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ABSTRACT
Marker gene sequencing of microbial communities has generated big datasets of
microbial relative abundances varying across environmental conditions, sample sites
and treatments. These data often comewith putative phylogenies, providing unique op-
portunities to investigate how shared evolutionary history affects microbial abundance
patterns. Here, we present amethod to identify the phylogenetic factors driving patterns
in microbial community composition.We use the method, ‘‘phylofactorization,’’ to re-
analyze datasets from the human body and soil microbial communities, demonstrating
how phylofactorization is a dimensionality-reducing tool, an ordination-visualization
tool, and an inferential tool for identifying edges in the phylogeny along which putative
functional ecological traits may have arisen.

Subjects Computational Biology, Ecology, Mathematical Biology, Microbiology, Statistics
Keywords Microbiome, Community phylogenetics, Compositional data, Sequence-count data,
Microbial biogeography, Factor analysis, Phylofactorization

INTRODUCTION
Microbial communities play important roles in human (Human Microbiome Project
Consortium, 2012), livestock (Gregg, 1995) and plant (Berendsen, Pieterse & Bakker, 2012)
health, biogeochemical cycles (Bardgett, Freeman & Ostle, 2008; Falkowski, Fenchel &
Delong, 2008), the maintenance of ecosystem productivity (Van Der Heijden, Bardgett
& Van Straalen, 2008), and bioremediation (Li et al., 2000). Given the importance of
microbial communities and the vast number of uncultured and undescribed microbes
associated with animal and plant hosts and in natural and engineered systems,
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understanding the factors determining microbial community structure and function
is major challenge for modern biology.

Marker gene sequencing (e.g., 16S rRNA gene sequencing to assess bacterial and archaeal
diversity and 18S markers for Eukaryotic diversity) is now one of the most commonly used
approaches for describing microbial communities, quantifying the relative abundances of
individual microbial taxa, and characterizing how microbial communities change across
space, time, or in response to known biotic or abiotic gradients.

Analyzing these data is challenging due to the peculiar noise structure of sequence-
count data (Robinson, McCarthy & Smyth, 2010), the inherently compositional nature of
the data (Friedman & Alm, 2012), deciding the taxonomic scale of investigation (Cracraft,
1983; Cracraft, 2000; Tikhonov, Leach & Wingreen, 2015), and the high-dimensionality
of species-rich microbial communities (Fierer & Jackson, 2006). There is a great need
and opportunity to develop tools to more efficiently analyze these datasets and leverage
information on the phylogenetic relationships among taxa to better identify which clades
are driving differences in microbial community composition across sample categories or
measured biotic or abiotic gradients (Martiny et al., 2015).

Many of these challenges can be resolved by performing regression on clades identified
in the phylogeny. In this paper, we take on these challenges by developing a means to
perform regression of biotic/abiotic gradients on variables corresponding to branches in
the phylogenetic tree, thereby allowing dimensionality reduction with a clear phylogenetic
interpretation and consistent with the compositional nature of the data.

Consider a study on the effect of oxazolidinones, which affect gram-positive bacteria,
on microbial community composition. Rather than regression of antibiotic treatment on
abundance at numerous taxonomic levels, statistical analysis of bacterial communities
treated with an oxazolidinone should instantly identify the split between gram-positive and
gram-negative bacteria as the most important phylogenetic factor determining response
to oxazolidinones. Subsequent factors should then be identified by comparing bacteria
within the previously-identified groups: identify clades within gram-positives which may
be more resistant or susceptible than the remaining gram-positives. Splitting the phylogeny
at each inference and making comparisons within the split groups ensures that subsequent
inferences are independent of the gram positive–gram negative split which we have already
obtained. All of this analysis must be done consistent with the compositional nature of
sequence count data.

Here, we provide a method to analyze phylogenetically-structured compositional data.
The algorithm, referred to as ‘‘phylofactorization,’’ iteratively identifies the most important
clades driving variation in the data through their associations with independent variables.
Clades are chosen based on some metric of the strength or importance of their regressions
with meta-data, and subsequent clades are chosen by comparison of sub-clades within the
previously-identified bins of phylogenetic groups. Each ‘‘factor’’ identified corresponds to
an edge in the phylogeny, and phylofactorization builds on literature from compositional
data analysis to construct a set of orthogonal axes corresponding to those edges; the output
orthonormal basis allows the projection of sequence-count relative abundances onto these
phylogenetic axes for dimensionality reduction, visualization, and standard multivariate
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statistical analyses. The visualizations and inferences drawn from phylofactorization can
be tied back to splits in a given phylogenetic tree and thereby allow researchers to annotate
the microbial phylogeny from the results of microbiome datasets.

We show with simulations that phylofactor is able to correctly identify affected clades.
We then phylofactor a dataset of human oral and fecal microbiomes to determine the
phylogenetic factors driving variation in human body site (Caporaso et al., 2011), and a
dataset of soil microbes using a multiple regression of pH, carbon concentration and
nitrogen concentration (Ramirez et al., 2014). In the human microbiome dataset, we find
three splits in the phylogeny that together capture 17.6% of the variation community
composition across two body sites. We use phylofactorization to find that the dominant
features driving body-site variation are invisible to taxonomy-based analyses, including
splits between unclassified OTUs, monophyletic clades that span several taxonomic groups,
and a spectrumof phylogenetic scales for binningOTUs based on habitat preferences. In the
soil microbiome dataset, we use phylofactor-based dimensionality reduction to visualize
and quantitatively confirm that pH drives most of the variation in the soil dataset but we
emphasize that the axes from phylofactor ordination-visualization plots correspond to
identifiable edges on the phylogeny that have clear biological interpretations and can be
used and tested across studies. User-friendly code for implementing, summarizing and
visualizing phylofactorization is provided in an R package (‘phylofactor’), and a tutorial is
available online.

MATERIALS & METHODS
Phylogenetically-structured compositional data
Microbiome datasets are ‘‘phylogenetically-structured compositional data,’’ compositions
of parts linked together by a phylogeny for which only inferences on relative abundances
can be drawn. The phylogeny is the scaffolding for the evolution of vertically-transmitted
traits, and vertically-transmitted traits may underlie an organism’s functional ecology
and response to perturbations or environmental gradients. Performing inference on the
edges in a phylogeny driving variation in the data can be useful for identifying clades with
putative traits causing related taxa to respond similarly to treatments, but such inferences
must account for the compositional nature of the sequence-count data.

