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Nanostructure liquid crystal composites are perfect for designing novel materials with pre-

defined properties that can be of substantial interest in many fields including materials science,

electronics, optics, and energy storage. Liquid Crystals (LCs) are a good candidate to work as a

host medium for nanoparticles with different properties given their low cost and facile responsive

characteristic to external stimuli such as voltages as low as one volt. Concentrated dispersions of

anisotropic gold, silver, and metal alloy nanoparticles in nematic hosts have been achieved and

successfully controlled using low-voltage fields. However, to enable versatile designs of material

behavior of these composites, simultaneous dispersion of anisotropic particles with different shapes,

alignment properties, and compositions is often needed. For example, integrated plasmonic gold

nanoparticles in the up-convergent nanoparticles (UCNPs) or quantum dots (QDs) semiconductor

matrices serves as nano antennae that can harvest the light energy to the nanostructured matrix

giving rise to potential applications. In this work, spectral characteristics of dispersions of multiple

types of anisotropic nanoparticles in a common nematic host LC provide an unprecedented variety

of electrically- and optically-tunable material behavior. Different composites of inclusions of plas-

monic gold nanorods, quantum dots, dyes will be explored and implementing such composites in

an inexpensive, energy-efficient, large-area, fast-switching smart windows applications, along with

exploring different self-assembled systems by entropically driven forces will be discussed. Overall,

utilizing LCs as a guest medium to these nanoparticles allows for unique features as well as promis-

ing properties through the design of novel self-assembly based hybrid nanostructures. This can give

rise to potential and practical applications for the fabrication of optical or electro-optical devices

such as climate dependent optimal solar gain smart windows, switchable plasmonic polarizers, and

may expand to further satisfy renewable energy needs.
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Chapter 1

Introduction

1.1 Liquid Crystals

Liquid crystals (LCs), or flowing crystals, [4] define a new state of matter with properties

in between those of ordered solid state and the disordered state of flow-like liquids. This interme-

diate state, also known as the fourth state of matter, acquires its properties from its constituents

and their order. For molecular LCs, molecules have an anisotropic shape that is either rod-like or

disk-like with dimensions in the nanometer range. Weak intermolecular enthalpic forces between

the molecules, such as hydrogen bonds or Van der Waals forces, give rise to an ordered LC phase,

namely an orientational order. While, enthalpic forces primarily drive this LC phase, an ordered

LC phase may also arise due to entropic driven forces, such as depletion attraction forces or ex-

cluded volume based forces, which contribute to the self-assembly of the anisotropic LC molecules

and give rise to the orientational order of the LC phase.

Despite the fact that in this LC phase, the anisotropic molecules are randomly positioned,

nonetheless, the molecules align with their long axis along a certain orientation. This orientation

is denoted by a director N, which presents the average orientation of local LC molecules, where N

is noted as a two-headed arrow along the orientation or alignment directionality, since the physical

properties of the molecules are the same in +N or −N. Fig 1.1(b) demonstrates a LC phase, also

noted as nematic phase, in comparison with the crystalline solid phase and isotropic liquid phase,

respectively, Fig. 1.1(a),(c).
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Fig. 1.1: A schematic diagram of LC phase in thermotropic LCs that are commonly known to be
temperature sensitive. With increasing temperature, the crystalline solid phase changes to the LC
phase, or nematic phase, then to isotropic liquid phase: (a) ordered solid phase, (b) nematic LC,
and (c) isotropic liquid phase. (d) Orientation distribution can be deduced by the molecules long
axis deviation from the local average orientation of LC molecules denoted by the director N. The
deviation of the LC molecules from N by an angle θ (top), and a molecular structure of a common
thermotropic LC known as pentyl cyanobiphenyl, or 5CB (bottom).

The orientation of the LC molecules are analyzed with a traceless tensor order parameter

that is used to describe the orientational order of the nematic LC. However, with certain LCs, such

as uniaxial LCs, it is sufficient to express this orientational order more simply with a scalar order

parameter S:

S = (3
〈
cos2 θ

〉
− 1)/2, (1.1)

where θ is the deviation of the long molecular axis from the LC local director N as shown in Fig.

1.1(d), which is the preferred orientation in a given LC volume. S can range from 1 to −1/2,

where 1 indicates complete crystalline order, 0 is an isotropic state, and −1/2 reflects the molecu-

lar orientations where the molecules long axes are in the plane perpendicular to the local director.

