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FOREWORD

Ever since the appearance of Carson's classic paper [1] in 1926,
much attention has been devoted to the theory of waves propagated along
a thin wire parallel to the earth's surface. While the original interest
arose from the problem of overhead power lines, telecommunications problems
such as signal propagation along wires, behavior of antennas of finite
radius above the earth's surface, and even propagation of transients along
power lines, called attention to the need for a theory more accuracte
than those available at the time. Although quite a few papers have appeared
on the subject within the last 20 years (see the bibliography in [2]), the
first two papers of this collection seem to be the first serious attempts
in this direc ion, and for a long time have remained apparently unknown
to researchers in the West. It was therefore considered appropriate to
produce these translations as a technical report in order to make them more )
readily available to others working in this field, Also included is a
paper by L. S. Perel'man generalizing the theory to an arbitrary N-wire
system. In common with the other papers, this one deals with the question

of approximate evaluation of the Sommerfeld integrals which arise in the

course of the investigation.

[1] J. R. Carson, '"Wave propagation in overhead wires with ground return,"

Bell Syst. Techn. J. v. 5, pp. 539-554 (1926).

[2] E. F. Kuester and D. C. Chang, "Modal representation of a horizontal

wire above a finitely conducting earth," Sci. Rept. No. 21 (RADC-

TR-76-287), Dept. of Elec. Eng., Univ. of Colorado, Boulder, CO (1976).

-Edward F. Kuester
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A.A. Pistol'kors
corresponding member of AN SSSR

On the theory of a wire parallel to the plane interface between two media*

In this paper an equation is derived permittingAdetermination
of the propagation constants of cylindrical électromagnetic waves
along a thin wire parallel to the plane interface between two media,
and it is shown that, if both media are lossless dielectrics,
cylindrical waves can take place only in the case of a wire located

in the medium of higher dielectric permittivity.

I. Introduction

The problem of a wire parallel to the plane interface bet@een two
media has usually been solved in the context of a wire over the earth
[1-7]. The solution is carried out by an approximate method, substituting
for the wire an equivalent transmission line, whose parameters are given
in terms of a total impedance pe} unit length and a total conductance of
the wire with the earth's influence taken into account. To calculate
this influence the current is assumed to. be uniform along the length of
the wire and either synphasal or propagating with the speed of light,
and the charge uniform along its length and static. Obviously, neither
of these assumptions corresponds to reaiity, but they do permit one to

determine approximately the propagation constants of electromagnetic

*Translated from Radiotekhnika (Moscow) v. 8, no. 3, pp. 8-18 (1953).
A preliminary announcement of the results of this paper appeared in
Dokl. Akad. Nauk SSSR v. 86, no. 5, pp. 941-943 (1952).




waves along the wire.

One of the more rigorous methods of solving the problem consists
of finding an equation which accounts for the effect of the plane inter-
face right from the start, and thus permits one to determine the exact
value of the propagation constant. This method, considered in the present
paper, leads to a rather complex equation, which we use for some inferences
of a general nature involving cases when both media are lossless dielectrics.

2. The electromagnetic field of a wire parallel to the plane
interface between two media

We shall take a cylindrical coordinate system and orient the axis
of the wire along the z-axis (Fig. 1). We will take the surface of the
wire, i.e., the surface of a circular cylinder of radius a, to be perfectly
conducting. We set up a means of excitation of oscillations in the wire
as follows: let us locate in the plane z=0 a perfectly conductiﬁg
screen of infinite extent in which we cut a narrow annular slot of radius
p concentric with the wire. Between the edges of the slot we will maintain
an everywhere synphasal voltage U.

Such a means of exciting oscillations is similar to the excitation
of a wire by means of a magnetic ring current considered by Noether [8]-
Using and rearranging somewhat the quoted formulas, we obtain an expres-

sion for the z component of the electric field induced by the annular

“slot:
g =Ur i BI (Br)K. (80)e *%da r <
1T [ 0 1 P
Up t iy
E,q =~ —fr— j I, (Br)K,(Br)e " 4 r<p  (2)
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Here B = az—kz , where k = 2n/X is the wavenumber in the medium
surrounding the screen. Io(x), II(X)’ Ko(x) and Kl(x) are Bessel
functions of imaginary argument.

The secondary field induced by currents on the surface of the

wire, 1s represented in the form

o

(3)

_Up -iaz T
= - fP(u)KO(Br)e do

-0

v
Y

E
z

.

We now assume that the wire, whose diameter is small compared to
a wavelength, is situated parellel to a plane interface between two
media at a distance h from it {Fig. 2). In this case there will be,
in the half-space containing the wire, an additional field which we will
denote as "re” ected" from the interface and thus, as will be shown below,
this field can be represented as the superposition of an infinite number
of plane waves reflected from the plane interface. Therefore in order
to calculate it, it is convenient to use cartesian coordinates, oriented
as shown in Fig. 2.

In the exterior region (r>p) the longitudinal electric field
EZ has 4 components:

1} a component of the source oscillations
oo

_ Up . -laz .
E, = 7[[ B I,(BP)K,(Br)e " da; (4)

~00

2) a reflected source field

(o] .
A -ia
. E, = - 2 1 a1 (Bo)R(,x,y)e " F das (5)
2 W 1
Fig. 2 3) a component induced by the current on the wire
£, = %2 7 prayk (Brye '™ du; (6)
3= o f o(Brle :
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and 4) a reflected wire field

. _Up -ia
E4 == P{a)R{a,x,y)e

Zda. (7)

=00

iz

Here R(oa,x,y)e-1 is the reflected field corresponding to an

elementary cylindrical wave KO(Br)e_luz The function p(0) must be found
from the condition that the resulting field strength EZ vanish at the
surface of the wire. However, foi a<r<p

B, = 2 | BT BrIK (Bo)e  da. (8)

l‘-——«-s.s

(o0}

For a small wire diameter one can write the equality
Bl (Ba)K; (Bp) - BRI, (Bp) + P(a)K,(Ba) + RP(a) = 0. (9)

Here R = R(a,a,0) is the strength of the reflected field at the
wire surface for y=0, x=a.
Solving equation (9), we obtain

RI, (Bp)-I,(Ba)K, (Bp) o)
R+K0(Ba)

P(a) = B

Adding all the components of EZ and substituting the value found
for P(a), we obtain:

K (Br)+R(a,x,y) _.
E = - 99—[ BIK,(Ba)T, (Bp) + I,(Ba)k, (Bp)]— @ Y an

z m
-0

Letting the radius © of the slot tend to the radius a of the wire

and using the relation KO(Ba)Il(Ba)+IO(Ba)Kl(Ba) = 1/Ba, we obtain:

1 Ko (BT)+R(®,x,Y)

R ~iaz
z o K_(Ba)+R
b 0

e " da. (12)
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Usually one can evaluate integrals of a similar kind by integrating
in the complex plane of the variable o (Fig. 3). Here it is necessary
to account for two branch cuts determinable from the branch points u=k1

and a=k2, where k., and k2 are the wavenumbers of the. first and second

1
media. The poles of the integrand (the points Ops Oy us...) are of
practical interest inasmuch as only in their presence will there exist

cylindrical waves providing a transfer of energy down the wire. The

values of ¢ corresponding to the poles are determined by the equation:
KO(Ba) + R = KO (a#az—ki) + R(a,a,0) = 0; (13)

whereas, as far as the branch cut integrals are cohcerned, these give an
additional field whose amplitude usually decays quickly along the wire.
We will now derive the formula for the elementary reflected field R(o,x,y).

3. Derivation of the expression for the reflected field

As before, we will assume that the diémeter of the wire is small
(compared to a wavelength) and that the wire is located sufficiently far
from the intgrface (a<<h). Under these conditions we can neglect the
proximity effect and the higher order waves, and represent the primary
longitudinai electric field EZ of the wire in the form of a cylindrical
function of zeroth order, for example, KO(rVaz-ki)e—iaz. For a primary
field distribution given in this manner we will seek the corresponding
secondary or "reflected" field.

We use an expression representing the function Ko(r¢a2-ki)e_1az as

the superposition of an infinite number of plane waves

1Cf., for example, the book of G.A. Grinberg {9]. A related expression
was used by F. Pollaczek {[2] to calculate the coefficients of mutual
induction of a wire in the presence of the earth; in the latter case o
was taken as given, assuming &=k;. An analogous expression for the case
a=0 was also given by M.I. Kontorovich [6].
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QO
—i]y[#ﬁi—az—mz—imx-iaz
e
{2 2 2
-0 -m

1

dm. (14)

Ko(r/aZ_kf)e"lo‘z = —é—

el

Each elementary plane wave is characterized by the angles u, v, and
Y, which generate its propagation direction with respect to the x,y, and z

axes. Here

kl cCoS u = m,

k1 Cos V = + Véi—az—mz,

kl cos Y = Q.

Real values of the angles u, V and Y will occur when
kP > ol sl (15)

If y 1is replaced by its modulus, expression (14) is valid for all

points in the xy-plane.

The corresponding expression for EX can be found by realizing that

E_=E_cos ¢=- 1 Kl(r/az—ki) %e'm‘z ) (16)
/az—ki

This expression can also as represented as a sum of plane waves

( —ilyi/éi-az—mz -imx-ioz
e

E = io
x 2 2 m dm. (17)
2(k;-Q )J
| /'ki_az_mz

In a quite similar manner we find

T AT s
-ily| [-o-m-imx-iaz
e dm. (18)
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It is not difficult to convince oneself of the validity of the

equation

_ BEX aEy BEZ
div E = 3x y T 0

for each elementary wave.

As far as the magnetic field is concerned, HZ=O, and of the two remain-

ing components we need HX, for which we find

; ki -ilyl%ki—az—mz-imx—iaz
R -smz2|°
X H kl—a

dm (19)
0

Having expaﬁded the field induced by the wire into a sum of plane
waves, one can solve the problem of reflection from the plane interface for
each elementary incident wave. Then summing-the elementary reflected plane
waves, we obtain the secondary field, induced by the charges and currents
of the second medium, due to the current of the wire. Now to sﬁorten the
calculations one can apply the ready-made solution to the plane wave reflec-
tion problem to a separate elementary wave and insert the Fesenel coeffic-
ients. The solution obtained in this manner has this intuitive meaning only
for real values of the angles u,'v and vy, but as is well-known, it is also
valid for imaginary values of the angles.

In order to use the Fresnel coefficients, it is necessary to expand
the incident wave into perpendicularly and non-perpendicularly polarized
components and for each of them find the reflected field.

The mutual arrangement of the wire and the plane interface is shown in
Fig. 2. The plane of incidence of the wave is perpendicular to the xz-plane,

its equation is

X €0z Y - z cos u = 0. (20)
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In Fig. 4, a top view of the plane of incidence of the wave at the
plane interface (y=-h) is depicted, along with the angle ¢ with respect to
the x axis*. For perpendicular polarization the electric vector lies in
the plane of incidence, and the magnetic vector Hn is normal to it and directed

as shown in Fig. 4 (+Hn). From this figure and expression (20) we find

cos Y
tand = oosu

AL

whence
. cos o
sin ¢ = Y =

/éoszu+coszy V/;2+a2

and for each elementary wave

Hel - Hel sin ¢ = - Hel o
n X X >
m o +Q
Using expression (19) we obtain
k2 ° —i]y{%gf—az—mz-imx—iaz
_ i 1 0,
Hn = Zun kz_az _ = e do (21)
1 & VmoHo
. refl .
For the reflected field Hn we obtain
2 . 2
) k GR -i(2h+y) /kz-az-m -imx-ioz
rfl i 1 1 1
H = - e do (22)
n 2wy , 2 2 —
k. -0 S22
1 m +0

*¢ is apparently not the same angle as shown in Fig. 2 (Transl.).
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where y>-h and the Fresnel coefficient is

k,cos v, -k,cos v k2 kz-az-m2 - k2 2—a2 ~m2
R = 2 171 2 271 1 2 (23)
. S —
k2cos v1+k1cos v, k2¢k2—a2-m2 . k2 42_@2 _m2
21 172
Since Erefl = rotzﬁrefl/iwa = - (l/iwe)Bﬂiefl/ay and
Hiefl = - H;efl sin ¢ = - Hnrefl(a/Vm2+d2) (for the elementary waves), then

the perpendicularly polarized component EZ1 of the reflected field EZ is

equal to
>
.2 /42—a°-m2 -1(2h+y) kz-ocz—m2
rfl _ i 1 1
E = R.e da. (24)
z1 2 2 2 2 1
2(k1—a ) o +m
-0

To verify the expression obtained we consider an elementary wave
normally incident on the plane interface: for it, m=k1 cos u = 0 and
o = k1 cos Yy =90

Using formulas (19) and (24) we obtain:

el -'Jkl'}’I
H = - = .
X 200U
and
refl,el i "ikl(y+2h) D -ik (y+2h)
H = e ———— R e =L 2 1a
Zwp 1 2w k2+k1 s

i.e., the correct result was obtained, in particular for k2+W, the
reflected magnetic field near the interface interferes constructively
with the incident field as must be the case.

To calculate the component Ea corresponding to a perpendicularly
incident wave, we turn to Fig. 5. The positive direction of the electric

field vector lies here in the region of positive zz, Thus for an elementary

2Cf., for wxample, Stratton {10}, p. 493, fig. 90.
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wave

E =E +E,,=-E_sin¢ + E cos ¢ = - E -2 . E m

a 21 22 X 2z X /;E:;E Zx;:;;?

and = '
, { -1 (2hey) kS -mP o’ imx-iaz
refl lk1 m RZe
Ea 2 2 dm; (Y>—h)
Z(k -a7) §2+a2 &2_a2_m2

where

kl cosvl-k2 cosV2 /@f-a2~m2 - /k;-az—mz
R2 = - = . (25)

k1 cosvl-k2 cos»2 i_a2_m2 . /kz_az_mz

But for an elementary wave Ereflerefl cos ¢ = Erefl-—li———

az a a 5
m +o
Thus the total component Erefl of the reflected field will be
i .2
E;efl - R(a,x,y)e_laz - ;a . 2dm2 (a Rl 4% 2_m2_
2(kl—a ) J o7 +m
kimsz -i(2h+y)¢ki—a2—m2 -imx-iQz
-— ) e (26)
2 2 2
-0 -

where R1 and R2 are defined by expressions (23) and (25). This solution
is valid for arbitrary heights of suspension of the wire (including those
large compared to a wavelength), subject only to the conditions a<<h and
a<<a,

At the surface of the wire the strength of the reflected field will
be considered everywhere identical and equal to its value at the point

x=a, y=0; thus

. “ ﬂ*—————' kzmzR —iZhVﬂﬁlaz-mz—ima
i 42 1" 1
R 7 7 2 @? R vk ofmte A2y i
2(k; o )~ @ /ki—ocz—mz (27)
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Fig. 5

Substituting this expression into eqn. (13), we obtain:

® K2m%R _i2hv/k-a?-m%in
; 5 2dm2 (ale @i_aZ_mZ _ 1 2 Ye 1 .
2(kl—ot ) | a%+m /1<f—a2-m2
- Ko(a/éz-kf). (28)

Upon solving this equation for q, we find the propagation constants
of cylindrical waves which have circular symmetry.