A standard analysis of microbiome datasets uses only the distal edges of the tree—the
OTUs—and a few edges within the tree separating Linnaean taxonomic groups. However,
a phylogeny of D taxa and no polytomies is composed of 2D−3 edges, each connecting
two disjoint sets of taxa in the tree with no guarantee that splits in Linnaean taxonomy
corresponds to phylogenetic splits driving variation in our dataset. Thus, instead of
analyzing just the tips and a series of Linnaean splits in the tree, a more robust analysis
of phylogenetically-structured compositional data should analyze all of the edges in the
tree. To do that, we draw on the isometric log-ratio transform from compositional data
analysis, which has been used to search for a taxonomic signature of obesity in the human
gut flora (Finucane et al., 2014) and incorporated into packages for downstream principal
components analysis (Le Cao et al., 2016). However, to the best of our knowledge, the

Washburne et al. (2017), PeerJ, DOI 10.7717/peerj.2969 3/24

https://peerj.com
http://dx.doi.org/10.7717/peerj.2969


previous literature using the isometric log-ratio transform in microbiome datasets has
used random or standard sequential binary partitions, and not explicitly incorporated the
phylogeny as their sequential binary partition.

The isometric log-ratio transform of a rooted phylogeny
The isometric log-ratio (ILR) transformwas developed as a way to transform compositional
data from the simplex into real space where standard statistical tools can be applied (Egozcue
et al., 2003; Egozcue & Pawlowsky-Glahn, 2005). A sequential binary partition is used to
construct a new set of coordinates, and the phylogeny is a natural choice for the sequential
binary partition in microbiome datasets. Instead of analyzing relative abundances, yi, of
D different OTUs, the ILR transform produces D−1 coordinates, x∗i (called ‘‘balances’’).
Each balance corresponds to a single internal node of the tree and represents the averaged
difference in relative abundance between the taxa in the two sister clades descending
from that node (the difference being appropriately measured as a log-ratio due to the
compositional nature of the data; see Supplemental Information 1 for more detailed
description of the ILR transform). For an arbitrary node indicating the split of a group, R
with r elements from the group, S with s elements, the ILR balance can be written as

x∗
{R,S}=

√
rs

r+ s
log
(
g (yR)
g (yS)

)
(1)

where g (yR) is the geometric mean of all yi for i∈R.
We refer to the ILR transform corresponding to a rooted phylogeny as the ‘‘rooted ILR’’.

The rooted ILR creates a set of ILR coordinates, {x∗i }, where each coordinate corresponds
to the ‘‘balance’’ between sister clades at each split in the phylogenetic tree. The balances
in a rooted ILR transform in equation Eq. (1) can be intuited as the average difference
between taxa in two groups, and splits in the tree which meaningfully differentiate taxa
will be those splits in which the average difference between taxa in two groups changes
predictably with an independent variable. Inferences on ILR coordinates, then, map to
inferences on lineages in the phylogenetic tree.

The rooted ILR coordinates provide a natural way to analyze microbiota data as they
measure the difference in the relative abundances of sister clades and may be useful in
identifying effects contained within clades such as zero-sum competition of close relatives
or the substitution of one relative for another across environments. However, if we desire to
link the effect of a design variable or an external covariate (e.g., antibiotics vs. no antibiotic
treatment) to clades within the phylogeny, the best comparison may not be between sister
clades, but instead between all other clades, controlling for any other phylogenetic splits
or factors we may know of (e.g., we may compare a lineage within gram-positives with all
other gram-positives, once we’ve identified the gram-positive vs. gram-negative split as
an important factor for antibiotic susceptibility). We refer to this unrooted approach as
‘phylofactorization.’

For the task of linking an external covariate to individual clades in the phylogeny, we
examine three features of the rooted ILR that can be improved on by phylofactorization
by considering a treatment that decreases the abundance of one and only one clade, B,
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Figure 1 Shortcomings of Rooted ILR. (A) The isometric log-ratio transform corresponding to a phy-
logeny rooted at the common ancestor is inaccurate for geometric changes within clades. Here, absolute
abundances of 50 taxa in 30 samples per site were simulated across two sites. An affected clade, B, is up-
represented in the second site. Regression on the rooted ILR coordinates, x∗i , against the sample site in-
dicated that the partition separating clade A,B, referred to as x∗

{A,B} , had the highest test-statistic, but the
rooted ILR predicts fold-changes in B relative to A, not fold changes in B relative to the rest of the taxa. (B)
Consequently, when one clade increase in abundance while the rest remain unaffected, partitions between
the affected clade and the root will also have a signal leading to a correlation in the coordinates along the
path from B to the root. The correlation plotted here is the absolute value of the correlation coefficient,
and the baseline correlation was estimated as the average absolute value of the correlation coefficient be-
tween ILR coordinates not along the root-path of the affected clade.

whose closest relative is clade A. Regression on the rooted ILR coordinates may identify
the balance x∗

{A,B} corresponding to the most recent common ancestor of clades A and B
as having that strongest response to the treatment, but regression on this coordinate will
suggest that clade B decreases relative to A, leading to structured residuals in the original
dataset due to an inability to account for the increase in clade B relative to the rest of the
OTUs in the data (Fig. 1A). Second, all partitions between the affected clade and the root
will be affected. If each balance is tested independently, the rooted ILR may identify many
clades that are affected by antibiotics; the correlations between coordinates can yield a high
false-positive rate if just one clade is affected (Fig. 1B). Finally, the ILR transformation
does not work with polytomies common in real, unresolved phylogenies. Any polytomy
will produce a split in the phylogeny between three or more taxa, and there is no general
way to describe the balance of relative abundances of three or more parts using only
one coordinate.

Nonetheless, the simplicity and theoretical foundations underlying the ILR, and the
instant appeal of applying it to the sequential-binary partition of the phylogeny, motivate
the rooted ILR as a simple tool for analysis of the phylogenetic structure in compositional
data. For that reason, we use the rooted ILR as a baseline for comparison of our more
complicated method of phylogenetic factorization.

Phylofactorization
The shortcomings of the rooted ILR can be remedied by modifying the ILR transform to
apply not to the nodes or splits in a phylogeny, but to the edges in an unrooted phylogeny.
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While ILR coordinates of nodes allow a comparison of sister clades, ILR coordinates
along edges allow comparison of taxa with putative traits that arose along the edge against
all taxa without those putative traits. Traits arise along edges of the phylogeny and so,
for annotation of phylogenies, effects in a clade are best mapped to a chain of edges in
the phylogeny.

