Mathematical Modeling of a
Parallel Global Optimization Algorithm

Elizabeth Eskow *
Robert B. Schnabel *

CU-CS-395-88 April 1988

Department of Computer Science
Campus Box 430

University of Colorado,

Boulder, Colorado, 80309
U.S.A.

Research supported by AFOSR grant AFOSR-85-0251, and NSF cooperative agreement DCR-
8420944,

ANY OPINIONS, FINDINGS, AND CONCLUSIONS OR RECOMMENDATIONS
EXPRESSED IN THIS PUBLICATION ARE THOSE OF THE AUTHOR AND DO
NOT NECESSARILY REFLECT THE VIEWS OF THE NATIONAL SCIENCE
FOUNDATION.

Abstract

We describe the formation of a mathematical model of a reasonably complex parallel global
optimization program, and the use of this model to assist in the development and understanding
of the underlying parallel algorithm. First we discuss the formation of a model that accurately
matched execution times of the parallel program on an Intel hypercube. Then we discuss the use
of this model to simulate the behavior of our parallel algorithm in a variety of new situations, in
order to detect weaknesses in the parallel algorithm and analyze possible improvements to it. We
believe that this combination of parallel computer implementation and mathematical modeling is

a useful approach in parallel algorithm development.

1. Introduction

We discuss the development and use of a mathematical model of a parallel global optimi-
zation algorithm. This model was formulated using actual timings of the algorithm on an Intel
hypercube. It was then used to predict the behavior of the algorithm in various situations in order
to understand the limitations of the algorithm, to suggest improvements to it, and evaluate some
possible improvements, without implementing and running all these possibilities on the com-
puter. We found that a fairly simple model was sufficient to provide a reasonable fit to a fairly
complex parallel algorithm, and that using this model not only saved us considerable computer
time, but also provided useful new insights about the parallel optimization algorithm. We believe
that this approach is a useful one for parallel algorithm development, and that our experiences

may be of interest to other parallel algorithm developers.

The basic problem addressed by this research is that for any given application, parallel
algorithm developers are faced with a vast number of combinations of parallel algorithms, paral-
lel architectures, and choices of number of processors that they would like to evaluate. The
number of combinations is far too large to evaluate all of them through exhaustive computer test-
ing. On the other hand, mathematical analysis of the algorithms, using counts of operations
including arithmetic, communication, and others, may be too detailed a tool for sizeable prob-
lems. The approach we describe here is a combination of these two methods. First we use the
results of a relatively small number of parallel computer experiments to create a rather high level
model of our parallel algorithm. Then we use this model to simulate the behavior of our parallel
algorithm in a variety of new situations, and use these simulations to better understand the

method, suggest improvements to it, and evaluate some of these possible improvements. This

may, at some point, lead to the need for additional computer tests. We feel that this process leads
to more efficient development of parallel algorithms, and to better understanding of the methods,

than is obtained through the exclusive use of computer testing.

We have chosen to study the global optimization problem in this paper for two reasons.
First, we have considerable experience and interest in developing parallel methods for this prob-
lem (see e.g. Byrd, Dert, Rinnooy Kan, and Schnabel [1]). Second, the level of complexity of
this problem seems well suited to serve as a test case for our modeling approach. The parallel
algorithm is non-trivial, having several distinct sections that must be modeled separately, but it is
not so complex that its description and model will overwhelm the discussion. Another interesting
aspect of the algorithm is that it has both deterministic and non-deterministic sections; it will be

secn that the latter present interesting challenges for our approach.

The type of approach we describe has recently been advocated by others, for example Reed
[5]. To our knowledge, however, few case studies of this type of approach have been described
in the literature. We were especially influenced by the use of related modeling techniques by

Hachtel and Moceyunas [3] applied to parallel algorithms for problems arising in VLSI design.

In Section 2, we briefly describe the parallel global optimization problem and the parallel
algorithm for it that we will model. Section 3 discusses the formulation of the mathematical
model of this algorithm, and points out the interesting issues we faced in constructing this model.
Section 4 describes several applications of the model as a tool for understanding the algorithm’s
performance better and for predicting the effects of algorithmic improvements. In Section 5 we

briefly draw several conclusions.