4. Two special cases

In view of the complexity of eqn. (28), the treatment of methods of
its solution is a problem in its own right. However there are speciél
cases in which the solution is simplified. We will consider two such cases.
a) The case of weak influence of the boundary
This will occur for sufficiently large distances between the wire
and the plane interface, or for small differences in the values k1 and k2.
—
In this case o must be near k1 and the quantity a/b?-ki must be small.
Taking Ko(a¢a2—k§ = - in %;Wéij;?-, wherey= 1.781..., we cast eqn.
{28) in the form

_ia%3/2 = vian XY (29)
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Here J represents the integral on the left-hand side of eqn. (28)
. :
and v = aVaz-ki. The equation obtained is related to the Sommerfeld
equation for a cylindrical wire of finite conductivity. 1In the dbsence

. . . . . . 3
of reflection it goes over into the equation for a wire in free space:

Equation (}9) can be put into the form

E&ng = n,

where & is proportional to v, and n involves the integral on the left-
hand side of eqn. (28). When klh is large, n will be small, and for suf-
ficiently differenf values of k1 and k2 will depend only weakly on «.

To solve egn. (30) in this case, the method of successive approximations
can be applied, analogous to Sommerfeld's method of continued fractions.
If the nth approximation is known, then the (n+l)St can be determined from

the equation:

€n+12n£n - rln
An approximate value Eo must be given; the integral in n, has to

be evaluated graphically. In many cases n  can be reckoned a constant,

by substituting therein the value of the integral J for a = kl‘
b) The case when one of the media is a good conductor
Let for instance, ]k2]>>[kll and k; ¥-iuow. Separating out unity

from R1 and minus one4 from Rz, the integral on the left hand side of

equ. (28) is separated in two. The first of these is equal to KO(ZhVé§TE§),

since, subétituting R1=1 and R2=—1 we obtain:

*Not the angle Vv considered earlier (Transl.).
3Cf., for example, eqns. (21) and (23) on p. 528 of Stratton [10].
4This method was proposed by G.A. Lavrov.



" 22 AT 7 2
f az(ki—az—m2)+k m -iZh 170 -mo-ima

i dm 1 e _
2 2 2 2 -
2(a”-k]) | oem f-aZ_mZ

{ -iZthi-az-mz—ima
e
Vki-az-mz

0

dm = KO(/Q4h2+a2)(a2-kf)) =

le.

~ K0(2h%32-k§).

The second integral for the given values of k2 goes over into

o]

7 -
2k° —izh/kf-az—mz

cos ma e dm.

/-1
2 Yiow uszi

4

i

Putting cos ma = 1 (for a small radius of the wire ) and neglecting

ki—az compared to m2 {(for small heights h), we optain:

k2
J. = - V-1 1 1
2 HOW h _az—kz
1
whence
k2
-1 2
e [KO(Zh/uz-kf)- K, (av -kf)](uz-kf). | (31)
V2Uow :
For good conductivity of the second medium o 1is close to kl and
a az—k% is a small quantity. For small suspension height the argument

f2 .2 . . . . '
2hva —k1 can likewise be taken to be a small quantity. Therefore eqn. (31),
as in the preceding case, can be cast in the form £ 2nf = n. Here n does
not depend on & and to solve the equation one can apply Sommerfeld's

method of continued fractions.

5. On a wire near the interface between two lossless dielectrics

When both media are lossless dielectrics, egqn. (28) can be used for

some inferences 0f a2 general nature.
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Since neither medium introduces damping, kl and k2 are real gnd the
o being sought must also be real. But for real o the left side of
expression (28) will be complex, while the right side will be so only under
the condition a<k1. if k2<k1, this condition is natural, since it means
that in the presence of the interface, the propagation velocity increases
undef the influence of the less dense medium. Hence it follows that in
the case of a wire located in the denser medium (having larger €), cylin-

1

medium with smaller €, the existence of cylindrical waves is impossible.

drical waves can occur. If however k <k2, i.e., the wire is located in the

. In fact, under the influence of the neighboring dielectric a#kl
and o must be either larger than k1 (propagation velocity smaller than
in the medium surrounding the wire) or smaller than kl(a<kl<k2, or a phase
velocity large. than that of either medium). The first, most natural,
assumption is eliminated because in this case the right side of eqn (28)
will be-real. At the same time (as shown in the appendix) the imaginary
part pf the left side of the equation will, under the given conditions,
be different from zero. The second case corresponds to a waveguide kind
of propagation and must be excluded in view of the absence of suitable
physical hypotheses for this in the problem being considered.*

Thus, in the given case (kl<k2) the variation (decrease of the electro-
magnetic field along the wire bears a specific character and is determined
by the branch cut integrals. Only in the presence of loss in the dielectric
are cylindrical waves possible, which clearly occurs for a wire above
a real earth.

An analogous route is taken for the propagation of electromagnetic

waves along a dielectric cylinder.

*
Apparently, this means the absence of confining walls (Transl.).
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In this case the propagation constants of the electromagnetic waves

are determined from the equation of Hondros and Debye [11], which has the

form:
NS J. ()
£ 0 ™ _n o, (32)
€ H§2)(€) € Jl(n)

where

g = aJﬁg-az ; n = aV@i-az, a 1is the radius of the cylinder

kl is the wavenumber of the cylinder material,

kz is the wavenumber of the exterior dielectric.
For k1>k2, when. of the cylinder is larger than the € of the surround-
ing medium, this equation, as is wellknown [12], can have only real roots.
In this case the right side of equation (32) is real, and the left as well,
since a>k2, € is imaginary and the Hankel functions go over into the purely

real Macdonald functions, multiplied by (—i)p+1ﬂ/2, where p is the order
of the function.
When the permittivity of the cylinder is smaller than that of the

medium, i.e., k <k2, the following inequalities for the propagation

1

constant O are possible:

> - .
k2 a>k1, k2>k1>a, a>k2>k

1

In the first two cases & 1is real and n 1is imaginary or real.
Here the right side of eqn. (32) is always real, and the left complex.
Consequently, if a<k2, the equation has no roots. 1If cx>k2 {(the 3rd case)
both sides of the equation are real, but the left is always smaller than
the right.

Thus, for kl < k,, the equation of Hondros and Debye has no solutions

2’

and cylindrical waves along a cylindrical cavity in a dielectric are

impossible (even for €2+m).
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It can also be shown that in a space with smaller & between two

planar boundaries with two dielectrics (Fig. 6), the propagation of planar

waves as well as of radial cylindrical waves is impossible.

Y £
¢ ’ _
Fig. 6

Thus, from the point of view of the possibility of cylindrical waves
arising, the cases when tbe wire is located near an interface with a dielectric
of larger or smaller permittivity (than that of the medium surrounding the
wire) are fundamentally different. If energy transfer using cylindrical
waves is possible in the first case, then in the second case such transfer
turns out to be impossible. Consequently, approximate methods of solution,
starting from the hypothesis that cylindrical waves éxist near a wire

parallel to the plane interface between two media, cannot be used in all

cases.

AEBendix

.’7
For kl<a<k2, /ki-uz-mz = i¢a2+m2-kf and the left side of eqn. (28)

will have the form:

k2m2R —2h/u2+m2—k2
1 dm 2 f2 2 .2 1 2 1
5 55 o R1 o +m —kl + —_— e cOs ma.
o —k1 J o%+m 62+m2-ki

]

2
The integrand will be complex in the interval 0 < m < ng—a“

since in this interval R, and RZ will be complex.



We split off the imaginary parts of Rl and RZ:

N S0 S S S S S Ll S
Im R, = Im = - 5
1 2 /773 247 77 kKefmlkd) skt (k%ia-n?)
ik va +m -k, - k -0 ~-m 2 1 172
2 17172
i/é2+m2-ki +/£§-a2-m2 —2%&2+m2-ki/£?-a2-m2
Im'R,? = Im = - 2 2
- /2 2.2 2 2 2 kZ-k
1/0 +m -k1 - 2—a -m 2

In both cases the signs of the numerator and dehominator do  not change

over the entire interval OSmsVﬁg-az and the imaginary part of the integral

will be different from zero and negative, at least for ma<T/2 or a Vﬁg—a2<ﬂ/2,

or approximately, k,a<mn/2, i.e., for smaller wire diameters than a half

2
wavelength in the second medium, which agrees with the assumptions made

in the paper and values of the ratio kz/k1 realizable in practice.

Paper received by the editor 29 August 1952.
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G.A. Grinberg and B.E. Bonshtedt
FOUNDATIONS OF AN EXACT THEORY OF TRANSMISSION LINE FIELDS*

In this paper, starting from a rigorous formulation of the problem, the
propagation of electromagnetic waves along a single wire located above a
plane homogeneous earth is determined, and a method of approach is indicated
for the solution of the analogous problem for a multiconducter line which
accounts for the "proximity effect" on the conductors.

Virtually exact integral fepresentations for the electromagnetic fields
in all space are obtained; with the aid of these, equations for the deter-
mination of the attenuation and propagation velocity of the wave are obtained.
For a given range of values for the parameters of the problem, relatively
simple formulas for determining these quantities are found, as well as formulas
for the effective parameters of the line. The transcendental function which
enters into these formulas has been tabulated for the most interesting range
of values of its argument. Comparing these formulas with the existing appro-
ximate ones in the literature, the limits of applicability of these formulas
are found. In the second part of the paper, using the approximate Leontovich
boundary conditions, approximate formulas for the field are found, and in
comparing these with the exact solution, the limits of applicability of the
former are demonstrated. Relatively simple computational formulas for the

field near the surface of the earth are given.

N
Zhurnal Tekhnicheskoi Fiziki, v. 24, no. 1, pp. 67-95 (1954}.
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Introduction

The problem of electromagnetic wave propagation along a system of
conductors situated at some height above the earth's surface is of fund- .
amental interest from a theoretical as well as a practical standpoint, and
has been the object of study by a long series of authors.

In the limit of an idealized model wherein the conductor as well as the
earth are assumed to be perfectiy conducting, the solution to the problem
is obtained relatively easily; In this case the problem, as is well known,
reduces to a planar electrostatic problem, the wave propagation velocity
along the line is equal to the wave velocity in air, and its attentuation
vanishes.

The calculation for finite conductivity of the wire or the earth in-
troduces a great deal of complication into the solution of the problem.

Even in the case of the simple problem of wave propagation along a uniform
éircular wire of finite conductivity located in a uniform unbounded medium,
solved first by Sommerfeld {1], the determination of the complex propagation
constant requires the solution of a complicated transcendental equaﬁion.

For a system of two parallel wires of finite conductivity, the problem
was first studied by Mie [2]. In this case, special difficulties arise
because of the fact that in the bipolar coordinate system, in which the con-
ductor surfaces coincide with coordinate surfaces, the variables in the wave
equation are not separable. Thus Mie applied an approximate method of solution,
in which the field outside the conductors is considered as quasistatic.
Nevertheless, even when this hypbthesis 1s made, the boundary conditions
are rather difficult.

By far the most interesting problem, that of electromagnetic wave pro-
pagation along a wire situated above the surface of the earth (possessing
finite conductivity), has been studied by a long series of authors. Of these

we mention the work of Carson [3] and Pollaczek [4]. The problem of the
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fields of a wire located near the interféce between two media has also been
treated by Pistol'kors [13] and Kostenko [14].

Of these, in reference [3] a series of substantial assumptions is made
in order to solve the problem, namely: the transverse electric field com-
ponent in the earth is neglected in comparison with the longitudinal one,
and likewise the displacement current is neglectéd relative to the conduction
current; the fields in the air are taken to be quasistatic. Assuming the
radius of the wire to be small, and the distribution of curreﬁt on it to be
axially symmetric, the author obtains an equation for determining the pro-
pagation constant (the wave propagation velocity along the line and the
attenuation). As we show below, this equation is valid for a rather wide
range of parameter values for the problem, but not, however, for very high
frequencies. As for the formula for the field in the air, it can obviously
be useful only r ¢ to distances small in terms of a wavelength.

Pollaczek [4] in his papers does not place the same restrictions on
the problem of the theoretical determination of the propagation constant since
he solves the corresponding electrodynamic problem, but he assumes that some
value for this constant is given, having been found in some other manner. As
far as the field in the air is concerned, in spite of the general expressions
given in the form of complex integrals deduced by considerations of the wave
nature of the field, in these expressionﬁ, on one hand, the propagation con-
stant figures as some given quantity, but on the other hand the simplification
of these formulas toward the end of reducing them to a practical, useful
form leads to the assumption that the wave number in the air 1is equal to
ZETO0.

As can be seen from the above discussion, all existing solutions to
the problem of the electromagnetic field due to a wire situated over a finitely

conducting earth, lead to expressions for the field which are useless at



1I-4

large distances from the wire. Besides that, all the formulas for deter-
mining the atténuation of the wave along the wire and the change in the
wave propagation velocity relative to its value in the air, were obtained
under definite assumptions either during the formulation of the problem,
or in arriving at its solution. These assumptions permit neither an
eQaluation of the accuracy of values obtained in this manner, nor a pre-
cise statement of the range of applicability of the deduced formulas.

In the meantime it has turned out that a knowledge of the wave field

of the line in the air is necessary to enable one to calculate the inductive
effect of a transmission line in coupled lines, separated by distances

on the order of a wavelength or more, and for determining the radio
interference which they generate. In this connection, the fundamental
goal of the present work is to find a practical, sufficiently accurate
solution to the problem of the wave fields of the transmission line in
the air. At the same time, thé formulas for finding both the complex
wave propagation velocity along the line, as well as its effective
parameters (self-inductance, resistance and capacitance per unit length)
which result from the previously obtained engineering solution of the
problem are made precise and properly formulated.

