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In the new field of Cavity Optomechanics the modes of a mechanical oscillator are strongly

coupled to the resonant modes of a cavity, which enables the use of optical techniques, such as laser

cooling, to manipulate and study oscillators. Oscillators with small mechanical dissipation, when

interacting with low-loss, intense cavity field, can be cooled down to their harmonic ground state, a

true breakthrough allowing for the study of the intrinsic quantum behavior of macroscopic objects.

It is of interest, therefore, to use and develop mechanical oscillators with very small loss, or, in other

words, very small coupling with the thermal bath and environment. One of the best materials in this

sense, Si3N4, has been used in many optomechanical experiments due to their large quality factors,

low optical absorption, and high mode frequencies. Nonetheless, modifications of membrane Si3N4

such as trampolines and phononic crystals (PnC) have shown significant improvement of in their

quality factor. This thesis describes new Si3N4 resonator designs, the flower and the web, that uses

both the trampoline and PnC characteristics in order to provide even higher quality factors and

frequencies. By enabling better resonators, the new designs are also very suitable in extreme force

sensing applications. Moreover, besides discussing how to attenuate mechanical losses, this thesis

also contains heating models for Si3N4, which corroborate the extremely low optical absorption

essential to the most ambitious cavity optomechanics experiments.
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Chapter 1

Introduction

1.1 Context

The 20th century saw the emergence of quantum mechanics as a highly successful theory able

to explain with high success diverse microscopic phenomena. The inability of classical mechanics

and electrodynamics in explaining black-body radiation led to the introduction of the quantization

of light by Planck and later Einstein, who postulated the corpuscular facet of light waves. De

Broglie expanded this duality by postulating that all matter has wave properties, with character-

istic wavelengths inversely proportional to momenta. The wave-like behavior of matter was later

enshrined by Schrödinger’s wave equation, which ascribes behavior typical of waves, such as super-

position and interference, to the probability density of the properties microscopic entities. Since

then, the predictions made by Schrödinger’s equation and the rest of quantum mechanics have been

confirmed countless times and to exquisite degrees of accuracy and precision.

Nonetheless, at the same time that superposition and interference have been incorporated

with great success in the behavior of particles, its existence in the case of macroscopic, large-

mass systems still remains mysterious and, as such, a forefront topic of exploration in physics.

Moreover, the refined technical control of mechanical systems achieved in the last few decades is

now encroaching what used to be firmly classical fields, and the developed quantum control is now

expected to expand to ever-massive systems and system with larger. For example, the recently

successful observation of gravitational waves [1] was only possible after taking into account the

quantum behavior of the kg-mirrors at the end of the km-long interferometer arms of LIGO [2].
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This example is a particular and case of of the larger field of Cavity Optomechanics, which

more often brings together advances in micro-fabrication and quantum optics. The sophisticated

nanofabrication techniques developed by the semiconductor industry have allowed for the develop-

ment of mechanical sensor capable of probing very small forces, as exemplified in scanning-force

microscopy. At the same time, developments in quantum optics have clarified light-matter interac-

tions and the ultimate limits quantum mechanics impose on mechanical sensing, a consequence of

the back-action caused by quantum measurement [2, 3]. Cavity Optomechanics seeks to use this

quantum back-action to manipulate the mechanics of suitable resonator, many micro-fabricated,

ultimately achieving “quantum control of [their] mechanical motion [3].”

The quantum behavior of a system can be more readily observed when its number of quanta

of oscillation, called phonons, is small [2]. In fact, for an oscillator such as a micro-mechanical

resonator its number of phonons is the fraction of its mean thermal energy and a quantum of

oscillation. Thus, if the temperature of a resonator is drastically reduced such that its thermal

energy is much smaller than that of a phonon, the quantum behavior of the resonator can be

finally accessed. In cavity coupling the mechanical oscillator motion with the fundamental modes

of trapped light inside a cavity is capable of realizing this drastic cooling to the quantum regime.

