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Solving sparse systems of linear equations is a commonly encountered computation in scientific

and high-performance computing applications. Applications that depend on solving sparse linear

systems as part of their workflow can spend a large percentage of their total runtime solving sparse

systems. However, selecting the best iterative solver and preconditioner for solving a given sparse

linear system, especially for novice users, is not a simple task. To address this problem, previous

works have used machine learning techniques to find similarities between sparse matrices and the

corresponding performance that solver-preconditioner pairs have on solving the resulting linear

systems. This dissertation expands on existing work by introducing techniques that incorporate

hardware information into the prediction of ideal iterative linear solver and preconditioners for

sparse linear systems. By accounting for hardware, it is possible to create more specially tailored

solver-preconditioner recommendations for a novice user.
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Chapter 1

Introduction

Solving sparse systems of linear equations is a commonly encountered computation in scientific

and high-performance computing applications. These linear systems are of the form Ax = b where

A is an m× n coefficient matrix, b is a known solution vector of dimension m, and x is an unknown

vector of dimension n. Many of these linear systems are created as a result of discretizing partial

differential equations (PDEs), a prevalent computation in applications such as the finite difference or

finite element methods commonly used in the fields of computational fluid dynamics and structural

analysis [1,2]. Applications that depend on solving sparse linear systems as part of their workflow

can spend a large percentage of their total runtime solving sparse systems [1]. Because solving

linear systems is integral to many scientific and high-performance computing problems, solving a

linear system faster or more efficiently can have a widespread impact in a variety of disciplines.

Choosing an iterative solver is not the only component required when choosing how to solve

a sparse linear system. In addition to the solver, a preconditioner is often selected to improve

the chosen solver’s performance. Preconditioners convert the target linear system into a similar

system, which has more appealing numerical properties that are better suited for being solved via

iterative means. Nowadays it is assumed that when choosing an iterative solver, a preconditioner

is also chosen. Therefore, now a user is no longer responsible for simply choosing a solver, but

also a preconditioner. The added dimensionality caused by the addition of the preconditioner

drastically increases the number of possible choices for solving a given linear system. Unfortunately,

choosing the optimal solver-preconditioner pair for a linear system can be a difficult task not only
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due to the number of applicable solvers and preconditioners for a given problem, but also because

the performance of the solvers is not guaranteed a priori. A non-optimal choice of either the

iterative solver or preconditioner can have a drastic negative impact on the overall runtime of the

solve. In some cases, non-optimal choices result in a solution not being found, even though another

solver-preconditioner pair may converge towards a solution. Due to the prevalence and importance

of solving sparse linear systems in applications, improving the time-to-solution by choosing the

optimal solver and preconditioner pair can have a significant and far-reaching impact.

However, choosing an optimal iterative solver-preconditioner combination for a given linear

system is not always an easy or straightforward task [3]. Although there are ways to group or sort

the available iterative solvers based on the types of matrices they support, it is often not enough

since there are still multiple appropriate methods for each type of matrix. For instance, a square

non-symmetric matrix can be solved using various iterative solvers including GMRES, TFQMR, and

BiCGSTAB [1]. Depending on the numerical properties and structure of the non-symmetric matrix,

any one of the previously mentioned solvers is capable of outperforming the others. Unfortunately,

choosing a solver from several available solvers, which seem similar at face-value, can be difficult for

novice users.

Previous work [4–7] has been performed using machine learning classification in order to help

determine the best solvers or solver-preconditioner pairs for a given sparse linear system. These

efforts find correlations between the layout and numerical properties of a coefficient matrix A and

the resulting performance of various solvers and preconditioners associated with that linear system.

The machine learning classification algorithms are trained using both the matrix attributes and

the time it takes to converge to a solution for the available solver-preconditioner pairs. Once the

classifier has been trained, it is then used to determine which solver-preconditioner pairs are optimal

for finding a solution to certain types of linear systems. Once trained, the classifier is able to

determine the best solver-preconditioner pairs for a newly presented linear system based on the

classifier’s training data by finding similarities between a new matrix and the collection of matrices

that have been previously identified.



3

Previous work, using machine learning techniques to predict iterative solver performance, has

collected the wallclock timing data of solver-preconditioner pairs on a given linear system using

solver code running serially or across a single fixed-size CPU count. An optimal solver-preconditioner

prediction for a fixed-size CPU count is not universally the best choice when running on a different

number of cores than the specified fixed-size. Similarly, the system hardware being used for the

linear solves can also be responsible for differences in solver-preconditioner performance. The best

choice of solver and preconditioner differs when solving the same problem serially on a modest

laptop or when solving that same problem in parallel across an entire cluster node. To demonstrate

this, we measure the performance of solvers and preconditioners at multiple CPU counts and on

different computer systems in order to create a more dynamic recommendation system based on a

user’s compute capabilities.

1.1 Related Work

There have been various efforts throughout the years to address the problem of selecting

optimal numerical methods for a given problem type. Weerawarana et al. introduced PYTHIA [8],

a system for solving elliptic PDE problems with the ELLPACK [9] library, based on user-specified

variables and the type of problem being solved. The Self Adapting Numerical Software (SANS) [10]

is another effort designed for the optimal selection of algorithms based on a user’s data and hardware.

As a part of SANS, the Automatically Tuned Linear Algebra Software (ATLAS) [11] uses empirical

search techniques to create customized kernels of the basic linear algebra subprograms (BLAS) [12]

tailored to the system’s hardware.

There are also efforts with the specific goal of identifying optimal iterative linear solvers

and/or preconditioners for arbitrary linear systems. Bhowmick et al. present results in multiple

papers [4, 6, 13–15] that explore the use of machine learning techniques and their applications

to solving linear systems and to numerical methods in general. Their approach uses a binary

classification scheme to recommend solvers and preconditioners based on a training set of data

containing matrix properties and the associated runtimes of those matrices with various solvers and
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preconditioners. The solvers and preconditioners used throughout their work come from the PETSc

library [16].

The Lighthouse project [5], of which the author is a contributor, is a joint effort between the

University of Oregon and Colorado and has the overarching goal of creating an online taxonomy for

numerical libraries. Lighthouse is capable of directing and aiding users in choosing the best numerical

methods for a given task and problem. Users are able to enter information about their problem, the

library they wish to use, and even their matrix into the system which then computes an appropriate

solution for the given problem. Lighthouse uses a similar approach to that of [4,6,13–15] for training

machine learning classifiers on matrix features and the runtime performances of various solvers and

preconditioners. One of the key differences in Lighthouse is its incorporation of multiple numerical

libraries and problem types. In addition to sparse linear systems, Lighthouse also provides optimal

functions or methods for solving dense linear systems and eigen problems. Lighthouse also differs

by providing support for various numerical libraries including PETSc, SLEPc [17], LAPACK [18],

and Trilinos [19].

Jeom et al. have performed recent work [7] in determining the best solvers and preconditioners

from the Trilinos numerical framework. Similar to Lighthouse, their work is also designed with the

mindset of aiding novice users in the selection of solver-preconditioner pairs for arbitrary matrices.

Their work largely differs from the two previously mentioned research efforts through their machine

learning techniques and use of regression rather than classification. The machine learning method

used in [7] is neural word embedding (NWE) [20], an algorithm designed primarily for natural

language processing. They use a specific NWE model Word2Vec [21], a neural network capable

of determining not only the correlations of input vectors, but also their relationship to each other.

Word2Vec works by creating a many dimensional space with vectors in the space representing input

data. Unlike other works by [5] and [4,6,13–15], which use binary classification to predict “good”

and “bad” solver-preconditioner pairs, [7] predicts the numerical runtimes of solver-preconditioner

pairs for a given linear system.

One of the key similarities across all of the aforementioned research is their collection of
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wallclock timing data obtained using a fixed CPU core count on a single computer system. Both

the work present in [7] and [4,6,13–15] obtain the runtimes on the solvers and preconditioners

based on solving the linear systems serially on a single core. Work from the Lighthouse project [5]

also obtains runtime data using a fixed core count with most experiments being performed serially;

one experiment has been run on 12 cores. This dissertation expands upon these existing works by

collecting the runtimes of solving linear systems across multiple core counts in a variable manner

rather than fixed.

1.2 Overview and Outline of the Document

The new techniques presented in this dissertation allow novice users to easily choose the best

combination of iterative linear solvers and preconditioners from existing numerical linear algebra

libraries and applications to solve their specific problem on their specific hardware. Users such as

domain scientists or other researchers lacking knowledge in numerical mathematics and hardware

performance, can therefore avoid spending their time, energy, and resources on concerning themselves

with incorrectly chosen or poorly performing solver-preconditioner choices by using the methods

described in this dissertation. Thus, the described methods allow researchers to save time and

important resources in solving their sparse linear systems.

The rest of the dissertation is organized as follows. Chapter 2 describes the numerical

methods involved with iterative linear solvers and preconditioners, as well as the software used to

implement them both. Chapter 3 introduces the key concepts associated with machine learning

and the classification techniques used throughout the dissertation. Chapter 4 contains the core

methodologies used throughout the dissertation including the training data and data collection

schemes for collecting features from both the training matrices and computer systems. Chapter 5

describes the experiments and results associated with the performance prediction using different

numbers of CPU cores. Chapter 6 describes the experiments and results associated with the

performance prediction using different computer systems. Chapter 7 discusses the experiments and

results obtained by combining the experiments of Chapters 5 and 6 into a single prediction problem.



6

Chapter 8 explores the applicability of the classifier created in Chapter 7 and applying it to the

prediction of larger, real-world problems. Chapter 9 discusses the overall results of the work and

possible directions for future work.



Chapter 2

Numerical Background

This chapter presents the core linear algebra techniques and numerical methods used through-

out the rest of this dissertation. Section 2.1 provides an introduction to systems of linear equations

and how they can be solved via direct and iterative methods. Section 2.2 describes preconditioners

and their role in aiding iterative solvers solve systems of linear equations. Section 2.3 is an overview

of the numerical library framework Trilinos, which provides the implementations of iterative solvers

and preconditioners used throughout the numerical experiments in this dissertation.

2.1 Systems of Linear Equations

Systems of linear equations, or linear systems, are a commonly encountered mathematical

problem found in a wide number of scientific and engineering related fields. Most commonly, linear

systems are byproducts from the discretization of partial differential equations (PDEs) [1, p. 47].

These PDEs can occur from many sources, but are often associated with solving engineering or

physics problems via the finite element and finite volume methods. However, it is also possible for

linear systems to arise from many other non-PDE related problems such as circuit design [22] and

medical imaging [23]. A linear system represents a set of m linear equations with n variables and is

written as Ax = b where A is the matrix of coefficients, x is the column vector of unknown variables,
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and b is the column vector of solutions, as seen below.

Ax = b ≡



a11 a12 · · · a1n

a21 a22 · · · a2n

...
...

. . .
...

am1 am2 · · · amn


×



x1

x2

...

xn


=



b1

b2

...

bm


A ∈ Cm×n, x ∈ Cn, b ∈ Cm (2.1)

For a given linear system, the coefficient matrix A and the solution vector b are known, while

the vector x is unknown and must be solved for. Computing the unknown vector x is non-trivial

and has resulted in numerous mathematical methods designed to find the solution efficiently. In

order for a linear system to be considered solved, the variable vector x must be computed such that

all m equations of the system are simultaneously satisfied.

Solving systems of linear equations within an application can be responsible for a large

percentage of the overall runtime of scientific applications [24]. Solving a linear system is often not

the only task in scientific applications but rather a step that gets called numerous times throughout

the application as part of a loop. Because of the widespread use and dependence of solving linear

systems, any improvements to the time it takes to solve a linear system can have a large impact on

the overall performance of scientific applications [25].

Coefficient matrices are commonly categorized into two groups: sparse or dense, which are

useful for determining the best methods for solving the given linear system. As their names suggest,

a dense matrix is filled completely or almost completely with nonzero entries. A sparse matrix,

however, consists predominately of entries which are equal to zero. Because of this difference, the

methods used to solve linear systems with dense coefficient matrices can be very different than those

used for sparse matrices. The work contained within this dissertation is focused only on solving

sparse linear systems.

The methods for solving a system of sparse linear equations can be largely separated into

two distinct categories: direct and iterative. These two methods are described in more detail in

Sections 2.1.1 and 2.1.2 respectively. The work presented throughout the rest of this dissertation is

primarily concerned with iterative solvers, but direct methods are described in order to provide a
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more complete overview of linear solving techniques.

2.1.1 Direct Solvers

Direct solvers, at their core, are based on the basic idea of Gaussian elimination. Conceptually,

Gaussian elimination is the process of repeatedly performing elementary row operations on the

linear system until A has been transformed into an upper-triangular matrix U . The linear system

still retains its data during this transformation, but becomes easier to manage and solve due to its

new layout.

U =



a11 a12 · · · a1n

a22 · · · a2n

. . .
...

0 amn


Gaussian elimination is based on three basic row operations:

Row swapping: Exchanging two rows with each other, Ri ↔ Rj ,

Row multiplication: Multiplying a row by a scalar, cRi → Ri,

Row addition: Adding one row to another, cRi +Rj → Rj .

In order to create an upper-triangular matrix, all elements below the diagonal must be equal to

zero. To transform the given matrix into this upper-triangular matrix we iteratively traverse the

columns from left to right and perform Gaussian elimination to make the column elements below

the diagonal equal to zero. Rather than always using the original diagonal element as a basis for

introducing zeros, we can choose any element within the current column to be used as the pivot.

The pivot entry xij is often selected to be the largest nonzero element in the current column. Once

the pivot has been determined, the row containing the pivot is then swapped with the row containing

our current “original” pivot element at xii. After the swap, the algorithm proceeds as normal and

removes multiples of the pivot row from the rows below the diagonal. The process is continued for
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the xi+1 column through the xn column until the triangular matrix has been created. The pivoting

process is depicted in Figure 2.1. In practice, when rows are exchanged the permutation matrices

Pi interleave with the lower triangular Li matrices. In this case it is possible to factor the matrix as

PA = LU where P is a m×m permutation matrix [26].


x x x x

x x x
xij x x
x x x

→


x x x x
xij x x
x x x
x x x

→


x x x x
xij x x
0 x x
0 x x


Figure 2.1: The process of selecting a pivot element, exchanging its row, and then removing elements
below the diagonal.

The resulting augmented, upper-triangular matrix U can then be used to solve for the

variables in the column vector x using the straightforward method of back-substitution. However, by

simply storing the row operations performed during the Gaussian elimination, the simple Gaussian

elimination is transformed into the more powerful and capable LU decomposition which is the

basis for many direct linear solvers [27, sec. 3.2]. The series of elementary row operations during

Gaussian elimination is equivalent to multiplying the original matrix A by a series of lower triangular

matrices, L0L1 . . . LnA = U . These successive lower-triangular matrices are then compiled into a

single lower-triangular matrix L which is then multiplied with the resulting matrix U such that

LU = A where L is lower-triangular and U is upper-triangular. L and U can then be used to solve

the original problem of Ax = b by transforming the problem into LUx = b. The linear system can

then be solved by solving two smaller problems:

(1) Solving Ly = b for y where y = Ux via forward substitution

(2) Solving Ux = y for x via backward substitution.

Solving a rectangular m× n matrix A via the LU decomposition creates an L of size m×m

and U of size m× n. The cost of performing the full factorization is O(2
3m

2n) operations for the
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matrix decomposition and another O(m2) and O(mn) operations for the forward and backward

substitutions respectively. The benefit of retaining the L and U matrices, as opposed to only storing

U , is that it greatly simplifies any repeated linear solves in which the coefficient matrix A remains

the same, but the solution vector b changes. This scenario creates efficient subsequent computations

by only needing to perform the forward and backward substitution operations since the matrix

has already been decomposed. Because of their reliance on matrix decomposition methods, direct

linear solvers do not produce any form of “intermediate” results during the solve. Direct solvers

only produce a solution, or any useful information, once all the operations have been successfully

performed.

Although the LU decomposition is encountered frequently, direct solvers are not limited to its

use; solvers are also based on the QR and Cholesky factorizations [27, sec. 5.2, 3.2]. Each of these

factorizations produce two matrices from the original coefficient matrix A in a manner similar to

that of the LU factorization. The QR factorization method factors the matrix A into an orthogonal

matrix Q and an upper triangular matrix such that A = QR. The solution x can then be determined

by first transforming the linear system into the form Rx = Q∗b. Once in this modified form x can

then be solved using the two sub-problems: y = Q∗b and Rx = y.

The Cholesky factorization transforms A into a lower triangular matrix L and its conjugate

transpose L∗ such that A = LL∗. However, unlike the LU and QR factorization methods, the

Cholesky factorization method is only applicable to the subset of matrices which are both Hermitian

and positive-definite. A matrix is Hermitian if it is equal to its own conjugate transpose A = A∗ and

a matrix is considered positive-definite only if all of its eigenvalues are positive. Once the matrix

has been factored, the system can then be solved using the sub-problems: Ly = b and L∗x = y, in a

fashion similar to that of the LU factorization. Both the LU and QR factorization methods can be

performed in O(2
3mn

2) floating-point operations (flops), while the Cholesky factorization, exploiting

the symmetry and positive-definiteness of the matrix, can be performed in O(1
3n

3) flops.

Regardless of what direct linear solver is used, each will arrive at the same solution for a

reasonably conditioned linear system. The condition of a matrix describes how susceptible the
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output is to small perturbations to the input. The main disadvantages of direct solvers is that both

their memory usage and floating-point operation counts are based entirely on the dimension of the

matrix. This is not an issue in regards to full-rank matrices or matrices which are nearly full of

nonzero entries, however, the problem becomes more apparent when solving linear systems with

large, sparse matrices. Since the complexity growth of direct solvers is based on the dimension of

the matrix as opposed to how many relevant nonzero entries it has, the floating-point operations

and memory cost of a direct solver can become prohibitive when working with sparse matrices of a

large dimension. This cost is based on dimension since each step of a direct solver runs the risk of

introducing fill-in into the matrix. Fill-in occurs when data that was originally a zero entry within

the matrix has been changed into a non-zero entry as the result of a row operation. The cost to

perform a direct linear solve is thus asymptotically the same for a dense matrix and a sparse matrix

of the same dimensions, even though the sparse matrix contains significantly fewer nonzero entries.

Due to the potentially prohibitive cost, solving large sparse matrices using direct solvers is

not always the ideal choice. To address this problem, researchers have developed various methods

which create a new class of iterative solvers, specifically designed for solving large sparse systems.

Iterative solvers use a vastly different approach to solving a linear system than direct solvers which

does not grow in complexity based on the dimension of the linear system, but rather the number of

nonzeros contained in the coefficient matrix.

2.1.2 Iterative Solvers

Compared to the numerical factorization methods used in direct solvers, the core numerical

ideas that form the basis of iterative solvers are incredibly different. Rather than determining

a solution after a finite number of steps using factorization methods, iterative solvers produce a

series of increasingly accurate approximations to the unknown vector x. The difference between

an approximate solution vector and the actual solution vector is called the residual. An iterative

solver terminates when either a predetermined number of iterations has been reached or when the

solution is less than the convergence tolerance, where the approximate solution to x is within a
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user-specified range of the exact solution for x. Figure 2.2 shows how the residual associated with

an iterative solver descends towards zero consistently as opposed to a direct method which happens

suddenly only after a certain amount of work has been performed.

[26, p. 247]

Figure 2.2: Graph of the theoretical amount of work to converge to a solution via iterative and
direct methods. The iterative method should decrease geometrically while the direct method makes
no progress until all of its O(m3) steps have been performed

The amount of storage, O(mn), and floating-point operations, O(mn2), used in a direct solve

are entirely dependent on the dimension of the m× n coefficient matrix A. The cost of performing

the direct solves is manageable as long as the matrix is dense such that the number of nonzero

entries within A is close to m× n. Iterative solvers are useful when solving linear systems where

direct methods are too expensive to compute and/or store in memory. Using a direct solver on a

linear system with a sparse coefficient matrix A can be prohibitively expensive since the relatively

small amount of “useful” data is ignored since only the dimensionality plays a role in the asymptotic

performance. Iterative solvers on the other hand, attempt to exploit sparse matrices by concerning

themselves with only the nonzero entries of the matrix rather than also processing the large number

of zero entries.

Unlike direct solvers, the solutions produced by iterative solvers can differ slightly from solver

to solver while still being “correct.” The variability in the solutions are a result of the size of

convergence tolerance, underlying numerical algorithms, and floating-point rounding. Choosing

both the number of iterations and the convergence tolerance for solving a given linear system can be

a difficult task as it requires in-depth knowledge of the current problem and the iterative methods
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being used to solve it. The convergence tolerance is determined largely by the type of problem being

solved and the level of precision needed in the final solution. Because iterative methods execute

in a non-deterministic fashion it is difficult to know if a given problem can be solved within a set

number of iterations. Selecting the number of iterations is also difficult since it is dependent not

only on the size of the convergence tolerance, but also the size and layout of the coefficient matrix

A and choice of iterative solver.

Each iterative solver has distinct differences from the others, but they all follow the same

general structure. At each iteration, i, the solver produces an approximate solution vector xi which

is closer to the true value of x than the previous iteration xi−1. Commonly the zero vector is chosen

for the initial guess of x0 since the starting point of the algorithm is largely arbitrary and it is

difficult to assume any “best” initial approximations a priori. Iterative solvers create approximations

to the optimal solution vector x∗ with each iteration i which become more accurate as the number of

iterations increases. By stopping the iterative process before reaching our exact solution, execution

time can be saved by exiting the iterative process early once we have deemed that our iterative

solver has converged towards a solution within an acceptable degree. An iterative method has

converged when the approximation vector xi is found to be within some acceptable difference of the

solution vector x∗. At each iteration, the selected convergence tolerance is compared to the relative

residual at that iteration, ri. The relative residual is recomputed at each iteration and compares

the current residual of xi, calculated by b−Axi, to the norm of the original solution vector b. The

resulting relative residual for a given iteration i is therefore represented as ri =
‖b−Axi‖
‖b‖

. Once

the residual is less than the convergence tolerance the solver terminates.

A large proportion of modern sparse iterative methods are based on the important idea of

Krylov subspaces. However, before describing the Krylov subspace we must first briefly understand

what a Krylov sequence is. A Krylov sequence, depicted below, is a series of vectors created by

repeatedly applying a matrix A to a vector b,

Kseqn = {b, A(b), A(A(b)), ... } = {b, Ab, A2b, ... , An−1b}.
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The corresponding Krylov subspace is created from the space spanned by the vectors contained in

the Krylov sequence. Each Krylov subspace can therefore be thought of as the polynomial of all the

possible linear combinations created from its vectors,

Kn = α0b+ α1A(b) + α2A
2(b) + ... + αm−1A

m−1.

Krylov subspaces are an integral component in many of the modern popular sparse iterative

methods because they are efficient methods for iteratively approximating a solution to a linear

system using a much smaller dimensional space than the space spanned by the original problem.

By starting with a single vector space and adding one additional vector at a time into it, we have

a relatively small dimension of a search space which may contain an accurate approximation to

the solution vector. By reducing the dimension of the problem it is possible to find an appropriate

approximation in much less time than if we used a direct solver, depending on the rate of convergence.

Although each iterative solver varies in its exact algorithm, computing each additional vector in the

Krylov sequence only requires a single sparse matrix-vector multiply. This matrix-vector multiply

takes O(mn) floating-point operations in general, but if the matrix is sufficiently sparse it can be

performed in far fewer operations.

Within each iteration of a Krylov-based linear solver, an additional vector is created and added

into the Krylov subspace thus increasing the order of the Krylov polynomial by 1. Each additional

vector increases the search space and can allow for a more accurate approximate solution than the

previous iteration’s search space. It is proven that the solution to a given nonsingular linear system

exists within a Krylov subspace of the same dimension as the minimal polynomial of the matrix [28].

Since all previously created Krylov subspaces are wholly contained with any additionally created

subspace, K1 ⊂ K2 ⊂ K3 ⊂ ... ⊂ Kn, each iteration of the linear solver contributes a single vector to

the subspace in order to expand it. As the Krylov space becomes larger, more solution vector options

are available for selection. In order for an iterative method to be efficient, the approximate solution

needs to converge in far fewer steps than the dimension of the linear system. Unfortunately this

cannot always be guaranteed due to a variety of reasons including rounding errors and ill-conditioned
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matrices. The speed at which a Krylov solver tends to converge is largely associated with a matrix’s

condition number which is directly tied to the layout of its eigenvalues. Condition numbers are

discussed in more detail in Section 2.2.

There are many possible iterative solvers to choose from when solving a linear system. Below

are brief overviews of each of the iterative methods used in the experiments discussed later in the

dissertation. Each solver’s implementation comes from the Trilinos mathematical library discussed

further in section 2.3.

2.1.2.1 Conjugate Gradient

The conjugate gradient method (CG) [1, p. 196] is used for solving linear systems which

are both symmetric and positive-definite. Because the system is both symmetric and positive-

definite, the shape of the function is convex and the solution to the system Ax=b can be reached

by minimizing the equation f(x) = 1/2xTAx − bTx + c. This minimization is possible since the

derivative of the function is equal to the original Ax=b.

Each iteration of the conjugate gradient method contributes to creating a sequence of vectors

which are all conjugate to each other. The vectors in the Krylov sequence are created from the

residual obtained from the approximate solution at each iteration, ri = b − Axi. The conjugate

gradient method is similar to the method of steepest descent but is quicker to approach the solution

due to always choosing an optimal and unique direction rather than simply the direction where f(x)

decreases the most quickly. Choosing conjugate vectors prevents any of the descending directions

from overlapping with other vectors which is a common occurrence in steepest descent. The method

was originally conceived as a direct method, but can be considered an iterative method by finding a

good approximate solution after relatively few iterations � n.

2.1.2.2 Minimum-Residual

The minimum-residual method (MINRES) [1, p. 145] is a Krylov method applicable to

symmetric systems. MINRES’s structure and execution are similar in design to the conjugate
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gradient method, but MINRES is more general in nature by not being limited solely to positive-

definite systems. At each iteration the MINRES method determines an approximate solution vector

xi that minimizes the residual in the 2-norm: r = ‖b−Ax‖2.