In the present work all calculations are carried out for a single-
wire line and for purely sinusoidal time dependence. The earth is here
assumed tc be planar and homogeneous in its properties, while the wire is
rectilinear, situated at some height h above the surface of the earth,
and possesses a circular cross-section. However, the method used can
be immediately extended both to the case of a multiconductor system,
which presents no difficulty, and to the calculation of the mutual
effects of the conductors on the current distribution over their cross-

sections.
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In sections 1-5 the solution of the indicated problem in a rigorous
formulation is carried out. .In sections 6-9 the same problem is studied
in an approximate formulation - namely, the effect of the_earth on the field
in the air is accounted for‘using the approximate Leontovich boundary con-
ditions and a comparison with the first, virtually rigorous, solution is
made.

On the basis of tﬁe results obtained in sections 1-3 and 7, fofmulas
for finding the.complex wave propagation velocity along the wire (section 4),
the effective line parameters (section 5), as well as the wave field of the
line near the surface of the earth (section 9) are deduced. A table of
values of the auxiliary function EG(K) which enters into the obtained formulas

is appended to the paper.

1. Formulation of the problem

The problem of the electromagnetic wave propagation along a wiré ex-
tending over the earth's surface, or a system of such wires in parallel,
leads to the problem of integrating Maxwell's equations for the strengths
of the electric and magnetic fields E and H inside each of these media,
wherein it is also required that-the components of E and H satisfy certain
boundary conditions at the interfaces and a condition at infinity which in
our problem leads to the requirement that all field components tend to zero
as the distance from the wire axis approaches infinity.

For sinusoidal processes, if the time dependence is taken in the form
iwt
€ s

where w is the angular frequency, and the complex dielectric constant

4Ti0

(D
iS introduced ( € is the dielectric constant and o the conductivity),

Maxwell's equations take the form



T
rot H = = s
? (2)
rot £ = -2 g
c ’
Py
whence the two other equations - div E = 0 and div H = 0 -- are satisfied

automatically.1

On each interface between some ith and kth medium, the tangential

components of E and H must satisfy the continuity conditions

(1) _ LK)
Fy7 =Hy . (3)

3

(1) _ (k)
Et =By

When condition (3) is fulfilled, the two boundary conditions

(i) _ (k)
HH = W H (4)
eiey) = epE(, (5)

where the subscript n indicates the component normal to the interface,
are satisfied automatically.

We introduce the right-handed xyz coordinate system (Fig. 1) so that
the plane z=0 coincides with the surface of the earth, the x-axis is parallel
to the wire, and the z-axis passes through the axis of the wire and is
directed upwards. The height of the wire above the earth is denoted by h,
and the radius of the wire by a. The distance from the wire axis to an

arbitrary paoint with coordinates y, z is denoted by r, where

r = Hlez-n)?, (6)

and the angle between the y-axis and the direction of the vector r is called

0, so that

H . . . .
We use the Gaussian system of units in all calculations.
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Fig. 1
cos 6 =2%X; sin8 = z-h ' (7N
T T

We introduce one further geometrical quantity, which we shall need in

what follows, namely

r, = Kle(am)? ®)
the distance from the image of the center of the wire in the plane z=0 to
an arbitrary point with coordinates y,z.

We will assume that all quantities (field components, current, charge)

depend on x according to the law
oMY, (9)

as is usually done in such cases. This hypothesis corresponds to an
assumption that only waves propagating towards the positive side of the x-axis
exist, and that opposite ones are ébsent. The (complex) quantity q, which
we will call the propagation constant, is general in all media which form

the system.
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From equations (2) with (9) taken into account, we obtain the equation

A+ m ¥ =0, (10)

Ll N

where by ¥ is to be understood any of the cartesian components of E or

H, and tre notations

3 a2 1
h=—mr—> >
Ay a9z |
m, = vﬁi —qz, Iﬁ mi > 0,
= — 1 ] N
k. € i“i’ Im ki > 0. j (10a)

have been introduced.

The symbol 1 hefe denotes the medium. In what follows we shall under-
stand medium 1 to be the wire, medium 2 the air and medium 3 the earth;
we shall correspondingly place superscripts or subscripts on quantities
relating to the.. media.

Assuming that the distance between the wire and the earth is large
compared to the radius of the wire, we shall solve the problem by the method
of successive approximations. Neglecting the effect of the field due to
a current source in the earth on the current distribution over the wire, we
will assume that the latter is axially symmetric, after which we show how
the effect of the secondary fields on the current distribution over the wire
and on the field as a whole can be accounted for.

2. Fields of a wire in an unbounded homogeneous medium with a symmetric

current -distribution over its cross-section.

The solution of the problem of fields on a wire in an unbounded homo-

geneous medium gas obtained by Sommerfeld [1] and has the following form

N
iq aEx
Br T T2 or #
g dwe E., (11)
6~ 2 or

cm 7
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in which the component Ex satisfies the equations

1 9 (. X}, 2 = -1
i Tl mE =0, (k1,2). (12)

Its solution inside the wire must be bounded at r=0, and therefore
1y _
Ex = AJO(mlr), (13)

where A 1s a constant, JO(E) is the Bessel function of the first kind and
zeroth order. The solution of equation (12) outside the wire must tend
to zero for r + ®. For our choice of sign of the imaginary part of m,

this condition leads to

E§2)= CHél)(mzr), | (13a)

where Hél) is the Hankel function of the first kind and zeroth order,vand
C is the constant. In what follows the sign (1) in Hél) will be everywheré
dropped, since in our solution the Hankel function of the second kind will

never occur.

In what follows we will denote the fields of the wire with a s}mmetric

current distribution as EO and HO. From (13), (13a) and (11) we have
‘Inside wire Outside wire
(10 _ (2)0 _ )
Ex = AJO(mlr) EX CHO(mzr)
(1)8 _ _ iq ,qs (2)0 _ _iq
Er T T n AJO(mlr) Er ~ "m., CH!(m,x) ¢/ (14)
1 2 0" 2
iwe! iwe!
(o . W1 (2)o _ '
H6 = - AJO(mlr) H6 p CHO(mzr)
1 : 2 J
Here JI(E) = —é-J {(£€) and, analogously, H'(&) = é:—H {&).
0 dé 0 ? >0 dc 0

The constant A can be easily expressed in terms of the total current.
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On the surface of the wire, continuity of the components EX and He must
be satisfied, which in the case of the wire in an unbounded homogeneous
medium leads to two equations which determine the constant € and propagation
constant ¢q. In our case, to satisfy the boundary conditions at the wire
surface it is necessary to take into account the secondary fields of the earth
which lead to modified equations for the propagation constant. Therefore aﬁy
process for determining the constants will depend ultimately on oﬁr deter-
mination of the secondary fields of the earth.

The corresponding fields outside the wire in cartesian coordinates on

the basis of (14), (6), {(7) will be, evidently,

(2)o _ ) (2)0 _
Ex = CHO(mzr), HX =0, '
. iwe
()0 . iq . 3 . (2)0 _ 2~ 0
Ey = - C 3y Ho(mzr), Hy = cm% C 5 Ho(mzr), S
i iwe ]
(2)0 _  iq . 3 . (2o _ 2 . 93
EZ = -3 C P Ho(mzr), Hz = ———§-C Sy HO(er). (15)
m, cm,

The fields determined from formulas (15) will be considered as the primary
fields. We now pass to the determination of the secondary fields due to

the presence of the earth.

3. Fields of the earth and satisfaction of the boundary conditions

at its surface.

We begin by determining the vertical component of electric field Ez,
which satisfies an equation of the form (10), and for which the boundary
conditions can be written independently of the remaining fields. The first

of these is condition (5):

.(2) (3)
) = €'E. = .
252 BEz ., {z=0) {16)
The second condition is obtained at once from the equation div E = 0,

if condition (3) is also taken into account, namely,
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2@ arl®
3:’, = az > (Z=O)' ’ (17)

(2 ,

We represent E in the form
@ - g(2)0 (@) (18)

where E{Z)O is the field of the wire of axially symmetric current distrib-

ution which was determined above, while E(Z) denotes the secondary field

of the earth.
. .(2)0 . . . =(2)
Since Ez is a solution of equation (10), then EZ must also be a

solution of this equation. The general solution to the latter which vanishes

at infinity (for z>0) and satisfies a symmetry condition with respect to vy

will be -
- -n,{(z+h) ,
F(2)_ 29C | V) e 2 cosvy dv, (19)
z - 2 2 .
m,, )
where -
2 2 ‘
nz = /@ -m.,> R§ n2>>0, (19a)
-n h
in which the multiplier in front of the integral sign and e were

separated out to simplify the subsequent calculations. Completely analogously

we can write

[ee]
_n h n Z .
gG) - EQ_%J M (Ve ‘e > cos vy dv, (20)
z m
2
0
where
n3 = sz-mg , Re n33>0 . (20a)
Using the known formulaz
/ % 7 2
= rs N ') - -
EE'Htlj(m y2+z“) = fe lzl/@ T cos vy 4V (21)
2 2
0 . Vv -~

2

“Cf., for example, [11], p. 99.
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we can likewise express EEZ)O’ as defined by equation (15), for z<h in the

form

e T N, (z-h)
E§2)0 L O cos vy dv. (22)
™

to N

0

Substituting (19), (20) and (22) into (16), and their derivatives
into (17), we obtain a system of equations for M2(v) and M, (v). Solving
. » 3
for these quantities and substituting them into (19) and (20} we obtain

[o9]

~ | €n,-efn, -n,(z+h)
~f
B2 2260 52 23 20 Tios vy dv, (220) (23)
Z 2 ein_+e'n .
Tfmz 32 23 .
0

¢ em -nh+1 2

el oM e Eme T sy @y, (as0). (24)
iy 3y EN3 :

0

Knowing EZ we can now write two boundary conditions for Ey in which EZ
enters only as a known function. In particular, considering the equation
(2) (2) :
8Ex aEy iw,

(2)
3y 52 BT

in which we allow z+*0, an analogous equation for the third medium (earth),

and bearing condition {3) in mind, we obtain the relation

(2) 5g (3
}__ffzn__._ E_._EbL__.= 3 1 ;@ 1 03 (2=0)
Uz 9z Hs oz dy W, 'z My 2 ’ ’

Hence, considering (16) and (23), we obtain

/ * -n,h
{ BEY(Z) BEY(S) 4aC n,e 2
V) e i = L 1 - 1 —— >4
\“3 A PR (E3 Uy = &)H)) ein, veh ng VSR W A
2 (25)
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and from the first of conditions (3)

(2) (3)
E =E"7; (z=0). . 26
y y (z=0) ( )
According to (18), E(z) = E;Z)O - Eﬁz). Having taken E§2)0 from
(15) and using (21), we obtain for z<h.
T n(z-h)
Z_
g(2)0 . gﬂg-f e 2 Y osin vy dv. 27)
y ﬂmz L ’
2 0
If now, in analogy with the preceeding, we write_Eﬁz) and Eﬁs)in the
form
% -n, (z+h)
g(2) gﬂ%.j N,(v)e 2 vsin vy dv (28)
Y .
AN
and -
(3) - 39%-[ N (Ve B2 sin vy dv, (29)
., )
o]

then by substituting (27)-(29) into (25)-(26) we obtain for Nz(v) and NS(V)
a system of two equations, from which Nz(v) and NS(V) can be found and
substituted into (28) and (29).

For

My = Mg =1, (30)

which corresponds to situations of practical interest to us, we thus obtain

i _____3__— e v sin vy dv (31)

2¢et -nz(z+h)
f +€2n3

n,  &3N

and .
t —
€ n2h+nsz

vsin vy dv. (32)

Now we can determine EX from the equation div E = 0, which takes the form



iqE = 5L+ —~ (33)

and then, knowing Ex’ Ey and Ez we can, using the second of equations (2),
find Hx’ Hy and HZ as well, by simply differentiating. Thus, the formulas
found for E and H define the fields completely for all space.

We further write out in explicit form the component Eiz), which we shall
need in what follows. From (33), (31) and (23) we obtain

[e]

2
t -
4€2C n2n3_v nz(z+h)
2
2

2) |
E( = CH,(m,r,) + — cos vy dv. (34)
X 0772717 pyp? | E302*E)03 .

0

4. Boundary conditions at the surface of the wire. The equation for

the propagation constant.

At the surface of the wire we enforce the following boundary conditions

o
L

(2) _ ), 4@ _ ),
X x X

2 L, L@ | ,a) -
< ; Eé ) = E8 ; -He —-H6 at r=0.

(35)

In this paragraph we shall satisfy these conditions in a first approxi-
mation, neglecting the variation of the secondary fields over tﬁe wire cross-
section, in which we take the values of E(Z) and ﬁ(Z) as equal to their
values along its axis. In the Appendix we will show how these boundary
conditions can be satisfied more accurately, and estimate the order of the
correction terms. As shown there, the discarded terms are of ordef
(a/2h)2 compared to the main ones, that is, these ﬁay be unconditionally
neglected in our solution, since these quantities are, in realistic situations,

always small.

(2)

As is evident from symmetry considerations, Eéz) = ﬁx =0 for y = 0,
and since in addition Eg Eﬁg =0, then the second and third conditions in

(35) are, in our approximation, satisfied identically. The two other con-

ditions in (35) in our approximation take the form



Lr=19

o B
y=0, z=h X r=a, . (36)

/ rd
.., -
X r=a X

[.(2)0% _ (1O
Ho ™ ) r=a ~ Cﬂa )r=a'

it should be noted that equations (36) are retained also forlthe satis-
faction of the boundary conditions in the second approximation as shown in
the Appendix. This point is essential, since from these equations an
equation for the propagation constant is obtained.