At the extreme ends of S values, S = 1 or 0, the LC loses its liquid crystalline phase, and the

constituents form either a crystal phase or a liquid phase, respectively. For the nematic LC phase,

on the other hand, S ranges between 0.3 and 0.9. Note that S can measure not only the order of

the LCs themselves, but also the orientational order of any inclusions of anisotropic nanoparticles

in the LC medium, at which case S will reflect how well these particles are aligned with respect to

N, as demonstrated in chapter two.
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LCs are ubiquitous in nature and have many different types that can be classified into categories

that depend on certain parameters, such as thermotropic LCs that depend on temperature, poly-

meric LCs that depend on their constituents, lyotropic LCs that depend on the concentration, and

so on. All of these categories exhibit physical properties, such as birefringence, dielectric anisotropy,

and optical and electronic properties that can be exploited for many different applications. Since

thermotropic LCs are utilized in many applications, such as LC displays, switchable smart windows,

or very sophisticated optoelectronic devices, they will be the focus of this work, and part of this

chapter is devoted to exploring their characteristics. This is followed by theoretical models that

explain LCs in general and their associated properties.

While the anisotropy of molecular constituents plays a major role in the formation of the LC

phase, thermotropic LCs mainly form through weak intermolecular interactions that are influenced

by temperature. Consequently, thermotropic LCs can be controlled by temperature to reach the

liquid crystalline phase. However, higher temperatures lead to increasing the Brownian motion,

resulting in a decrease in the orientational order of the LC phase until it falls off into the isotropic

phase, as shown in Fig. 1.1(b-c). The temperature range of the LC phase is Tm < T < Tc,

where Tm is the melting point after which a transition occurs from the solid state to the LC

phase. Tc, on the other hand, is the clearing temperature at which the LC phase turns into

an isotropic liquid and loses its long-range ordering and its properties. Different temperature

ranges will appear depending on the thermotropic LC itself. In general, a thermotropic LC can

be a monotropic if the LC state is thermodynamically stable. This means the LC phase can be

achieved by either cooling or heating below the clearing point or above the melting point of the

corresponding thermotropic LC, respectively. On the other hand, if the LC phase is metastable,

which is referred to as an enantiotropic state, then the LC phase occurs only via one end of the

transitions, cooling the isotropic phase to the liquid phase at the clearing temperature, for example.

Typically thermotropic LC molecules consist of a rigid head group, which is commonly composed

of several benzene derivatives and a hydrocarbon chain.
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Thermotropic LCs exhibit different mesophases. For example, they can be nematic, semectic

A, semectic B, cholesteric, etc. The cholesteric LC phase is basically a nematic phase of molecules

that are intrinsically chiral, or a nematic LC that is doped with either left- or right-handed chiral

dopants. This chirality leads to a twist across the bulk of the LC, where a full twist across the

bulk of the LC by 360◦ defines a single cholesteric pitch p, see Fig. 1.2(b). Cholesteric LCs are

extensively used in displays, where they can be actively tuned or pre-designed to have a specific

pitch value, typically in the micrometer range. However, once the pitch approximates the light

wavelength, the light polarization state can be modulated leading to different potential optical

applications, as demonstrated in chapter three.

Fig. 1.2: (a) The classic elastic distortions: splay, twist, and bend in LC, respectively. (b) An
illustration of a full twist of LC layers of 360◦ forming a pitch (p) along the chiral axis.

1.2 Dielectric Anisotropy, Birefringence, and Polarized Light

One of the main properties of a LC is its dielectric anisotropy. Generally, LC molecules

contain a small charge distribution that gives rise to small dipoles. Consequently, the dipoles give

rise to induced dipole-dipole interactions in the bulk of the LC. However, the dipoles can easily

be polarized with an external electric field. This polarizability differs along the long axes of the

molecule compared to their short axes. This polarizability also depends on the constituents of the

LC, and as a result of this difference in polarizability, LCs exhibit dielectric anisotropy ∆ε, where

∆ε = ε‖ − ε⊥. ε‖ and ε⊥ are the dielectric constants measured parallel and perpendicular to the
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electric filed E applied on the LC medium, respectively. To minimize the electrostatic energy in the

presence of the electric field, the molecules will have to reorient to be either along the electric field

direction (∆ε > 0) or perpendicular to it (∆ε < 0). This is an important feature in designing LC

panels with certain reactions to external stimuli and is extensively utilized already in LC displays

(LCD).