However, the ILR transform requires a sequential binary partition, and the edges don’t
immediately provide a clear candidate for a sequential binary partition. In what we refer
to as ‘‘phylofactorization,’’ one can iteratively construct a sequential binary partition from
the unrooted phylogeny by using a greedy algorithm by sequentially choosing edges which
maximize a researcher’s objective function. Phylofactorization consists of 3 steps (Fig. 2):
(1) Consider the set of possible primary ILR basis elements corresponding to a partition
along any edge in the tree (including the tips). (2) Choose the edge whose corresponding
ILR basis element maximizes some objective function—such as the test-statistic from
regression or the percent of variation explained in the original dataset—and the groups
of taxa split by that edge form the first partition. (3) Repeat steps 1 and 2, constructing
subsequent ILR basis elements corresponding to remaining edges in the phylogeny and
made orthogonal to all previous partitions by limiting the comparisons to taxa within the
groups of taxa un-split by previous partitions.

Explicitly, the first iteration of phylofactorization considers a set of candidate ILR
coordinates, {x∗e } corresponding to the two groups of taxa split by each edge, e. Then,
regression is performed on each of the ILR coordinates, x∗e ∼ f (X) for an appropriate
function, f and a set of independent variables, X . The edge, e+1 , which maximizes the
objective function is chosen as the first phylogenetic factor. In this paper, our objective
function is the difference between the null deviance of the ILR coordinate and the deviance
of the generalized linear model explaining that ILR coordinate as a function of the
independent variables.Weuse this objective function as ameasure of the amount of variance
explained by regression on each edge because the total variance in a compositional dataset
is constant and equal to the sum of the variances of all ILR coordinates corresponding to
any sequential binary partition. Consequently, at each iteration there is a fixed amount of
the total variance remaining in the dataset, and so at the candidate ILR coordinate which
captures the greatest fraction of the total variance in the dataset is the one with the greatest
amount of variance explained by the regression. After identifying e+1 , we cut the tree in two
sub-trees along the edge, e+1 .

For the second iteration, another set of candidate ILR coordinates is constructed such
that their underlying balancing elements are orthogonal to the first ILR coordinate.
Orthogonality is ensured by constructing ILR coordinates contrasting the abundances
of taxa along each edge, restricting the contrast to all taxa within the sub-tree in which
the edge is found. A new edge, e+2 , which maximizes the objective function is chosen as
the second factor, the sub-tree containing this edge is cut along this edge to produce two
sub-trees, and the process is repeated until a desired number of factors is reached or until
a stopping criterion is met. More details on the algorithm, along with a discussion on
objective functions, is contained in Supplemental Information 1.

Washburne et al. (2017), PeerJ, DOI 10.7717/peerj.2969 6/24

https://peerj.com
http://dx.doi.org/10.7717/peerj.2969/supp-1
http://dx.doi.org/10.7717/peerj.2969


Figure 2 Phylofactorization. (A) Phylofactorization changes variables from tips of the phylogeny (OTUs
used in analysis of microbiome datasets) to edges of the phylogeny with the largest predictable differences
between taxa on each side of the edge. To illustrate this method, we consider the treatment of a bacterial
community with an oxazolidinone. Oxazolidinones target gram-positive bacteria and will likely lead to a
decrease in the relative abundances of gram-positive bacteria (antibiotic susceptible clade, A, having the
antibiotic target). Among the antibiotic susceptible bacteria, phylofactor can identify monophyletic clades
that are resistant relative to other antibiotic-susceptible bacteria due to a vertically-transmitted trait (B)
such as the loss of the antibiotic target or enzymes that break down the antibiotic. (B) The two phyloge-
netic factors produce three meaningful bins of taxa—those susceptible to antibiotics (A), those within the
susceptible clade that are resistant to antibiotics (A+ B), and a potentially paraphyletic remainder. (C)
Phylofactorization is a greedy algorithm to extract the edges which capture the most predictable differ-
ences in the response of relative abundances among taxa on the two sides of each edge. (C) For the first
iteration, all edges are considered—an ILR coordinate is created for each edge using Eq. (1) and the ILR
coordinate is regressed against the independent variable. The edge which maximizes the objective func-
tion is chosen. Depicted above, the first factor corresponds to the edge separating antibiotic susceptible
bacteria from the rest. Then, the tree is split—all subsequent comparisons along edges will be contained
within the sub-trees. The conceptual justification for limiting comparisons within sub-trees is to prevent
over-lapping comparisons: once we identify the antibiotic susceptible clade, we want to look at which taxa
within that clade behave differently from other taxa within that clade. (D) For the second iteration, the re-
maining edges are considered, ILR coordinates within sub-trees are constructed. The edge maximizing the
objective function is selected and the tree is split at that edge. For more details, see the section ‘‘PhyloFac-
tor’’ in Supplemental Information 5.
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While one could use other methods of amalgamating abundances along edges, the
conceptual importance of using the ILR transform is twofold: the ILR transform has
proven asymptotic normality properties for compositional data to allow the application
of standard multivariate methods (Egozcue et al., 2003), and the ILR transform serves as a
measure of contrast between two groups. The log-ratio used in phylofactor is an averaged
ratio of abundances of taxa on two sides of an edge (see Supplemental Information 1 for
more detail), thus phylofactorization searches the tree for the edge which has the most
predictable difference between taxa on each side of the edge or, put differently, the edge
which best differentiates taxa on each side. Thus, each edge that differentiates taxa and their
responses to independent variables is considered a phylogenetic ‘‘factor’’ driving variation
in the data.

The output of phylofactorization is a set of orthogonal, sequentially ‘‘less important’’
ILR basis elements, their predicted balances, and all other information obtained from
regression. After the first iteration of phylofactorization, we are left with an ILR basis
element corresponding to the edge which maximized our objective function and split the
dataset into two disjoint sub-trees, or sets of OTUs that we henceforth refer to as ‘‘bins,’’
and we have an estimated ILR balancing element, x̂∗1 (X), where X is our set of independent
variables. Subsequent factors will split the bins from previous steps, and after n iterations
one has n factors that can be mapped to the phylogeny, n+1 bins for binning taxa based on
their phylogenetic factors, n estimates of ILR balancing elements, and an orthonormal ILR
basis that can be used to project the data onto a lower dimensional space. The sequential
splitting of bins in phylofactorization ensures sequentially independent inferences: having
already identified group B as hyper-abundant relative to group A in the example illustrated
in Fig. 2, downstream factorsmust analyze sub-compositions entirelywithinB andwithinA.