Substituting the expressions for the field components from (14) and

(34) into equation (36), we obtain

2 C 1 X
a - - ——— = a
CH,(m,3) - CHy(2m)h) - 2= — F' = AJ (m,a),
m
2
C Si (37)
-— ] = - t
m Ho(mya) = = AJy(ma),
2 1
. ° -2n,h
where Promger [ 2370 TN (38)
2 J +€2ﬂ :
v}

We now express the constants A and C 1in terms of the total current

flowing along the wire

2y a (1) 01
1= f f ’OlEx rdrdf = 2wa.Eq-AJl(m1a),
0 0

where by I we should understand the amplitude of the total current flowing

through the wire cross-section at x=0. Hence

Im

1 A
A = - - R (39)
2ﬂaolJ1(mZa) .

after which from the second of equations (37) we obtain
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.- Imzei "
T Zﬂaﬁlﬂl(mga) : (40)

Dividing the first of equations (37) by the second, we obtain after

simple rearrangements the following equation for the propagation constant

. Ho(mza)—HO<2m2h) ) Et . mlJO(mla) (415
t 3 Tt Yt 3
2 Hp(mya) m, [} (m ) ] €19 M)

where F' is given by equation (38).

Equation (41) is valid for_arbitrary frequencies and medium parameters.
As it stands, it involves the complex integral F', into which the unknown
quantity q (which is to be determined) enters. Because of this, finding
q from equation (41) is, generally speaking, a complex and difficult process.
As shown below, it is important to give relatively simple formulas for deter-
mining q over a definite and sufficiently wide fange_of the parameters of
the problem.

From physical considerations it is clear that, for sufficiently large
conductivities of the wire and of the earth, the propagation velocity should
not differ significantly from w/c, 1In fact, from the known approximate
solution [3], it is clear that !ql differs from w/c under.ordinary conditions
by not more than 15-25% of this value. To simplify formula (41) obtained
above we shall use, in the following estimates, this fact from the very
beginning, and shall convince ourselves that the results obtained justify
this assumption.

Considering that ]m2[<w/c, we have, for frequencies w<10° and for

wire heights h<10m above the earth, with an error of less than 0.5%
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. Ym,,2h
w1 2
A = - fn——<___

5 HO(mZZh) N

where y=1.781... is Euler's constant. With even greater accuracy

3 ym, a
i 2
— a :—/Q/
5 Ho(my® "1
and
Tl - 1
2 (M) = m,a

In addition, since ]kll>>w/c, one can for all practical purposes

reckon accurately that mlzkl.
Substituting these approximate values into equation (41) we obtain

the formula
m_\? J (ak.) -
er [ 2lan2h g i (42)
2 1k a ak, JO(a 1)
where
p 2 2hn
n,N -
F=o2et | 23°V o 24y (43)
2 | 122
3 XoNg

can be expressed as the sum of three integrals

The function F
F = Zeé{K+R+G}, (44)
in which
© n -2hn @ N -2hn
K= - 2 e 2 dv R = 5 = € 2 dv,
K2 -x2 ’ K2-k*
3 2 32
0 . [¢]
e -n92h
G = q? ! e ~ dv
i an +k2n
32 723

3
Cf., for example, {12], pp. 224
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A1l the following calculations will be carried out under the same
assumptions and to the same accuracy used in obtaining equation (42). The

first integral is calculated at once with the help of formula (21)

2
. m
=-Z e Hy (my2h) = S (45)
kg -kS (2hk,)

To calculate the integral R we use the fact that |m,|<<[kq|, and

assume m3~k3 as well.4 Carrying out the change of variables 2hv=f and

introducing the notaticn

x
Il

(th3)2, Re #>0, (46)

O
|

= (2hn,) 2

We can write

2,2
1 JE R L ~EVETMT 4
W %2
0 0
i 2 2 |
JES- - 2.2 .
B L VO (47)
an
0
An estimate of the second integral in (47) shows that
s
1 ey 42 .2 8 1 (48)
—-2—4( -e )/& % d£l<l;[l62n2n+—2—nf,
0
where is some number chosen such that |nd|[<<|%|. 1In the frequency interval

6 . 7 . .
below w=10" for conductivity of the earth 63210 , neglecting the integral

(48) gives an error of less than 0.25%.

With an accuracy under 0.1% in all ranges of parameters studied below.
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Now carrying out the change of variable &=np, we can represent R

in the form

R = - f e PVo%1 dp (49)
0

We use the formulaS

1 0
g’Yo(X) - f sinttdt f e "dp

o yi-t* 0 1/14113.2

Differentiating it twice with respect to % (which we are permitted to
do by reason of the absolute convergence of all integrals) and combining
it with the ori inal formula we obtain, by the use of known relations

between Bessel functions

1

[e o]
5% YI(K) = J Vl-t2 sin # t dt - f e—np 1+p2dp,
0 0
and hence in place of (49)
1
R =‘gi Yl(%) - f /{:tz sin #t dt. (50)

0

Finally, expanding the sin ut in the integrand into a series, we obtain

finally

2n

0 - H

R=34z0 00 - £ o 3 1 (51)
n=1 1737...(2n-1) " (2n+1)

5Cf., for example, {11], p. 702.
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The final integral G which enters into formula (44) will, for all
frequencies under w=106, be a small correction to the first two.

To evaluate this integral we use the fact that ik§n2[>>]k§n3| over
the entire integration interval and expand the integrand in powers of the

ratio of these quantities. Thus we obtain

-2hn, ; 2
3 kon 2 .
G=q2 e 1 - 23+,,_ d\)=g——7—r—-1-H(2hm)=...,
2 2 22 0 2
s 1253 3 3

where the neglected terms are much smaller than the one written out, and

since G itself is a correction, we can take

2 2ym, h
- _4_ g 2 '
G 1y (52)
03
We now sub. .itute (45), (51) and (52) into (44)
f I .Zn 7
F=2et {1+ LTy 0y o ¥ ™l % -
2 2 {21 2.2 2.
n n=1 1737 ...(2n-1) " (2n+1)
Ym. h
- (ﬂ )2 tn—2 3}, . (53)
k3 i

where ® 1is given by (46).

The substitution of (53) into (42) gives a practical, convenient form
of the equation for finding the propagation consfant. To solve this equaticn
one is led to the method of successive approximations.

In the first approximation we obtain from (42), neglecting in expression

(53) for the function F the (small) last term in the curly brackets,

6This should not be surprising since even in the simplest case of a single
wire in an infinite space one is also led to the method of successive
approximations (cf., for example, {1]). The present case is incomparably
more complex.
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7
H/’“z\ S R 1 Jolaky) (54)
o T8 - = - T 3 s :
2\;(2} a0 ak, JIEK)
in which
{ r ' 2n 1

j . (55)

1 i ® n-1 % E

F o= 2! ———4—:—1—Y(%)— F (1) . i
" = ;

0 zi’@ 2l n=l 1232...(2n—1)2(2n+1)j

For low frequencies, when |%]<0.3 and

U

ny Vi = /i’%ﬁ /it s, (56)

it is more convenient to use the formulas

3
YH " \/é- x /2—
ReF = €} {%n——é-— 1.3 .0 2.3

0 2 2 3 32 3 45 ’
Ty 3 -3
ImE. = g! T _H.:f’_‘_z._ - ’ié Inl —Y}3. > + Ksﬁ (57)
0 2 14 3 8 2 4 45 :

The values of m, and q found from equation (54) should be substituted
into (53) and (42), however it should be pointed out that similar corrections

need to be inserted for conductivities ¢, on the order of 108 and higher,

3
only beginning with frequencies w on the order of 105. For poorer soil
conductivity the correction will become substantial for much lower
frequencies.

It should be noted that equation (54) coincides with the equation for
the propagation constant given by Carson {3}, if we take £5=1 and neglect
83, while in Carson's solution the leakage conductivity to the earth is set
equal to zero. Thus, carrying out the above analysis points out the limits
of applicability of the solution in [3].

We note also that the quantity Jo(akij/[alié(akl)] which enters

into equations (42) and (54), is equal to Z/2iw where Z 1is the total

impedance of the wire to alternating current.
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Table 1
ImF, () | -ReF (%) " ' ImFoﬁt)‘ ~ReF (1) )

0.1 0.743 2.965 1.4 0.451 6.799
0.2 0.706 2.516 1.5 0.438 0.760
0.3 0.674 1.953 1.6 0.426 0.726
0.4 0.644 1.706 1.7 0.414 0.693
0.5 0.618 1.524 1.8 0.402 0.662
0.6 0.594 1.380 1.9 0.392 0.633
0.7 0.571 1.261 2.0 0.383 0.608
0.8 0.550 1.165 2.1 0.373 0.585
0.9 0.531 1.081 2.2 0.363 0.563
1.0 0.512 1.010 2.3 0.354 0.543
1.1 0.496 0.948 2.4 0.346 0.527
1.2 0.480 0.893 2.5 0.338 0.510
1.3 0.465 0.844

In order v, carry out the calculation of the propagation constant the
function FO(%) has been tabulated for a range of values of the variables
of most interest to us. In doing this we neglected the displacement current

in the earth. The results of these calculations are presented in Table 1.

Table 2
w %f— q-lOS(cm-l)
3.102 1.246 - i 0.0907 1.246 - 1 0.0907
103 1.211 - 1 0.0594 4.036 - i 0.198
104 1.143 - 1 0.0453 38.09 -1i 1.51
105 1.081 - i 0.0363 360.5 - 112.1
106 1.037 - 1 0.0236 3455 - 178.5

in Table 2 we carry out as an example the evaluation of the quantities

17
q and qc/w in the concrete case where 03=9x107, 01=5.14x10 , h=10m, a=lcm

for the frequency interval of w from 3x102 to 106 sec_l. The results

of the calculations, as has already been pointed out above, confirm the

preliminary estimates, which we used to arrive at the equation for the
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propagation constant.

5. Effective parameters of the line.

The usual approach to the solution of the problem of the propagation
of alternating current along an electric transmission line is contained
in the integral of the so-called telegraphist's equations in which are
substituted the line.parameters, determined from the approximate solution
of Maxwell's equations without allowing.for attenuation along the line or
distinguishing the propagation velocity from that of the air. It is therefore
of interest to obtain the values for the effective line parameters from
the relatively simple solution of the problem found above.

We define the potential between the wire and the carth by the formula

h-a
6=- 5 P 4, (58)
o % ly=0

which agrees with the sense of this quantity in the usual transmission line.

equations, which have the form

L
d¢ _ 0231 _
EI I T
(59)
T o1 _
Coae * G *3x° 0

where RO’ LO, CO and GO are the effective line parameters - resistance,
self-inductance, capacitance and leakage conductance per unit length of

line respectively.

We transcribe (59) into the form

iqp = (Ry + =5 Lo} 1,

(iwCy + 6 )¢= iql. ' (60)
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From (60) follows additionally the known relation
2o R+ L) e, + G 61
"4 %o " Z ) B T B0 (61)

Thus, to determine the effective line parameters, it is necessary only

(2)

to calculate the integral (58), starting from our solution ir which EZ

is proportional to the total current I in the wire, and to substitute the
value obtained into equation (60). Calculating the integral (58) using
formulas (15) and (23) shows that
2h

a (62)
with an error of less than 0.5% for frequencies wflO6 and-conductivities
032107; the accuracy improves for lower frequencies.

Substituting formula (40) for the constant C into (62) and taking

into account that |m2a|<<1, we obtain

- 2qL , 2h
¢ - Zn S (63)

The second of equations (60) takes the form
iw

iwC., + G, =
0 0 2%n %&

G, =0, {64)

1
C, = ——— (65)
0 ZQH%?-



I1-25

For the capacitance per unit length cf line we have obtained the very
same value which is obtained in the elementary theory; this foliows also

because the distance between the wire and the earth is very small in terms
of a wavelength.

Substituting (63) into the first of equations (60) gives

and if here is substituted the value of q2 from equation (42), then after
some straightforward

manipulations we obtain

. J (ak.)
. 20 _ 5: o0 2h . 2iw "0~ 17 . (66)
iwL, + ¢ Ry = 2iwln— - 2iwF + Tk, JT(AK Y
1 70~ 71
Equation (66) can also be written in the form
Z0 = 1wL1 + Z3 + Zl’ (67)

where ZO is the total effective impedance,

., 2h
L, = 203" (68)

is the self-inductance under the assumption of an ideally conducting earth,

_ 2iw Jotaky)
17 3k JhG@Ek)) (69)

is the total impedance of the wire to alternating current, and finally

Zg = - 2iuF (70)

is the total impedance attributable to the finite conductivity of the
earth.

Formula (68) differs from the formula given by Carson [3] in the
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possibility that F differs from FO and in that the displacement current
of the earth is taken into account, which can be shown to be substantial
for sufficiently high frequencies.

6. Approximate boundary conditions at the earth's surface.

The formulas obtained in section 3 for the field components in the
air are hardly suitable for practical calculation of the field in view of
their complexity. One can try to obtain directly approximate formulas
for the fields by applying the approximate boundary conditions at the earth's
surface proposed by Leontovich [8].

Considering a body possessing a complex dielectric constant of large
modulus within which the wavelength is much smaller than the wavelength
in air, Leontovich introduced approximate boundary conditions whiéh exterior
tangential field components must satisfy on the surface of such bodies.
We write these conditions for the field in the air at the earth's surface

in the form

(2 @ 2 g (71)
X y
E(Z) - aH(z) = 0, (72)
y X
where
o = =t > Re a > 0 (73)
3
and z=0,.

In reference [8] Leontovich carries out an analysis of the limits of
applicability of conditions (71), (72), using results of the work of Rytov
{5], and shows that for bodies possessing large losses they are accurate
to a quantity of order az under the following conditions: the wavelength
in the body and the penetration depth into the body are small compared to
the wavelength in the surrounding medium, the distance to the source of the

field, and the radius of curvature of the surface.
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One can by considerations of a similar type connected with the expon-
ential decay of the field towards the interior of a good conductor, deduce
approximate boundary conditions for the electric field component normal to

the interface [6]. We write this condition in the form

e (2)
% Be(P) - 0 at z=0 | 74
3z z a z=Y (74)
where
B = - l%-u. (75)

A condition analogous to (74) can be obtained as well for the normal

magnetic field component

ap (2 )
Z \2
—_— % YHZ

y )
N> = 0 at z=0, (76)

where

 iw 1
Yo T (77

We now consider the possibility of applying conditions (71), (72) to
the problem which interests us.7 In our case the ihterface is planar;
thus the condition regarding the curvature drops out. The condition of
smallness of the wavelength in the earth and the.penetration depth there
compared to the wavelength in air for soil conductivity 033107 is satis-
fied rather well for every case with frequency w5106.

