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The U.S. decennial census is an invaluable source to guide demographic analysis. It 

enumerates demographic characteristics within different levels of geography to protect privacy. 

Small statistical units such as census tracts and blocks in different points in time are indispensable 

to analyze regional and local trends of demographic characteristics. However, the linkage between 

census demography and those geographies mandates that their boundaries change from one census 

year to another to reflect underlying population changes. This inconsistency complicates studies 

of micro-scale nuanced demographic processes. Previous research efforts have aggregated 

inconsistent census geographies to larger comparable units or used areal interpolation to transfer 

demographic attributes from geographies of one census year (source zones) to geographies of 

another (target zones). The former disrupts the required resolution for micro-scale analysis while 

the latter is susceptible to errors. 

This dissertation contributes analytical solutions to the above-mentioned persistent 

problem in enumerated data, typically used in demography, health sciences or economics. It 

combines spatial (dasymetric) refinement with areal interpolation methods to increase their 

accuracy in population estimation over time. This combination leads to a more precise allocation 

of population, which results in more reliable modeling for different configurations of target zones. 
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The research conducts comprehensive analyses involving various ancillary variables, namely the 

National Land-Cover Database (NLCD), the Global Human Settlement Layer (GHSL), parcels, 

buildings and ZTRAX®, to transfer different demographic attributes, namely total population, 

population by race and age structure and urban population from census tracts in 1990 and 2000 

within census tract boundaries in 2010 across different geographic scales (county/state) and under 

various demographic settings (urban/rural). This constructs demographic estimates within 

temporally consistent small units over 10- and 20-year periods. 

The outcomes of the research affirm the effectiveness of combining spatial refinement with 

areal interpolation for accurate multi-temporal demographic analysis. The application domain of 

the methodological advancements of this dissertation includes demography, risk assessments, 

resource allocation planning, crime analysis and economics, to name a few.    
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Chapter I 

 

 

Introduction 

 

1.1. General overview 

The U.S. Census Bureau, like numerous counterparts in different countries, provides 

important datasets describing the population at a given point in time that are useful for applications 

such as demographic analyses, health studies, crime analysis, hazard/risk assessment and land-use 

planning, to name a few. It publishes the data over a hierarchy of geographical units – from as 

large as census regions and counties to small blocks – in aggregated forms to provide useful 

summary statistics while protecting privacy. There is also a great demand in different research 

communities to carry out multi-temporal demographic analysis in order to characterize changes in 

population characteristics and how these changes relate to land-use, infrastructure or ecological 

characteristics. However, those levels that are released as small “statistical” units (e.g., census 

tracts, block groups and blocks) are often not temporally consistent because they are sensitive to 

changes in their underlying population distribution in contrast to coarse resolution geographical 

and political units such as counties (Gregory 2002, Martin et al. 2002, Schroeder 2007). That is, if 

the number of people in a statistical small unit such as a census tract increases between two census 
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years, enumeration boundaries may have to be adjusted; i.e., a tract will likely be divided to 

maintain the population counts within a given range. On the other hand, if its population declines, 

it will likely be merged with its neighboring tracts to meet the minimum population requirement 

of a census tract. Census units can also be changed through boundary shifts other than merges or 

splits. The consequent inconsistency of small statistical units over time impedes the effectiveness 

of investigating temporal changes of demographic attributes at fine analytical scales, and studies 

have relied on highly aggregated data (Exeter et al. 2005, Barufi et al. 2012) or accepted that the 

resulting estimates may have large errors (Gregory 2002).  

To characterize relevant demographic processes, the analyst needs the population data to 

be available for different points in time over long time periods and enumerated within temporally 

compatible small spatial units. Unfortunately, the availability of data with such characteristics is 

often limited. Spatial analytical methods such as areal interpolation have been developed in order 

to address the issue of incompatibility among various enumeration systems (e.g., Goodchild et al. 

1993, Maantay and Maroko 2009) or changing enumeration systems over time (e.g., Schroeder 

2007, Logan et al. 2014), but these methods are still sensitive to population changes and are error-

prone. Therefore, there is an urgent need for more advanced areal interpolation methods that make 

use of inherent characteristics of the collected data beyond its initial analytical scale as well as 

integrate external data to construct temporally compatible small area units that consistently 

decrease estimation errors. Such advancements are crucial for the effective and reliable 

characterization of different nuanced and micro-scale demographic processes, whose benefits are 

not limited to only demography, but can also include other domains such as health geography, 

crime analysis, urban planning and risk assessment, to name few. This constitutes the main 

motivation of this dissertation.  
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Recent research efforts have improved regular areal interpolation frameworks through the 

development of alternative weighting mechanisms (Schroeder 2007, Schroeder and Van Riper 

2013) and the integration of dasymetric refinement in temporal analysis of population estimates 

(Logan et al. 2014, Buttenfield et al. 2015, Ruther et al. 2015, Zoraghein et al. 2016, Schroeder 

2017). This dissertation provides a comprehensive study, targeting the applicability of spatial 

refinement in enhancing regular areal interpolation methods in various contexts, and advances the 

previous research efforts in several ways. First, several different ancillary variables with varying 

spatial resolutions, attributions and availabilities are employed for dasymetric refinement to 

demonstrate its effectiveness for temporal analysis. Second, this study develops advanced 

methodological extensions of existing areal interpolation frameworks to further reduce estimation 

errors. Third, the performances of the proposed individual methods are investigated across 

different settings of rural/urban characteristics. Fourth, various selected demographic variables in 

addition to total population are analysed and modeled. This will examine whether consistent multi-

temporal estimates at fine spatial resolutions for population subgroups related to race, age structure 

and urban residence can be produced reliably. Fifth, this dissertation also runs a case study on a 

natural hazard risk assessment, in which the proposed methodological frameworks are employed 

to derive reliable estimates of the population potentially exposed. If successful, such methods can 

be applied for exposure analysis in similar contexts including flood, erosion, fire, future climate 

change, etc. 

As a central component in this dissertation, it is explored how the accuracy of current areal 

interpolation methods can be improved by dasymetric refinement, leveraging different types of 

ancillary variables that have some type of relationship to the underlying population distribution. 

The goal is to identify the variables or combinations that enable the estimation of different 
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demographic attributes within temporally consistent small area census units from 1990 to 2010, 

with the minimum estimation error. This approach is particularly timely in a time of increasing 

data availability, reflecting land-use, land-cover or settlement patterns with national, continental 

and even global coverages available for different points in time. It is prudent to identify the 

potential of these data products in applications such as multi-temporal demographic analysis to 

examine the applicability in data poor regions of the world. Following this strategy, this study 

assesses the effectiveness of several available ancillary variables associated with the population 

distribution, including a global dataset, the Global Human Settlement Layer (GHSL) (Pesaresi et 

al. 2016), as well as a national layer, the National Land-Cover Database (NLCD) (Vogelmann et 

al. 2001). The study also examines the extremely fine-resolution ZTRAX® data (Zillow 2017), a 

proprietary database that is available for this research, as well as parcels and building footprints. 

These different variables are incorporated in the dasymetric refinement here to fully examine their 

influence on the overall accuracy of multi-temporal demographic analysis (Chapters 3, 4 and 5). 

Data integration also addresses the examination of different attributes of ancillary variables 

in addition to their geometric footprints, which extends the principle of dasymetric refinement 

using limiting ancillary variables to the use of related ancillary variables (Chapters 4 and 5). This 

approach explores the question if population estimation can become more accurate provided that 

ancillary variables characterize nuanced population characteristics. Composite approaches that 

combine different ancillary datasets to exploit their complementary effects on the dasymetric 

refinement process are also evaluated (Chapters 4 and 5). The performances of the proposed 

methodologies are explored for various geographic extents (county and state) (Chapters 3, 4, 5), 

time periods (1990-2010 and 2000-2010) (Chapters 3, 4, 5), demographic attributes (total 

population, population by race, age structure and urban residence) (Chapter 5), and residential 
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settings (urban and rural) (Chapter 4). 

The aforementioned novel approaches of data integration and data composition seek to 

address the “differences of spatial support”, as the fourth dimension of interoperability issues in 

the spatial analysis (Goodchild et al. 2005), in a temporal application domain, more effectively. 

This dissertation advances knowledge in existing concepts and methods of spatio-temporal 

demographic analysis at fine spatial resolutions while building a foundation to extend this analysis 

to long time periods and keeping estimation errors low. In addition to methodological 

improvements, the advanced areal interpolation frameworks have practical merits for applied 

science communities in geography, demography, urban planning and health research that are 

interested in studying the demographic evolution, by providing them with more accurate time 

series of different aspects of population at fine spatial resolutions. Moreover, generating consistent 

micro-scale estimates of population and its evolution provides important starting points for 

coupling them with environmental data to advance research in human-nature systems. This 

includes advancements in dynamic modeling systems of land-cover/land-use change for causal 

investigation of such relationships in complex systems. Importantly, the application domain of the 

proposed methodologies is not limited to the temporal interpolation of population. More broadly, 

any application in which researchers are interested in more accurate disaggregation of enumerated 

variables can benefit from the findings of this dissertation. 

This dissertation also benefits non-academic communities and the public in general. It can 

inform the public about new insights of the evolution of different demographic aspects of the 

American society over time at a scale meaningful for demographic processes. This cannot be done 

using the current census data alone. Such insights may become important to better understand 

social impacts on population groups, environmental injustice issues or the effectiveness of resource 
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allocation programs that has the potential to improve planning efforts and may result in better 

outcomes for city and regional planners.  

1.2. Research questions 

This dissertation addresses various methodological challenges related to data integration 

as well as interpolation procedures required with the objective of improving the accuracy of areal 

interpolation methods using dasymetric refinement for multi-temporal analysis of population 

characteristics. The following research questions guide the research of this dissertation: 

Research question 1: How effectively can different types of ancillary variables be used for 

spatial refinement to systematically improve the accuracy of regular areal interpolation methods? 

What lessons can be learned about the applicability of different ancillary variables in different 

geographic and demographic settings? 

To answer this question, various ancillary variables are incorporated into the dasymetric 

refinement framework, and the results are compared. This includes globally and nationally 

available datasets such as GHSL and NLCD as well as local datasets such as ZTRAX®, building 

footprints and parcels. Error measures are calculated for each implementation, and the 

effectiveness of each of these different ancillary variables is evaluated. 

Moreover, the selected ancillary variables offer distinct spatial resolutions. While the 

resolutions of the grid-based NLCD, converted ZTRAX® and GHSL are constant, parcels and 

building footprints have a certain variability in areal extents, with buildings being the most precise 

delineation of the human settlement. This allows a cross-resolution comparison to better 

understand the effectiveness of different ancillary variables employed in different interpolation 

methods.      
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Research question 2: How can existing approaches of dasymetric refinements in multi-

temporal demographic analysis be extended to also incorporate land-use related attributes of 

ancillary variables in addition to their geometric footprints? What is the gain in accuracy from 

such an extended integration? 

Expectation Maximization (EM) (Dempster et al. 1977, Flowerdew and Green 1994, 

Schroeder and Van Riper 2013) is the main framework used in this dissertation to utilize 

heterogeneous land-cover/land-use types of ancillary variables in addition to their geometric 

footprints, when applicable. The algorithm differentiates between land-cover/land-use types by 

assigning distinctive population density weights to them according to their likelihood of population 

residence. In other words, ancillary datasets are not employed as the limiting variable by solely 

constraining where the population resides; rather, they are treated as the related variable by 

amplifying or curtailing the likelihood of the population settlement (Leyk, Buttenfield, et al. 2013).  

The performance of the algorithm is assessed across different geographic and demographic 

settings and compared to other dasymetrically refined areal interpolation methods. In this 

dissertation, EM is also improved by introducing the Enhanced Expectation Maximization (EEM) 

to tap into the potential accuracy gain of using related ancillary variables in a more complex 

fashion and more adequately.  

Research question 3: How can the effectiveness of dasymetric refinement be improved in 

rural areas typically associated with lower accuracy due to the lack of ancillary variables or the 

chronic under- or overestimation of population in such settings? 

Land-cover based datasets such as NLCD under-estimate developed lands in rural areas 

due to their misclassification errors. On the other hand, parcels over-estimate those lands because 

of typical large rural lots (Leyk et al. 2014). These issues, coupled with low population counts, 
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result in lower overall accuracy of rural population estimations (Tapp 2010). In this dissertation, a 

composite approach using NLCD, parcels and road networks is established to evaluate if higher 

accuracy levels can be achieved in rural areas by using the complementary refinement effects of 

the three datasets.     

Research question 4: How stable is the effect of spatial refinement across different 

geographic scales and in estimating additional demographic attributes other than total 

population? Does this framework allow for coupling between demographic and environmental 

data to analyze more complex relationships? 

The proposed methodologies are implemented in both county-scale and state-scale 

applications to investigate the robustness of combining dasymetric refinement with temporal areal 

interpolation in reducing population estimation errors, both among counties with distinct spatial 

and demographic characteristics and across different geographic scales. 

Moreover, the enhanced methods are operationalized for demographic attributes other than 

total population counts, including population based on race, age structure and urban residence, to 

assess the stability of their efficacy in error reduction across various demographic estimates. 

Furthermore, the improved areal interpolation methodologies are coupled with an environmental 

dataset, i.e., flood zones in Massachusetts, to estimate potentially exposed population counts for 

different race and age-related sub-groups, based on tract-level data. The outcomes of this analysis 

are compared to more refined block-based estimated counts to evaluate the applicability of tract-

based analyses where blocks are not available.    

Research question 5: By making the methodological frameworks operational for multiple 

demographic attributes and over different time-periods, what expectations exist related to the 

uncertainty inherent to the population estimates produced?  
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As suggested by Schroeder (2007), several factors affect the uncertainty involved in 

temporal areal interpolation of population over census years. This dissertation estimates different 

demographic attributes over two time periods (1990-2010 and 2000-2010) at the census tract level 

and evaluates the magnitude of accuracy gains offered by the proposed methodologies. 

Particularly, the level of accuracy gains in temporal interpolation of population over the shorter 

time period (2000-2010), and presumably lower levels of inconsistency of census boundaries, is 

compared to that related to the longer period (1990-2010). Moreover, accuracy gains are compared 

between different demographic attributes with varying population counts. Such comparisons could 

shed light on what circumstances require the employment of the dasymetric refinement prior to 

areal interpolation, as the process is both time- and data-demanding. 

1.3. Structure of the dissertation 

Chapter two provides a literature review of the relevant applied and theoretical work for 

this dissertation and a detailed background on areal interpolation, dasymetric modeling and its 

applications in the temporal interpolation of population, found in recent research. Chapters three, 

four, and five present the different stages of the development and application of the proposed 

methodologies for the temporal estimation of population. Each of these three chapters is presented 

as a stand-alone paper that describes in-depth technical details, methodological components and 

experimental applications of the methods. 

Chapter three details the conceptual and algorithmic foundation for interpolating total 

population estimates of census tracts in 2000 within census tract boundaries in 2010 to construct 

temporally consistent total population estimates at the small area tract level in Hennepin County, 

Minnesota. The methodological framework implemented in this chapter is a continuation of 

previous research efforts such as Buttenfield et al. (2015) and Ruther et al. (2015). However, parcel 



10 

 

footprints are used as the main ancillary variable to mitigate the underestimation artifact of using 

NLCD in rural settings (Leyk et al. 2014). First, regular areal interpolation methods such as Areal 

Weighting (AW) (Goodchild and Lam 1980), Pycnophylactic Modeling (PM) (Tobler 1979) and 

Target Density Weighting (TDW) (Schroeder 2007) are dasymetrically refined using parcels and 

NLCD separately. Second, their resulting accuracy measures are compared. This helps answer if 

either ancillary variable is dominantly more efficient across the algorithms, and if not, under which 

circumstances, one ancillary variable performs more accurately then the other. 

This chapter treats both ancillary variables as the limiting variable, implying that 

population is distributed equally over the inhabitable land without considering different land-

cover/land-use types that can have their own specifications of the human settlement. 

Chapter four extends the conceptual foundation developed in Chapter three and addresses 

the associated challenges. It conducts three levels of spatially refined areal interpolation methods 

in five counties with distinct demographic features, namely Hennepin County, Minnesota, 

Mecklenburg County, North Carolina, Broward County, Florida, Hillsborough County, Florida 

and Worcester County, Massachusetts for the two time periods of 1990-2010 and 2000-2010. The 

first level of spatial refinement is the same as Chapter three. The second level uses EM to take into 

account varying population density weights associated with different housing characteristics of 

parcels. For instance, the population density weight assigned to condominiums differs from the 

one assigned to sing-family residences, and these variations are addressed by using the utilized 

algorithmic framework. EEM, which is an advancement of EM, is also introduced to offer a more 

reliable methodology to leverage the related ancillary variable. Finally, the third complementary 

spatial refinement, which is a composite approach making use of parcels, NLCD and road 

networks, is formulated to reduce population estimation errors in rural settings. The outcomes of 
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the methods are compared between the different study areas and over the two time durations. 

Chapter five puts all the frameworks established in Chapters three and four in an 

application-oriented domain. This chapter pursues several goals, but all of them can be situated 

within one primary objective, which is to assess the stability and robustness of the proposed 

methodologies under varying circumstances. It first increases the geographic scale by carrying out 

the methods over the whole state of Massachusetts. It also employs multiple ancillary variables, 

including NLCD, GHSL, census-defined urban areas, parcels, building footprints and ZTRAX®, 

with distinctive characteristics in terms of their availability and spatial resolution, to objectively 

quantify the effectiveness of each dataset in improving the overall accuracy of the temporal 

estimation of population. Particularly, ZTRAX® is a unique and rich dataset, describing housing 

properties, provided by the Zillow® research group (Zillow 2017), whose potential for improved 

multi-temporal demographic analysis is explored in Chapter five. 

In addition to total population, other demographic attributes including population counts 

by race, age structure and urban residence are input to the temporal interpolation context. The 

reliability of the census-defined urban areas in 1990, 2000 and 2010 in delineating urban lands is 

also investigated by the algorithmic frameworks. Finally, the proposed methodologies are tested 

in an environmental injustice application to investigate if certain sub-groups of population are 

disproportionately exposed due to elevated flood risks.  

The numerous implementations of the enhanced methods tested in this chapter shed light 

on which methods are most effective under which circumstances. The outcomes provide 

opportunities to justify the employment of the dasymetric refinement prior to areal interpolation 

given their data and processing time entailments. They also point to the performances of GHSL 

and NLCD, which can be leveraged in data-poor regions as opposed to more precise datasets such 
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as parcels, building footprints and ZTRAX®. 

Moreover, this chapter shows how tract-based population counts for different demographic 

sub-groups estimated to reside in flood zones mimic the corresponding block-based reference 

estimates in 1990 and 2000. This allows the extension of the analysis back to earlier census years, 

when census blocks had not been collected nationally, or other census systems that don’t have 

similar fine-resolution enumeration units. 

Chapters three, four and five document the formulation of the proposed methodologies and 

illustrate how they can be applied to different population interpolation tasks. A broad discussion 

of the findings of the three chapters is presented in Chapter six, in which the different research 

questions posed above are revisited to systematically evaluate the research efforts and results of 

this dissertation. This is followed by conclusions for the dissertation. 
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Chapter II 

 

 

Literature Review 

 

This research is broadly situated in the literature on areal interpolation and dasymetric 

modeling in spatial analysis but has the main objective of contributing to the temporal 

demographic analysis using enumerated data that commonly suffer from boundary inconsistency 

over time. Therefore, first, the important and fundamental research efforts in areal interpolation 

and dasymetric modeling are briefly reviewed. Specific focus in this chapter is then given to 

discuss the different methodological ways of integrating these two modeling techniques to develop 

a technical framework for the temporal interpolation of population data that are initially 

inconsistent among different census releases. 

2.1. Census Geography and Census Demography 

The primary sources of spatio-demographic information in the United States are decennial 

censuses. The U.S. Census Bureau provides data as a series of summary text files labeled from 1 

to 4. These text files provide information at different levels of spatial geography that include census 

blocks, as the smallest census unit, to as large as the entire United States (U.S. Census Bureau 

2010a). Demographic characteristics are summarized and reported over geographies to protect 



14 

 

privacy, and can be based on 100% data (e.g., summary files 1 and 2) or sample data (e.g., 

summary files 3 and 4) (U.S. Census Bureau 2010b).  

From the various geographical units provided by the U.S. Census, the two units that are 

used in this dissertation are census tracts and census blocks, and both are considered statistical 

small area units. Census tracts are small, relatively permanent statistical sub-divisions of a county 

or equivalent entity that are updated by local participants prior to each decennial census. Census 

tracts generally have a population size between 1200 and 8000 people, with an optimum size of 

4000 people. The spatial size of census tracts varies widely depending on the density of settlement 

(U.S. Census Bureau 2012). On the other hand, census blocks are the smallest and most numerous 

unit by a large margin. For instance, in 2000 census data, there were over 8 million blocks, 39 

times more than the next most numerous unit, block groups (Schroeder 2017). The nation-wide 

temporal availability and the number of demographic attributes offered by blocks are more limited 

than tracts (U.S. Census Bureau 2010b, Minnesota Population Center 2016). 

To study local and regional trends of demographic characteristics, the demographic 

summary data enumerated over census small geographies are a vital resource. However, the 

linkage between census demography and census geography necessitates that small statistical units 

should change from census year to another to reflect underlying population changes. These 

boundary changes can be in the forms of split (population growth), merge (population decline) or 

other complex types (Zoraghein et al. 2016). For example, although census tracts are designed to 

be stable, almost 53% of 2000 census tracts – about 35000 out of 66000 – are not directly 

comparable with a 1990 census area (Schroeder 2007). This phenomenon complicates micro-scale 

multi-temporal analysis of demographic processes (Gregory 2002, Martin et al. 2002, Schroeder 

2007, 2017). Thus analytical solutions to this persistent problem, such as areal interpolation and 
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dasymetric modeling, should be provided and enhanced.  

2.2. Areal interpolation in spatial analysis 

Areal interpolation is the process of transferring data aggregated over one set of areal units 

(source zones) to incongruent target zones (Lam 1983). Areal interpolation is specifically devised 

to address the change of support problem, which is concerned with inferences of values at or for 

locations different from those at which values have been originally observed (Gelfand et al. 2001), 

such as inconsistency between census units and hazard zones (e.g., Maantay and Maroko 2009, 

Mennis 2015), temporal inconsistency between census boundaries from different census years 

(e.g., Gregory 2002, Martin et al. 2002), and disaggregation of enumerated population to grid cells 

(e.g., Bhaduri et al. 2007, Dmowska and Stepinski 2017). More specifically, Mrozinski and 

Cromley (1999) describe different geometric situations to estimate unknown areal values that 

necessitate the implementation of areal interpolation methods; i.e., the missing data, alternative 

geography and intersection problem.  

Figure 2.1 shows the two broad categories of areal interpolation methods as indicated by 

Lam (1983). According to Figure 2.1, the areal interpolation framework is divided into non-

volume-preserving and volume-preserving methods.  
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Figure 2.1. Hierarchical categorization of the areal interpolation framework 

Point-based areal interpolation approaches first assign a representative control point to each 

source zone. Point interpolation schemes are then applied to interpolate the value at each grid node. 

Finally, the estimates of the grid points are averaged or aggregated within each target zone, 

yielding the final target-zone estimate. These approaches are not volume-preserving 

(pycnophylactic), meaning that if they are applied to a source zone, they don’t necessarily calculate 

its exact value. In this study, the focus is placed on volume-preserving areal interpolation methods.     

Areal Weighting (AW) (Goodchild and Lam 1980) is the most preliminary volume-

preserving areal interpolation method, in which values of target zones are estimated proportionally 

based on areas of their intersections with source zones. The method’s main drawback is the 

assumption that the attribute of interest is uniformly distributed within each source zone. Even 

though it performs poorly in most evaluations (Fisher and Langford 1995, Langford 2006, Kim 

and Yao 2010), it is frequently used because of its low data requirements and processing time.   

Pycnophylactic Modeling (PM) (Tobler 1979), on the other hand, assumes the existence of 

a smooth volume-preserving population density surface and incorporates the densities of adjacent 

zones. The algorithm derives the density surface in an iterative process, which then can be 
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aggregated to any arbitrary set of target zones. The regular PM procedure is grid-based, extended 

to a surface representation based on a triangulated irregular network (TIN) by Rase (2001). 

Moreover, Kim and Yao (2010) combine PM with dasymetric modeling and report on accuracy 

gains in population estimation.  

Schroeder (2007) introduces Target Density Weighting (TDW) as an areal interpolation 

method appropriate for temporal analysis of population data. The method extends “target count 

weighting”, a term introduced by Schroeder (2007) for a technique described in Howenstine (1993) 

and Mugglin and Carlin (1998), which assumes that all target zones nest within source zones. 

TDW is designed to address the change of support problem in a temporal context, mainly used for 

establishing temporally consistent demographic estimates within misaligned units from different 

census years. It assumes that the ratios of population densities of atoms (intersections of source 

and target zones) to source zones remain constant over time. Based on previous studies, TDW 

often outperforms AW (Schroeder 2007, Schroeder and Van Riper 2013), suggesting that it is more 

reasonable to assume that the rate of change of the variable of interest is constant for atoms than 

to assume that the variable is homogeneously distributed within source zones.  

