = bm+1

n+1 = an+(m+1). By induction, we have shown that an+m = bm+1
n for

all n. Thus, we get

φ ((an)n∈Z)k = (ak, . . . , ak+M ) = (b1k, . . . , b
M+1
k ) = ek

Now, that we have the basic definition down, we can define a bracket map on the shift of
finite type to get a Smale space. Also, note that the following metric induced a totally discounted
topology from the metric.

Theorem 3.12. Let (Σ, σ) be a shift of finite type, d be the metric defined in Proposition 3.7. Let
N be the length of the longest word in F (or 1 if F = ∅). Define ϵΣ = 2−N and [−,−] : ∆ϵΣ → Σ
as

([a, b])n =

{
an n ≤ 0

bn n ≥ 1

Then (Σ, d, σ, [−,−]) is a Smale Space.

The prove is simple axiom checking and is thus omitted. Notice that we have constructed a
totally disconnected Smale space. A remarkable fact is that the shifts of finite type are the only
totally disconnected Smale space. This result can be found as Theorem 2.2.8 in [10]

Theorem 3.13. Let (X, f) be a Smale space. Then (X, f) is topologically conjugate to a shift
of finite type if and only if X is totally disconnected.

3.2 Symbolic Representations of Dynamics

The importance of shift spaces extends beyond our discussion of Smale spaces. Shift spaces can
be used to obtain a symbolic representation of many dynamical systems. In this subsection, we
will extend our arguments to general dynamical systems.

Given a dynamical system on a topological space φ : X → X, and take some point x ∈ X
and consider the orbit Orb(x). Notice that if x is not a periodic point, |Orb(x)| = Z and can be
viewed as a bi-infinite sequence. This property makes one wonder if one could leverage the work
we did with the bi-infinite sequences in shifts of finite type. The issue is that there are simply
too many points to do this with if X is infinite. To decrease the number of points we need to
work with, we introduce the notion of a topological partition, It allows us to split up the space
into a finite number of open sets. By creating these partitions, in good cases we can construct a
factor map (recall Definition 1.8) from a shift of finite type to a different dynamical system,

Definition 3.14 (Topological Partition). Let P = {P1, ..., Pn} be a collection of disjoint open
sets in a topological space X such that

⋃n
i=1 P1 = X. P is known as a topological partition

Remark. Note that a topological partition is not a partition of a space in the usual sense. There
may be points that do not belong to any Pi.
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Now, suppose we had a the topological partition P = {P1, ..., Pn} of X where (X,φ) is a
dynamical system and let A = {1, ..., n}. We will construct a an shift of finite type out of these
objects.

An r lettered word w = a1a2...ar is going to be allowed if
⋂r

i=1 φ
−i (Pai

) ̸= ∅. Intuitively,
words are allowed if the sequence of partitions have points which can move to the next. If we
take all the words not allowable by this definition, then we get a shift space. Together, we get
the following.

Proposition 3.15. Let (X,φ) be a dynamical system, P = {P1, ..., Pn} be a topological partition
of X. There exists a shift space ΣX,φ,P defined by A = {1, . . . , n} and

ΣX,φ,P =

{
a ∈ AZ : for any word in a, (an)

r
n=1,

r⋂
i=1

φ−i(Pai
) ̸= ∅

}

Given the shift space ΣX,φ,P , there is no guaranteed that this construction is easier to study
than the original dynamical system as the shift space created may be overly simply or compli-
cated. In fact, (ΣX,φ,P , σ) may not even be a shift of finite type. So the question at hand is
when is there a clear topological connection between X and ΣX,φ,P? Our goal is to define a
factor map from ΣX,φ,P to X. The key lies in the following proposition.

Proposition 3.16. Let (X,φ) be dynamical system with a topological partition P = {P1, ..., Pn}.
For any (an)n∈Z ∈ ΣX,φ,P and k ≥ 0, there exists non-empty open sets

Uk((an)n∈Z) =

k⋂
i=−k

φ−i(Pai
) ⊆ X

Moreover, each Un((an)n∈Z) is compact and

... ⊆ U3((an)n∈Z) ⊆ U2((an)n∈Z) ⊆ U1((an)n∈Z) ⊆ U0((an)n∈Z)

These sets allow us to define a factor map if
⋂∞

k=0 Uk((an)n∈Z) consists of a single point. We
give this case a formal name.

Definition 3.17. If for every a ∈ ΣX,φ,P ,
⋂∞

k=0 Uk(a) consists of precisely one point, we call
ΣX,φ,P is a symbolic representation of (X,φ).

Furthermore, we call P a Markov partition of X if ΣX,φ,P is a symbolic representation of
(X,φ) and ΣX,φ,P is a shift of finite type.

There are two main properties that come out of Definition 3.17. The first of which is in the
following proposition which is more or less clear.

Proposition 3.18. (X,φ) be dynamical system with a topological partition P = {P1, ..., Pn}. If
ΣX,φ,P is a symbolic representation of (X,φ), then ΣX,φ,P is a closed subset of {1, . . . , n}Z that
is invariant under σ

The second and arguable more important property is that there is a canonical factor map
from ΣX,φ,P to X.

Theorem 3.19. Suppose ΣX,φ,P is a symbolic representation of (X,φ), then define π : ΣX,φ,P →
X by letting π(x) be the unique point in

⋂∞
k=0 Uk(x). This map is a factor map, so in particular,

the following diagram commutes.
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ΣX,φ,P ΣX,φ,P

X X
φ

σ

π π

Proof. First, we would like to show this is indeed a map between dynamical systems. In other
words, the diagram above commutes and π is continuous. Take some a ∈ ΣX,φ,P and notice that

Uk+1(σ(a)) =

k+1⋂
i=−(k+1)

φ−i(Pσ(a)i) =

k+1⋂
i=−(k+1)

φ−i(Pai+1)

φ(Uk(a)) = φ

(
k⋂

i=−k

φ−i(Pak
)

)
=

k⋂
i=−k

φ−i+1(Pai
) =

k−1⋂
i=−(k+1)

φ−i(Pai+1
)

Uk−1(σ(a)) =

k−1⋂
i=−(k−1)

φ−i(Pσ(a)i) =

k−1⋂
i=−(k−1)

φ−i(Pai+1
)

It follows that
Uk+1(σ(a)) ⊆ φ(Uk(a)) ⊆ Uk−1(σ(a))

Since φ is a homeomorphism, we get

∞⋂
k=1

Uk+1(σ(a)) ⊆ φ

( ∞⋂
k=1

Uk(a)

)
⊆
∞⋂
k=1

Uk−1(σ(a))

And since this is a symbolic representation, the intersections above are each a singleton. Thus
the above containment becomes

{π(σ(a))} ⊆ φ({π(a)}) ⊆ {π(σ(a))}
This proves that π ◦ σ = φ ◦ π.