As for the condition of smallness of the wavelength in the earth and

the penetration depth compared to the distance from the source of the field,

7Conditions (74) and (76) can be obtained from Maxwell's equations and
conditions (71) and (72) without such additional considerations. It is
therefore sufficient to study only the applicability of conditions (71)
and {72).
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this is not satisfied on the portion of the surface which lies directly
under the wire for realistic earth conductivities and heights of the wife
above the surface, when the frequency m§106. Howéver a similar statement
holds true in a series of radiowave propagation problems and nevertheless,
the solutions of these problems obtained through application of the appro-
ximate boundary conditions turn out to be valid at moderate distances

from the source. Thus, for example, Leontovich [7] solved the problem of
the field of a vertical dipole situated above the plane surface of the
earth, by applying the approximate boundary conditions, and obtained a
solution which agreed wifh the Weyl-van der Pol formula, which in turn

is obtained from Sommerfeld's rigorous solution.

We note here that the application of approximate boundary conditions
in radiowave propagation problems has turned out to be highly fruitful
because of the practicability of approach to the solution of wave propag-
ation problems which account for medium inhomogeneity or roughness of the
interface. Thus in the already cited work of Grinberg [6] the solution
was obtained for the problem of interface refraction of radiowaves; the
work of Fock [9] solved the problem of wave propagation around Fhe earth
taking atmospheric refraction into account; Feinberg in the same collection
[10] studied the problem taking into account the influence of éurface
roughness and inhomogeneity of its electrical characteristics on radio-
wave propagation.

All the above permits us to hope that the solution to our problem
using approximate boundary conditions will be valid in all cases at suffic-
ient distances from the wire. In the present work we confine ourselves
to a solution of the problem only for the case of a smooth and homogeneous
earth, in which we deduce the validity of the approximate solution compared

to the accurate one, obtained in sections 3-4 and we find the limits of



11-29

applicabiiity of the approximate solution.

7. Solution of the problem of the secondary field of the earth,

applying the approximate boundary conditions.

In the present paragraph we will solve the problem of the secondary
fields of the earth E(Z} and ﬁ(z)by applying the approximate boundary con-
ditions (71), (72), (74) and (76) and assuming that the current distrib-
ution over the wire cross-section possesses axial symmetry.8 This problem
reduces to integrating Maxwell's equations in the air for E(z) and ﬁ(z)
and satisfying conditions (71), (72), (74) and (76) at the earth's surface
for the total fields E2) = E0 L E@ 4ng @ - g@0 _ 5@ 41 whicn
£(20 4pq 520 are given by formula (15).

We rewrite the boundary conditions in the form

Eiz) + aH}SZ} = EX(Z)O + aH)EZ)O, (78)
E‘}(,Z) - o) - E)EZ)O - (PO, - (79)
at z=0
3£ (2 ag (210
~(2) (2)0
oH dH
z . Yﬁ§2) - gz N YHZ(Z)O. (81)

The constants o, Band ¥ are determined from formulas (73), (75)
and (77).

The components Eiz) and ﬁ£2) can be determined relatively simple since
for these we have independent boundary conditions and an equation like (190).
The boundary conditions for the four other components are connected with

each of the two components in pairs. However one can, using conditions

8 ; . . . - . - .
As shown in the Appendix this assumption is justified in our case for
practical purposes.
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(78) and (79) easily determine two combinations of these four components,

namely

3

8(2? = E(Z) + aH(Z) (82)
X Y
(2) _ £(2) (2) '
Q = Ey - aHx‘ . (83)

In fact, since each of the components E£2)’ Eﬁz), Hiz) and H§2)
satisfies equation (10), each of S(Z) and Q(Z) also satisfies this equation
(as a linear combination of them). On the other hand, we have for z=0

the boundary conditions

5(2) = 0, (84)
Q? - . - (85)
Further,
s L g0 _ g (@) _ (@0 _4(2)
where

S(Z?O = CHO(er) + C 18;”%; HO(mzr), (86)

m

2

(2j0 B igC o
2

on the basis of formula (15). It is immediately obvious that the expressions

3 ; 3 ., '
g(2) | E)((Z) + aﬁ}gz) = CHy(m,r,) - 1—“’% C 57 Hylmyry), (88)
cm2 :
52 _ Ey(z) i oLﬁﬁz) - }gEg_y. Hy(m,r ) (89)
)

satisfy equation (10), boundary conditions (84) and (85) (by taking (86)
and (87) into account), and the condition at infinity. By virtue of the

uniqueness of the solution of this problem, formulas (88) and (89) give the
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desired representation for the two indicated combinations of secondary
field components.

To deternine Eiz) we have equation (10) and boundary cbndition (80)
As in section 3, we express the general solution to equation (10) which

vanishes at infinity for z>0 and satisfies symmetry conditions in y in the

form

o -n,z
Eiz) = [ M(v)cosvye 2 dv, 0

0

where M{v) is an unknown function to be determined from the boundary con-

ditions (80). :
(2)0

Using formuias (15) and (21}, we represent EZ for z<h in the form
T n(z-h)
EEZ)O = - Zﬁ%_ e 2 cosvydv.
- ﬂmz

0

From condition (80) we now easily obtain

-n.h .
M(v) = Z—q% e 2 (1+ anfB) ) 91)
ﬁmz 2

Substituting {91) into (90) and using formula (21) once again, we

obtain Eiz) in the form

~(2) _ igqC 3 4qRC
EZ = —~§-82.H0(m2r1) + > J, (92)
m T
2 2
where
o;) —n2(2+h)
J = } e cosvydv. (93)
m, - B
0

The second term in formula (92) appears as a consequence of £ differ-

ing from zero, i.e., of the finite conductivity of the earth.
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Formulas (92) and (93) already give the solution for the field E;z)
but the integral J in the form (93) is hardly suitablevfor calculations.
Therefore we shall transform it into a more convenient form. Multiplying

. B(z+h) . c . .
equation (93) by e and differentiating with respect to z, we obtain

©  (B-n,) (z+h )
32 (B 5 (B-n,) (z+h) T B(z+h) 2

= - | € cosvydv = > §E-H0(m2ri),

where once again we have used formula (21). Integrating the latter equation,

we find

mi [ Bz 9 | K '
> e §E-~H0(m2rl)dz + P(y), (94)

& 8

where P(y) is independent of z.

To determine P(y) we proceed in the following manner. We represent

J in the form

f y-n,(z+h) 4
€ B
N2

-0
. . ] . . 9
Adding to J a contour integral (as shown in Fig. 2} we obtain

ivy-n,(z+h)
J = - %" j € 2 d\_)s + p1) (y>0)’
CDE Ny

in which P1 is 71 times the residue at v= vO’ where VO is the zero of the

denominator of the integrand, and is equal to

9 . . .
The cut in our contour leads from the branch point of the function n,(v)
(at v=m,) which lies in the upper half plane since Im m,>0, along the curve
Re n2=0, to v=1® . In this case Re n,>0 everywhere within the contour.



2 7 ,
Vo = /m2+8, Im v, > 0. (95)

The point vO in fact, lies in our sheet of the v-plane, since Re n,>0

2
within our contour, while Re B>0 as determined from (75). On the path CD,

n2=iln21, while on ED n2=—i[n2l. Now 1t is easy to represent J in the

form

'[ ioly| Hnpleostinglzen)1-i8sinlin, | (z+h)] 155 Vgly|-B(z+h)
J = e 5 5 - dv+ Y [
5D In,|”+8" 0

(96)

Fig. 2

In this last formula we have written everywhere lyl, since for y<0
by taking an analogous contour of integration in the lower half-plane, we

arrive at the very same formula (96). From (96) it follows at once that10

o ivy|y|-8h
lim (eBZ J) = lﬂﬁ-e 0 s
v
radils 0

10The condition J*0 as z++° cannot determine P(y), since Re B>0 and

|e82§+w as 2z, Therefore it is necessary to find 1lim (eBZJ).

Z+-0
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and then, on the basis of {94), after some elementary manipulation,

. .o iv_ly|-B(z+h)
_mi mip 0
Jd = —§-H0(m2r1) to—¢© -
0
+ = .
_ _78_ f BB (U—Z—h)HO (mz /y2+u2)du’ (97)
where vO is given by formula (95).

Substituting (97) into (92), we finally find

E(Z) = - t- H (m - ZBHO(er1
(z+h i i
e — iv_ly|-B(z+h)
+ 28 fseB(”'Z‘h)HO(m2¢§2+u2)du - %%—e 0 , (98)

“

=CQ

A simple approximate expression for the integral which enters into
this formula will be given below for a wide range of values for the co-
ordinates y and =z of interest.

We pass now to the determination of the vertical component Hi ) of
the magnetic field, which satisfies equation (10) and condition (84) at
the earth's surface. Taking account of the obvious condition of anti-
symmetry in y, we express the general solution of equation (10) for ng)

in the form

ng) f ™ B(v) sinvydv. (99)
0

Taking HiZ)O from (15) and applying (21), we obtain for z<h

© np(z-h)
x(2)0 _ 2wC f ————ﬁ——-vsinvydv. (100)
2) 2
memy)

The condition J-> 0 as z>+o cannot determine p(y)}, since ReB>0 and

Bz
l i*m as z»». Therefore it is necessary to find lim (eB“J).
z> 0
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Substituting (99) and (100) into the boundary condition (81}, we find

—nz(z+h)

£(2)_ 2uc
Z

an
1+ )VSinvde. (101)
Tem

[ee)

[ e
2 | n Y-Ti,
2 2 2

Using formula {(21), one can rewrite  (101) in the form

~(2) _ _ iwC 3 J 4i
I = - 3y iﬁo(mzrl) o K}, (102)
cm
2
where . —n2(2+h)
e
K = T vydv. 10
o cosvy ' (103)

<

To transform the integral K we apply the same method as we used for the

integral J entering into 552). As a matter of fact, we find

Yz ., _ < vz 9
K = fe 5 Ho(mzrl)dz + Rv(y),
0

e

ol =3
2

and since Rey<0 and %im(eYzK)=0, we obtain -at once
—5C0

oo
pm——

_ T Y(u-z-h) 3 2 2.
K= - 5 zlh e o Ho(m2 /9 +u” )du.

Substituting this expression for K into formula (102), we find

5(2)_ _ _iuC

2 zrl) + 2 f eY(u'Z'h)_g.Ho(m2¢§2+u2)du} . (104)

0
dy HO(m 2+h du

2
cm,
In the following we shall show how, using the quantities Scz), Q(z),

Eiz} and Hiz) , one can determine the remaining field components through

simple differentiations. But our immediate concern will be the problem of

the limits of applicability of the obtained solution.
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8. Transformation of the rigorous solution. Limits of applicability-
of the approximate solution.

In this paragraph, transforming the integrals which represent the rigorous
solution to the problem (here applying a method analogous to that used by
V.A. Fock to obtain the Weyl-van der Pol formula from A. Sommerfeld's
rigorous solution to the problem of the field of a vertical dipole} and
comparing the formulas obtained with the solution of the previous paragraph,
we determine the limits of applicability of the latter and are able to
estimate its accuracy.

Figuring that at moderate distances from the wire, near the earth's
surface, EZ is the dominant electric field component, while the two others:
are always small, we shall study only the formulas for this field component.

However, one can carry out in an analogous fashion calculations for the other

T

components as w L.

We rewrite formula (23) in the form11
g2 —13% J, (105)
z m
where
?kin,-kZn,  -n,(z+h)+iv]y|
jo 1 [1327727s T2 dv. (106)
Ti kZ +k2
S <3N

The integrand has two branch points and a pole in the upper half plane.
We draw cuts from the branch point v=m, along the curve Re nz‘to v = i® and
from the branch point v=m, along the curve Re ng=0 also to v=io . In this
case n, and Nq have a positive real part in the upper half plane. The

pole is located at the point V=V, where Yo is determined from the equation

11In the following calculations we take eé = 1 and k2 = w/c.
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- -2 (107)
Y
0 2 /
which gives 5 2 |
2 k2k3 2 .
Vo o= - q°, Imv>0. (108)
0 k2+k2 0
372
The point v, in fact does lie in our sheet of the plane, since we
can write
i | iv k2 iv_ k '
k2 egmg-qz J%%mg—qz

in which, for Im#e%.mg—q2> 0 both expressions written out have real parts
greater than zero, -and equation (107) is satisfied.

Taking int. account that the integral over an arc of infinite radius
in the upper half-plane vanishes, we can represent the integral J in

the form

J = 2P + Q+Q,, (109)

where P is the residue at the point v=v0, while Q1 and Q2 are integrals

over the cuts mz*iw and m3->i°° réspectively.

We easily obtain that 2 4
XK, iX(z+h)+iv,ly|
P=-2—" ¢ .

{110)
4 4
(k3—k2)vo

where the notation

| ) |
x =i Afmd = . (111)

has been introduced.

Transforming the integrand of Ql’ we find
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m, 42 5 2
2 A 402 012y 2 B .
Q = L J 1o 2 L 2kamong . ”2(Z+h)+IVIYIdV
171 12 : Sy S R I S I R .
. €x -1 (k3 kz)(v -vO) (k3 kz)(v —vo)
(112)
From formula (21) it follows that
+
M
1 -n,, (z+h)+iv|y| 5
= f e dv = - §E-H0(m2r1).
joo

Taking into account that the point VO is very close to m,, we expand

2 2 . 2 2 .
N -m; in powers of v7-vi. We obtain
7T 2 2

VC sy ixky . ik}, .
7 2° "2 2 2 7.2
ve-vg Ky vi-vy o 2xks

We substitute this expansion into the last term of formula (112},

which gives

m 2 2
: |
e dv = - —— =— - ——= —— H_ (m,r,) +
v2_v k2 dz 2 k2 az2 0271
ix 2 3

3
Vv =V

+

2 Lyl

f -ny(zeh)+iviy| g,
i 0

has been introduced.