2. The Parallel Global Optimization Method

The global optimization problem is to find the lowest minimizer in a region D of a function
S (x) of n variables that has multiple local minimizers, lowest points of the function in some
open subregion of D. This problem occurs in many practical applications, and may be very
expensive to solve, requiring many evaluations of f (x) and many local minimizations to be per-
formed. Thus is it desirable to construct parallel methods that significantly speed up the solution
of these expensive problems. The work described in this paper was initiated as a continuation of
the research of Byrd, Dert, Rinnooy Kan, and Schnabel [1], to improve the parallel global optimi-

zation method described there.

The parallel global optimization method described in Byrd et al is related to the iterative,
stochastic sequential methods developed by Rinnooy Kan and Timmer [6]. In the sequential
method, at each iteration sample points are randomly generated over the problem domain, a
bounded region D. Then a subset of those sample points are selected as start points for local
minimizations, by the following procedure. A sample point is selected as a start point if and only
if it has the lowest function value of all sample points within a certain "critical distance” of it
That is, the start points are, in some heuristic sense, the local minimizers of S (x) over the sample.
(The critical distance is computed by the algorithm as a function of sample size, iteration, number
of variables, and other factors, as suggested by the analysis of the method.) Then a standard local
minimization algorithm is applied from each start point, terminating each time at some local
minimizer. The goal is that each of these local minimizers is distinct, and that each local minim-
izer is found exactly once. A probabilistic stopping rule is then applied to determine whether or

not to perform another iteration. If so, the process is repeated with the new sample points being

4

added to the existing sample. If not, the lowest local minimizer found is reported as the global

. minimizer.

The parallel global optimization method of Byrd et al retains the basic structure of this
sequential algorithm, and parallelizes each of its main steps. First it divides the domain D
equally among the processors. Each processor generates sample points in its own subregion of
D, and then tentatively selects some of these sample points to be candidate start points for local
minimizations, by the same process as in the sequential method. Next, any of these candidate
start points that are within the critical distance of a subregion border are communicated to neigh-
boring subregions, and are removed as start points if a neighboring subregion contains a lower
start point within the critical distance of the candidate. All remaining start points are then col-
lected centrally, and distributed one to each processor to perform the local minimizations. If there
arc more start points than processors, each processor is assigned another start point as soon as it
completes its current minimization, until all start points have been processed. This method is

outlined in Algorithm 2.1 below.

As we will see more clearly in Section 3, the method Just described requires fairly little
communication or synchronization. The main needs for communication are to distribute candi-
date start points that are near borders in Step 2, and to collect and distribute the start points for
Step 3. In each case, fairly little information is involved. Thus the algorithm appears well suited

to shared or distributed memory multiprocessors.

Test results for an implementation of this algorithm on a network of 4 and 8 Sun worksta-
tions are presented in Byrd et al. We implemented a very similar algorithm on a 32 node Intel

hypercube in order to compare the results in these two distributed memory multiprocessor

Algorithm 2.1 -- A Parallel Global Optimization Algorithm
Given f : R" =R, hyper-rectangle D, p processors
At each iteration :

1. Generate sample points and function values
Partition D into p subregions, one per processor

s - TR .
Each processor randomly chooses — additional sample points in its subregion and evaluates

f (x) at each new sample point.

2. Select start points for local minimizations
Each processor selects start points in its subregion (any sample point for which there is no lower
sample point in its subregion within the critical distance).
Resolve start points near borders between subregions (start point is removed if there is a lower
sample point within critical distance in neighboring subregion).

3. Perform local minimizations from all start points
Collect all start points and distribute one to each processor, which performs local minimization
from that point.
If there are more than p start points, distribute a remaining start point to each processor as soon
as it completes its current local search. (Stop when local searches have been completed
from all start points.)