Now, we shall prove continuity. Since Un(a) is descending and intersection consists of a single
point, limn→∞ diamUn(a) = 0. Suppose there was a sequence {ak}∞k=1 = {(akn)n∈Z}∞k=1 such
that ak → a. There exists a large enough N such that

π(ak), π(a) ∈ Uk(a) for all k ≥ N

Thus,
d(π(ak), π(a)) ≤ diamUk(a) for all k ≥ N

Take k → ∞ to give us d(π(ak), π(a)) → 0 which shows that π is continuous.
Lastly, we must show that π is surjective. Define the union of all the elements of the partition

to be U . So,

U =
⋃
P∈P

P

It is clear by definition of topological partition that

U =
⋃
P∈P

P = X
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Which means that U is dense in X. Moreover, since φ is a homeomorphism, the following sets
are also dense and open

Un =

n⋃
k=−n

φk(U)

By the Baire Category Theorem, the following set is also dense and open

U∞ =

∞⋂
n=0

Un

From the way we defined this set, for any x ∈ U∞, there exists an a ∈ ΣX,φ,P such that
x ∈

⋂∞
n=0 Un(a) which of course implies that y = π(x). Thus, π(ΣX,φ,P) ⊇ U∞. However,

π(ΣX,φ,P) is compact and thus closed. Thus, since π(ΣX,φ,P) is closed and U∞ is dense, we have

U∞ ⊆ π(ΣX,φ,P) ⊆ X

=⇒ U∞ = X ⊆ π(ΣX,φ,P) = π(ΣX,φ,P) ⊆ X

This means that π(ΣX,φ,P) = X

Proposition 3.20. If there exists a factor map (X, f) → (Y, g). Then for the following proper-
ties, if (X, f) has said property, so does (Y, g)

1. Irreducible

2. Mixing

Proof. Suppose that π : (X, f) → (Y, g) is a factor map. Suppose that (X, f) is irreducible and
take nonempty open U, V ⊆ Y . Then, π−1(U) and π−1(V ) are also non-empty subsets open
sets since π is continuous. Since (X, f) is irreducible, there exists a positive integer n such that
fn(π−1(U)) ∩ π−1(V ) ̸= ∅. Apply π to this to get gn(U) ∩ V ̸= ∅. Thus, (Y, f) is irreducible.
Almost the same argument works for the mixing case.

Example 3.21. Recall the Baker’s Map in Example 1.6. While this may not be a Smale space,
this can still have a symbolic representation. The Markov’s Partition is quite simple with

P1 =

[
0,

1

2

)
× [0, 1] P2 =

[
1

2
, 1

)
× [0, 1]

This admits the full two shift ΣI2,f,P = {1, 2}Z

Example 3.22. There exists a Markov Partition for our favorite example, the hyperbolic toral
automorphism. This can be constructed using Figure 13. The dashed lines are follow the unstable
direction and the dashed lines follow the stable direction. The construction is as follows:

1. Draw a line to the edge starting at (0, 0) in the direction of the unstable direction

2. Draw a line until it intersects of line 1 starting at (0, 1) down in the stable direction.

3. Draw a line until it intersects of line 1 starting at (1, 0) up in the stable direction.

4. Draw a line until it intersects of line 2 starting at (1, 1) up in the stable direction.

5. Continue line 1 to the other side of the torus until it intersects line 2
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P1

P2

P3

Figure 13: Markov Partition for Hyperbolic Toral Automorphism

The existence of a Markov partition is a highly non-trivial result. However, Theorem 3.12
of [1] gives a proof of the existence of a Markov partition for an irreducible Axiom A system.
The proof relies on the Shadowing property and thus works for Smale spaces. Coupled with the
decomposition theorem, this holds for non-wandering Smale Spaces

Theorem 3.23 (Bowen’s Theorem). Let (X, f) be a non-wandering Smale Space. There exists
Markov Partitions of an arbitrarily small diameter.

This of course implies that there always exists a factor map from a shift of finite type to a
Smale Space.

3.3 s/u-Bijective Maps Between Smale Spaces

In the previous subsection, we demonstrated that for every Smale Space (X, f), there exists
a totally disconnected Smale Space that is, a shift of finite type (Σ, σ), and a factor map π :
(Σ, σ) → (X, f). The fact that the shift of finite type is totally disconnected is an incredibly
useful fact. However, it is not guaranteed that these maps preserve the stable unstable sets. That
is elements of Σs(a) to be in one-to-one correspondence to Xs(π(a)). Putnam noticed that if we
were to constructing factor maps such that there are bijections between the stable/unstable sets,
we could effectively “disconnected” the stable and unstable sets. Let us first state an important
fact about maps.

Theorem 3.24. Let (X, f) and (Y, g) be Smale spaces with a map

φ : (X, f) → (Y, g)

there exists an ϵφ > 0 such that for all x1, x2 ∈ X such that d(x1, x2) < ϵφ, [x1, x2] and
[φ(x1), φ(x2)] are defined and

[x1, x2] = [φ(x1), φ(x2)]

Following Fried[5], we define the case in which the restriction to the stable or unstable sets
is an injection.

Definition 3.25. Suppose (X, f) and (Y, g) are Smale spaces with a map

φ : (X, f) → (Y, g)
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We say φ is s-resolving if for any x ∈ X, φ|Xs(x) is injective.
Likewise, we also say φ is u-resolving if for any x ∈ X, φ|Xu(x) is injective.