Computational tools
Phylofactorization was done using the R package ‘‘phylofactor’’ available at https:
//github.com/reptalex/phylofactor. The R package contains detailed help files that demo
the use of the package, and the exact code used in analyses and visualization in this paper
are available in Supplemental Information 1. The rooted ILR transform was performed as
described in Egozcue & Pawlowsky-Glahn (2005) where the sequential binary partition was
the rooted phylogeny.

Power analysis of rooted ILR and phylofactorization
To compare the ability of phylofactorization and the rooted ILR to identify clades of OTUs
with shared associations with independent variables, we simulated random communities
ofD= 50 OTUs and p= 40 samples by simulating random absolute abundances,Ni,j , such
that log(Ni,j) were i.i.d Gaussian random variables withmeanµ= 8 and standard deviation
σ = 0.5. The OTUs were connected by a random tree (the tree remained constant across
all simulations), and then either 1 or 3 clades were randomly chosen to have associations
with a binary ‘‘environment’’ independent variable with p= 20 samples for each of its two
values to represent an equal sampling of microbial communities across two environments.

For simulations with one significant clade, the abundances of all the OTUs within that
clade increased by a factor a in the second environment where a∈ {1.5,3,6}. For simulations
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with three significant clades, the three clades were drawn at random and randomly assigned
a fold-change from the set {πb,0.5b,exp(−b)} in a randomly chosen environment where
b∈ {1,2,5}. For each fold-change, 500 replicates were run to compare the power of the
rooted ILR and phylofactorization in correctly identifying the affected clades.

Regression of rooted ILR coordinates was performed and the coordinates were ranked
by the difference between their null deviance and the model deviance. The ability of a
rooted ILR coordinate to identify the correct 1 clade or 3 clades was measured by the
percent of its top 1 or 3 ILR coordinates, respectively, which corresponded to the node on
the tree from which the affected clade(s) originated. The ability of phylofactor to identify
the correct 1 clade or 3 clades was measured by the percent of the factors that correctly split
an affected clade from the rest (e.g., the percent of factors corresponding to edges along
which a trait arose).

For the 3 clade simulations, we also compared the amount of variance explained by
three factors in phylofactorization with the amount of variance explained by the top 3 ILR
coordinates in the rooted ILR. The amount of variance explained was measured as the
difference in the null deviance and the model deviance, summed across all three factors or
the top 3 ILR coordinates.

KS-based stopping function for phylofactor
While a researcher can iterate through phylofactorization until a full basis of D−1 ILR
coordinates is constructed, the researcher may be interested in stopping the iteration before
the full basis is constructed and focus their analysis and interpretations on a conservative
subset of the true number of phylogenetic factors. We implemented a stopping function
based on a Kolmogorov–Smirnov (KS) test of the distribution of P-values from analyses
of variance of the regressions on candidate ILR coordinates. If there is no phylogenetic
signal, we anticipate the true distribution of P-values to be uniform (albeit with some
dependence among the P-values due to overlap in the OTUs used in the ILR coordinates).
Thus, we tested the ability of phylofactor to correctly identify the number of clades if
phylofactorization is stopped when a KS test of the P-values produces its own P-value
PKS> 0.05.

We simulated 300 replicate communities with M clades for each M ∈ {1,...,10}. For
simulations with M clades, D= 50 and p= 40 communities were simulated as above
and fold changes, c , were drawn as log-normal random variables where log(ck) were
i.i.d Gaussian random variables with µ= 0 and σ = 3 for k = 1,...,M . The number
of clades identified by phylofactor for a given true number of clades, KM ,r , was tallied
for r = 1,...,300. We calculate the mean K̄M across all replicates and, for visualization
purposes, interpolate the α= 0.025 and α= 0.975 quantiles by finding the best fit of a
logistic function to the cumulative distribution of {KM ,r }

r=300
r=1 for eachM .

Analysis of fecal/oral microbiome data
16S amplicon sequencing data from Caporaso et al. (2011)were downloaded from theMG-
RAST database (http://metagenomics.anl.gov/) along with associated metadata. QIIME
(Caporaso et al., 2012) was used to trim primers from these data, and to cluster OTUs
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with the Greengenes reference database (May 2013 version; http://greengenes.lbl.gov).
Longer sequence lengths in the greengenes database (∼1,400 BP) compared to the original
Illumina sequences (∼123 BP) allows more informative base pairs for phylogenetic tree
construction. We used the phylogenetic tree that is included with the greengenes database
for all analyses. The resulting OTU table was rarefied to 6,000 sequences per sample.

A total of 10 time points were randomly drawn from each of the male tongue, female
tongue, male feces and female feces datasets, giving a total of n= 20 samples at each site.
Taxa present in fewer than 30 of the 40 samples were discarded, and phylofactorization
was done by adding pseudo-counts of 0.65 to all 0 entries in the dataset (Aitchison, 1986),
converting counts in each sample to relative abundances, and then regressing the ILR
coordinates against body site. The complete R script is available in the file ‘‘Data Analysis
pipeline of the FT microbiome.’’

Complete phylofactorization of this dataset was performed by stopping the algorithm
when a KS-test on the uniformity of P-values from analyses of variance of regression
on candidate ILR-coordinates yielded PKS > 0.05. These results were compared with a
standard, multiple hypothesis-testing analysis of CLR-transformed data. The summary of
the taxonomic detail at the first three factors is provided in the results section, and a full list
of the taxa factored at each step is available in the supplement and can be further explored
using the R pipeline provided.

Analysis of soil microbiome data
The soil microbiome dataset from Ramirez et al. (2014) was included to illustrate the
ability of phylofactor to work on bigger microbiome datasets with continuous independent
variables and multiple regression. Details on sample collection, sequencing, meta-data
measurements and OTU clustering are available in Ramirez et al. (2014). The phylogeny
was constructed by aligning representative sequences using SINA (Pruesse, Peplies &
Glöckner, 2012), trimming bases that represented gaps in ≥20% of sequences, and using
fasttree (Price, Dehal & Arkin, 2010).

The complete dataset contained 123,851 OTUs and 580 samples. Data were filtered
to include all OTUs with on average 2 or more sequences counted across all samples,
shrinking the dataset to D= 3,379 OTUs. The data were further trimmed to include only
those samples with available pH, C and N meta-data, reducing the sample size to n= 551.