4. Decide whether to stop
Decide whether to stop using stochastic stopping rules.
If stopping rules are satisfied, report lowest minimizer found as global minimizer.
If stopping rules not satisfied, begin next iteration.

environments, and to obtain timings of the algorithm for a larger number of processors. The
hypercube test results that we used in the creation of the model are for 3 standard test functions.
Each problem was run with all combinations of sample sizes 200 or 1000, on 4, é, 16 or 32 nodes
of the hypercube, and with inexpensive or expensive function evaluation. Thus there are 16 vari-
ants of each problem, 48 test cases overall. The raw data is contained in Table 3.1. The test
problems all have n = 2 or 4; this reflects the small size of current global optimization test prob-

lems. All the problems required only one iteration of Algorithm 2.1,

The reason for using both inexpensive and expensive function versions of the test problems
is that both types of problems are important in practice, and the behavior of the parallel algorithm
can vary significantly depending whether the function is expensive or not. The standard test
problems have inexpensive functions, typically requiring around 0.001 - 0.01 second to evaluate
on a node of the Intel hypercube. To make them expensive, we defined a function evaluation as
either 100 or 1000 evaluations of f (x), with the factor chosen so that the function evaluation cost
is about a second. An interesting question is "what is an expensive function evaluation in the
context of this algorithm?"; in Section 4 we will use our model to answer this question, and will

see that the choice of 1 second is appropriate.

3. Formation of the Model

We formulated the mathematical model of our parallel global optimization algorithm in
two stages. First, for each of the three main steps of the algorithm, we fit the 48 run times for this
step in order to determine what terms to include, and omit, in the model for this step. Then we
determined the unknown parameters in the entire resultant model by fitting the overall model to
the 48 overall runs times. In this section we summarize this process and discuss its interesting

aspects.

The independent variables that are required to model the performance of the algorithm
clearly include the number of processors p , the number of variables n, the total sample size per
iteration s, and the cost of an e¢valuation of f (x), f. In addition, to model the local search phase
of the algorithm, two more independent variables are required which cannot be predicted as func-
tions of the other independent variables. These are the number of function evaluations, fcns, and

local search iterations, itns , of the processor whose search phase was longest. These are usually

equal to the number of function evaluations and iterations, respectively, in the longest local
search, because the number of searches is typically less than p. (Typically fens

e [n+1, n4+2] itns .)

The costs of Step 1 of Algorithm 2.1 include the random generation of the sample points,

the function evaluations of the sample points, and some overhead, which are readily seen to
.S N . . o
require ; n-Ci1 }7— f, and ¢, operations, respectively. (Unknown parameters for the individual

phases are denoted by ¢;j» where i is the step number in Algorithm 2.1.) By inspecting the runs
times for Step 1 it was clear that the times for random number generation and the overhead cost

were insignificant in comparison to the cost of evaluating the function at all sample points.

Hence, the only term used from Step 1 is % J . Note that no unknown parameter is involved.

Step 2 is the most difficult portion of the algorithm to model because there is so much vari-
ation possible in the amount of work required to select start points for local minimizations from a
particular size sample. This is due to the nondeterministic nature of the start point selection algo-

rithm, as discussed below.

The costs for Step 2 include an initial sort by function value of the points within each
subregion, the comparison of sample points within each subregion to find the candidate start
points (points which have a lower function value than any other sample point in the subregion
within the critical distance from them), and finally the comparison of candidate start points near
subregions boundaries to sample points from neighboring subregions. To increase the efficiency
of these steps, the domain is subdivided into K >p subregions, where K is fixed, so that each pro-
cessor handles K/p contiguous subregions. This reduces the worst case complexity of the candi-

date start point selection in Step 2 by a factor of K/p, and makes a substantial difference in

practice. As a result, the border resolution is performed in two stages, first resolving with subre-

gions on the same processor and then resolving with subregions from different Processors.

The cost of the initial sort is ; log s -c51. This step was clearly insignificant in comparison

to the remainder of Step 2 and so it was omitted from the model.

To select candidate start points, each sample point x, in the subregion is compared to each
other point x, in the subregion that has a lower function value, to see if X, is within the critical
distance of x;. As soon as such an x, is found then x, can not be a candidate start point and the
algorithm goes on to the next sample point; if no such x, is found then Xs becomes a candidate

start point. Each comparison requires O (n) operations. Thus the worst case complexity of this

2
.S . S .
step is ——p n-Cp in the case that each x; must be compared to all lower points in the subregion,

On the other hand, the best case would be —;—n "Cp in the case that each x, must be compared to

only one point. We chose the worst case term in generating the model because it gave the better
fit among the two possibilities, but as should be expected, the fit for this phase is not as good as

the fits for other steps of the algorithm.