Theorem 3.26. Let (X, f) and (Y, g) be Smale spaces such that

φ : (Y, g) → (X, f)

be an s-resolving map, there exists a M ≥ 1 such that

(a) For every x ∈ X, there exists y1, . . . , yk ∈ Y such that k ≤ M and

φ−1(Xu(x)) =

k⋃
i=1

Y u(yi)

(b) For any x ∈ X, |φ−1({x})| ≤ M . That is, φ is finite one.

Due to Putnam in Section 2.5 of [10], we can do one step better where we make the maps
restricted to stable/unstable sets bijective.

Definition 3.27. Suppose (X, f) and (Y, g) are Smale spaces with a map

φ : (X, f) → (Y, g)

We say φ is s-bijective if for any x ∈ X, φ|Xs(x) is bijective.
Likewise, we also say φ is u-bijective if for any x ∈ X, φ|Xu(x) is bijective.

These functions allow us to study the stable/unstable sets in the domain of the map. This
can be incredible useful if the domain has much easier stable/unstable sets to study than the
codomain. A useful fact that we will not show is the following.

Theorem 3.28. Let (X, f) and (Y, g) be Smale spaces such that

φ : (Y, g) → (X, f)

be an s-resolving map. If (Y, g) is nonwandering, then φ is an s-bijective map.

Lastly, we shall define the precise concept of “disconnecting” the stable and unstable sets.
When this happens, we have two s/u-bijective factor maps such that the domain has totally
disconnected unstable/stable sets.

Definition 3.29. Suppose (X, f) is a Smale space. A s/u-bijective pair is a pair of space spaces
(Y, g) and (Z, h) and factor maps.

πs : (Y, g) → (X, f) πu : (Z, h) → (X, f)

Such that

(a) πs is s-bijective and πu is u-bijective

(b) For every y ∈ Y , Y s(y) is totally disconnected.

(c) For every z ∈ Z, Zu(z) is totally disconnected.
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f

gh

πu πs

Smale Space with Totally
Disconnected Stable Sets

Smale Space with Totally
Disconnected Unstable Sets

Original Smale Space

Bijection on the Unstable Sets Bijection on the Stable Sets

Figure 14: Disconnecting Stable/Unstable Sets

Just like our prior result with the existence of Markov Partitions, these s/u-bijective pairs
also always exist, but a proof would be too technical, see [10] for details.

Theorem 3.30. If (X, f) is a non-wandering Smale space, then there exists a s/u-bijective pair.

3.4 The Dimension Group

Although quite explicit, shifts of finite type can be a little unwieldy as a topological dynamical
system. For an example, it is actually incredibly difficult to determine if two shift of finite types
are topologically conjugate. The problem is even more difficult for a general Smale space. One
approach is the construction of a a functor to the category of groups analogous to topological
invariants such as the homotopy groups or homologies.

One such relatively sensitive invariant for shifts of finite type which we will generalize later is
known as the dimension group. There are multiple equivalent definitions for the dimension group:
One with inductive limits, another of linear algebra, and one analogous to Cech cohomology. We
will discuss each of these approaches.

Definition 3.31. Let A be a n× n integral matrix. The eventual range RA is defined as

RA =

∞⋂
k=1

AkQk

Likewise, the eventual kernel KA is defined to be

KA =
⋃
k=1

kerAk
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Now, the following properties hold easily using linear algebra.

Proposition 3.32. We have the following

(a) If A is invertible on AkQn for some k, then RA = AnQn and KA = kerAn

(b) RA is the largest subspace of Qn that where A is invertible and KA is the largest subspace
such that that A is nilpotent

(c) Qn ∼= RA ⊕KA

The first definition of the dimension group we will mention is defined in [8]. It relies directly
from the eventual range.

Definition 3.33 (Dimension Group (Linear Algebra)). Let ΣG be a shift of finite type with
graph G and let A be the n× n adjacency matrix. The stable dimension group is defined to be

Ds(ΣG, σ) =
{
v ∈ RA : Akv ∈ Zn for some k ≥ 0

}
Likewise, the unstable dimension group is

Du(ΣG, σ) =
{
v ∈ RAT : (AT )kv ∈ Zn for some k ≥ 0

}
The dimension group automorphism δA and δAT is the restriction of A to Ds(ΣG, σ) and
Du(ΣG, σ) respectively.

However, this is not the only definition. Similar to eventual range and kernels, we define the
dimension groups from inductive limits as in [2].

Definition 3.34 (Dimension Group (Limits)). Let ΣG be a shift of finite type with graph G
and let A be the n× n adjacency matrix. The stable dimension group is defined to be

Ds(ΣG, σ) = lim
−→
A

Zn

Likewise, the unstable dimension group is

Du(ΣG, σ) = lim
−→
AT

Zn

The dimension group automorphism δA([v, n]) = [Av, n] and δAT ([v, n]) = [AT v, n] respectively.

Lastly, Kreiger introduced a definition that relies on the topological aspects of the shift of
finite type in [7]. Interesting enough, this definition does not require the construction of a graph.
Before we introduce the third definition, we must introduce some notation.

Definition 3.35. Let (Σ, σ) be shift of finite type, then define the following sets

Ks(Σ, σ) = {E ⊆ Σs(x) : x ∈ Σ, E is non-empty compact and open} (4)

Likewise,
Ku(Σ, σ) = {E ⊆ Σu(x) : x ∈ Σ, E is non-empty compact and open} (5)

Moreover, define an equivalence relation ∼ on Ks(Σ, σ) to be the smallest equivalence relation
such that

(1) E ∼ F if [E,F ] = E and [F,E] = F and they are both defined
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(2) E ∼ F if and only if σ(E) ∼ σ(F )

Likewise, define an equivalence relation ∼ on Ku(Σ, σ) to be the smallest equivalence relation
such that

(1) E ∼ F if [F,E] = E and [E,F ] = F and they are both defined

(2) E ∼ F if and only if σ(E) ∼ σ(F )

Denote the set of equivalence classes as

K̃s = Ks/ ∼

K̃s = Ku/ ∼

The relation in Definition 3.35 relate non-empty compact open subsets of the global unsta-
ble/stable sets. Intuitively, this relation matches nearby unstable/unstable that have the same
bracket points.