Another interesting property of LCs is their optical birefringence. Here, the light experiences

double refraction as it propagates through the LC medium where the light interacts with two

different refractive indices of the LC, no and ne. This birefringence given by ∆n, where ∆n = ne−

no, is established through the different refractive indices, where ne is an extra-ordinary refractive

index, while no is the ordinary refractive index. Consequently, the optically anisotropic medium

decomposes any polarization state of the incoming light into two different orthogonally polarized

components of ordinary and extraordinary rays, which travel at different speeds resulting in a phase

difference or retardation.

This retardation can be measured using a Polarized Optical Microscopy (POM) demonstrated

in Fig. 1.3(a). The the indecent light is polarized before it passes through a LC slab or cell,

where the LC is homogeneously aligned along a certain orientation, N0, here denoting the far field

director. When the polarized light is not parallel to N0, the light becomes elliptically polarized after

it passes through the LC slab. This results in transmitting selective components that are filtered

out through the analyzer, as illustrated in Fig. 1.3(b). Because the light experiences constructive

and destructive interferences, the light experiences a phase shift, which mainly depends on the

birefringence (|∆n|) and the thickness (t) of the LC slab. This is extensively described by the

Michel-Levy table that associates the wavelength of the light and transmitted colors with given

values of |δn| and t. This is useful for tuning the polarization state of the light passing through the

LC medium. [25] The retardation can be quantitatively measured by the following relation:

δ = (2π/λ)×∆n× t (1.2)

δ is the quantitative retardation of the light passing through the birefringent medium. From this
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equation, the greater the birefringence or the thickness, the more retardation light experiences. If

light propagates through 5CB (4-Cyano-4’-pentylbiphenyl), which is a common thermotropic LC,

for example, then the light encounters the short axis (fast axis), or the long axis (slow axis or optic

axis), or in between the two axes when the light propagates at a non-zero angle θ with respect to the

optical axis. Fig1.3(b) illustrates how light propagates in a LC medium between cross-polarizers.

In this case, an effective refractive index is considered

n2
eff =

n2
en

2
o

n2
e cos2 θ + n2

o sin2 θ
(1.3)

and the effective birefringence becomes ∆neff = neff − no. Given their uniaxial nature, LCs are

commonly known for having only one optical axis. These properties make LCs very attractive

and useful for many applications and make them the perfect candidate as a guest-host platform

to design new composites with unique properties, as will be demonstrated with examples in the

preliminary results.

Fig. 1.3: (a) An illustrations of the Polarized Optical Microscopy (POM) with a polarizer P
oriented orthogonally to the Analyzer A; as the LC sample rotates the transmission of the light
changes from dark state (N parallel to A or P) to a bright state (N at 45 degrees from ei-
ther A or P). The given LC sample here is a homogeneous planar LC cell, it can be of dif-
ferent alignment settings, and POM is useful in distinguishing LC orientations. Note that n1

and n2 correspond to ne and no, respectively. (b) Detailed illustrations of the light propagation
through the birefringent LC cell under crossed-polarized illumination (both images obtained from
https://www.microscopyu.com/techniques/polarized-light).
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1.3 Elastic and Surface Anchoring Energy of Liquid Crystals

In the nematic phase, the director field N is uniform as long as there are no defects or

distortions present. A penalty to introducing any deformation in the LC medium will increase the

free energy per unit volume of the uniformly aligned nematic LC, commonly referred to as free

energy density. The free energy density of the LC medium, F , can be written as

F = F0 + Fd + · · ·, (1.4)

where F0 is the free energy associated with the uniform undeformed director N of the nematic LC.

This free energy density can be considered as the ground state at which the LC free energy density

is minimal. Fd, on the other hand, is the free energy density of the elastically deformed nematic LC.