The remaining portion of Step 2 is the comparison of candidate start points near subregions
boundaries to sample points in neighboring subregions. As mentioned above, this proceeds in
two stages, with subregions on the same processor and then with subregions on other processors.
Of these two phases, the cost for resolving points with subregions on different processors was

clearly the dominant term and was used in the model. This phase also is nondeterministic; each
. . . s
processor might have to compare between p and s candidate start points, to betwcen 1 and ; of

its own points. The most representative case in practice seemed to be the comparison of O (p)

border points to O (ES’—) points each, which simplifies to s #-cp3. Again this analysis is not always

accurate in modeling this phase of the algorithm. This phase also includes some interprocessor

communication which we discuss below.

Step 3 of Algorithm 2.1 is easier to model. The costs of this step include the function
evaluations, the linear algebra calculations associated with each iteration, and an overhead cost.
The term for the function evaluations of the search phase is fens f. The cost per iteraton
includes a constant term and terms that are linear and quadratic in n. We found it necessary to
use only the quadratic term, i.e. itns -n?c3,. The overall overhead term and the term which was

linear in » for each iteration were found to be insignficant, and were not included in the model.

The only cost of Algorithm 2.1 that remains to be discussed is the interprocessor communi-
cation. The amount of communication required by the algorithm is minimal. In each iteration
there are 6 messages between the master process (located on the Intel Hypercube cube manager)
and the node processes, and 5 Igp internode messages. On the Intel Hypercube, messages from
the cube manager to nodes take approximately 6 times longer than node to node messages. An
upper bound on the average message length for this algorithm is approximately 1500 bytes.
Using these figures and the known message speeds for the Intel hypercube, an upper bound for
the total time for interprocessor communication is approximately 0.23 seconds per iteration. By
inspection of the times in Table 3.1, it can be seen that this term is small in comparison to the
overall running times, and can be regarded as a constant. Thus it was combined with the other
overhead costs of the algorithm to obtain the final term in the model, a single constant for the

overhead.

10

Using the dominant terms from the individual phases as discussed above, we have modeled

an iteration of Algorithm 2.1 by

2
N s .
—f+=—nci+sncy+f fens +itns-n*cy+cy 3.1DH
r P
where cy, - - - ,c4 are renumbered values of the unknown parameters. The first term models the

leading cost of Step 1. The second term models the leading cost of the candidate start point selec-
tion phase of Step 2. The third term is a rough approximation to the border resolution phase of
Step 2. The fourth and fifth terms model the leading costs of Step 3. The final term is an aggre-
gate term for overhead costs in each step, and for interprocessor communication. As indicated

above, there was no significant advantage was obtained by trying to model communication costs

more carefully.

We fit this model of the entire algorithm to the 48 measurements of the test problems dis-
cussed previously. The function evaluation cost ranged from about 0.001 to 5 seconds for the 6
test functions used. Since this causes the execution times to vary widely, we fit the relative
difference between the measured computer times and the model prediction, using linear least
squares. The parameter values obtained were

¢1=0.000016, c,=0.0035, ¢3=0.010, c4=0.49 3.2)
and resulted in a median relative error of 0.05 with a range of 0.002 to 0.19 on the 48 problems.
Table 3.1 shows the measurements of the test problems, as well as the relative errors of the model
at each data point. We find this fit of the data to the model to be sufficient for the uses that we

wish to make of the model, which are discussed in the next section.

Table 3.1 -- Measured Times and Model Times for

Test Problems (in seconds)