Definition 3.36 (Dimension Group (Compact stable/unstable sets)). Let ZK̃s and ZK̃u be free
abelian groups. Let Rs and Ru be subgroups generated according to relations

Rs = ⟨[E ∪ F ]− [E]− [F ]|E,F,E ∪ F ∈ Ks, E ∩ F = ∅⟩

Ru = ⟨[E ∪ F ]− [E]− [F ]|E,F,E ∪ F ∈ Ku, E ∩ F = ∅⟩

Then define the stable/unstable dimension group as

Ds(Σ, σ) = ZK̃s/Rs

Du(Σ, σ) = ZK̃u/Ru

We have defined three different groups in relation to a shift of finite type. They were defined
using widely different information about the stable/unstable topologies and eventual ranges. The
miraculous thing is, all these groups are isomorphic [10].

Theorem 3.37. Let (Σ, σ) be a shift of finite type, then the dimension groups according to
Definition 3.33, Definition 3.34, and Definition 3.36 are all isomorphic

Now that we have an algebraic invariant on shifts of finite type. It is natural to ask if Du

and Ds functors? Unfortunately, a general map between shifts of finite type does not induce a
natural homomorphism between dimension groups. However, s-bijective and u-bijective maps
do!

Theorem 3.38. Let (Σ, σ) and (Σ′, σ) be shifts of finite type and let π : (Σ, σ) → (Σ′, σ) be a
factor map. Then we get the following

1. If π is s-bijective, there is a natural homomorphism

πs : Ds(Σ, σ) → Ds(Σ′, σ)

2. If π is u-bijective, there is a natural homomorphism

πu : Du(Σ, σ) → Du(Σ′, σ)
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3. If π is s-bijective, there is a natural homomorphism

πs∗ : Du(Σ′, σ) → Du(Σ, σ)

4. If π is u-bijective, there is a natural homomorphism

πu∗ : Ds(Σ′, σ) → Ds(Σ, σ)

5. id induces the identity isomorphisms

idu : Du(Σ, σ) → Du(Σ′, σ) idu∗ : Ds(Σ′, σ) → Ds(Σ, σ)

ids : Ds(Σ, σ) → Ds(Σ′, σ) ids∗ : Du(Σ′, σ) → Du(Σ, σ)

6. If π1 : Σ1 → Σ2 and π2 : Σ2 → Σ3 are factor maps, then

(a) If π1 and π2 are s-bijective

(π2 ◦ π1)
s = πs

2 ◦ πs
1 (π2 ◦ π1)

s∗ = πs∗

1 ◦ πs∗

2

(b) If π1 and π2 are u-bijective

(π2 ◦ π1)
u = πu

2 ◦ πu
1 (π2 ◦ π1)

u∗
= πu∗

1 ◦ πu∗

2

If we consider the category of shifts of finite types with only u-bijective (or s-bijective factor
maps), we get a functor. For s-bijective maps, we get that Ds being a covariant functor and Du

is a contravariant functor. Likewise, for u-bijective maps, Du is a covariant functor and Ds is a
contravariant functor. This gives us the following result

Corollary 3.38.1. If (Σ, σ) and (Σ′, σ) are topologically conjugate, then Du(Σ, σ) ∼= Du(Σ′, σ)
and Ds(Σ, σ) ∼= Ds(Σ′, σ)

Proof. This follows easily from a functor argument. Suppose φ : (Σ, σ) → (Σ, σ) is a topological
conjugacy. Then φ and φ−1 are both s/u-bijective factor maps. Thus, the natural homomor-
phisms between dimension groups have an inverse. It follows that Du(Σ, σ) ∼= Du(Σ′, σ) and
Ds(Σ, σ) ∼= Ds(Σ′, σ).

This gives us a method if determining if two shifts of finite type are not topologically conjugate
by showing they have different dimension groups. Following Putnam We shall construct a similar
theory in the following section.

4 A Homology Theory for Smale Spaces

Putman was able to define a generalization of the dimension group for Smale spaces[10]. His
Homology theory for Smale spaces gives us information about the periodic points as well as
working as an invariant. In order to construct a homology theory for Smale spaces, one must
come up with something analogous to a cell complex. The key ideas needed to construct this
are using s/u-bijective pair to obtain shifts of finite type and and create a bi-complex using their
dimension groups. We will leverage these facts in order to construct Putnam’s Homology on
Smale spaces.
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4.1 The Construction of the Homology

In the previous section, we discussed an algebraic invariant for shift of finite type known as
the dimension group. We also talked about the deep connection between shifts of finite types
and general Smale space. Now, our goal is to extend the idea of an algebraic invariant to a
non-wandering Smale spaces using the connection between Smale spaces and shifts of finite type.

The construction of the Homology is reliant off multiple usages of the dimension group. First,
we shall define the following shift of finite type.

Definition 4.1. Suppose (X, f) is a Smale space and

πs(Y, g) → (X, f) πu : (Z, h) → (X, f)

is a s/u-bijective pair. For each non-zero integer L,M , define the following

ΣL,M (π) = {(y0, ..., yL, z0, ..., zM ) : yl ∈ Y, zm ∈ Z, πs(yl) = πu(zl)∀0 ≤ l ≤ L, 0 ≤ m ≤ m}

And map
σ : ΣL,M → ΣL,M (π)

(y0, ..., yL, z0, ..., zM−1) 7→ (g(y0), ..., g(yL), h(z0), ..., h(zM−1))

Proposition 4.2. [10]ΣL,M (π) is a shift of finite type.

Definition 4.3. Define the families of maps for L ≥ 1 and 0 ≤ l ≤ L, define

δl,· : ΣL,M (π) → ΣL−1,M

(y0, ..., yL, z0, ..., zM ) 7→ (y0, ..., yl−1, yl+1, ..., yL−1, z0, ..., zM−1)

In other words, δl,· deletes the yl term.
Likewise, for M ≥ 1 and 0 ≤ m ≤ M , define

δ·,m : ΣL,M (π) → ΣL,M−1

(y0, ..., yL, z0, ..., zM ) 7→ (y0, ..., yL−1, z0, ..., zl−1, zl+1, ..., zM−1)

In other words, δ·,m deletes the zm term.