One can understand the physical principle behind Cavity Optomechanics by considering a

Fabry-Pérot cavity, formed by two mirrors facing each other, with one of the mirrors allowed to

oscillate in harmonic motion [3]. For a Fabry-Prot cavity with rigid mirrors, white light introduced

into the cavity will reflect back and forth and interfere with itself, and only those frequencies ωc

compatible with the modes of the cavity will interfere constructively and remain trapped in the

cavity. If, however, one of the end mirrors can oscillate with frequency ωm, then the trapped light

will be modulated into two frequencies ωc±ωm. Photons of frequency ωc +ωm are blue-shifted and

remove energy from the mechanical oscillator, whereas photons of frequency ωc−ωm are red-shifted

and add energy to the mechanical oscillator. If the incoming light is a laser beam with frequency

ωL = ωc, then the modulation will be symmetric and the resonator’s energy won’t change. However,

if the incoming light is slightly red detuned, i.e., ωL = ωc −∆, then the blue shifted photons can
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be put in resonance with the cavity, since their frequency can be closer to ωc. This way, the blue-

shifted light will take energy out of the resonator, causing it to cool down. If the mirrors of the

cavity have very high finesse, that is, if light trapped in the cavity can be reflected many times

before eventually leaking out, the cooling process will be enhanced and very low phonon number

can be achieved, leading the resonators to the quantum regime [2, 3].

In practice, there are different setups that can achieve optomechanical cooling. For instance,

reflective cantilevers and high-finesse mirrors can directly implement the model discussed previously,

and ultracold atoms, microspheres, and membranes can be placed inside a cavity and have their

motion be modulated by incoming light. At lower frequencies, metallized membranes can be coupled

to electromagnetic resonators by forming one of the plates of a capacitor in a superconducting LC

circuit. Alternatively, waveguides can be used as “whispering gallery” resonators that can trap

light waves which causes oscillatory “breathing modes” coupled to the modes of the trapped light.

Finally, kilogram-sized movable mirrors can be placed at one end of kilometer sized cavities, as

is done in LIGO, whose quantum back-action limited resolution led to theoretical development of

optomechanics.

Even though the motivation of cavity optomechanics is to reach quantum control of mechan-

ical motion, research on its different realizations indicates possible applications in, for example,

force-sensing, displacement measurement, NMR, and signal conversion. Intuitively, the less ther-

mal fluctuation a device has, i.e., the more it stands still, the more pronounced its response to

an external force will be. In other words, if thermal fluctuations are making a mechanical device

jitter randomly, any displacement smaller than the jitter’s amplitude (say, a displacement result-

ing from a very small external force), will remain undetected. Therefore, by greatly reducing the

thermal fluctuations of mechanical detector, one can increase its sensitivity to external forces and

displacements. Moreover, if the mechanical structure is coupled to two cavities of different reso-

nant frequencies, the sensitivity of each cavity to signals from the other is likewise enhanced if their

shared resonator has been cooled down.

In the Regal lab, cavity optomechanics has been pursued successfully both in basic quantum
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mechanics research and in more applied endeavors. In the group’s experiments, a stoichiometric

(high-stress) silicon nitride (Si3N4) membranes is positioned in the middle of a high-finesse, rigid

Fabry-Pérot cavity [4], which is inserted in either a cryostat or a dilution refrigerator for prelimi-

nary cooling of the cavity and membrane to cryogenic (< 5K) temperatures, with further cooling

accomplished by using laser-cooling techniques. Using this setup, the Regal lab has observed the

shot noise back-action on the membrane due to the trapped light and squeezing of light due to op-

tomechanical interactions, both purely quantum effects. Moreover, by depositing superconducting

metal on part of the Si3N4 membrane and using it as a capacitor plate in an LC circuit, the group

has also achieve improved microwave-to-optical photon conversion rates [5]. Further experiments

have reached the back-action limit [6], and improvements in the performance of the membrane

resonators will allow the trend of successful experiments to continue.