Phylofactorization was done by adding pseudo-counts of 0.65 to all 0 entries in the
dataset (Aitchison, 1986), converting counts in each sample to relative abundances, and
performing multiple regression of pH, C and N on ILR coordinates. The first three factors
are used for ordination-visualization. To determine the relative importance of each abiotic
variable in driving phylogenetic patterns of microbial community composition, we used the
lmgmethod from the R package ‘relaimpo’ (Grömping, 2006) which averages the sequential
sums of squares over all orderings of regressors to obtain a measure of relative importance
of each regressor in the multivariate model.
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RESULTS
We find three main results. First, we find that our algorithm out-performs a standard
tool for analyzing compositions of parts related by a tree —what we refer to as the
‘‘rooted ILR’’ transform—and that we can obtain a conservative estimate of the number
of phylogenetic factors in simulated datasets a with a known number of affected clades.
Second, we phylofactor a dataset of the human oral and fecal microbiomes and find
that the three dominant edges in the phylogeny account for 17.6% of the variation in
microbial communities across these sample sites, edges which are not assigned a unique
taxonomic label and are thus difficult or impossible to obtain from taxonomic-based
analyses. Third, we show that phylofactorization can be combined with multiple regression
to reveal that pH drives the main phylogenetic patterns of community composition in
soil microbiomes, and show that in four factors we split the Acidobacteria three times—
including one split that identifies a monophyletic clade of Acidobacteria that consists
of alkaliphiles. Finally, using the soil dataset, we demonstrate how phylofactorization
yields two complimentary methods for dimensionality reduction and ordination-
visualization that tell a simplified story of how the major phylogenetic groups of
OTUs change with pH. Throughout our results, we emphasize that the phylogenetic
inferences made by phylofactorization could be invisible to taxonomic-based analyses,
and we conceptually compare the dimensionality-reductions of phylofactorization
to the less-interpretable output from standard ordination-visualization tools.

Power analysis and conservative stopping of phylofactorization
Phylofactorization remedies the structured residuals from the rooted ILR regression on
data with fold-changes in abundances within clades. Phylofactorization also remedies the
problem of high false-positive rates arising from the nested-dependence and correlated
coordinates of the rooted ILR transform, as sequential inferences in phylofactorization are
independent. Phylofactorization out-performs the rooted ILR in identifying the correct
clades with a given fold-change in abundance (Figs. 3A and 3B), and can be paired with
other algorithms assessing residual structure to stop factorization when there is no residual
structure and thus accurately identify the number of affected clades (Fig. 3C). Finally, by
focusing the inferences on edges instead of nodes in the phylogeny, this algorithm works
on trees with polytomies and doesn’t require a forced resolution of polytomies to construct
a sequential binary partition of the OTUs.

Oral-fecal microbiome
Performing regression of sample site on centered log-ratio (CLR) transformed OTU tables,
with 290 OTUs and 40 samples, yielded 236 significant OTUs at a false-discovery rate of
1%; the phylogenetic signal of these OTUs from CLR-based inferences may be difficult to
parse out. Phylofactorization of the oral-fecal microbiome dataset yielded 142 factors, the
top three of which explain 17.6% of the variation in the dataset, factors which correspond
to clearly visible blocks in phylogenetic heatmaps of the OTU table (Fig. 4). The factors
span a range of taxonomic scales and all of them would be invisible to taxonomic-based
analyses. Below, we summarize the factors—the P-values from regression, the taxa split at
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Figure 3 Phylofactorization can correctly identify affected clades and be stopped at a conservative
number of phylogenetic factors. (A) Power analysis—1 clade. The rooted ILR transform that minimizes
residual variance when regressed against sample site is less able to identify the correct clade compared to
phylofactorization for a variety of effect sizes, a, and sample sizes. (B) Three Significant Clades: when three
significant clades are chosen and given a set of effects increasing in intensity with the parameter b, choos-
ing the top rooted ILR coordinates under performs phylofactorization in correctly identifying the affected
clades. Phylofactorization also explains more variation in the data: across effect sizes, phylofactorization
explains 2 orders of magnitude more of the variance in the dataset than the sequential rooted ILR. (C)
Stopping Phylofactorization: Plots of the true number of affected clades in simulated datasets against the
number of clades identified by the R package ‘phylofactor.’ One can terminate phylofactorization when
the true number of affected clade is unknown by choosing a stopping function aimed at stopping when
there is no evidence of a remaining signal. By stopping the iteration when the distribution of P -values
from analyses of variance of regression on candidate ILR basis elements is uniform (specifically, stopping
when a KS test against a uniform distribution yields P > 0.05 ), we obtain a conservative estimate of the
number of phylogenetic factors in the data.

each factor, the body site associations predicted by generalized linear modeling of the ILR
coordinate against body site, and finer detail about the taxonomic identities and known
ecology of monophyletic taxa being split. Phylofactorization of these data indicates that a
few clades explain a large fraction of the variation in the data, and many more clades can
be identified as containing the same intricate detail as the phylogenetic factors presented
below. The biology of microbial human-body-site association can focus on these dominant
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Figure 4 Phylofactorization of human feces/tongue dataset identifies clades differentiating body sites.
(A) Phylogenetic structure is visible as blocks using a phylogenetic heatmap from the R package ‘phy-
tools’ (Revell, 2012). The first factor separates Actinobacteria and some Proteobacteria from the rest, the
second factor separates the class Bacilli from the remaining non-Proteobacteria and non-Actinobacteria,
the third factor pulls out the genus Prevotella from Bacteroidetes and indicates that it, unlike many other
taxa in Bacteroidetes, is unrepresented in the tongue. Each factor captures a major block of variation in
the data, and the orthogonality of the ILR coordinates from each factor allow multiple factors to be com-
bined easily for estimates of community composition. (B) These three factors splits the phylogeny into
four bins. Three of those bins are monophyletic and the final bin is a ‘‘remainder’’ bin, containing taxa
split off by the previous monophyletic bins. The three factors are identifiable edges between nodes that can
be mapped to an online database containing those nodes. The taxonomic assignment used here is the set
of all shortest-unique-prefixes that separate the taxa in each bin.
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factors—which traits and evolutionary history drive these monophyletic groups’ strong,
common association with body sites?