 Regression-based frameworks have also been developed for areal interpolation. 

Krivoruchko et al. (2011) report on the applicability of several areal kriging approaches, namely 

the Gaussian areal kriging, overdispersed Poisson areal kriging and binomial areal kriging models. 

Kyriakidis (2004) formulates areal interpolation as a geostatistical area-to-point kriging problem 

and Yoo et al. (2010) show how geostatistical methods are by design pycnophylactic. Other 

examples of using regression-based frameworks for areal interpolation point to the Geographically 

Weighted Regression (GWR) framework (Fotheringham et al. 1992) modified by Lin et al. (2011) 

in order to make it volume-preserving and the quantile regression by Cromley et al. (2012). 
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However, given the complexity and subjectivity typically involved in statistical techniques, 

previous research has shown that this type of methods tends to be outperformed by or does not 

offer much improvement over dasymetric modeling (Lin et al. 2011). 

2.3. Dasymetric modeling as a special type of areal interpolation 

As noted above, the main application of areal interpolation is to transfer population values 

from source zones to target zones. So-called “simple” areal interpolation methods do not exploit 

any supplementary data in the process (Okabe and Sadahiro 1997). However, population 

distribution can often be explained by other socioeconomic phenomena. Thus, incorporating 

associative ancillary variables can shed light on the underlying population distribution, thereby 

increasing the accuracy of areal interpolation (e.g., Flowerdew et al. 1991, Goodchild et al. 1993, 

Xie 1995, Eicher and Brewer 2001, Mennis 2003). Such integration will also alleviate the 

Modifiable Areal Unit Problem (MAUP) (Openshaw and Taylor 1979, Openshaw 1984), which is 

a special case of the Change Of Support Problem (COSP) (Anselin 2002). According to MAUP, 

spatial analysis using zonal data (e.g., census units) might lead to biased estimation outcomes 

depending on the configuration and size of the zones. One solution to alleviate this issue, which is 

typically applied in dasymetric modeling, is to transform the aggregated data enumerated within 

arbitrary units to those that may be more relevant in reflecting the spatial distribution of the 

variable of interest defined by ancillary variables (Wu and Murray 2005, Su et al. 2010). 

Dasymetric modeling was first developed in the early 20th century as a cartographic 

technique aimed at addressing some of the issues associated with choropleth mapping (Semenov-

Tian-Shansky 1928, Wright 1936). Fisher and Langford (1995) demonstrate how the principles of 

the technique can also be used to enhance areal interpolation algorithms. It assumes an association 

between the population distribution and ancillary data to create zones that are internally 
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homogenous and externally heterogeneous, and this usually reflects the underlying statistical 

surface more precisely (Eicher and Brewer 2001, Mennis and Hultgren 2006). Two types of 

ancillary data can be used in dasymetric modeling, namely the limiting ancillary variable and the 

related ancillary variable. The former determines where the population resides and where it is 

absent, which requires a recomputation of population density variables within spatially constrained 

areas and has been used in numerous research studies (e.g., Langford 2007, Kim and Yao 2010, 

Ruther et al. 2015). The latter has a more complex association with the population distribution and 

can both amplify and reduce the likelihood of population presence and population densities (Leyk, 

Buttenfield, et al. 2013, Nagle et al. 2014). One of the main challenges in employing related 

ancillary variables is the lack of available data that would allow the analyst to establish and utilize 

statistical relationships between such variables and population characteristics. Recently, important 

progress has been made on this topic and resulted in more accurate fine resolution population 

counts as well as more differentiated uncertainty analysis in different settings (Leyk, Nagle, et al. 

2013, Schroeder and Van Riper 2013, Nagle et al. 2014) 

Dasymetric modeling has gained popularity recently with the increased availability of 

spatial data from mapping agencies, open source data, and remote sensing data products (Mennis 

2009, 2015, Langford 2013), as well as significant advancements in estimation techniques (Kim 

and Yao 2010, Leyk, Nagle, et al. 2013). Land-cover/land-use data is the most widely used 

ancillary variable in dasymetric modeling (Mennis 2003, Bian and Wilmot 2017, Dmowska and 

Stepinski 2017). There are numerous research efforts in the literature of dasymetric modeling, 

leveraging land-cover/land-use data and its products for population disaggregation (e.g., Mennis 

2003, 2009, Reibel and Agrawal 2007, Linard et al. 2011, Buttenfield et al. 2015, Ruther et al. 

2015, Dmowska and Stepinski 2017). The other types of ancillary data used in dasymetric 
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modeling include but are not limited to street networks (e.g., Xie 1995, Cromley and McLafferty 

2002, Reibel and Bufalino 2005), Landsat TM imagery (Harvey 2002), imperviousness surfaces 

(e.g., Zandbergen and Ignizio 2010, Schroeder 2017), address points (e.g., Tapp 2010, Zandbergen 

2011), high resolution satellite images (Lu et al. 2010, Ural et al. 2011, Lung et al. 2013), night-

time lights (e.g., Zandbergen and Ignizio 2010, Wu et al. 2017), LiDAR (e.g., Dong et al. 2010, 

Qiu et al. 2010, Sridharan and Qiu 2013, Xie et al. 2015), tax parcel data (e.g., Maantay et al. 

2007, Kar and Hodgson 2012, Mitsova et al. 2012, Jia et al. 2014, Jia and Gaughan 2016, 

Zoraghein et al. 2016), buildings (e.g., Wu et al. 2008, Calka et al. 2016), VGI (e.g., Bakillah et 

al. 2014, Lin and Cromley 2015, Geiß et al. 2016) and miscellaneous datasets composed of 

topography, land-cover/land-use and transportation layers (e.g., Bhaduri et al. 2007, Su et al. 

2010).  

The main task in dasymetric modeling is to establish correlations between ancillary and 

population data. The most preliminary and widely used approach is to assume a binary relationship 

between the two datasets (Langford 2013); i.e., population is not apportioned to presumably 

uninhabitable areas and instead is assigned homogeneously to the rest. The three-class and limiting 

variable methodologies are extensions to the binary variant, but still use subjective decisions to 

allocate population density weights to different classes of the ancillary dataset (Eicher and Brewer 

2001). This limitation is partially overcome by empirical sampling (Mennis 2003, Mennis and 

Hultgren 2006) or statistical regression (Yuan et al. 1997, Harvey 2002, Langford 2006) 

frameworks. The former empirically samples representative units per ancillary data type and 

derives population density weights for different types using their corresponding units. The latter 

may produce negative population estimates and does not preserve data volumes, i.e., the 

pycnophylactic property, globally or locally. They usually require a posteriori coefficient 
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adjustments to maintain volume-preserving requirements. Flowerdew and Green (1994) adopt the 

Expectation Maximization (EM) algorithm (Dempster et al. 1977) to assign density weights, which 

incorporates ancillary data directly in an optimization process. There also exist examples using 

geostatistical methods such as co-kriging (e.g., Wu and Murray 2005, Liu et al. 2008), maximum 

entropy (Leyk, Nagle, et al. 2013) or a multi-layer multi-class framework described in Su et al. 

(2010) that attempt to establish associations between ancillary variables and population 

characteristics.  

2.4. Combining dasymetric modeling and classical areal interpolation techniques for 

improved temporal estimation of population characteristics 

Dasymetrically refined areal interpolation methods have recently been used in temporal 

contexts to construct compatible population estimates from initially misaligned census units with 

lower estimation errors. This has significant applications for geographers, demographers and urban 

planners interested in analyzing underlying demographic processes. In addition to the contextual 

applications of the approach, such spatially refined interpolations mitigate the MAUP issue to 

some degree because only inhabitable sub-areas of source and target zones are used, which are 

assumed to be more closely related to the spatial distribution of population than the unrefined 

zones. 

Holt et al. (2004) use satellite-derived land-cover/land-use data to map population densities 

using dasymetric modeling for different time periods. They present three years of census data 

(1980, 1990 and 2000) in one set of common census tracts (1990) with a satisfactory level of 

accuracy. Schroeder (2007) formulates TDW specifically for temporal analysis of census data and 

produces estimates of compatible populations between the census years 1990 and 2000. Ruther et 

al. (2015) and Buttenfield et al. (2015) spatially refine incongruent census units using the National 
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Land-Cover Database (NLCD). They then apply common areal interpolation methods such as AW, 

TDW, PM and EM to different counties in the United States with varying population 

growth/decline patterns. They report on accuracy gains using dasymetric refinement for 

establishing consistent population estimates during the 1990-2010 time period. Zoraghein et al. 

(2016) extend this work, but use parcel footprints for dasymetric refinement – as a different 

ancillary variable with distinct potentials – and report on higher accuracy improvements in 

temporal analysis of population for 2000-2010. To generate a consistent longitudinal time series 

of population at the census tract level from 1970 to 2010, Logan et al. (2014) use two approaches, 

i.e., AW and a more sophisticated areal interpolation approach that takes into account the auxiliary 

distribution of population by blocks. They demonstrate the effectiveness of their proposed 

approach for large areas. Logan et al. (2016) report on the effectiveness of their approach 

formulated in Logan et al. (2014) and methodologies used in the National Historical Geographic 

Information Systems (NHGIS) in comparison to the preliminary AW approach for establishing 

consistent population estimates from 2000 to 2010 at the census tract level. Schroeder and Van 

Riper (2013) devise hybrid approaches of GWR, EM and TDW to exploit the complementary 

benefits of each separate method and show higher accuracy attainments by their developed 

methods in temporal estimation of census tract populations between 1970 and 1980. The 

development of hybrid approaches of the binary dasymetric modeling and TDW using composite 

ancillary datasets such as imperviousness data, road buffers and water polygons is further pursued 

by Schroeder (2017) to produce high-quality block-based estimates of 2000 census counts for 2010 

units, and resulting accuracy improvements are documented.  

 All these research efforts stress the importance of generating compatible population data 

over time to analyze micro-scale demographic patterns over small census geographies. They have 
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been successful in improving the accuracy of multi-temporal population estimation compared to 

using regular areal interpolation methods. However, an in-depth research effort aiming to employ 

different combinations of available ancillary data sources and algorithmic frameworks to improve 

the accuracy of the interpolation process further for different aspects of census demography and 

under various geographical and demographical circumstances is still required.    
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Chapter III 

 

 

Exploiting Temporal Information in Parcel Data to Refine Small Area 

Population Estimates 

 

Abstract1 

Temporal analysis of small-area demographic data commonly relies on areal interpolation 

methods to create temporally consistent and compatible areal units. In this study, cadastral (parcel) 

data are used to identify residential land and to dasymetrically refine census tracts, with the goal 

of achieving more accurate small-area estimates. The built date recorded for residential parcel units 

is used to create residential land layers for two different time points used in the areal interpolation. 

Three different areal interpolation methods are employed with and without dasymetric refinement, 

including areal weighting (AW), target density weighting (TDW) and pycnophylactic modeling 

(PM). The methods interpolate tract-level population counts in Hennepin County, Minnesota, in 

2000 into census tract boundaries from the year 2010. The mean absolute error, median absolute 

                                                 

1 This chapter was published as a journal paper: 

Zoraghein, H., Leyk, S., Ruther, M., and Buttenfield, B.P., 2016. Exploiting temporal 

information in parcel data to refine small area population estimates. Computers, Environment 

and Urban Systems, 58, 19–28. DOI: 10.1016/j.compenvurbsys.2016.03.004 
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error, root mean square error and the 90th percentile of absolute error are calculated for each of the 

methods, and spatial variation in the interpolations are displayed in maps. Parcel-based 

refinements are also compared with refinements using the National Land Cover Dataset (NLCD). 

Results show that spatial refinement using residential parcels has the potential to improve 

the accuracy of areal interpolation for temporal analysis. Parcel-refined TDW out-performs the 

other tested methods, as well as the NLCD-refined TDW in this example. Parcel data identify 

residential land more reliably in rural areas. However, parcel units can have very large extents 

potentially biasing residential area delineation and population counts. Parcel-based refinement has 

the potential to further advance demographic change analysis over long time periods and large 

areas where the built date attribute is included in the dataset. 

Keywords: Areal Interpolation; Spatial Refinement; Census Units; Temporal Analysis; 

Population 
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3.1. Introduction 

Numerous pressing research questions in population studies, urban planning and public 

health require an in-depth understanding of demographic processes. Researchers must rely on data 

collected at predefined spatial resolutions in characterizing the process of interest which may 

operate at a different scale (Maantay et al. 2007, Giordano and Cheever 2010). In order to describe 

demographic change reliably, population data must be available for different points in time and 

enumerated within compatible spatial units. Such data rarely exist due to changes in enumeration 

boundaries, which often arise due to population growth or decline (Reibel and Agrawal 2007). 

Temporally incompatible spatial units impede demographic change analysis, and researchers have 

been developing analytical approaches for temporal analysis that attempt to solve such problems. 

Research on small area population estimation at a single point in time has seen significant 

progress based on methods such as dasymetric modeling (Wright 1936, Eicher and Brewer 2001, 

Mennis and Hultgren 2006) or microsimulation (Birkin and Clarke 2011, Tanton et al. 2014). The 

problem of incompatible enumeration units in temporal analysis has recently found increasing 

interest, with much of this work focusing on methods of areal interpolation (Schroeder 2007, 

Schroeder and Van Riper 2013, Logan et al. 2014). These methods sometimes rely on assumptions 

concerning the spatial distribution of the population (or other demographic variable of interest) 

that do not hold true in many situations (Syphard et al. 2009).  

The combination of dasymetric refinement with areal interpolation has been demonstrated 

as a promising way to improve the precision and accuracy of small area population estimates for 

temporal analysis. For example, Holt et al. (2004) showed that refining source zones using 

developed land cover classes in one point in time improved areal interpolation results considerably. 

Other studies have applied ancillary data such as road networks or land cover data to determine 
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weights that distinguish residential from non-residential areas in different points in time (Reibel 

and Bufalino 2005, Schroeder and Van Riper 2013). Dasymetric techniques have recently been 

examined to refine areal interpolation over multiple time periods. Buttenfield et al. (2015) and 

Ruther et al. (2015) compared different areal interpolation techniques with dasymetrically refined 

source zones using developed land classes from the National Land Cover Database (NLCD). Their 

results demonstrated that dasymetrically refined and unrefined methods performed differently for 

shorter and longer time periods, with lower error rates in most cases when dasymetric refinement 

was used. Buttenfield et al. (2015) showed that improvements can manifest in some areas whether 

the dasymetric method refines source or target estimates, or both. Ruther et al. (2015) included 

four different demographic settings in their study, and found distinct spatial and temporal 

variations in the error of estimates for different demographic conditions. High estimation errors 

were discovered in fast growing subregions, in areas that were more fully developed for both the 

source and target time periods, and in rural settings where NLCD is known to underestimate 

developed residential land. Mennis (2016) applied the principles of dasymetric mapping to 

spatiotemporal interpolation in an example of crime data analysis and indicated that the accuracy 

of estimates was significantly improved. 

The present study employs cadastral (parcel) data to identify residential land, which is used 

to dasymetrically refine census tract population estimates from U.S. Decennial Censuses at two 

points in time prior to areal interpolation. The temporal information used to identify residential 

development – the date when a current residential building was built – is not a standard component 

in parcel data, but exists for many underlying county-level databases. Where the built year attribute 

is available, this study will demonstrate that it may be highly beneficial in providing a temporal 

dimension for a better understanding of the evolution of residential parcels. The parcel-refined 
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census tracts at each point in time are then employed in the interpolation to generate population 

estimates for 2000 within census tract boundaries from 2010 (target zones) such that spatially 

compatible units can be compared. An important motivation is that residential parcels likely 

represent populated places more reliably than developed land classes in regional or national land 

cover databases. This is particularly true in rural areas where remote sensing based classification 

does not reliably detect small areas of residential development. Hence the parcel-refined temporal 

interpolation is expected to result in reduced estimation errors in such settings when compared to 

non-refined and land cover refined scenarios. Three different areal interpolation methods are 

tested, with and without dasymetric refinement, and their estimation errors are evaluated using 

census block statistics.  

3.2. Background 

3.2.1. Areal interpolation  

Areal interpolation is the process of transferring data aggregated over one set of areal units 

(source zones) to another (target zones) (Lam 1983). It can also be applied to apportion population 

from enumeration units for one time period into units for another time period, in order to achieve 

temporally consistent enumeration units (Schroeder 2007, Schroeder and Van Riper 2013). Several 

areal interpolation methods have been developed to date, including areal weighting (AW) 

(Goodchild and Lam 1980, Lam 1983), target count weighting (TCW) (a term introduced by 

Schroeder (2007) after the method presented by Howenstine (1993) and Mugglin and Carlin 

(1998)), pycnophylactic method (PM) (Tobler 1979), and target density weighting (TDW) 

(Schroeder 2007). All methods carry inherent assumptions. For example, AW assumes that 

population densities are constant within source zones. TCW assumes that target zones nest within 

source zones, and that the spatial distributions of the variable of interest and ancillary variable are 
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proportionally the same among target zones within each source zone. Such assumptions often do 

not hold, and there may be large estimation errors where significant changes in population counts 

occur. The utilization of ancillary (limiting) variables to guide areal interpolation for temporal 

analysis has been demonstrated as a promising avenue to reduce the problem of spatial unit 

incompatibility (Holt et al. 2004, Schroeder and Van Riper 2013). As mentioned above, an explicit 

dasymetric refinement using developed land classes prior to areal interpolation has been tested for 

several methods for temporal analysis to explore the influence on estimation accuracy for different 

time periods (Buttenfield et al. 2015) and across varying demographic settings (Ruther et al. 2015). 

The examination of alternative limiting variables and the application of dasymetric refinement to 

both source and target zones are promising directions to investigate. These two aspects will be 

tested in the present study. 

3.2.2. Dasymetric modeling 

A common application of census-defined areal units is to report their demographic 

variables. Areal interpolation methods may result in large estimation errors when spatial units do 

not reflect the inherent variability in the demographic variable of interest. Dasymetric modeling 

employs ancillary data to spatially refine the distribution of the variable of interest (Wright 1936). 

It assumes an association between the variable of interest and the ancillary data to create zones 

that are internally homogenous and externally heterogeneous, and that reflect the underlying 

statistical surface more reliably. Dasymetric modeling has gained popularity recently with the 

increased availability of spatial data from mapping agencies and remote sensing data products 

(Mennis 2009, 2015), as well as significant advancements in estimation techniques (Kim and Yao 

2010, Leyk, Nagle, et al. 2013). The different types of ancillary data used in dasymetric modeling 

include road network density (Reibel and Bufalino 2005), Landsat TM imagery (Harvey 2002) 
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and cadastral data (Maantay et al. 2007). In addition, research has been carried out using 

combinations of different types of data, such as land-cover, imperviousness, road networks, and 

nighttime lights (Zandbergen and Ignizio 2010) or address points and parcels (Tapp 2010). 

Early dasymetric methods relied on subjective decisions about the associations between 

ancillary and population data (Eicher and Brewer 2001). This limitation was partially overcome 

by sampling-based dasymetric methods as described in Mennis (2003) and Mennis and Hultgren 

(2006). Regression-based analyses (Yuan et al. 1997, Harvey 2002) may produce negative 

population estimates and do not preserve data volumes globally or locally. They usually require a 

posteriori coefficient adjustments to maintain volume-preserving requirements. Flowerdew and 

Green (1994) adopted the expectation/maximization (EM) algorithm (Dempster et al. 1977) for 

areal interpolation, which incorporates ancillary data directly in an optimization process that 

derives spatially refined population estimates. There also exist examples using geostatistical 

methods, such as area to point kriging (Kyriakidis 2004) and co-kriging (Wu and Murray 2005, 

Liu et al. 2008). Despite this methodological progress, some challenges remain, including the 

identification of residential areas in rural settings (Zandbergen and Ignizio 2010, Leyk et al. 2014) 

and the accurate estimation and validation of populations for various demographic attributes 

(Nagle et al. 2014). 

The issue of rural residential area is of special relevance here. Many dasymetric mapping 

applications reported in the literature use land-cover classifications derived from Landsat remote 

sensing data with 30 m resolution as the limiting ancillary data for refining population 

distributions. In general, such ancillary datasets are more accurate in urban settings than in rural 

areas because in rural areas, residential units that are smaller than the pixel size of commonly used 

remotely sensed imagery cannot be detected. This results in underestimations of rural populated 



31 

 

places relative to urban places (Leyk et al. 2014). On the other hand, residential parcels are 

expected to depict residential developed land more reliably. However, rural parcels can have large 

areal extents, or non-residential buildings, and there is a need to explore how this may impede or 

even contradict the spatial refinement process. This paper will examine the role and benefits of 

parcel data for improving temporal small area estimation of population. 

3.3. Study area, data and pre-processing steps 

The methods of this paper were tested in Hennepin County, Minnesota. This study area 

includes both the highly populated city of Minneapolis in the eastern part and sparsely populated 

rural portions in the west. The variation in population density makes this area an ideal case study 

to evaluate the performance of each method under different conditions (Figure 3.1). 
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Figure 3.1. Study area and its location in Minnesota. 

The aim of this study was to interpolate the population enumerated within 297 census tracts 

in 2000 into the 298 tract boundaries of the 2010 Census to create consistent and comparable units 

across time. Changes in census tract boundaries between 2000 and 2010 were divided into two 

categories: unchanged tracts (less than 900 m2 difference) and changed tracts (more than 900 m2 

difference) from Census 2000. The 900 m2 threshold is based on the extent of one pixel with 30 m 

resolution. By relying on this cut-off value, all boundary changes greater than 900 m2 were 
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incorporated. It should be noted that some minor boundary changes may be related to the 

production process of TIGER/Line data by the Census Bureau. However, in this study, a rather 

conservative approach that takes into account changes in size as small as 900 m2 was chosen to 

ensure that all possible changes were included in the accuracy assessment. Based on this criterion, 

129 of the 2010 Census tracts were categorized as changed from 2000. 

Census block data from 2000 (17,367 blocks) was used for validation. Comparison of block 

statistics aggregated within tracts to the interpolated tract values allowed calculation of different 

error metrics such as mean absolute error (MAE), median absolute error, 90th percentile of absolute 

errors and root mean square error (RMSE). All population count data and census boundaries were 

retrieved from the U.S. Census Bureau website (http://factfinder.census.gov and 

https://www.census.gov/cgi-bin/geo/shapefiles2010/main, respectively). 

The parcel dataset is available through the Hennepin County Open Data Portal 

(http://www.hennepin.us/gisopendata).  The dataset is compiled monthly by the Hennepin County 

GIS Office from parcel geometry that is created and maintained by the Hennepin County Resident 

and Real Estate Services Survey Division and contains rich attribution on each property in the 

county. The 16 parcel types that indicated residential use – including single family housing unit, 

townhouse, triplex, nursing home, apartment, different types of condominiums, cooperatives, farm 

homesteads, and low income housing unit – were generalized into a single “residential” category. 

For this paper, the most salient attribute in the parcel dataset is the year when a building was 

established, with dates ranging from 1843 to 2010 in Hennepin County. This attribute was used to 

identify buildings that were built before 2000 and those that were built before 2010, to create 

snapshots of the distribution of residential developed land at two different points in time. It is 

important to acknowledge that the given date does not necessarily indicate the initial construction 

http://factfinder.census.gov/
https://www.census.gov/cgi-bin/geo/shapefiles2010/main
http://www.hennepin.us/gisopendata
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activity in a particular parcel but rather the construction date of the currently existing building in 

the parcel.  Moreover, the parcel record does not attribute dates when a structure was torn down 

or destroyed (e.g., by flooding, fire, or other accident). This problem will likely become more 

serious when longer time periods (more than 10 years) are covered, as the proportion of rebuilt 

structures – and possible changed building types – may be higher. Furthermore, because residential 

development was used as a limiting variable, differences in housing characteristics were not 

considered, and these differences could be neglected for the present study. 

For some parcel types, such as condos, multiple spatially coincident polygons existed in 

the database. This occurs because the database stores one record per ownership, and a single condo 

structure typically includes multiple owners. For example, if 20 people own 20 units in a condo, 

the record corresponding to the geography of that condo is repeated 20 times in the database. 

Because the parcel data was used as a limiting ancillary variable in this study, only one instance 

of these repetitive records was retained. Furthermore, parcels with very small area and a built-year 

of “0” were considered noise and removed. Based on the above preprocessing steps, the final 

residential parcel datasets for the years 2000 and 2010 contained 296,367 and 317,292 records, 

respectively.  

3.4. Methods 

Three areal interpolation methods – AW, TDW, and PM – were used to estimate 

populations enumerated in census tracts in 2000 (source zones) within census tract boundaries of 

the 2010 Decennial Census (target zones) to create consistent spatial units across time. For the AW 

and PM methods, residential parcels were applied as limiting ancillary data to dasymetrically 

refine the enumerated population data within source zones prior to areal interpolation. This 

refinement was completed for both points in time for TDW. In the following sections, each method 
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is described in more detail. 