2.1.2.3 Generalized Minimum-Residual

The generalized minimum residual method (GMRES) [1, p. 171] is a general Krylov method

capable of solving non-symmetric linear systems. GMRES is the generalized version of the MINRES

method for non-symmetric systems and similarly computes a sequence of orthogonal vectors. At

each iteration GMRES computes the new approximation solution by solving a least squares problem

involving the current Krylov subspace. With each additional iteration, GMRES requires both more

floating-point operations and memory than the previous iteration. These additional costs are caused

by the sequence of orthogonal vectors being explicitly stored [2, ch. 2]. Because of these increasing

costs it is common to routinely “restart” the method after a number of iterations have completed.

Restarted versions of GMRES limit the amount of computational and storage costs by using the

most recently computed solution approximation xi as the initial guess for a new run of GMRES.

2.1.2.4 LSQR

The LSQR method [29] is a general Krylov method capable of solving non-square linear

systems. LSQR is heavily based on the conjugate gradient method and is equivalent to applying the

CG method to the symmetric positive-definite equation: ATAx = AT b.

2.1.2.5 Transpose-Free Quasi-Minimal Residual

The transpose-free quasi-minimal residual method (TFQMR) [1, p. 247] is a general Krylov

quasi-minimal residual (QMR) method with many similarities to the GMRES method. The term

Quasi-minimal in this context refers to the created Krylov subspace being bi-orthogonal instead of

orthogonal like in the GMRES method. The original QMR method involves matrix-vector multiplies

using both the coefficient matrix A and its transpose AT , while the modified TFQMR method only
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requires the former.

2.1.2.6 Biconjugate Gradients Stabilized

The biconjugate gradients stabilized method (BiCGSTAB) [1, p. 244] is a Krylov method

capable of solving non-symmetric linear systems. BiCGSTAB is a modified version of the biconjugate

gradients (BiCG) Krylov method which is itself a modified version of the conjugate gradient (CG)

method. BiCGSTAB enhances the BiCG method by stabilizing its somewhat erratic convergence

rate and removes its dependence on the transpose matrix AT . The stabilization technique smooths

convergence by performing a GMRES iteration after each k iterations of the BiCG method.

2.2 Preconditioners

Choosing an iterative linear solver does not necessarily guarantee that a solution will be found

for a given linear system. Even if a solution is found, it may not be found within a reasonable

amount of time. A linear solver not being able to find the solution within a reasonable amount

of time is typically related to the linear system being ill-conditioned. The condition of a linear

system describes, roughly, how easily it can be solved using iterative linear solvers.

The convergence rate of a system describes how quickly the residual of the problem approaches

zero. is slower than the rate of convergence for a . An ill-conditioned system is more likely to

encounter solving errors or to have a slow convergence rate, while a well-conditioned system is more

likely to have a high convergence rate and require relatively small number of iterations.

Although it is common to refer to linear systems simply in terms of ill- or well-conditioned,

the more definitive condition number of the system can be computed. The condition number of

a matrix is the value associated with a linear system which measures to what extent the vector x, in

the equation Ax = b, can lose precision in the worst-case scenario. A condition number κ must be

within the range

1 ≤ κ ≤ ∞.

The condition number itself describes how susceptible the vector x, in Ax = b, will be to any changes
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in the solution vector b. More specifically, the condition number measures the ratio of the maximum

relative stretching to the maximum relative shrinking performed by the matrix A on an arbitrary

vector. The condition number of a linear system is computed by multiplying the norms of the

matrix A and its inverse,

κ = ‖A‖‖A−1‖.

The condition number is dependent not only on the coefficient matrix A, but also on the specific

norm used in the computation.

The larger the condition number of a matrix, the closer the matrix is to being singular.

Therefore, a matrix with a condition number of ∞ is singular while a matrix with a condition

number of 1 is indicative of the matrix being the identity matrix I. The vast majority of linear

systems are therefore somewhere in the large zone between these two extreme cases.

Preconditioners are specifically designed numerical algorithms which aim to lower the condition

number of a linear system, thus making the system easier to solve with an iterative method, without

changing the original solution to the problem. A preconditioner is created by using a non-singular

matrix M which is an approximation of the matrix A such that the original linear system Ax = b

can be be re-written as

M−1Ax = M−1b.

Since the matrix M−1 has been applied to both sides of the equation, the original solution to the

problem can still be determined, but the structure and values of the system have changed. Ideally

the preconditioner is the exact inverse of the matrix A, thus reducing the left-hand side of the

equation to simply be x and creating a trivial solve. However, this is not practical in most cases due

to the high cost, O(n3), of computing the inverse of an arbitrary matrix. Instead, preconditioner

algorithms create a matrix as close to A’s inverse as possible while still being computationally cheap

and easy to produce. There are many ways to create a preconditioner and each algorithm has

performance and generality trade-offs. A simplistic preconditioning example involves removing all

non-diagonal entries from the matrix A.
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Once the preconditioner has been applied, instead of the matrix A’s properties dictating

the convergence rate, the properties of the newly formed matrix M−1A are now responsible for

the convergence rate of the linear system. By carefully choosing the values and layout of the

preconditioner matrix M we can create a more well-conditioned system than given in the original

problem, while still being able to approximate the original solution.

The preconditioning equation M−1Ax = M−1b is an example of only one type of precondi-

tioning: left preconditioning. However, it is also possible to apply right preconditioning to the linear

system by solving

AM−1y = b, with x = M−1y

or to perform split preconditioning which applies a preconditioner to both sides of the matrix in

order to preserve symmetry

M−1
L AM−1

R u = M−1
L , with x = M−1

R where M = MLMR

In practice, it is not necessary to create the full preconditioner matrix M . Similar to the

methods used in creating Krylov spaces, the matrix M itself is rarely created in full and is instead

applied by performing a series of linear operations on the necessary vectors of the system.

The most important attributes of a newly created preconditioned system are its spectral

properties, the organization of its eigenvalues and eigenvectors. In general, a preconditioner

matrix M is considered to be good if “M−1A is not too far from normal and its eigenvalues

are clustered” [26, p. 314]. This clustering of the eigenvalues is important because it indicates

that the matrix is far from non-singular as evidenced by having multiple, nearly evenly-weighted

transformation directions.

Much like iterative solvers, preconditioning techniques can be broken down into smaller

subsections based on the types of matrices which they support. Included in this section are brief

overviews of the few preconditioning techniques used throughout this dissertation.
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2.2.1 Jacobi

The simplest form of preconditioning a matrix is Jacobi preconditioning and consists of replac-

ing the coefficient matrix A of a linear system with only its diagonal entries. Jacobi preconditioning

is far from a general-use preconditioning algorithm, but can prove effective especially when dealing

with matrices that are diagonally dominant. A matrix is considered to be diagonally dominant when

every diagonal entry of a square matrix is of a larger magnitude than the sum of the magnitude of

all other non-diagonal entries on that row,

|aii| ≥
∑
i 6=j
|aij |, for all i in A.

2.2.2 Incomplete LU Factorization

One of the most popular methods for preconditioning sparse matrices today is based on the LU

factorization methods discussed in Section 2.1.1. Rather than attempting to fully solve the equation

A = LU , the incomplete LU factorization (ILU) instead attempts to find an approximation of L

and U such that A ≈ LU . By approximating both the upper and lower portions of the factorization

it is possible to achieve results similar to the full factorization, but by using less computational

power. The major component that contributes to these savings is the result of removing various

portions of the fill-in that normally occurs during the LU process, therefore approximations to the

upper and lower matrices result in an “incomplete” version of the factorization. Choosing what

values of fill-in to remove or not has spawned a collection of algorithms which are based on the same

general LU factorization scheme.

Two important variables used throughout most incomplete LU factorization algorithms are

the level of fill and threshold. The level-of-fill associated with an incomplete LU implementation

represents the allowable number of zero elements in A which become nonzero during the factorization.

Level of fill is based on the sparsity pattern of the matrix A, a binary pattern which represents if a

given value is a zero or nonzero entry. For instance, a zero level of fill, does not keep any of the fill-in

produced throughout the algorithm. Therefore zero fill results in an incomplete LU factorization
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which contains the same number of nonzero entries as in the original matrix A. For an arbitrary

level-of-fill k, the amount of nonzero entries allowed in the LU decomposition is equal to the number

of entries in the sparsity pattern for Ak+1.

The other important variable in incomplete LU factorization is the threshold, which is yet

another method for reducing a certain amount of fill-in which occurs during the factorization process.

For a given threshold t, any fill-in which occurs during the factorization process is set to zero for

any entry whose value is less than that of the current threshold:

aij =


0 if aij < t

aij otherwise

2.2.3 Chebyshev

Chebyshev polynomials are a sequence of recursively defined polynomials {T0, T1, ..., Tn},

with each polynomial in the sequence designed to be orthogonal to all of the subsequently created

polynomials [30] [31, Ch. 3]. The Chebyshev preconditioner is an application of Chebyshev

polynomials to a matrix A which has been transformed such that the spectral range of the matrix

is no longer between its smallest and largest eigenvalues, [α, β], but is shifted to be [−1, 1]. Using

estimates of the minimum (α) and maximum (β) eigenvalues of A, a matrix Z is created which

shifts the spectral range of A to be [−1, 1]. This collection of polynomials can then be used as a

preconditioner because they are capable of solving for the inverse of A using the equation

A−1 =
c0

2
I +

i=∞∑
i=1

ciTi(Z).

2.3 Trilinos Library

Trilinos [19,32] is an open-source library, maintained by Sandia National Laboratory, providing

a framework for “the solution of large-scale, complex multi-physics engineering and scientific

problems”. Trilinos contains numerous discrete packages which offer unique functionality related to

numerical and scientific computing. The computational areas covered by these packages include
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solving linear systems, preconditioning, discretizing PDEs, and load balancing. Many of the

mathematical routines in Trilinos make use of existing established numerical libraries such as

LAPACK [18] and BLAS [12] while also offering interfaces with newer libraries such as SuperLU [33],

Mumps [34], and PETSc [16]. Trilinos, which is written largely in C++, also supports a variety

of common scientific computing programming languages such as Fortran, Python, and C through

interfaces.

Although there are many unique packages available within Trilinos, the work presented in

this dissertation focuses on solving linear systems and therefore depends primarily on three Trilinos

packages: Tpetra for creating and distributing dense vectors and sparse matrices, Belos for solving

linear systems, and Ifpack2 for preconditioning sparse matrices.

2.3.1 Tpetra

Tpetra is a Trilinos package focused on the creation and manipulation of distributed data

structures representing linear algebra objects such as sparse matrices and dense vectors [35]. Tpetra

is one of the core packages within Trilinos and is used or supported by a large percentage of the

total packages due to providing the data structures for common elements. Tpetra is the successor of

another Trilinos package, Epetra, and improves upon it in a variety of ways but the most important

are the inclusion of complex data types for scalars, support for 64-bit global and local indices, and

more extensive support for shared-memory parallelism.

Tpetra uses user-created objects called maps for dictating how a given object should be

distributed across the available processes. A Tpetra map object can use up to a 64-bit integer to

represent the number of global and local indices, although it is not required that they be the same

size. The global indices correspond to the number of rows or columns in a sparse matrix or the

number of rows in a multi-vector. Each row or column can subsequently contain as many elements

as supported by the size of the local indexing type. Typically 64-bit indices are only used in cases

of more than ∼ 2 billion (231) unknowns. Matrix and vector entries can be filled randomly, read

from matrix file formats, or assigned explicitly.
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Tpetra uses hybrid parallelism through the use of MPI [36] for distributed-memory parallelism,

and another Trilinos package, Kokkos [37], for shared-memory parallelism. Kokkos provides a

programming model which acts as an abstraction layer allowing the code to target multiple shared-

memory models with the same interface. Kokkos is currently capable of targeting OpenMP [38],

POSIX threads [39], and CUDA [40]. One of the key features of Kokkos is its ability to alias

memory indexing in the background to best suit the architecture it is being run on. Because of this

hybrid parallelism structure, Tpetra scales well to a high number of parallel processes and has been

successfully tested in computations using 512k cores [35].

2.3.2 Belos

Belos [41,42] is a Trilinos package that provides iterative linear solver routines. The solver

methods within Belos consist almost exclusively of various Krylov subspace methods, but Belos also

contains a few routines based on fixed-point iterative methods. Belos’ reliance on the underlying

Tpetra library and consequently the Kokkos library allows its methods to be more flexible in how

they target shared-memory architectures by abstracting away portions of the algorithms which can

then target specific architectures or programming models. This flexibility allows for changing the

representation of the underlying matrix data into a more optimized format for the given problem

and available computer architecture, allowing for more efficient use depending on cache sizes, core

counts, etc.

In addition to the more traditional iterative methods which solve a single linear system for a

given right-hand side, Ax = b, Belos also provides block methods for solving multiple linear systems

AX = B with the same coefficient matrix, A. Many of the solvers contained within Belos are

designed to be a hybrid of the single right-hand-side solvers and block solvers. These hybrid iterative

solvers called pseudoblock methods. Pseudoblock and block solvers fundamentally solve the same

problems of type AX = B where multiple right-hand sides can be solved for simultaneously, but

pseudoblock solvers have the added advantage of being able to solve single-vector right-hand sides.

Pseudoblock solvers are an attempt at bridging the gap between methods which perform strictly
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block solves and those which strictly solve single-vector right-hand sides. When solving for multiple

right-hand-sides, pseudoblock solvers work by executing the single-vector iterative solver in lock-step

with each right-hand side. This lock-step algorithm is performed by applying any preconditioners

and the matrix A to all vectors in a block at once and then using block vector operations. Once

one or more of the linear systems have reached convergence, they are removed from the current

block-view and the iterative process continues onward for the remaining unconverged systems.

2.3.3 Ifpack2

Ifpack2 [43,44] is the Trilinos package that provides preconditioning methods for Tpetra

based linear objects. The available methods in Ifpack2 include incomplete factorizations, relaxations,

and domain decompositions. For our purposes, the routines available within Ifpack2 are used for

preconditioning sparse matrices prior to being solved with the routines available in Belos. Similar

to Belos, Ifpack2 uses the underlying Tpetra and Kokkos packages to support distributed- and

shared-memory MPI + X systems.



Chapter 3

Machine Learning Background

This chapter presents the core machine learning techniques and algorithms used throughout

the rest of this dissertation. Section 3.1 provides an introduction to the basics of machine learning

techniques and the usage of supervised machine learning methods. Section 3.2 describes the specific

machine learning classification methods and algorithms used in the experiments of later sections.

Section 3.3 goes over the methods used to select the importance of the features in a machine learning

dataset.

3.1 Supervised Learning

Machine learning, as a general concept, uses statistical techniques and algorithms to predict

future outcomes based on one or more inputs. In machine learning the input variables are commonly

referred to as predictors, features, or independent variables, while the output variables may be

referred to as responses, classifications, or dependent variables.

There are two main divisions within the world of machine learning methods. The first division

is found between supervised and unsupervised machine learning methods. Supervised learning

occurs when there is a distinct output variable y for one or more input variables contained in a

matrix X such that f(X) = y. Supervised methods attempt to approximate the mapping function

f() such that the correct output is predicted for a given input. Supervised learning occurs when the

machine learning algorithm is trained on a series of example, or training, data that contains both

the vector of input data xi and the corresponding classification output yi, for each input-output
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instance example i.

Unsupervised learning methods can contain the same input data X, but the main difference

between the two methods is that there is no corresponding output variable y associated with X.

Therefore, an unsupervised machine learning algorithm’s goal is to create a model of the general

structure, distribution, or connections of the available data, without determining a specific numerical

or class-based output variable. In general, unsupervised methods are used for finding similarities

or patterns within the input data. Since there is no corresponding correct or incorrect output,

groups of items with similarities will be more closely correlated than those without. One of the key

differences between unsupervised and supervised learning is that there are no methods available for

examining the accuracy of an unsupervised algorithm since there is no correct or incorrect output

associated with the input vector.

In addition to the division between supervised and supervised learning, a second division in

machine learning lies between machine learning algorithms that produce output based on regression,

while other algorithms are based on classification. Simply, regression is used when our output

variables are continuous, while classification describes scenarios where the only options for an output

variable comes from a finite set of possible classes. More formally, given the function f(X) = y, for

some input matrix X and corresponding output y, regression describes machine learning methods

where y is a continuous variable, such as time. Classification, however, occurs when the output y is

one or more labels selected from a finite group, {y1, y2, . . . , yn}. The work contained within this

dissertation is focused on experiments where the machine learning methods used are both supervised

and classification based.

3.2 Binary Classification Methods

Classification based machine learning methods come in many flavors, but the commonality

between them is that input data are mapped to one or more labels chosen from a finite set of labels.

Classification algorithms come in three main varieties: binary, multi-class, and multi-label.
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(1) A binary classifier exists when there are only two possible output labels for a given problem

and only one label may be selected,

Input =


Out1 if Input is labeled as true

Out0 if otherwise

(2) Multi-class classifiers map the input vector to only one of more than two output classes.

Input =



Out1 if Input is labeled as 1

Out2 if Input is labeled as 2

...

Outn if Input is labeled as n

(3) Multi-label classifiers map the input vector to one or more of the possible output classes.

Input ⊆ {label1, label2, . . . , labeln}

In order to transform our existing problem into a binary classification problem, we replace

the continuous output of time, associated with each solver-preconditioner pair solving a given linear

system, with one that is binary. This transformation is done by replacing the specific times with

either “good” or “bad” labels. Determining whether or not a time should be replaced with “good”

or “bad” is not an objective task and as such, there are multiple ways of performing this task. For

our experiments we classify a solver-preconditioner pair as “good” for a linear system if it is the

fastest performing pair that converged to a solution for that system. Since there may be multiple

pairs that have similar wallclock times to the fastest pair, it is acceptable to consider these other

pairs “good” as well. Throughout the experiments, any pair that performs within 125% of the

fastest pair for that given linear system, is considered “good.” All other slow pairs that converged

are deemed to be “bad” along with any pairs that did not converge, or pairs that encountered some

form of solving error.
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Many binary classification techniques exist, each with their own unique performance and

prediction characteristics. In the experiments described in later chapters, various binary classification

techniques are examined to determine their success on predicting the best solver-preconditioner

pairs. The highest performing classification algorithms for the solver-preconditioner problem are

described below.

3.2.1 k-Nearest-Neighbor

The k-nearest-neighbor (KNN) [45,46] is one of the more simplistic classification methods.

KNN does not require any form of predictive modeling, and instead relies on statistical “memory-

based” methods, where all training data is stored locally and the analysis is deferred until a

classification needs to be made. Each data point from the training set exists in a multi-dimensional

space called the “feature space.” The KNN algorithm operates by selecting the k ≥ 1 closest training

data points to the location of the currently queried data point within the feature space. The closest

neighbors to the desired data point are determined using the Euclidean distance, di = ‖y − xi‖,

between the input vector y and each training data vector xi within the feature space. The resulting

classification prediction for the input vector is determined to be the majority classification label

assigned among the nearest neighbor. Ties for the majority case are decided by random selection.

3.2.2 Decision Tree

Decision trees, also known as classification and regression trees (CARTs) [45, 47], are a

classification method based on identifying key features of data and creating splits of the variables

such that certain input values result in certain output labels. These splits take place in the feature

space of the input data, and divide the space into different classification regions based on recursive

binary decisions. Each tree is created by determining what input variables are best for splitting the

classifications into two regions based on some threshold of the variable. The regions that are created

as part of the tree are subdivided further, if needed, to create more fine-grained classifications

based on other splits determined by the input variables. Decision trees can also be split in ways
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other than binary, but these multi-splits tend to be avoided because each multi-split is equally

performed as a series of binary splits. Finding the absolute best splits for a given data set is known

to be a NP-complete problem and is therefore not feasibly computed. Instead, decision trees are

created using a greedy algorithm that continues to create more fine-grained subdivisions until a

given number of decisions have been determined, or when adding binary splits no longer provides

any significant increases in classification performance. One of the main disadvantages associated

with using a decision tree method for classification is that the greedy nature of the core algorithm

can result in non-optimal choices, which can lead to performance degradation.

3.2.3 Random Forest

Improving upon the success and capabilities of the decision tree methods, random forests [47]

create classifications by creating multiple decision trees and combining their respective results into

a single classifier. Rather than training a single decision tree on all of the available input data, a

random forest creates multiple decision trees that each train and create classifiers using only a given

subset of the input data. By allowing each decision tree to learn on different portions of the dataset,

multiple binary splits are created, which can result in some strong agreeing with one another, while

others are complete opposites. Decision tree algorithms use a technique called “bagging” (Bootstrap

aggregating) that samples the input dataset in a uniform manner with replacement, allowing for

multiple instances of the same input vector in a given sample subset. Bagging is considered to be a

form of ensemble learning, a term used to describe any machine learning algorithm that combines

more than one algorithm to achieve higher performance. Ideally, for large input sets, each training

data subset will consist of (1− 1
e ), approximately 63.2%, unique data points from the input data,

with the remaining percentage consisting of duplicates. The overall variance of each decision tree

can be lowered by combining and averaging together the various trees such that

f(x) =

N∑
i=0

1

N
fi(x),

where fi represents the ith decision tree created.
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3.2.4 Gradient Boosting

Gradient boosting [47,48],is another type of ensemble method. Boosting, in this context, refers

to a technique that incrementally builds and creates a classifier that adapts from the information

obtained of previous iterations of the classifier. Special emphasis is placed on adjusting the classifier

to correct for any mis-classifications obtained from the previous predictions training instances. At

each iteration of the gradient boosting algorithm, the next iteration can be modeled as

Fi+1(x) = Fi(x) + h(x) = y

for some iteration i, the model F , and estimator h. Gradient boosting can best be viewed as a

generic framework for solving the classification problem and requires three pieces:

(1) Loss function to be optimized

(2) Weak learner to make predictions

(3) Additive model to add weak learners to minimize the loss function.

The loss function is a differentiable function that attempts to quantify the overall cost of mis-

classification. Commonly used statistical loss functions include the squared error and absolute error.

In the context of the gradient boosting algorithm, weak learners are often depicted as the individual

decision trees created and modified throughout the modeling process. In theory, the weak learners

can be of many non-tree types, however, in practice it is common for the learners to be decision

trees. The motivation for using the gradient descent algorithm, in this context, is to allow for the

more generalized minimization of loss functions, no matter how complicated the loss functions may

be.

3.3 Feature Selection

It is common in machine learning for data to contain more features, and therefore, information

than is actually necessary for determining the resulting classification of a given entry. Reducing
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the overall number of features, or columns, contained within a dataset allows for a smaller and

simpler dataset to be create, which contains only those features which are important in contributing

to the overall classification of the entry. There are two main types of features that can be easily

removed, those that are redundant and those that are irrelevant. Redundancy occurs when more

than one set of features are equivalent throughout a dataset. All but one of the redundant features

can be excluded without having any impact on the prediction accuracy of the classifier. Irrelevant

features occur when a feature does not have any impact whatsoever on the accuracy of predicting

any entry’s classification.

As part of the experimental process used throughout the rest of this dissertation, feature

analysis and reduction is performed using the Least Absolute Shrinkage and Selection Operator

(Lasso) [49]. In statistics, a Lasso is a linear regression method that uses a regularization process

to rank the importance of features in a dataset. The most important features can often provide

similar results to the full dataset, but since it is using only a subset of the original dataset, it can be

processed and predicted in a shorter amount of time using a smaller amount of memory. Lasso uses

a penalty system based on the L1 norm of the feature data. The less importance the feature has on

the resulting classification of an entry its resulting score from the Lasso will be closer to zero.

Mathematically the Lasso can be modeled as a least squares problem where

minβ : h(β) =
1

2
‖y −Xβ‖22 + λ‖β‖1, where λ ≥ 0,

and where X is an m × n matrix representing the data collected on m entries with n features, y is

an m × 1 vector containing the resulting classifications of the data contained in X, and β is an n

× 1 vector representing the value attributed to each feature’s importance. The second part of the

equation above represents the penalty cost associated with the L1 norm, the sum of the absolute

values, of vector β. Increasing the lambda penalty results in more feature values being set to zero.

Throughout my experiments I use the Randomized Lasso [50], which uses the original Lasso as

a sub-problem of a larger algorithm. Randomized Lasso, also known as stability selection, repeatedly

selects random subsets of the feature data as well as different randomized subsets of the features
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themselves. The regular Lasso algorithm is then applied on this smaller subset of data and the

corresponding feature scores are computed and recorded. Each of these regular lasso executions on

the randomly selected subset data is considered to be one iteration of the Randomized Lasso. As the

number of Randomized Lasso algorithm iterations grows, the most important features associated

with accurate classification tend to be selected more often from the randomly selected data and

feature subsets.

The final importance scores produced for each feature represent the percentage of iterations

that the feature was selected as an important feature in the total number of iterations wherein that

feature was available. A score of 1.0, for instance, represents a feature selected as important in each

of its possible iterations, while a score of 0.0 represents a feature that was never determined to be

important.



Chapter 4

Methodology

This chapter presents the generalized methodology that is present throughout the various

experiments contained in this dissertation. Section 4.1 describes the HPC Challenge benchmarks

which determine various performance attributes for a given computer system. Section 4.2 discusses

the software used to build and execute the experiments. Section 4.3 describes Anamod, a program

which computes a variety of metrics for each linear system. Section 4.4 presents the machine

learning and data analysis tools used throughout the experimentation process. Section 4.5 contains

information about the collection of matrices used in the experiments.

4.1 Measuring System Performance

Computers are complex machines built from a variety of discrete components including

memory, interconnects, and processors. Each of these components is responsible for aiding the

computer in moving, storing, and processing data, respectively. The computer system’s overall

performance is determined not only by the performance of its individual components but also the

performance characteristics of how the components interact with each other.

Computer hardware is constantly changing to make improvements to performance, reliability,

efficiency, or some combination of the three. Due to the constantly changing landscape of computer

hardware, it is expected that internal components of one system differ, at least in some ways, when

compared to another system. It is not expected that two computer systems will perform in exactly

the same way across a variety of different problems due to the large number component permutations
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and the unique performance characteristics of each component and their interactions together.

Differences between a component’s architecture, speed, or size can alter the performance of

a given algorithm or application. Not every algorithm or application uses hardware in the same

way or with the same performance. Some algorithms can be limited by the speed at which the

processor can complete floating-point operations (compute-bound), however, other algorithms can

be limited by the memory bandwidth available to move data from main memory to the processor

(memory-bound).