Formula (112) takes now the form
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. 4
xk ik 2
2 \ 3 _ 2 3 2 3 . N
Ql = - 11 + 5 } -—Z—Ho(mzrl) + % a4 vV - 4 .4 2 Hocmzrl) R
e% -1 ks—kz (ks—kzjx 9z
(113)
where
+ +
My g M2 .
U Ny-ix  -ny(z+h)+iv]y| -n, (z+h) +ivly| o
V ==+ 1ixU = = e dv = - e -
3z 2 2 N,+1Y
V-V, 2
ice joo
Through a direct differentiation we obtain a differential equation
for the quantity V
Vv . N . o
' 1X V= - m7i 37 Ho(mzrl),
while from the integral representation it is clear that
V>0as z > -,
Assuming V = - wiH_ (m,r.) + elX(Z+h)V , we find
0271 1
oV "
1 _ -ix{z+h) ..
5z~ 'X€ Hgtmyry)s
and thus
: zZ+h
V= - ﬁiHO(mzrl) + ﬂxelX(Z+h) J e—lxgﬂg(m2¢y2+€2)d£.
In the integral Q2 the integrand will be as it was in Q1 in
formula (112), however here only the integral in the last term does not
' ik, r
vanish, and it can be shown that Q2 will be on the order of e 3 1/sérl.

In the following, since ;€;i>>1, we will neglect unity compared with
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8%. Then we can neglect the quantity Q2 and formula (109} in this

approximation becomes

g Hofmzri - 2ixH (mzrl) + 2X i_ J “1X(E “ h)H (m vy +r )dé-

J= 5
. ) 52
_ 2 ix(z+h)+iv, ly| § Ho(m.r.) + ... , (114)
3 3 S~z 0v21
5
and formula (105)
(2) _ _1iqC j 3 : i
B, = 57 Ho(mpTy) * 2ixHy(myxy) -

z+h - - S5 - .
- 2X2 [’ [ ean(é_z—h)Ho(m2/92+€2)d€ - %— GIX(Z+h)+lV0ly‘ +
0 .

-0

. 2
L —§§- H (m ) + .

e' x 9z ‘t}

+

{115)

In this same approximation -iX coincides with the constant £ of the

previous paragraph, and likewise the definitions of Vo by formulas (108)

and (95) coincide. Formula (115) can now be written in the form

~(2) _ iqC | 8
B = - —ii- == Hy(m,r) - zsﬁu(mzrl)_+
2 L
| [ Z+h 4., -B(z+h)+ivy|y|
: 281 [ PE M, APy - 2 e I
-5 0
2
1
+ T%———Ho(mzrl) + ... - (116)
83 B gz

This last formula coincides with formula (98) of the preceeding

paragraph if we can neglect the last term, which is possible for
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]séks(zvn) [>>1. ‘ (117)

This inequality is satisfied rather well for ffequencies w'flOésec_1

and earth conductivities 033107 for (th);inoscm. An estimate shows

that, at the earth’'s surface, for the most unfavorable conditions in the

6

parameters for the range we are studying -- 03=9x106, w=10" and a height

of the wire above the earth h=10m -- neglecting the last term in formula
(116) gives an error not exceeding 2%. The error decreases very fast as
theiconductivity increases from here.

In a quite simiiar manner one couid also check the formulas for the
component Eﬁg) {all the rest of the components are calculated, as
pointed out in section 3, from these two, but we will not do this, in
order not to prolong this extensive presentation).

9. Computational formulas.

We will now find expressions for the components Eiz), Eﬁz), Hizz Hﬁz)
in terms of the quantities 3(2), ch) defined in section 7 and the
components Eiz) and ng).

From Maxwell's equations it is easy to obtain the following formulas

‘ v (2)
42 _ 1 ic 389 g £(2) | g(2) _ dac oH }
w z !

Yy - l—OLg w9z - © 3)’
a@ 1 Jie HP s @ o) qe @l

1-62 w 9y w 9z - w oz
E(Z) _ 1 Q(Z) ioc SQ(Z) , ioc Ez qGZC H(ZjL (118)
y - 1-0‘2 ) 0z - © oy Rl 5 i’

r

(2)
~(2) _ 1 {'g(Z) _ ggE_E(Z) _ doc Bg(z) iazc aHz 1

By = 2 w oz ®w dz T Y J ’

1-o

In formulas (118) the quantity az in the coefficients should be
neglected in comparison with unity, since the approximate boundary con-

ditions themselves are only valid to an accuracy on the order of o
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{we note that §a2|<0.01 for all ranges of parameters of the problem

of interest to usj).
Applying formulas (88), (89), (98) and (104) and discarding quantities

of the order of az, we obtain in place of (118)

2

(2) _ ikC 9 20C 0 Zuq C
B = =5 5y Hylmyr)) + =5 —5 Hy(myTy) - —5=H (mzrl) ¥
m, k© 9z m,
z+h
Z E
. 2a92C 8 J B(u z- h)H (m / +u )du _ gﬁ_ -8(z+h)+1v0|y[, (119)
m O
2 ~C0
i 2
H)Ez) io%ﬁg—yﬂ (mr,) \_ (120)
m
2
(2) _ _i9C 3
Ey =5y Ho(mzrl) (121)
m
2
(2) _ 2iaC 9
Ex = CHO(mzrl) v Ho(m r.) (122)

In formulas (119)-(122) k=w/c. Formula (104) can be rewritten in

the form

m f
2 .

and from formula (98) one can obtain for points near the earth's surface,

sufficiently removed from the wire axis,
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-~

Z

.
gla) | _ﬁﬂ; ]— y H'(n yDy+2[1- B(Z+h)] H, (m, lyly -
i

2 im IV V g ’
: AL 8 '
-2 mi © " el } m,ly| - Hylm,|y])
(124)

For y>10(z+h) formula (124) gives an error not exceeding 1%. In
formulas (119)-(124) it is also necessary to substitute the value of C

from formula (40), which can be written approximately in the form
c=n2 (125)

For points near the earth's surface and sufficiently far from the wire

(119) can be rewritten, analogously to (124), in the form

(2) _ ikC 2 2
; ) 9 H r.) + Eﬁ?g»a (m.r
myt gy HolmyTy) + & 3,2 Hy(myxy
, 2 im, |y|
S () {rsemymr) ¢ e
A ) . |
* <§> mzlylﬁb(mziyh} : (126)

Formulas (120)-(126) for the secondary fields of the earth determine
them completely near its surface at a sufficient distance from the wire,
and from here the calculation of the field will present no further
difficulty.

We note additionally that the rigorous integral representationsof the
fieids obtained in section 3 can be transformed in the same way as was
done in section 8 to compare the approximate solution with the rigorous

. . . 1 . .
one, but without neglecting the quantity = compared to one; in this way
3
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comparatively simple formulas for the fields in the case of higher

frequencies than were studied here can be obtained.
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Appendix

Accounting for the influence of the secondary fields on the current

distribution over the wire.

In section 4 we satisfied approximate boundary conditions at the
surface of the wire without taking into account the change in current
distribution over its cross-section under the action of the secondary
field. Here we will show how to account for this change to a desired
degree of accuracy and estimate this quantity, and subsequently also the
error involved in satisfying the appro;imate boundary conditions af the
surface of the wire.

We will take into account this disturbance of symmetry of the current
distribution over the wire by introducing into the solution of Maxwell's
equations terms proportional to sin © and cos 8 , neglectihg further
terms in the Fourier series expansion of the solution. Simultaneously we
will expand the secondary field about the point (y=0,z=h) in a power
series in y and (z-h) and neglect all powers higher than the first.

To reduce the calculations we assume at once that Ex’ EZ and Hy are
symmetric with respect to the z-axis, while Hx’ HZ and Ey are-anti-
symmetric. We easily obtain the components Ee and H@ from EX gnd Hx’
using Maxwell's equations.

Thus, we find the field inside the wire in the form

(1) _ :
Ex = AJO(mlr) + AlslneJl(mlr),

S
H = Blcose Ji(mlr),

X
1 _ e iq_
N —_

Ee =~ B1 cose.Ji(mlr) - =5 Alcose Jl(mlr), {a)

1 ) Tm

1

e =39 B sing J, (m,1) - e [AJ' (m,T) + A, sind J!(m,1)]

6 T 2_ "1 1% cm, Mot 1 (-

1
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The field outside the wire in the neighborhood of its surface will

have the components.

~ (2
(2 CH (m,r) + C, sin® H, (m 1) - 52} & sind aEx )
b 042 1 1( 2 X oy ’
o g (2)
(2) _ ' X
Hx = Dl c§58 Hl(mzr) - r cosb By
- 1 ()
. 31
(2) _ 1(‘0 L X 1
Bg™ = P D, cosb Hi(mzr) - cosB Iy - (b)
2 2 ’
] 55 (%)
_ 19 . X
rmz [—Cl cosb Hl(mzr) r cosB 521 |°
2
Y i | | A
S) .19 i - i X -
Hy"" = > ’ Dy sin6 Hl(mzr) r sinb _757——/
T, |
el
iw . . I S X
- Eﬁ; CHé(mzr) + C1 sind Hl(mzr) n) sinb 52 ] s
38 (2 an(?)
in which (E)((z)) s ——%—— and 3; denote the corresponding

quantities at the center of the wire, and eé and uz are taken equal

to unity.

For r=a, the conditions

£ _
X

4@ _ 4@
X X X

(2) _ (1) (2)y _ (1)
Bg"' = Eg ', Hg =Hg ' .

> 2

should be satisfied.

Substituting therein (a) and (b), we obtain a system of six equations

which decompose into the two separate subsystems
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1

AJy(mja) = CHj(mya) - (Eizﬁ ,

>
] .
El AJ! (m.,a) = 1 CH! (m.a)
m oMl m oL 2™
1 2 §
and
BE(Z) \
- X
Ay (amy) - CH (mya) = - a \—p7— ’
2 (%)
= - X .
BlJl(aml) - Dlﬂl(mza) a ——337— B
iwy . ) .
1 5 - iq _p 10
Bl - Jima) - Ay = Jyamy) - Dy o Himpa) +
1 am1 2
iq - =(2)
+ 0 o Hympa) (Ez) ’
am
2
i 1we, i
i _ 19
B, — Jy(am) - A} —=Ji(am) - Dy —5 H(amy) +
am am
1 2
iw (2)
+ C, — H'(m,a) = CT )
1 cm, 1272 Yy J
Here we have used the relations
2) (2)
ot . o .
X w2, a2, Tx o o(2), 0 5(@)
-3y T e Ez + 1qHy ; ~ 1qf:‘Z + 2 Hy ,

which follow immediately from Maxwell's equations.
The system (c) coincides with system (36), and consequently the

equation for the propagation.constant obtained in section 4 and the

(c)

>(d)

expressions for the constants A and C in terms of the total current

remain, to this approximation, unchanged.
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In the formulas for the fields, additional terms must be included,
the coefficients of which are determined from the system (d) after the
constants from system (c) which enter into it have been determined. Having
solved this system and substituted the values of the secondary field
components, we obtain expressions for all four coefficients. However, we
will not carry out these calculations here, but only indicate estimates

for the coefficients. For the coefficients of the external fields we have

21 a

Cl = - 'IT_ C (—2—1:‘-) . 2m2h, (e)
- a2 q

D, ¥ -=C (E) - 2h k, Ak €3)

It is immediately obvious that the error involved in neglecting these
quantities is, °* our case, extremely small.

It should be remarked that the method presented here for satisfying
the boundary conditions at the surface of the wire represents only the
first step in a rigorous solution to the problem, whose execution can be
important in the case of a wire sitﬁated at a relatively small height above
the earth, or likewise in the case of a multiconductor line wherein the
distances between separate conductors are not large compared to their radii.

For such problems as stated, the current flowing through each conductor,
as well aé the characteristic field of each, should be expanded in a Fourier
series in sines and cosines of multiples of the angles, and thereupon the
secondary field of the earth due to each of these harmonics determined. In
satisfying the boundary conditions at the surface of each conductor, the
characteristic field of each separate conductor and the secondary field of
the earth should be represented also in the form of such a series expansion.
As a result of this process, a linear (and, generally speaking, infinite)

system of equations is obtained, truncating which at some point, we can
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obtain a soclution of the problem to the desired degree of accuracy.

Such a process will be very complex, if it is necessary to account
for very many terms in the series.

However, for practical problems when the radii of the wires is small
compared to the distances between them and'to the earth, it can bé évery—
where assumed that the secondary field of the earth is determined only
by the axially-symmetric part of the cross-sectional current distribution
in the conductors;12 aﬁélogously, instead of finding at an arbitrary
conductor the proper field of all the other conductors, one may likewise
usually consider it due only to the axially symmetric part of the current
distribution over the cross-section. Finally, in practical problems of
wave propagation along multiconductor lines, it is clear that it will
suffice always to consider the disturbance to symmetry of the current
distribution ov.. the wire cross-section as due only to terms proportional
to sin O and cos O and neglecting higher'angular dependences. For these
simplifications the problem becomes sufficiently simple that it might be

relatively easily brought to a solution.

12.. . . . .
Since computation of the successive terms of the Fourier series is
analogous to the computation of the dipole wave and gives terms which
at large distances compared to the radii of the wires will be very small
compared to the first term.
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DETAILS OF THE THEORY OF WAVE PROPAGATION ALONG
MULTICONDUCTOR TRANSMISSION LINES IN CONNECTION WITH
SOME ENGINEERING PROBLEMSf
by L.S. Perel'man

Introduction

The problem of electromagnetic wave propagation along multiconductor
lines is usually solved via the telegraphist's equations [1-4]. For such
a solution the electromagnetic field in the air is taken to be quasi-
stationary, while the influence of the earth (with the exception of [3])
is accounted for by means of Carson's integrals [S5], which figure in the
self and mutual impedances of the wires of the line. In accounting for
the influence of the earth Carson neglected the transverse electric field
components in he earth and the longitudinal displacement currents in
the earth. Wise [6] refined Carson's integrals by taking into account
the longitudinal displacement currents in the earth.

Solving the system of telegraphist's equations determines propagation
constants and relationships-among the currents in the wires for the wave
channels of a multiconductor line (each wave channel is a definite system
of currents propagating along the line with a single propagation constant).
The assumptions made in such approximate methods of solution can, at high
frequencies, in certain situations lead to appreciable errors in determin-
ing the parameters of the wave channels and the electromagnetic fields,
particularly at large distances from the wires. Thus for a study of the
electromagnetic field of coronal radio interference from power lines, of
the parameters of high frequency communication channels over power lines

and of the influence of power lines on communication lines, a more accurate

tlzvestiya Nauchno-Issledovatel'skii Institut Postoyannogo Toka {Leningrad)
No 10 (1963) pp. 103-120.
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solution must be considered.