3.4.1. Areal Weighting (AW) 

3.4.1.1. AW-unrefined 

The AW method estimates source population in target zone boundaries based on the 

overlapping area between source and target zones (i.e., intersections or “atoms”). An underlying 

assumption is that the population is uniformly distributed within a source tract (Equation 3.1): 

                                                      popst = (
Areast

Areas
⁄ ) × pops                                         (3.1) 

Areast is the overlapping area between source zone s and target zone t, Areas is the source 

zone area, pops is the source zone population, and popst is the population assigned to the atom. The 

population of target zone t is then simply calculated by summing up the population counts of all 

the atoms within it. 

3.4.1.2. AW-refined 

Dasymetrically refining source zones prior to areal interpolation is supported by residential 

parcel data, and modifies the underlying assumption as follows: population is homogenously 

distributed within the residential parcels of a source tract, and no population is assigned to non-

residential parcels. This assumption is expected to be more realistic and allows more precise 

reapportionment of population. Residential parcels in 2000 were used to identify populated parts 

of each source zone and atom to modify Equation 3.1 as follows: 

                                             popst = (
Ref_Areast

Ref_Areas
⁄ ) × pops                                    (3.2) 

Ref_Areast is the area of the residential parts of atom st, and Ref_Areas is the area of the 
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residential parcels in source tract s. Only enumeration geometry is used from the target census 

2010. The “Built date” attribute was used to select and extract residential parcels existing prior to 

2000. 

3.4.2. Target Density Weighting (TDW) 

3.4.2.1. TDW-unrefined 

Schroeder (2007) introduced TDW as an areal interpolation method appropriate for 

temporal analysis of census data. The method extends “target count weighting”, a term introduced 

by Schroeder (2007) for a technique described in Howenstine (1993) and Mugglin and Carlin 

(1998), which assumes that all target zones nest within source zones. To overcome this limitation, 

TDW makes two assumptions. First, within a source zone, the spatial distribution of the variable 

of interest Y among atoms is assumed to be proportionally the same as the distribution of an 

ancillary variable Z (Schroeder 2007). For example, if population is distributed in a 2:1 ratio 

between two tracts in 2010, it can be assumed that this ratio was the same between the two areas 

in 2000. The second assumption states that the density of Z in any atom equals the density of Z in 

the corresponding target zone:  

                                                           
zst

Areast
⁄ =

zt
Areat

⁄                                                      (3.3) 

where zst and zt indicate the ancillary variable Z for atom st and target tract t, respectively; 

and Areast and Areat are the corresponding areas. The inclusion of the second assumption might 

introduce some errors because the density of Z in a target zone might not be the same as the density 

in the atoms within it. However, this assumption is necessary to ensure that TDW is more robust 

and flexible than TCW. The accuracy of TDW is affected by the second assumption only when 

target zones intersect multiple source zones; otherwise, its accuracy only relies on the validity of 
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the first assumption (Schroeder 2007). In this study, the ancillary variable Z is the population 

distribution in 2010, and the variable of interest Y is the population distribution in 2000. Population 

in 2000 within 2010 census tract boundaries is estimated as follows: 

                                                  yt = ∑ yst = ∑
(Areast/Areat)×zt

∑ (Areasτ /Areaτ)×zττ
× ysss                                 (3.4)            

where yt is the variable of interest for target zone t, yst is the variable of interest for atom 

st, and ys is the variable of interest for source zone s. The term τ is a target zone index, independent 

of t, which is defined for each target tract intersecting source zone s. As Equation 3.4 suggests, yst 

is calculated based on the proportional distribution of the ancillary variable Z among atoms, and 

yt is determined by aggregating all yst values intersecting the target tract. 

Based on previous studies, TDW often outperforms AW (Schroeder 2007, Schroeder and 

Van Riper 2013), suggesting that it is more reasonable to assume that the rate of population change 

is constant for atoms than to assume that population is homogeneously distributed within source 

zones.  

3.4.2.2. TDW-refined 

Refined TDW uses only residential areas within both source and target tracts. This 

refinement necessitates that the underlying assumptions of unrefined TDW be modified. In a first 

step, source and target zones are spatially refined using the areas occupied by residential parcels 

with an indicated built year before 2000 and 2010, respectively. Then TDW is applied to these 

refined areas. First, the refined areas within atoms in 2000 and 2010 are derived, separately. Next, 

it is assumed that the ratio of the refined population densities of atoms to the refined population 

densities of source zones remains the same in both years. It is important to note that the densities 

depend on the proportions of residential land within atoms and source zones, and these proportions 
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change over time. Based on this assumption, the refined population densities of atoms in 2000 can 

be calculated, while taking into account the adjusted second assumption in TDW that is the 

population density in 2010 in any refined atom equals the density in the corresponding target zone 

(i.e., the refined proportion of that zone). Finally, the population within target zones in the source 

year can be derived by aggregating the population values of the atoms within them. This 

adjustment of areas and population densities is expected to improve the estimation accuracy based 

on recent studies using land cover data for refinement in the source census year (e.g., Holt et al. 

2004, Ruther et al. 2015).  

3.4.3. Pycnophylactic Method (PM) 

3.4.3.1. PM-unrefined  

The PM-unrefined method assumes the existence of a smooth density function and 

incorporates the densities of adjacent zones. The density function must be pycnophylactic, i.e., 

volume-preserving: it must reproduce the original value of a source zone if applied to it. This 

function is defined as follows. Let pk be the population of zone k, Areak the area of zone k, Denij 

the density in cell ij, and α the area of a cell. The following equations fulfil the pycnophylactic 

condition (Lam 1983):  

                                                              ∑ αDenijqij
k = pkij                                                         (3.5) 

                                                               ∑ αqij
k = Areakij                                                           (3.6) 

                                                                     ∑ qij
k

k = 1                                                              (3.7) 

In these equations, qij
k  equals 1 if the cell ij belongs to zone k, and 0 otherwise. A cell is 

assigned to the zone that occupies the maximum area of that cell. Equation 3.7 also guarantees that 
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each cell ij belongs to no more than one zone. The smooth density function is obtained by 

minimizing the sum of squared gradients in x and y directions (i.e., Dirichlet’s integral): 

                                                         ∬((δz/δx)2 + (δz/δy)2)δxδy                                         (3.8) 

In order to reach a smooth density function that preserves the volume for a population 

mapping application, the following process is iterated:  

1. Overlay source zones with a raster grid of finer resolution than the source zones; 

2. Divide the population of each source zone by the number of cells falling within it to 

assign an equal initial population to each cell; 

3. Apply a smoothing function that replaces the initial value of each cell by the mean of 

its neighborhood; 

4. Sum the modified values in each zone and compare the result to the original value of 

the zone; 

5. Adjust  the modified values so that they sum to the original value of the zone; 

6. Repeat steps 3, 4, and 5 until a pre-defined stopping criterion is satisfied; 

7. When the stopping criterion is reached, and the system is stable, aggregate cell values 

to any desired set of target zones. 

This study applied the aforementioned procedure to census tracts in 2000 and interpolated 

population values to census tract boundaries in 2010. A circular neighborhood with a radius of 25 

cells (750 meters) was used for both the unrefined and refined pycnophylactic methods following 

recent research results in related dasymetric mapping studies (e.g., Kim and Yao 2010, Ruther et 

al. 2015). The number of iterations was set to 25, at which there would not typically be any 

noticeable difference between the final estimated population values and the values from the 



40 

 

previous run. 

3.4.3.2. PM-refined 

Kim and Yao (2010) proposed the dasymetrically refined pycnophylactic method for non-

temporal small area estimation. This hybrid method created smooth surfaces dependent on the 

neighborhood of each cell, and was defined over dasymetrically refined areas, thus allowing more 

precise depiction of populated areas and neighborhood relations. The refined pycnophylactic 

method in this study uses the same iterative process as the unrefined pycnophylactic method. 

However, instead of dividing the population of each source zone by the number of all cells within 

it, the method divides the zone population by the number of all cells comprising residential parcels 

within it. To implement this method, the census tracts and residential parcels in 2000 were 

rasterized, the number of residential parcel cells in each source tract was calculated, and the tract 

population was divided by this number. In this study, a constraint was applied, after applying the 

smoothing function (step 3 above), to keep non-residential cells “unpopulated” following each 

iteration. Thus, the final population surface was not as smooth as that described by Kim and Yao 

(2010), but non-residential cells remained “unpopulated” until the algorithm converged. After the 

pycnophylactic iterative process reached a stable surface, all cell values in each target zone were 

aggregated to compute target zone estimates. As was the case in the unrefined version, the system 

stabilized after 25 iterations to create the final population surface.  

3.4.4. Validation method 

In order to validate the methods, population counts in 2000 were derived for each 2010 

tract boundary using 2000 census blocks, a finer resolution census unit often employed in 

validation efforts for small area estimation (e.g., Reibel and Bufalino 2005, Reibel and Agrawal 

2007, Schroeder 2007, Tapp 2010). Because blocks in 2000 were not completely nested in tract 



41 

 

boundaries of 2010 in some instances, AW was used to reapportion block populations to different 

subparts, assuming that population was distributed homogeneously within blocks. The use of AW 

in census blocks is assumed to be reliable because of the very small size of census blocks. After 

obtaining block-measured (validation) and estimated (interpolated) values for target tract 

boundaries, four statistics were used to evaluate the accuracy of each method. These statistics were 

Mean Absolute Error (MAE), median absolute error, 90th percentile of absolute errors, and Root 

Mean Square Error (RMSE). MAE was calculated by averaging the absolute differences between 

estimated and measured values of target tracts. Median absolute error was determined by taking 

the value of the 50th percentile of absolute errors. RMSE was calculated based on absolute 

differences between estimated and measured values of target tracts by taking the square root of the 

mean of squared differences. 

3.5. Results and discussion 

3.5.1. Evaluating results using block statistics 

Table 3.1 shows the areal interpolation error estimates based on changed census tracts for 

each method. 

Table 3.1. Error measures of unrefined and refined methods for changed target tracts. 

Method MAE Median Absolute Error RMSE 90th Percentile Error Standard 

Deviation 

AW 138 36 321 496 290 

Refined AW 148 7 402 568 374 

TDW 101 27 230 236 207 

Refined TDW 70 6 177 180 162 

PM 144 34 321 522 287 

Refined PM 119 5 312 357 288 

 

As can be seen, refining AW does not result in better overall accuracies, and the MAE and 



42 

 

RMSE measures are higher for refined AW than for unrefined AW. This indicates a decrease in 

the overall accuracy in refined AW results. However, the median absolute error for refined AW is 

lower than for unrefined AW. This indicates that refined AW produces more accurate estimates 

for the first half of target zones, ordered by absolute error estimates. More quantitatively, refined 

AW produces estimates that have equal or lower absolute errors than AW for 92 of the total 129 

changed target tracts. But some large estimation errors exist in the right tail of the absolute error 

distribution and cause lower overall accuracy measures.  

One possible explanation for these findings can be found in the limiting ancillary data type 

used here, and the assumption that all parcels contain the same type of residential unit. Areal 

extents of parcel units can be very large in sparsely populated rural settings. On the other hand, 

densely populated multi-unit buildings (apartments and condominiums) can be located in relatively 

small parcel units, mostly in more urban settings. Therefore, large sparsely populated parcels are 

incorrectly assigned higher population estimates than small densely populated counterparts when 

only their areas are utilized. This problem becomes even more serious if, in two unrefined areas 

with a similar areal extent, one encompasses mainly sparsely populated units and the other mostly 

densely populated buildings (Figure 3.2). The bottom target tract in Figure 3.2 includes highly 

populated (multi-unit) parcels and the top one includes large sparsely populated (single-family) 

parcels. Residential parcels of the bottom tract cover less area than those of the top one, while the 

unrefined target tracts are very similar in extent. The total area of the residential parcels in the 

bottom target tract is 0.97 km2, and the population count of that tract is 3809 based on Census 2000 

blocks. These numbers are 2.2 km2 and 2952, respectively for the top target tract. Without 

considering the building type, more population from the source tract is erroneously assigned to the 

top target tract (overestimation) while fewer people are assigned to the bottom target tract 



43 

 

(underestimation). In unrefined AW, this assignment error is less pronounced because of the 

similar areal extents of the unrefined areas; and thus the prediction error is lower for unrefined 

AW than for refined AW. 

 

Figure 3.2. Two target tracts with different types of residential parcels. 

Table 3.1 also shows that TDW has generally lower errors than AW in both the unrefined 

and refined model versions, indicating that the assumptions underlying TDW are more realistic for 

the study area. Refined TDW shows the lowest error estimates for changed tracts in most 
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situations. Moreover, while refined AW shows inconsistent performance in Table 3.1, refined 

TDW shows a consistent refinement effect for all error measures. One reason for this superior 

performance could be that the problematic assumptions of TDW are successfully mitigated in some 

part through parcel-based refinement across a relatively short time period. The spatial refinement 

adjusts for densities among residential areas and represents a more reasonable assumption than 

both refined AW and unrefined TDW. Moreover, refined TDW is the only method that 

incorporates residential data from both time periods.  

Refined PM also consistently reduces the error measures relative to unrefined PM. This 

consistent refinement effect of the method shows that excluding non-residential cells and only 

running the pycnophylactic algorithm on the more realistic population distribution creates a more 

reliable population surface. Consequently, aggregation of cell values of this refined population 

surface within target zones results in more accurate population estimates than those from unrefined 

PM. While most errors were consistently higher than those of TDW and refined TDW, refined PM 

shows the lowest median absolute error among all methods tested, which suggests the interesting 

potential of this method. 

The maps in Figure 3.3 illustrate the distribution of absolute errors across target zones. The 

maps confirm the above described findings visually. The absolute errors are lower for refined AW 

than for unrefined AW for small to medium error classes. However, the existence of a few target 

tracts in the center and southern parts of the study area with large absolute errors is the main reason 

for lower overall estimation accuracy of refined AW. Moreover, absolute errors are higher for rural 

areas in unrefined AW than in refined AW. This pattern is manifested by smaller absolute errors 

in target tracts away from Minneapolis in the refined AW map. The visual differences between 

unrefined TDW and refined TDW are not as noticeable as in the AW maps, but rural target tracts 
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have consistently lower absolute errors in refined TDW than in unrefined TDW. The absolute error 

map of refined TDW shows that not only are small absolute errors lower than in other maps, but 

target tracts with high absolute errors are also less frequent. The absolute error maps of unrefined 

and refined PM also demonstrate that the absolute errors are lower in refined PM than unrefined 

PM, particularly in rural census tracts away from Minneapolis. 

 

Figure 3.3. Absolute error maps of parcel-refined methods for changed target tracts in 

comparison to unrefined methods. 
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Figure 3.4 shows which method was the most accurate method in each changed target tract. 

AW and PM do not appear because there was no target zone in which either of these methods was 

most accurate. The map shows that refined TDW is the most accurate method for the majority of 

target zones. However, there exists a noticeable number of census tracts in which a method other 

than refined TDW has the lowest absolute error.  

 

Figure 3.4. Map of the most accurate method in each changed target tract. 
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3.5.2. Comparing results to models using land cover based refinement  

In order to better evaluate the reported temporal interpolation errors, the results described 

above were compared to model outcomes that were based on a different ancillary variable for 

dasymetric refinement, namely developed land categories derived from the 2001 National Land 

Cover Database (Homer et al. 2007). Table 3.2 shows the estimation errors for the dasymetrically 

refined models using developed land for the same changed tracts.  

Table 3.2. Error measures of NLCD-refined methods for changed target tracts.  

Method MAE Median Absolute 

Error 

RMSE 90th Percentile 

Error 

Standard 

Deviation 

Refined AW 115 21 232 445 

 

201 

Refined TDW 89 18 197 247 

 

176 

Refined 

Pycnophylactic 

130 26 280 492 248 

 

When comparing results between Tables 3.1 and 3.2, it can be seen that NLCD-refined 

AW has lower MAE, RMSE, and 90th percentile error than parcel-refined AW. However, the 

median absolute error of parcel-refined AW is much lower than NLCD-refined AW. This indicates 

that while parcel-refinement decreases the absolute error values of the first half of error-ordered 

tracts, the existence of a few tracts with high absolute errors at the right tail of the absolute error 

distribution causes the overall measures to be higher. In contrast, NLCD-refined TDW has higher 

values for all error measures than parcel-refined TDW. This indicates that TDW assumptions using 

parcel refinement are more realistic with respect to block-level population counts than using 

NLCD refinement in the study area. Finally, all error measures except RMSE are lower in parcel-

refined PM than in NLCD-refined PM. Thus the population estimates of the target tracts are 

generally more accurate in parcel-refined PM than in NLCD-refined PM in this study. 



48 

 

Figure 3.5 shows the absolute error maps of NLCD-refined methods for changed tracts. 

The maps confirm the results outlined in the previous paragraph. Moreover, the absolute error 

values of large rural census tracts are generally higher in NLCD-refined AW, TDW and PM maps 

than their parcel-refined counterparts, a pattern manifested by large rural target tracts in the 

northern and western parts of the study area.  

 

Figure 3.5. Absolute error maps of NLCD-refined methods for changed target tracts. 
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3.6. Conclusions and future directions 

The incorporation of ancillary data for dasymetric refinement prior to areal interpolation 

for temporal analysis has great potential, as has been shown in recent studies (Holt et al. 2004, 

Ruther et al. 2015). The employment of parcel data as a limiting ancillary variable has the potential 

for distinct improvements relative to land cover data for three reasons. First, cadastral data 

generally depict residential land parcels more reliably in rural areas. Second, parcel data is updated 

more frequently than is national land cover, to accommodate tax records, zoning variations, etc. 

Third, when parcel data contain information about the built date of a residential building, one can 

approximate residential development for different points in time.  

However, the use of residential parcels as the limiting variable comes with several 

challenges. The three areal interpolation methods demonstrate differences that appear to be based 

on the choice of ancillary data, with AW displaying better results for parcel data when small errors 

are present, and better results for land cover data elsewhere. TDW displays consistently better 

results for parcel-based refinement.  PM shows better results for parcel ancillary data based on 

three metrics. Further research for study areas in other demographic conditions (population growth 

or fast decline) could be undertaken to assess whether method-produced differences occur in other 

situations. Alternatively, interpolations could be limited to rural or urban areas to assess where 

these errors are most pronounced, for each method. 

In rural areas, the use of residential parcels as the ancillary dataset enables the reliable 

identification of residential development where remote sensing-based land-cover products such as 

NLCD may misclassify small patches of developed land. However, in line with results found by 

Leyk et al. (2014), parcel refinement tends to overestimate the areal development extent in rural 

settings. Figures 3.3 and 3.5 suggest that parcel-refined methods result in lower absolute errors 
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than NLCD-refined methods for rural target tracts. However, to reach such a conclusion with 

confidence, more study areas have to be included to establish reliable quantitative measures. Future 

research will compare parcel and NLCD based refinements for temporal analysis in more detail 

and for various study areas by dividing them into urban and rural target zones. This will better 

delineate the performance of the areal interpolation methods in these different settings and the role 

of the different ancillary variables.  

Residential parcels possess different housing types, ranging from single family units to 

multi-level condominiums or apartment buildings; this information has been ignored in this study. 

Using residential parcel extents as a limiting variable implies that population is redistributed 

equally over all residential entities without considering these different housing types. This 

simplification can cause biased estimates through the spatial refinement process and may mislead 

the analysis in some situations resulting in increased estimation errors in some affected areas.  

Finally, there is inherent uncertainty due to the temporal slicing of residential parcels, as 

the built-year attribute may not reflect the date of the first construction for those parcels in which 

a building had been torn down and later rebuilt, or for a single family parcel that is converted to 

multi-family use. The date commonly refers to the main structure in a parcel and does not reflect 

extensions or remodeling. It is acknowledged that this could be a source of uncertainty if the built-

year attribute is handled differently in other study areas. Furthermore, in some urban areas the type 

of land use could have changed over time, as for example in the development of mixed commercial 

– residential land use parcels in some expanding urban areas.  

Disadvantages related to urban – rural distinctions are mainly caused by the large extent of 

rural parcels. A processing step that achieves refinement of these rural residential parcel units 

using additional ancillary variables would be a natural solution to this problem. Moreover, since 
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building types are closely related to population density, the inclusion of a building type attribute 

in dasymetric refinement has the potential to further decrease estimation errors in temporal 

analysis. Such an extension would transition parcel data from a binary limiting ancillary variable 

(residential or non-residential) to a “related” ancillary variable and allow the incorporation of 

different categories of residential type that may be related to varying population counts. 

Future research will focus on the inclusion of residential unit types (e.g., multi-unit or 

single family), addressing the problem of large areal extents through additional spatial refinement, 

and the extension of the time period considered. Alternative approaches such as the Expectation 

Maximization algorithm (Dempster et al. 1977) for residential parcels will also be explored. The 

method has been shown promising when applied to land cover data in recent research (Schroeder 

and Van Riper 2013, Ruther et al. 2015). As Figure 3.4 implies, no method has the most accurate 

estimates for all target tracts. Therefore, a hybrid method that utilizes the complementary effects 

of different methods may result in more accurate estimates (similar to Schroeder and Van Riper 

(2013)). This idea constitutes yet another area for further research. Finally, if access to the temporal 

attribute can be facilitated more broadly, temporal analysis as described in this paper would have 

great potential to be deployed to long time periods over large areas. Such a temporal component 

can potentially further extend time periods covered in recent studies on population change analysis 

such as 1970-2010 in Logan et al. (2014), 1980-2010 in Schroeder and Van Riper (2013), and 

1990-2000 in Schroeder (2007). 
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Chapter IV 

 

 

Consistent Population Estimation within Changing Census Boundaries: 

Enhancing Interpolation Frameworks through Dasymetry 

 

Abstract1  

To assess micro-scale population dynamics effectively, demographic variables need to be 

available over temporally consistent small area units such as census tract. However, fine-resolution 

census boundaries often change between survey years and methodological solutions to transfer 

population counts aggregated over source zones in one census year to target zone boundaries from 

another census year are in high demand.  

This research proposes advanced areal interpolation methods that incorporate dasymetric 

refinement using ancillary variables to create consistent population counts in 1990 and 2000 

(source zones), respectively, within tract boundaries of the 2010 census (target zones), for five 

counties in the US. The counties are characterized by different demographic processes and include 

Hennepin County, Minnesota, Mecklenburg County, North Carolina, Broward County, Florida, 

                                                 

1 This chapter was submitted as a journal paper to the International Journal of Geographic 

Information Science (IJGIS) by Hamidreza Zoraghein and Stefan Leyk in March 2017.  
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Hillsborough County, Florida and Worcester County, Massachusetts.  

Three levels of spatial (or dasymetric) refinement of source and target zones are evaluated 

in this study. First, residential parcel boundaries are used as a limiting ancillary variable prior to 

regular areal interpolation for temporal analysis including Areal Weighting (AW) and Target 

Density Weighting (TDW). Second, Expectation Maximization (EM) and Enhanced EM (EEM) 

leverage housing types of residential parcels, their area and density measures, as related ancillary 

variables to incorporate nuanced and more complex associations between different types of 

residential parcels and population estimates. Finally, a third refinement strategy that aims at 

mitigating the overestimation effect of large residential parcels in rural areas, uses road buffers 

and developed land cover classes from the National Land Cover Database (NLCD) as additional 

conditional ancillary variables. Different validation metrics, namely Mean Absolute Error (MAE), 

median absolute error, Root Mean Square Error (RMSE) and 90% percentile of absolute error are 

computed using census block statistics in 1990 and 2000 to evaluate the effectiveness of each 

method.  

Results suggest great potential of all three levels of spatial refinement in reducing 

estimation errors for all five counties. Refined TDW and EEM are generally the best-performing 

methods from the first and second spatial refinement levels with EEM being superior for the longer 

time period of 1990 to 2010. The third refinement is generally effective in reducing the estimation 

errors in rural areas. The results allow for a first insight on the potential accuracy that could be 

achieved in varying geographic and demographic settings using different combined approaches if 

comparable ancillary data would become available nationwide. Such improved consistent 

population estimates over long time periods would provide the basis for more advanced 

demographic research, comparing population characteristics over time at fine spatial resolution. 
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4.1. Introduction   

The ability to create precise spatial distributions of demographic variables such as total 

population or population density is critical for future efforts in sustainable development. 

Demographic estimates are vital for urban planning and resource management decisions, including 

the allocation of food and medical supplies, access to public services, transportation and regional 

development (Su et al. 2010). Moreover, population is an important factor, driving land-use/land-

cover change, such as urbanization, deforestation, or afforestation, which affect environmental 

conditions such as air pollution, soil erosion and water quality (Li and Lu 2016). Although large-

scale population products such as the Gridded Population of the World (GPW) (Balk and Yetman 

2004), LandScan Global (Dobson et al. 2000) and LandScan USA (Bhaduri et al. 2007) already 

exist, they have rather coarse resolution and underlie error-prone population allocation approaches. 