Measured Model Relative
Problem n f s P Time Time Error
BR 2 00165 200 4 24 2.5 .048
200 8 2.0 2.3 162
200 16 2.0 2.2 .106
200 32 2.6 2.2 166
1000 4 16.0 16.2 .013
1000 8 10.8 12.0 .106
1000 16 10.0 98 .018
1000 32 8.6 8.8 .018
GP 2 00115 200 4 2.6 2.6 .002
200 8 24 24 011
200 16 2.4 23 .030
200 32 2.8 23 .185
1000 4 17.8 16.2 .092
1000 8 13.2 12.0 .094
1000 16 10.8 9.9 .086
1000 32 94 8.8 .062
S5 4 0486 200 4 18.8 17.9 .049
200 8 164 16.3 .004
200 16 15.2 15.6 .025
200 32 148 15.2 .026
1000 4 48.0 48.7 014
1000 8 320 334 .042
1000 16 23.8 26.2 100
1000 32 21.6 22.7 .052
EXPBR 2 149 200 4 1124 108.2 038
200 8 74.8 70.8 054
200 16 56.6 52.1 .080
200 32 478 42.7 .106
1000 4 4342 427.0 .017
1000 8 242.6 236.7 024
1000 16 148.0 141.5 .044
1000 32 100.0 94.0 .060
EXPGP 2 153 200 4 136.2 131.0 .038
200 8 994 94.2 .053
200 16 792 73.4 073
200 32 71.6 65.3 .087
1000 4 467.8 4534 .030
1000 8 263.6 258.1 .020
1000 16 165.0 160.5 .028
1000 32 116.2 111.6 .039
EXPS5 4 484 200 4 1027.2 971.4 .054
200 8 901.0 850.0 .057
200 16 8404 7894 .060
200 32 810.0.0 759.1 063
1000 4 1795.0 1649.0 .081
1000 8 10334 953.3 .078
1000 16 695.6 637.1 084
1000 32 558.6 493.5 117

12

4. Applications of the Model

We have used the model (3.1-2) to simulate the behavior of our parallel algorithm in-a
variety of situations. These simulations have allowed us to understand our algorithm better, to
explore its limitations, and to assess posssible modifications to the algorithm. This section sum-

marizes several such uses.

One major way we have used our model is to help understand the limitations of our parallel
implementation. We did this by tabulating the contributions of each of the six terms of the
model, for a representative sample of problems. For example, Table 4.1 shows the run times
predicted by the model for the 8 problems that have all possible combinations of f = 0.001 or 1,

§ =200 0r 1000, p = 8 or 32, with n = 3, itns =20, and fcns = 100.

Even though we had already worked with this parallel algorithm for a long time, we
learned a considerable amount from tabulations like Table 4.1. When we began this work, the
start point selection used p as opposed to K >p subdivisions. Tabulations of the model at that
point made it very clear that the O (s /p)? cost of this approach was unacceptable for large s/p, so
we changed the method to use K subdivisions as explained in Section 3. Now that we have made
that change (and revised the model), our biggest surprise with Table 4.1 concerns the border reso-
lution phase. We recognized that this phase, although parallel, does not speed up with p, but the
cost of this phase was thought to be insignificant. The model tabulation results shows that this

- phase is significant for large values of p and s and small values of f. Consequently we have

begun investigating better approaches to this phase.

Other effects of varying the parameter values were more predictable. As the cost of func-

tion evaluations increase, the local search and sample generation parts of the algorithm dominate.

13

When f is inexpensive, the start point selection phase becomes significantly more important.
Increasing the dimension of the problem, n, would not change the relative costs of the various
steps much, since n is basicly linear throughout the model. Table 4.1 also confirms that the over-

head of our parallel algorithm, including communication, is small even for the cheapest prob-

lems.

Tabulations like Table 4.1 can also be used to answer simple questions about the perfor-
mance of the algorithm on different parallel computers. We could use the model to extrapolate to
larger values of p and see when communication would become a bottleneck. We could also use
the model to study the effect of implementing the algorithm on other distributed memory
machines. The main change would be the cost of communication relative to floating point speed,
and the effect of this change could be determined by modifying the part of the overhead term

dealing with communication (roughly half the overhead term).

Another use we made of the model was to help determine how expensive function evalua-
tions must be to dominate the other costs of the algorithm. Many parallel and sequential optimi-
zation studies consider only the cost of function evaluations, on the assumption that this is the
dominant cost, but they almost never say what the threshhold for "expensive" is. We used our
model to determine the value of f for which the cost of functions evaluations (terms 1 and 4)
would be 10 times the sum of all the other terms, for various combinations of realistic values of
the other parameters. Table 4.2 shows some representative tabulations. In all cases, the thresh-
hold value of f was between 0.4 and 4 seconds, or roughly 1000 flops. This shows that for even
moderately expensive functions, speedups estimated using only function evaluations are off by at

most 10%.