Due to the unique nature of each computer system caused by its components, many libraries

and applications are built and tuned to perform the best on the available hardware. In the case of

computer clusters, it is expected that the machine’s administrative team and other experts tune

applications and libraries to a specific machine. However, there has been progress in automating the

building and tuning process while still delivering comparable performance to the original hand-tuned

builds. The Automatically Tuned Linear Algebra Software (ATLAS) [11] is a computational library

containing a full implementation of the Basic Linear Algebra Subprograms (BLAS) [12] as well

as some functions from Linear Algebra PACKage (LAPACK) [18]. ATLAS obtains information

by probing the computer’s hardware and, using the results of its tests, generating code from

many possible options to best suit the given machine. This information can then be used to more

appropriately use the computer’s hardware. The machine-tuned version of the code allows for the

kernels to take advantage of the hardware and thus perform better than an unoptimized reference

BLAS implementation, but it will not perform as well as a hand-tuned code created by an expert

user.

Determining the overall performance of a given computer is a non-trivial task. Performance

can be based on metrics such as the number of floating-point operations per second, the amount of

memory bandwidth, or the size of various caches. However, focusing on only one performance metric

does not produce a generalizable description of the computer’s capabilities. Instead, it is useful to

combine multiple metrics, each representing a different aspect of the computational process, in order

to obtain a clearer understanding of the system as a whole. The HPC Challenge is one example of a
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benchmark with multiple system-performance metrics.

The HPC Challenge (HPCC) [51] is an open-source benchmark suite that analyzes a computer

system’s performance using metrics including floating-point performance, memory bandwidth, and

random memory updates. Rather than creating new benchmarking methods, the HPCC consists of

several established benchmarks combined into one code. This makes the input, output, and building

simpler than it would be to perform for each benchmark. The seven sub-benchmarks available

within the HPCC benchmark are described in detail throughout the rest of this Section. All of the

collected system features used in the experiments are briefly described in Appendix A.2.

4.1.1 HPL

The High-Performance Computing Linpack Benchmark (HPL) [52] measures a computer’s

ability to perform floating-point operations. The number of floating-point operations a computer

can complete in a second (FLOPS) is determined in HPL by performing parallel solves of dense

linear systems using the BLAS-based LINPACK [53] subroutines. The dense linear systems used in

these solves have randomly generated square coefficient matrices of user-specified dimension and are

divided into blocks of user-specified dimension nb. The memory used to store the double-precision

matrix A is designed to take up at least half of the system’s main memory.

Each block is assigned to a process using a block-cyclic data distribution scheme as depicted in

Figure 4.1. This results in each process being assigned sections of the matrix which are separated by

a fixed stride width and height. Each block is assigned to one process based on a numbering scheme

created from the layout of the processes specified by a two-dimensional rectangle of size Prows×Pcols.

The block-cyclic distribution is commonly used in numerical linear algebra in an attempt to equally

balance the workload across all processes and reduce the the overall communication overhead

After the matrix data has been distributed to the processes, each processor then computes the

LU factorization of the various linear systems it is responsible for using row partial pivoting. The

total number of floating-point operations required for the process is 2
3n

3 − 1
2n

2 for the factorization

and 2n2 for the back/forward substitution solves. Using the resulting time-to-solution of the solve,
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Figure 4.1: Block-cyclic distribution of a matrix of dimension (n=16) and block size (nb=2), across
(p=4) processes laid out in a 2x2 process grid (pcols = prows = 2) [54]

it is relatively simple to determine the total number of FLOPs required to perform the solve.

4.1.2 DGEMM

Double-precision general matrix-matrix multiply (DGEMM) [55] is a popular level-3 BLAS

routine that is used for matrix multiplication. The algorithm, depicted in Equation (4.1), multiplies

two scaled matrices together, A and B, and then optionally adds another scaled matrix C to the

solution.

C := αA×B + βC. A,B,C ∈ Rn×n (4.1)

The performance results of the DGEMM benchmark are based on how quickly a time-to-solution

can be found to perform the required 2n3 double precision floating-point operations. The DGEMM

routine is performed in an embarrassingly parallel manner across all processors, with no communica-

tion occurring between processes. Each processor performs its own identical version of the DGEMM

benchmark and the resulting arithmetic average of each processor’s performance represents the final

result.

4.1.3 STREAM

STREAM [56,57] measures the amount of sustainable bandwidth and floating-point double

precision performance based on four vector kernels. Each kernel moves data from one location to
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another and in some cases performs a floating-point operation on the data. The four kernels used in

the benchmark are

• Copy: a = b

• Scale: a = α ∗ b

• Sum: a = b+ c

• Triad: a = b+ α ∗ c.

The Copy and Scale kernels perform operations on two data vectors (a,b) while the Sum and Triad

kernels use three data vectors (a,b,c). The Scale and Triad kernels also rely on a scalar value α.

The dimension of each vector is determined by the user, but should be larger than the cache size

and ideally of size

max


4× largest cache size

106 double-precision elements.

Similar to the DGEMM benchmark, the STREAM benchmark is also performed in an embarrassingly

parallel manner with each processor performing its own version of the benchmark on the same data.

The results are based on the average obtained across all available processors.

4.1.4 PTRANS

PTRANS is a routine which performs a parallel transpose of a dense matrix. PTRANS

is just one routine in a collection of routines known as the PARallel Kernels and BENCHmarks

(PARKBENCH) [58]. It tests the communication capacity of the network by moving sections of

a large dense matrix between processes. The dimensions of the test matrix and its corresponding

block sizes, as well as the distribution scheme of the blocks are determined by the user.
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4.1.5 RandomAccess

RandomAccess [59] is a benchmark designed to determine how quickly a system can update

randomized memory locations. Each update consists of a randomized address location being read

from memory, the data being modified via an integer operation, and then writing the new value

back to memory. This benchmark determines the total number of updates per second on the system.

Due to the large number of updates, the final result is presented as the number of giga updates per

second (GUPS).

4.1.6 FFT

The FFT benchmark performs a one-dimensional fast Fourier transform [60] on a vector of

contiguous data containing complex double precision values. The length of the input vector is a

power of 2 and determined by the user. The specific implementation of the FFT being used in the

benchmark is taken from the FFTE package [61]. This benchmark measures the floating-point rate

of execution on double precision complex data located in contiguous memory locations.

4.1.7 Latency and Bandwidth

The latency and bandwidth tests are a modified version of the Effective Bandwidth (b eff)

Benchmark [62]. The latency portion of the test measures the time it takes to send an 8-byte message

between processes, while the bandwidth portion measures the time to transmit a two-million-byte

message between processes. Each test is performed twice, once using simultaneous communication

and once using non-simultaneous communication. These two types of communication methods

represent the two extremes of communication that can occur in an application.

4.1.8 lscpu

In addition to the HPC Challenge benchmarks, data is also collected from each system using

the Linux command lscpu. This command provides information about the CPU of the machine
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including its cache sizes, clock speed, and the number of available cores. These features are described

in Appendix A.2 along with the features collected using the HPC Challenge benchmarks.

4.2 Computing Matrix Features

When solving a linear system, the features of the coefficient matrix A determine the perfor-

mance of the solvers and preconditioners that are used to solve the system. These matrix features

are a group of easily computable and include common structural properties including properties of

the matrix’s symmetry and the number of nonzero entries and rows. Numerical features are also

computed and include various normative calculations as well as dominance and variance. A full list

of the computed features and their descriptions can be found in Appendix A.1.

The Anamod software package [63] is used for computing the individual features of each

tested matrix. Anamod computes and records different types of features associated with each matrix.

Structural features correspond to features that describe the layout of the matrix as a whole, such as

the dimension, number of nonzeros, symmetry, and bandwidth. Simple features are statistics that

are easily computable from the matrix, such as its various normative properties. Variance features

are those that depict how far the matrix is from an idealized matrix. These include the variance

along the diagonal and the row and column variability. Computationally expensive features from

Anamod such as the condition number are not included due to their cost.

For some matrices, expensive features such as the condition number, are exceptionally expensive

to compute. Because of their size, the matrices discussed in Chapter 8 had their features computed

using a PETSc-based approximation of a subset of Anamod, written by the Lighthouse group [64].

The code computes only the subset of features needed from Anamod, while ignoring the more

expensive features that are not used in this work.

4.3 Computing Solver Runtimes

The most important part of predicting the best solver-preconditioner pairs for a given linear

system, is determining how long previous pairs took to correctly solve the linear system. Timing
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data is collected during each solve of a linear system, therefore, times are obtained multiple times

for each coefficient matrix A based on all the possible solver-preconditioner pairs available. All

the timing data is then combined with other data, such as the features of each matrix, to train a

machine learning classifier capable of correlating this other data with the final resulting solve time.

4.3.1 Matrices

The matrices used to create the linear systems used in my experiments are obtained from the

University of Florida’s (UF) Sparse Matrix Collection [65]. The UF collection of sparse matrices

contains thousands of individual sparse matrices with dimensions ranging from 5 to over 100 million

and with numbers of nonzero entries ranging from 1 to approximately 2 billion. Matrices from the

UF collection are submitted from a variety of users, companies, and institutions, and therefore come

from a large collection of real-world applications including structural problems, fluid dynamics, and

circuit design. The amount and diversity of the matrices in size, sparsity, symmetry, and application

provide a plethora of individual linear system use-cases. A high number of unique use-cases is

important in creating a more generalized approach for predicting a high-performing solver and

preconditioner combination for an arbitrary matrix. If the matrices were created from the same

problem, had the same sparsity layout, or were all symmetric-positive-definite, they would be too

similar to each other. Having a collection of similar input data makes it difficult to generalize

recommendations to matrices that do not fit within the narrow spectrum of our use-cases.

4.3.2 Software Stack

An important decision when writing numerical code is the underlying software stack that

compiles and supports the code. Computer clusters are often populated with optional pre-built

binaries, called modules, which are installed and maintained by each cluster’s system administrators.

These modules often include a variety of compilers (GCC, Intel, PGI), mathematical libraries (Intel’s

MKL, OpenBLAS), and implementations of MPI (MPICH, MVAPICH, OpenMPI). Since each

individual cluster is managed by its own team of administrators it is not common for two clusters to
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be populated with the exact same installed software. Even if two machines do in fact have the same

software it is unlikely for them to be the same version. Since different compilers produce machine

code with varying levels of efficiency and optimization, there can be discrepancies in performance.

Not only does the performance of the same application differ based on the compiler being used, but

even multiple versions of the same compiler can produce differently performing results. Aside from

compilers, these same notions are also applicable to the performance of the MPI and mathematical

libraries being used. Unfortunately, since each cluster has its own particular set of software and

versions of that software installed, there can be uncontrollable differences between two clusters not

only at the hardware level but also at the software level. Minimizing the differences between each of

the cluster environments used for running experiments is important in producing repeatable results

which are more directly comparable with each other. Since we are unable to change the hardware of

a cluster, our only option is to control the software that is used.

In order to address the concern of performance differences between two clusters, I created a

self-installing software stack that allows for the same software environment to be built and used,

regardless of the system and its default software. The software stack includes a single version of

the compiler as well as each library. Controlling the software stack ensures that results obtained

from one machine are comparable to those from another machine while being able to ignore any

differences between the machines’ pre-installed compilers and libraries. Doing this allows for more

focus to be placed on the hardware differences between clusters rather than software versions.

A few of the components contained within the software stack are immutable and have no

alternatives i.e. Trilinos and Boost, however, other components such as BLAS, LAPACK, MPI, and

the compiler itself come in various versions and implementations. When choosing these components,

two main things were important to me: they each needed to be supported on the target machines,

specifically the MPI implementation, and each component must be free and open-source for all

users. Requiring that the components work on the machines being used is self-explanatory. The

reason that I chose only open-source options is that it would prevent issues with licensing something

like the Intel compiler across multiple machines, and will allow anyone to replicate or expand upon
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my work with no paywall. The libraries and compilers that are used as the software stack for my

experiments are listed below.

• GNU Compiler Collection [66]

The GNU Compiler Collection contains a series of open-source compilers. In our software

stack it is used for the compilation of Fortran, C, and C++ code.

• OpenMP [38]

OpenMP is a library that provides support for shared memory parallelism in C, C++, and

Fortran code. Through the use of pragma statements, code can run in parallel without the

need to manually code lower level threads such as Posix threads.

• MPI [36]

MPI is a messaging standard responsible for sending messages between distributed processes

in high-performance computing. These messages allow for a large distributed program

across many nodes and CPUs which can communicate information with each other in order

to solve problems too large or impractical for a shared memory approach.

• BLAS and LAPACK [18]

The Basic Linear Algebra Subprograms (BLAS) and Linear Algebra PACKage (LAPACK)

are two open-source libraries containing high-performing mathematical functions. The

BLAS are created as a series of mathematical “building blocks” which can then be used

to create more complex numerical functions. BLAS is based on a three-level hierarchy,

where each operation’s placement in the hierarchy is based on its computational complexity.

Level 1 BLAS functions are responsible for computing vector operations while levels 2 and

3 perform matrix-vector and matrix-matrix operations respectively.

LAPACK is a series of high-performance routines for solving a variety of numerical linear

algebra problems. capable of solving a variety of dense linear algebra problems. Some

of the problem types supported by LAPACK include solving systems of linear equations,
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determining the eigenvalues of a linear system, and solving the least-squares problem. Each

routine available within LAPACK is created using calls to the BLAS library to perform the

more simplistic underlying linear algebra operations of the given algorithm.

• Boost [67]

The Boost library is a large collection of open-source C++ libraries that provide data

structures and routines for many disparite areas including regular expressions, graph

algorithms, and statistical distributions. Boost is a requirement for compiling Trilinos.

• Trilinos [19]

Trilinos is a large open-source mathematical and scientific library with many different

individual packages addressing a variety of different areas including linear solvers, load

balancing, and data structures. The main packages used throughout this work are Tpetra,

Belos, and Ifpack2, as discussed in more detail in Section 2.3.

The compilers and libraries are constantly changing and receiving updates. For my experiments

the specific versions of the software are listed in Table 4.1.

Table 4.1: The specific versions of compilers and libraries used throughout this dissertation’s
experiments.

Software Version

GCC [68] v6.2
OpenMPI [69] v1.10.2
OpenBLAS [70] v0.2.19
Boost [71] v1.60
Trilinos [72] v12.8.1

4.4 Data Analysis

This section briefly describes the two main tools used for the data analysis and machine

learning methods found throughout this dissertation.
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4.4.1 Pandas

Pandas [73] is a popular data science library available for Python. Pandas’ primary purpose is

to aid the user in data analysis and manipulation through the various data structures and algorithms

it provides. For my needs, Pandas serves as the main tool for storing, loading, and analyzing raw

data that are being stored from experiments in multiple csv files. Pandas provides many statistical

tools for visualizing the breakdown of data into its discrete components, providing key insights

into the organization of the data. The primary data structure in Pandas is the DataFrame, a

2D labeled data structure with columns and rows similar to an SQL table. DataFrames can be

appended and merged in multiple ways to create larger dimensional DataFrames from multiple

existing DataFrames. Pandas is high-performing due to much of the code being written either in

Cython [74] or C.

4.4.2 Scikit-learn

Scikit-learn is a popular machine learning library available for Python. It provides support

for various types of machine learning approaches including classification, regression, and clustering.

Similar to Pandas, Scikit-learn is high-performing due to its internals being written predominately

in Cython, C, and C++.

4.5 Matrix Dataset

The matrices used in the experiments described in future chapters were obtained from the

University of Florida’s Matrix Collection [65] (UF). The UF collection is made up of sparse matrices

created from various types of real-world problems. Having matrices from different applications and

domain areas is desirable in our case since we are focused on creating a generalized classifier rather

than one that is domain specific. For example, a classifier trained only on matrices from a structural

finite-element code may not be generalizable to work on other matrices obtained from circuit design.

The matrices selected for these experiments consist of all matrices in the UF collection that
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are real, square, and of dimension ≥ 1,000. In total, there are 1,586 unique matrices from the UF

collection that meet this criteria. Figure 4.2 depicts the distribution of the matrices, chosen from

the UF collection, based on their dimension. Figure 4.3 shows the distribution of the selected UF

Figure 4.2: Distribution of matrices from the UF collection used in our experiments based on
dimension.

matrices based on the number of nonzeros the matrix contains.
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Figure 4.3: Distribution of matrices from the UF collection used in our experiments based on the
number of nonzero entries.



Chapter 5

Multicore Prediction

The goal of this dissertation is to examine the prediction performance of incorporating system

hardware information into recommending the best performing iterative solvers and preconditioners

for solving a given sparse linear system. In this chapter, we examine how solving the linear system

with different numbers of CPU cores affects the overall prediction performance of choosing the

best solver-preconditioner pair. Existing solver-preconditioner recommendation methods depend

on timing data generated by solving linear systems using a fixed number of CPU cores. However,

it is ideal for the best solver-preconditioner pair to be determined based on the number of CPU

cores available or desired by the user. Therefore, the experiments in this chapter recommend solvers

based not only on the features obtained from the coefficient matrix of a user’s linear system, but

also on the number of CPU cores. Section 5.1 of this chapter presents the methodology used for

designing and performing the experiments associated with multicore prediction. Section 5.2 presents

the results obtained from the multicore experiments.

5.1 Problem Description

The focus of the work contained in this chapter is to expand upon previous work by incor-

porating the number of available CPU core counts as part of the recommendation process. Every

solver and preconditioner has its own unique memory movement, floating-point arithmetic, and

message passing. Solvers and preconditioners are often run in parallel, but there also exist cases

where a given linear system is solved using just a single core. Each solver and preconditioner’s
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unique performance characteristics make their overall serial and parallel performance difficult to

predict a priori when solving a linear system. Choosing the best solver-preconditioner pair for

a single threaded application on a modest personal computer may not be the best choice when

running in parallel on a node of a bleeding-edge supercomputing cluster.

In general, to predict if a solver-preconditioner pair is a good choice for solving a linear system

created from a given coefficient matrix A, there are four pieces of data that must be computed for

each training matrix and then combined together to represent a singular linear solve:

(1) The matrix’s numerical and structural features

(2) Time to solve each matrix’s linear system using each solver and preconditioner combination

(3) Whether the solver-preconditioner pair is “good” or “bad” for solving the given linear

system

(4) The number of CPU cores used to solve the linear system.

Existing work is based on measuring the wallclock time of solving a sparse linear system

with a given solver-preconditioner combination and then coupling all the resulting wallclock times

with the unique features derived from the coefficient matrix. By associating certain numerical

properties of each matrix with its corresponding runtime at varying number of processors, it is

possible to form a basic understanding of how well a classifier can predict good solver-preconditioner

pairs across multiple possible core counts. Adding this level of hardware awareness as part of the

recommendation system, allows for more accurate recommendations, which are more specifically

tailored for an end user.

When solving a linear system, the properties of the coefficient matrix A determine how well a

given solver and preconditioner combination performs when solving the linear system. For each

matrix, a list of features is computed that detail certain numerical and structural attributes. These

attributes are easily computable and include common structural properties such as the matrix’s

symmetry, the number of nonzero entries, and the dimensions of the matrix. Numerical features are
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also computed and include various normative calculations, as well as dominance and variance. A

full list of all the computed matrix features and their descriptions can be found in Appendix A.1.

After each matrix’s features have been determined, the matrix’s runtimes are then computed.

The runtimes, or wallclock times, of each matrix are defined to be the total time it takes to solve

the matrix with each of the available solver-preconditioner pairs. Computing the wallclock times

for each matrix involves solving the system Ax = b where A is the coefficient matrix currently

being tested, b = 0, and x is unknown. Not every preconditioner or solver will be capable of

solving each of the presented linear systems. Some solver-preconditioner pairs will fail to find a

solution within the maximum number of iterations while other solver-preconditioner pairs may

not be applicable to the given matrix. For instance, the conjugate gradient algorithm requires the

matrix to be both symmetric and positive-definite [1]. Rather than being ignored completely, these

solver-preconditioner pairs are classified as taking an infinite amount of time to find a solution. Any

solver-preconditioner pair that fails to run or fails to converge to a solution within the specified

number of iterations is automatically classified as being a “bad” solver-preconditioner pair to use

for solving a linear system with that particular coefficient matrix.

All numerical runtime experiments in this dissertation are performed using the Trilinos

framework [19]. The matrix and vector objects are created from Trilinos’s Tpetra package [35],

while the solvers and preconditioners are provided from the Belos [42] and Ifpack2 [44] packages,

respectively. The preconditioners used from the Ifpack2 package are

• Chebyshev Polynomial

• Jacobi Method (Relaxation)

• Relaxed ILU Factorization w/ k Fill (RILUK)

• ILU Factorization w/ Thresholding (ILUT).

The iterative linear solvers used from the Belos package are

• Biconjugate Gradient Stabilized (BiCGSTAB)

• Conjugate Gradient (CG)
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• Fixed Point

• General Minimal Residual (GMRES)

• LSQR

• Minimal Residual (MINRES)

• Transpose-Free Quasi-Minimal Residual (TFQMR).

The solvers and preconditioners mentioned above remain the same throughout the experiments

contained in this dissertation. General algorithm details for the solvers and preconditioners are

described in Chapter 2, while specific implementation details are available in their respective online

documentation.

Each linear system is solved using each of the available solver and preconditioner combinations

that can be created from the available options, so long as the linear system satisfies the basic

requirements of the given solver and preconditioner. There is also a “no preconditioner” option

included within the experiments, which simply runs each of the solvers without any preconditioning.

All the Ifpack2 preconditioners are run with their original and default parameters and options.

The Belos solvers are run with their own respective default parameters and options except for

the maximum number of iterations and convergence tolerance, which are set to 10,000 and 10−6

respectively.

Each of the linear system solves are executed on a single node of the University of Colorado’s

Summit cluster [75] at varying numbers of processors, np = {1, 4, 8, 12, 16, 20, 24}. The experiments

in this chapter were all performed on Summit. The hardware specifications of each Summit node

are briefly described in Table 5.1, while a more thorough description of the hardware contained

within Summit is available in Table B.4. The software stack containing the compilers and libraries

used for running the experiments is depicted in Table 5.2.

The total wallclock time required to solve each linear system with each of the solver-

preconditioner pairs is then recorded and stored. Combining the resulting timing information

with a matrix’s features allows for correlations to be found between matrix features and the re-
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Table 5.1: Hardware specifications for the standard Summit node

Hardware Specifications

Processors 2x Intel Xeon E5-2680 (12 cores ea.)
Memory 128GB @ 2133MT/s
Interconnect Intel Omni-Path

Table 5.2: The specific versions of compilers and libraries used throughout this dissertation’s
experiments.

Software Version

GCC [68] v6.2
OpenMPI [69] v1.10.2
OpenBLAS [70] v0.2.19
Boost [71] v1.60
Trilinos [72] v12.8.1

sulting performance of solvers and preconditioners on that matrix. These correlations can then be

generalized by finding patterns and connections between multiple matrices with similar features and

how those features impact the performance of the various solver-preconditioner pairs.

Although it is easy for each failed solve to be classified as a “bad” solver-preconditioner pair,

the classification is made more complicated when the pair converges to a solution. After a linear

system has been successfully solved, the solver-preconditioner pair now has to be determined as

being either “good” or “bad” in its overall performance. Determining if a solver-preconditioner

pair should be chosen for a given linear system is an ultimately subjective decision since there can

be any number of possible ways to determine success in this context. Ideally, each recommended

“good” solver-preconditioner pair would guarantee not only convergence, but also guarantee to

find a solution faster than all other available pairs. However, it is extremely likely for one or

more solver-preconditioner pairs to be able to solve a given linear system within an acceptable

time-difference from the fastest solver-preconditioner pair. Therefore, for this experiment, any

solver-preconditioner pairs that are high-performing, but not necessarily the fastest, can also be
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accepted as long as they perform within some percentage of the fastest pair’s time.

After recording solver timings, collecting matrix features, and classifying each matrix-solver-

preconditioner combination as either “good” or “bad,” Scikit-Learn [76] is used to create a classifier

based on this information. There are multiple binary classification methods available in Scikit-Learn,

eight methods were chosen and tested to determine which of the many available methods should

be used for the totality of our experiments. The binary classification methods that were explored

and tested in the preliminary experiments are listed in Table 5.3. Each of the binary classifiers

Table 5.3: The binary classifiers from Scikit-Learn examined in the experiments of this chapter. [76,
77].

Classifier Name Classifier ID

Gradient Boosting 0
Random Forest 1
Gaussian Naive Bayes 2
Decision Tree 3
Logistic Regression 4
Multilayer Perceptron 5
AdaBoost 6
K Nearest Neighbor 7

were tested using the same representative test dataset taken from the larger, complete matrix

dataset described in Section 4.5. All of the classification methods were trained and tested using

three-fold cross-validation methods. A three-fold cross-validation divides the dataset into three

“splits” with the classifier training on one of the splits and then predicting the classifications based

on the non-labeled data of the other two splits; this process is repeated such that each split is

used as the training data once. The ROCs, as well as the AUROCs, are computed for each split

and then averaged together to determine the overall performance of each classification method.

Cross-validation is used to help avoid overfitting the classifiers to specific data; overfitting can result

in classifiers that do not generalize well to new types of information.

One of the critical components of this research is developing and creating methods capable of

determining the success of current prediction methods when the number of cores used for solving
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a linear systems differs between the training and testing data. As an example, the diagram in

Figure 5.1 shows the difference between existing methods, which train and test on the same fixed

number of processors, while the methods presented in this work are trained and tested on multiple

numbers of processors.

Figure 5.1: Example comparison of our method to existing prediction methods. Each variable
X,Y, Z represents the “good” and “bad” solver-preconditioner data at a single processor count.
Each left column represents the data which is used to train the classifier, while the right columns
represent the data points on which the classifier is tested. Our method is capable of training and
testing on any possible permutation of the number of processors in order to examine and improve
prediction performance.

By training on a single fixed processor size and the corresponding “good” and “bad” labels

that go with it, it is possible to determine how well the results can be generalized to other processor

counts. The generalization can be accomplished by training the data as normal on one or more

processor counts and then testing the classifier’s predictions on other processor counts. By including

multiple processor counts into the training and testing data, the relative “good” and “bad” solver-

preconditioner pairs change as more information is added and includes or excludes previous “good”

and “bad” classification labels.