Thus, these data products do not eliminate the need for establishing more detailed population 

distributions using regional datasets and advanced algorithms in order to address local 

management issues (Su et al. 2010, Jia et al. 2014) and better reflect operational scales of the 

demographic processes of interest. Moreover, to be able to implement effective measures of 

development and growth trends, there is an urgent need in fine-resolution population distributions 

that are compatible over time. Due to changing enumerations (Schroeder 2007) among census 

surveys, this remains a persistent challenge in the field. However, recent research has begun to 

invest in the development of analytical solutions based on areal interpolation to produce fine-

resolution population distributions for multiple points in time within temporally compatible 

analytical units (Schroeder 2007, Schroeder and Van Riper 2013). While the integration of 

dasymetric refinements in such temporal analysis has shown great potential (Ruther et al. 2015, 

Zoraghein et al. 2016) these attempts are often constrained to the use of limiting ancillary 

variables. More research is needed to identify methodological solutions to make more effective 
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use of advanced dasymetric modeling techniques for spatiotemporal interpolation that also employ 

related ancillary variables in order to make use of nuanced relationships between ancillary 

variables and population attributes for more accurate estimation.  

Dasymetric mapping is a special type of areal interpolation, employing ancillary datasets 

correlated with the variable of interest to map the variable from a set of aggregated source zones 

in a choropleth map to a set of target zones that reflect its actual distribution more precisely (Wright 

1936, Eicher and Brewer 2001, Mennis 2003, Langford 2006). The methodology, which is covered 

extensively in the literature, is commonly used to downscale population from large aggregated 

census units to smaller target zones, and has many applications, including crime analysis (Mennis 

2016), environmental health justice (Maantay et al. 2007, Mennis 2015) and historical population 

estimation (Holt et al. 2004, Buttenfield et al. 2015, Ruther et al. 2015, Pavía and Cantarino 2016) 

to name a few. With widespread availability of various remote sensing products and growing 

analytical capabilities in geospatial software tools, dasymetric mapping has become a common 

spatial analytical approach for population reallocation and demographic small area estimation 

(Mennis 2009). Examples of ancillary variables employed in dasymetric mapping include but are 

not limited to land-cover (Mennis and Hultgren 2006), road networks (Reibel and Bufalino 2005), 

reflectance data from high resolution satellite imagery (Alahmadi et al. 2015), imperviousness 

surfaces (Zandbergen and Ignizio 2010, Li and Lu 2016), address points (Tapp 2010) and cadastral 

data (Maantay et al. 2007, Jia et al. 2014, Jia and Gaughan 2016). 

The main focus of the current paper is on the integration of more advanced dasymetric 

refinement in spatio-temporal interpolation of census data building on recent research. This recent 

research has demonstrated how the performance of areal interpolation methods such as areal 

weighting (AW) or target density weighting (TDW) can be improved by employing spatial 
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refinements through dasymetric mapping. Dasymetrically refined areal interpolation for temporal 

analysis essentially transfers demographic variables from one set of source zones at one point in 

time to a set of target zones at a second point in time, and makes use of ancillary variables such as 

land cover data and residential parcels to geometrically adjust these zones. This refinement creates 

time series of more accurate population estimates over consistent small census units but still shows 

large errors in regions with rapid or unexpected population growth (Buttenfield et al. 2015, Ruther 

et al. 2015, Zoraghein et al. 2016). The present study aims to enhance the idea of dasymetric 

refinement in spatiotemporal interpolation of demographic variables by operationalizing related 

ancillary variables and thus creating temporally consistent population estimates with low 

interpolation error. The product benefits disciplines such as demography, geography, economics, 

political science and sociology. The methodology is applied in five U.S. counties for both 1990-

2010 and 2000-2010 time periods to transfer total population from census tracts in 1990 and 2000 

(source zones) to census tract boundaries in 2010 (target zones), respectively.  

4.2. Study area and data 

4.2.1. Study area 

The five counties used in this study to test the methods represent different geographic and 

demographic settings that can be characterized by the urban/rural proportion of population, the 

extent and the population growth rate. They include Hennepin County, Minnesota, Mecklenburg 

County, North Carolina, Broward County, Florida, Hillsborough County, Florida and Worcester 

County, Massachusetts. Figure 4.1 depicts the five selected counties as well as their census tracts 

in 2010 and the boundaries of their seats.  
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Figure 4.1. The study area and target census tracts. 

Hennepin County includes the urban region of Minneapolis in the east and rural areas in 

the west. According to the U.S. Census, a low total population growth rate of 11% (from 1,032,431 

to 1,146,195) has been observed between 1990 and 2010. 

Mecklenburg County includes the urban region of Charlotte at the center, which covers the 

majority of the county area, and rural census tracts on the fringe. The total population growth rate 

in this fast-growing county is 80%, an increase from 511,433 to 919,628 during the 1990-2010 

time period. 

Hillsborough County contains urban census tracts of Tampa in the west and rural areas in 

the east. Densely populated census tracts in this county are not limited to the city limits of Tampa 
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but appear scattered all over the county except in the eastern parts. The population of the county 

has observed a rather fast growth rate of 47%, increasing from 834,027 to 1,229,226 during the 

1990-2010 time period. 

Most of Broward County is composed of census tracts with medium to high population 

density in the west. There is also a large sparsely populated census tract in the east. The population 

of the county has grown by 39%, an increase from 1,255,462 to 1,748,066 between 1990 and 2010. 

Worcester is the county with the highest proportion of sparsely populated census tracts 

with only a few more densely populated tracts within the city limits of Worcester at the county 

center. The population of the county has grown by 12% and increased from 709,705 to 798,552 

during the 1990-2010 time period. 

The selected counties include different proportions of high and low population density 

areas, making them ideal case studies to evaluate the performance of each method under different 

conditions. More specifically, Mecklenburg, Hillsborough and Broward represent counties with 

fast population growth whereas Worcester and Hennepin indicate counties with medium/low 

population growth rate. Testing the methods across these different population development 

histories will help better understand methods performance in different demographic settings. 

4.2.2. Data 

The boundaries of census tracts in 1990, 2000 and 2010 along with their total population 

counts found in the census summary files are the focus in this study. Census blocks represent the 

smallest enumeration units published by the Census. Therefore, blocks in 1990 and 2000 as well 

as their population values are used as reference data to evaluate the estimated total population 

counts at the tract level. The tract-level and block-level population values and boundaries for 1990 
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were retrieved from the National Historical Geographic Information System (NHGIS) (Minnesota 

Population Center 2016) whereas population counts and boundaries for 2000 and 2010 were 

extracted from U.S. Census Bureau (2010) and U.S. Census Bureau (2016), respectively. 

Three ancillary variables associated with the distribution of total population are used in this 

study. They include residential parcels of each study area accessed from the corresponding county 

or state GIS data portal (Hennepin County GIS 2016, Mecklenburg County GIS 2013, University 

of Florida GeoPlan Center 2016, MassGIS 2016), the National Land Cover Database (NLCD) in 

1992, 2001 and 2011 (Multi-Resolution Land Characteristics 2016) and TIGER/Line road 

networks in 2000 and 2010 (U.S. Census Bureau 2016). NLCD is a Landsat based national land 

cover dataset at 30m resolution. Its primary objective is to provide nationally complete, current, 

consistent, and public domain information on the nation’s land cover. The dataset presents 

different land cover types in different classes (Homer et al. 2015).  

4.3. Methods 

The spatio-temporal areal interpolation methods in this study are divided into three 

categories according to different modes of spatial refinement and the number of ancillary variables 

used. Starting with the use of limiting ancillary variables (first spatial refinement), the second 

category uses related ancillary variables while the third category implements an a posteriori 

refinement in rural settings. 

4.3.1. First spatial refinement using limiting ancillary variables 

The first level of spatial refinement in spatio-temporal interpolation is employed through 

the use of limiting ancillary variables such as developed land cover classes in the NLCD or 

residential parcel footprints. Well-known methods such as AW (Goodchild and Lam 1980) and 

TDW (Schroeder 2007) are adjusted to sub-areas of source and target zones delineated by 
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residential parcels of the five study areas following the approach described in Zoraghein et al. 

(2016) for comparison to the next level of spatial refinement.  

AW is the most basic areal interpolation method and assumes the population density is 

constant within source zones. The method estimates source population in target zone boundaries 

based on the overlapping area between source and target zones (i.e., intersections or “atoms”). The 

population of each target zone is then simply calculated by summing up the population counts of 

all the atoms within it. 

Spatially refining source zones prior to areal interpolation is supported by different 

ancillary variables and modifies the underlying assumption as follows: population is 

homogenously distributed within the developed land of a source zone, and no population is 

assigned to non-developed parts. This assumption is expected to be more realistic and generally 

results in more precise reapportionment of population counts. 

Schroeder (2007) introduced TDW as an areal interpolation method appropriate for 

temporal analysis of census data. TDW is based on the assumption that the spatial distribution of 

population densities among atoms within a source zone in the source year remains proportionally 

the same over time. For example, if population density is distributed in a 2:1 ratio between two 

atoms in 2010, it is assumed that this ratio was the same in 2000.  

Based on previous studies, TDW often outperforms AW (Schroeder 2007, Schroeder and 

Van Riper 2013), suggesting that it is more reasonable to assume that the ratio of population 

densities of atoms in one source zone remains constant than to assume that population is 

homogeneously distributed within source zones.  

Refined TDW employs developed/built-up areas within both source and target zones. This 
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refinement implies that the underlying assumption of unrefined TDW be modified. In a first step, 

source and target zones are spatially refined using the developed areas labeled by the ancillary 

variable. Then TDW is applied to these refined areas under the assumption that the ratio of refined 

population densities of atoms to refined population densities of source zones remains the same 

over time. While refined AW uses developed areas only in the source year, refined TDW 

incorporates this refinement in both the source and target years.  

4.3.2. Second spatial refinement using related ancillary variables 

The above spatial refinement does not differentiate between different types or densities of 

residential units such as low-density single-family parcels as compared to high-density condos. 

Since it is well-known that the relationships between population and ancillary variables are not 

binary in nature, an approach to employ ancillary data to reduce and amplify the likelihood of 

population and estimates of population density would have great potential to further improve the 

accuracy of such estimates. This type of association is addressed below by incorporating related 

ancillary variables into the dasymetric refinement for spatio-temporal interpolation based on the 

Expectation Maximization algorithm.  

4.3.2.1. EM with control zones based on residential types 

Expectation Maximization (EM) (Dempster et al. 1977) can be used as an iterative process 

to optimize population density weights under different conditions defined by the ancillary variable, 

thereby offering an appropriate framework for implementing the second spatial refinement. 

The EM algorithm provides a robust framework for model fitting and maximum likelihood 

estimation in settings of incomplete data. First, the expectation (E) step “completes” the data by 

computing the conditional expectation for missing data, given a set of observed data and estimated 

model parameters. The maximization (M) step then fits the model, estimating model parameters 
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by maximum likelihood given the “complete” data from the E step. A feedback loop between E 

and M steps is established and repeated until convergence (Schroeder and Van Riper 2013). 

Flowerdew and Green (1994) demonstrated how the EM algorithm can be applied in areal 

interpolation applications, and Ruther et al. (2015) applied EM in temporal interpolations using 

land cover classes as ancillary data to define control zones. In this study, control zones are defined 

by residential parcels that have the same housing type and then used to calculate the population 

density weight for each control zone. This approach is justified by the expectation that different 

housing characteristics can be related to varying average population densities, and accounting for 

such variation is expected to improve the resulting estimation within target zones. 

In the E step, the algorithm estimates the values of ysĉ, i.e., the population counts for the 

intersections between source zone s and control zone c:  

                                                          ysĉ = ys (
λĉAsc

∑ λk̂Askk
⁄ )                                              (4.1) 

Where ys is the population count of source zone s, λĉ is the estimated density of control 

zone c, Asc is the area of intersection between s and c, and k is a second control zone index, 

independent of c to reflect all control zones intersecting s. The first E step is essentially similar to 

AW and assumes equal weights for all housing types. Then, the M step re-estimates all λc values 

using the equation below: 

                                                              λĉ =
(∑ ysc)̂

s
Ac

⁄                                                           (4.2) 

The estimates of λĉ from the M step are used to re-estimate ysĉ in the next E step, which is 

followed by another M step, and so on until the system converges. The algorithm stops when the 
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maximum absolute difference between the current population weights and those calculated from 

the previous run is less than 0.001. Finally, ysĉ values are used to calculate the population count 

for target zone t (yt̂):  

                                                              yt̂ = ∑ ∑ (Atscysĉ)
Asc

⁄cs                                              (4.3) 

Where Atsc is the area of the intersection between target zone t, source zone s, and control 

zone c. 

4.3.2.2. Enhanced EM based on more homogeneous control zones 

EM assumes that the population density is constant within each control zone. However, 

this assumption can become problematic. For example, if the residential parcels of the same type 

that form a control zone are diverse in area or number of units, the assumption of constant 

population density for the whole control zone becomes unrealistic. This research introduces 

Enhanced EM (EEM) to address this issue.  

EEM categorizes control zones into more similar and homogeneous sub control zones 

based on the area of units and unit density criteria. First, the approach identifies those residential-

type control zones with the highest number of residential parcels to guarantee a sufficient number 

of parcels per sub control zone. For those control zones that show the highest variation in the area 

measure of their underlying parcels, sub-control zones are created based on area quartiles. For 

some control zones such as condominiums, the number of units per parcel can be derived. 

Therefore, a unit density measure can be computed by dividing the number of units by the area of 

the encompassing parcel and then used for creating sub-control zones but this time based on 

quartiles of unit density. This new set of more homogeneous sub control zones is input to the EM 

algorithm as described above. 
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For each study area and time period, EEM is simulated over different combinations of 

eligible control zones, testing different numbers of combined type-area and type-density categories 

to identify the optimal solution. The best-performing model is the one that minimizes error metrics 

that will be introduced in Section 3.4. Figure 4.2 illustrates the workflow of EEM. 
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Figure 4.2. Workflow of EEM. 

4.3.3. Third spatial refinement using complementary ancillary variables 

The third refinement strategy is not confined to only residential parcels and specifically 

targets rural settings, where large residential parcels are known to overestimate developed land 
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area while developed land cover classes commonly underestimate development (e.g., Leyk et al. 

2014). To mitigate these effects, this approach leverages additional complementary ancillary 

variables such as NLCD-derived developed classes and road buffer zones, assuming that 

population most likely resides where developed land can be found, or if developed land cannot be 

found, population would be expected close to roads. NLCD databases published in 1992, 2001 and 

2011, which approximately match the three census years, and the available TIGER road networks 

in 2000 and 2010 are employed to derive additional ancillary variables. The largest residential 

rural parcels, i.e., the largest 10%, are selected and refined as follows: if a residential parcel 

contains developed land as classified by the NLCD, only those instances are used for spatial 

refinement thereby geometrically adjusting the residential parcel. If no developed land exists, the 

intersection between the parcel and road buffers (using 50m buffer distance) is used to spatially 

constrain the area of the parcel. Figure 4.3 demonstrates the process of the third spatial refinement. 

Residential developed land is defined by classes 21 and 22 in NLCD 1992 and classes 21, 22 and 

23 in NLCD 2001 and 2011, following recommendations in other studies (e.g., Ruther et al. 2015). 
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Figure 4.3. Workflow of the third spatial refinement. 

Once residential parcels are spatially refined using developed land and road buffers as 

limiting ancillary variables, the resulting dataset is input to AW, TDW and EM to form the third 

refinement method. It is expected that the accuracy of the methods to estimate population will 

improve because they are adjusted to more precise locations of likely human settlement in rural 

settings where errors are commonly high due to the large extent of residential parcels. This third 

spatial refinement cannot be implemented with EEM in its current form since area and density 

attributes are used for population weighting (i.e., as related variable) in this method and must not 

be modified a posteriori. Integrating such a refinement in EEM requires a priori implementation 

so that the changed area and density measures can be used for simulation and optimization. The 

results in this study will provide some indication of the potential benefit of this adjustment. 
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4.3.4. Validation 

The validation of the estimated tract-level results for each census year is done using census 

block statistics. After transferring population estimates from source zones (tracts in 1990 and 2000, 

respectively) to target zones (2010 tract boundaries), each 2010 census tract can be linked with its 

estimated population counts in 1990 and 2000. These estimates for target zones in 1990 and 2000 

are compared to population counts of census blocks in 1990 and 2000 aggregated to the target zone 

boundaries. Blocks are the finest resolution enumeration units used by the Census Bureau and are 

based on a full population count and thus very useful for validation efforts. Different error 

measures are calculated such as the Mean Absolute Error (MAE), median absolute error, Root 

Mean Square Error (RMSE) and 90% percentile of absolute error. These error measures and error 

distributions can be compared across methods to characterize and evaluate the performance of the 

described methods. For example, MAE and RMSE measures illustrate the overall behavior of the 

estimation error and are sensitive to outliers, while the median absolute error and 90% percentile 

of absolute error can be used to describe the upper end of the error distribution and placement of 

extreme absolute error values. 

4.4. Results 

Tables 4.1 to 4.5 show the absolute errors for each of the methods described for the two 

time periods (1990-2010 and 2000-2010) and each of the five counties. The last column in these 

tables called “Refinement Level” shows if and what type of spatial refinement is applied for each 

method (grey-tone encoded).  
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Table 4.1. Absolute error measures of unrefined and refined methods in Hennepin. 
Method MAE Median Absolute 

Error 

RMSE 90th Percentile 

Error 

Refinement 

Level 

1990-2010 

AW 219 57 487 646 Unrefined 

Refined AW 158 47 342 429 First 

Modified Refined AW 148 50 310 464 Third 

TDW 201 56 420 650 Unrefined 

Refined TDW 132 47 294 368 First 

Modified Refined TDW 117 48 234 306 Third 

EM 203 60 402 616 Second 

Modified EM 139 58 262 391 Third 

EEM 110 44 222 270 Second 

2000-2010 

AW 58 0 214 97 Unrefined 

Refined AW 53 0 248 16 First 

Modified Refined AW 44 0 201 17 Third 

TDW 36 0 127 88 Unrefined 

Refined TDW 24 0 95 19 First 

Modified Refined TDW 21 0 86 17 Third 

EM 49 0 217 24 Second 

Modified EM 31 0 159 14 Third 

EEM 18 0 89 23 Second 

 

Table 4.2. Absolute error measures of unrefined and refined methods in Mecklenburg. 
Method MAE Median Absolute 

Error 

RMSE 90th Percentile 

Error 

Refinement 

Level 

1990-2010 

AW 546 346 832 1477 Unrefined 

Refined AW 384 212 624 974 First 

Modified Refined AW 261 130 427 684 Third 

TDW 387 255 575 829 Unrefined 

Refined TDW 263 168 407 588 First 

Modified Refined TDW 220 129 360 493 Third 

EM 443 240 743 1094 Second 

Modified EM 251 125 412 628 Third 

EEM 178 91 297 455 Second 

2000-2010 

AW 613 213 1012 1728 Unrefined 

Refined AW 465 210 793 1294 First 

Modified Refined AW 290 135 502 796 Third 

TDW 330 138 531 931 Unrefined 

Refined TDW 309 116 720 808 First 

Modified Refined TDW 228 115 490 548 Third 

EM 464 240 741 1294 Second 

Modified EM 246 141 394 630 Third 

EEM 183 79 309 478 Second 
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Table 4.3. Absolute error measures of unrefined and refined methods in Broward. 
Method MAE Median Absolute 

Error 

RMSE 90th Percentile 

Error 

Refinement 

Level 

1990-2010 

AW 1016 584 1699 2460 Unrefined 

Refined AW 610 310 1012 1499 First 

Modified Refined AW 623 322 978 1667 Third 

TDW 630 309 1075 1566 Unrefined 

Refined TDW 312 197 489 738 First 

Modified Refined TDW 365 194 609 907 Third 

EM 499 256 854 1235 Second 

Modified EM 481 284 764 1140 Third 

EEM 374 207 576 914 Second 

2000-2010 

AW 560 47 1654 1619 Unrefined 

Refined AW 282 29 538 845 First 

Modified Refined AW 290 17 555 863 Third 

TDW 151 14 375 439 Unrefined 

Refined TDW 100 13 204 324 First 

Modified Refined TDW 101 13 197 333 Third 

EM 227 33 457 709 Second 

Modified EM 232 28 468 700 Third 

EEM 151 14 297 449 Second 

 

Table 4.4. Absolute error measures of unrefined and refined methods in Hillsborough. 
Method MAE Median Absolute 

Error 

RMSE 90th Percentile 

Error 

Refinement 

Level 

1990-2010 

AW 633 300 1000 1807 Unrefined 

Refined AW 357 178 615 901 First 

Modified Refined AW 321 168 569 765 Third 

TDW 431 234 667 1230 Unrefined 

Refined TDW 293 148 560 726 First 

Modified Refined TDW 327 143 909 688 Third 

EM 425 220 674 1118 Second 

Modified EM 334 157 550 894 Third 

EEM 276 114 500 697 Second 

2000-2010 

AW 574 5 2513 1741 Unrefined 

Refined AW 231 0 501 862 First 

Modified Refined AW 228 0 491 776 Third 

TDW 178 3 363 689 Unrefined 

Refined TDW 130 0 298 426 First 

Modified Refined TDW 121 0 287 401 Third 

EM 213 0 493 679 Second 

Modified EM 162 0 380 606 Third 

EEM 133 0 313 477 Second 
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Table 4.5. Absolute error measures of unrefined and refined methods in Worcester. 
Method MAE Median Absolute 

Error 

RMSE 90th Percentile 

Error 

Refinement 

Level 

1990-2010 

AW 275 52 598 892 Unrefined 

Refined AW 221 51 446 803 First 

Modified Refined AW 146 46 298 379 Third 

TDW 147 77 287 299 Unrefined 

Refined TDW 138 56 272 290 First 

Modified Refined TDW 129 45 266 326 Third 

EM 290 72 596 845 Second 

Modified EM 155 46 382 319 Third 

EEM 129 46 288 269 Second 

2000-2010 

AW 184 9 530 568 Unrefined 

Refined AW 150 8 402 748 First 

Modified Refined AW 101 7 301 240 Third 

TDW 37 13 74 104 Unrefined 

Refined TDW 37 6 100 103 First 

Modified Refined TDW 36 7 110 89 Third 

EM 184 8 473 745 Second 

Modified EM 75 6 196 297 Third 

EEM 40 5 112 87 Second 

 

Figures 4.4 and 4.5 show maps of the absolute errors of the two best-performing methods 

found for each region and time period, but focusing on the first and second spatial refinement 

scenarios. In almost all cases except in Worcester for the time period 2000-2010, refined TDW 

and EEM are the two best performing methods. Because third refinement methods require more 

specific analysis and interpretation with a focus on rural settings, they will be evaluated, separately.  
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Figure 4.4. Error maps of the five counties (1990-2010), (a) Hennepin: Refined TDW, (b) EEM, 

(c) Mecklenburg: Refined TDW, (d) EEM, (e) Broward: EEM, (f) Refined TDW, (g) 

Hillsborough: Refined TDW, (h) EEM, (i) Worcester: Refined TDW, (j) EEM. 
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Figure 4.5. Error maps of the five counties (2000-2010), (a) Hennepin: Refined TDW, (b) EEM, 

(c) Mecklenburg: Refined TDW, (d) EEM, (e) Broward: EEM, (f) Refined TDW, (g) 

Hillsborough: EEM, (h) Refined TDW, (i) Worcester: TDW, (j) Refined TDW. 

Figures 4.6 and 4.7 depict the derived population maps in 1990 and 2000 from the two best 
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performing methods of the first and second spatial refinement scenarios compared to the 

population maps resulting from aggregating block population counts to target tract boundaries in 

Hennepin County and Mecklenburg County. These maps visualize the agreement between the 

spatially refined population estimates in 1990 and 2000, respectively, and the corresponding 

ground-truth choropleth population maps based on block level aggregates. 

 

Figure 4.6. Population maps in 1990 at the target tract level, (a) Hennepin: block-aggregated, (b) 

Refined TDW, (c) EEM, (d) Mecklenburg: block-aggregated, (e) Refined TDW, (f) EEM.   
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Figure 4.7. Population maps in 2000 at the target tract level, (a) Hennepin: block-aggregated, (b) 

Refined TDW, (c) EEM, (d) Mecklenburg: block-aggregated, (e) Refined TDW, (f) EEM.   

To evaluate how third spatial refinement methods perform in comparison to their first or 

second refinement equivalents in rural areas, Table 4.6 presents the overall absolute errors (i.e., 

MAE and RMSE) produced by all refined methods when applied to only rural target tracts in each 

study area. It is expected that the third spatial refinement methods are effective in rural areas 

because they further refine large parcels more frequently located in rural parts. To identify rural 

tracts, the number of rural households indicated by Census is divided by the total number of 

households, and all tracts with a proportion of rural population greater than 10% are treated as 

rural. Broward is excluded because this highly urbanized county includes only 1 rural target tract. 