14

The last use of the model that we will discuss is to predict the results of proposed improve-
ments to the algorithm. We wanted to be able to determine the expected gains in efficiency of
proposed improvements to the algorithm prior to implementing and running them on a parallel
computer. The main improvement that we have considered is parallelizing each local search by
performing a speculative evaluation of the finite difference gradient (Schnabel [7]) in conjunction
with each function evaluation. This means that the n function evaluations for the finite differ-
ence gradient are performed in parallel with the standard function evaluation, before it is known
whether this information will be required. This modification enables each local search to utilize
up to n+1 processors as opposed to one processor in Algorithm 2.1. Most of the time the gra-
dient is required and the speculative work is worthwhile, while roughly 20% of the time the gra-

dient is not needed and the speculative work is wasted.

We have modified the model to account for this change to the algorithm. The sample gen-
cration, start point selection, border resolution, linear algebra cost per search iteration, and the
original overhead costs are unaffected by this change, so these terms in the model remain the
same. The alterations are in the costs of function evaluations and communication. Let w be a
new independent variable representing the total number of local searches performed, and assume
that the average number of function evaluations per iteration of a local search (excluding the gra-
dient evaluation) is 1.25, which corresponds to 20% of the speculative gradients being unneces-

sary. Then the total number of function evaluations per processor in the new algorithm is readily
. (n+Dw . . .
seen to be 1.25-itns - —T— - The modification also introduces the need for [Ig (n + 1)]

extra messages per parallel gradient evaluation, so that the additional communication cost is

estimated to be 1.25-itns-[g (n + 1)] - .004 seconds. Thus Algorithm 2.1 modified by the specu-

15

lative gradient evaluations can be modeled by

2
if + —j—)—ncl +S‘ﬂ'Cg+f’1.25'itﬂS">M‘f

p p
+itns n*c3+1.25itns - Ig(n +1)] - .004 + ¢y . 4.1)
An important point is that ¢y, - - - ,¢ 4 can reasonably be assumed to have the same values as pre-

viously discussed, so that (4.1) can be used to predict the performance of the modified algorithm

without doing any computer experiments.

Table 4.3 shows the speedups predicted by equation (4.3) of the new speculative gradient
algorithm in comparison to Algorithm 2.1, on the same 8 problems as were used in Table 4.1,
assuming that w = 4. In general, the models show that the extra communications overhead
involved in doing the speculative gradients would cause a slight degredation in performance for
very inexpensive functions. Once function evaluations require even 0.01 - 0.1 second, however,
the model shows that the additional communication would become insignificant, substantial
speedups would result in the cases where p is greater than n + 1 times the number of local

minimizations, and some speedup would occur as long as p is greater than or equal to # + 1.

Finally, we mention that we investigated the reliablility and extensibility of our model by
choosing several new problems, and comparing their computer timings to the values predicted by
our model. - We chose several problems that have either more minimizers or a larger number of
variables than the problems on which the model was based. The problems with many minimizers
are from Levy and Gomez [4], while the problems with different values for 7 are the two Hart-
man functions from Dixon and Szego [2]. Table 4.4 shows the timings for these problems com-
pared to the model predictions. The fits for the problems with many minimizers are roughly as

good as for the original test prolems, demonstrating that our model has no special difficulty with

16

this extension. The results for the Hartman 6 inexpensive function show, however, that our

model does not scale particularly well with increasing #; this is due to the inaccuracies inherent

in using the worst case term to model the nondeterministic cost of start point selection. In gen-

eral, the results show that modeling expensive functions is more accurate than modeling cheap

functions. This is to be expected because in this case the deterministic parts-of the algorithm, +

which are much easier t0 model, dominate.

Table 4.1 -- Model Performance Predictions

(n =3, itns =20, fcns = 100)

Sample Start Pt Border Local

f N p Generation Selection Resolution Searches Overhead

.001 200 8 0.03 0.24 2.1 1.54 0.49

.001 200 32 0.01 0.06 2.1 1.54 0.49

.001 1000 8 0.13 6.08 10.5 1.54 0.49

001 1000 32 0.03 1.52 10.5 1.54 0.49
1.0 200 8 25.0 0.24 2.1 101.44 0.49
1.0 200 32 7.0 0.06 2.1 101.44 0.49
1.0 1000 8 125.0 6.08 10.5 101.44 0.49
1.0 1000 32 32.0 1.52 10.5 101.44 0.49