By training and testing the resulting classifiers on groups of “good” and “bad” results from

different numbers of processors it is possible to determine how well the classifier is able to use

information from one set of data and use it to predict for another. For example, training the classifier

using the wallclock times obtained from running the linear systems in serial, and then testing the

resulting classifier to predict the best solver-preconditioner pairs at a different number of processors.

By measuring the prediction accuracy using multiple testing and training datasets it is possible
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to determine how well a given training dataset extrapolates out to other core counts. This data

determines how well the new classification methods, as well as the existing classification methods,

perform when used with training and testing data which are not necessarily the same, or at only

one specific fixed-core count.

Due to the imbalanced ratio presented between the number of instances of “bad” solver-

preconditioner pairs compared to “good” solver-preconditioner pairs, there is not much value to be

had in measuring the pure accuracy of the machine learning predictions. Accuracy is a common

metric for more evenly distributed datasets, and can be determined using the formula

Acc =
TP + TN

P +N

which represents the total number of true-positive (TP) and true-negative (TN) predictions divided

by the total number of positive and negative instances in the data. Accuracy is not an ideal measure

of success for imbalanced datasets because a classifier can have a high accuracy by always classifying

input, regardless of what it is, into the more prevalent of the two classes. For instance, if only 1% of

the data consists of output belonging to the X class and the other 99% belong to the Y class, a

classifier can simply choose the Y class in every case regardless of input and have an overall accuracy

of 99%. Therefore, accuracy is not an ideal metric for success with such an imbalanced dataset.

Instead, I use the receiving operating characteristic (ROC) [78] as the measurement of how well the

the binary classifiers perform. The ROC is a curve which plots the true positive rate against the

false positive rate at different thresholds. An example of how an ROC curve is generated from the

true-positive and true-negative instances of a classifier is depicted in Figure 5.2.

A popular metric, which can be obtained from a given ROC curve, is the area under the

receiver operating characteristic (AUROC) [80]. The AUROC is a scalar value equal to the integral

of an ROC curve. The AUROC represents how well the classifier can accurately classify two input

instances, each from one of the output labels, into their respective outputs. Therefore an AUROC

of 1.0 is equivalent to a perfect classification method that is always capable of choosing the correct

class for an input instance. Conversely, an AUROC of 0.5 is equivalent to randomly guessing when
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Figure 5.2: An example ROC curve, created from plotting the true-positive rate against the false-
positive rate at various thresholds. The threshold at the given time is depicted by the vertical line
in the image on the right [79]. The rightmost image also shows the proportions of the results where
TP = true positive, FP = false positive, TN = true negative, and FN = false negative.

classifying any given input. An AUROC of 0.5 is the minimum attainable value since anything less

can simply be flipped by swapping whatever outputs are given by the classifier, resulting in a more

accurate classification scheme.

When designing a classification scheme that needs to be trained on an imbalanced dataset,

the training data can be skewed due to the small number of one class being dominated by the

other. This has resulted in a variety of sampling methods that attempt to give more representative

information between the two by generating multiple instances of the input data corresponding to

the underrepresented output class [81]. Another common solution that addresses this problem is to

use stratification methods to ensure that each subset of data being trained contains a representative

number of entries from each of the two possible classes [77, p. 559]. Stratification is often used in

conjunction with k-fold cross-validation to obtain folds that each contain representative instances

for each output class.

Because many solver-preconditioner pairs are either not applicable to a given matrix, or

because they take too much time to converge to a solution, the dataset, as a whole, is imbalanced
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and heavily biased towards most solver-preconditioner pairs being “bad.” The number of “good”

pairs compared to the number of “bad” pairs at the various CPU counts can be see in Figure 5.3.

In order to combat the severe imbalance in the dataset, the cross-validation folds are created using

the ‘stratified shuffle split’ method [82], which returns randomized folds that are representative of

their respective classes.

Figure 5.3: Comparison of all solver-preconditioner pairs considered to be “good” and “bad” at
various CPU counts with all pairs within 25% of the optimal pair considered to be “good”

5.2 Results

The first experiment that the rest of the experiments depends on is choosing which of the

many binary classifiers to use for the rest of the experiments. A comparison of the classifiers’ success

on the test data is depicted in Figure 5.4 and shows the Random Forest, Decision Tree, and K

Nearest Neighbor classifiers performed the best overall. Ultimately, the Random Forest classifier

was chosen as the best binary classifier to use in this case due to its relatively lower variance when

compared to the other classifiers with high AUROC scores.

The remaining experiments and results for this chapter can be broken up into two major

groupings:

(1) Determining how well classifiers, trained on data from a singular processor count, perform

when tested on other singular processor counts.
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Figure 5.4: Classification performance comparison of the eight machine learning methods tested.
Each of the ID numbers corresponds to the information provided in Table 5.3

(2) Determining how well classifiers, trained on data from multiple processor counts, perform

when tested on singular processor counts.

The graphs of the ROC curves plot are named based on an X Y numbering system where X

represents the processor counts used in computing the training data and Y represents the processor

counts used in computing the testing data.

5.2.1 Training on Single Core Count Performance

This section presents four ROC curve graphs depicting the prediction performance of the

Random Forest classifier when trained on data from a single processor count of np = 1, 4, 12, 24

in Figures 5.5 to 5.8, respectively. These ROC graphs depict the individual performance of the

classifier when trained on one core count and then used for predicting another core count. An ideal

ROC curve is a perfectly horizontal line at y = 1.0, and having a perfect AUROC of 1.0. Therefore,

the success of each classifier’s performance is determined by which ROC curves have the largest

area under their curves. Each of the figures in this section depicts the ROC itself as well as each

curve’s total area under the curve (AUROC).

Figure 5.5 depicts the most common example found in the current literature, a classifier

trained solely on data obtained from solving linear systems using a single computational thread.
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This graph illustrates how a serially trained classifier performs on various processor counts. The

ROC curves in Figure 5.5 demonstrate that the classifier is highly successful when predicting

solver-preconditioner pairs also running serially, but that the prediction performance suffers as the

predictions are made on incrasingly larger numbers of cores. Here, the largest AUROC difference,

0.11, is found between np = 1 (AUROC=0.93) and np = 20 (AUROC=0.82).

Figure 5.5: ROC curves obtained from training on data of np = 1 and testing the resulting classifier
on runtime data generated for each of np = 1, 4, 8, 12, 16, 20, 24. The higher curve associated with
1 1 indicates that the prediction performance of the classifier is best when trained and tested on the
same data and degrades when used on different numbers of cores.

Figure 5.6 is similar to Figure 5.5, but depicts a classifier trained on data from solving linear

systems on 12 cores rather than 1. The prediction performance drop in this graph is more noticeable

with a larger difference of 0.17 between np = 12 (AUROC=0.95) and np = 1 (AUROC=0.78). Here

we can see that although there is fairly consistent prediction accuracy at the higher number of

processors, there is a large performance loss when training on 12 processors and testing on data

obtained from running serially.

Figure 5.7 is similar to the two previous figures, and depicts a classifier trained on data from

solving linear systems on 24 cores. The prediction performance drop in Figure 5.7 is similar to

that of Figure 5.6, with a difference of 0.17 occurring between np = 24 (AUROC=0.96) and np = 1

(AUROC=0.79). The similarities between Figures 5.6 and 5.7 indicate that the performance change
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Figure 5.6: ROC curves obtained from training on data of np = 12 and testing the resulting classifier
on runtime data generated for each of np = 1, 4, 8, 12, 16, 20, 24. The lower curve associated with
12 1 indicates that training the classifier on solving linear systems on 12 cores performs worse when
trying to predict the best solver-preconditioner pairs for systems being solved serially.

between solver-preconditioner pairs is more noticeable when changing the training core count from 1

to 12 than from 12 to 24. When training on the training data generated at both 12 and 24 cores, the

prediction performance remains high ≥ 0.89 in both cases for all data tested on more than one core.

Figure 5.7: ROC curves obtained from training on data of np = 24 and testing the resulting classifier
on each of np = 1, 4, 8, 12, 16, 20, 24.

Figure 5.8 is unique compared to Figures 5.5 to 5.7 because there are three fairly distinct
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groupings of plots as opposed to two in the other figures. The figures with two plot groupings have

one group containing the majority of plots and then another group containing a singular outlier plot.

In Figure 5.5 the outlier (1 1) performs better than the rest of the plots, which are more closely

grouped together. Figure 5.6, on the other hand, shows the outlier (12 1) having worse performance

than the other graphs which are closely grouped together. In contrast, Figure 5.8 has both a higher

(4 4) and lower (4 1) performing outlier on each side of the larger grouping of plots in the middle.

Figure 5.8: ROC curves obtained from training on data of np = 4 and testing the resulting classifier
on runtime data generated for each of np = 1, 4, 8, 12, 16, 20, 24.

The results indicate that prediction performance decreases when training data taken from

the linear solve times of one core count is used to predict the performance of another core count.

The best prediction performance in all four graphs, Figures 5.5 to 5.8, occurs when the core count

of the training data matches that of the testing data. All four figures show that the prediction

performance is highest when training and testing on data from the same number of processors. Even

at similar processor counts, the solver-preconditioner pairs that are “good” or “bad” for a given

linear system can differ. The rest of the mismatched training and testing core counts do not perform

as well in varying degrees, based on how distant the two core counts are from one another. There is

a measurable loss in prediction performance, based on the AUROC, when the classifier is trained on

runtime data generated using one processor count that is then tested on another processor count.
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Therefore, we cannot simply extrapolate the results of one processor count to those of others and

expect performance to remain the same. Figures 5.5 to 5.8 show that after changing to a parallel

algorithm, the performance of the solvers and preconditioners become more similar as the number

of cores increases.

Section 5.2.1 depicts all of the AUROC’s obtained from the single-to-single core count

experiments. Each of the best scores, unsurprisingly, uses the same dataset generated from the

same core count. The table also clearly shows the largest difference in relative AUROC scores are

those associated with either training or testing on data collected from one core.

1 4 8 12 16 20 24

1 0.93 0.87 0.84 0.83 0.84 0.82 0.83
4 0.78 0.96 0.89 0.90 0.88 0.89 0.89
8 0.75 0.89 0.96 0.90 0.92 0.91 0.92
12 0.78 0.89 0.92 0.95 0.93 0.92 0.93
16 0.77 0.89 0.93 0.93 0.95 0.92 0.93
20 0.78 0.87 0.92 0.93 0.93 0.95 0.92
24 0.79 0.89 0.92 0.94 0.93 0.93 0.96

Table 5.4: The AUROC results obtained from creating a classifier by training on the data generated
from a single core count and testing the classifier’s performance on another single core count dataset.
The left-most column indicates the number of cores used to generate the training information. The
top-most row indicates the number of cores on which the classifier was tested. The entries in bold
indicate the best AUROC score for each individual classifier.

5.2.2 Training on Multiple Core Counts Performance

Unlike the ROC graphs depicted in Section 5.2.1, Figures 5.9 to 5.12 depict the ROC

curves obtained from training the classifier on data collected from two or more CPU cores, np =

1, 4, 8, 12, 16, 20, and 24. The resulting multi-core classifier is then tested on data obtained from

the single core counts.

Figure 5.9 shows the prediction results of training on data from all of the available cores and

then testing the classifier on data for each core. The resulting ROC curves and resulting AUROCs

are significantly higher than the previous graphs created from training on single core data. Because
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the classifier is trained on each of the core counts, it produces results similar to those in Section 5.2.1

where the training core size and testing core size are equivalent. This result is to be expected since

the classifier has been trained on all of the available cores individually The classifier correlates the

input core count with the existing data at that core count.

Figure 5.9: ROC curves obtained from training on data from all possible core counts,
np = {1, 4, 8, 12, 16, 20, 24}, and testing the resulting classifier on each core count of np =
{1, 4, 8, 12, 16, 20, 24.}

Figure 5.10 depicts the ROC curves obtained from training on all of the possible core counts

except one, the resulting classifier is then tested on the left out core count. Overall, the AUROC

scores are lower than those seen in Figure 5.9, especially at np = 1 and np = 4. This difference in

performance shows that the absence of training data at a lower core count, especially 1, is more

costly than data from a higher core count. Because this difference is much larger at small core

counts, it implies that the performance of solvers and preconditioners has more uniqueness at smaller

core counts than at higher core counts.

Because the results in Figure 5.10 suggest a split between the prediction performance associated

with small core counts np = 1, 4 and larger core counts, np = 8, 12, 16, 20, 24, an experiment was

performed to determine the prediction performance when training on only the two extremes of

np = 1 and np = 24. The experimental results in Figure 5.11 shows the results of training at the
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Figure 5.10: ROC curves obtained from training on data from all possible core counts, np =
{1, 4, 8, 12, 16, 20, 24}, except the one core count it is being tested against.

two extremes. The final results show that the higher core counts tend to be high, 0.85+, and also

increases the prediction performance at the previously weakest predictor np = 1 from 0.79 to 0.93.

These results also show that it’s possible to obtain ≥ 0.85 AUROC for each of the core counts, using

only two of the possible seven data collection runs, resulting in using only 28.5% of all the data

collected and used in Figure 5.9.

Figure 5.12 contains the results of the final multicore experiment, where the classifier has

trained on the two extremes from the previous experiment, np = 1, 24, while adding in the middle

core count of np = 12. Adding in np = 12 was done in an effort to examine the performance

difference between the previous experiment and adding in more information in between the two

extremes. This experiment shows that but with still significantly less required information than

using all possible core counts.
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Figure 5.11: ROC curves obtained from training on data of np = {1, 24} and testing the resulting
classifier on each of np = {1, 4, 8, 12, 16, 20, 24.}

Figure 5.12: ROC curves obtained from training on data of np = {1, 12, 24} and testing the resulting
classifier on each of np = {1, 4, 8, 12, 16, 20, 24.}
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5.2.3 Feature Selection

Table 5.5 shows the relative importance for each of the matrix-features and the solver and

preconditioner. The feature rankings are created using the randomized lasso method [50], which

uses a randomization method to select subsets of both the dataset and the features included. It

then measures what percentage of the total number of tests selects the feature as an important

feature in determining the final result of “good” or “bad.” Therefore a score of 1.0 indicates a

feature that was selected 100% of the time during testing and determined to be important to the

overall classification.

Unsurprisingly, the solver and preconditioner being used to solve the linear system were

selected in nearly every instance as being an important factor in the prediction. Column diagonal

dominance was also selected in all cases, indicating that the value of the diagonal entries, compared

to the other entries in the column, contribute a great deal to a solver-preconditioner pair being a

“good” choice. Of the top eleven features (≥ 0.87): four relate to the amount of nonzero entries

contained within the matrix and two relate to the rows containing only a single nonzero entry. The

number of CPU cores used to solve the linear system was also selected in all test cases, indicating

that there is enough of a measurable difference between the performance of the solver-preconditioner

pairs at each of the np values. This shows that current prediction schemes result in high prediction

performance when recommending solver-preconditioner pairs when the user is solving systems with

the same number of cores used to generate the classifier’s training data. However, if the user plans

to use a different number of cores to solve the system than was used to generate the classifier’s

training data, the prediction performance measurably degrades at the single-node scale.

Multicore prediction is only one aspect of incorporating hardware information as part of

the solver-preconditioner pair recommendation process. The next chapter tackles the problem of

more than one type of computer hardware, while Chapter 7 combines these two ideas into a single

problem. Finally, Chapter 8 tests the resulting classifiers’ performances when tasked with predicting

the best solver-preconditioner pairs for an unseen real-world problem.
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Table 5.5: Features, ranked by their importance, using the Randomized Lasso algorithm for the
features used in Chapter 5. More detailed descriptions of each feature can be found in Appendix A.1

.

Feature Importance Description

col diag dom 1 Comparison of diagonal entry with other entries in the column
np 1 Number of CPU cores used
solver id 1 Choice of iterative solver
dummy rows kind 0.995 Value types of rows w/ one nonzero entry per row
prec id 0.99 Choice of preconditioner
min nnz row 0.975 Minimum number of nonzeros in a single row
avg nnz row 0.965 Average number of nonzeros in a single row
lower bw 0.96 Lower bandwidth
dummy rows 0.955 Number of rows w/ only one nonzero entry
max nnz row 0.92 Maximum number of nonzeros in a single row
diag nnz 0.87 Number of nonzero diagonal entries
col log val spread 0.695 Max ratio between a column’s minimum and maximum entries
antisymm inf norm 0.61 The infinity norm of A−AT /2
num value symm 2 0.585 Percentage of nonzero entries aij with nonzero entries at aij
nnz pattern symm 2 0.49 Soft numeric value symmetry
upper bw 0.49 Upper bandwidth
trace 0.435 Sum of all diagonal entries
row log val spread 0.415 Max ratio between a row’s minimum and maximum entries
col var 0.37 Largest of each column’s variance
num value symm 1 0.37 Hermitian property of matrix
abs trace 0.34 Sum of the absolute values of the diagonal entries
symm inf norm 0.31 Infinity norm of A+AT /2
diag var 0.285 Variance of the diagonal entries
diag sign 0.255 The types of values stored on the diagonal
nnz 0.215 Total number of nonzero entries
row var 0.21 Largest of each row’s variance
one norm 0.205 One norm
inf norm 0.15 Infinity norm
nnz pattern symm 1 0.14 If all nonzero entries aij have nonzeros at aji
row diag dom 0.13 Comparison of diagonal entry with other entries in the row
diag avg 0.095 Average of the diagonal entries
antisymm frob norm 0.08 Frobenius norm of A−AT /2
symm 0.075 If A = AT

frob norm 0.04 Frobenius norm
symm frob norm 0.04 Frobenius norm of A+AT /2
rows 0.025 Number of rows
cols 0.02 Number of columns



Chapter 6

Multi-system Prediction

The goal of this dissertation is to examine the prediction performance of incorporating system

hardware information into recommending the best performing iterative solvers and preconditioners

for solving a given sparse linear system. This chapter examines how solving a linear system with

different computer hardware affects the overall prediction performance of choosing the best solver-

preconditioner pair. Existing solver-preconditioner recommendation methods depend on timing

data generated by solving linear systems using a single computer system. However, it is ideal for

the best solver-preconditioner pair to be aware of a user’s hardware and adjust its recommendations

accordingly. Therefore, the experiments in this chapter recommend solvers based not only on the

features obtained from the coefficient matrix of a user’s linear system, but also on the hardware

being used to solve the linear system Section 6.1 of this chapter describes the methodology of

designing and performing the experiments associated with multi-system prediction. Section 6.2

presents the results obtained from these multi-system experiments.

6.1 Problem Description

The work contained within this chapter focuses on recommending solver-preconditioner pairs

for sparse linear systems, similar to the previous chapter, but attempts to solve a slightly different

problem. Chapter 5 focuses on examining the prediction performance of using a variable number of

cores within a single computer system to solve sparse linear systems. This chapter, instead, focuses

on measuring how differences in computer hardware impact the overall prediction performance of
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classifiers created from training data obtained only on one system. Current work on the prediction of

iterative solvers and preconditioners for solving sparse linear systems is limited to creating classifiers

based on training and testing data generated from solving linear systems on a single machine on a

fixed number of cores. This chapter is focused on experiments that keep the number of cores used

to solve the linear systems fixed, while changing the computer systems used to generate the training

and testing timing data.

Every solver and preconditioner implementation has its own unique algorithm, therefore,

each solver and preconditioner has its own unique memory movement, floating-point arithmetic,

and message passing. Due to the differences in hardware architecture and their impact on overall

performance, it is not expected that algorithms behave or perform identically across systems.

Therefore, it is important to understand how prediction performance changes when using training

data generated from multiple computer systems in order to give more tailored and accurate results

to the end user. Since different computer systems have different performance capabilities based on

their hardware components, it is possible that the best performing solver-preconditioner pairs differ

between computer systems, when solving the same linear system. For instance, a system with a

faster CPU may theoretically perform more floating-point operations per second (FLOPs) than a

machine with a slower CPU. However, it is also possible for the slower CPU to be of a different

architecture that allows for better vectorization or larger cache sizes, allowing it to perform a higher

number of FLOPs than the faster CPU in certain situations. Many other aspects of the hardware,

such as the latency and bandwidth between the CPU and main memory, are also important to the

system’s overall performance. The unique properties associated with each solver and preconditioner

make their performance difficult to predict beforehand when solving a linear system. The best

solver-preconditioner pair for solving a linear system on a personal laptop may not be the same

as one being solved on a workstation or cluster due to the differences in clock speeds, bandwidth,

cache sizes, etc.

Predicting whether or not a given solver-preconditioner pair will perform well on an arbitrary

linear system, as well as an arbitrary computer system, requires four main data points:
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(1) The wallclock time to solve the linear system using various solvers and preconditioners

(2) The numerical and structural features of the coefficient matrix

(3) What solvers and preconditioners are best at solving certain types of linear systems

(4) Hardware performance information from the computer systems solving the linear systems.

Existing works are based on recording the wallclock time of solving a sparse linear system with a

given solver-preconditioner combination on a single computer system. The resulting timing data,

associated with each matrix, is coupled with features derived from the coefficient matrix. These

matrix features provide insight to its layout and numerical properties. By associating the numerical

properties of each matrix with its corresponding runtime on different types of hardware, it is possible

to form a basic statistical correlation that associates hardware specifications, coefficient matrix

information, and each solver-preconditioner pair with the wallclock time taken to solve the linear

system. Adding in this level of hardware awareness to a recommendation system allows for more

specific recommendations, which are tailored not only to an end user’s unique coefficient matrix,

but also their unique computer system.

Aside from the hardware information, the experiments in this chapter largely follow the same

methodology described in Chapters 4 and 5. Much of the large components as well as the code

used to perform the experiments themselves remain the same. The coefficient matrices for the linear

systems being solved are the same, as are the solvers and preconditioners. The main differences

are the collection and introduction of hardware information, solving the linear systems at a fixed

number of cores, and

Due to the modest performance of my personal laptop, only the 700 smallest matrices, by

storage size, were used for solving linear systems on it. All other machines solved linear systems with

the entire 1,586 matrix dataset obtained from the University of Florida’s Sparse Matrix Collection.

The critical component of this chapter’s research is exploring methods for determining how

well current prediction methods perform when the hardware used for solving the linear systems
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is not necessarily the same as the hardware used to originally solve the classifier’s training data.

Existing linear solver recommendation classifiers are created from data obtained from the total

wallclock time it takes for each solver-preconditioner pair to converge when solving a given linear

system on a single computer system using a fixed number of CPU cores. As in the last chapter,

the “good” and “bad” monikers are given to each solver-preconditioner pair, for each system,

for each matrix. In order to determine the possible benefits of training the classifier using the

additional hardware information, the data must be trained on a single computer system and then the

corresponding “good” and “bad” labels that go with it. Similar to the experiments in Chapter 5, a

given solver-preconditioner-hardware-timing combination instance is considered “good” if it is within

25% of the fastest solve time for that matrix. The overall success of the predictions is determined

by training classifiers on the timing data obtained from one or more computer systems and then

testing the resulting classifier’s predictions on the runtime data from other computer systems.

Training and testing the classifiers on timing data generated from different computer systems

shows how well or poorly the classifier can utilize the hardware information from one or more

computer systems and use it to predict the classification for other computer systems. For example,

the classifier trains on data obtained from the performance of linear systems being solved using

System X, and the resulting classifier can be tested on Systems Y and Z to determine the classifier’s

ability to generalize. Measuring the prediction performance using multiple testing and training

datasets makes it possible to quantify how well a given training dataset extrapolates out to other

systems. The experiments are divided into two portions. The first set of experiments examine the

performance of predicting the best solver and preconditioner pairs for all of the available computer

systems, when the classifier has only been trained on the timing data obtained from one of the

systems. The second set of experiments is similar to the first, but is focused on training the classifiers

with the timing data obtained from more than one of the computer systems.
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6.1.1 Collecting System Information

Numerous metrics exist for computing the performance of a computer system. One open

source project, the HPC Challenge [51], contains a suite of benchmarks that determine a variety of

performance characteristics. Each of the HPC Challenge benchmarks is described in Section 4.1.

The HPC Challenge benchmarks run tests that determine the capabilities of the system, but do not

necessarily record the general hardware level description, sizes, or speeds of the actual hardware.

Hardware specifications were collected using the lscpu Linux system command [83]; this command

prints hardware information about the memory and CPU that uniquely identify each computer

system. The complete list of system features collected from both the HPCC and lscpu, as well as

brief descriptions of what they measure are described in Appendix A.2. Other applications and

system commands exist that could possibly provide more insight to the computer’s hardware, but

these commands and programs typically require root access, which is not feasible on the majority of

systems being tested. All the large computer clusters have user guides on their respective websites

that describe the cluster’s hardware and performance in varying levels of depth.

6.2 Results

Five computer systems were used for the multi-system experiments contained in this section.

Four of these five systems are large computational clusters available to researchers, while the fifth is

a personal laptop. Each of the systems are listed in Table 6.1, and their most important performance

information are detailed in Table 6.2, while all the detailed performance information can be found

in Appendix B. Three of the systems: Bridges, Comet, and Stampede, were used as part of the

Extreme Science and Engineering Discovery Environment (XSEDE) project [84], Summit is a joint

machinr operated by the University of Colorado and Colorado State University, and the Dell XPS13

laptop is my own personal machine.

The performance statistics of each system were obtained using the lscpu system command as

well as the HPC Challenge suite of benchmarks. The HPC Challenge code was compiled using the
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Table 6.1: Brief overview of the five computer systems used in the experiments of this dissertation.
Each system was assigned an ID, which is referred to in most of the graphs and results. More
detailed hardware information for each of these systems is available in detail in Appendix B.

System Facility Cores/Node System ID

Bridges Pittsburgh Supercomputing Center 28 1
Comet San Diego Supercomputing Center 24 2
Summit Univ. of Colorado / Colorado State Univ. 24 3
Stampede Texas Advanced Computing Center 16 4
Dell XPS13 Laptop N/A 4 5

same software stack used for all other experiments in this dissertation, as described in Table 4.1.