Other thresholds for identifying rural tracts (i.e., 5% and 15%) were also tested and yielded similar 

orders of results. Based on the utilized threshold, there exist 9, 10, 38 and 58 rural target tracts in 

Hennepin, Mecklenburg, Hillsborough and Worcester, respectively.  
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Table 4.6. Absolute errors for all refined methods applied to rural tracts in four study areas. 

Method Refined 

AW 

Modified 

Refined AW 

Refined 

TDW 

Modified 

Refined TDW 

EM Modified 

EM 

Hennepin: 1990-2010 

MAE 282 153 575 360 209 137 

RMSE 405 243 966 613 331 198 

Hennepin: 2000-2010 

MAE 3 0 1 1 1 1 

RMSE 6 1 2 2 2 1 

Mecklenburg: 1990-2010 

MAE 841 355 573 443 616 264 

RMSE 1106 447 694 510 857 346 

Mecklenburg: 2000-2010 

MAE 1003 246 577 284 819 208 

RMSE 1276 328 678 340 1003 349 

Hillsborough: 1990-2010 

MAE 494 353 312 273 507 398 

RMSE 754 512 470 437 733 561 

Hillsborough: 2000-2010 

MAE 303 237 137 111 186 154 

RMSE 730 620 342 286 425 334 

Worcester: 1990-2010 

MAE 238 102 147 122 268 178 

RMSE 495 195 300 284 579 520 

Worcester: 2000-2010 

MAE 173 54 36 35 137 49 

RMSE 442 131 73 105 316 125 

 

Figures 4.8 and 4.9 demonstrate the effectiveness of third refinement methods in 

comparison to their first or second refinement counterparts, particularly in rural areas, for both 

time periods. This is visualized at the target tract level, and rural tracts are emphasized in the maps. 

Although the emphasis of the third refinement methods is on rural tracts, the absolute error values 

of other tracts might change as well due to the existence of some large parcels in urban areas. 

If a third refinement method results in a lower error for a target tract compared to the first 

or second refinement, that tract is shown in green. For example, in Figure 4.8(a), all green tracts 

represent those for which modified refined AW leads to lower absolute errors than refined AW in 
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estimating the population in 1990 within target tract boundaries from 2010 in Hennepin County. 

Tracts shown in orange and grey indicate those where refined AW outperforms modified refined 

AW and results in equal error measures, respectively.  
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Figure 4.8. Third spatial refinement methods in comparison to their first or second refinement 

equivalents in 1990-2010, (a) Hennepin: AW, (b) TDW, (c) EM, (d) Mecklenburg: AW, (e) 

TDW, (f) EM, (g) Hillsborough: AW, (h) TDW, (i) EM, (j) Worcester: AW, (k) TDW, (l) EM. 
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Figure 4.9. Third spatial refinement methods in comparison to their first or second refinement 

equivalents in 2000-2010, (a) Hennepin: AW, (b) TDW, (c) EM, (d) Mecklenburg: AW, (e) 

TDW, (f) EM, (g) Hillsborough: AW, (h) TDW, (i) EM, (j) Worcester: AW, (k) TDW, (l) EM. 
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4.5. Discussion and conclusions 

As Tables 4.1 to 4.5 imply, the first spatial refinement often reduces the absolute error 

measures in comparison to regular implementations of AW and TDW. This re-confirms the great 

potential of using residential parcels for the spatial refinement in temporal interpolation of 

population as described in earlier research (Zoraghein et al. 2016). Notably, the quality of the 

ancillary variable and the degree to which underlying assumptions hold greatly influence the 

effectiveness of spatial refinement. For instance, the overestimation of developed land through 

residential parcel units can be one major reason why population can be allocated disproportionally 

in refined AW. In refined TDW, that overestimation may invalidate the underlying assumption of 

proportionally equal population densities within source unit boundaries at different points in time, 

leading to biased estimates and increased errors. The very few instances in which errors are higher 

in the first spatial refinement methods than their unrefined counterparts can be attributed to those 

issues. For example, the reason why the RMSE of refined TDW is higher than TDW in 

Mecklenburg County for 2000-2010 relates to the existence of very few target tracts with high 

absolute errors in the last 10% of the error distribution, possibly pointing to the above-mentioned 

problem. 

Although EM uses the housing type attribute of residential parcels in addition to their 

geometric footprints for refinement, the computed error measures are rather high. A possible 

reason could be that there is considerable variation within the individual residential control zones 

across a county, which cannot be reflected by this method. However, the accuracy level of EEM 

is much higher than EM as verified in all 10 cases. Consequently, the refinement of residential 

control zones based on area and density measures appears to be a useful approach to reflect and 

approximate this within-class variation, ultimately resulting in further error reduction.  
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This demonstrates the efficacy of EEM as an accurate method for temporal interpolation 

of population especially over longer time periods where the assumptions of refined TDW begin to 

fall apart. For 1990-2010, EEM is the best performing method in all study areas except Broward. 

For 2000-2010, however, neither EEM nor refined TDW dominates as the most accurate method 

over the five study areas. For shorter time periods, the assumptions of refined TDW appear to be 

realistic enough, explaining its robust performance in Hillsborough, Broward and Worcester 

Counties. However, in regions where the assumptions of refined TDW are not reliable even over 

short time periods, EEM can be more accurate than refined TDW such as in Mecklenburg and 

Hennepin Counties. EEM is computationally expensive, and running the simulation to find the 

best combination of eligible control zones and optimum number of categories per control zone is 

time-demanding. Nevertheless, the current results suggest that the methodology carries great 

potential to be implemented in cases where the accuracy levels of conventional refined methods 

are not satisfactory, which can especially be true over long time periods. This is an extremely 

important point as EEM is expected to be more efficient once parcel-derived demographic or 

property databases become available for larger regions that contain more consistent, broadly 

defined residential classes, thus eliminating the need for expensive simulation and exploratory 

analysis. If these large-scale parcel and property databases carry consistent temporal information 

for residential development, this will open new possibilities to model small area population 

estimates over very long time periods, nationally, once historical census data become also 

available. Another advantage of EEM over refined TDW is that EEM is pycnophylactic; that is, it 

preserves the population value of source zones as opposed to refined TDW.   

According to Figures 4.4 and 4.5, target tracts with higher absolute errors are more frequent 

and pervasive outside highly urbanized areas and city boundaries. This effect is consistent with 
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the explanations provided before, suggesting that the overestimation of developed land through 

large residential parcels in less urbanized areas contributes to decreased accuracy of spatial 

refinement in those areas.  

Figures 4.6 and 4.7 demonstrate that the population maps in 1990 and 2000 resulting from 

the two best performing methods closely match the ground-truth maps. The derived population 

estimates of almost all target tracts from the two methods, particularly EEM, and their 

corresponding ground-truth values belong to the same population categories in both 1990 and 

2000. 

Third spatial refinement methods increase the accuracy of first and second refinement 

methods in most cases as can be observed in Tables 4.1 to 4.5. The main focus of this additional 

refinement step, however, is on rural settings where land cover databases typically underestimate 

developed land, and parcel units overestimate residential area. Table 4.6 demonstrates that the 

improvement effect of the third spatial refinement is more consistent in rural target tracts. In almost 

all cases, the overall error measures of that set of methods are lower, and in some cases, the 

superiority is substantial. The reason why the error metrics of Hennepin for 2000-2010 are very 

low is because the boundaries of rural tracts are almost unchanged during the period. Only in 

Worcester for time period 2000-2010, the overall absolute error metrics of a third spatial 

refinement method is lower than its first refinement counterpart (i.e., modified refined TDW vs. 

refined TDW). Figures 4.8 and 4.9 display that the absolute error values of the majority of rural 

target tracts are reduced by the third spatial refinement in many cases. The only cases where such 

an effect is not observed are TDW for 1990-2010 and 2000-2010 in Worcester and EM for 2000-

2010 in Hillsborough. However, according to Table 4.6, even for two of those three cases, the 

MAE values of rural target tracts are decreased, meaning that error reduction is greater for those 
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tracts where the third spatial refinement is effective. These slight performance variations can be 

explained by the quality of ancillary variables used for the third refinement. Both developed land 

classes in NLCD and road network are imperfect data sources and have locational errors as well 

as classification issues that can impact the population estimation, resulting in some higher errors 

in some parts of the study areas.  

Future research will assess the combination of different refinement methods. Although, 

that approach may be computationally expensive and more complex, each of the utilized methods 

has its own strengths for different circumstances, justifying the initial efforts for the development 

of a hybrid approach. Moreover, modified EEM can be implemented by running the simulation 

over different combinations of housing types and geometrically modified developed lands to 

examine its effectiveness, especially in rural areas and over long time periods. The incorporation 

of new global data products such as the recently introduced Global Human Settlement Layer 

(GHSL) that represents built-up land for four points in time (1975-2014) (Pesaresi et al. 2016), 

represents a promising research avenue to apply similar approaches to areas that are less data-rich. 
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Chapter V 

 

 

Comprehensive Multi-Faceted Multi-Temporal Demographic Estimation: 

Enhancement of Areal Interpolation Using Spatial Refinement and Diverse 

Ancillary Variables 

 

Abstract 

This research evaluates the performance of areal interpolation coupled with spatial 

refinement to estimate different demographic attributes, namely total population and population 

sub-groups based on race, age structure and urban residence, within consistent census tract 

boundaries from 1990 to 2010 in Massachusetts. This allows the study of the nuanced and micro-

scale evolution of different aspects of population, which is very complicated according to the 

current temporally incompatible small area census geographies. Various ancillary variables, 

including the Global Human Settlement Layer (GHSL), the National Land-Cover Database 

(NLCD), parcels, building footprints and the proprietary ZTRAX® dataset are utilized for spatial 

refinement, and their effectiveness for improving the accuracy of multi-temporal population 

estimations is evaluated. The outcomes of these analyses are then employed for an environmental 

injustice application to first estimate the counts of different population sub-groups living within 

flood zones of the state, and second to assess if certain racial or age-related sub-groups are 
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disadvantaged. The results of the analyses of this research show the effectiveness of using areal 

interpolation enriched by spatial refinement for more reliable multi-temporal estimations of 

population although the level of the effectiveness depends on the utilized ancillary variables, the 

demographic attribute and the time duration of the application. This research also shows the 

effectiveness of using advanced areal interpolation methods for risk assessment and environmental 

injustice applications based on tract-level census demographies, which can be extended to earlier 

historical census years or other census systems that do not offer units as small as blocks. The 

findings of this research also point to the potential of using the proposed methods to redefine urban 

lands and population objectively over time. 

Keywords: Areal Interpolation; Demographic Analysis; Spatial Refinement; Urban; 

Environmental Injustice Assessment  
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5.1. Introduction   

The effectiveness of using enhanced areal interpolation methods, leveraging dasymetric 

modeling (Wright 1936, Eicher and Brewer 2001, Mennis 2003) in temporal interpolation of 

demographic variables is reported by different researchers (e.g., Buttenfield et al. 2015, Ruther et 

al. 2015, Zoraghein et al. 2016, Schroeder 2007, 2017, Schroeder and Van Riper 2013, Logan et 

al. 2016). The ultimate objective of those works is to create temporally consistent total population 

estimates within non-coterminous census units from different census years with minimum error. 

This is accomplished by identifying the census boundaries of one census year, i.e., target year, as 

“target zones”. Population counts recorded for census boundaries used in other census years, i.e., 

“source zones” are then transferred or redistributed to those target zones. All the above-mentioned 

works report that such refinement techniques result in reductions in absolute population estimation 

errors. 

The common areal interpolation methods that are used for temporal estimation of 

population are Areal Weighting (AW) (Goodchild and Lam 1980), Target Density Weighting 

(TDW) (Schroeder 2007), Pycnophylactic Modeling (PM) (Tobler 1979) and Expectation 

Maximization (Dempster et al. 1977, Flowerdew and Green 1994). Enhancement using dasymetric 

refinement entails that the methods be applied to only inhabitable sub-areas of source and target 

zones identified by ancillary variables to benefit from a more precise delineation of the underlying 

statistical surface of population distribution. The theoretical frameworks of refined AW, refined 

TDW and EM are explained in Ruther et al. (2015) and Zoraghein et al. (2016), and Kim and Yao 

(2010) formulate the methodological implementation of refined PM. 

All areal interpolation methods show some level of estimation errors, and their 

performance varies inevitably with specific conditions (Zandbergen and Ignizio 2010). Moreover, 
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the performance of spatially refined areal interpolation methods also can vary according to the 

ancillary data employed (Langford 2013). Recent studies argue that exceedingly complex spatially 

refined areal interpolation methods may not offer much accuracy improvement over existing 

methods and can even increase estimation errors (Lin et al. 2011, 2013, Schroeder and Van Riper 

2013, Lin and Cromley 2015b). Therefore, it is important to focus on various ancillary variables – 

both publically available and commercial – to better understand their effectiveness in enhancing 

the currently established areal interpolation methods for temporal estimation of population. 

Regardless of whether the purpose of areal interpolation in demographic data is to 

downscale population from a set of coarse zones to a set of finer-resolution target units (e.g., 

Bhaduri et al. 2007, Dmowska and Stepinski 2017) or to create temporally consistent population 

estimates among incompatible census units (Schroeder 2007, Buttenfield et al. 2015, Ruther et al. 

2015, Zoraghein et al. 2016), the most commonly modeled demographic variable is total 

population. Rarely have other variables been analyzed or evaluated, which represents a persistent 

shortcoming in demographic applications. 

Incorporating other attributes in addition to total population in such modeling efforts sheds 

light on various new aspects of demographic distributions and their changes over time. For 

example, to better understand the underlying trends of different subgroups of the population related 

to race, age, and urban residence, those demographic estimates need to be examined over 

temporally consistent fine-scale census units such as census tracts that suffer from often reported 

incompatibilities (Gregory 2002, Martin et al. 2002, Schroeder 2007). If such high-resolution 

depictions of different sub-populations can be provided with confidence, this would result in a 

more refined and differentiated portrayal of population distribution and reveal important nuances 

of where and under what circumstances the population lives. One example in that context is the 
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exposure assessment. 

The objectives of this paper are threefold. First, different ancillary variables are used in 

order to enhance regular areal interpolation methods, including AW, TDW and EM to estimate 

tract-level demographic variables for the whole state of Massachusetts in 1990 and 2000 (source 

zones) within and compatible to target tract boundaries from the 2010 Census. These models will 

create temporally consistent time-series of population estimates across the three census years. The 

ancillary variables comprise both readily and freely available datasets such as the National Land-

Cover Database (NLCD) and Global Human Settlement Layer (GHSL) and those that are either 

proprietary or not readily available such as tax parcels of the state, its building footprints as well 

as ZTRAX® records. This part of the analysis evaluates how different ancillary variables of varying 

spatial resolution influence the accuracy of regular areal interpolation methods in a temporal 

context. It also examines the limitations of accuracy improvement by using localized often 

unavailable ancillary variables over nationally or globally publicly available datasets. 

Second, the establishment of consistent time series of population estimates is extended to 

and evaluated for other sub-groups of population related to age, race and urban residence. This 

analysis can reveal the level of consistency of accuracy improvements due to spatial refinements 

in temporal analysis across different demographic attributes. The successful construction of 

consistent micro-scale time series of different aspects of population would be beneficial for 

applications pertaining to health studies, crime analysis, hazard/risk assessment, land-use 

planning, or environmental impacts assessment.  

Third, in order to place the results of the previous two steps within an application-oriented 

context, a risk assessment is conducted to evaluate exposure levels of various racial and age-related 

sub-groups of population to the flood hazard in Massachusetts. Spatially refined areal interpolation 
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methods by the most reliable ancillary variables selected from the previous steps are employed to 

estimate counts of people from different demographic sub-groups who reside within areas of 

elevated flood hazard. Based on such improved sub-population distributions, it is examined 

through an environmental justice lens, if the minority populations are potentially more exposed 

than the majority. Previous studies in the field report an increase in risk and exposure to disasters 

for communities of color in the United States (Fothergill et al. 1999). This study examines whether 

the same patterns can be revealed from the above-described refined methodological frameworks. 

5.1.1. Background: Dasymetric refinement for improved exposure assessments 

Various ancillary variables have been used in the literature so far for population 

downscaling in dasymetric modeling. Land-cover/land-use is still the most widely used ancillary 

variable (Wright 1936, Mennis 2003, 2009, Reibel and Agrawal 2007, Linard et al. 2011, 

Buttenfield et al. 2015, Ruther et al. 2015, Dmowska and Stepinski 2017). High resolution satellite 

images constitute another possible ancillary dataset in population disaggregation (Lu et al. 2010, 

Ural et al. 2011, Lung et al. 2013). Fine-resolution images are input to Object Based Image 

Analysis (OBIA) (Blaschke 2010) for extracting buildings as the smallest unit of settlement (Wang 

et al. 2016). The range of other employed ancillary variables is extensive and spans datasets such 

as LiDAR (Dong et al. 2010, Qiu et al. 2010, Sridharan and Qiu 2013, Xie et al. 2015), tax parcel 

data (Maantay et al. 2007, Kar and Hodgson 2012, Mitsova et al. 2012, Jia et al. 2014, Jia and 

Gaughan 2016, Zoraghein et al. 2016), street networks (Reibel and Bufalino 2005, Su et al. 2010), 

impervious surfaces (Zandbergen and Ignizio 2010, Schroeder 2017), address points (Tapp 2010, 

Zandbergen 2011), buildings (Wu et al. 2008, Calka et al. 2016) and Volunteered Geographic 

Information (VGI) (Bakillah et al. 2014, Geiß et al. 2016). 

Vulnerability is generally defined as the potential for loss of life or property due to hazards 
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(Hazards and Vulnerability Research Institute 2014) and is typically assessed through estimating 

exposure, impact or damage (Cutter et al. 2009, Burton 2010). Exposure is considered a highly 

tangible component of risk. It comprises the assets in terms of people, properties, infrastructure, 

or economic activities potentially affected by a hazardous event (Schneiderbauer and Ehrlich 2004, 

Geiß and Taubenböck 2013).  

In order to carry out an unbiased analysis of exposure to natural hazards in an application, 

the analyst requires highly detailed population distributions within the area under study, both in 

terms of resolution and demographic characteristics. Several examples of combining dasymetric 

modeling with risk analysis that can be found in the literature typically focus on issues such as 

environmental injustice, exposure assessment and evacuation preparedness in the event of a natural 

disaster, to name a few. Maantay and Maroko (2009) use their Cadastral-based Expert Dasymetric 

System (CEDS) (Maantay et al. 2007) to estimate the level of impact on racial sub-groups by 100-

year flooding in New York City. Wu et al. (2017) leverage ancillary datasets including night-time 

lights, road networks and land-cover/land-use for the disaggregation of asset values in China to 

improve current disaster risk assessment frameworks. Geiß et al. (2016) employ remote sensing 

data and VGI (Goodchild, 2007) to improve the estimation of crucial exposure components, 

including the number of buildings and population counts at fine resolution. Bian and Wilmot 

(2017) use dasymetric modeling to investigate if risk-prone and disadvantaged people are 

sufficiently served by the current evacuation facilities in New Orleans. 

5.2. Study area and data 

5.2.1. Study area 

The below-described analyses are conducted for the whole state of Massachusetts for 

several reasons. First, different state-wide datasets that can be used as ancillary variables for 
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dasymetric modeling are publicly available. This includes parcels as well as building footprints. 

Second, the proprietary ZTRAX® database is available for this research, and unlike in some other 

states, the completeness of this database is very high. Third, although Massachusetts is a small 

state, its population size is relatively high, with highly variable population densities ranging from 

the densely populated Boston metropolitan region in the east to sparsely populated western parts 

of the state. For these reasons, Massachusetts represents an excellent benchmark study area for 

future national-scale extensions of the study.  

However, some shortcomings related to the study area selection are noteworthy. First, there 

is relatively a low level of racial diversity across the state, possibly limiting the validity of the 

environment injustice analysis. While according to the U.S. Census Bureau (2010), white and 

black populations constitute 80.4% and 6.6% of the total population of the state of Massachusetts, 

respectively, those percentages are 66.2% and 27.9% in South Carolina and 59.7% and 30.5% in 

Georgia. Nevertheless, the aforementioned reasons justify the use of Massachusetts as a 

convenient study area at this stage. 

5.2.2. Data 

5.2.2.1. Census data 

The focus of this study are census tracts in 1990, 2000 and 2010, along with their 

demographic attributes including total population and population subgroups based on race 

(white/black), age (under18, under 65, above 65) and urban residence. The tabular summary files 

and geometric boundaries in 1990 were extracted from The National Historical Geographic 

Information System (NHGIS) data portal (Minnesota Population Center 2016). Census tract 

boundaries in 2000 and 2010 were accessed as TIGER/Line® (U.S. Census Bureau 2016) and their 

demographic attributes were retrieved from the American FactFinder download center (U.S. 
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Census Bureau 2010b). Census block boundaries – as the smallest census aggregation unit – in 

1990 and 2000 as well as their demographic attributes were extracted from the same sources as 

their coincident tracts and used to validate interpolated tract-level demographic estimates for 1990 

and 2000, respectively. 

5.2.2.2. Publically available national or global ancillary variables  

The NLCD land-cover product, which is derived from Landsat imagery and published at a 

resolution of 30m, provides nationally complete, current, consistent, and publicly available 

information on the nation’s land-cover. In this study, the NLCD layers of the three temporally 

closest vintages to the census years of interest, 1990, 2000 and 2010, are employed for spatial 

refinement. They are NLCD 1992 (Vogelmann et al. 2001), NLCD 2001 (Homer et al. 2007) and 

NLCD 2011 (Homer et al. 2015) and commonly refer to a range of years prior to and after the year 

indicated by the product release. NLCD includes multiple classes, representing different land-

cover and land-use types. The classes 21, 22 and 23 in NLCD 1992 and 21, 22, 23 and 24 in 2001 

and 2011 label developed land with varying degrees of development intensity. In this study, 

development masks are created based on different combinations of the developed classes in 

different years and then used in spatial refinement at those points in time in order to determine the 

optimum combination for each period. 

The GHSL dataset represents global spatial information about the human presence on the 

planet over time. The data layers are generated using evidence-based analytics and knowledge 

based on new spatial data mining technologies. In this study, the Landsat-based fine resolution 

(38m) version of GHSL is used. It classifies built-up land from before 1975 to 2014 (Pesaresi et 

al. 2016). GHSL built-up layers that are approximately coincident with the three census years were 

used (GHSL epochs of 1990, 2000 and 2014). Some drawbacks in using GHSL are the temporal 
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mismatch between the latest GHSL epoch and the latest census year, the low levels of classification 

accuracy in rural settings (Leyk et al. n.d.), as well as the assumption that development cannot 

return to non-development, which might not necessarily be the case in some areas. Regardless of 

these caveats, the dataset provides a unique and recently available global depiction of human 

settlement, which is very convenient for spatial refinement and could potentially be applied in 

data-poor regions. 

5.2.2.3. Local or commercial ancillary variables 

Tax parcels of Massachusetts except those in the City of Boston are available per township 

(MassGIS 2016). Therefore, parcels of all of the townships were downloaded and merged together, 

then combined with the City of Boston’s parcel data created by its Assessing department 

(BostonGIS 2016) to form a complete state-wide dataset. Land-use classes in parcel records 

typically indicate the existence of developed areas at the lot level, and can thus be considered a 

promising ancillary variable (Zoraghein et al. 2016). However, their size presents a high level of 

diversity, stretching from very small lots in highly urbanized areas to extremely large ones in rural 

locations (Leyk et al. 2014).   

Building footprints represent the smallest achievable unit of residence for spatial 

refinement. Fortunately, the state-wide building footprints of Massachusetts are publicly available 

and were utilized in this study for dasymetric refinement (MassGIS 2017). The dataset has been 

created using the conjunction of fine resolution imagery from DigitalGlobe®, LiDAR data and 

parcel boundaries.  

This research also employs the proprietary ZTRAX® dataset for the first time as another 

ancillary variable for spatial refinement, courtesy of the Zillow Company (Zillow 2017). It 

contains a multitude of housing and property-related information as well as longitude and latitude 
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of the geometric centroid of encompassing parcels. The dataset is nation-wide with varying levels 

of completeness and attribution.  

To have a consistent set of attributes for parcels, buildings and ZTRAX® housing records, 

the standardized set of attributes of ZTRAX® records are assigned to encompassing parcels and 

buildings located inside those parcel boundaries using the spatial join operation. This approach has 

some advantages. First, it eliminates the inconsistency between attributes of parcels in Boston and 

those in the remaining areas of the state, which is a result of being compiled by two different 

sources. Second, it creates a high level of consistency in land-use attributes between the three 

datasets. Third, it increases the flexibility of using parcels and buildings in other areas, where 

parcel records do not provide land-use information. In those instances, as long as only geometric 

footprints of parcels and buildings are ready, the spatial refinement using them can proceed 

because the ZTRAX® data is consistently and nationally available. 

The built-year attribute indicating when the main building within a parcel has been built 

and the land-use class attribute defining the category of the building were extracted from the 

ZTRAX® data. The first attribute was used to temporally match the three ancillary variables with 

the census year while the second attribute determined the relevant records to be utilized for creating 

ancillary masks. 