Table 4.2 -- Value of £ for Which Function Evaluation
Costs Equal 10 Times All Other Costs
(P =32, fcns =n + 1 itns)

Predicted

n N itns f

3 200 10 0.77
10 200 10 0.42

3 1000 10 1.53
10 1000 10 1.21

3 200 30 1.89
10 200 30 1.00

3 1000 30 3.59
10 1000 30 1.95

Table 4.3 -- Predicted Time for Parallel
Gradient Algorithm
(Same problems as Table 4.1)

Parallel Gradient

Algorithm 2.1 Algorithm Predicted

f s p _ Predicted Time Predicted Time Speedup
001 200 8 4.8 5.0 ‘ 0.97
001 200 32 4.6 4.7 0.97
001 1000 8 19.1 19.3 0.99
001 1000 32 14.5 14.6 0.99
1.0 200 8 129.7 79.9 1.62
1.0 200 32 111.5 36.7 3.04
1.0 1000 8 243.9 194.1 1.27
1.0 1000 32 146.4 71.6 2.05

Table 4.4 -- Measured Times vs Model Predictions
for Other Functions (s = 1000)

Measured Model Relative

Problem n f p Time Time Error
LG#4 2 016 8 18.6 15.2 .183
32 8.8 9.8 114

EXPLG#4 2 1.6 8 343.8 324.1 057
32 121.8 111.2 .087

LG#38 3 016 8 39.6 31.3 210
32 17.8 17.0 .045

EXPLG#8 3 1.8 8 978.0 902.0 .078
32 349.2 261.1 252

H3 3 .031 8 23.0 23.0 .001
32 15.4 15.6 .013

EXPH3 3 37 8 660.2 643.1 .026
32 307.4 290.7 054

H6 6 .064 8 192.2 107.8 439
32 82.6 51.3 .379

EXPH6 6 69 8 55174 5255.6 047
32 2628.8 2162.3 177

5. Conclusions

Mathematical modeling of a parallel global optimization algorithm based on actual parallel
computer measurements has proven to be a useful technique in the continued development of the

parallel algorithm. We found that it was possible to construct a fairly simple mathematical model

18

that modeled a rather complex parallel algorithm fairly well. Using this model to simulate addi-
tional computer runs of the algorithm on different problems or numbers of processors gave us
considerable new insight into the algorithm’s performance, and showed specifically where
improvements could be made. The model was also modified to reflect possible changes to‘the
algorithm, allowing us to assess the performance of these changes before implementing and run-
ning them. We believe that this process saved us considerable time, and gave us considerably
more insight, than simply implementing numerous versions of the algorithm and running com-
puter experiments on each. Our biggest surprise, given that we had developed the parallel algo-
rithm and were already very familiar with it, was how many new and unexpected things we

learned about it through the modeling process.

This work has also shown that there are challenges remaining in the area of accurately
modeling algorithms. The main challenge that we encountered was trying to accurately model
nondeterministic portions of the method. (Note that parallelism is not the problem, the same
difficulties would exist if the algon‘thm were sequential.) In cases like ours where the worst case
complexity is a gross overestimate, modeling using expected time would probably be preferable.
But this introduces other difficulties: expected time complexity analysis often is quite difficult,

and the unknown parameters of the model are likely to enter linearly rather than nonlinearly,
necessitating nonlinear rather than linear least squares data fitting.
REFERENCES

[1] R.H. Byrd, C. Dert, A.H.G. Rinnooy Kan, and R.B. Schnabel, Concurrent stochastic methods for glo-

bal optimization, Tech. Rpt. CU-CS-338-86, Dept. Comp. Sci., Univ. Colorado, 1986.

[2] L.C.W. Dixon and G.P. Szego, eds., Towards Global Optimization 2 (North-Holland, Amsterdam,

1978).

19

(31 G.D. Hachtel and P.H. Moceyunas, Parallel Algorithms for Boolean Tautology Checking, IEEE Inter-

national Conference on Computer-Aided Design 1987 Digest of Papers, (Santa Clara, California, 1987)

422-425.