Running the HPC Challenge program requires one of two inputs. The first input option requires

the user to explicitly create the specific dimensions of the matrices and vectors used by the different

benchmarks. The second input option takes a single user-based input that is equal to the amount

of memory to use per core, thread, or in total; the code then creates the appropriate vectors and

matrices to fit the specified size requirement. For the experiments in this dissertation, the HPC

Challenge benchmarks were executed on each of the available computer system using all of the

available CPU cores on a single node of each individual system. A memory variable of 1GB per

core was used for all the benchmarks, thus each benchmark selected the optimal sizes of matrices

and vectors for its individual test such that a total of 1GB of memory per core is used to store the

data structures. For the computationally intensive benchmarks contained in the HPC Challenge,

there are three different execution types, which depend on the number of cores used and the cores’

communication with each other,

(1) Single: the benchmark is executed on only one of the available CPU cores

(2) Star: the benchmark is executed in an embarrassingly parallel fashion, with no communica-

tion between cores, across all available CPU cores with the average result being returned

(3) MPI: the benchmark benchmark is executed in parallel using all the available CPU cores in

conjunction with each other.



74

It should be noted that the Single and Star methods allow for direct comparisons to be made

between the performance of multiple systems, while the MPI method is based on the performance of

an entire system node rather than on a single-core average. Table 6.2 shows a subset of the results

obtained from the HPC Challenge, as well as additional system information obtained from lscpu,

for each of the computer systems.

6.2.1 Prediction Performance when Training on a Single Computer System

This section presents the prediction performance of machine learning classifiers trained on

timing information obtained from only one of the five available computer systems. The classifiers’

performance are based on their ability to predict the best solver and preconditioner for solving

a given linear system on only one of the available systems. Based on the results of the binary

classifiers in Chapter 5, the Random Forest classifier with a three-fold stratified shuffle split was

chosen for the experiments in this chapter.

Similar to the ROC graphs in Chapter 5, the graphs presented in this chapter are labeled using

an X Y format where X represents the system IDs of the timing data used to create the classifiers,

while Y represents the system IDs of the timing data used to test the classifiers. Figure 6.1 shows

the resulting ROC curves obtained from training on Bridges and testing the classifier’s prediction

on data on itself and the other four available test systems. Overall, the AUROC for each system is

relatively high (≥ 0.8), indicating that there are overlapping successes between systems even with

different hardware. The largest AUROC discrepancy when training on Bridges(1) can be found

when testing on Comet(2). The most similar AUROC to Bridges predicting on its own data, is from

the laptop, indicating that the hardware in those two machines are more similar compared to the

others.

Figure 6.2 shows the ROC curves for the classifier trained on data from Bridges(1), and then

tested on predicting the results for the other system. Here, the largest difference in AUROC scores,

when compared to Summit(3), are found between Bridges(1) with 0.16 and Comet(2) at 0.13. These

results, coupled with those found in Figure 6.1 indicate that not only is Bridges(1) different when
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Figure 6.1: ROC Curves for a classifier trained on Bridges(1), and tested on each computer system
individually at np = 4 for all systems.

compared to the group of Stampede(4), Summit(3), and the laptop(5), but also that it does not

have much in common with Comet(2), either.

The ROC curves in Figure 6.3 again depict that there is more similarity among Stampede(4),

Summit(3), and the laptop(5), than in Bridges(1) or Comet(2). These results suggest that at fairly

low core count of np = 4, there are significant similarities between the performance of the laptop(5),

Summit(3), and Stampede(4), when solving the tested linear systems.

The complete results for each one-on-one training and testing round are located in Table 6.3.

Unsurprisingly, the best prediction performances occur when the same system is used for both the

training and testing of the classifier.

6.2.2 Prediction Performance when Training on Multiple Computer System

Because of the similarities in the results for Summit(3), Stampede(4), and the laptop(5), it is

possible that data obtained from only one of them is needed in order to correctly predict at a high
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Figure 6.2: ROC Curves for a classifier trained on the Summit computer system, and tested on
each computer system individually at np = 4 for all systems.

accuracy for the other two systems. Since Bridges(1) and Comet(2) seem to be more unique in their

predictions, each of them is tested separately. Figure 6.4 depicts the ROC curves obtained from

training on the combination of Bridges(1) and Summit(3), and then testing the resulting classifier

on each of the individual systems.

The resulting AUROC for each tested system is very high, ≥ 0.93, except in the case of

Comet(2), with an AUROC of 0.84. This discrepancy in scores indicates that there are similarities

between Summit(3), Stampede(4), and the laptop(5), and that Bridges(1) and Comet(2) are

relatively unique, and are also unique to each other. Similar results are found when the training is

on data from Comet(2) and Summit(3), as seen in Figure 6.5. This figure shows a relatively low

AUROC of 0.84 when tested on data from Bridges(1), and higher AUROCs for all the other systems

≥ 0.92.

By combining the results from the experiments in Figures 6.4 and 6.5, it is possible to obtain
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Figure 6.3: ROC Curves for a classifier trained on a Dell laptop(5), and tested on each computer
system individually at np = 4.

very high prediction performance, all AUROCs ≥ 0.93, across all systems by training on data from

only three of the five total systems: Bridges(1), Comet(2), and Summit(3) as depicted in Figure 6.6.

The prediction performance using only the data from these three systems is nearly identical to the

performance seen when all five systems are used as training data, as evidenced by Figure 6.7. In

addition to the three-system combination shown in Figure 6.6, another three-system combination is

also capable of achieving almost identical results: Bridges(1), Comet(2), and Stampede(4).

6.2.3 Feature Selection

Table 6.4 contains a list of all the available matrix and system features used in the training

of the multi-system classifier. Each of the features is ranked based on its importance using the

randomized lasso algorithm. A feature’s importance is determined as the percentage of randomized

training instances in which the feature was deemed to be important in determining the final

classification. Similar to the feature rankings in Section 5.2, the most important features, selected
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Figure 6.4: ROC Curves for a classifier trained on timing data from Bridges(1) and Summit(2), and
then tested on each computer system individually at np = 4 for all systems.

≥ 99% of the time, contain the solver, preconditioner, the “type” of dummy rows stored in the

matrix, and diagonal dominance. Dummy rows are rows of the matrix A that contain only one

nonzero entry. There are three possible “types” for the dummy row entries:

(1) Every dummy row of A contains a 1 along the diagonal of the matrix.

(2) Every dummy row has nonzero entries along the diagonal.

(3) At least one dummy row’s entry, regardless of value, is not on the diagonal.

The highest ranked computer system features were selected as important factors in the

classification outcome approximately half of the time.e related to cache size and FFT performance,

indicating that the solver-preconditioner pairs were more limited by the CPU than memory bandwidth

or latency. The majority of the hardware features scor The most impactful system features wered

under a 10% selection rate, indicating that they either had a small effect on the algorithms at all,

or more likely that they were overshadowed by the impact of one or more other features.
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Figure 6.5: ROC Curves for a classifier trained on the Comet(2) and Summit(3) systems, and then
tested on each computer system individually at np = 4 for all systems.

Figure 6.6: ROC Curves for a classifier trained on data from Bridges(1), Comet(2), and Summit(3),
and then tested on each computer system individually at np = 4.
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Table 6.2: The computationally relevant and comparable features and system information of the
systems being tested throughout the dissertation. Each computer system’s results were determined
using the HPC Challenge benchmark and the lscpu system command. The complete output of
each system’s HPC Challenge benchmarks can be found in Appendix B.2

.

Feature bridges comet summit stampede laptop

system id 1 2 3 4 5
HPL Tflops 0.22 0.38 0.53 0.29 0.04
StarDGEMM Gflops 19.81 18.43 28.38 21.52 11.01
SingleDGEMM Gflops 33.08 21.21 34.26 23.07 15.56
PTRANS GBs 3.57 4.02 10.89 4.72 0.85
MPIRandomAccess LCG GUPs 0.07 0.06 0.10 0.05 0.00
MPIRandomAccess GUPs 0.07 0.06 0.10 0.06 0.01
StarRandomAccess LCG GUPs 0.01 0.03 0.03 0.02 0.03
SingleRandomAccess LCG GUPs 0.06 0.06 0.07 0.04 0.06
StarRandomAccess GUPs 0.01 0.03 0.03 0.02 0.02
SingleRandomAccess GUPs 0.06 0.06 0.07 0.04 0.06
StarSTREAM Copy 1.64 4.21 3.69 4.58 5.08
StarSTREAM Scale 1.38 3.20 2.92 3.31 3.54
StarSTREAM Add 1.53 3.60 3.34 3.76 3.86
StarSTREAM Triad 1.59 3.62 3.34 3.73 3.86
SingleSTREAM Copy 6.96 19.31 5.04 7.58 16.05
SingleSTREAM Scale 5.02 12.03 5.81 13.16 9.42
SingleSTREAM Add 5.56 13.13 5.92 14.19 9.93
SingleSTREAM Triad 5.61 13.15 5.92 14.22 9.92
StarFFT Gflops 1.05 1.93 1.84 1.77 1.10
SingleFFT Gflops 1.34 2.74 2.46 2.69 1.95
MPIFFT Gflops 9.00 17.93 14.20 10.20 2.07
MaxPingPongLatency usec 0.98 0.58 0.49 0.48 0.70
RandomlyOrderedRingLatency usec 1.64 0.57 0.70 0.53 0.68
MinPingPongBandwidth GB 4.96 5.36 11.27 5.95 5.04
NaturallyOrderedRingBandwidth GB 0.73 0.81 1.44 1.00 1.30
RandomlyOrderedRingBandwidth GB 0.77 1.23 1.56 1.33 1.39
MinPingPongLatency usec 0.37 0.39 0.31 0.28 0.48
AvgPingPongLatency usec 0.57 0.47 0.38 0.38 0.59
MaxPingPongBandwidth GB 12.09 9.54 15.45 9.83 8.39
AvgPingPongBandwidth GB 9.51 7.26 14.71 7.75 6.76
NaturallyOrderedRingLatency usec 1.51 0.62 0.66 0.58 0.68
MemPerProc 1024 512 1024 1024 1024
core count 28 24 24 16 4
cpu freq 2300 2500 2500 2700 2200
bogo mips 4604.72 4988.09 4992.81 5399.28 4389.76
l1 cache 32 32 32 32 32
l2 cache 256 256 256 256 256
l3 cache 35840 30720 30720 20480 3072
memory size 128 128 128 32 8
memory freq MHz 2133 2133 2133 1600 1600
memory type ddr 4 4 4 3 3
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Table 6.3: The AUROC scores for each single-system classifier when tested on each of the available
computer systems. The leftmost column indicates the system that generated the timing data used
to create the classifier, while the topmost row specifies the timing data used to test the classifier.
The results in bold indicate the best prediction performance for each classifier.

Training \Testing Bridges(1) Comet(2) Summit(3) Stampede(4) Laptop(5)

Bridges(1) 0.93 0.8 0.83 0.83 0.87
Comet(2) 0.78 0.95 0.87 0.85 0.86
Summit(3) 0.79 0.82 0.95 0.92 0.93
Stampede(4) 0.8 0.81 0.93 0.96 0.91
Laptop(5) 0.78 0.8 0.87 0.85 0.94

Figure 6.7: ROC Curves for a classifier trained on all possible computer systems and then tested on
each computer system individually at np = 4.
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Table 6.4: The ranking of all system and matrix features based on their importance.

Feature Importance Description

col diag dom 1 Diagonal entry compared w/ other column entries

dummy rows kind 1 Value types of rows w/ one nonzero entry per row

prec id 1 Choice of preconditioner

solver id 1 Choice of iterative solver

nnz 0.945 Total number of nonzero entries

lower bw 0.915 Lower bandwidth

max nnz row 0.88 Maximum number of nonzeros in a single row

num value symm 2 0.74 Soft numeric value symmetry

row log val spread 0.73 Max ratio between a row’s min and max entries

dummy rows 0.685 Number of rows w/ only one nonzero entry

num value symm 1 0.635 Hermitian property of matrix

bogo mips 0.48 Busy-loop performance

l3 cache 0.48 Size of L3 cache

MPIFFT Gflops 0.475 FFT performance in parallel

inf norm 0.465 Infinity norm

antisymm inf norm 0.39 The infinity norm of A−AT /2

min nnz row 0.39 Minimum number of nonzeros in a single row

trace 0.385 Sum of all diagonal entries

abs trace 0.37 Sum of the absolute values of the diagonal entries

MinPingPongLatency usec 0.365 Minimum pingpong latency

col log val spread 0.34 Max ratio between a column’s min and max entries

diag sign 0.33 The types of values stored on the diagonal

nnz pattern symm 2 0.325 % of nonzero entries aij with nonzero entries at aij
cpu freq 0.29 Frequency of the CPU

antisymm frob norm 0.285 Frobenius norm of A−AT /2

StarFFT Gflops 0.28 Average FFT performance per core

MPIRandomAccess GUPs 0.275 Random access updates in parallel

symm inf norm 0.265 Infinity norm of A+AT /2

HPL Tflops 0.21 Dense matrix solve performance

nnz pattern symm 1 0.185 If all nonzero entries aij have nonzeros at aji
row diag dom 0.185 Diagonal entry compared w/ other row entries

symm 0.18 If A = AT

one norm 0.175 One norm

NaturallyOrderedRingBandwidth GB 0.135 Ring bandwidth in sequential communication order

rows 0.13 Number of rows

upper bw 0.13 Upper bandwidth

MPIRandomAccess LCG GUPs 0.1 Random access updates in parallel

cols 0.095 Number of columns

AvgPingPongLatency usec 0.075 Average pingpong latency per core

MemProc 0.075 Amount of system memory per core

row var 0.075 Largest of each row’s variance

diag avg 0.065 Average of the diagonal entries

SingleSTREAM Triad 0.065 Triad stream performed on a single core

StarDGEMM Gflops 0.06 DGEMM performance average per core

SingleRandomAccess LCG GUPs 0.055 Random access updates on a single core
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SingleSTREAM Add 0.045 Add stream performed on single core

memory size 0.03 Total amount of memory

diag nnz 0.025 Number of nonzero diagonal entries

PTRANS GBs 0.02 Parallel matrix transpose performance

SingleFFT Gflops 0.02 FFT performance on a single core

SingleRandomAccess GUPs 0.02 Random access updates on a single core

avg nnz row 0.015 Average number of nonzeros in a single row

col var 0.015 Largest of each column’s variance

RandomlyOrderedRingBandwidth GB 0.015 Ring bandwidth in random communication order

StarRandomAccess GUPs 0.015 Average number of random updates per second

memory freq 0.01 Memory frequency

SingleSTREAM Scale 0.01 Scale stream performed on a single core

memory type 0.005 DDR3 or DDR4

SingleDGEMM Gflops 0.005 DGEMM single core performance

SingleSTREAM Copy 0.005 Copy stream on single CPU core

StarRandomAccess LCG GUPs 0.005 Average number of random updates per second

StarSTREAM Copy 0.005 Copy stream average per core

StarSTREAM Triad 0.005 Triad stream average per core

AvgPingPongBandwidth GB 0 Average pingpong bandwidth per core

diag var 0 Variance of the diagonal entries

frob norm 0 Frobenius norm

l1 cache 0 Size of L1 cache

l2 cache 0 Size of L2 cache

MaxPingPongBandwidth GB 0 Maximum bandwidth using pingpong

MaxPingPongLatency usec 0 Maximum latency between cores

MinPingPongBandwidth GB 0 Minimum pingpong bandwidth

NaturallyOrderedRingLatency usec 0 Ring latency in sequential communication order

RandomlyOrderedRingLatency usec 0 Ring latency in random communication order

StarSTREAM Add 0 Add stream average per core

StarSTREAM Scale 0 Scaling stream average per core

symm frob norm 0 Frobenius norm of A+AT /2

Together, all the results show that there are small, but measurable, differences that occur when

training and testing classifiers on timing data obtained from solving linear systems using different hardware.

This shows that that current methods can result in high prediction performance when recommending the

best solver-preconditioner pairs when the user and classifier are both based on solving systems on the same

hardware. However, if the user plans to use different hardware to solve the system than was used to generate

the classifier’s training data, then prediction performance degrades somewhat. Multi-system prediction is only

one aspect of incorporating hardware information as part of the solver-preconditioner pair recommendation

process. The previous chapter tackled the problem of multiple numbers of CPU cores, while Chapter 7

combines these two ideas into a single problem. Finally, Chapter 8 tests the resulting classifiers’ performances

when tasked with predicting the best solver-preconditioner pairs for an unseen real-world problem.



Chapter 7

Combining Multicore and Multi-system Prediction

The goal of this dissertation is to examine the prediction performance of incorporating system

hardware information into recommending the best performing iterative solvers and preconditioners

for solving a given sparse linear system. This chapter takes the two separate ideas from chapters 5

and 6 and combines them into a single problem. To create a truly hardware-aware recommendation

system, the recommender must be aware of both the type of hardware being used to solve the linear

system, as well as the scale of the hardware being used. This chapter’s contribution to the overall

goal is examining the overall prediction performance obtained by predicting how a given linear

system would be best solved when supplied with multiple sets of timing data obtained from a variety

of computer systems hardware and scales. Section 7.1 of this chapter describes the methodology of

designing and performing the experiments associated with combining multicore and multi-system

prediction methods discussed in Chapters 5 and 6. Section 7.2 presents the results obtained from

these multicore and multi-system experiments.

7.1 Problem Description

The overall structure of the problem as well as the experiments discussed in this chapter

are similar to those found in the previous two chapters. This chapter combines the two previous

chapters’ experiments and ideas regarding the separate multi-system and multicore problems and

implements them to work in conjunction with each other. Combining these two different hardware

aspects into a single classifier expands upon selecting the optimal solver and preconditioner for a
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given linear system to include both the details of the available hardware and the number of available

cores.

7.1.1 Data

The experiments in this chapter expand upon those in previous chapters by combining

multiple sources of information to aid in the machine learning-based prediction of optimal solvers

and preconditioners for solving sparse linear systems. Prediction, in this case, is based on training

data obtained from four sources:

(1) Numerical and structural features of each testing/coefficient matrix

(2) Wallclock times taken to solve linear systems, using the aforementioned matrices, on different

systems and number of processors

(3) Hardware specifications and information for each computer system

(4) Binary classification labels, used for training, indicating how well solvers and preconditioners

perform on different numbers of processors, computer systems, and matrices.

The experiments described in this chapter use the same set of matrices obtained from the

University of Florida’s Sparse Matrix Collection [65] as described in Chapters 5 and 6. Features

from each matrix were obtained using Anamod and contain multiple numerical and structural

properties unique to each matrix. A full list of the matrix features, as well as their descriptions, can

be found in Appendix A.1.

As described in Chapter 6, due to computational constraints, not every matrix was selected

to be used in a linear solve on the laptop computer. The number of matrices tested on the laptop

consisted of approximately half, 700, of the total number of matrices tested on the other systems.

The matrices selected for the laptop-based solves were the 700 matrices requiring the least amount

of memory for storing the matrix.

The computer systems used for the experiments are identical to those found in Chapter 6 and

consist of PSC’s Bridges(1), SDSC’s Comet(2), TACC’s Stampede(3), CU’s Summit(4), and my
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own personal Dell laptop(5). Each system has its own unique hardware information; the detailed

specifications of each machine are fully described in Appendix B. The computer system specifications

and information were collected in the same manner as described in Chapter 6, using the HPC

Challenge collection of benchmarking tools, discussed in detail in section 4.1, and the lscpu system

command. Each system’s information was collected using the HPC Challenge’s memory-based input

option with 1GB of memory being dedicated for each available core in a single node. Rather than

collecting timing data at each possible core count, each linear system was solved serially, as well as

in parallel at every multiple of four cores thereafter. The laptop was the only exception to this rule,

with solves also being performed at np = 2. The exact breakdown of each system’s cores used for

testing can be found in Table 7.1.

Table 7.1: The number of cores for each system used to solve the linear systems.

Cores Tested

Bridges(1) [1, 4, 8, 12, 16, 20, 24, 28]
Comet(2) [1, 4, 8, 12, 16, 20, 24]
Summit(3) [1, 4, 8, 12, 16, 20, 24]
Stampede(4) [1, 4, 8, 12, 16]
Laptop(5) [1, 2, 4]

7.1.2 Machine Learning

In the previous two chapters, each linear system solve was given only a single binary classi-

fication. Each solve instance was given a classification as either “good” or “bad.” However, this

system is not sufficient for combining the two sub-problems into a single problem, due to the new

problem’s two-dimensional nature. Each of the sub-problems inChapters 5 and 6 are inherently

one-dimensional due to having only one independent variable: the number of CPU cores and the

different system hardware, respectively. Therefore, how do we best classify solver-preconditioner

pairs when multiple systems and core counts are available options? Solving this requires expanding

the classification methods from binary to multi-label. In multi-label classification, each input

vector can be classified as one or more of the available labels. Multi-label classification can be
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represented as a series of binary classifications with each output label being true or false, depending

on whether or not the current input vector belongs to that label.

For the experiments of this chapter, each matrix, solver-preconditioner, system, and core count

permutation was assigned one or more of 18 possible classification labels. For these experiments, the

18 total possible binary labels were based on encountering a solving error, convergence, and relative

timing performance compared to other input vector combinations. Solving error, the first binary

label, is simply based on whether or not the given solver-preconditioner pair encountered a runtime

error while executing the linear solve, with “true” indicating that it encountered an error. The

second binary label given to each input, is based on the convergence status of the linear solve, with

“true” indicating that is did converge. The remaining 16 binary labels are based on the performance

of the specific solver and preconditioner pair on a given linear system with the given hardware and

number of processors. These 16 labels are further broken down into four distinct groups of labels

based on the wallclock time taken to solve the given linear system and to what other input vectors

it should be compared against. These subgroups are based on comparing the input vector to

(1) Other linear solves having the same matrix, computer system, and number of processors

(np and system)

(2) Only other linear solves having the same matrix and computer system, regardless of the

number of processors (sys)

(3) Only other linear solves having the same matrix and number of processors, regardless of the

computer system (np)

(4) All other linear solves having the same matrix, regardless of the computer system or number

of processors used (overall).

These four groups of classification labels are then subdivided even further into four subgroups

each. Each of these smaller groups is created based on the amount of thresholding to incorporate

into the binary classification of each input. All the thresholding variables are percentage-based
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and have values of 0, 25, 50, and 100%, which correspond to the amount of acceptable tolerance

in the wallclock time. This tolerance scheme expands upon the simpler fixed 25% tolerance-based

“good” and “bad” output of the experiments described in Chapters 5 and 6. For instance, in the 0%

tolerance case of the group that is agnostic to both the system and number of processors, only the

absolute fastest solver-preconditioner pair for each matrix is considered to be good and the binary

classification for that specific label is labeled true. All the other numbers incorporate a tolerance

such that the fastest solver-preconditioner pair as well as the system and number of processors

allow for multiple possible “true” cases. For example, the 25% tolerance allows for any of the

solver-preconditioner pairs combined with the appropriate grouping information to be accepted as

true as long as the overall time is within 25% of the fastest successful solve at that matrix and

within the given additional specifications. This allows for 16 additional groupings based on four

percentage groups given for each of the four hardware groups. Coupling these 16 binary labels with

the existing error and convergence binary labels results in 18 total possible labels for each input

vector.

7.1.3 Additional Experiment Measurements

There are numerous methods for determining the success and failures of a given classifier. In

Chapters 5 and 6, the receiver operating characteristic (ROC) curves, and their integrals, are the

primary metric for determining a classifier’s prediction performance. This section is dedicated to

briefly describing other possible performance metrics.

7.1.3.1 Confusion Matrix Derivations

Every binary classifier’s results can be depicted as a 2x2 matrix with the predicted results

along one axis and the actual results on the other axis. Each input instance is then categorized

into one of the four resulting cells depending on its actual label and the label assigned to it by the

classifier. “Positive” and “negative” describe the label assigned to the input vector by the classifier,

and “true” and “false” describe the correctness of the predicted label. For instance, a true negative
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instance describes a correctly assigned negative label from the classifier on an input vector. An

example confusion matrix is depicted in Figure 7.1.

Predicted Classification

Negative Positive Total

True Classification
Negative True Negative (TN) False Positive (FP) TN + FP

Positive False Negative (FN) True Positive (TP) FN + TP

Total TN + FN FP + TP N

Figure 7.1: An example of a confusion matrix created from a binary classifier. The results are
divided into the classifier’s predicted results and the true results. The four entries in the table can
be combined in many ways to create performance metrics.

There are many different possible combinations of the four confusion matrix entries that are

useful for determining a classifier’s success. Some of the most common and useful combinations are

listed below along with their formulas.

(1) Accuracy: Proportion of all labels that are correct. Answers: How many of the predicted

labels match their actual labels?

TN + FP

N

(2) True Positive Rate (TPR) / Sensitivity / Recall: Proportion of labels assigned as positive

that are actually positive. Answers: Given that the actual input is positive, what is the

probability of predicting a positive label?

TP

TP + FN

(3) True Negative Rate (TNR) / Specificity: Proportion of labels assigned as negative that are

actually negative. Answers: Given that the actual input is negative, what is the probability

of predicting a negative label?

TN

TN + FP

(4) Precision / Positive Predictive Value (PPV): Proportion of true positive labels out of all

positive results. Answers: Given that the predicted label is positive, what is the probability
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of the actual input being positive?

TP

TP + FP

(5) Negative Predictive Value (NPV): Proportion of true negative labels out of all negative

results. Answers: Given that the predicted label is negative, what is the probability of the

actual input being negative?

TN

TN + FN

(6) False Positive Rate (FPR): Proportion of labels assigned as positive that are actually

negative. Answers: Given that the actual input is negative, what is the probability of

predicting a positive label?

FP

FP + TN

(7) False Negative Rate (FNR): Proportion of labels assigned as negative that are actually

positive. Answers: Given that the actual input is positive, what is the probability of

predicting a negative label?

FN

FN + TP

(8) False Discovery Rate (FDR): Proportion of labels assigned incorrectly as positive compared

to all outputs labeled as positive. Answers: What is the classifier’s rate of false positives

(type I errors)?

FP

FP + TP

(9) False Omission Rate (FOR): Proportion of labels assigned incorrectly as negative compared

to all outputs labeled as negative. Answers: What is the classifier’s rate of false negatives

(type II errors)?

FN

FN + TN

(10) F1 Score: The harmonic mean of the precision (PPV) and recall (TPR). Answers: What is

the weighted average of the classifier’s precision and recall?

2TP

2TP + FP + FN
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(11) Matthews Correlation Coefficient (MCC): The correlation coefficient between the actual

input labels and the classifier’s predicted labels. A balanced measure of a classifier since it

uses both true and false positives and negatives. The only value not scaled from 0.0 to 1.0,

but rather -1.0 to 1.0. A value of 1.0 indicates perfect classification, 0.0 indicates random

classification, and -1.0 indicates incorrect classification for all input. Answers: How much

correlation is there between the classifier’s predicted labels and the actual labels?