5.3. Methods 

AW, TDW, EM – with and without spatial refinement – are implemented to transfer total 

population and population sub-groups based on age (under 18, under 65 and above 65), race (white 

and black) and urban residence from source census tracts in 1990 and 2000 to target tract 

boundaries in 2010 in order to create temporally consistent tracts for the 1990-2010 and 2000-

2010 time periods, respectively. The underlying assumptions of the methods as well as their 
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mathematical foundations are described recently (e.g., Schroeder 2007, Schroeder and Van Riper 

2013, Ruther et al. 2015, Zoraghein et al. 2016). 

Enhanced EM (EEM) introduced and explained in Zoraghein and Leyk (n.d.) is also 

implemented. EEM makes EM more robust by first dividing its initial control zones into more 

homogeneous sub-control zones according to area and unit-density quantiles, and then performing 

the EM algorithmic framework on the new set of more homogenized zones. However, this method 

requires computationally complex simulations using different numbers of classes and 

subcategories of residential units. Given the size of the study area and the required processing time, 

only few such simulations can be examined. Thus, based on prior experience in testing this method, 

the five most frequent classes with the highest area diversity and the class “condominium” are 

each divided into seven more homogeneous sub-groups according to quantiles of area and unit 

density, respectively.  

5.3.1. Spatial refinement for total population and population sub-groups 

Spatial refinement is based on the ancillary variables introduced in Sections 2.2.2 and 2.2.3 

and their different combinations. For example, the selection of NLCD developed classes is not 

confined to those suggested in Ruther et al. (2015), and different combinations of developed 

classes of NLCD at different points in time are explored for creating spatial masks. Moreover, 

NLCD developed classes are combined with built-up land depictions derived from GHSL to create 

composite spatial masks. 

ZTRAX® records in Massachusetts are already categorized into 245 land-cover/land-use 

types, of which 41 classes that indicate inhabited or populated lands are extracted. The point 

locations of all these selected records are spatially joined with parcel boundaries and buildings 

contained in these parcels. These integrated data layers are used for the spatial refinement of the 
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demographic enumerated data. Spatial masks for refinement are also created solely based on the 

selected ZTRAX® point locations. To do so, these point features are rasterized using a target 

resolution of 30m to make the ancillary dataset comparable to NLCD. 

The different spatially refined areal interpolation methods leverage the different ancillary 

variables as binary masks (limiting ancillary variables) but also as related ancillary variables) to 

derive temporally consistent estimates of total population and population sub-groups based on race 

(white/black) and age (under 18/under 65/ above 65) in 1990 and 2000 within 2010 census tract 

boundaries, respectively. 

5.3.2. Spatial refinement for estimating changes in urban land and urban population 

The definition of urban lands and urban population represents one of the most persistent 

challenges in demography and urban geography and typically underlies complex processes. The 

U.S. Census Bureau uses various criteria based on population, identification of designated places, 

land-use and road segments, among others, to identify urban lands, which are delineated by layers 

of Urbanized Areas (UAs) and Urban Clusters (UCs) (Department of Commerce 2011, U.S. 

Census Bureau 2011). One well-known problem in using these layers is the change in the 

underlying definition of what is urban. In fact, in addition to the temporal incompatibility in the 

small-area enumeration units, the concepts of urban lands and consequently urban population 

change over time. This makes studying the evolution of these two complex phenomena extremely 

challenging. Nevertheless, given the ubiquitous and growing trends of urbanization, worldwide, 

and the limited knowledge about such processes, research efforts to model urban lands and 

population reliably and consistently over time and across regions are essential and have important 

implications in domains such as planning, policy making and resource allocation.   

The census-defined urban areas of Massachusetts in 1990, 2000, and 2010 were available 
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and accessed from the NHGIS portal (Figure 5.1). The purpose of this part of the analysis is two-

fold. First, by using these urban land layers for spatial refinement, it can be assessed how reliably 

they represent the areas in which urban population resides and thus enclose the underlying 

statistical surface of urban population. This might also aid in deriving and testing ideas on how the 

urban definitions can be further refined and improved in a data-driven approach. Second, the 

performance of other ancillary variables, as possible surrogates for census defined urban areas, can 

be investigated using insights from this analysis. 

To serve the first purpose, the census defined urban areas are initially treated as another 

ancillary variable for dasymetric refinement (Wei et al. 2017) and integrated into the areal 

interpolation methods to estimate temporally consistent urban population values from 1990 to 

2010 and 2000 to 2010 at the census tract level, respectively. Next, the urban area layers in each 

year are further refined by the aforementioned ancillary variables, and for each composite 

refinement, the performances of the methods are compared. It is noteworthy to mention that a 

larger number of land-use classes from the ZTRAX® data should be selected to cover land-use 

types that are not residential but indicate urban land (e.g., commercial or industrial).  

For the second purpose, all the ancillary variables are employed for spatial refinement but 

they are not limited to be situated within the census defined urban areas. The outcomes of these 

models are then evaluated, and the level of the reliability of each combination of ancillary variables 

to mimic the urban areas are presented. 
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Figure 5.1. Census-defined urban areas in Massachusetts in 1990, 2000 and 2010. 
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5.3.3. Enhanced areal interpolation methods for improved risk assessment over time 

The National Flood Hazard Layer (NFHL) dataset, containing 100-year and 500-year flood 

zones, which has been updated by the Federal Emergency Management Agency (FEMA) was 

accessed (MassGIS 2014). 100-year and 500-year flood zones represent areas with a 1% and 0.2% 

annual chance for flooding. This study examines how risk assessment analysis can leverage refined 

AW, EM and EEM to improve the estimation of the potentially exposed total population and 

population sub-groups (age and race) residing within hazardous flood zones in 1990 and 2000. In 

other words, the above-described areal interpolation methods transfer population values from 

source tracts in 1990 and 2000 within flood zones (i.e., target zones). Refined TDW cannot be 

utilized because it also requires population counts in target zones, which are not available.  

Examining census tracts as source zones presents three advantages. First, census tracts are 

more historically and spatially available than blocks, and thus allow for longer historical vintages. 

Second, existing comparable enumeration units in other countries can also be implemented in 

similar analyses, indicating the potential applicability of such methods to other census systems. 

Third, blocks can be used independently for validation to assess which tract-based method 

produces the most accurate and realistic delineation of the population at risk. Figure 5.2 depicts an 

overview of flood zones in Massachusetts. 
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Figure 5.2. Flood zones and tract boundaries from Census 2000 in Massachusetts. 

To identify the most accurate method, a benchmark estimation of the potentially exposed 

population is required. This benchmark is derived by using EEM employing building footprints to 

transfer population values from blocks to flood zones. EEM is selected because it is generally more 

accurate than refined AW (Zoraghein and Leyk n.d.), and buildings are chosen for dasymetric 

refinement because the dataset is the finest resolution delineation of human settlement available.  

Population counts of the most accurate methods are also input to assess the risk of exposure 

for different sub-groups. In this part of the analysis, answering this question is specifically of 

interest: are certain sub-groups of population more exposed to risk than expected? The expected 

values for different sub-groups are derived by assuming that their population is distributed within 

flood zones proportionally; i.e., the ratio of the exposed count of a population sub-group to the 

total exposed population is the same as the ratio of that population sub-group to the total population 

of the state.   
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5.3.4. Validation 

The validation of the estimated tract-level results for each census year is done using census 

block statistics, as is often done in tract-level analysis and dasymetric modeling (e.g., Buttenfield 

et al. 2015, Ruther et al. 2015, Zoraghein et al. 2016). After transferring population estimates from 

source zones to target zones, each 2010 census tract can be linked with its estimated population 

counts in 1990 and 2000. These estimates for target zones in 1990 and 2000 are compared to 

population counts of census blocks in 1990 and 2000 aggregated to target zone boundaries. In 

addition to total population, population subgroups in this study are reported over both census tracts 

and blocks, thereby enabling blocks for validation.  

Different error measures are calculated such as the Mean Absolute Error (MAE), median 

absolute error, Root Mean Square Error (RMSE) and 90% percentile of absolute errors. These 

error measures and error distributions can be compared across methods to characterize and 

evaluate the performance of the described methods. For example, MAE and RMSE measures 

illustrate the overall behavior of estimation errors and are sensitive to outliers whereas the median 

absolute error and 90% percentile of absolute error can be used to describe the upper end of the 

error distribution and placement of extreme absolute error values.    

5.4. Results 

This section describes some selected results to reflect the most relevant outcomes among a 

large number of model runs. To reduce complexity, different implementations of refined AW are 

excluded as it is typically found to be the least effective approach whose accuracy often ranks the 

lowest among refined methods.  

5.4.1. Spatial refinement for total population and population sub-groups 

In this section, maps of absolute errors for population estimates based on TDW are shown. 



105 

 

TDW is the most accurate unrefined areal interpolation method and the best-performing refined 

method when employing different types of ancillary variables. These absolute errors result from 

estimating the demographic attribute in 1990 and 2000 within census tract boundaries in 2010 

(target zones) (Figures 5.3, 5.5 and 5.7). Furthermore, population maps are shown, which depict 

the estimated demographic attribute itself in 1990 and 2000 within target tract boundaries, 

resulting from the above-mentioned unrefined and refined TDW in comparison to block-

aggregated attributes used as references (Figures 5.4, 5.6 and 5.8). 

To demonstrate outcomes for population sub-groups based on race and age classes, the 

respective maps are shown for white population (Figures 5.5 and 5.6) and the number of people 

aged under 65 (Figures 5.7 and 5.8).  

As shown in Figure 5.3, the best-performing refined methods for estimating total 

population during the 1990-2010 and 2000-2010 time periods are TDW refined by building 

footprints and TDW refined by rasterized ZTRAX® points, respectively. Figure 5.4 shows how 

these total population estimates compare to block-aggregated references. 
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Figure 5.3. Absolute error maps of total population estimates at the target zone level: (a) in 1990 

based on TDW, (b) in 1990 based on TDW refined by buildings, (c) in 2000 based on TDW and 

(d) in 2000 based on TDW refined by ZTRAX®1. 

                                                 

1 The dataset was provided by the Zillow Inc. (https://www.zillow.com/research/data/), 

and the source code for its process is at https://github.com/spatialhistory/ztrax_analysis. 

https://www.zillow.com/research/data/
https://github.com/spatialhistory/ztrax_analysis
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Figure 5.4. Total population maps at the target zone level: (a) in1990 based on TDW, (b) in 1990 

based on TDW refined by buildings, (c) in 1990 based on block aggregation, (d) in 2000 based 

on TDW, (e) in 2000 based on TDW refined by ZTRAX®1, and (f) in 2000 based on block 

aggregation. 

Similar to the presentation of the results for total population, Figure 5.5 illustrates the 

absolute error maps of white population estimates. The best-performing methods for the 1990-

2010 and 2000-2010 time periods are the same as those for total population. Figure 5.6 shows the 

maps of white population estimates. 

                                                 

1 The dataset was provided by the Zillow Inc. (https://www.zillow.com/research/data/), 

and the source code for its process is at https://github.com/spatialhistory/ztrax_analysis. 

https://www.zillow.com/research/data/
https://github.com/spatialhistory/ztrax_analysis
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Figure 5.5. Absolute error maps of white population at the target zone level: (a) in 1990 based on 

TDW, (b) in 1990 based on TDW refined by buildings, (c) in 2000 based on TDW, and (d) in 

2000 based on TDW refined by ZTRAX®1. 

 

                                                 

1 The dataset was provided by the Zillow Inc. (https://www.zillow.com/research/data/), 

and the source code for its process is at https://github.com/spatialhistory/ztrax_analysis. 

https://www.zillow.com/research/data/
https://github.com/spatialhistory/ztrax_analysis
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Figure 5.6. Maps of white population at the target zone level: (a) in 1990 based on TDW, (b) in 

1990 based on TDW refined by buildings, (c) in 1990 based on block aggregation, (d) in 2000 

based on TDW, (e) in 2000 based on TDW refined by ZTRAX®1, and (f) in 2000 based on block 

aggregation. 

Figure 5.7 shows the absolute error maps of population estimates aged under 65. The best-

performing methods for the 1990-2010 and 2000-2010 time periods are also identical to those for 

total population. Figure 5.8 shows the maps of estimates of the population sub-group. 

                                                 

1 The dataset was provided by the Zillow Inc. (https://www.zillow.com/research/data/), 

and the source code for its process is at https://github.com/spatialhistory/ztrax_analysis. 

https://www.zillow.com/research/data/
https://github.com/spatialhistory/ztrax_analysis
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Figure 5.7. Absolute error maps of population aged under 65 at the target zone level: (a) in 1990 

based on TDW, (b) in 1990 based on TDW refined by buildings, (c) in 2000 based on TDW and 

(d) in 2000 based on TDW refined by ZTRAX®1. 

 

                                                 

1 The dataset was provided by the Zillow Inc. (https://www.zillow.com/research/data/), 

and the source code for its process is at https://github.com/spatialhistory/ztrax_analysis. 

https://www.zillow.com/research/data/
https://github.com/spatialhistory/ztrax_analysis
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Figure 5.8. Maps of population aged under 65 at the target zone level: (a) in 1990 based on 

TDW, (b) in 1990 based on TDW refined by buildings, (c) in 1990 based on block aggregation, 

(d) in 2000 based on TDW, (e) in 2000 based on TDW refined by ZTRAX®1 and (f) in 2000 

based on block aggregation. 

The maps in Figures 5.9 and 5.10 show the population-normalized absolute errors 

pertaining to the above-mentioned demographic attributes for the 1990-2010 and 2000-2010 time 

periods, respectively. For normalization, the absolute errors for estimating the three demographic 

attributes shown in Figures 5.3, 5.5 and 5.7 are divided by the block-aggregated values of the 

respective year. Normalized errors are generally between 0 and 1, but can exceed 1 if the absolute 

error for a target tract is higher than its reference value, which can be observed in tracts with small 

                                                 

1 The dataset was provided by the Zillow Inc. (https://www.zillow.com/research/data/), 

and the source code for its process is at https://github.com/spatialhistory/ztrax_analysis. 

https://www.zillow.com/research/data/
https://github.com/spatialhistory/ztrax_analysis
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populations. Normalized error distributions provide a more objective comparison between target 

tracts across study areas and between different time periods. 

 

Figure 5.9. Normalized absolute error maps in 1990 for: (a) total population using TDW, (b) for 

total population using TDW refined by buildings, (c) population aged under 65 using TDW, (d) 

population aged under 65 using TDW refined by buildings, (e) white population using TDW, and 

(f) white population using TDW refined by buildings. 
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Figure 5.10. Normalized absolute error maps in 2000 for: (a) total population using TDW, (b) for 

total population using TDW refined by ZTRAX®1, (c) population aged under 65 using TDW, (d) 

population aged under 65 using TDW refined by ZTRAX®, (e) white population using TDW, 

and (f) white population using TDW refined by ZTRAX®. 

The above figures show only the results of TDW and the best-performing refined TDW 

method, depending on the demographic attribute and year. An extensive summary of the 

performance of the different methods in estimating demographic attributes from 1990 and 2000 

within 2010 target tract boundaries can be found in Tables 5.1 to 5.4. These tables include four 

error metrics associated with estimates of total population, race (white), race (black), and age 

                                                 

1 The dataset was provided by the Zillow Inc. (https://www.zillow.com/research/data/), 

and the source code for its process is at https://github.com/spatialhistory/ztrax_analysis. 

https://www.zillow.com/research/data/
https://github.com/spatialhistory/ztrax_analysis
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(under 65), respectively, and thus allow a more detailed comparison between the different methods 

according to the two time periods and for various demographic attributes. 

Table 5.1. Absolute error measures pertaining to total population estimates. 

 MAE Median Abs 

Error 

RMSE 90th Percentile 

Abs Error 

Ancillary 

Variable 

Method Time Period: 1990-2010 

AW 376 66 842 1252 None 

TDW 162 75 312 388 None 

RefTDW 168 64 327 454 NLCD 

RefTDW 136 67 239 336 GHSL 

RefTDW 143 75 247 359 NLCD-GHSL 

RefTDW 131 57 260 313 Parcels 

RefTDW 101 49 207 232 Buildings 

RefTDW 104 44 246 240 ZTRAX1 

EM 174 45 377 531 NLCD 

EM 353 77 773 1141 Parcels 

EM 154 50 346 409 Buildings 

EM 162 49 391 438 ZTRAX 

EEM 158 51 386 387 Parcels 

EEM 147 48 334 368 Buildings 

 Time Period: 2000-2010 

AW 340 11 1449 1084 None 

TDW 55 12 135 150 None 

RefTDW 47 7 129 127 NLCD 

RefTDW 55 8 151 168 GHSL 

RefTDW 51 7 143 154 NLCD-GHSL 

RefTDW 51 6 171 129 Parcels 

RefTDW 43 5 150 97 Buildings 

RefTDW 41 5 144 89 ZTRAX 

EM 142 7 447 366 NLCD 

EM 191 6 621 569 Parcels 

EM 87 5 300 229 Buildings 

EM 92 4 320 238 ZTRAX 

EEM 96 5 355 247 Parcels 

EEM 82 5 281 218 Buildings 

 

 

                                                 

1 The dataset was provided by the Zillow Inc. (https://www.zillow.com/research/data/), 

and the source code for its process is at https://github.com/spatialhistory/ztrax_analysis. 

https://www.zillow.com/research/data/
https://github.com/spatialhistory/ztrax_analysis
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Table 5.2. Absolute error measures pertaining to white population estimates. 

 MAE Median Abs Error RMSE 90th Percentile 

Abs Error 

Ancillary 

Variable 

Method Time Period: 1990-2010 

AW 343 55 772 1184 None 

TDW 146 63 292 359 None 

RefTDW 127 56 230 327 NLCD 

RefTDW 120 58 214 301 GHSL 

RefTDW 128 66 223 321 NLCD-GHSL 

RefTDW 117 50 233 284 Parcels 

RefTDW 87 42 178 204 Buildings 

RefTDW 91 37 216 214 ZTRAX1 

EM 203 54 417 649 NLCD 

EM 304 65 667 990 Parcels 

EM 127 41 271 330 Buildings 

EM 130 39 308 344 ZTRAX 

EEM 132 43 303 332 Parcels 

EEM 120 43 256 308 Buildings 

 Time Period: 2000-2010 

AW 313 53 1281 837 None 

TDW 77 44 131 180 None 

RefTDW 71 38 126 175 NLCD 

RefTDW 78 41 142 194 GHSL 

RefTDW 74 38 136 178 NLCD-GHSL 

RefTDW 75 39 157 172 Parcels 

RefTDW 68 36 138 156 Buildings 

RefTDW 66 36 133 152 ZTRAX 

EM 143 42 346 345 NLCD 

EM 182 41 479 464 Parcels 

EM 95 37 209 232 Buildings 

EM 94 37 211 243 ZTRAX 

EEM 101 39 246 224 Parcels 

EEM 90 36 191 212 Buildings 

 

 

 

 

 

 

 

 

                                                 

1 The dataset was provided by the Zillow Inc. (https://www.zillow.com/research/data/), 

and the source code for its process is at https://github.com/spatialhistory/ztrax_analysis. 

https://www.zillow.com/research/data/
https://github.com/spatialhistory/ztrax_analysis
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Table 5.3. Absolute error measures pertaining to black population estimates. 

 MAE Median Abs Error RMSE 90th Percentile 

Abs Error 

Ancillary 

Variable 

Method Time Period: 1990-2010 

AW 17 3 65 33 None 

TDW 11 3 30 24 None 

RefTDW 11 3 32 26 NLCD 

RefTDW 11 3 31 24 GHSL 

RefTDW 11 3 33 26 NLCD-GHSL 

RefTDW 11 2 35 27 Parcels 

RefTDW 11 2 39 24 Buildings 

RefTDW 11 2 36 26 ZTRAX1 

EM 14 2 51 27 NLCD 

EM 17 2 62 34 Parcels 

EM 15 2 50 29 Buildings 

EM 16 2 53 31 ZTRAX 

EEM 15 2 52 29 Parcels 

EEM 15 2 51 32 Buildings 

 Time Period: 2000-2010 

AW 23 2 94 41 None 

TDW 10 2 32 25 None 

RefTDW 9 2 31 25 NLCD 

RefTDW 10 2 33 24 GHSL 

RefTDW 10 2 32 25 NLCD-GHSL 

RefTDW 9 2 30 24 Parcels 

RefTDW 9 1 32 24 Buildings 

RefTDW 10 2 31 25 ZTRAX 

EM 15 2 50 30 NLCD 

EM 17 2 73 31 Parcels 

EM 15 2 56 28 Buildings 

EM 15 2 56 30 ZTRAX 

EEM 15 2 57 30 Parcels 

EEM 15 2 55 31 Buildings 

 

 

 

 

 

                                                 

1 The dataset was provided by the Zillow Inc. (https://www.zillow.com/research/data/), 

and the source code for its process is at https://github.com/spatialhistory/ztrax_analysis. 

https://www.zillow.com/research/data/
https://github.com/spatialhistory/ztrax_analysis
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Table 5.4. Absolute error measures pertaining to estimates of population aged under 65. 

 MAE Median Abs Error RMSE 90th Percentile 

Abs Error 

Ancillary 

Variable 

Method Time Period: 1990-2010 

AW 248 42 578 797 None 

TDW 110 49 210 267 None 

RefTDW 99 45 182 248 NLCD 

RefTDW 97 46 180 246 GHSL 

RefTDW 101 50 184 252 NLCD-GHSL 

RefTDW 94 39 196 224 Parcels 

RefTDW 76 33 164 180 Buildings 

RefTDW 78 31 198 182 ZTRAX1 

EM 150 41 319 456 NLCD 

EM 231 48 536 712 Parcels 

EM 112 33 279 281 Buildings 

EM 116 30 313 295 ZTRAX 

EEM 116 34 313 287 Parcels 

EEM 110 33 275 292 Buildings 

 Time Period: 2000-2010 

AW 245 44 934 735 None 

TDW 63 33 114 151 None 

RefTDW 60 31 114 140 NLCD 

RefTDW 65 33 127 154 GHSL 

RefTDW 62 32 123 144 NLCD-GHSL 

RefTDW 62 32 134 136 Parcels 

RefTDW 59 30 125 130 Buildings 

RefTDW 57 29 120 128 ZTRAX 

EM 121 34 304 294 NLCD 

EM 151 35 434 373 Parcels 

EM 90 33 236 215 Buildings 

EM 92 32 259 214 ZTRAX 

EEM 97 32 290 222 Parcels 

EEM 87 32 229 215 Buildings 

 

5.4.2. Spatial refinement for urban population 

Urban population estimates for both 1990 to 2010 and 2000 to 2010 time periods are 

derived based on two underlying assumptions. First, it is assumed that no representation of urban 

                                                 

1 The dataset was provided by the Zillow Inc. (https://www.zillow.com/research/data/), 

and the source code for its process is at https://github.com/spatialhistory/ztrax_analysis. 

https://www.zillow.com/research/data/
https://github.com/spatialhistory/ztrax_analysis
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footprints exists in running the temporal interpolation. Second, the census-defined urban areas in 

1990 and 2000 are used, respectively, as well as additional ancillary variables for further 

refinement. Consequently, the maps of absolute errors in estimating urban population (Figure 5.11) 

cover three implementations in both 1990 and 2000, namely TDW, the best performing method 

refined by the ancillary variable extending outside census-defined urban areas, and the best 

performing method using the ancillary variable limited within the urban areas. Moreover, Figure 

5.12 shows the urban population maps based on those approaches in 1990 and 2000. 
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Figure 5.11. Absolute error maps of urban population at the target zone level: (a) in 1990 based 

on TDW, (b) in 1990 based on TDW refined by ZTRAX®1 (not limited to urban areas), (c) in 

1990 based on TDW refined by ZTRAX® (limited to urban areas) as well as (d) in 2000 based on 

TDW, (e) in 2000 based on TDW refined by ZTRAX® (not limited to urban areas), (f) in 2000 

based on TDW refined by ZTRAX® (limited to urban areas). 

                                                 

1 The dataset was provided by the Zillow Inc. (https://www.zillow.com/research/data/), 

and the source code for its process is at https://github.com/spatialhistory/ztrax_analysis. 

https://www.zillow.com/research/data/
https://github.com/spatialhistory/ztrax_analysis
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Figure 5.12. Resulting maps of urban population at the target zone level: (a) in 1990 based on 

TDW, (b) in 1990 based on TDW refined by ZTRAX®1 (not limited to urban areas), (c) in 1990 

based on TDW refined by ZTRAX® (limited to urban areas) as well as (d) in 2000 based on 

TDW, (e) in 2000 based on TDW refined by ZTRAX® (not limited to urban areas), (f) in 2000 

based on TDW refined by ZTRAX® (limited to urban areas). 