[4] A.V. Levy and A. Montalvo, The tunneling method applied to global optimization, in: P.T. Boggs,

R.H. Byrd and R.B. Schnabel, eds., Numerical Optimization 1984 (SIAM, Philadelphia, 1985) 213-244,

(5] D.A. Reed, Parallel systems : performance modeling and numerical algorithms, presented at Third

SIAM Conf. on Parallel Processing for Scientific Computation, 1987.

[6] A.H.G. Rinnooy Kan and G.T. Timmer, Stochastic methods for global optimization, Am. J. Math.

Mgmt. Sci. 4 (1984) 7 - 40,

[7] R.B. Schnabel, Concurrent function evaluations in local and global optimization, Tech. Rpt. CS-CU-

345-86, Dept. Comp. Sci., Univ. Colorado, 1986.

Unclassified
SECURITY J_ASSISICATION OF THIS PAGE

REPORT DOCUMENTATION PAGE
13 REPQRT SECURITY CLASSIFICATION 1. RESTRICTIVE MARKINGS
Unclassified
2s. SECURITY CLASSIFICATION AUTHOARITY 3. DISTRIBUTION/AVAILABILITY QF REPQRT
Approved for public release;
7. OECLASSIFICATION/OQWNGRADING SCHEDULE distribution unlimited
4 PERRCRAMING CRGANIZATION REPORT NUMBERI(S) 5. MONITORING GRGANIZATION REPOAT NUMBER(S)
CU~-CS-395-88
6a NAME QF PERFQRMING QRGANIZATION b, OFFICE SYMBOL 7a. NAME OF MONITORING QRGANIZATION
. (Il appiicabdle) . . N P
University of Colorado Air Force Office of Scientific Research/NM
6¢c. ADQRESS (City. State and ZIP Code; 76. AQORESS (City, State and ZIP Codes
Computer Science Department i a1 ‘
o pu B 430 P Building 410
ampus Box , ,
P ~ Bolling AFB, DC 20332
Boulder, CO 80309-0430
8a. NAME OF FUNCING/SPONSORING 8b. OFFICE SYMBOL |9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBEA
QRGANIZATION (1 applicadie)
8c. ADCRESS (City. State and ZIP Code) 10. SOURCE GF FUNOCING NOS.
‘ PROGARAM PROJECT TASK WOAK UNIT A
ELEMENT NO. NO. NO. NO. |
Mathematical Modeling
11, TITUE iinciuae Securty Classifications Of a
Parallel Global Optimization Algorithm
12. PEASONAL AUTHOR(S)
Elizaheth Eskow and Robert B. Schnabel
13a. TYPE OF REPORT 136, TIME COVERED T14. OATE OF REPORT (Yr., Ho.. Day; 18. PAGE COUNT
Technical FROM o 88/04/01 , 19

16. SUPPLEMENTARY NOTATION

17. COSAT!I CODES 18. SUBJECT TERMS (Conunue on reverse if necessary and identify by bloce number!
FIELD gRoue | Sus. GA. Parallel computation, mathematical modeling,
global optimization

|

192. ASSTRACT (Continue on reverse ([necessary and identify dy block numober)

et 2t o, . We describe the formation:of a mathematical model of a reasonably complex parallel global optimization

SIS program, and the use of this model to assist in the development and understanding of the underlying paral-
lel algorithm. First we discuss the formation of a model that accurately matched execution times of the
parallel program on an Intel hypercube. Then we discuss the use of this model to simulate the behavior of
our parallel algorithm in a variety of new situations, in order to detect weaknesses in the parallel algorithm
and analyze possible improvements to it. We believe that this combination of parallel computer implemen-
tation and mathematical modeling is a useful approach in parallel algorithm development.

20. CISTRIBUTION/AVAILABILITY OF ABSTRACT 21. ABSTRACT SECURITY CLASSIFICATION
uncLassiFiEo/uNLMiTEDS B same as asr. J oTic users Unclassified
22a. NAME OF AESPONSIBLE INOIVIOUAL 225, TELEPMONE NUMBER P ————
. {Inciude Area Cade) ,
Brian W. Woodruff, Major USAF 202/767-5025
DD FORM 1473, 83 APR EDITION OF 1 JAN 73 1S OBSOLETE. Unclassified

19 SECURITY CLASSIFICATION OF TrIS PAGE