TP × TN − FP × FN√
(TP + FP )(TP + FN)(TN + FP )(TN + FN)

7.2 Results

For the experiments in this chapter, a total of 18 binary classifiers are available for assignment to

each input vector. All the classifier labels are based on each solver-preconditioner pair’s performance

when solving linear systems on multiple computer systems and numbers of cores. Compared to

the single binary classification methods used in Chapters 5 and 6, the experiments in this chapter

use multi-label classification. The collection of binary classifiers represents the 18 possible labels

that can be assigned to each input vector. These labels were previously described in Section 7.1.

Multiple labels can be assigned to each input vector, and the individual labels are represented as

binary classifications with “true” indicating that the label is assigned. The rest of this section is

divided into presenting the results obtained for each of the 18 classifiers using a variety of statistical

metrics. Based on the results of the binary classifiers in Chapter 5, the Random Forest classifier

with stratified shuffle split was chosen for the experiments in this chapter. However, due to the size

of the dataset, the number of splits was reduced from 10 to 3 to reduce the total processing time.

Because the data associated with solvers and preconditioners are heavily imbalanced in favor of

the null case, in which a given solver-preconditioner pair is not ideal for solving a given sparse linear

system, some metrics are more interesting and important than others. For instance, the accuracy

metric, while important, is not ideal in imbalanced scenarios due to its reliance on only true positive

and true negative classifications. Because accuracy does not take into account false negatives or false
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positives, it is possible to have an incredibly accurate classifier that always assigns the “false” label,

regardless of the actual input. Since the recommendation system in this dissertation is ultimately

concerned with correctly identifying the best solver-preconditioner pair for a given linear system,

the true positive rate (TPR) is an important metric. The TPR of a label is the probability of

correctly labelling an actual positive input as being positive. TPR for all 18 classification labels

are depicted in Figure 7.2. The true positive rates of determining if a solver-preconditioner pair

causes an error or converges to a solution is relatively high compared to the performance of the

other classifier groups, at 85% and 77% respectively. Such a high TPR for these two classifiers

indicates that predicting when an error will occur during a linear solve is the most easily identifiable

label of a given input combination. Predicting if the combination will converge to a solution is

the second most identifiable label. The rest of the TPRs for the four different label groups are

Figure 7.2: Comparison of true positive rates for each of the six groups and four threshold percentages.

significantly lower than the TPRs of the error and convergence labels. Such low percentages indicate

that it is less difficult, in general, to correctly predict convergence and solver errors than the best
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performing solver-preconditioner combination. The TPRs of the four groups at the 0% threshold

are incredibly low, indicating that only using the fastest wallclock times in each group causes the

prediction of true-positive results to be significantly lower than the 25, 50, and 100% thresholds.

TPRs increase most noticeably for all groups when the threshold is increased from 0% from 25%.

Increasing the threshold beyond 25% does improve the TPR, but with diminishing returns as the

threshold percentage increases.

Another performance metric, covered in Section 5.1, is the receiver operating characteristic

(ROC) curve. The ROC curve plots the true positive rate of the classifier against the false positive

rate. A popular metric, which can be obtained from a given ROC curve, is the area under the

receiver operating characteristic (AUROC), which is simply the integral of the ROC curve. The

AUROC represents how well the classifier can accurately classify two input instances, each from the

two binary instances of the individual output labels, into their respective outputs. Therefore an

AUROC of 1.0 is equivalent to a perfect binary classification method that always selects the correct

label for an input instance. Conversely, an AUROC of 0.5 is equivalent to randomly guessing when

classifying any given input.

The AUROC results from each of the 18 classifiers are shown in Figure 7.3. Both the AUROC

Figure 7.3: Comparison of the area under the receiver operating characteristic curve for each of the
six groups and four threshold percentages.
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of the error and convergence labels are very high at 0.95 each, indicating that the classifier is capable

of correctly predicting the two labels when presented with two inputs: one each of the true and false

cases per label. Again, the 0% threshold classifiers perform the worst for each of the timing-based

classifiers, implying that the amount of information is too limited to correctly correlate features

to the fastest times. For the “np and system” group of labels, the 0% threshold AUROC is only

marginally lower (≈ -0.05) than the rest of the group’s classifiers at higher thresholds. This small

difference between the group’s AUROCs indicates that there is already sufficient training data from

only looking at the fastest solver-preconditioner pairs for each input matrix-system-np combination.

By its nature, the specific combination of the “np and system” group results in a higher total

number of actual “true” values. The higher number of “true” instances occurs because the total

number of fastest solver-preconditioner pairs per matrix is (num np values × num systems) for

the 0% threshold. The other classifier groups: “overall”, “np”, and “sys”, contain a maximum of

(1), (num np values), and (num systems) “true” instances, respectively, for each of the training

matrices at the 0% threshold. These other groups see improvements with larger thresholds due to

the threshold allowing for more applicable training data to be included, which performs similarly to

the fastest instance rather than only the absolute fastest instance within that group.

Similar in nature to the receiver operating characteristic (ROC) curves discussed in Section 5.1,

a precision-recall curve is another common performance metric that plots the precision against

the recall of the classifier at various thresholds. Ideally, a classifier has both high recall and high

precision, which indicate that the classifier returns both accurate results (precision) and a high

percentage of positive results (recall). Precision represents the measure of “result relevancy,” a

measure of how many truly relevant results are classified. Recall represents the measure of how

many “relevant results” are classified. A classifier with high recall and low precision returns many

results, but they are likely to be incorrectly identified. Classifiers with a low recall and high precision

return very few results, but they are identified correctly. The precision-recall curve of a classifier

with random performance is depicted by a horizontal line on the graph located at the precision

value determined by the fraction of positive instances of the classifier. Classifiers with both perfect



95

precision and recall result in a graph represented as a horizontal line at Precision= 1 and a vertical

line at Recall= 1, creating an area under the curve of 1.0. Similar to the ROC curves, it’s possible to

distill each precision-recall curve to a scalar value by measuring the area under the curve (AUPR).

The area under the precision-recall (AUPR) results for each of the created classifiers is shown

in Figure 7.4. Again, these results show relatively low prediction performance at each of the 0%

cases in the groups of four entries (0.02 - 0.51), while the “error” and “converged” labels have high

AUPRs of 0.93 and 0.87 respectively. Drastic differences between the 0% threshold AUPRs indicate

that it is more difficult to correctly predict the overall fastest solver-preconditioner pair for a linear

system than for predicting at a given core count, system, or the combination of the two.

Figure 7.4: Comparison of the area under the precision-recall curve for each of the six groups and
four threshold percentages.

The Matthews Correlation Coefficient (MCC) is considered to be one of the more balanced

single-value metrics for determining the success of a binary classifier [85]. Its balance comes

from combining the predicted and actual values of a classifier’s confusion matrix: true/false and

positive/negative values, into a single correlation value on the range of [−1,+1]. A score of +1
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indicates a perfect positive correlation between predicted and actual labels, -1 indicates perfect

negative correlation, and 0 indicates no correlation. The MCCs of the available labels are depicted

in Figure 7.5. Again, the MCC shows similar results as the previous metrics, with the error and

Figure 7.5: Comparison of the Matthews Correlation Coefficient (MCC) for each of the six groups
and four threshold percentages.

convergence labels scoring significantly higher than the other 16 labels belonging to the individual

classifier groups. Also similar to previous results, the improvement in the MCCs between the 0%

threshold and 25% threshold are significantly larger than the gain obtained from the other increases

to the threshold percentage.

Overall the results in all tests indicate that there is a significant advantage to including

wallclock times that are close to the optimal wallclock time within a given group. All tests show

a dramatic improvement when increasing from a threshold percentage of 0% to 25%, but only a

minimal gain or even loss in performance when increasing the threshold percentage greater than

25%. This stagnation that occurs when increasing the threshold percentage indicates that the most

important information and correlations within the data can be obtained from the additional timings
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close to the best performing time, while the inclusion of times beyond that does not contribute

much, if anything, to the classifier. The full results of each label’s classification results can be viewed

in their confusion matrix form in table C.1. All the label metrics derived from the confusion matrix

results are shown in table C.2.

7.2.1 Feature Importance

The rankings of the system and matrix features, as well as the number of CPU cores used to

solve the linear system, are depicted in Table 7.2. Overall, the ranking, especially those ranked

towards the top of the table, are very similar to the results found in Table 6.4. This similarity

between the two tables indicates that there is significant overlap of the most important features

across individually different classification labels. It should be noted that the number of cores used

for the computation, np, is selected as an important feature in about 83% of the random lasso-based

tests, indicating the number of processors used was only important in approximately half of all

predictions.

Table 7.2: The ordering of the importance of the number of processors based on the mean importance

over the 18 individual classification labels. The full importance information for each individual label

is available in Appendix C.

Feature Mean Std Dev Description

solver id 1.000 0.250 Choice of iterative solver

dummy rows kind 0.854 0.318 Value types of rows w/ one nonzero entry per row

np 0.834 0.337 Number of CPU cores

col diag dom 0.799 0.354 Diagonal entry compared w/ other column entries

prec id 0.773 0.355 Choice of preconditioner

min nnz row 0.753 0.331 Minimum number of nonzeros in a single row

col log val spread 0.583 0.303 Max ratio between a column’s min and max entries

diag nnz 0.556 0.323 Number of nonzero diagonal entries

num value symm 2 0.525 0.327 Soft numeric value symmetry

lower bw 0.524 0.376 Lower bandwidth

diag sign 0.475 0.303 The types of values stored on the diagonal

NaturallyOrderedRingBW 0.464 0.308 Ring bandwidth in sequential communication order

dummy rows 0.438 0.329 Number of rows w/ only one nonzero entry

num value symm 1 0.427 0.324 Hermitian property of matrix

max nnz row 0.384 0.381 Maximum number of nonzeros in a single row

row diag dom 0.368 0.366 Diagonal entry compared w/ other row entries
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antisymm inf norm 0.364 0.377 The infinity norm of A−AT /2

upper bw 0.329 0.302 Upper bandwidth

row log val spread 0.320 0.179 Max ratio between a row’s min and max entries

l3 cache 0.302 0.298 Size of L3 cache

avg nnz row 0.296 0.290 Average number of nonzeros in a single row

RandomlyOrderedRingBW 0.263 0.154 Ring bandwidth in random communication order

nnz pattern symm 2 0.258 0.171 % of nonzero entries aij with nonzero entries at aij
symm inf norm 0.240 0.166 Infinity norm of A+AT /2

MemProc 0.231 0.241 Amount of system memory per core

nnz 0.225 0.251 Total number of nonzero entries

inf norm 0.201 0.206 Infinity norm

rows 0.199 0.184 Number of rows

nnz pattern symm 1 0.190 0.126 If all nonzero entries aij have nonzeros at aji
MinPingPongLatency 0.175 0.146 Minimum pingpong latency

memory freq 0.175 0.135 Memory frequency

memory size 0.166 0.106 Total amount of memory

MinPingPongBW 0.156 0.103 Minimum pingpong bandwidth

memory type 0.150 0.136 DDR3 or DDR4

AvgPingPongLatency 0.147 0.152 Average pingpong latency per core

SingleSTREAM Copy 0.124 0.195 Copy stream on single CPU core

diag var 0.121 0.171 Variance of the diagonal entries

one norm 0.120 0.123 One norm

bogo mips 0.117 0.143 Busy-loop performance

MPIFFT Gflops 0.114 0.098 FFT performance in parallel

symm 0.098 0.086 If A = AT

cols 0.093 0.095 Number of columns

diag avg 0.093 0.144 Average of the diagonal entries

antisymm frob norm 0.092 0.144 Frobenius norm of A−AT /2

MaxPingPongLatency 0.089 0.073 Maximum latency between cores

StarSTREAM Copy 0.066 0.076 Copy stream average per core

col var 0.064 0.086 Largest of each column’s variance

cpu freq 0.060 0.084 Frequency of the CPU

StarSTREAM Scale 0.056 0.066 Scaling stream average per core

AvgPingPongBW 0.055 0.077 Average pingpong bandwidth per core

SingleRandomAccess LCG GUPs 0.053 0.108 Random access updates on a single core

StarRandomAccess LCG GUPs 0.051 0.086 Average number of random updates per second

PTRANS GBs 0.047 0.037 Parallel matrix transpose performance

row var 0.047 0.054 Largest of each row’s variance

symm frob norm 0.045 0.073 Frobenius norm of A+AT /2

SingleSTREAM Triad 0.043 0.062 Triad stream performed on a single core

StarSTREAM Add 0.039 0.074 Add stream average per core

StarRandomAccess GUPs 0.038 0.075 Average number of random updates per second

SingleRandomAccess GUPs 0.035 0.059 Random access updates on a single core

trace 0.032 0.062 Sum of all diagonal entries

frob norm 0.031 0.050 Frobenius norm

StarSTREAM Triad 0.031 0.053 Triad stream average per core

abs trace 0.030 0.043 Sum of the absolute values of the diagonal entries

NaturallyOrderedRingLatency 0.030 0.042 Ring latency in sequential communication order

MPIRandomAccess GUPs 0.026 0.058 Random access updates in parallel
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SingleFFT Gflops 0.024 0.062 FFT performance on a single core

SingleDGEMM Gflops 0.023 0.051 DGEMM single core performance

SingleSTREAM Add 0.022 0.031 Add stream performed on single core

StarDGEMM Gflops 0.022 0.020 DGEMM performance average per core

MaxPingPongBW 0.018 0.033 Maximum bandwidth using pingpong

RandomlyOrderedRingLatency 0.018 0.042 Ring latency in random communication order

StarFFT Gflops 0.017 0.034 Average FFT performance per core

SingleSTREAM Scale 0.013 0.023 Scale stream performed on a single core

MPIRandomAccess LCG GUPs 0.011 0.017 Random access updates in parallel

HPL Tflops 0.006 0.009 Dense matrix solve performance

l1 cache 0.000 0.000 Size of L1 cache

l2 cache 0.000 0.000 Size of L2 cache



Chapter 8

Prediction Applied to a Real-World Flow Problem

The goal of this dissertation is to examine the prediction performance of incorporating system

hardware information into recommending the best performing iterative solvers and preconditioners

for solving a given sparse linear system. This chapter’s contribution to the overall goal is testing the

prediction performance of the combined multicore and multi-system classifier, created in Chapter 7,

on a real-world problem. The combined classifiers are tested on a small collection of lid-driven

cavity flow problems generated from example code from the PETSc library. Section 8.1 describes

the cavity flow problem as well as the experiments used to examine the prediction performance

of the previously created classifier from Chapter 7. Section 8.2 shows the prediction results and

subsequent analysis of applying the combined classifier to the sparse matrices created from the

lid-driven cavity flow problem.

8.1 Problem Description

Thus far, the machine learning classifiers created throughout this dissertation have been trained

and tested on matrices collected from the University of Florida’s Sparse Matrix Collection [65]. The

applications that generate the UF collection matrices come from a variety of fields and use cases.

Because of the time and computational resources required to solve the various linear systems for

each matrix, the UF matrices used throughout these experiments are limited in their size, as briefly

described in Section 4.5. Therefore, this chapter is devoted to testing the classifiers’ performance

on a real-world problem being executed in parallel.
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The lid-driven cavity flow problem is a common testing example in the field of computational

fluid dynamics [86,87]. The problem can simply be thought of as a square container filled with

liquid. Three sides of the square remain fixed in place, while the lid of the container is capable of

moving laterally in the X-direction. An illustrated example of the problem can be seen in Figure 8.1.

Figure 8.1: Depiction of the general lid-driven cavity flow problem [88].

Like most 2D fluid problems, the lid-driven cavity flow problem is divided into a two-

dimensional Cartesian mesh, which then undergoes some level of refinement. Refinement occurs

when the existing mesh is subdivided into more cells than were in the original mesh. A more refined

mesh contains more data points and therefore more details about the system, but subsequently

requires more computational power to solve. The PETSc example problem uses the finite difference

method with a five-point stencil on a uniformly refined two-dimensional Cartesian mesh. Each point

of the mesh contains four unknowns that are determined at each iteration:

• Velocity in the X-direction
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• Velocity in the Y-direction

• Temperature

• Vorticity.

The example code contains multiple input parameters that vary across the runs and impact the size

of the resulting sparse linear systems and their values,

• Mesh Size – the total number of cells that exist after refinement on the 2D mesh

• Grashof number (GR) – a dimensionless variable that is equal to the ratio of buoyancy to

the viscous force of a fluid

• Prandtl number (PR) – a dimensionless variable that is equal to the ratio of momentum

diffusivity to thermal diffusivity

• Lid velocity – a dimensionless variable that represents the speed of the moving lid.

It should be noted that the Reynolds number, a common feature in fluid dynamics, is simply the

product of the Grashof and Prandtl numbers.

Rather than attempting to completely solve the cavity flow problem outright with Trilinos,

the experiments contained in this chapter are solving the sparse linear systems that are created

from the lid-driven cavity flow problems. Therefore, the sparse matrices that lie at the heart of this

chapter’s experiments are extracted from an iteration of the finite difference methods used to solve

the lid-driven cavity flow problem. Each of the executions used different parameters in order to

create a small suite of differing test matrices. The parameters used to create the matrices from the

example PETSc code executions have the following values,

• Mesh size ∈ {(102 × 102), (103 × 103)}

• Grashof number ∈ {102, 103, 104}

• Prandtl number = 1

• Lid velocity = 10−6
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The matrices created from the (102×102) and (103×103) mesh sizes are square matrices of dimension

4× 104 and 4× 106, respectively.

All possible matrix permutations are included in the testing suite; each solver-preconditioner

combination is then used to solve the linear system created from the individual test suite matrices.

The test suite solves are performed on multiple nodes of two of the aforementioned systems, Comet(2)

and Summit(3), as described in Section 6.1 and appendix B. Each node of both Comet(2) and

Summit(3) contain 24 total CPU cores. Linear solves for all the test suite linear systems on both

systems, for both mesh sizes, take place at np ∈ {96, 192, 384}. All the permutations of problem

parameters and CPU core counts results in 1260 datapoints per system, a total of 2520.

8.2 Results

The classifiers created for this chapter’s experiments are trained and tested on data obtained

from both the existing linear systems created from the University of Florida Sparse Matrix Collection,

used previously in Chapters 5 to 7, and linear systems created from the lid-driven cavity flow

problem introduced in this chapter. For these experiments, two multi-label classifiers were trained

and tested:

(1) a classifier trained on the wallclock times, matrix features, and system features associated

with the linear systems from the UF Collection, and tested on the same information obtained

from the cavity flow problem

(2) a classifier trained on the wallclock times, matrix features, and system features associated

with the linear systems of the UF Collection and half of the available cavity flow linear

systems, and tested on the same information obtained from the remaining half of the cavity

flow problem.

In the context of the cavity flow problems, the data is split in half based on the system on which it

was executed. Therefore, the half used in the training of the classifier came from Comet(2), while

the other half used for testing came from Summit(3). Creating two multi-label classifiers allows for
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a more direct observation of how well the prediction performance of a classifier based solely the UF

collection compares to one with the addition of domain specific linear systems.

Following the same basic methodology described in Chapter 7, the experiments of this section

are based on the same set of 18 labels in a multi-label classification environment, where any subset

of the labels can be assigned to a given input. In practice, these labels can be represented by

18 unique binary classifiers, with each classifier producing a single “true” or “false” output that

indicates whether or not the given label is applied to the input vector. Two of the 18 classifiers are

simplistic: one determines if the given linear system encountered an error or not, and the other

determines if the linear system managed to converge to a solution or not. The remaining 16 binary

labels are based on the performance of each specific solver and preconditioner pair on a given linear

system with the given hardware and number of processors. These 16 labels are broken down into

four distinct groups of labels based on both the wallclock time taken to solve the given linear system,

and the hardware used for the solve. The subgroups created based on the hardware are based on

comparing the input vector to

(1) other linear solves having the same matrix, computer system, and number of processors

(np and system)

(2) only other linear solves having the same matrix and computer system, regardless of the

number of processors (sys)

(3) only other linear solves having the same matrix and number of processors, regardless of the

computer system (np)

(4) all other linear solves having the same matrix, regardless of the computer system or number

of processors used (overall).

In general, training a machine learning classifier on one dataset, and then using it to classify

input from another dataset, can result in poor prediction performance if there is not enough

similarity between the two datasets. Differences in the training and prediction input data can result
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in classifiers that are overfit to the training input data such that it does not generalize to any new

input data outside of the training set. It is also possible for the prediction input data to be so

different from the training data that it’s impossible for the classifier to correctly identify it using its

existing methods.

Overall, the performance of predicting the best solver-preconditioner pairs for the lid-driven

cavity flow problems resulted in significantly poorer results than those in Chapters 5 to 7. In the

case of the first classifier, where no cavity flow systems were used as part of the training process,

multiple classification techniques from the Scikit-Learn library failed to correctly classify any of the

available input vectors as true positive for the 16 timing-based labels. The classification methods that

predicted no true positive values include random forest, multilayer perceptron, k-nearest neighbor,

gradient boosting, and AdaBoost. The results presented throughout the rest of the section are

based on those obtained solely using the random forest classification method. Table 8.1 shows the

prediction results of the two classifiers on input vectors where the actual value of the data is true.

Table 8.1: Comparison of the confusion matrix entries predicted by the two multi-label classifiers.
The first classifier was trained on data collected solely from matrices of the UF Collection and tested
on the cavity flow matrices. The second classifier was trained on combined input matrices collected
from both the UF Collection as well as half the available cavity flow matrices. The second classifier
was tested on the remaining half of the cavity flow matrices.

Trained w/ UF Trained w/ UF+Cavity

Test TP FP TN FN TP FP TN FN

error 292 371 1638 219 123 13 988 136
converged 63 66 1831 560 183 50 853 174
overall 0 0 2508 12 0 0 1249 11
overall 25 0 0 2468 52 0 0 1213 47
overall 50 0 0 2411 109 0 0 1185 47
overall 100 0 0 2311 209 41 6 1135 78
np 0 0 0 2484 36 0 0 1236 24
np 25 0 0 2421 99 0 3 1192 65
np 50 0 0 2328 192 34 4 1145 77
np 100 0 15 2201 304 40 6 1095 119
sys 0 0 0 2496 24 0 0 1248 12
sys 25 0 0 2423 97 28 8 1204 20
sys 50 0 0 2362 158 33 15 1170 42
sys 100 0 0 2252 268 79 24 1116 41
np and system 0 0 3 2445 72 1 1 1223 35
np and system 25 0 6 2350 164 0 0 1176 84
np and system 50 0 0 2267 253 0 0 1130 130
np and system 100 0 12 2165 343 73 2 1084 101
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Figures 8.2 and 8.3 depict the AUROCs obtained from all 18 labels of both multi-label

classifiers. Despite the very poor performance in predicting true positives instances, the AUROC in

both classifiers is still relatively high (0.8+) for all labels except the four timing-based labels at the

0% threshold. This suggest that although the general prediction performance is poor, the classifier

is able to identify when given two input vectors, one that is actually“true” and one that is actually

“false.” The scores of AUROCs again follow the general trend of becoming higher with increased

threshold percentages. There is also a measurable increase in each label’s AUROC when the linear

systems from the cavity flow problems are included as part of the data for training the classifier.

This suggests that although different computer systems are used for the training and testing cavity

flow data, the information is still valuable as an addition to the training information. The AUROC

graphs as well as the confusion matrix tables, show how adding specific types of problem domains

to the training data increases the prediction performance of those types of datasets. Although not

feasible in the frame of this dissertation, it is ideal for the code to add linear systems it has not seen

before into its repository, and use it for subsequent training.

Due to the lack of true positive and false positive predictions, multiple metrics, such as the

true positive rate, Matthews Correlation Coefficient, and F1 score, are impossible to compute for

some of the labels. While both the true negative rate and the accuracy of the classifier are very

good for these predictions, they can be misleading due to being completely dominated by their

reliance on true negatives as part of the formula.
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Figure 8.2: Comparison of the area under the receiver operating characteristic curves from classifiers
trained on data solely from the UF collection and tested on linear systems from the lid-driven cavity
flow experiments, for each of the six groups and four threshold percentages.

Figure 8.3: Comparison of the area under the receiver operating characteristic curves from classifiers
trained on data from both the UF collection and half of the lid-driven cavity flow systems, and
tested on the remaining half of the linear systems from the lid-driven cavity flow systems, for each
of the six groups and four threshold percentages.



Chapter 9

Conclusions and Future Work

9.1 Conclusions

Solving sparse systems of linear equations is a commonly encountered computation in scientific

and high-performance computing applications. Selecting the best iterative solver and preconditioner

for solving a given sparse linear system, especially for novice users, is not a simple task. This

dissertation expanded upon existing work by introducing new techniques that incorporate hardware

information into the prediction of ideal iterative linear solver and preconditioners for sparse linear

systems. By accounting for hardware, it is possible to create more specially tailored solver-

preconditioner suggestions for a novice user. In addition to incorporating hardware information,

this dissertation also examined the limitations of generalizing the solver-preconditioner predictions

to multiple computer systems and CPU core counts.

Chapter 5 examines the prediction performance degradation observed when using wallclock

timing information obtained at one single core count and then attempting to predict the best

solver-preconditioner pairs at other core counts. The results show that each core count does not

generalize equally to other core counts. The core counts with higher numbers had more similarities

with each other than when compared to a serially solved system, as can be seen in Figure 5.10.

Having such a discrepancy in similarity also means that not every CPU core count is required in

order to maintain a high level of prediction performance. Overall, the timing information recorded

for one specific computer system, using a fixed number of CPU cores, results in a loss of prediction

performance when extrapolated to other systems and core counts. The randomized lasso algorithm
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was used to rank the most important aspects of the linear solves including matrix properties, number

of cores used, and the solver-preconditioner pair. The top-ranking features include the column

diagonal dominance (100%), solver (100%), number of cores (100%), and the preconditioner (99%).