Proposition 4.4. [10] δl,· are a s-bijective factor maps and δ·,m is a u-bijective factor map.

In essence, this allows us to capture the unstable and stable behavior of varying degrees of
our Smale space in the shift space (ΣL,M , σ). Namely, the spaces (ΣL,M , σ) capture where the
maps πs and πu are not one-to-one. Let us summarize some of the crucial results to construct
Putnam’s homology theory.

Suppose (X, f) is a Smale space and

πs(Y, g) → (X, f) πu : (Z, h) → (X, f)

is a s/u-bijective pair. Then we have Y s(y) and Zu(z) totally disconnected for every y ∈ Y
and z ∈ Z. We also have shifts of finite types (ΣL,M , σ) according to Definition 4.1. Since each
(ΣL,M , σ) is a shift of finite type, there are dimension groups Ds(ΣL,M , σ) and Du(ΣL,M , σ)
associated to these shift spaces. Lasting we have the maps δl,· and δ·,m that deletes the yl or zm
element respectively. By Proposition 4.4, δl,· and δ·,m are s-bijective and u-bijective factor maps
and by Theorem 3.38, these induce natural homomorphisms between dimension groups. Given
these natural homomorphisms, we can define the double chain complex.
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Definition 4.5 (Double Chain Complex For Smale Spaces). Let (X, f) be a Smale space and
let (Y, f, πs, Z, h, πu) be an s/u-bijective pair. Then the double chain complex is defined as the
following chain complex with δ maps corresponding to the s/u-bijective pair.

...
...

...

0 Ds(Σ0,2) Ds(Σ1,2) Ds(Σ2,2) . . .

0 Ds(Σ0,1) Ds(Σ1,1) Ds(Σ2,1) . . .

0 Ds(Σ0,0) Ds(Σ1,0) Ds(Σ2,0) . . .

0 0 0

δs∗·,m

δs∗·,m

δs∗·,m δs∗·,m

δs∗·,m

δsl,· δsl,·

δsl,·δsl,·

δs∗·,m

δsl,· δsl,· δsl,·

δsl,·

δsl,·

δs∗·,m δs∗·,m δs∗·,m

Or likewise for the unstable double cell complex

...
...

...

0 Du(Σ0,2) Du(Σ1,2) Du(Σ2,2) . . .

0 Du(Σ0,1) Du(Σ1,1) Du(Σ2,1) . . .

0 Du(Σ0,0) Du(Σ1,0) Du(Σ2,0) . . .

0 0 0

δu·,m

δu·,m

δu·,m

δu·,m

δu·,m

δu·,m

δu·,m

δu·,m

δu·,m

δu∗
l,·δu∗

l,·

δu∗
l,· δu∗

l,·

δu∗
l,· δu∗

l,· δu∗
l,·

δu∗
l,·

δu∗
l,·

Given this Z×Z-graded double chain complex, there is a natural way way from homological
algebra to create a Z-graded chain complex known as the total complex.

Definition 4.6 (Homology of Smale Spaces). Let (X, f) be a Smale space and let (Y, f, πs, Z, h, πu)
be an s/u-bijective pair. Using the double chain complex, define the total stable and unstable
complexes as

Cs
n(X, f) =

⊕
l−m=n

Ds(Σl,m, σ)

Cu
n(X, f) =

⊕
l−m=n

Du(Σl,m, σ)

The boundary maps are defined as follows. Let

∂s
n : Cs

n(X, f) → Cs
n−1(X, f)

∂u
n : Cs

n(X, f) → Cu
n−1(X, f)
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defined via
∂s
n =

⊕
l−m=n

dsl,m ∂u
n =

⊕
l−m=n

dul,m

Where
dsl,m : Ds(Σl,m) → Ds(Σl−1,m)⊕Ds(Σl,m+1)

dul,m : Du(Σl,m) → Du(Σl+1,m)⊕Du(Σl,m−1)

are defined as

dsl,m =

l∑
i=0

(−1)iδsi,· +

m+1∑
i=0

(−1)l+iδs∗·,i

dul,m =

m∑
i=0

(−1)iδu·,i +

l+1∑
i=0

(−1)m+iδs∗i,·

This gives us a chain complexes

. . . Cu
n−1(X, f) Cu

n(X, f) Cu
n+1(X, f) . . .

∂u
n+1∂u

n

Finally, the homology group is defined via

Hs
n(X, f) = ker ∂s

n/im ∂s
n−1

Hu
n(X, f) = ker ∂u

n/im ∂u
n−1

4.2 Properties of the Homology of Smale Spaces

At first, it might seem like the Homology seems like an arbitrary graded abelian group given a
Smale space. In particular, it seems to depend on the choice of s/u-bijective pair. However, this
invariant gives a plethora of useful properties about the dynamics of the system. We will avoid
going into proving these facts as they can get incredibly technical. The details of many of these
theorem can be found in Putnam’s Memoir[10]. The first major result being that despite the
fact that a s/u-bijective pair is required in the definition,

Theorem 4.7. The homology is independent of choice of s/u-bijective pair

Second off, there is is a question of functorality. Once again, just like the dimension group.
There are induced homomorphisms between homology groups for certain maps. Namely, the
u-bijective and s-bijective ones. These induced homomorphisms also demonstrate a functorial
property.