The existing theoretical methodology for computing coronal radio
interference due to power line wires, worked out by Adams [7-9], is
based on a number of assumptions: the electromagnetic field of the
radio interference is assumed to be that for ideally conducting wires and
earth, and the parameters of the wave channels are considered on the basis
of equal wave impedances of all wires for a given wave channel, mutually
orthogonal potential gradients for different wave channels, and a deter-
mination of losses in the conducting media using their wave impedances
and the magnetic fields on the boundary between the conducting media and
the air. v

G.A. Grinberg and B.E. Bonshtedt [10] worked out a rigorous theory
‘of electromagnetic wave propagation along a single-wire line over the
earth. M.V. Kostenkc [11] used this theory to consider wave propagation
over a three wire line with horizontally spaced wires; in the course of
the solution he introduced several simplifications and obtained a system
of equations for determining the parameters of the wave channels, analogous
to Carson's system of equations [1]. With a rigorbus solution of the problem
of waﬁe propagation along a multiconductor line, the error in the appro-
ximate solutions of this problem could clearly be established.

In the presentApaper, the method proposed in [10] is expanded and
used to investigate wave propagation along multiconductor lines under
the following assumptions. It is assumed that the multiconductor line
consists of n long parallel uniform wires of circular cross sections and
smooth surfaces. The earth is taken to be uniform, and there is no
ground cable. In order to solve the problem we neglect the 'proximity
effect' and the "end effect' in the wires, and consider the wires to be
parallel to the place of the earth. The problem is solved for the so-
called "fundamental' sinusoidal waves [12] which propagate along the
wires without radiation.

The MKSA system of units is used in this paper.

1. Solution of the problem in general form

A diagram of the multiconductor line and the notation for its

geometrical parameters is given in Fig. 1.
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Fig. 1. Diagram of multiconductor line

To determine the electromagnetic field in the air, earth and wires,
it is necessary to solve Maxwell's equations and satisfy the boundary
conditions at the media interfaces. We take the time dependence of the
electromagnetc field, as well as the variation along the x coordinate
} (wt-yx)

(parallel to the wires) to be of the form e where vy is the pro-

pagation constant (y=o-jB). Here Maxwell's equations in each medium can

be written in the form:

rot H = jwe'é,

rot E = - juwyH, (1)
where
I
€ SJU)’

e,y and o are respectively the absolute dielectric permittivity, absolute
magnetic permeability and conductivity of the medium.

Since we are neglecting the proximity effect, the superposition
method can be used to solve Maxwell's equations, taking for a general
solution for the fields in the air and the earth a sum of the partial
solutions for each wire above the earth obtained in [10], and for the
fields inside the wires the Sommerfeld solution for an isola;ed wire.

We designate the electric and magnetic field strengths in the '11-'-}—l
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medium induced by the current in the kth wire by Eﬁi) and Héi);

for the media the index 0 denotes air; g the earth, and for the wires
the indices run from 1, 2, ..., k, ...n. In its own polar coordinate
system (r, 6,x) the field induced by each wire (without the presence of
the earth) in agreement with Sommerfeld's solution is determined by the

formulas {[10]:

inside the kth wire outside the kth-wire
S0 £(0) _ “
Ex " = Mo tmemds Egx = GHg(mory)s
00 _ 0y : 0 _ _ .
ET = k A J? (mklk) Er]\ mO C H' (mork); LZ)
jwe! jwe >
(k) _ Tk g0 _ 0 '
hO = -5 A J'(mk WH Ok = C H (m rk),
k 0
(k) _ 0 k) o, (0) _ ;(0) _ #(0) _
By = = Hy "= HT =05 B = Moo = fp =0 )
Here we . .ve made the designations:
m., = k? —yg; Im m. > 0 ;
i i i
k. = //p.e'.; Im k. > 0 ;
1 1 1 1

Ak and Ck are integration constants;

JO and Jé are the Bessel function of the ISt kind and zeroth order and

its derivative;

HO and Hb are the Hankel function of the lSt kind and zeroth order and

its derivative.
Below we will neglect displacement currents in the wires and the quantity

2
Y™ compared to ki:

= - j~£; m = kk = V—jwpkck (k=1, 2, ..., n).

Adding the longitudinal electric field components in the air at

an arbitrary point p (Fig. 1), in accordance with the superposition
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results obtained in [10] we have

o T : ijg
: = ! - i ! —_— (3)
B }fl Cx i o mgryd - Hylmgrp) + — Fip 1 2
(= T,
L 0
O 2 ) )
f NyNg~V iz +hy)
ka = 2 S e cosv{yp—bk)dv;
J ¥oho**o"g |

aid ¥ are the coordinates of the peint p;

7 2 ‘
Y = “_m_: Re > 0
qo Jémwmo, no 0;

-]
!

Jvé—mg; Re ng > 0.

tion of expression (3) we have cet ug = Hy-

ation constants and current relationships in the wires

sy enforcing the boundary conditions at the surfaces of

wve dotermined by
C b wiees (ot P £ th . . Lt P
Loothe wires. On the surface of the k7 wire, when the proximity effect
iz v ted, the following boundary conditions must be satisfied {10]:

: (k) _ 5(0)
X « ‘Hek

~~
Lo
!

of conditions (4) the magnitude of the field on the

“* wire due to currents on the other wires and in the

~the magnitude of this field on the axis of the

and €, in terms of the wire currents, and considering

A

up to very high frequencies,
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2.1
i mOak,

¥ a =
Hy (mya,)

. . th . . .
where a, 1is the radius of the k'~ wire, we obtain from the first of con-

ditions (4) and expression t3) the follewing equation for each kth wire:

i | 25k>
Lifomeay) - Hylmg-2hy ) + —= (F + MJ |+
T
0
n I 2j 1\
+ §1 I. {.H (myr ) - Hy(mprl O+ ——7?— FJ =0 (1 # k), (5)

i

where ii is the complex amplitude of the current in the it yire:

M = - URJO(kkak) ;o (6)
k Mg k a J (kk k)
F._ =2 ——-Ji~—~—- e cosvb.. dv; (7
ik k n k n ik
go 0'g
0
D ¥ b5 = by

Fk is a particular case of the integral Fik for i=k and bik:0

We introduce the notations:

2jkg | \
Bk = Ho(mpay ) -Ho(my-2hy )+ —5= (Fy + M)
. T
0
} (8)
ijg
= - 1 F.
Pik T HomoTaid ~ HolmpTd * —5 Tk
m’ o
Bk = Bys)

We then obtain from equation (5) the system of equations:
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- 3
LBy # LBy v # LB =0
LB * 1By # * 1By =0 } (9)
IIBln * I2B2n * -+ 1 Bnn =0 J

The system (9) of equations has a nonzero solution in the currents

if its determinant A vanishes:

B11812 o Bln
A = 812822 . B2n = Q_ (10)
B1nB2n Bnn

Expression (10) leads to the following equation for my:

2(n-1)
0

2n , 2
m fn(mo) + m fn_l(mo) + ...+ mofl(mo) + fo(mo) o, (11)

where fO(mO], fl(m , fr(mo) are functions which, as follows from

0),...
expression (8), depend on differences of zeroth order Hankel functions
and on the integfals Fik'

For the fundamental waves in the frequency range usually encountered
in practice, the differences of the zeroth order Hankel functions in
expressions (8) aﬁd the integrals Fik vary much more slowly than mys
consequently, fG(mo),f (m&,..., fn(mo) likewise vary more slowly than
L Therefore equation (11) can be solved the the method of successive
approximations,bin which the first approximation for the functions
f(mo) should be evaluated at My = 0. In a certain range of the frequency

and of other parameters, the first approximation already gives a suffic-

iently accurate solution which, as will be shown below, corresponds to
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Carson's solution ([1].

It should be noted that the solution of the problem with the earth
absent is carried out analogously, and the coefficients Bkk and Bik
will be determined by formulas (8), in which the second term on the right
hand side and the integrals Fik must be set equal to zero. In this case
in order to solve equation {11) by the method of successive approximations,
one can give beforehand an approximate order of magnitude for m, in the
first approximation by solving a system of two identical wires similar
in parameters to the ones under consideration, at the given frequency
and with equal and opposite currents flowing in the wires, since the
solution of such a system is obtained easily.

In solving equation (11) under the conditions indicated above, n

distinct roots are obtained in general, corresponding to n wave channels:

2 2 2 2
mO(l)’ mO(Zj e mO(s)’ e mO(n)'

The roots of equation (11) determine 2n propagation constants:

+ + el F s ... 5 X s
Yy Y2y’ Y(s) Y(n)
since
/.2 2
{ = -
YLS) * kO mo(s).

The solutions with the '"+'" signs correspond to direct waves, while those
with "-" signs are backward waves. In the following we will consider

only direct waves for simplicity.
2

The existence of n distinct rcots m6r~) attests to the fact that
(s
for arbitrary mO(s) the rank of the matrix of the system (9) of equations

is equal to n-1. The solution of the system (9) of equations for each
wave channel then determines the relationships of the currents in the

wires which are caluclated by the formula
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ey - Tk(s) ipk(S)
ki{s) : ]
Ii(s) pi{s)

, (12)

where A are the algebraic complements of the elements

pk(s) M9 Apis)
of an arbitrary pzh-row and respectively the kEE-and iEE-columns of
the determinant A with my = mO(s)'

It should be noted that in problems with the earth absent, for multi-
conductor systems possessing certain wire symmetries, equation (11)
can have multiple roots and consequently the number of wave channels
will be fewer than the number of wires.

And so, ¢onsideration of the system (9) of equations shows that
an n-wire line has in general n wave channels, each of which is character-
ized by its own propagation constant and relationship between the curents
in the wires. The complete solution for the electfomagnetic field is
the sum of the partial solutions for each of the wave channels. So, for
example, for the vertical component of the electric field strength of an
n-wire line in air at an arbitrary point p (Fig. 1), using the solutions

obtained in [10] for the single wire, the following expression can be

constructed on the basis of the foregoing analysis:

'(O) N 3 n . —jY(S)Xp
O PR SilY(s)Ii(s)e

n
z
0 k=

5
lxki(s) [sE'Ho(mO(s)rk) -

)

- 57 Ho(Mg sy

, Zp+hk S(u-z
-28° e

1 : ] -
T k) + 26H0(m0(s)r k)

by *+u®)du +

p %) Hy(Mo sy

+ ——— e

452 PVorsy p byl -O(Zp+hk{}
Yo(s)

(13)



II11-10

: . . - . , .t . ~
where Iifs) is the complex amplitude of the current in the 1—E-w1re for the

AN

sEh-wave channel at the initial point x=0; this wire can be arbitrarily

chosen for each wave channel,

I T - AR
8 = - jwe, Eg ; Re§>0; ve(s) = m0(5)+5 5 Iva(s) 0.

We will show that an arbitrary given sYstem of currents in the wires
of an n-wire line is uniquely expanded in the n-channel system of currents.

We form the following equations to determine the currents ii(s):

h=ambho *uebhe o * Mimltim) )
I, =A,,, . I. + A, T A .

2 2i{1)71(1) 21(2)7i(2) + ... Zi(n)Ii(n)’ >
.................................................. (14)
Lh*himbho "Moo o imtim)

where il’ i2’ vy in are the given system of currents in the wires of
the line.

The system (14) of equations consists of 2n equaiions in general
(considering that each equation of the system consists of two equations:
one for the real paits and the other‘for the imaginary parts) and has
2n unknowns (real and imaginary parts of ii(s))' Since in the given n-wire
line there exist n different wave channels, each of equations (14) is
independent; consequently, this system has a unique solution in the
currents ii(s)'

Thus, to solve the problem of electromagnetic wave propagation along

a multiconductor line we must know the total current in the wires of

this line at the point of its excitation. The propagation constants
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and relationships between the currents in the wires for each wave channel
are found using equation (11) and formula (12). The currents in one

of the wires for each wave channel are determined from the system (14)

of equations, while the electromagnetic fields are determined by formulas
of the general character of (13)*.

The important difficulty in the determination of the parameters of
the wave chamnels of a multiconductor line lies in the evaluatioﬁ of the
integrals Fik’

In {1G] the integral Fk is evaluated in a general form in the region
h<10m, wSlOé, c 210”2 ohm™? m! to within an accuracy of 0.5%.

S.P. Belousov and B.G. Yampol'skii [13] proposed an approximate
method of evaluating the integral Fk in the region m/0g§1012 ohm m/sec
to within an a~curacy of a few percent, however for the determination of

the parameters of phase-phase wave channels such an accuracy is not

sufficient.

. . ) 6 -2 -1 -1 )

In the region xik§30m, w<l07, nglo ohm ~ m ~ the integral Fik can
be evaluated toc a sufficient degreé of accuracy, analogously to the eval-

uation of the integral Fk in [10]. We reprgsent Fik in the form of a

sum of three integrals:

Fix = 20K+ Ry ¥ G5yds (15)

* oa. -1, (h;+h )

B G 01Tk
Kik = - ié 5 e cosvbik dv =
k“-k
0o &8 O
.

= J! 1 .
= - 5 Ho(mgr' 545 (16)

*To calculate the fields at large distances from the wire axes using

formulas from [10], errors in the latter should be corrected, which arose
because of the incorrec
side of the fourth eguation of (118).

{(Translstor's not
as is in reference [10])



I11-12

[os]
n -, (h.+h, )
= ( g _ 0vi Tk 3% - 173
Rij j kz-ké e co:,obik dv; v (17
o g
P (h, +h, )
_.n 1. +
Y 01 'k )
Gik {kz cosvbik dv. (18)
oo™k
)
]

To solve the problem in the first approximation the integrals R K
and Kik are evaluated in general form, if we put m0=0, i.e. Y2=kg. In

this case 5 5
. b.. -(h.+h. )
ik 1k ; .
2

K -
8

- = _L(.l'_ +
ik~ 2.2, 42\ 72
(kgkod (77530 "1

where
%1 = E(hi+hk+3bik); = & (h. +hk—3b k)’

g = '/_k§+k?); Re£>0-

) 1 -V (h. +hk+3b k) —v(h +h —Jb k) )
Rik =770 |7 © - e =
2(k"-k
(g o’ ;
° riu S T u- /s 41
= %f - € 1 u2+ 1 du —J e 2 /ﬁ + 1 du‘ =
0 0 d
Y 0) * o Y, () +
4 "y 1 "o 2
. N uin—l . Kgn—l
Sl R G O R 2 : (20)
< n=1 17.37... (2n-1)"(2n+1)

where Yl is the Weber function of first order
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To evaluate the integrals Rik one can make use of tables of the
function Y1 for complex arguments [14].