Tables 5.5 and 5.6 provide a detailed view on the error distributions of the different 

methods for interpolating urban population values in 1990 and 2000 within census tract boundaries 

in 2010, respectively. Each table is composed of two parts: the upper part shows the error estimates 

when additional refinement is employed within the census-defined urban areas, whereas in the 

lower part, the refinement is employed inside and outside the urban areas. These two tables show 

                                                 

1 The dataset was provided by the Zillow Inc. (https://www.zillow.com/research/data/), 

and the source code for its process is at https://github.com/spatialhistory/ztrax_analysis. 

https://www.zillow.com/research/data/
https://github.com/spatialhistory/ztrax_analysis
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how the accuracy measures of one areal interpolation method can change depending on whether 

the method is applied to an individual ancillary variable or its intersection with the census defined 

urban areas in the respective year. As shown in Tables 5.5 and 5.6, the most accurate results are 

achieved when TDW is refined to the composite census-defined urban areas and ZTRAX® data, 

in both 1990 and 2000.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



122 

 

Table 5.5. Absolute error measures pertaining to urban population estimates in 1990 within 2010 

tract boundaries. 

 MAE Median Abs Error RMSE 90th Percentile 

Abs Error 

Ancillary 

Variable 

Method Limited to Urban Areas 

AW 353 58 835 1146 None 

TDW 166 62 337 437 None 

RefTDW 187 50 523 444 Urban Areas 

RefTDW 146 44 365 387 NLCD 

RefTDW 142 51 370 322 GHSL 

RefTDW 140 50 347 359 NLCD-GHSL 

RefTDW 258 59 1402 486 Parcels 

RefTDW 107 43 281 257 Buildings 

RefTDW 95 38 282 226 ZTRAX1 

EM 132 31 313 390 NLCD 

EM 132 33 307 371 NLCD-GHSL 

EM 199 47 477 585 Parcels 

EM 127 40 320 317 Buildings 

EM 132 37 332 347 ZTRAX 

EEM 121 41 318 267 Parcels 

EEM 124 41 315 304 Buildings 

 Not Limited to Urban Areas 

RefTDW 152 50 298 427 NLCD 

RefTDW 143 58 276 363 GHSL 

RefTDW 142 53 278 407 NLCD-GHSL 

RefTDW 176 61 363 459 Parcels 

RefTDW 121 47 245 305 Buildings 

RefTDW 119 42 268 295 ZTRAX 

EM 188 48 405 599 NLCD 

EM 169 43 363 513 NLCD-GHSL 

EM 346 69 793 1184 Parcels 

EM 196 50 442 593 Buildings 

EM 195 44 464 626 ZTRAX 

EEM 172 48 412 480 Parcels 

EEM 185 49 419 538 Buildings 

 

 

 

                                                 

1 The dataset was provided by the Zillow Inc. (https://www.zillow.com/research/data/), 

and the source code for its process is at https://github.com/spatialhistory/ztrax_analysis. 

https://www.zillow.com/research/data/
https://github.com/spatialhistory/ztrax_analysis
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Table 5.6. Absolute error measures pertaining to urban population estimates in 2000 within 2010 

tract boundaries. 

 MAE Median Abs Error RMSE 90th Percentile 

Abs Error 

Ancillary 

Variable 

Method Limited to Urban Areas 

AW 322 11 1393 1006 None 

TDW 60 10 152 164 None 

RefTDW 76 8 237 170 Urban Areas 

RefTDW 49 4 147 126 NLCD 

RefTDW 59 6 184 148 GHSL 

RefTDW 57 5 171 148 NLCD-GHSL 

RefTDW 438 6 3438 610 Parcels 

RefTDW 46 4 138 119 Buildings 

RefTDW 40 4 122 98 ZTRAX1 

EM 128 5 428 322 NLCD 

EM 138 5 446 402 NLCD-GHSL 

EM 142 4 546 317 Parcels 

EM 77 2 281 194 Buildings 

EM 84 3 302 202 ZTRAX 

EEM 88 3 349 189 Parcels 

EEM 74 3 269 184 Buildings 

 Not Limited to Urban Areas 

RefTDW 51 6 145 143 NLCD 

RefTDW 57 7 164 166 GHSL 

RefTDW 55 6 157 159 NLCD-GHSL 

RefTDW 457 8 3576 636 Parcels 

RefTDW 48 4 138 137 Buildings 

RefTDW 45 4 134 122 ZTRAX 

EM 139 6 442 390 NLCD 

EM 142 6 450 436 NLCD-GHSL 

EM 192 5 633 514 Parcels 

EM 101 4 340 244 Buildings 

EM 99 3 343 284 ZTRAX 

EEM 95 5 353 255 Parcels 

EEM 93 4 310 270 Buildings 

 

5.4.3. Enhanced areal interpolation for improved natural hazards risk assessment 

Tables 5.7 and 5.8 present the estimated population sub-groups based on race and age 

                                                 

1 The dataset was provided by the Zillow Inc. (https://www.zillow.com/research/data/), 

and the source code for its process is at https://github.com/spatialhistory/ztrax_analysis. 

https://www.zillow.com/research/data/
https://github.com/spatialhistory/ztrax_analysis
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living in designated flood zones using AW, refined AW, EM and EEM. AW is added to show the 

excessive and exaggerated population counts that would be calculated without any refinement on 

census tracts. No actual population counts exist for flood zones that can be used as references. 

Therefore, in this application, census blocks in 1990 and 2000 are used, and their relevant 

population counts are refined and transferred to flood zones using EEM refined by building 

footprints to calculate benchmark estimates of potentially exposed populations.  

Table 5.7. Estimated exposed population sub-groups based on race in 1990 and 2000 within 2010 

tract boundaries.  

 1990 2000  

Method White Black White Black Ancillary Variable 

Block-level 

Benchmark 

215051 7213 208512 8774 Buildings 

Tract-level 

AW 

781452 22402 783798 28789 None 

RefAW 425569 12433 434762 15901 Parcels 

RefAW 235903 7868 230047 9548 Buildings 

RefAW 277503 8933 278701 10781 ZTRAX1 

EM 461037 12318 471498 15712 Parcels 

EM 241443 7606 235501 9234 Buildings 

EM 286118 8724 286443 10483 ZTRAX 

EEM 317630 9992 316827 11895 Parcels 

EEM 245600 7720 239823 9319 Buildings 

 

 

 

 

 

 

                                                 

1 The dataset was provided by the Zillow Inc. (https://www.zillow.com/research/data/), 

and the source code for its process is at https://github.com/spatialhistory/ztrax_analysis. 

https://www.zillow.com/research/data/
https://github.com/spatialhistory/ztrax_analysis
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Table 5.8. Estimated exposed population sub-groups based on age in 1990 and 2000 within 2010 

tract boundaries. 

 1990 2000  

Method -18 -65 +65 -18 -65 +65 Ancillary 

Variable 

Block-level 

Benchmark 

53619 151633 35840 56899 155561 37346 Buildings 

Tract-level 

AW 

190591 539056 117769 213359 562081 126418 None 

RefAW 105339 294199 65731 118779 312022 71885 Parcels 

RefAW 60823 163723 39472 64822 169158 41223 Buildings 

RefAW 70881 191577 44637 77995 201262 47843 ZTRAX1 

EM 110103 318716 69416 124932 336851 75208 Parcels 

EM 61326 169572 40096 65137 175618 41628 Buildings 

EM 71919 198889 45193 78897 208891 48276 ZTRAX 

EEM 80060 224833 49391 86615 234554 52922 Parcels 

EEM 61386 173978 40401 64991 180675 42053 Buildings 

 

To determine if any population sub-group is disproportionately distributed within flood 

zones, an expected value for each sub-group and year should be calculated based on broader 

general distributions of the population within more aggregated regions. Thus, the ratio of each sub-

group to the total population in the whole study area is calculated and multiplied by the estimated 

potentially exposed population within designated flood zones resulting from the benchmark 

analysis. These values indicate if the estimated population counts (sub-groups) within flood zones 

deviate from the expected share of the total population. For example, if the ratio of the observed 

affected population to the expected count for a sub-group is greater than 1, this indicates that the 

population is more exposed than it would be expected based on the total population. Such 

observations could indicate disadvantaged population groups due to their elevated exposure to 

natural hazards. 

                                                 

1 The dataset was provided by the Zillow Inc. (https://www.zillow.com/research/data/), 

and the source code for its process is at https://github.com/spatialhistory/ztrax_analysis. 

https://www.zillow.com/research/data/
https://github.com/spatialhistory/ztrax_analysis
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Figure 5.13 shows the ratios of observed to expected population subgroups (race, age-

structures) in both 1990 and 2000. The ratios are calculated using both the benchmark approach 

and the best-performing method, which is determined based on the similarity of its results to 

benchmark estimates. In all cases, this was AW refined by building footprints. The figure 

visualizes which population sub-groups are estimated to reside within flood zones more than 

expected. The dashed line marks the case where the populations of sub-groups would be distributed 

within flood zones completely proportionately.   

 

Figure 5.13. Observed/expected ratios for race and age subgroups in (a) 1990 and (b) 2000. 

5.5. Discussion and conclusions 

5.5.1. Multi-temporal estimates of demographic attributes 

The above results show that the spatially refined interpolation methods produce improved 

estimates of the demographic attributes in most cases, particularly in interpolating population 

counts in 1990 within target tract boundaries of the 2010 Census. Error measures of refined AW 

methods, which are not included in the result tables, show higher errors but similar patterns and 

are even more consistent than the refined TDW approaches. Nonetheless, the results allow a critical 

reflection on the refinement effect, which sometimes results in increased errors. In general, 

estimates based on a refined interpolation method can be associated with lower absolute errors. 

However, the existence of a few target zones with excessive errors can result in lower overall 
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accuracy measures. For example, the MAE, RMSE and 90th percentile of absolute errors are higher 

in the refined TDW using NLCD than in the regular, unrefined TDW when estimating total 

population counts in 1990 at the target tract level (Table 5.1) whereas the median absolute error is 

lower. This suggests that large errors exist in the right tail of the error distribution, causing the 

overall error measures to rise. As discussed in Schroeder (2007), the uncertainty level has a 

positive statistical relationship with initial population counts and dissimilarity between boundaries 

of source and target zones. Thus, when interpolating attributes of small sub-groups such as black 

population (Table 5.3) or population aged above 65 in the present study, or transferring 

demographic attributes from boundaries in 2000 to those in 2010, which often do not change 

drastically (the bottom parts of Tables 5.1 to 5.4), the uncertainty of the process is expected to be 

lower, thereby reducing the visible potential gain of spatial refinement. It should also be noted that 

exogenous factors related to particular attributes might affect their estimation accuracy in areal 

interpolation approaches, regardless of the effectiveness of spatial refinement. For example, if the 

current framework will include 2020 in future applications, the existence of baby boomers, as a 

large demographic cohort, can lead to inflated distributions of the population group aged above 65 

in 2020. This can consequently result in biased temporal estimations of the population group, 

especially using a method such as TDW – with and without refinement – that assumes ratios of 

population densities remain the same over time. Therefore, all these factors should be considered 

when interpreting the results of the temporal interpolation of enumerated attributes. 

The quality of the ancillary variable also influences the gain in accuracy of spatial 

refinement (Langford 2013). For example, the developed classes of NLCD for refinement were 

initially selected following Ruther et al. (2015), but resulted in higher absolute error measures in 

NLCD-based refined methods. Subsequently, different combinations of the developed classes 
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among the different releases were tested to determine the most accurate results. In this study, the 

classes 21, 22 and 23 from the NLCD 1992, and 21, 22, 23 and 24 from the NLCD versions of 

2001 and 2011, respectively, result in the highest accuracy. The achieved high performance of the 

methods that include the higher density developed classes of NLCD may be related to densely 

populated areas such as Boston, where distributions of high population densities are modeled more 

reliably by doing so. The TDW refined by GHSL built-up areas result in a lower level of accuracy 

compared to other refinement strategies for 2000-2010 (Tables 5.1 to 5.4). As a possible 

explanation, Landsat-based GHSL has lower levels of classification accuracy in rural settings, a 

direct consequence of mixed pixel problems in the remote sensing imagery (Leyk et al. n.d.). Also, 

GHSL models built-up areas additively, assuming that built-up areas in each epoch are the 

summation of the areas from the previous epoch plus those built in between, which propagates 

classification errors through the different time periods. Furthermore, the combination of ancillary 

variables for spatial refinement does not necessarily lead to improved performance, especially 

when one of the participating variables is associated with higher errors, as indicated by the 

combinations of NLCD and GHSL in Tables 5.1 to 5.4. 

Building footprints and ZTRAX®, two ancillary variables that are available locally and as 

a national proprietary data product, respectively, perform generally well in reducing the absolute 

error measures using refined TDW across different demographic attributes and time periods 

(Tables 5.1 to 5.4). For example, according to Table 5.1, the spatial refinement of TDW using 

building footprints and ZTRAX® leads to 23% and 21% MAE reductions, respectively, relative to 

the next most accurate refined TDW implementation for 1990-2010. Parcels, however, as another 

local variable, do not demonstrate comparable accuracy gains, probably due to their overestimation 

effect in rural areas discussed in Leyk et al. (2014). The performance of ZTRAX®, indicated in 
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Tables 5.1, 5.2 and 5.4, is promising for future studies because the dataset is available and 

semantically consistent nationally, as opposed to buildings and parcels, which are released by 

county and city authorities often with varying land-use classes and housing attributes. While the 

ZTRAX® data is not free, such proprietary data sources become increasingly available for 

scientific purposes. However, for attributes with small enumerated counts over source and target 

zones, and applications over short time periods, the supremacy of local and proprietary ancillary 

datasets over the publically available national (NLCD) and global (GHSL) data layers is 

diminished (Table 5.3 and the bottom parts of Tables 5.1-5.4). This suggests that the benefits of 

incorporating such datasets are fully tapped when the analysis covers longer time periods. 

Although EM leverages other attributes of ancillary variables such as land-use classes in 

addition to their geometric footprints (Schroeder and Van Riper 2013), the resulting accuracy level 

in this study is low compared to the different refined TDW approaches, especially when utilizing 

parcels (Tables 5.1 to 5.4). This finding may be related to the assumption that each control zone 

can be associated with one population density weight regardless of the underlying area diversity 

within the control zone and ignoring possible non-stationarity effects. EEM, on the other hand, 

attempts to address the issue and successfully reduces the absolute error measures of EM 

(Zoraghein and Leyk n.d.), particularly when using parcels as the ancillary variable. For example, 

while the MAE values pertaining to the total population estimation using parcels are reduced by 

55% and 50% in 1990 and 2000, respectively, they drop by only 5% and 6% when using buildings 

(Table 5.1). This indicates that the issue of area diversity within buildings is much less severe than 

within parcels. Moreover, the improvement effect of EEM is not substantial when population 

counts over source and target zones are small (Table 5.3). It should be noted that EM is not 

applicable to GHSL because each epoch represents a binary partition of built-up and non-built-up. 
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Furthermore, EEM cannot be operationalized using the NLCD and ZTRAX® datasets as ancillary 

variables because these are inherently grid-based data layers. 

According to Tables 5.1 to 5.4, the accuracy of each EEM implementation is always lower 

than its counterpart refined TDW. EEM employing buildings is not effective, and its accuracy level 

is similar to EM. For parcels, however, one can expect that EEM may outperform refined TDW 

over longer time periods, as suggested by the current patterns observed in the tables. First, the 

accuracy attainment of TDW over AW is substantially higher for the shorter time period than for 

the longer one, implying the high performance of TDW over short durations. For example, the 

ratio of the MAE of TDW to AW is 0.43 for 1990-2010 while the value drops to 0.16 for 2000-

2010 (Table 5.1). Second, the accuracy improvement of refined TDW compared to EEM decreases 

over time. For instance, the ratio of the MAE of EEM to refined TDW using parcels drops from 

1.88 in 2000-2010 to 1.21 in 1990-2010, implying that the assumptions of refined TDW are less 

reliable as the time period is extended. Those two observations suggest that EEM has the potential 

to outperform refined TDW for longer historical applications.  

One possible reason why EEM has lower accuracy levels than refined TDW in this state-

based analysis can be related to the spatial non-stationarity (the spatial variation of statistical 

relationships across regions). Although EEM is assumed to be applied on more homogeneous 

control zones for assigning population density weights, each zone can have varying regimes of 

population density across the study area, making one population density weight per control zone 

unrepresentative. Employing solutions that allow population density weights of individual control 

zones to vary spatially can help clarify if non-stationarity is indeed an issue in EEM.  It is 

noteworthy to mention that unlike refined TDW, EEM is pycnophylactic.    

Absolute error maps of the selected demographic attributes (Figures 5.3, 5.5 and 5.7) 
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visualize the improvement effect of the most accurate methods compared to TDW and coincide 

with the outcomes summarized in Tables 5.1, 5.2 and 5.4. This improvement effect can be seen in 

the fewer target zones with high absolute errors when applying the best performing methods 

compared to those from TDW in both 1990 and 2000 and across all the tested demographic 

attributes. The same patterns are observed in Figures 5.9 and 5.10 that depict normalized absolute 

errors, with the advantage that error estimates can be compared over time and across regions. 

According to Figures 5.9 and 5.10, the normalized errors for most demographic attributes are less 

than 9% and 4% in 1990 and 2000, respectively.  

Figures 5.4, 5.6 and 5.8 illustrate the visual agreement between the choropleth maps of the 

estimated demographic attributes using the best-performing methods at the target zone level in 

1990 and 2000, those from TDW, and those from block aggregation. The maps can uniquely 

demonstrate how each selected demographic attribute has evolved within fine-resolution 

consistent units over 10 and 20 years, respectively, when combined with the actual choropleth 

maps of census tracts in 2010. This time series of the demographic evolution represents the major 

outcome of this multi-temporal estimation framework. The application of alternative demographic 

attributes and their validation provide some insights of the value of applying this framework to 

other attributes at the tract level that are not available at the block level, thereby extending the 

application of this research to an extensive range of demographic sub-populations. 

5.5.2. Multi-temporal estimates of urban population 

While the problem of modeling urban population in and of itself is an extremely complex 

one, the majority of the conclusions drawn for the other demographic attributes above, can also be 

applied to the urban population estimation in 1990 and 2000 within target tract boundaries in 2010, 

according to Tables 5.5 and 5.6 and Figures 5.11 and 5.12. However, there exist additional findings 



132 

 

specific to the urban population estimation that deserve some attention, which also provide 

important insights into the more general conceptual framing of the term urban and the 

understanding of urban population and urban lands, pointing to open research avenues in urban 

geography and demography. 

Refinement using the census-defined urban areas in 1990, 2000 and 2010 does not reduce 

the absolute error measures in comparison to TDW, as indicated by Tables 5.5 and 5.6. This 

outcome confirms that these areas do not represent the underlying statistical surface of the urban 

population reliably and justifies the need for further spatial refinement. The U.S. Census employs 

all land-use types that have urban characteristics, such as commercial and industrial districts, for 

delineating urban lands whereas the urban population is a subset of the total residential population. 

Due to this dichotomy between the two concepts, the census-defined urban areas overestimate the 

spatial distribution of the urban population. 

It should be noted that EM cannot be applied to the census-defined urban areas because 

there are no categories inside these areas that could be related to varying urban population density 

weights in a reasonable way. 

According to Tables 5.5 and 5.6, when the census-defined urban areas are further refined 

by an ancillary variable (i.e., a combined spatial refinement), the associated error measures are 

generally lower compared to using the urban areas alone. This indicates that the further refinement 

causes the modified urban areas to more precisely represent the spatial distribution of the urban 

population as a subset of the total residential population. For example, the refined TDW using the 

urban areas and ZTRAX® combined for spatial refinement shows reductions in MAE by 49% and 

47%, compared to utilizing only the urban areas for 1990-2010 and 2000-2010, respectively. 

However, even if no representations of urban lands existed, the employment of ancillary variables 



133 

 

alone would have the ability to depict those areas where the urban population resides, reliably. 

This is indicated by the lower absolute error measures in the bottom parts of Tables 5.5 and 5.6 in 

comparison to the regular methods. This can be considered a promising initial research effort to 

define temporally consistent urban extents and population distributions using data-driven 

approaches, which potentially will result in a more uniform understanding of how urbanization has 

evolved at fine spatial resolution and over long periods of time. 

Different combinations of the developed classes of NLCD were also tested. The 

combinations that result in the highest level of accuracy are the classes 21, 22 and 23 from the 

NLCD 1992, and 22, 23 and 24 from the NLCDs 2001 and 2011. These observations suggest that 

excluding the low density class of 21 from the recent NLCDs results in more precise delineations 

of the urban lands in the years 2000 and 2010. 

According to Tables 5.5 and 5.6, the absolute error measures for estimating urban 

population using TDW and EM refined by parcels is exceedingly high. For delineating urban lands, 

additional land-use types are included, which in turn aggravates the overestimation issue when 

using parcels. However, EEM manages to mitigate the issue. 

Figure 5.11 illustrates the gradual absolute error reductions within target zones in 1990 and 

2000, matching visually the outcomes shown in Tables 5.5 and 5.6. Not only does Figure 5.12 

illustrate how the derived and block-aggregated urban population maps compare to each other, it 

also depicts the most reliable trend of urbanization from 1990 to 2000 at the target zone level, 

which can also be accompanied by the actual urban population map in 2010 to portray a 20-year 

trend of urbanization over consistent units in a unique way. Such trends and multi-temporal 

patterns will be of great use to better understand processes such as urban sprawl. 
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5.5.3. Multi-temporal estimation of exposed population groups to flood risk 

Tables 5.7 and 5.8 show that the spatially refined methods leveraging the fine resolution 

ancillary variables such as buildings and ZTRAX® result in the highest accuracy when estimating 

the potentially exposed sub-populations (broken down by race and age classes) in different years. 

Using parcels for spatial refinement clearly overestimates the exposed population counts, 

presumably ensuing from the less precise delineation of residential lands by the ancillary variable 

in rural settings. The issue is attenuated by utilizing EEM although the overestimation problem 

still persists. In this study, refined AW using buildings generally leads to the lowest deviances with 

the benchmark estimates (i.e., block-based populations deriving from EEM using buildings). 

With the exception of the population group of age > 65, there is no indication of 

unexpectedly high concentrations of certain population subgroups within flood zones in 1990 and 

2000, as shown in Figure 5.13. The ratios of the observed counts – using the benchmark estimates 

and the outcomes of the best-performing areal interpolation method – to the expected values (based 

on the state-level distributions) are lower than 1 in both years and for almost all the demographic 

attributes. For the age group > 65, however, the observed count is 8% higher than expected, 

suggesting that the group is exposed to the flood hazard, disproportionately, possibly increasing 

its vulnerability. 

The results imply that there is no issue of the environmental injustice regarding race, i.e., 

both white and black populations are distributed proportionately within flood zones. However, in 

order to reach a concrete conclusion, more contextual factors should be considered such as a 

chronology of the historic patterns of residential settlement and segregation, different levels of 

industrial development along the waterfront, recent and historic landfilling of coastal wetland 

areas, gentrification in certain areas of the state, and cultural changes over the years concerning 
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the desirability of living along the waterfront and therefore within flood zones (Maantay and 

Maroko 2009). Furthermore, diversity in Massachusetts is at low levels compared to other states, 

and other groups are not considered in this study. Future research will target other states to tackle 

these questions in more detail. 

It should be noted that ratios around 1 assume that distributions are proportionally equal to 

the whole state. Of course, it could be argued that among those whose ratios are lower than 1, some 

might be more advantaged than the others depending on how far their ratios are lower than 1. A 

similar order for disadvantaged groups can also be established.  

5.5.4. Final general remarks and conclusions 

This study shows how spatial refinement can improve the accuracy of regular areal 

interpolation methods in constructing time-series of demographic estimates within consistent small 

area census units. By incorporating demographic attributes other than total population, micro-scale 

patterns of demographic change can be detected. The temporal analyses do not depend on census 

blocks and utilize them for validation purposes. Thus, the analyses can be replicated for 

applications involving longer time periods, where the availability of blocks is limited, or for data-

poor regions. They can also estimate more sensitive demographic attributes only aggregated over 

tracts with expectations of the inherent estimation error. 

This research also shows that the difference in performance between regular and refined 

methods on one hand, and methods refined by publically available ancillary variables and those 

by local variables, on the other hand, is more pronounced when population counts are high or long 

time periods are incorporated. If repeated over more heterogeneous demographic attributes or 

longer time periods, an experimental rule may be established about the necessity of spatial 

refinement and the types of ancillary variables that have the most potential.  
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Moreover, the case study of applying enhanced areal interpolation methods to evaluate the 

exposure status of race- and age-related population sub-groups residing in flood risk zones 

illustrates the power of this analytical framework in a risk assessment context. The outcomes show 

that if larger enumeration units such as census tracts (instead of the finest-resolution blocks) are 

incorporated, the reliability of population estimates is still comparable to block-based results. This 

demonstrates the potential to expand the applicability of similar risk assessment analyses to 

applications where the availability of fine-resolution enumeration units is limited, or earlier census 

years in the Unites States, in which block-based population values were not collected. 