Chapter 6 examined the prediction performance degradation observed when using wallclock tim-

ings obtained on one computer system and then attempting to predict the best solver-preconditioner

pairs on other computer systems. Similar to the results of Chapter 5, there is an observable

difference in the prediction performance when training on timing information from one computer

system and using it to predict the best solver-preconditioner pairs for another. Figures 6.6 and 6.7

show that three of the systems, Summit(3), Stampede(4), and the Laptop(5), can generalize their

predictions to each other, while the other two computer systems, Bridges(1) and Comet(2), have

little generalization overlap with each other or any other systems. Both of these observations are best

depicted in the similarities between Figures 6.6 and 6.7, as well as Table 6.3. The randomized lasso

algorithm was used to rank the importance of each of the matrix features as well as the individual

hardware features. The top scoring features are almost exactly the same as those found in Chapter 5.

However, the four most important hardware features include the bogo mips measurement (48%),

the L3 cache size (48%), the number of GFLOPS achieved when performing a parallel FFT (47.5%),

and the minimum latency required to perform ping-pong between two cores (36.5%).

Chapter 7 combines the ideas of Chapters 5 and 6 into a single problem where we predict the

best solver-preconditioner pairs for multiple computer systems, each with multiple CPU core counts

available. Rather than using the binary classification used in the previous chapters, the problem

was expanded into an a multi-label classification problem with 18 possible labels. These labels

include error status, convergence status, and multiple timing comparisons with the best-performing

solver-preconditioner pairs available for a given system, CPU core count, specific system and CPU

count, and overall. Due to the multi-label design, more performance metrics were explored to

validate the findings.

Chapter 8 used the ideas and results of Chapter 7 and applied them to a real-world lid-driven

cavity flow problem. The prediction performance was much lower than that of the previous chapters,
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indicating that the problem type was not similar enough to existing training data to find correlations

between the UF-based training data and the cavity flow-based testing data. Incorporating half

of the cavity flow data into the training set and then testing the classifier on the remaining half

produced improved prediction results.

In general, the 0% threshold proved to be too restrictive, while the 25% threshold provided

the single biggest gain in performance. Predicting whether or not a given combination of computer

system, number of CPU cores, solver, preconditioner, and sparse matrix, will result in error or

converge to a solution are both easier to predict than determining the best solver and preconditioner

for a given input combination. The randomized lasso algorithm was used to rank the importance of

each of the matrix features, the individual hardware features, and the number of CPU cores used

in the solve. Overall, the rankings of the matrix features are somewhat similar to those found in

Chapter 6, however there is a large difference in the hardware feature rankings. The number of

CPU cores used was determined to be useful in the final classification of input 85.4% of the time,

ranking higher than the choice of preconditioner, at 77.3%

In short, this dissertation shows that it is possible to predict the best solver-preconditioner

combinations for a given sparse linear system dependent on the hardware used for executing the

solve. Additionally, this dissertation demonstrates fundamental problems with existing prediction

methods, including the measures of success and the ability to generalize performance. The study’s

results address these issues by expanding on the measures of classifier prediction success, as well as

broadening the applicability of generalized performance results. Overall, this dissertation contributes

to the successful continuation of research into improving effectiveness and usability of computer

science in these areas.

9.2 Future Work

Going forward, there are many possible avenues for work and research that expands upon the

findings of this dissertation.

One of the limiting factors of this work was solving many linear systems in various permutations
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in a somewhat reasonable amount of time on the available hardware. While most of the linear

systems created from the University of Florida’s Sparse Matrix Collection are large enough to be

solved on a single node, many others, especially from larger real-world problems, are not. Therefore,

two future paths for expanding upon this work are the inclusion of larger training matrices and the

computational resources and compute time necessary for solving the resulting linear systems.

While the computer systems used were all unique in some ways, they were all x86-based Intel

machines with similar designs. Future experiments might explore additional computer systems

based on hardware such as ARM, IBM’s BlueGene, Nvidia GPUs, or Intel Xeon Phis.

Although this work begins the exploration of parallelism and how it impacts linear system

solves and their prediction, it only takes into account distributed-memory parallelism available

through MPI. However, many solvers and preconditioners support shared-memory parallelism using

OpenMP, POSIX threads, or similar. Therefore, it is important to explore how shared-memory

parallelism changes the performance of solvers and preconditioners on the training set of linear

systems, and the subsequent predictions.

Because of time and computational restraints, this work was performed almost exclusively on

single nodes of the available computer systems. Being limited to a single node affects how much

computation can take place in a given time, therefore limiting the total number and size of the

training matrices.

The lid-driven cavity flow problem represents a small percentage of the many possible

computational fluid dynamics problems, and an even smaller percentage of all the possible problems

using sparse linear systems. Although the UF Collection contains matrices from various problem

types and domains, there are always going to be additional matrices that can be added. One possible

option is to allow for a submission form of sorts that allows users to upload their own matrices

Machine learning is an incredibly fast-paced field with constantly evolving methods. As

techniques are created, it is possible for them to surpass the methods used in this work in terms of

prediction performance. Neural networks were briefly explored as part of this dissertation, but the

preliminary results were very poor. However, it might be worth re-examining this idea in the future
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as the methods continue to grow.

Future work in this area should incorporate multigrid methods [1] as possible choices for solving

the sparse linear systems. Methods such as algebraic multigrid can be used as a preconditioning

step for other solvers. Due to their performance and ability to help solve sparse linear systems more

quickly than other preconditioning methods [89], multigrid options should be included in future

testing.
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Appendix A

Feature Definitions

A.1 Matrix Features

(1) rows – Number of rows m in the coefficient matrix A.

(2) cols – Number of columns n in the coefficient matrix A.

(3) min nnz row – Minimum number of nonzero entries found in a single row of A.

(4) row var – Largest variance computed from each row of A.

max(σ2 =

n∑
i=1

(xi − µ)2

n
).

(5) col var – Largest variance computed for each column of A.

(6) diag var – Variance computed on the vector of diagonal entries in A.

(7) nnz – Total number of nonzero entries in A.

(8) frob norm – The Frobenius norm of the matrix A.

‖A‖F =

√√√√ ∞∑
j=1

∞∑
i=1

|aij2|

(9) symm frob norm – The Frobenius norm of the symmetric matrix.

S =
A+AT

2

‖A‖F =

√√√√ ∞∑
j=1

∞∑
i=1

|sij2|
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(10) antisymm frob norm – The Frobenius norm of the symmetric matrix

SA =
A−AT

2

.

‖A‖F =

√√√√ ∞∑
j=1

∞∑
i=1

|sAij2|

(11) one norm – The one-norm of the matrix A.

‖A‖1 = max
1≤j≤n

∑
i = 1n‖aij‖

(12) inf norm – The infinity-norm of the matrix A.

‖A‖∞ = max
1≤i≤n

∑
j = 1n‖aij‖

(13) symm inf norm – The infinity-norm of the symmetric matrix.

S =
A+AT

2

‖S‖∞ = max
1≤i≤n

∑
j = 1n‖Sij‖

(14) antisymm inf norm – The infinity-norm of the symmetric matrix.

SA =
A−AT

2

‖SA‖∞ = max
1≤i≤n

∑
j = 1n‖SAij‖

(15) max nnz row – Maximum number of nonzero entries contained in a single row of the matrix

A.

(16) trace – Sum of the diagonal entries contained in A.

(17) abs trace – Sum of the absolute values of the diagonal entries contained in A.

(18) min nnz row – Minimum number of nonzero entries contained in a single row of the matrix

A.
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(19) avg nnz row – The average number of nonzero entries in a given row of the matrix A.

(20) dummy rows – The number of rows in A containing only one nonzero entry.

(21) dummy rows kind – The dummy rows kind of A can be one of the following three outputs:

(a) Every dummy row of A contains a 1 along the diagonal of the matrix.

(b) Every dummy row has nonzero entries along the diagonal.

(c) At least one dummy row’s entry is not on the diagonal.

(22) num value symm 1 – Whether or not A = AT .

(23) nnz pattern symm 1 – Whether or not all nonzero positions, aij , in A also contain a

nonzero position in the matrix AT .

(24) num value symm 2 – The soft numeric value symmetry of A. S is the symmetric portion of

A.

S =
A+AT

2

1−
∑m

i=1

∑n
j=1 |sij |

2
∑m

i=1

∑n
j=1 |aij |

(25) nnz pattern symm 2 – The percentage of nonzero entries in A at aij that have

corresponding nonzero entries in AT .

f(aij) =


1, if aij , aji 6= 0

0, otherwise

∑m
i=1

∑n
j=1 f(aij)

nnz

(26) row diag dom – A property related to the absolute values of the diagonal entries in a
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matrix compared to other entries in the row.

row diag dom =



0, if for any row i, aii <
∑

j 6=i |aij |

1, if for all rows i, aii ≥
∑

j 6=i |aij |

2, if for all rows i, aii >
∑

j 6=i |aij |

(27) col diag dom – A property related to the absolute values of the diagonal entries in a matrix

compared to other entries in the column.

row diag dom =



0, if for any column j, ajj <
∑

i 6=j |aij |

1, if for all columns j, ajj ≥
∑

i 6=j |aij |

2, if for all columns j, ajj >
∑

i 6=j |aij |

(28) diag avg – The arithmetic mean of the diagonal entries of A.

(29) diag sign –This property indicates the diagonal sign pattern.

diag sign =



−2, all diagonal entries, aii < 0

−1, all diagonal entries, aii ≤ 0

0, all diagonal entries, aii = 0

1, all diagonal entries, aii ≥ 0

2, all diagonal entries, aii > 0

3, otherwise

(30) diag nnz – The number of nonzero diagonal entries in A.

(31) lower bw – The smallest number c such that aij = 0 when i > j + c.

(32) upper bw – The smallest number c such that aij = 0 when i > j − c.

(33) row log val spread – The maximum ratio between a row’s minimum and maximum entries.

max
i

log10

maxj |aij |
minj |aij |
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(34) col log val spread – The maximum ratio between a column’s minimum and maximum

entries.

max
j

log10

maxi |aij |
mini |aij |

A.2 System Information Features

(1) HPL Tflops – Performance of solving a randomly generated dense linear system of double

floating-point precision using MPI, measured in teraflops per second. The solving method

is LU factorization with partial row pivoting.

(2) StarDGEMM Gflops – The floating-point execution rate, in gigaflops per second, of double

precision real matrix-matrix multiply using the DGEMM BLAS routine on multiple cores.

The final result is the arithmetic mean of the performance of each core.

(3) SingleDGEMM Gflops – The floating-point execution rate, in gigaflops per second, of

double precision real matrix-matrix multiply using the DGEMM BLAS routine on a single

core.

(4) PTRANS GBs – Performs a parallel matrix transpose in a block-cyclic manner between

two cores. The result is measured in gigabytes per second.

(5) MPIRandomAccess LCG GUPs – Number of memory locations that are updated per

second with randomized integers generated using the LCG algorithm. The communication

is performed in an all-to-all manner. Measured in “giga-updates” per second.

(6) MPIRandomAccess GUPs – Number of memory locations that are updated per second

with randomized integers. The communication is performed in an all-to-all manner.

Measured in “giga-updates” per second.

(7) StarRandomAccess LCG GUPs – Number of memory locations that are updated per

second with randomized integers generated using the LCG algorithm. No communication
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occurs and each core is running in an embarrassingly parallel fashion. Measured in average

number of “giga-updates” per second.

(8) StarRandomAccess GUPs – Number of memory locations that are updated per second with

randomized integers. No communication occurs and each core is running in an

embarrassingly parallel fashion. Measured in average number of “giga-updates” per second.

(9) SingleRandomAccess LCG GUPs – Number of memory locations that are updated per

second with randomized integers generated using the LCG algorithm. No communication

occurs and the code is executed on a single core. Measured in number of “giga-updates”

per second.

(10) SingleRandomAccess GUPs – Number of memory locations that are updated per second

with randomized integers. No communication occurs and the code is executed on a single

core. Measured in number of “giga-updates” per second.

(11) StarSTREAM Copy – Sustainable memory bandwidth measured in gigabytes per second

based on copying vectors in an embarrassingly parallel manner.

(12) StarSTREAM Scale – Sustainable memory bandwidth measured in gigabytes per second

based on scaling vectors in an embarrassingly parallel manner.

(13) StarSTREAM Add – Sustainable memory bandwidth measured in gigabytes per second

based on adding vectors in an embarrassingly parallel manner.

(14) StarSTREAM Triad – Sustainable memory bandwidth measured in gigabytes per second

based on adding and scaling vectors in an embarrassingly parallel manner.

(15) SingleSTREAM Copy – Sustainable memory bandwidth measured in gigabytes per second

based on copying vectors on a single core.

(16) SingleSTREAM Scale – Sustainable memory bandwidth measured in gigabytes per second

based on scaling vectors on a single core.
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(17) SingleSTREAM Add – Sustainable memory bandwidth measured in gigabytes per second

based on adding two vectors on a single core.

(18) SingleSTREAM Triad – Sustainable memory bandwidth measured in gigabytes per second

based on adding and scaling vectors on a single core.

(19) StarFFT Gflops – Performs double precision complex one-dimensional Discrete Fourier

Transform measured in gigaflops per second. Performed in an embarassingly parallel

manner across the available cores and the average performance is returned.

(20) SingleFFT Gflops – Performs double precision complex one-dimensional Discrete Fourier

Transform measured in gigaflops per second.

(21) MPIFFT Gflops – Performs distributed double precision complex one-dimensional Discrete

Fourier Transform across all available cores. The overall performance is measured in

gigaflops per second.

(22) MaxPingPongLatency usec – Maximum latency for a number of non-simultaneous

ping-pong tests. The ping-pongs are performed between as many as possible distinct pairs

of processors using MPI send and receive routines. The results are measured in

micro-seconds.

(23) MinPingPongLatency usec – Minimum latency for a number of non-simultaneous ping-pong

tests. The ping-pongs are performed between as many as possible distinct pairs of

processors using MPI send and receive routines. The results are measured in micro-seconds.

(24) AvgPingPongLatency usec – Average latency for a number of non-simultaneous ping-pong

tests. The ping-pongs are performed between as many as possible distinct pairs of

processors using MPI send and receive routines. The results are measured in micro-seconds.

(25) RandomlyOrderedRingLatency usec – Latency in the ring communication pattern using

randomly ordered processes. The result is averaged over various iterations and measured in
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micro-seconds.

(26) MinPingPongBandwidth GBytes – Minimum bandwidth for a number of non-simultaneous

ping-pong tests. The ping-pongs are performed between as many as possible distinct pairs

of processors using MPI send and receive routines. The results are measured in gigabytes

per second.

(27) NaturallyOrderedRingBandwidth GBytes – Bandwidth achieved in the ring communication

pattern. The ring is formed with consecutive processes in the MPI COMM WORLD and

measured in gigabytes per second.

(28) RandomlyOrderedRingBandwidth GBytes – Bandwidth achieved in the ring

communication pattern. The ring is formed with randomly ordered processes in the

MPI COMM WORLD and measured in gigabytes per second.

(29) MaxPingPongBandwidth GBytes – Maximum bandwidth for a number of non-simultaneous

ping-pong tests. The ping-pongs are performed between as many as possible distinct pairs

of processors using MPI send and receive routines. The results are measured in gigabytes

per second.

(30) AvgPingPongBandwidth GBytes – Average latency for a number of non-simultaneous

ping-pong tests. The ping-pongs are performed between as many as possible distinct pairs

of processors using MPI send and receive routines. The results are measured in gigabytes

per second.

(31) NaturallyOrderedRingLatency usec – Latency in the ring communication pattern using

consecutively ordered processes. The result is averaged over various iterations and

measured in micro-seconds.

(32) MemProc – Amount of memory available per core.

(33) core count – The number of physical CPU cores available.
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(34) cpu freq – Clock speed of the CPU.

(35) bogo mips – Unscientific measure of a CPU’s ability to perform a “busy loop.”

(36) l1 cache – Size of each processor’s L1 cache.

(37) l2 cache – Size of each processor’s L2 cache.

(38) l3 cache – Size of each processor’s L3 cache.

(39) memory size – Size, in gigabytes, of the available RAM.

(40) memory freq – Clock speed, in gigahertz, of the system’s RAM.

(41) memory type – The type of memory available in the system, DDR3 or DDR4.



Appendix B

Hardware Information

B.1 Computer Hardware

Five different clusters were primarily used for the experiments described in this dissertation. The

details of each computer system are depicted below. The complete HPC Challenge benchmark

results for each computer system are shown in Appendix B.2.

Table B.1: Hardware Information for each node in PSC’s Bridges [90].

Hardware Specifications

Architecture: x86 64
CPU op-mode(s): 32-bit, 64-bit
Byte Order: Little Endian
CPU(s): 28
On-line CPU(s) list: 0-27
Thread(s) per core: 1
Core(s) per socket: 14
Socket(s): 2
NUMA node(s): 2
Vendor ID: GenuineIntel
CPU family: 6
Model: 63
Model name: Intel(R) Xeon(R) CPU E5-2695 v3 @ 2.30GHz
Stepping: 2
CPU MHz: 2300.000
BogoMIPS: 4600.89
Virtualization: VT-x
L1d cache: 32K
L1i cache: 32K
L2 cache: 256K
L3 cache: 35840K
NUMA node0 CPU(s): 0-6,14-20
NUMA node1 CPU(s): 7-13,21-27
RAM: 128GB DDR4
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Table B.2: Hardware information for each node in SDSC’s Comet [91].

Hardware Specifications

Architecture x86 64
CPU op-mode(s) 32-bit, 64-bit
Byte Order Little Endian
CPU(s) 24
On-line CPU(s) list 0-23
Thread(s) per core 1
Core(s) per socket 12
Socket(s) 2
NUMA node(s) 2
Vendor ID GenuineIntel
CPU family 6
Model 63
Stepping 2
CPU MHz 2501.000
BogoMIPS 4988.09
Virtualization VT-x
L1d cache 32K
L1i cache 32K
L2 cache 256K
L3 cache 30720K
NUMA node0 CPU(s) 0-11
NUMA node1 CPU(s) 12-23
RAM: 128GB DDR4

Table B.3: Hardware information for each node in TACC’s Stampede [92].

Hardware Specifications

Architecture x86 64
CPU op-mode(s) 32-bit, 64-bit
Byte Order Little Endian
CPU(s) 16
On-line CPU(s) list 0-15
Thread(s) per core 1
Core(s) per socket 8
Socket(s) 2
NUMA node(s) 2
Vendor ID GenuineIntel
CPU family 6
Model 45
Model name Intel(R) Xeon(R) CPU E5-2680 0 @ 2.70GHz
Stepping 7
CPU MHz 2700.249
BogoMIPS 5399.28
Virtualization VT-x
L1d cache 32K
L1i cache 32K
L2 cache 256K
L3 cache 20480K
NUMA node0 CPU(s) 0,2,4,6,8,10,12,14
NUMA node1 CPU(s) 1,3,5,7,9,11,13,15
RAM: 32GB DDR3
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Table B.4: Hardware information for each node in the University of Colorado’s Summit [75].

Hardware Specifications

Architecture x86 64
CPU op-mode(s) 32-bit, 64-bit
Byte Order Little Endian
CPU(s) 24
On-line CPU(s) list 0-23
Thread(s) per core 1
Core(s) per socket 12
Socket(s) 2
NUMA node(s) 2
Vendor ID GenuineIntel
CPU family 6
Model 63
Model name Intel(R) Xeon(R) CPU E5-2680 v3 @ 2.50GHz
Stepping 2
CPU MHz 2494.329
BogoMIPS 4992.81
Virtualization VT-x
L1d cache 32K
L1i cache 32K
L2 cache 256K
L3 cache 30720K
NUMA node0 CPU(s) 0,2,4,6,8,10,12,14,16,18,20,22
NUMA node1 CPU(s) 1,3,5,7,9,11,13,15,17,19,21,23
RAM: 128GB DDR4

Table B.5: Hardware information for my personal Dell XPS13 Laptop.

Hardware Specifications

Architecture x86 64
CPU op-mode(s) 32-bit, 64-bit
Byte Order Little Endian
CPU(s) 4
On-line CPU(s) list 0-3
Thread(s) per core 2
Core(s) per socket 2
Socket(s) 1
NUMA node(s) 1
Vendor ID GenuineIntel
CPU family 6
Model 61
Model name Intel(R) Core(TM) i5-5200U CPU @ 2.20GHz
Stepping 4
CPU MHz 2200.000
CPU max MHz 2700.0000
CPU min MHz 500.0000
BogoMIPS 4389.76
Virtualization VT-x
L1d cache 32K
L1i cache 32K
L2 cache 256K
L3 cache 3072K
NUMA node0 CPU(s) 0-3
RAM: 8GB DDR3
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B.2 HPC Challenge Results

Table B.6: All the available output from the HPC Challenge benchmarks for the five systems used

in this work.

Bridges Comet Stampede Summit Laptop

VersionMajor 1 1 1 1 1

VersionMinor 5 5 5 5 5

VersionMicro 0 0 0 0 0

VersionRelease f f f f f

LANG C C C C C

Success 1 0 1 1 1

sizeof char 1 1 1 1 1

sizeof short 2 2 2 2 2

sizeof int 4 4 4 4 4

sizeof long 8 8 8 8 8

sizeof void ptr 8 8 8 8 8

sizeof size t 8 8 8 8 8

sizeof float 4 4 4 4 4

sizeof double 8 8 8 8 8

sizeof s64Int 8 8 8 8 8

sizeof u64Int 8 8 8 8 8

sizeof struct double double 16 16 16 16 16

CommWorldProcs 28 24 16 24 4

MPI Wtick 6.54E-10 4.00E-10 3.70E-10 4.01E-10 5.44E-10

HPL Tflops 0.215951 0.376918 0.294586 0.53264 0.035

HPL time 505.835 81.4316 161.057 163.317 163.726

HPL eps 1.11E-16 1.11E-16 1.11E-16 1.11E-16 1.11E-16

HPL RnormI 8.11E-10 NaN 5.80E-10 1.76E-10 9.614E-11

HPL Anorm1 13832.6 9069.59 10478.2 12816.5 5241.06

HPL AnormI 13822.6 9071.88 10482.8 12815 5242.6

HPL Xnorm1 69854.4 NaN 31254.8 16722 13351.5

HPL XnormI 7.91617 NaN 4.33342 1.84384 3.57249

HPL BnormI 0.499999 0.499992 0.499986 0.499997 0.499999

HPL N 54720 35840 41440 50720 20640

HPL NB 80 80 80 80 80

HPL nprow 4 4 4 4 2

HPL npcol 7 6 4 6 2

HPL depth 1 1 1 1 1

HPL nbdiv 2 2 2 2 2

HPL nbmin 4 4 4 4 4

HPL cpfact R R R R R

HPL crfact C C C C C

HPL ctop 1 1 1 1 1

HPL order C C C C C

HPL dMACH EPS 1.11E-16 1.11E-16 1.11E-16 1.11E-16 1.11-16

HPL dMACH SFMIN 0.00E+00 0.00E+00 0.00E+00 0.00E+00 2.22-308

HPL dMACH BASE 2.00E+00 2.00E+00 2.00E+00 2.00E+00 2

HPL dMACH PREC 2.22E-16 2.22E-16 2.22E-16 2.22E-16 2.22-16

HPL dMACH MLEN 5.30E+01 5.30E+01 5.30E+01 5.30E+01 53

HPL dMACH RND 1.00E+00 1.00E+00 1.00E+00 1.00E+00 1
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HPL dMACH EMIN -1.02E+03 -1.02E+03 -1.02E+03 -1.02E+03 -1021

HPL dMACH RMIN 0.00E+00 0.00E+00 0.00E+00 0.00E+00 2.22E-308

HPL dMACH EMAX 1.02E+03 1.02E+03 1.02E+03 1.02E+03 1024

HPL dMACH RMAX 1.79E+308 1.79E+308 1.79E+308 1.79E+308 1.79E+308

HPL sMACH EPS 5.96E-08 5.96E-08 5.96E-08 5.96E-08 5.96E-08

HPL sMACH SFMIN 1.18E-38 1.18E-38 1.18E-38 1.18E-38 1.175E-38

HPL sMACH BASE 2.00E+00 2.00E+00 2.00E+00 2.00E+00 2

HPL sMACH PREC 1.19E-07 1.19E-07 1.19E-07 1.19E-07 1.19E-07

HPL sMACH MLEN 2.40E+01 2.40E+01 2.40E+01 2.40E+01 24

HPL sMACH RND 1.00E+00 1.00E+00 1.00E+00 1.00E+00 1

HPL sMACH EMIN -1.25E+02 -1.25E+02 -1.25E+02 -1.25E+02 -125

HPL sMACH RMIN 1.18E-38 1.18E-38 1.18E-38 1.18E-38 1.175E-38

HPL sMACH EMAX 1.28E+02 1.28E+02 1.28E+02 1.28E+02 128

HPL sMACH RMAX 3.40E+38 3.40E+38 3.40E+38 3.40E+38 3.40E+038

dweps 1.11E-16 1.11E-16 1.11E-16 1.11E-16 1.11E-16

sweps 5.96E-08 5.96E-08 5.96E-08 5.96E-08 5.96E-08

HPLMaxProcs 28 24 16 24 4

HPLMinProcs 28 24 16 24 4

DGEMM N 5969 4223 5980 5976 5957

StarDGEMM Gflops 19.807 18.4259 21.5235 28.3834 11.0092

SingleDGEMM Gflops 33.0807 21.2062 23.0727 34.2565 15.563

PTRANS GBs 3.57253 4.02147 4.71523 10.8949 0.850288

PTRANS time 1.67628 0.260291 0.696458 0.472242 0.894743

PTRANS residual 0 0 0 0 0

PTRANS n 27360 17920 20720 25360 10320

PTRANS nb 80 80 80 80 80

PTRANS nprow 4 4 4 4 2

PTRANS npcol 7 6 4 6 2

MPIRandomAccess LCG N 2147483648 1073741824 1073741824 2147483648 268435456

MPIRandomAccess LCG time 39.4521 60.6271 67.9955 59.352 64.641

MPIRandomAccess LCG CheckTime 12.955 8.847 43.5388 13.1635 5.02296

MPIRandomAccess LCG Errors 0 0 387 0 0

MPIRandomAccess LCG ErrorsFraction 0 0 3.60E-07 0 0

MPIRandomAccess LCG ExeUpdates 2714570936 3903927360 3362514544 5851117992 323141296