It should be noted that for phase-phase wave channels, formulas
(i9) and (20) allow eva;uation of the integrals Kik and Rik with a degree
of accuracy sufficient for a wider range of values r;k, w and Cg than
indicated above, since for these channels the quantity Yz differs much
less from the quantity kg than for a phase-earth channel.

In the region §K1] = iu21>5 the evaluation of the integrals Rik
simplifies. Considering the analysis of the integral

[o o)

e—Ku¢u2+l du

carried out in [15], for |x|>5 we obtain to within an accuracy of 0.3%:

J edxu ¢u2+ 1 du

0

1 3
+-—3——5 . ) (21)

From expressions (19), (20) and (21) we have

11 11 11 3
2K *Ry) = -5 -5t 5t 53" 3% 7F
1 2 . 1

(22)

. - 2 Iy
i >>
The integrals Gik are evaluated, under the condition {kgnol lkongl

over the whole integration interval, by the formula

N

LY jm
Gig ® 7

\
Vs Hy(moT'sy ) (23)
g

ik

To evaluate the integrals Gik by this formula it is necessary to
know the quantity Mo therefore to solve the problem in the first approxi-
mation Gik should be set equal to zero, and in the second approximation

the value of my found in the first approximation should be used.
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In the range of values of r'ik’ w and Gg indicated above, the accur-
acy of the evaluation of the integral Gik by formula (23) has practically
no effect on the overall accuracy of the solution, since the integral
Gik in this region constitutes a small part of the integral Fik'

For a wider range of values of w and Og the integrals Rik and Gik’
in the second approximation to the solution of the problem, should be
evaluated more accurately by other methods {(for example, by way of a
numerical integration).

For 00>>w€g the displacement currents in the earth can be neglected.
g .

Then
2 2 - .
kg'- LO - 3wg06g . (24)
In this case the sum of the integrals Kik + Rik evaluated by formulas

(19), (20) and (22) will coincide with Carson's integral:

Klk + le = JJ(P,Q),
where
p= (hi+hk)kuoag; q = bik‘ wuogg‘

Thus to solve the problem in the first approximation one can use
results of Carson's computations [5], represented graphically, however
it should be kept in mind that for phase-phase channels the accuracy of
the solution may be very poor because the graphicai determination of
Carson’s integrals is inaccurate,

Using the known expressions for the Hankel fuﬁctions in terms of
Bessel functions of the first and second kinds, one can obtain the follow-
ing approximate expression for the Hankel function of small argument,
if one limits oneself to terms of order no higher than fourth in the

argument:
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-2
e

o
N
”
Nns
it
)]
=3 |L..a
Jmm—
e
jos
i
‘hl b
I
=

where +vy'=1.781 is Euler's constant;
e is the base of the natural logarithms.
To solve eqﬁation {11) in the first approximation, one can use the
first term in the series expansion (25) to determine the Hankel functions
in axpreSsions (8). Here, reducing all terms of the system of equations

7

{9) by the common factor —2jkg/ﬁmg, we obtain instead of the coefficients

Bkk and Bik the following coefficients:
’ 2
my th \
' = — 2 —— - - .
Bl = 24 e - B m Mo
k k
0
> (26)
n2 T
B'k:—g-gz ik— k
1 - 1
]
ko ik

It can be shown that the transition to the coefficients B'kk and
B*.lk introduces negligible error for a wider range of values for r'ik’

w and Og than indicated above, especially for the phase-phase channels.

The system of equations of the type (9) with coefficients B'kk and
Baik using the integrals Fik evaluated in the first approximation and

putting Gik = 0, is analogous to that obtained by Carson {1] and Kostenko
[4] in the case of sinusoidal waves and zero conductivity of the air.

The solution of the problem in the second approximation makes possible

an estimate of the error in Carson's solution, which arises because of

a) the assumption of quasistationarity of the fields in the air,

which corresponds to condition (26) and evaluation of the integrals
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b} neglecting the transverse currents in the earth, which corresponds
to setting the integrais Gik equal to zero;
¢} neglecting displacement currents in the earth, which corresponds

to condition {24).

2. Examples of sclutions of the problem for some multiconductor lines

a) Split-phase multiconductor systems

We shall extend the obrained general solution to split-phase multi-
conductor transmission lines in which each phase bundle is identical and
electrically interconnected. To solve this problem we make the following
assumptions.

a) we neglect the proximity effect in the split-phase wires;

b) we take the electromagnetic field at the surface of each phase
bundle due to currents of the other phases and the earth to be equal
to the electromagnetic field of these currents at the center of the split
phase;

¢) we assume that the currents of the split-phase bundles are equal
to each other.

In this case the boundary conditions at the surface of an arbitrary

ﬁzé-bundle of the kEE-phase lead to the following equation:

a
Pl may « ! ZkH(d) H (m-2h )
~H {m.a, ) + — I (m - ) +
K qu 00k U u=1 0" 0 ul 00"k
ijé Mk no -
- e “ - 1 '.
foey ot q_] M [H()(‘“Orik) Hylmgr' 530 7
Tm k i=1
0
2jké i
+ —= F = Ly 4 2
5 Fiy 0 (u#d; i#Kk), {(27)
g 3

where G is the number of bundles of the kzé-phase;
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. . c v o th
a, 1is the radius of the bundles of the k— phase;

duzis the distance between bundles u and £;

Toy is the distance between centers of split phases;
hk is the distance from the center of a split phase to the earth.

Equation (27) leads to a system of equations analogous to the system

(9). To solve this system in the first approximation the coefficients

Bik are determined from expression (26), while instead of the coefficients

Bﬁk the following coefficients are obtained:
2 21 M
m 2h, ,
By = —%—In : ko F -k (28)
k eq,k A
0
1
T = (ad ,dy,. . - d. )%
eq,k Kk 148722 gk s
where Teq,k is the equivalent radius of the kEE-phase.

b} Two-wire system
From expression {10) we have

2 |
BBy, - B = 0. (29)

1

1. Case of identical wires in one horizontal plane.

In this case B11 = B22 and from expression (29) there follows:
(B11 - 812)(811 + Blz) = 0. (30)

Equation (30) determines two wave channels:
st
1 wave channel

B.. . =8 . Téill_z - 1; (31)

in the first approximation
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F1+M1—F

01 12
0Ly _ e ; (32)
K- 1712
"o I =
112
an wave channel .
1
- - . 202 _ . <
Bi1(2) Bi2c2y’ ; =5 (33)
1(2)
in the first approximation
2 F +M +F
Moc2y - F17 T2
2 2h rf (34)
kg o L 12 .
21712

To sclve the problem in the absence of the earth we obtain in the

first approximation:

2
hY
mo(l) B 1’11 ‘ -
2 - T > ( )
kO n Ela
1

M

1
2
-~ 1
%o o Ty 2%
28n 3

(36)

The solution (35) can also be obtained using the telegraphist's
equations. In this connection the exact solution of a given system of
wires permits one to estimate the region within which the telegraphist's
equations give the solution to a given accuracy. To find this region
we determine B

12(1)

function of (25). Now instead of the solutiomn (35) we obtain:

using two terms of the series expansion for the Hankel

ot

2 "
(1) 1
K2 5 9 (37)
0 T m_ T Y'm ¥
12 o(1y 12 o{1) 12
L0 - (4) en 2§ )
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The relative error of solution (35) compared to solution {37) is

cqual to:
]
S Y Mo a2
- N 2je
mO(l)le in je
= - 38
8 e - (38)
4 in a*
1

ot
554

Suppose we specify an error in solution (35) equal to I6rell

2 .
in the region rlz/alflo , we obtain

Then solving (38) for Hb(l)IIZ
2 2 p
.08. 39
]mO(l)rlzlfO 08 (39)

From this condition and solution (37), considering (6) and the fact o
that at high frequencies usually JO(kla‘) X jJé(klal)’ we obtain a range
of parameters "n which the telegraphist's equations give a solution

for the quantity imz

O(l)l within an accuracy-of 1%:

<0 08. (40)

A region within which the electromagnetic field can be considered
quasistationary to a given accuracy is determined analogously.
Let us consider some numerical exampies.

=57x106 mho/m; Y. =u

IN THE ABSENCE OF THE EARTH. Copper wire: Gl 17 Mo’

-2 5

4 5 &)
a,=10 "m; r 10m; £=10" Hz.

1 127
Results of calculations using formulas (31), (33), (35) and {36)
are presented in Table 1.

From condition (40) we determine the range of frequencies in which

one can, for a given system of wires, determine the attenuation coeffic-
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ient B(l) using the telegraphist's equations to an accuracy of the order
of 1%: f < 1.9 x 108 Hz .
System Number iﬁ I )
of wave 2(s) 3(s) 2 B B, dB/km
channel i I k0 kO
Two iden- 1 -1 - 124107 12.4-107% | 0.044
tical wires -5 -5
. ? R S B 9:10 74 9-10 0,0165
Two differ- 1 ~2.68+ - 14.5-107° i4.5-107° | 0.82
: +j0,0014 ;
ent wires : -4 -4
2 0.0235+ | - 1.34-10 1.34-10 ! 0.0245
Three ident- 1 0 f 112,210 2.2-107% | 0.040
ical wires § 4 4!
2 -1.92 : +1 2.5-10 2.5-10 0,046
| P D
3 Po+1.04 +1 6.9-10 16.9.10 0.0126
e vt - et Rt = e A et st < 2+ W s 4t 1o s B ot et e - e 2 e o A e A b e WA AN S o B 1 i b . AR 05

Table 1.

Resnlts of calculations in the absence of the earth.

Thus, in the present case the telegraphist's equations are valid even

when the wavelength is several times smaller than the distances between

wires.

IN THE PRESENCE OF THE EARTH.
)
the same; w=10 ;Og

The results of calculations using formulas (15),

= 10 mho/m; h1=h2=10m.

(193,

(20),

The wires and their separation are

(233,

(31)-(34) are presented in Table 2; as are results of computations for

a single wire-earth system for similar parameters for comparison.
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RN

Infléénce of

System Number i7, N i, . , a
of wave <\5) 5(s) EL- = B,dB/km}{ G;x on B8,%
channel i % . kO kﬂ -
1{(s) 1(s) ‘ )
Wire-carth 1 - T T 0568 0.0239 | 0.69 +1.90
“Two identical| 1 T Y T To0es 000054 T 0068 1 w06
wires-earth 2 +1 - 1 1.06t 0.0404 | 1.17 +1.9
Two different| 1 -0.78- - 11,013 0.0088 | 0.255 -
wires-earth -30.03
Thfégmidéntical :
wires-earth 1 0 -1 1.016 0.0062 0.180 +0.7
2 —1.83+ 1 1.0026 0.0009 0.02¢ +1
t +50.04 i
3 1.05+ 1 1.081 0.0528 1.53 +1.8
i +j0.03 ) [ I

2.

Table 2. Results of calculations

Case of different wires

in the presence of the earth.

In this case the propagation constants are determined from equation

(29) .

In Tables 1 and 2 results of calculations for a two-wire system are

given in the absence and in the presence of the earth, when the second

wire is steel; G?=9x106 mho/m and the mean permeability of the steel is

u2=100u0;

parameters are just as in the above examples.

the first wire is copper; the size of the wires and the other
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It should be noted that in the examples iﬁ the absence of the earth
the attenuation of the antiphase wave channel is considerabiy larger than
that of the cophase channel, and the currents in the wires for each wave
channel differ considerably from one another in abhsolute vaiue. Thus,
in the case of different wires, one may not construct telegraphist®s
equations on the basis of identica} magnitudes of currents in the wires
for the antiphase wave chénnel, as 1s done by some authors (cf., for
example, [16]).

c) Three-wire system symmetrical with respect to the center wire

In this case the end wires have identical parameters.

=a_: =h_: = : ! =pt! - =F _- = : =
817853 M=y 1 o=, 00 T1,=T055 FyFgs Fpp=Fpgs My=Ms.
Consequently
B1178555 Bio7Bys-
Then from expression (10) we obtain:
Bi1 B2 B3 5
B=1 By By By} = (B -Byg) [Byy(Byy+By5)-2B,,]. (41)
Biz Bra Big
From expression (12) it follows that:
I B, (B,.-B i B2 -B.. B
2¢s) _ P12(Bi37B1)  Iz(sy  Bia7BaoBis 12
I ) B, -B>. i BB B2 (“42)
is)  BiBaaByy 1(s)  P118227812
Formulas (41) and (42) determine three wave channels:
1°Y wave channel . )
B oo i,
2(1) _ 4. 3(1) . -
= LT3 = -1 4
Bliy T Bisay’ : * ; (43)
1(1) 1(1)

in the first approximation in the presence of the earth
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Moy 1Rz |
R ; (44)
Ky i alr%3
1713

i iy . 2 .
2nd and 3 d wave channels. For these channels the quantity M is

determined from the equation

2 _
B, (B, *Byg) - 28], = 0. (45)
Using (45), we obtain from (42):
s _ . Lo . e Pueise |
B s . B B )
o i) 2y 22(2) 12(2)
(46)

ORI 1 N P1c B3 *P13(3)
; > B B
I3y I s 22(3) 12(3)

In Tables 1 and 2 computational results are given for a three-wire
system with identical copper wires, lying in one horizontal plane, in
the absence and in the presence of the earth. The sizes of the wires,
distances between neighboring wires and the other parameters are the same
as in the examples with two identical wires.

From Table 2 it follows that the influence of transverse currents

in the earth (the integrals Gik) on the attenuation coefficient is in-

significant in all the given examples.
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Conclusion

1.. A rigorous solution in general form has been obtained for the
problem of electromagnetic wave propagation along multiconductor trans-
mission lines in the presence or in the absence of the earth, neglecting
the proximity effect in the wires and end effects.

2. Under specific assumptions results can be obtained from the
rigorous solution accounting for the earth which correspond to a solutioﬁ
obtained from the telegraphist's equations. The identical assumptions
characterize the accuracy of the solution foﬁnd by the telegraphist's
equations.

3. In the numerical examples it is shownvthat for mflO6 and Ggilo_z mho/m
the influence of transverse currents in the earth on the parameters of all

the wave chr :els is insignificant.
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