Theorem 4.8. Let (X, f) and (X ′, f ′) be non-wandering Smale spaces and let π : (X, f) →
(X ′, f ′) be a factor map. Then we get the following

1. If π is s-bijective, there is a natural homomorphism

πs
∗ : H

s
∗(X, f) → Hs

∗(X
′, f ′)

2. If π is u-bijective, there is a natural homomorphism

πu
∗ : Hu

∗ (X, f) → Hu
∗ (X

′, f ′)
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3. If π is s-bijective, there is a natural homomorphism

πu∗
∗ : Hu

∗ (X
′, f ′) → Hu

∗ (X, f)

4. If π is u-bijective, there is a natural homomorphism

πu∗
∗ : Hs

∗(X
′, f ′) → Hs

∗(X, f)

5. id induces the identity isomorphisms

idu∗ : H
u
∗ (X, f) → Hu

∗ (X
′, f ′) idu∗∗ : Hs

∗(X
′, f ′) → Hs

∗(X, f)

ids∗ : H
s
∗(X, f) → Hs

∗(X
′, f ′) ids∗∗ : Hu

∗ (X
′, f ′) → Hu

∗ (X, f)

6. If π1 : X1 → X2 and π2 : X2 → X3 are factor maps, then

(a) If π1 and π2 are s-bijective

(π2 ◦ π1)
s
∗ = (π2)

s
∗ ◦ (π1)

s
∗ (π2 ◦ π1)

s∗ = (π1)
s∗
∗ ◦ (π2)

s∗
∗

(b) If π1 and π2 are u-bijective

(π2 ◦ π1)
u
∗ = (π2)

u
∗ ◦ (π1)

u
∗ (π2 ◦ π1)

u∗

∗ = (π1)
u∗
∗ ◦ (π2)

u∗
∗

Once again, this functorality property implies that

Corollary 4.8.1. If the non-wandering Smale spaces (X, f) and (X ′, f ′) are topologically con-
jugate, then Hs(X, f) ∼= Hs(X ′, f ′) and Hu(X, f) ∼= Hu(X ′, f ′)

Theorem 4.8 hints that this homology is the natural generalization of the dimension group.
We can take this one step further by consider the homology of a shift of finite type.

Theorem 4.9. Let (Σ, σ) be a shift a finite type. Then the homology of (Σ, σ) is

Hs
n(Σ, σ) =

{
Ds(Σ, σ) n = 0

0 otherwise
Hu

n(Σ, σ) =

{
Du(Σ, σ) n = 0

0 otherwise

There are some more important properties to note. One being that there are only finitely
many non-zero entries, secondly, each group has finite rank, finally disjoint unions work as
expected

Theorem 4.10. Let (X, f) be a non-wandering Smale space

1. There exists a M0 and L0 such that Hs
n(X, f) = 0 if n ≥ L0 or n ≤ M0 and Hu

n(X, f) = 0
if n ≥ M0 or n ≤ L0.

2. Each of Hs
n(X, f) and Hu

n(X, f) have finite rank. That is, Hs
n(X, f)⊗ZQ and Hu

n(X, f)⊗ZQ
are finite dimensional Q-vector spaces.

3. Suppose (X, f) and (X ′, f ′) are non-wandering Smale spaces. Then the Smale space (X ⊔
X ′, f ⊔ f ′) has the homology

Hu
∗ (X ⊔X ′, f ⊔ f ′) ∼= Hu

∗ (X, f)⊕Hs
∗(X, f)

Hs
∗(X ⊔X ′, f ⊔ f ′) ∼= Hs

∗(X, f)⊕Hs
∗(X, f)
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The last incredible property of this homology is that it directly gives us the number of points
of period n. For a Smale space (X, f), we do this by considering the finite dimensional Q-vector
spaces Hs

n(X, f) ⊗Z Q. Then, we have linear maps defined by fs∗

n ⊗Z idQ. These linear maps
each have a trace which we can take the alternating sum of. This gives us the following formula
due to Putnam:

Theorem 4.11 (Lefschetz formula ). Let (X, f) be a non-wandering Smale Space. Then

|Pern(X, f)| =
∑
k∈Z

(−1)k Tr
((

(f−1)sk ⊗Z idQ
)n)

=
∑
k∈Z

(−1)k Tr
((

fu
k ⊗Z idQ

)n)
=
∑
k∈Z

(−1)k Tr
((

fs∗
k ⊗Z idQ

)n)
=
∑
k∈Z

(−1)k Tr
((

(f−1)u∗k ⊗Z idQ
)n)

4.3 Computing the Homology of Smale Spaces

The theorem from the previous section give fundamental properties of the homology theory and
what information we can extract from the Smale space using this theory. However, there still
lies a major issue. Computing these groups from the definition alone is extremely involved and
can be found in the examples of Putnam’s original paper. Developing methods to compute the
homology effectively is an active area of research.

Proietti and Yamashita were able to prove a theorem on the homology analogous to the
Künneth theorem in [9]

Theorem 4.12. Let (X, f) and (Y, g) be non-wandering Smale spaces. There exists a split exact
sequence

0

⊕
a+b=k

Hs
a(X, f)⊗Z Hs

b (Y, g)

Hs
k(X × Y, f × g)

⊕
a+b=k−1

Tor
(
Hs

a(X, f), Hs
b (Y, g)

)

0

We will now work to build a arsenal of examples so we can utilize the prior theorems. Our
focus will be on manifolds and inverse limits since they have properties that allow us to exploit
the (co)homology of the manifold itself or the space we are taking the inverse limit in order to
compute Putnam’s homology.
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4.3.1 Anosov Diffeomorphisms

Suppose our non-wandering Smale space was a manifold and a diffeomorphism. Recall that this
scenario is formally known as an Anosov diffeomorphism. We had this precise example in our
motivating example, the hyperbolic toral automorphism. Proietti was able to draw a connection
between the cohomology of the manifold as a topological space and Putnam’s homology in [9]

Theorem 4.13. Let (M,f) be an Anosov Diffeomorphism satifying the orientability condition
(See Theorem 3.1 in [9]). If Mu(x) ∼= Rn for any x ∈ M for some fixed n, then

Hs
∗(M,f) ∼= Hn−∗(M)

Likewise, if If Ms(x) ∼= Rm for any x ∈ M for some fixed m, then

Hu
∗ (M,f) ∼= Hm−∗(M)

Example 4.14. Let (T 2, A) be the hyperbolic toral automorphism. We have Xu(x) ∼= R. Thus,
Putnam’s homology can easily be computed since we know that

H∗(T 2) =


Z ∗ = 0

Z2 ∗ = 1

Z ∗ = 2

0 otherwise

It follows that

Hs
∗(T

2, A) ∼= H1−∗(T 2) ∼=


Z ∗ = −1

Z2 ∗ = 0

Z ∗ = 1

0 otherwise

4.3.2 Solenoids Over Flat Manifolds

Let M be a closed compact flat Riemannian manifold. Suppose that g : M → M is an expanding
endomorphism on M . That is, for some (and hence any) Riemannian metric on M , there exists
c > 0, λ > 1 such that for any v ∈ TM , cλk∥v∥ ≤ ∥(Dgk) v)∥.