More deformation can be generated at surface boundaries or by applying external fields onto the

LC medium, for example. Consequently, an additional energy cost is introduced, and more terms

will contribute to the overall total energy density. Traditionally, the energy density of elastically

deformed LC can be presented by the Frank-Oseen free elastic energy density: [26]

Fd =
1

2
[K11(∇ ·N)2 +K22(N · (∇×N))2 +K33(N× (∇×N))2], (1.5)

where N is the LC director, and K11, K22, and K33 are the three main elastic constants, known

as Frank elastic constants associated with splay, twist, and bend, respectively. Each of them

corresponds to specific distortion in the nematic phase, see Fig. 1.2(a), in addition to mixed elastic

constants known as the splay-bend and saddle-splay constants, K13 and K24, respectively. Frank’s

constants have been measured for different nematic LCs with values around pN, see table 1.1, for

example. [27] With the one constant approximation, these three constants can be presented by

one constant K, reducing the Frank-Oseen equation to a shorter equation that characterizes and

quantifies the different distortions the LC “feels”:

Fd =
1

2
K[(∇ ·N)2 + (∇×N)2]. (1.6)
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Table 1.1: The main three Frank elastic constants for thermotropic LCs used in this manuscript;
5CB, E7, and AMLC0010 (MLC6609). Also, the ordinary and extraordinary values of refractive
indices of each LC.

As mentioned earlier, N is generally uniform in the absence of external fields; however, when

an external stimuli is applied, the orientation of the LC director is deformed. [11] This happens

when applying either an electric or magnetic field. For example, with the application of an electric

field across a nematic LC medium, there will be an additional electric free energy density added to

the Frank free energy. This electric free energy density is given by

Felec = −∆ε

2
(N ·E)2, (1.7)

where E is the electric field. This equation indicates that the director N changes its orientation

either along or perpendicular to E depending on whether the ∆ε value of the LC medium is positive

or negative, respectively. Different examples are presented in future chapters.

Additionally, N reorients close to interfaces between solid walls and LC. Treating the surfaces

of the cell walls forces specific orientation of N close to these surfaces compared to the bulk LC

medium. Likewise, N reorients at the surfaces of particles that are doped in the LC medium,

and its alignment depends on the surface treatment or functionalization of these particles. This

reorientation of N depends on the surface area and the strength of the surface anchoring. In

general, and in the proximity of any surface, LC molecules follow an easy axis that molecules follow

locally. There are different surface anchoring effects that force the director to align accordingly. For

example, if the orientation of the easy axis is perpendicular to the solid surface, then the surface

anchoring is said to be homeotropic, as illustrated in Fig. 1.4(b). If the easy axis is in plane of the

surface, then it is said to be planar anchoring, as shown in Fig. 1.4(c). The anchoring may be either

homogeneous or degenerate anchoring. For the degenerate anchoring case, multiple easy axes are
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associated with the different regions. Homogeneous homeotropic and planar surface anchoring are

studied for different LC cells in this thesis. The anchoring is said to be strong or weak, depending

on whether the nematic LC director is rigidly fixed along the easy axes or not. And the anchoring

free energy density is given by the Rapini-Popular relation:

F =
1

2
[Wp sin2(θ − θ0) +Wa sin2(ϕ− ϕ0)], (1.8)

where θ0 and ϕ0 are the polar and azimuthal angles describing the easy axis orientation, and θ and

ϕ describe the deviation of the nematic LC director from the easy axis, while W is the anchoring

strength coefficient measured in (J/m2). The study of surface anchoring is of great interest in many

LC device applications, though it is not fully understood. [28]

Fig. 1.4: (a) A schematic representation of the anchoring angles; polar angle θ and azimuthal
angle φ (b) and (c) show the anchoring of nematic LC on the surfaces within a cell after treating
these surfaces with appropriate polymers to induce the alignment needed close to the surfaces; (b)
Homeotropic anchoring, and (c) planar anchoring. The nematic LC director extends its orientation
to the bulk of the cell as a result of the long-range ordering to minimize the elastic energy of the
LC system.

1.4 Plasmonic nanoparticles

Nanoparticles usually range in dimensions from 1− 100 nm in size. In general, nanoparticles

show an intermediate behavior between that of bulk solids and that of atoms or molecules. The

study of nano-sized particles became possible with the assistance of different nano-technological

tools such as Scanning Electron Microscopy (SEM) and Tunneling Electron Microscopy (TEM).

Among the different nanoparticles used, plasmonic nano particles are of interest (and focused






















































































































































































