Future research can be pursued in different directions. First, the extent of the analyses can 

be expanded both temporally and spatially to attain robust and conclusive insights about the 

applicability and performance of various methods. Second, the environmental justice analysis can 

be applied to more racially and ethnically diverse study areas such as the southern states of the 

United States to obtain a more comprehensive basis of substantive interpretations. Finally, the 

success of the refinement of the census-defined urban areas in better representing the urban land 

shows the great potential of leveraging data-driven approaches to establish consistent definitions 

of the urban land and population through time. 
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Chapter VI 

 

 

Discussion and Conclusions 

 

6.1. Discussion  

This dissertation has contributed solutions to the persistent problem of spatial 

inconsistency between small area enumeration units used for different census surveys. This 

inconsistency results from existing linkages between census demography and census geography 

maintained at small area units; i.e., boundaries of these units get updated in each census year to 

reflect population changes that have occured. This is one of the most persistent problems in the 

temporal analysis of local and regional trends in demographic, housing, economic and health-

related characteristics (Gregory 2002, Martin et al. 2002, Schroeder 2007, 2017). This dissertation 

has shown the effectiveness of spatial refinement in improving the accuracy involved in multi-

temporal demographic analysis. For validation, census blocks in each year were aggregated to 

target zone boundaries and formed benchmark (model) values. Notably, however, the validation 

approach has some drawbacks. First, although census blocks are generally very small, they can 

occasionally be very large, especially in rural areas, making the assumption of the homogeneous 

population distribution within them problematic. One solution to this issue is to apply spatial 

refinement to blocks prior to validation. However, as reported by previous researchers, validation 
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results with and without spatial refinement on blocks are almost similar (Ruther et al. 2015), and 

for this reason, this approach was not followed in this dissertation. Second, the demographic 

variables used in this research are supposed to represent 100% of counts. However, this might not 

always be the case given the costly process of collecting census data and proportions of non-

responsiveness. Because the objective was to do a cross comparison between the performances of 

different methods in each year, this issue was not seen as a problem as long as benchmark values 

were the same for all methods. 

Accuracy gains by combining typical areal interpolation methods with spatial (or 

dasymetric) refinement were analyzed for a plethora of ancillary variables (Chapters 3, 4 and 5), 

different geographic extents (Chapters 3, 4 and 5), two time periods (Chapters 4 and 5), urban and 

rural settings (Chapter 4), and different demographic attributes (Chapter 5). The three scientific 

papers (Chapters 3, 4 and 5) presented the different stages of the development and application of 

the enhanced areal interpolation methodologies for creating temporally consistent population 

estimates at the census tract level with decreased estimation errors. Chapter five also investigated 

a first effort in establishing associations between demographic and environmental data to carry out 

improved potential exposure assessments by identifying populations residing in designated flood 

zones in different points in time that could potentially face environmental injustice. Overall, the 

findings of this research affirm the effectiveness of the idea of systematically redistributing 

population within inhabitable areas to then improve typical areal interpolation methods for 

temporal analysis. The approach mitigates the issue of the Modifiable Areal Unit Problem 

(MAUP) (Openshaw 1984) often observed in spatial analysis using arbitrarily defined areal units 

that contain inhabitable and uninhabited areas and thus non-homogeneous spatial distributions of 

population. In general, the approach provides more flexibility and an analytical solution to 



140 

 

researchers in different disciplines working on summary statistics enumerated over fixed 

geographical units that may change over time. This includes researchers who work with databases 

on public health, well-being, veterinary topics, agricultural censuses, employment statistics or 

economic surveys at similar levels of demographic data collections. Thus, the solutions proposed 

in this dissertation have the potential to advance the thematic research of different natures and 

across disciplines. 

In this chapter, the research questions posed in Chapter one are systematically revisited to 

discuss the results found in the dissertation and evaluate the methodological frameworks 

developed in this project. Conclusions for the dissertation summarizing its general findings are 

then presented, followed by future works.   

Research question 1: How effectively can different types of ancillary variables be used for 

spatial refinement to systematically improve the accuracy of regular areal interpolation methods? 

What lessons can be learned about the applicability of different ancillary variables in different 

geographic and demographic settings? 

In this dissertation, the Global Human Settlement Layer (GHSL), National Land-Cover 

Database (NLCD), parcels, buildings, road-related variables, ZTRAX® and various combinations 

of these data were tested as ancillary variables for the spatial refinement of the input enumerated 

data that are then integrated with areal interpolation to produce spatially consistent units with 

reduced estimation errors. It should be mentioned that each ancillary variable is a model of reality, 

i.e., the spatial distribution of human settlement. Depending on how well it models reality, its 

integration into spatial refinement can affect the effectiveness of the approach. For example, a 

remote-sensing based product such as NLCD might misclassify large proportions of residential or 

developed lands, especially in rural areas (Leyk et al. 2014). Or, GHSL, as another remote-sensing 
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based ancillary variable, assumes that built-up areas in each epoch are the summation of built-up 

areas from the previous epochs, disregarding developed patches that have been torn down or 

changed to other land-cover types. It also does not distinguish between residential and non-

residential land-use types (Pesaresi et al. 2016). Such imperfections need to be addressed in the 

interpretation of results to ensure that the reader understands that each additional ancillary variable 

might also introduce some additional uncertainty, contributing to the complex composition of error 

sources that will be propagated through the system. 

Chapter three applied residential parcels and a selection of the NLCD developed classes to 

estimate total population values in 2000 at the target census tract level (i.e., Census 2010) in 

Hennepin County, Minnesota. The results showed that although the effectiveness of spatial 

refinement could be limited within some target zones due to the quality of the ancillary variable 

(Langford 2013), spatial refinement using each ancillary variable generally leads to more accurate 

multi-temporal total population estimates within target units. The sporadic higher error measures 

of the tested refined methods compared to the unrefined ones may be related to the existence of a 

few target zones with high absolute errors in the right tail of the error distribution. The spatial 

refinement using parcels performed better than using NLCD although this superiority is not 

consistent within all target zones and across all the utilized methods.     

Chapter four applied parcels and a composite ancillary dataset of parcels, NLCD and road 

buffers to estimate total population counts in 1990 and 2000 at the consistent target census tract 

level (i.e., Census 2010) in five demographically different counties. The results re-confirmed the 

effectiveness of using spatial refinement to reduce error measures in multi-temporal estimations 

of population. The spatial refinement using parcels mostly reduced the absolute error measures 

compared to unrefined implementations of the tested areal interpolation methods. However, the 
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overestimation of developed lands through large residential parcels in rural settings (Leyk et al. 

2014) that in turn invalidated the underlying assumptions of the utilized methods resulted in a few 

target zones with excessive absolute errors. This caused rare instances characterized by higher 

absolute error measures for a spatially refined method. The spatial refinement using the composite 

dataset reduced the error measures when compared to using only parcels. However, the 

improvement effect was not always present, especially in more urbanized counties such as 

Broward County, Florida. The composite spatial refinement was specifically devised for 

addressing the issue of the overestimation of developed lands by parcels in rural areas, and its 

effectiveness will be evaluated when discussing findings for research question three. 

Chapter five demonstrated that spatial refinement was effective in increasing the accuracy 

of multi-temporal demographic estimations for the whole state of Massachusetts and for both 

1990-2010 and 2000-2010, especially when fine resolution and precise ancillary variables such as 

building footprints and ZTRAX® were used. The global GHSL and national NLCD as well as local 

parcels performed generally well in reducing the absolute error measures. However, that 

effectiveness varied according to the quality of the dataset and the method used. For example, the 

cases in which GHSL and NLCD did not enhance the accuracy of the unrefined Target Density 

Weighting (TDW) can be related to the inherent misclassification problems of the datasets (NLCD 

(Smith et al. 2002, Leyk et al. 2014), GHSL (Leyk et al. n.d.)) and their inability to capture small 

patches of developed lands. Furthermore, the reason why Expectation Maximization (EM) using 

parcels produced large error measures could be explained by the excessive area variability existing 

within units of the same class in the dataset. These issues were mitigated through the incorporation 

of the fine resolution buildings and ZTRAX® datasets, especially in refining TDW, by tapping into 

spatial refinement more effectively. The degree of the effectiveness of the different ancillary 
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variables over the two time periods and for the different tested demographic attributes will be 

described while discussing research question five below.  

Overall, the findings of the research question one show that spatial refinement increases 

the accuracy of areal interpolation methods for multi-temporal demographic estimations. 

However, the application domain is not necessarily limited to multi-temporal settings and can also 

include more accurate transfers of various enumerated attributes such as economic or health-

related variables from different source zones to target zones specific to the application.      

Research question 2: How can existing approaches of dasymetric refinements in multi-

temporal demographic analysis be extended to also incorporate land-use related attributes of 

ancillary variables in addition to their geometric footprints? What is the gain in accuracy from 

such an extended integration? 

EM (Dempster et al. 1977, Flowerdew and Green 1994, Schroeder and Van Riper 2013) 

was the algorithmic foundation employed to incorporate relevant datasets as related ancillary 

variables (Leyk, Buttenfield, et al. 2013) by exploiting their different land-cover/land-use 

characteristics. The algorithm assigns a distinct population density weight to each land-cover/land-

use class (control zone) in an iterative process and thus overcomes the use of limiting ancillary 

variables that only allow the differentiation between populated and unpopulated lands.  

The results reported in Chapter four unexpectedly showed that using EM on parcels did 

not produce highly accurate results. The method produced either the highest or the second highest 

absolute error measures among the tested methods including refined Areal Weighting (AW) and 

refined TDW for the two time periods and across all the selected counties. This low level of 

accuracy could be explained by the high variability in the areal extents of underlying parcels of 

the same land-use type constituting individual control zones. This variability eroded the 
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fundamental assumption of constant population density values within control zones and resulted 

in unrealistic estimation results. EEM was implemented to make EM more robust by identifying 

more homogeneous sub-control zones. The method resulted in substantial accuracy gains over EM 

in all cases. EEM was the most accurate method for multi-temporal population estimations in four 

of the five counties tested for the longer time period. It also provided the most accurate results in 

two counties for the shorter time period. The remarkable performance of EEM demonstrated the 

effectiveness and applicability of incorporating additional attributes of ancillary variables 

especially over longer time periods. 

Chapter five also conducted EM and EEM on relevant ancillary variables. The results 

demonstrated that EM, as expected, performed relatively poorly, especially using NLCD and 

parcels due to their misclassification issues and extensive area variations, respectively. EEM was 

only applicable for parcels and buildings. The outcomes presented in Chapter five showed that 

EEM always improved the accuracy of EM using parcels. However, EEM was not effective when 

employed on buildings because of the much lower and less significant area variability existing 

within the dataset (i.e., house footage vs. property acreage). The observed trends implied that the 

inclusion of additional attributes of ancillary variables, especially parcels, in the form of EEM, 

could outperform refined TDW over longer historical time periods.  

Refined TDW is a relatively accurate spatially refined areal interpolation method, 

specifically tailored for multi-temporal applications. However, the findings related to research 

question two suggest that whenever the ancillary variable can be integrated as a related variable to 

incorporate nuanced population densities across control zones, algorithmic foundations such as 

EM and EEM should be tested. This is especially the case over longer time periods when the 

underlying assumptions of refined TDW become less reliable.   



145 

 

Research question 3: How can the effectiveness of dasymetric refinement be improved in 

rural areas typically associated with lower accuracy due to the lack of ancillary variables or the 

chronic under- or overestimation of population in such settings? 

Prior research has shown that dasymetric models based on land-cover data yield more 

accurate results if they are further restricted to areas within road buffers (Lin et al. 2013, Lin and 

Cromley 2015b, Schroeder 2017). Chapter four adopted a similar approach to specifically increase 

the estimation accuracy in rural target zones. Typically, such rural areas are associated with high 

estimation errors for several reasons; e.g., the under- and overestimation of developed lands by 

land-cover products such as NLCD and parcels, respectively (Leyk et al. 2014). The proposed 

approach further refined large rural parcels by using instances of the selected NLCD developed 

classes and designated road buffers. This new complementary spatial refinement was conducted 

for the five study areas in Chapter four and tested for both all target zones and only rural target 

zones. The outcomes showed that the error reduction due to the introduction of the complementary 

spatial refinement was more consistent over rural zones, indicating the effectiveness of the 

approach to address excessive error measures typically observed in these settings. Therefore, the 

composite refinement can be considered a viable solution for the long-lasting issue of high 

demographic estimation errors in rural areas. 

Research question 4: How stable is the effect of spatial refinement across different 

geographic scales and in estimating additional demographic attributes other than total 

population? Does this framework allow for coupling between demographic and environmental 

data to analyze more complex relationships? 

Spatial refinement generally increased the accuracy of multi-temporal demographic 

estimates within the selected counties and states, as shown in Chapters three, four and five. The 
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performance of spatially refined areal interpolation methods on selected demographic attributes, 

however, varied depending on the attribute of interest, as indicated in Chapter five. While the 

levels of accuracy gain in estimating counts of total population, white population, population aged 

under 65 and urban population remained almost similar, accuracy improvements could not be 

observed for the temporal estimation of black population counts. This could be related to the 

initially low counts of the sub-group in large parts of the state. It should also be noted that the 

accuracy of the temporal estimation of the age attribute can also be affected by exogenous 

processes such as the emergence of baby boomers as a relatively large demographic cohort. For 

example, if the time period in future applications includes 2020, the population aged above 65 will 

have excessive and disproportionate counts compared to earlier census years, thereby affecting the 

temporal accuracy of an areal interpolation method such as TDW that is based on constant ratios 

of population densities over time.  This and similar issues are subject to future research efforts. 

Moreover, the performance of individual ancillary variables could vary based on the 

attribute of interest. For example, refined TDW using parcels produced excessively high absolute 

error measures for estimating urban population counts compared to the other ancillary variables. 

This was because the selection of parcels for the temporal estimation of urban population was not 

limited to residential land-use types. Instead, all types that could presumably indicate developed 

lands were selected. This seemingly intensified the overestimation issue of parcels, culminating in 

a poor performance by the ancillary variable for multi-temporal estimations of urban population. 

Chapter five provided important insights about the effectiveness of using census-defined 

urban areas to better model urban population. Urban population is a complex demographic 

attribute because of a well-known high degree of inconsistency in its definition over time. In other 

words, in addition to the temporal incompatibility in the small-area enumeration units, the concepts 
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of urban population and lands differ over time. Nonetheless, given the growing trends of 

urbanization, research efforts to model urban lands and population reliably represent an extremely 

urgent need in different domains including planning, policy-making and resource allocation. 

According to the results of Chapter five, unexpectedly, the census-defined urban areas of 

Massachusetts in 1990, 2000 and 2010 do not reflect the spatial distribution of urban population 

reliably. The U.S. Census incorporates all land-use types that can be urban such as commercial 

and industrial districts for delineating urban lands whereas urban population is a subset of the total 

residential population. Therefore, there is a persistent incompatibility between these two concepts, 

often resulting in an overestimation of the spatial distribution of urban population by the census-

defined urban areas. For this reason, these areas were further refined by using additional ancillary 

variables to define a new set of urban lands that represent the spatial distribution of urban 

population presumably more precisely. The further refinement showed great potential to delineate 

urban residential lands reliably. The individual ancillary variables such as building footprints and 

ZTRAX® also demonstrated valuable potential to be used as a surrogate for urban land 

representations. These findings can be seen as successful initial experiments to advance existing 

research on urban analysis and will be used for future data-driven experiments aiming to create 

consistent and precise delineations of urban lands and urban population over time. It is hoped that 

these insights will help to model the evolution of urban populations and urban lands in a more 

unified and semantically-compatible way.  

Chapter five also investigated the effectiveness of spatial refinement in an environmental 

injustice application. The counts of the potentially exposed population broken by racial and age 

categories living in flood zones of Massachusetts were derived for 1990 and 2000. Moreover, 

experiments were conducted to evaluate if certain population sub-groups were disadvantaged in 
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each year. The estimated counts demonstrated the potential of the proposed methodologies in 

transferring different demographic attributes aggregated within census units to independently 

mapped flood zones. The spatial refinement using buildings and ZTRAX® mimicked the validation 

benchmark estimates reasonably well. This benchmark was calculated by applying spatial 

refinement to block-based population counts. These results were also compared to the analysis 

using only parcels and to typical unrefined AW, which overestimated the exposed populations 

substantially. The described outcomes from this tract-based analysis demonstrate the applicability 

and flexibility of the approach to generate more reliable estimates of the exposed population in 

earlier census years to attain valuable historical patterns of possible environmental injustice issues, 

and how they changed.  

One of the main objectives of this type of analysis is to evaluate social or environmental 

injustice through the evaluation of potential exposure levels of different populations (e.g., racial 

groups) to natural or industrial hazards. This has broad and outreach applications for other fields 

such as sociology aiming to assess if different minority groups systematically have lower levels of 

quality of life. Although Massachusetts is not an ideal case study given the existing racial 

homogeneity, the high availability of data in the state drove the efforts to develop the required 

analytical framework that can be later implemented in other states with high racial diversity. 

Research question 5: By making the methodological frameworks operational for multiple 

demographic attributes and over different time-periods, what expectations exist related to the 

uncertainty inherent to the population estimates produced?  

Chapters four and five carried out spatially refined methods for two time periods (1990-

2010 and 2000-2010), and Chapter five also implemented the methods on other demographic 

attributes or population sub-groups. These analyses provided insights about the uncertainty sources 
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influencing the performances of the methods under varying conditions. 

Chapter four demonstrated that refined TDW was more effective in error reduction 

compared to unrefined TDW over the longer 1990-2010 time period in all the five counties. The 

ratios of the overall error measures, namely Mean Absolute Error (MAE) and Root Mean Square 

Error (RMSE), of refined TDW to TDW were generally lower for the longer time period than for 

the shorter. This signified that spatial refinement for TDW was more effective in error reduction 

when applied over longer time periods. The pattern was not as dominant for refined AW, and that 

comparison could not be made for EM because the algorithm inherently uses spatial refinement. 

Chapter 5 also showed the same pattern for estimates of total population, white population, 

population aged under 65 and urban population; i.e., the ratios of the overall error measures of the 

best-performing refined TDW to TDW were lower for 1990-2010 than for 2000-2010. This 

pattern, shown in Chapters four and five, indicates that spatial refinement can be more effective 

when the uncertainty of areal interpolation is higher due to more frequent boundary changes 

(Schroeder 2007). 

Although refined TDW was the most accurate method in a majority of the configurations 

tested in this dissertation, the findings and observed patterns in Chapters four and five indicated 

that EEM could outperform refined TDW and rank as the most accurate method with the extension 

of the time period. These findings and patterns suggest that the underlying assumptions of refined 

TDW tend to become less valid over longer time periods, thereby reducing the reliability and 

robustness of the method for the temporal interpolation of population.   

Chapter five also presented the effectiveness of spatial refinement for interpolating black 

population, a demographic attribute with typically low population counts within census units in 

Massachusetts. As shown in Chapter five, spatial refinement regardless of the utilized ancillary 
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variable, did not perform well in error reduction for the demographic attribute, implying that the 

effectiveness of spatial refinement could diminish when the uncertainty of areal interpolation is 

low due to small population counts of the demographic attribute (Schroeder 2007). 

It should also be noted that the comparisons made between the methods of this dissertation 

were according to absolute error measures. On the one hand, there might be target zones with high 

population counts whose absolute errors are also high. On the other hand, target zones might also 

exist with low population counts whose absolute errors are low. However, the ratios of absolute 

errors to population counts could be lower for the former. Normalizing absolute errors by 

population counts will address this issue and provide a more comprehensive picture of the error 

behavior. Although this dissertation does not include normalized errors, they were calculated, and 

method comparisons based on them led to similar interpretations. 

The findings of research question five provide insights about the effectiveness of spatial 

refinement. These findings are valuable because spatial refinement is a costly process, both in 

terms of time and data demands. Therefore, it should be incorporated in areal interpolation only 

when it can be effective. According to the current findings, spatial refinement has its greatest 

potential when the application includes long historical time periods, and the demographic attribute 

has grown rapidly with high counts within enumeration units.  

6.2. Conclusions and future work 

Summary data enumerated over small area units from national censuses are a vital resource 

for studies of local and regional demographic trends. However, the linkages between census 

demography and census geography necessitate that boundaries of small statistical units change 

over time to reflect underlying demographic processes such as population growth and decline. 

Thus, studying local and regional demographic trends using summary data is frequently 
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complicated by temporal boundary changes in census small area units. This dissertation aimed to 

derive demographic estimates within temporally consistent small area census units with minimum 

estimation errors. The successful estimation of such small area estimates allows more advanced 

studies of micro-scale demographic processes, and how they may interrelate and interact with 

environmental ones.   

The outcomes of this study demonstrate that spatial refinement coupled with typical areal 

interpolation methods is generally effective in reliably estimating demographic attributes within 

temporally consistent small area census units. The effectiveness of spatially-refined areal 

interpolation methods was tested for two time periods, various ancillary variables, geographic 

scales extending from county to state and different target demographic attributes. Overall, the 

substantial estimation accuracy gains offered by implementing spatial refinement in areal 

interpolation were confirmed across these different configurations. Figure 6.1 demonstrates an 

example of how total population counts enumerated over initially misaligned census units from 

three census years (1990, 2000 and 2010) compare to its estimates over consistent units, in a sub-

region of Mecklenburg County, North Carolina. As shown in Figure 6.1, the analysis of nuanced 

micro-scale changes of population based on census tracts is complicated by the inconsistency of 

boundaries among the three census years (left panels). However, a spatially refined areal 

interpolation method (EEM on parcels) makes such analysis possible by transferring total 

population counts of the first two years to the fine-resolution geographical units, namely census 

tract boundaries in 2010 (right panels). In fact, not only are the changes in census geography 

addressed, precise and fine-scale patterns in census demography can also be presented without 

bias. 
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Figure 6.1. Population maps within inconsistent census tracts: (a) in 1990, (b) in 2000, (c) in 

2010, and within consistent target census tracts: (d) in 1990, (e) in 2000 and (f) in 2010.   

In this dissertation, source and target zones were tract boundaries from the Decennial 

Censuses 1990, 2000, and 2010. For most of the analysis, the tracts in 2010 were used as target 

zones as they tend to be the most refined units. Although census blocks are the smallest 

enumeration units, they were used for validation in this research. Besides the obvious reason of 

being able to carry out the validation per se, this strategy also allows for using the methodological 

advancements of this dissertation in numerous other applications. First, the temporal dimension of 

historical demographic data sources at the tract level in the United States can extend to earlier 

census years (i.e., prior to 1990), in which nationally available census block data were not yet 

available. Second, additional demographic attributes collected over tracts but not blocks can be 
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incorporated into the analysis by assuming that derived accuracy measures and discussed 

uncertainty insights are also applicable to those attributes. It is important to note that the census 

tract level carries numerous demographic attributes and thus provides a broad base of applicability 

to different population sub-groups. Third, the findings of this research, especially those related to 

using GHSL and NLCD, can also be carried over to data-poor regions, where local ancillary 

variables are not available. Nevertheless, the proposed methods in such regions should be used 

with caution. The quality of large-scale global and national datasets changes over time following 

advancements in data acquisition, algorithms and related technologies. As long as a global or 

national ancillary variable is not subject to systematic quality issues such as misclassification or 

under-estimation, especially in earlier years, it has the potential to be implemented for more 

accurate temporal estimation of demographic attributes in data-poor regions. Another issue in data-

poor regions needing attention is the typical lack of fine-resolution census geographies such as 

census blocks for validation. One solution to this issue is to aggregate the finest available 

enumeration units to larger arbitrarily defined boundaries and use the initial units for validation. 

However, this analytical approach can be subject to MAUP (Openshaw 1984). Another solution is 

to assume that accuracy is improved by spatial refinement and to use the smallest units as source 

and target zones. Fourth, the application domain of the proposed methodologies can extend beyond 

temporal demographic analysis and evaluate more sophisticated human environment interactions 

such as exposure to hazards, either in the past (Maantay and Maroko 2009) or in the future (Jones 

and O’Neill 2016). 

Future research will implement the methodologies of this dissertation to longer time 

periods including projections forward, more study areas and unexplored demographic attributes. 

Not only will such analyses lead to a comprehensive and quantitative uncertainty evaluation, it 
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will also provide the foundations necessary to advance the current methodologies further and 

devise hybrid frameworks that exploit the complementary features of individual methods given 

different conditions and settings. For example, the higher performance of the composite approach 

particularly in rural areas or different levels of accuracy offered by refined TDW and EEM indicate 

the potential of devising complementary hybrid approaches that are versatile for complex 

applications. Moreover, the ZTRAX® data used in this dissertation showed great potential to 

accurately refine areal interpolation methods. The dataset is semantically more consistent than raw 

parcel records across the country although the issue of missing data is severe in some parts. 

Nevertheless, it offers a unique opportunity to apply the methods of this dissertation to the whole 

United States and over long time periods. The algorithmic and technological advancements 

required for this national-scale analysis will constitute another direction for the future research. 

Finally, the outcomes of this dissertation showed that census-defined urban areas could be refined 

and redefined using dasymetrically refined approaches to better (or more consistently) reflect 

urban lands and population. The development of a data-driven approach based on the current 

analyses of this dissertation that can consistently and reliably delineate urban lands and population 

over time will be another topic for the future research. 
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