Notice that g : M → M satisfies the conditions of Theorem 2.16 and we can construct a
Smale Space

(X, f) =
(
lim
←−

(M, g), gN
)

(6)

This Smale Space is particularly nice because we can relate the homology and cohomology
of M as a topological space to compute Putnam’s homology for the Smale Space (X, f). We did
precisely that in a CU Boulder’s 2021 Math REU with the results in [4].

Let F : M → N be an n-fold cover between closed manifolds. There are induced maps on
their (co)homologies which we will label

F∗ : H∗(M) → H∗(N) F ∗ : H∗(N) → H∗(M)

Likewise, there are transfer maps associated to the homology and cohomology which we will
label

F̃homology : H∗(N) → H∗(M) F̃cohomology : H∗(M) → H∗(N)
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One can read more about transfer maps in [12], but the main property we will use is the following
proposition in the scenario where N = M .

Proposition 4.15. Let F : M → N be an n-fold cover between closed manifolds. Then
F̃cohomology ◦F ∗ : H∗(M) → H∗(M) is multiplication by n and F∗ ◦ F̃homology : H∗(N) → H∗(N)
is also multiplication by n.

The main theorem of [4] gives us a much easier way to compute Putnam’s homology using
the topology of the flat manifold that relies on the transfer map:

Theorem 4.16. Let g : M → M an expanding endomorphism on a closed compact flat Rieman-
nian manifold and (X, f) be the Smale space defined in ( 6). Then

Hs
∗(X, f) ∼= lim

−→
(H∗(M), g̃cohomology)

Hu
∗ (X, f) ∼= lim

−→
(H∗(M), g̃homology)

This gives us some immediate consequences that are quite easy to prove.

Corollary 4.16.1. Let g : M → M an expanding endomorphism on a closed compact flat
Riemannian manifold and (X, f) be the Smale space defined in ( 6). Moreover suppose that M
is connected. Then

Hs
0(X, f) ∼= Hu

0 (X, f) ∼= Z
[
1

n

]

Hu
dimM (X, f) ∼=

{
Z M is orientable

0 M is not orientable

Hs
dimM (X, f) ∼=

{
Z M is orientable

Z/2Z or 0 M is not orientable

Proof. Since M is connected H0(M) ∼= H0(M) ∼= Z and both g∗ and g∗ are the identity. Thus,
by Proposition 4.15, g̃cohomology ◦ g0 = g̃cohomology and g0 ◦ g̃homology = g̃homology are both multi-
plication by n. Thus, by Theorem 4.16, we get

Hs
0(X, f) ∼= lim

−→
(H0(M), g̃cohomology) ∼= lim

−→
(Z,−× n) ∼= Z

[
1

n

]
Likewise,

Hu
0 (X, f) ∼= lim

−→
(H0(M), g̃homology) ∼= lim

−→
(Z,−× n) ∼= Z

[
1

n

]
Which is the first result we wanted to show.

Now, suppose that M is not orientable, then HdimM (M) ∼= {0} then our results follows for
homology follows. If HdimM (M) ∼= {0}, then once again the result follows. If HdimM (M) ∼=
Z/2Z, then then g̃cohomology is either the zero map or identity. This gives us

lim
−→

(HdimM (M), g̃cohomology) = 0 if g̃cohomology is the zero map

lim
−→

(HdimM (M), g̃cohomology) = 2/2Z if g̃cohomology is the identity

Now consider the case where M is orientable, then HdimM (M) ∼= HdimM (M) ∼= Z and the
induced homomorphisms gdimM and gdimM are multiplication by n since g is an n-fold covering
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map. By the same arguments for the zeroth homology, we get the transfer maps being the
identity and

Hs
dimM (X, f) ∼= Hu

dimM (X, f) ∼= lim
−→

(Z, id) ∼= Z

Let us demonstrate the power of these theorems with a few computations.

Example 4.17. Let S1 = R/Z be the circle and (Sn, f) be the Smale space associated to the
n-fold cover [z]Z 7→ [nz]Z for n ≥ 2. Recall that

H∗(S
1) ∼= H∗(S1) ∼=

{
Z ∗ = 0, 1

{0} otherwise

It follows that Hs
k(Sn, f) ∼= Hu

k (Sn, f) = 0 for k ̸= 1, 0 from having trivial homologies. Likewise,
it follows immediately from Corollary 4.16.1

Hs
∗(Sn, f) ∼= Hu

∗ (Sn, f) ∼=


Z
[
1
n

]
∗ = 0

Z ∗ = 1

{0} otherwise

since S1 is connected and 1-dimensional.

Example 4.18. Let us consider a more complicated example. Let K = R2/ ∼ be the Klein
bottle. Consider 9-fold covering endomorphism induced by the matrix

A =

(
3 0
0 3

)
On R2 which induce an expanding endomorphsim on the quotient space that can be visualized
as the following in Figure 15

g

Figure 15: 9-fold-cover on the Klein bottle

Let (K, f) be the associated Smale space. Now recall some topological facts

H∗(K) ∼=


Z ∗ = 0

Z⊕ Z/2Z ∗ = 1

0 otherwise

H∗(K) ∼=


Z ∗ = 0, 1

Z/2Z ∗ = 2

0 otherwise

g∗ =

{
id ∗ = 0

−× 3 ∗ = 1
g∗ =

{
id ∗ = 0, 2

−× 3 ∗ = 1
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Of course, once again by Proposition 4.15, we get

g̃homology =

{
−× 9 ∗ = 0

−× 3 ∗ = 1
g̃cohomology =

{
−× 9 ∗ = 0, 2

−× 3 ∗ = 1

Of course, multiplying by an odd number is simply the identity on Z/2Z. This gives us

Hs(K, f) = lim
−→

(H∗(K), f̃cohomology) ∼=


Z
[
1
9

]
∗ = 0

Z
[
1
3

]
∗ = 1

Z/2Z ∗ = 2

0 otherwise

Hu(K, f) = lim
−→

(H∗(K), f̃homology) ∼=


Z
[
1
9

]
∗ = 0

Z
[
1
3

]
⊕ Z/2Z ∗ = 1

0 otherwise

Also, note that Z
[
1
9

] ∼= Z
[
1
3

]
. This gives us our final result.