MPIRandomAccess LCG GUPs 0.0688067 0.0643925 0.049452 0.0985833 0.00499901

MPIRandomAccess LCG TimeBound 60 60 60 60 60

MPIRandomAccess LCG Algorithm 0 0 0 0 0

MPIRandomAccess N 2147483648 1073741824 1073741824 2147483648 268435456

MPIRandomAccess time 39.2777 57.6682 50.9653 59.4248 59.4625

MPIRandomAccess CheckTime 13.1772 8.01242 10.2463 14.132 4.56017

MPIRandomAccess Errors 0 0 0 0 0

MPIRandomAccess ErrorsFraction 0 0 0 0 0

MPIRandomAccess ExeUpdates 2750951700 3674209032 2912731856 5785879512 320918972

MPIRandomAccess GUPs 0.0700385 0.0637129 0.0571513 0.0973646 0.005397

MPIRandomAccess TimeBound 60 60 60 60 60

MPIRandomAccess Algorithm 0 0 0 0 0

RandomAccess LCG N 67108864 33554432 67108864 67108864 67108864

StarRandomAccess LCG GUPs 0.012859 0.033345 0.0228886 0.0334192 0.0266994

SingleRandomAccess LCG GUPs 0.0626308 0.0648788 0.0372958 0.0717821 0.0604318

RandomAccess N 67108864 33554432 67108864 67108864 67108864

StarRandomAccess GUPs 0.0128778 0.0334041 0.0230922 0.0335016 0.0228788

SingleRandomAccess GUPs 0.0612444 0.0648515 0.0374511 0.0716084 0.056846

STREAM VectorSize 35646171 17840355 35776533 35729422 35500800

STREAM Threads 1 1 1 1 1
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StarSTREAM Copy 1.63992 4.21272 4.57726 3.69016 5.08263

StarSTREAM Scale 1.38328 3.19541 3.30669 2.92074 3.53951

StarSTREAM Add 1.5253 3.60064 3.76346 3.33642 3.85717

StarSTREAM Triad 1.5853 3.61897 3.73212 3.34267 3.85697

SingleSTREAM Copy 6.95636 19.3064 7.58094 5.03965 16.0505

SingleSTREAM Scale 5.0235 12.0275 13.1603 5.81145 9.4218

SingleSTREAM Add 5.56274 13.1324 14.1851 5.91912 9.93453

SingleSTREAM Triad 5.60783 13.1487 14.2154 5.92306 9.91911

FFT N 16777216 8388608 16777216 16777216 16777216

StarFFT Gflops 1.04898 1.93068 1.7685 1.84404 1.1024

SingleFFT Gflops 1.33642 2.73676 2.69306 2.4645 1.94941

MPIFFT N 134217728 67108864 134217728 134217728 33554432

MPIFFT Gflops 8.99739 17.9299 10.1954 14.1991 2.06849

MPIFFT maxErr 2.43E-15 2.16E-15 2.31E-15 2.43E-15 2.24E-15

MPIFFT Procs 16 16 16 16 4

MaxPingPongLatency usec 0.977552 0.580369 0.479631 0.488717 0.700395

RandomlyOrderedRingLatency usec 1.64323 0.572225 0.532336 0.701083 0.679061

MinPingPongBandwidth GBytes 4.96149 5.36232 5.95163 11.2696 5.03606

NaturallyOrderedRingBandwidth GBytes 0.726378 0.812646 0.996609 1.44221 1.3016

RandomlyOrderedRingBandwidth GBytes 0.768784 1.23318 1.32789 1.56437 1.38813

MinPingPongLatency usec 0.372814 0.388025 0.283691 0.312606 0.477783

AvgPingPongLatency usec 0.565746 0.467398 0.382727 0.383007 0.592444

MaxPingPongBandwidth GBytes 12.0903 9.54204 9.83478 15.4459 8.39117

AvgPingPongBandwidth GBytes 9.50937 7.2649 7.75271 14.7139 6.76401

NaturallyOrderedRingLatency usec 1.50814 0.624638 0.579283 0.664996 0.679178

FFTEnblk 16 16 16 16 16

FFTEnp 8 8 8 8 8

FFTEl2size 1048576 1048576 1048576 1048576 1048576

M OPENMP 201511 201511 201511 201511 201511

omp get num threads 1 1 1 1 1

omp get max threads 1 1 1 1 1

omp get num procs 14 12 8 12 4

MemProc 1024 512 1024 1024 1024

MemSpec 3 3 3 3 3

MemVal 1024 512 1024 1024 1024

MPIFFT time0 1.39E-06 1.80E-06 7.54E-07 8.33E-07 2.05E-06

MPIFFT time1 0.24311 0.0808808 0.203111 0.199713 0.209868

MPIFFT time2 0.295238 0.0836043 0.138058 0.162992 0.347712

MPIFFT time3 0.132825 0.0447779 0.115376 0.108817 0.101813

MPIFFT time4 0.779895 0.173629 1.03221 0.541918 1.03963

MPIFFT time5 0.432601 0.0754626 0.209878 0.194478 0.2239

MPIFFT time6 2.19E-06 8.74E-07 1.21E-06 3.34E-07 1.30E-06

CPS HPCC FFT 235 0 0 0 0 0

CPS HPCC FFTW ESTIMATE 0 0 0 0 0

CPS HPCC MEMALLCTR 0 0 0 0 0

CPS HPL USE GETPROCESSTIMES 0 0 0 0 0

CPS RA SANDIA NOPT 0 0 0 0 0

CPS RA SANDIA OPT2 0 0 0 0 0

cps using fftw 0 0 0 0 0
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Detailed Results from Chapter 7

C.1 Confusion Matrix of Chapter 7 Combined Classification

Table C.1: The resulting confusion matrix entries for each of the 18 classifiers in Chapter 7.

ID Group % TP FP TN FN

0 error 0 304913 37440 476369 52813
1 converged 0 136911 27375 665535 41714
2 overall 0 13 117 870536 869
3 overall 25 1122 742 865070 4601
4 overall 50 3738 1513 858028 8256
5 overall 100 10909 3451 844127 13048
6 np 0 922 1409 863222 5982
7 np 25 7200 3627 847004 13704
8 np 50 13751 5111 835723 16950
9 np 100 22438 7113 819845 22139
10 sys 0 157 464 867456 3458
11 sys 25 3762 1727 856098 9948
12 sys 50 8994 3106 845950 13485
13 sys 100 18136 5332 830213 17854
14 np and system 0 8250 3982 846455 12848
15 np and system 25 18085 5671 828924 18855
16 np and system 50 24002 7052 819047 21434
17 np and system 100 33235 9699 801718 26883
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Table C.2: Derived metrics for the 18 labels discussed in Chapter 7.

group % TPR TNR PPV NPV FNR FPR FDR FOR ACC F1 MCC AUROC AUPR

error 0 0.85 0.93 0.89 0.90 0.15 0.07 0.11 0.10 0.90 0.44 0.79 0.95 0.93
converged 0 0.77 0.96 0.83 0.94 0.23 0.04 0.17 0.06 0.92 0.40 0.75 0.95 0.87
overall 0 0.01 1.00 0.10 1.00 0.99 0.00 0.90 0.00 1.00 0.01 0.04 0.55 0.02
overall 25 0.20 1.00 0.60 0.99 0.80 0.00 0.40 0.01 0.99 0.15 0.34 0.85 0.36
overall 50 0.31 1.00 0.71 0.99 0.69 0.00 0.29 0.01 0.99 0.22 0.47 0.91 0.53
overall 100 0.46 1.00 0.76 0.98 0.54 0.00 0.24 0.02 0.98 0.28 0.58 0.94 0.66
np 0 0.13 1.00 0.40 0.99 0.87 0.00 0.60 0.01 0.99 0.10 0.23 0.79 0.21
np 25 0.34 1.00 0.67 0.98 0.66 0.00 0.33 0.02 0.98 0.23 0.47 0.91 0.53
np 50 0.45 0.99 0.73 0.98 0.55 0.01 0.27 0.02 0.97 0.28 0.56 0.93 0.62
np 100 0.50 0.99 0.76 0.97 0.50 0.01 0.24 0.03 0.97 0.30 0.60 0.94 0.68
sys 0 0.04 1.00 0.25 1.00 0.96 0.00 0.75 0.00 1.00 0.04 0.10 0.60 0.06
sys 25 0.27 1.00 0.69 0.99 0.73 0.00 0.31 0.01 0.99 0.20 0.43 0.88 0.47
sys 50 0.40 1.00 0.74 0.98 0.60 0.00 0.26 0.02 0.98 0.26 0.54 0.92 0.61
sys 100 0.50 0.99 0.77 0.98 0.50 0.01 0.23 0.02 0.97 0.31 0.61 0.94 0.69
np and system 0 0.39 1.00 0.67 0.99 0.61 0.00 0.33 0.01 0.98 0.25 0.50 0.89 0.51
np and system 25 0.49 0.99 0.76 0.98 0.51 0.01 0.24 0.02 0.97 0.30 0.60 0.94 0.68
np and system 50 0.53 0.99 0.77 0.97 0.47 0.01 0.23 0.03 0.97 0.31 0.62 0.94 0.70
np and system 100 0.55 0.99 0.77 0.97 0.45 0.01 0.23 0.03 0.96 0.32 0.63 0.95 0.72
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C.2 Overall Feature Importance

Table C.3: The percentage of times that each matrix and system feature was selected as an important

factor in assigning the classification label to the fastest solver-preconditioners regardless of core

count or system.

Feature overall 0 overall 25 overall 50 overall 100

HPL Tflops 0 0.01 0.02 0
StarDGEMM Gflops 0 0.015 0 0.12
SingleDGEMM Gflops 0 0.005 0 0
PTRANS GBs 0 0.04 0.105 0.135
MPIRandomAccess LCG GUPs 0.01 0.02 0 0
MPIRandomAccess GUPs 0.005 0.02 0 0.005
StarRandomAccess LCG GUPs 0 0.025 0.095 0.005
SingleRandomAccess LCG GUPs 0.17 0.395 0.01 0
StarRandomAccess GUPs 0 0.02 0.085 0.005
SingleRandomAccess GUPs 0.02 0.21 0.005 0
StarSTREAM Copy 0 0.005 0.02 0.01
StarSTREAM Scale 0 0 0.025 0.015
StarSTREAM Add 0 0 0.025 0.04
StarSTREAM Triad 0 0 0.01 0.01
SingleSTREAM Copy 0 0 0 0.13
SingleSTREAM Scale 0.015 0.035 0 0
SingleSTREAM Add 0.045 0.09 0.015 0
SingleSTREAM Triad 0.125 0.225 0.01 0
StarFFT Gflops 0.005 0 0 0
SingleFFT Gflops 0 0 0 0
MPIFFT Gflops 0.135 0.06 0.01 0.01
MaxPingPongLatency usec 0 0 0.13 0.11
RandomlyOrderedRingLatency usec 0 0 0 0
MinPingPongBandwidth GBytes 0.17 0.235 0.285 0.305
NaturallyOrderedRingBandwidth GBytes 0.435 0.57 0.565 0.505
RandomlyOrderedRingBandwidth GBytes 0.04 0.185 0.505 0.38
MinPingPongLatency usec 0.15 0.035 0 0.375
AvgPingPongLatency usec 0.01 0 0.04 0.36
MaxPingPongBandwidth GBytes 0 0.04 0.04 0.02
AvgPingPongBandwidth GBytes 0.07 0.125 0.12 0.075
NaturallyOrderedRingLatency usec 0 0.005 0.025 0.025
MemProc 0.035 0.045 0.075 0.24
core count 0.27 0.1 0.12 0.15
cpu freq 0.255 0.195 0 0.06
bogo mips 0.495 0.43 0 0.07
l1 cache 0 0 0 0
l2 cache 0 0 0 0
l3 cache 0.525 0.215 0.24 0.055
memory size 0.015 0.025 0.01 0.08
memory freq 0 0.005 0 0.06
memory type 0 0.005 0.01 0.07
rows 0.47 0.225 0.185 0
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cols 0.245 0.14 0.075 0
min nnz row 0 0.99 1 1
row var 0 0.095 0.025 0.02
col var 0 0.02 0.02 0.01
diag var 0 0 0 0
nnz 0 0 0.08 0.98
frob norm 0 0.005 0 0
symm frob norm 0 0.01 0.01 0.025
antisymm frob norm 0 0 0 0.165
one norm 0 0.255 0.2 0.16
inf norm 0 0.49 0.405 0.465
symm inf norm 0 0.13 0.29 0.255
antisymm inf norm 0 0 0 0.465
max nnz row 0.005 0.66 0.545 0.015
trace 0 0 0 0.01
abs trace 0 0 0 0
avg nnz row 0 0.11 0.005 0.005
dummy rows 0 0 0 0.305
dummy rows kind 0 1 1 1
num value symm 1 0 0.51 0.625 0.675
nnz pattern symm 1 0 0.255 0.275 0.235
num value symm 2 0 0 0.575 0.71
nnz pattern symm 2 0 0 0.31 0.345
row diag dom 0 0.21 0.22 0
col diag dom 0 0.99 1 1
diag avg 0 0.1 0.1 0.115
diag sign 0 0.47 0.47 0.715
diag nnz 0.24 0.635 0.475 0.36
lower bw 0.07 0.245 0.355 0.985
upper bw 0.025 0 0.305 0.995
row log val spread 0 0.73 0.675 0.25
col log val spread 0 0.3 0.545 0.76
symm 0 0.11 0.1 0.09
np 0.55 1 1 1
solver id 1 1 1 1
prec id 0.49 1 1 0.5
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C.3 NP Feature Importance

Table C.4: The percentage of times that each matrix and system feature was selected as an important

factor in assigning the classification label to the fastest solver-preconditioners at a given number of

cores, regardless of system.

Feature np 0 np 25 np 50 np 100

HPL Tflops 0 0 0 0
StarDGEMM Gflops 0 0.005 0.01 0.02
SingleDGEMM Gflops 0 0 0 0.005
PTRANS GBs 0 0.08 0.025 0.06
MPIRandomAccess LCG GUPs 0 0 0 0
MPIRandomAccess GUPs 0 0 0 0
StarRandomAccess LCG GUPs 0 0 0 0
SingleRandomAccess LCG GUPs 0.06 0 0.005 0.015
StarRandomAccess GUPs 0 0 0 0
SingleRandomAccess GUPs 0.01 0.005 0.01 0.01
StarSTREAM Copy 0 0.04 0.015 0.025
StarSTREAM Scale 0 0.03 0.005 0
StarSTREAM Add 0 0.01 0.03 0.015
StarSTREAM Triad 0 0.005 0 0
SingleSTREAM Copy 0 0.065 0.07 0.19
SingleSTREAM Scale 0.035 0 0 0
SingleSTREAM Add 0.145 0.005 0 0
SingleSTREAM Triad 0.28 0 0 0
StarFFT Gflops 0.035 0 0 0
SingleFFT Gflops 0 0 0 0
MPIFFT Gflops 0.355 0.07 0 0.025
MaxPingPongLatency usec 0 0.055 0.14 0.03
RandomlyOrderedRingLatency usec 0 0 0.005 0
MinPingPongBandwidth GBytes 0.075 0.21 0.155 0.18
NaturallyOrderedRingBandwidth GBytes 0.505 0.525 0.515 0.515
RandomlyOrderedRingBandwidth GBytes 0.01 0.215 0.45 0.23
MinPingPongLatency usec 0.135 0 0.18 0.28
AvgPingPongLatency usec 0.005 0.005 0.35 0.105
MaxPingPongBandwidth GBytes 0 0.01 0 0
AvgPingPongBandwidth GBytes 0.045 0.12 0.035 0.06
NaturallyOrderedRingLatency usec 0 0.005 0.04 0.005
MemProc 0.035 0.325 0.215 0.445
core count 0.155 0.37 0.24 0.215
cpu freq 0.275 0 0.025 0.01
bogo mips 0.495 0 0.05 0.015
l1 cache 0 0 0 0
l2 cache 0 0 0 0
l3 cache 0.295 0.4 0.05 0.075
memory size 0 0.25 0.14 0.205
memory freq 0 0.115 0.375 0.355
memory type 0 0.055 0.285 0.295
rows 0.52 0.12 0 0
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cols 0.245 0.09 0 0
min nnz row 0 0.46 0.505 0.995
row var 0 0.04 0.04 0.05
col var 0 0.02 0.02 0.02
diag var 0 0.015 0.005 0
nnz 0.005 0.005 0.06 0.485
frob norm 0 0.005 0.01 0
symm frob norm 0 0.005 0 0.005
antisymm frob norm 0 0.015 0 0.04
one norm 0 0.125 0.18 0.18
inf norm 0 0.34 0.32 0.28
symm inf norm 0 0.465 0.44 0.45
antisymm inf norm 0 0.055 0.03 0.515
max nnz row 0 0.05 0 0.33
trace 0 0.005 0 0
abs trace 0 0.005 0 0
avg nnz row 0 0.005 0 0
dummy rows 0.005 0.445 0 0.025
dummy rows kind 0 1 1 1
num value symm 1 0 0.625 0.635 0.62
nnz pattern symm 1 0 0.235 0.23 0.22
num value symm 2 0 0.71 0.765 0.76
nnz pattern symm 2 0 0.27 0.275 0.315
row diag dom 0 0.275 0.24 0.715
col diag dom 0 0.815 1 1
diag avg 0 0.095 0.08 0.1
diag sign 0 0.4 0 0.08
diag nnz 0.145 0.575 0 0.275
lower bw 0.075 0.24 0.395 0.94
upper bw 0.015 0.005 0 0.7
row log val spread 0 0.29 0.225 0.26
col log val spread 0 0.75 0.8 0.745
symm 0 0.125 0.13 0.155
np 0.535 0.02 0.82 1
solver id 1 1 1 1
prec id 1 1 0.79 0
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C.4 Sys Feature Importance

Table C.5: The percentage of times that each matrix and system feature was selected as an

important factor in assigning the classification label to the fastest solver-preconditioners for each

system regardless of np.

Feature np 0 np 25 np 50 np 100

HPL Tflops 0 0 0 0
StarDGEMM Gflops 0 0.005 0.01 0.02
SingleDGEMM Gflops 0 0 0 0.005
PTRANS GBs 0 0.08 0.025 0.06
MPIRandomAccess LCG GUPs 0 0 0 0
MPIRandomAccess GUPs 0 0 0 0
StarRandomAccess LCG GUPs 0 0 0 0
SingleRandomAccess LCG GUPs 0.06 0 0.005 0.015
StarRandomAccess GUPs 0 0 0 0
SingleRandomAccess GUPs 0.01 0.005 0.01 0.01
StarSTREAM Copy 0 0.04 0.015 0.025
StarSTREAM Scale 0 0.03 0.005 0
StarSTREAM Add 0 0.01 0.03 0.015
StarSTREAM Triad 0 0.005 0 0
SingleSTREAM Copy 0 0.065 0.07 0.19
SingleSTREAM Scale 0.035 0 0 0
SingleSTREAM Add 0.145 0.005 0 0
SingleSTREAM Triad 0.28 0 0 0
StarFFT Gflops 0.035 0 0 0
SingleFFT Gflops 0 0 0 0
MPIFFT Gflops 0.355 0.07 0 0.025
MaxPingPongLatency usec 0 0.055 0.14 0.03
RandomlyOrderedRingLatency usec 0 0 0.005 0
MinPingPongBandwidth GBytes 0.075 0.21 0.155 0.18
NaturallyOrderedRingBandwidth GBytes 0.505 0.525 0.515 0.515
RandomlyOrderedRingBandwidth GBytes 0.01 0.215 0.45 0.23
MinPingPongLatency usec 0.135 0 0.18 0.28
AvgPingPongLatency usec 0.005 0.005 0.35 0.105
MaxPingPongBandwidth GBytes 0 0.01 0 0
AvgPingPongBandwidth GBytes 0.045 0.12 0.035 0.06
NaturallyOrderedRingLatency usec 0 0.005 0.04 0.005
MemProc 0.035 0.325 0.215 0.445
core count 0.155 0.37 0.24 0.215
cpu freq 0.275 0 0.025 0.01
bogo mips 0.495 0 0.05 0.015
l1 cache 0 0 0 0
l2 cache 0 0 0 0
l3 cache 0.295 0.4 0.05 0.075
memory size 0 0.25 0.14 0.205
memory freq 0 0.115 0.375 0.355
memory type 0 0.055 0.285 0.295
rows 0.52 0.12 0 0
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cols 0.245 0.09 0 0
min nnz row 0 0.46 0.505 0.995
row var 0 0.04 0.04 0.05
col var 0 0.02 0.02 0.02
diag var 0 0.015 0.005 0
nnz 0.005 0.005 0.06 0.485
frob norm 0 0.005 0.01 0
symm frob norm 0 0.005 0 0.005
antisymm frob norm 0 0.015 0 0.04
one norm 0 0.125 0.18 0.18
inf norm 0 0.34 0.32 0.28
symm inf norm 0 0.465 0.44 0.45
antisymm inf norm 0 0.055 0.03 0.515
max nnz row 0 0.05 0 0.33
trace 0 0.005 0 0
abs trace 0 0.005 0 0
avg nnz row 0 0.005 0 0
dummy rows 0.005 0.445 0 0.025
dummy rows kind 0 1 1 1
num value symm 1 0 0.625 0.635 0.62
nnz pattern symm 1 0 0.235 0.23 0.22
num value symm 2 0 0.71 0.765 0.76
nnz pattern symm 2 0 0.27 0.275 0.315
row diag dom 0 0.275 0.24 0.715
col diag dom 0 0.815 1 1
diag avg 0 0.095 0.08 0.1
diag sign 0 0.4 0 0.08
diag nnz 0.145 0.575 0 0.275
lower bw 0.075 0.24 0.395 0.94
upper bw 0.015 0.005 0 0.7
row log val spread 0 0.29 0.225 0.26
col log val spread 0 0.75 0.8 0.745
symm 0 0.125 0.13 0.155
np 0.535 0.02 0.82 1
solver id 1 1 1 1
prec id 1 1 0.79 0
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C.5 NP and System Feature Importance

Table C.6: The percentage of times that each matrix and system feature was selected as an important

factor in assigning the classification label to the fastest solver-preconditioners specific to each np

and system.

Feature np and sys 0 np and sys 25 np and sys 50 np and sys 100

HPL Tflops 0 0.005 0 0

StarDGEMM Gflops 0.035 0.035 0.025 0.09

SingleDGEMM Gflops 0 0 0 0

PTRANS GBs 0.06 0.1 0.06 0.065

MPIRandomAccess LCG GUPs 0 0 0 0

MPIRandomAccess GUPs 0 0 0 0

StarRandomAccess LCG GUPs 0 0 0 0

SingleRandomAccess LCG GUPs 0.005 0.025 0.02 0.015

StarRandomAccess GUPs 0 0 0 0

SingleRandomAccess GUPs 0.02 0.03 0.01 0.005

StarSTREAM Copy 0.02 0.05 0.015 0.02

StarSTREAM Scale 0.01 0.065 0 0.005

StarSTREAM Add 0.01 0.055 0.03 0.025

StarSTREAM Triad 0.015 0.085 0 0.025

SingleSTREAM Copy 0.19 0.085 0.115 0.29

SingleSTREAM Scale 0 0 0 0

SingleSTREAM Add 0 0 0 0

SingleSTREAM Triad 0.005 0 0 0

StarFFT Gflops 0 0.005 0 0

SingleFFT Gflops 0 0.005 0 0

MPIFFT Gflops 0.025 0.015 0.02 0.015

MaxPingPongLatency usec 0.04 0.235 0.135 0.085

RandomlyOrderedRingLatency usec 0 0 0.005 0

MinPingPongBandwidth GBytes 0.14 0.11 0.21 0.18

NaturallyOrderedRingBandwidth GBytes 0.5 0.5 0.425 0.48

RandomlyOrderedRingBandwidth GBytes 0.33 0.39 0.355 0.245

MinPingPongLatency usec 0.26 0.265 0.33 0.38

AvgPingPongLatency usec 0.22 0.365 0.445 0.385

MaxPingPongBandwidth GBytes 0.01 0.01 0.01 0

AvgPingPongBandwidth GBytes 0.085 0.045 0.04 0.045

NaturallyOrderedRingLatency usec 0.02 0.075 0.04 0.005

MemProc 0.305 0.175 0.25 0.36

core count 0.295 0.215 0.21 0.105

cpu freq 0.04 0.03 0.015 0.05

bogo mips 0.045 0.095 0.085 0.095

l1 cache 0 0 0 0

l2 cache 0 0 0 0

l3 cache 0.13 0.14 0.085 0.075

memory size 0.185 0.125 0.135 0.145

memory freq 0.25 0.275 0.285 0.36

memory type 0.28 0.31 0.33 0.27

rows 0.005 0.015 0 0.05

cols 0 0.015 0 0.015
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min nnz row 0.77 0.975 0.985 1

row var 0.005 0.165 0.05 0.085

col var 0.035 0.205 0.015 0.24

diag var 0.07 0.145 0 0.245

nnz 0.025 0.34 0 0.285

frob norm 0 0.09 0.11 0.09

symm frob norm 0.01 0.12 0.24 0.065

antisymm frob norm 0.075 0 0 0.005

one norm 0.005 0.175 0.125 0.085

inf norm 0 0.195 0.175 0.115

symm inf norm 0 0.255 0.285 0.265

antisymm inf norm 0.325 0.615 0.455 1

max nnz row 0.08 0.915 0.47 0.99

trace 0.005 0.05 0.04 0.015

abs trace 0.005 0.005 0.04 0.025

avg nnz row 0.68 0.325 0 0.03

dummy rows 0.545 0.96 0.37 0.305

dummy rows kind 1 1 1 1

num value symm 1 0.165 0.58 0.6 0.59

nnz pattern symm 1 0.085 0.26 0.265 0.285

num value symm 2 0.455 0.74 0.76 0.73

nnz pattern symm 2 0.225 0.395 0.305 0.33

row diag dom 0.265 0.77 0.805 1

col diag dom 0.61 0.975 0.99 1

diag avg 0.005 0.195 0.385 0.205

diag sign 0.995 0.22 0 0.89

diag nnz 0 0.915 0.675 0.985

lower bw 0.625 0.615 0.1 0.965

upper bw 0.22 0.02 0.005 0.995

row log val spread 0.495 0.28 0.25 0.315

col log val spread 0.54 0.76 0.77 0.715

symm 0.045 0.16 0.135 0.125

np 1 0.985 0.985 1

solver id 1 1 1 1

prec id 1 1 0.445 0.49