The first factor (P = 4.90×10−30) split Actinobacteria and Alpha-, Beta-, Gamma-, and
Delta-proteobacteria from Epsilonproteobacteria and the rest (Fig. S4). The underlying
generalized linear model predicts the Actinobacteria and non-Epsilon-proteobacteria
to be 0.4× as abundant as the rest in the gut and 3.6× as abundant as the rest in the
tongue. The Actinobacteria identified as more abundant in the tongue include four
members of the plaque-associated family Actinomycetaceae, one unclassified species
of Cornybacterium, three members of the mouth-associated genus Rothia (Koren et al.,
2011), and one unclassified species of the vaginal-associated genus Atopobium (Ding &
Schloss, 2014). With a standard multivariate analysis of the CLR-transformed data, all
nine of these Actinobacteria were identified as significantly more abundant in the tongue
from regression of the individual OTUs when using either a 1% false-discovery rate or a
Bonferonni correction—these monophyletic taxa all individually show a strong preference
for the same body site, and their basal branch was identified as our first phylogenetic
factor. The remaining Alpha-, Beta-, Gamma- and Delta-proteobacteria grouped with the
Actinobacteria consisted of 31 OTUs, and the Epsilonproteobacteira split from the rest
were three unclassified species of the genus Campylobacter. The grouping of Actinobacteria
with the non-Epsilon Proteobacteria motivates the need for accurate phylogenies in
phylofactorization, but also illustrates the promise of identifying clades of interest where
the phylogeny is correct and the taxonomy is not.

The second factor (P = 1.15× 10−31) splits 16 Firmicutes of the class Bacilli from
the obligately anaerobic Firmicutes class Clostridia and the remaining paraphyletic group
containing Epsilonproteobacteria and the rest. The Bacilli are, on average, 0.3× as abundant
in the gut as the paraphyletic remaining OTUs and 3.9× as abundant in the tongue. The
16 Bacilli OTUs factored here contain 12 unclassified species of the genus Streptococcus,
well known for its association with the mouth (Guggenheim, 1968), one member of the
genus Lactococcus, one unclassified species of the mucosal-associated genus Gemella, and
two members the family Carnobacteriaceae often associated with fish and meat products
(Leisner et al., 2007).

The third factor (P = 1.37×10−28) separated 15 members of the Bacteroidetes family
Prevotellaceae from all other Bacteroidetes and the remaining paraphyletic group of OTUs
not split by previous factors. The Prevotellaceae split in the third factor were all of the
genus Prevotella, including the species Prevotella melaninogenica and Prevotella nanceiensis
found to have abundances 0.3× as abundant in the gut and 4.0× as abundant in the tongue
relative to the other taxa from which they were split.

These first three factors capture major blocks visible in the dataset can be used
as dimensionality reduction tool with a phylogenetic interpretation (Fig. 4). While
traditional ordination-visualization tools may capture larger fractions of variation of
the data, phylogenetic factorization yields a few variables—ratios of clades—which capture
large blocks of variation in the data and can be traced to single edges in the phylogeny
corresponding to meaningful splits between taxa, edges where traits likely arose which
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govern the differential abundances across sample sites and environmental gradients or
responses to treatments (Fig. 4A, Figs. S4–S8).

Using the KS-test stopping criterion, phylofactorization was terminated at 142 factors,
each corresponding to a branch in the phylogenetic tree separating two groups of OTUs
based on their differential abundances in the tongue and feces. These 142 factors define 143
groups, or what we call ‘bins,’ of taxa which remain unsplit by the phylofactorization. The
bins vary in size; 112 bins contained only single OTUs, whereas 8 were monophyletic clades
and the rest are paraphyletic groups ofOTUs, the result of taxawithin amonophyletic group
being factored, yielding one monophyletic group and one paraphyletic group. Of the 112
single-OTU bins extracted from phylofactorization, 78 were also identified as significant
at a false-discovery rate of 1%. Some monophyletic bins included groups of unclassified
genera that would not be grouped at the genus level under standard taxonomy-based
analyses. For instance, two monophyletic clades of the Firmicutes family Lachnospiraceae
were identified as having different preferred body sites, yet both clades were unclassified
at the genus level. Taxonomic-based analyses would either omit these unclassified genera,
or group them together and make it difficult to observe a signal due to the two sub-groups
having different responses to body site.

Soil microbiome
The soil microbiome dataset was much larger—3,379 OTUs and 580 samples—and amuch
smaller fraction of the variation could be explained by the dominant factors resulting from
phylofactorization. Phylofactorization confirmed that the pH of the environment plays a
dominant role in the microbial community composition, consistent with previous analyses
based on Mantel tests (Ramirez et al., 2014). Dominance analysis of the generalized linear
models associated with each factor determined pH to account for approximately 92.87%,
89.78%, and 92.94% of the explained variance in the first, second, and third factor,
respectively. C and N were relatively unimportant, and the dominance of pH in the first
three factors can be visualized by ordination-visualization plots of the ILR coordinates of
the first three factors (Fig. 5A).

The first factor splits a group of 206 OTUs in two classes of Acidobacteria from all other
bacteria: class Acidobacteriia and class DA052 are shown to decrease in relative abundance
with increasing pH. The second factor split 31 OTUs in the order Actinomycetales (some
from the family Thermomonosporaceae and the rest unclassified at the family level) from
the remainder of all other bacteria, and these monophyletic Actinomycetales also decrease
in relative abundance with increasing pH. The third factor identified another clade within
the phylum Acidobacteria to decrease with pH: 115 bacteria from the classes Solibacteres
and TM1.

The fourth factor identifies a monophyletic clade of 193 OTUs in the remainder of
phylum Acidobacteria (i.e., those Acidobacteria not mentioned above in factors 1 and
3) as having relative abundances that increase with pH (dominance analysis: 94.79% of
explained variance attributable to pH). Unlike the previous three factors above which
were acidophiles, this monophyletic group of Acidobacteria consists of alkaliphiles, which
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Figure 5 Dimensionality reduction and ordination-visualization of soil microbiome dataset.
Phylofactor presents two complementary methods for projecting and visualizing the high-dimensional
phylogenetically-structured compositional data. (A) The ILR coordinates have asymptotic normality
properties and provide biologically informative ordination-visualization plots. Here, we we see that pH
is a much better predictor than N of the major phylogenetic factors in Central Park soils. Dominance
analysis indicated that pH accounts for approximately 92.87%, 89.78%, and 92.94% of the explained
variance in the first, second, and third factor, respectively, consistent with previous results based on
Bray–Curtis distances and Mantel tests showing the dominance of pH in structuring soil microbiomes
(Ramirez et al., 2014). (B) Every edge separates one group of taxa into two, and the disjoint groups of
taxa defined by a common phylofactorization—what we refer to as bins—can be used to amalgamate
OTUs and construct a lower-dimensional, compositional dataset of ‘‘binned phylogenetic units’’ (BPUs).
Plotting the observed relative abundances of BPUs and the relative abundances of BPUs predicted by
phylofactorization yields a simple, phylogenetic story of microbial associations with pH. While low pH
is dominated by Amany Acidobacteria thrive at low pH, there is a monophyletic group of ’acidophobic’
Acidobacteria which thrives at higher pH and isthat includes comprised of classes Chloracidobacteria,
Acidobacteria-6, and S035 and two OTUs unclassified at the class level. The acidophobic Acidobacteria
increase in relative abundance with pH. Also, a monophyletic clade of Actinomycetales is highly
acidophilic and consists of 31 OTUs, 28 of which are unclassified at the family level; the remaining
Actinomycetales are in the remainder bin show a very weak affinity for low pH soils. None of these bins of
OTUs correspond to a single taxonomic grouping, but all of them are characterized and classified by their
locations on one side or the other of four edges within the phylogeny.

includes the classes Acidobacteria-6, Chloracidobacteria, S053 and three OTUs unclassified
at the class level.