Hs(K, f) ∼=


Z
[
1
3

]
∗ = 0, 1

Z/2Z ∗ = 2

0 otherwise

Hu(K, f) ∼=


Z
[
1
3

]
∗ = 0

Z
[
1
3

]
⊕ Z/2Z ∗ = 1

0 otherwise

4.3.3 p/q Solenoid

To continue with the theme of inverse limits and exploiting the (co)homology of the original
topological space. We will now consider an example where we take two successive inverse limits.
First, we will note a theorem from algebraic topology that follows from the countuity of Čech
cohomology on paracompact spaces.

Theorem 4.19. If g : Y → Y is a locally expansive homeomorphism on a metric space then

H∗
(
lim
←−

(Y, g)
)
∼= lim
−→

(H∗(Y ), g∗)

Example 4.20. Consider the n-solenoid once again. Then, we have g0 = id and g1 = − × n
which of course gives

H∗(Sn) ∼=


Z ∗ = 0

Z
[
1
n

]
∗ = 1

0 otherwise

We will now construct and consider Putnam’s homology of the p/q-solenoid. Let p and q be
coprime positive integers greater than 1. Let g : S1 → S1 be defined as

g([z]Z) = g([qz]Z)

We have our usual construction of the q-solenoid Smale Space

(Sq, φ) =
(
lim
←−

(S1, g), gN
)

Now, we can define another locally expansive homeomorphism on Sq defined as γ : Sq → Sq

([z0]Z, [z1]Z, [z2]Z, . . . )
γ7−→ ([pz1]Z, [pz2]Z, [pz3]Z, . . . )
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Which is a p-fold-covering map. Moreover, γ is a locally expansive homeomorphism on Sq, and
satisfies Wieler’s criterion in Theorem 2.16. Thus, we get another Smale space

(Sp/q, f) =
((

lim
←−

(Sq, γ)
)
, γN
)

We call this the p/q-solenoid. We will not prove it here, but the statement of Proposition 4.15
and Theorem 4.16 can be generalized for f : Sp/q → Sp/q. Hence, we can use the same method
to for computing Putnam’s homology. Thus, we once again have

γ̃cohomology ◦ γ∗ = −× p

The induced homomorphisms is given by

γ∗ =

{
id ∗ = 0

×p/q ∗ = 1

Since p and q are coprime, this forces the transfer maps to be

γ̃cohomology =

{
×p ∗ = 0

×q ∗ = 1

Thus,

Hs
0(Sp/q, f) ∼= lim

−→
(H0(Sq), γ̃cohomology) ∼= lim

−→
(Z,−× p) ∼= Z

[
1

p

]
Hs

1(Sp/q, f) ∼= lim
−→

(H1(Sq), γ̃cohomology) ∼= lim
−→

(
Z
[
1

q

]
,−× q

)
∼= Z

[
1

q

]
Giving us

Hs
∗(Sp/q, f) ∼=


Z
[
1
p

]
∗ = 0

Z
[
1
q

]
∗ = 1

0 otherwise

A significantly more involved computation can be found in [3] that relies on constructing a
Markov partition.

Appendix A Inverse and Inductive Limits

Definition A.1 (Inductive/Direct Limit). Suppose we had a directed set (I,≤) and a family
of sets {Ai}i∈I with an algebraic structure (Groups, Modules, Rings, ect). Also suppose there
existed a family of homomorphisms {fij : Ai → Aj : i, j ∈ I, i ≤ j} such that

(1) fii = idAi

(2) fik = fjk ◦ fij for all i ≤ j ≤ k

Then the direct limit is defined as

lim
−→

Ai =
⊔
i∈I

Ai/ ∼
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Where ∼ is the equivalence relation

xi ∼ xj ⇐⇒ there exists k ≥ i, j such that fik(xi) = fjk(xj)

Proposition A.2. Let ιj be the canonical functions

ιj : Aj → lim
−→

Aj x 7→ [x]

There exists an unique group structure on lim−→Ai such that ιj are homomorphisms.

Proposition A.3. If 0 → Ai → Bi → Ci → 0 is a short exact sequence, then so is

0 → lim
−→

Ai → lim
−→

Bi → lim
−→

Ci → 0

Definition A.4 (Inverse/Projective Limit). Suppose we had a directed set (I,≤) and a family
of sets {Ai}i∈I with an algebraic structure (Groups, Modules, Rings, ect). Also suppose there
existed a family of homomorphisms {fij : Aj → Ai : i, j ∈ I, i ≤ j} (note the order of the
homomorphisms are flipped) such that

(1) fii = idAi

(2) fki = fij ◦ fjk for all i ≤ j ≤ k

We define the inverse/projective limit as

lim
←−

Ai =

{
a ∈

∏
i∈I

Ai : ai = fij(aj) for all i ≤ j

}

Proposition A.5. The inverse limit is a subgroup/module/ring of the direct product. In other
words

lim
←−

Ai ≤
∏
i∈I

Ai

Proposition A.6. The inductive and inverse limits relate to one another by the property

Hom
(
lim
−→

Xi, Y
)
= lim
←−

Hom(Xi, Y )

Remark. There is a special case of the inductive/inverse limit. Suppose, we had single set A
with an endomorphism f : A → A. We can defined the family {Ai}i∈N such that Ai = A. Then
we construct an inverse/inductive limit by defining the families of homomorphisms fij : A → A
as fij = f j−i for the inductive limit or conversely fij = f i−j for the inverse limit. Since we use
the special case so much, we will use a separate notation

lim
−→

(A, f) =
⊔
n∈N

A/ ∼

Where a ∼ b if there exists some positive integers n,m such that fn(a) = fm(b). Moreover, we
can denote equilivent relations as [a, n] for a ∈ A and n ∈ N.

lim
←−

(A, f) =
{
a ∈ AN : ai = fn(aj) for some n, for all i ≤ j

}
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