The first four factors define 5 bins of OTUs that we refer to as ‘‘binned phylogenetic
units’’ or BPUs: a monophyletic group of Acidobacteria (classes Chloracidobacteria,
Acidobacteria-6, and S035), another monophyletic group of Acidobacteria (classes
Solibacteres and TM1), a monophyletic group of several families of the order
Actinomycetales, a monophyletic group of Acidobacteria (classes Acidobacteriia and
DA0522), and a paraphyletic amalgamation of the remaining taxa. Binning the OTUs
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based on these BPUs tells a simplified story of how pH drives microbial community
composition (Fig. 5B).

DISCUSSION
Overview
We have introduced a simple and generalizable exploratory data analysis algorithm,
phylofactorization, to identify clades driving variation in microbiome datasets.
Phylofactorization integrates both the compositional and phylogenetic structure of
microbiome datasets and produces outputs that contain biological information: effects of
independent variables on edges in the phylogeny, including the tips of the tree traditionally
analyzed. The output of phylofactorization contains a sequence of ‘‘factors,’’ or splits in
the tree identifying sub-groups of taxa which respond differently to treatment relative to
one-another. The splits identified in phylofactorization need not be splits in the Linnaean
taxonomy but can identify strong responses in clades of unclassified taxa. The researcher
does not need to choose a taxonomic level at which to perform analysis—those taxonomic
levels are output based on whichever clades maximize the objective function, and so
researchers will be able to identify multiple taxonomic scales of importance.

Phylofactorization outputs an isometric log-ratio transform of the data with known
asymptotic normality properties, coordinates that can be analyzed with standard
multivariate methods (Pawlowsky-Glahn & Buccianti, 2011). The resulting coordinates
correspond to particular edges between clearly identifiable nodes in the tree of life,
allowing researchers to annotate a given phylogenetic tree with correlations between clades
and various environmental meta-data, sample categories, or experimental treatments.

The phylogenetic inferences obtained by phylofactor would be difficult to obtain with
other pre-existing methods. Three iterations of phylofactorizaiton on the oral/fecal dataset
yielded the three major splits in the phylogeny, all of which are consistent with known
distributions of taxa, none of which would be revealed directly from a taxonomic-based
analysis. Algorithms such as phylosignal (Keck et al., 2016), which track P-values up
the tree, yield inferences with nested dependence and identify clades with common
significance, yet not necessarily clades with common signal or direction of trend—it is
a common signal such as a shared habitat association, not a common significance such
as the existence of a habitat association, which better indicates a putative trait driving
shared responses in microbes. In the 142 factors above, phylofactor identified numerous
clades with common significance yet different signals. Phylogenetic kernel-based methods
(Lozupone & Knight, 2005; Purdom, 2011;Ning & Beiko, 2015) use the phylogeny to modify
distances/dissimilarities between samples and can easily differentiate between oral and fecal
body sites, but such nominally similar methods classify and differentiate sites, which is a
conceptually different from classifying and predicting OTU abundances given their place
in the phylogeny. Similarly, phylogenetic comparative methods (PCMs) (Felsenstein, 1985;
Harvey & Pagel, 1991) such as phylogenetic generalized least squares (Grafen, 1989;Martins
& Hansen, 1997) are nominally similar but conceptually distinct from phylofactor; while
PCMs aim correct for the dependence of observations of evolutionarily related taxa, our
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goal is not to correct for such dependence but to infer precisely where on the tree such
dependence appears to arise. While many tools exist for the nominally similar task of
‘‘using the phylogeny to analyze microbiome data’’, the utility of phylofactorization lies
in its ability to construct variables corresponding to edges in the phylogeny along which
putative functional ecological traits may have arisen, constructed so as to avoid nested
dependence and overlapping comparisons that frequent the analysis of hierarchically
structured, and constructed in a manner appropriate for compositional data.

Future work
The generality of phylofactorization opens the door to future work employing
phylofactorization with other objective functions. As we showed with the human oral/fecal
microbiomes, phylofactorization is not restricted to basal clades, but includes the tips as
possible clades of interest, but the objective function we used minimized residual variance
in the whole community and thereby may prioritize deeply rooted edges or abundant taxa
with weaker effects over individual OTUs with stronger effects. Other objective functions
could be constructed to meet the needs of the researcher. If researchers are interested
in identifying basal lineages, their objective function can weight edges based on distance
from the tips. A researcher interested in fine-tuning the evolutionary assumptions in
phylofactorization can define an objective function that increases explicitly with the length
of the edge being considered to reflect an assumption that the probability of a trait arising
increases with the amount of time elapsed.

Each edge identified in phylofactorization corresponds to two bins of taxa on each side of
the edge, and consequently phylofactorization brings in two complementary perspectives
for analyzing the data: factor-based analysis and bin-based analysis. Factor-based analysis
looks at the each factor as an inference on an edge in the phylogeny, conditioned on the
previous inferences already made, and indicating that taxa on one side of an edge respond
differently to the independent variable compared to taxa on the other side of the edge.
Bin-based analysis, on the other hand, looks at the set of clades resulting from a certain
number of factors—what we call a ‘‘binned phylogenetic unit’’ (BPU). These bins will
create a lower-dimensional, compositional dataset and can be freed from the underlying
ILR coordinates for different analyses on these amalgamated clades. BPU-based analysis can
inform sequence binning in future research aimed at controlling for previously-identified
phylogenetic causes of variation, and combine the effects of multiple up-stream factors
for predictions of OTU abundance. See Supplemental Information 1 for a more detailed
discussion of factor-based and bin-based analyses.

One conceptual challenge with phylofactorization cross-validation and BPU-based
analysis is the treatment of paraphyletic ‘‘remainder’’ clades which occur after factorization
of edges within groups that split a monophyletic clade from a ‘‘remainder,’’ paraphyletic
clade or BPU. These paraphyletic BPUs are informative as they are the necessary contrasts
with the monophyletic group, conditioned on previously identified phylogenetic factors,
and thus serve as a means of identifying the presence or absence of a trait in the
monophyletic group. For instance, phylofactorization of vertebrates based on their relative
abundance in the air should identify two monophyletic groups: birds and bats. The
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monophyletic groups are defined by the presence of a specialized adaptation—wings—and
the paraphyletic remainder is defined by the absence of wings; any future treatment
that differentially affects winged vs. non-winged organisms will differentially affect
the abundances of these monophyletic groups relative to the paraphyletic remainder.
Conversely, ‘‘legs’’ in the order Squamata disappeared along edges corresponding to legless
lizards and snakes; in this case, the monophyletic clades are defined by the absence of a
specialized adaptation, legs, and the paraphyletic remainder is defined by the presence
of legs. Whether a trait can be flexibly defined as either the presence of absence of
a specialized adaptation is an important theoretical consideration, but considering
monophyletic BPUs and their complementary paraphyletic BPUs as equally likely to
have the presence or absence of a trait and as the necessary comparison for cross-validation
is an important empirical consideration. Phylofactorization pinpoints the contrasts to be
made for microbial genomic and physiological studies aiming to identify the causes of
differential abundances or responses to treatments across OTUs. Genomic/physiological
investigations and cross-validation of phylofactorization must understand and grapple
with the choice of appropriate comparisons of taxa, and that may require a fair contrast of
a monophyletic clade to a paraphyletic one.

Phylofactorization will benefit from community discussion and further research
overcoming general statistical challenges common to greedy algorithms and analysis
of phylogenetically-structured compositional data. For instance, the log-ratio transform
at the heart of phylofactorization requires researchers deal with zeros in compositional
datasets. While there are many methods for dealing with zeros (Aitchison, 1986; Martín-
Fernández, Barceló-Vidal & Pawlowsky-Glahn, 2003; Pawlowsky-Glahn & Buccianti, 2011),
it’s unclear which method is most robust for downstream phylofactorization of sparse
OTU tables. Second, phylofactorization as presented here only sequentially infers ILR
elements and does not allow for simultaneous inference of ILR basis elements—the
set of factors identified after n iterations may explain less variation combined than an
alternative set of factors that did not maximize the explained variance at each iteration.
This limitation may be overcome by running many replicates of a stochastic greedy
algorithm and choosing that which maximizes the explained variance after n factors. Third,
the researcher must choose an objective function which matches her question, and future
research can map out which objective functions are appropriate for which questions in
microbial ecology. Fourth, like any method performing inference based on phylogenetic
structure, phylofactorization assumes an accurate phylogeny. Accurate statistical statements
about a researcher’s confidence in phylofactors must incorporate the uncertainty in our
constructed phylogeny. Fifth, phylogenetic-based methods may be sensitive to the binning
and filtering methods for sequence-count data. Our filtering methods here were chosen to
allow somewhat standard and simplified analysis of common OTUs present in many of
the samples, but these filtering protocols might not be optimal for researchers with other
research questions and objective functions. Future work can investigate the sensitivity
of phylofactorization to myriad binning and filtering methods given the objectives and
objective function of the researcher. Finally, future research can investigate the unique
kinds of errors in phylofactorization: in addition to the multiple-hypothesis testing of
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edges, phylofactorization may propagate errors in the greedy algorithm, and, even when
taxa are correctly factored into the appropriate functional bins, the presence of multiple
factors in the same region of the tree can lead to uncertainty about the exact edge along
which a putative trait arose (see Supplemental Information 1 for more discussion on the
uncertainty of which edge to annotate).

Incorporating that phylogenetic structure into the analysis of microbiome datasets
has been a major challenge (Martiny et al., 2015), and now phylofactorization provides a
general framework for rigorous exploration of phylogenetically-structured compositional
datasets. The soil dataset analyzed above, for instance, contains 3,379 OTUs and 580
samples, and phylofactorization of the clades affected by pH in the soil dataset yielded
not just the three dominant factors used for ordination-visualization, but 2,430 factors
in all, each with an intricate phylogenetic story. Many Acidobacteria are acidophiles,
but some—Chloracidobacteria, Acidobacteria-6, S035, and some undescribed classes
of bacteria factored here—appear to be alkaliphiles. By incorporating the phylogenetic
structure of microbiome datasets, the big data of the modern sequence-count boom just
got bigger, and future research will need to consider how to organize, analyze and visualize
the large amounts of phylogenetic detail that can now be obtained from the analysis of
microbiome datasets.

CONCLUSIONS
Phylofactorization is a robust tool for analyzing marker gene sequence-count datasets
for phylogenetic patterns underlying microbial community responses to independent
variables. Phylofactorization accounts for the compositional nature of the data and the
underlying phylogeny and produces inferences that are independent and more powerful
than application of the ILR transform to the rooted phylogeny. The R package ‘phylofactor’
has built-in parallelization that can be used to analyze largemicrobiome datasets, and allows
generalized linear modeling to identify clades which respond to treatments or multiple
environmental gradients.

Phylofactorization can connect the pipeline of microbiome studies to focused studies of
microbial physiology. As researchers identify lineages with putative functional ecological
responses, taxa within those lineages—even if they are not the same OTUs—can be
cultivated and their genomes screened to uncover the physiological mechanisms underlying
the lineages’ shared response.

Phylofactorization improves the pipeline for analyzing microbiome datasets by allowing
researchers to objectively determine the appropriate phylogenetic scales for analyzing
microbiome datasets—a family here, an unclassified split there—instead of performing
multiple comparisons at each taxonomic level. Instead of principle components analysis
or principle coordinates analysis, phylofactorization can be used as for exploratory data
analysis and dimensionality reduction tool in which the ‘‘components’’ are identifiable
clades in the tree of life, a far more intuitive and informative component for biological
variation than multi-species loadings.

Phylofactorization can allow researchers to annotate online databases of the microbial
tree of life, permitting predictions about the physiology of unclassified and uncharacterized
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life forms based on previous phylogenetic inferences in sequence-count data. By allowing
researchers to make inferences on the same tree and potentially annotate an online tree
of life, phylofactorization may bring on a new era of characterizing high-throughput
phylogenetic annotations, filling in the gaps the microbial tree of life.

An R package for phylofactorization with user-friendly parallelization is now available
online at https://github.com/reptalex/phylofactor.
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