In fact, an obvious limitation to the performance of Si3N4 membrane resonators is its optical

absorption properties. If the membrane converts too much of the incoming light into heat, laser

cooling will be very limited [7]. Fortunately, very low optical absorption have been inferred for

silicon nitride membranes [8]. Nonetheless, a precise measurement of the optical absoprtion and

the thermal conductivity of Si3N4 membrane has not yet been achieved.

A more relevant parameter for the resonators used in cavity optomechanics, membranes

included, is their quality factor Q, i.e., the ratio between total energy stored and energy loss per

oscillation. In fact, higher Q correspond to better coupling and more efficient and extensive cooling,

and it also allows for higher frequency measurements and greater sensing capabilities [9]. Therefore,

by reducing the losses of a resonator and consequently improving its Q, experiments can more easily

achieve the quantum regime for the resonators, and improve sensing resolutions.

The losses of a Si3N4 resonator can be divided into external and internal losses. The former

is due to phonon tunneling to the substrate, i.e., energy lost to the substrate [10, 11]; the latter

happens because energy is lost whenever bending of the silicon nitride occurs [12, 13, 14]. In

work done by Yu et al. [15], the silicon substrate of a Si3N4 membrane was patterned into a

phononic crystal (PnC) structure in order to obtain a “phononic” bandgap, which prevents acoustic
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waves with frequencies within the bandgap to propagate through the silicon substrate. Thus, if a

membrane has a mode frequency within the bandgap, that mode’s Q will be enhanced by reducing

its external losses to the substrate. More recently, two groups have demonstrated that patterning

the Si3N4 resonator into “tethered membranes” could reduce both internal and external losses [16,

17] by, respectively, a combination of higher stress at the tethers connecting the membrane to the

substrate [13], and by reducing the contact area between membrane and substrate to only the cross-

sectional area of the tethers [11]. This loss reduction has resulted in room-temperature Qf product

an order of magnitude higher than for a regular high-stress membrane at cryogenic temperatures.

Nonetheless, another approach has proven even better at reducing the losses: patterning a (PnC)

directly in the Si3N4 resonator, with a central, un-patterned defect taking the role of the membrane

[18]. The Si3N4 PnC decouples substrate and defect modes, which drastically reducing external

loss, and it also reduces bending close to the substrate where they are specially lossy [14]. The

reduced losses and higher Q these designs have achieved will enable new experiments in both basic

and applied optomechanics research.

In particular, the Regal lab seeks to use trampoline geometries in magnetic resonance force

microscopy (MRFM), in an improvement of experiments done by other groups with low stress SiN

membranes [19]. Additionally, the use of tethered geometries can also be used for polarizing of

spins [20]. In parallel, the group also seeks to combine trampoline and Si3N4 PnC structures to

obtain high performing resonators which are also optimized for the detection of spins. By having a

trampoline as defects, instead of a membrane, the effective mass of the resonator can be decreased,

which improves its sensing capabilities [17], and the defect tethers can also be used in spin detection

and polarization experiments.

1.2 Outline

Chapter 2 of this thesis delves in the basic theory of cavity optomechanics and briefly discusses

some of the applications being studied by the Regal group. We then move on to chapter 3 to go

over the limitations to high-stress Si3N4 membrane resonators, starting with some of the theory
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behind internal and external losses. The next section explains the solid-state theory necessary for

a basic understanding of phononic bandgaps and how it can be used for PnC crystals. Finally, the

chapter ends with a discussions of the effects of optical heating, and why we care about it.

The next two chapters discuss my work and results studying optical absorption and hybrid

trampoline-PnC resonator geometries. Chapter 4 explains further the merits of the Si3N4 PnC

resonators, and relates a couple new hybrid trampoline-PnC designs. This chapter also contains

a few of the most important considerations in simulating such structures using the finite-element

software COMSOL. Chapter 5 discusses how optical heating models were used in determining

upper bounds to experimental data, providing initial corroboration that Si3N4 has an extremely

low optical absorption figure.

The final chapter is a short conclusion which recaps the material discussed and discusses a

few of the possible directions for extending the work related in this thesis.



Chapter 2

Cavity optomechanics

2.1 Basic Theory of Cavity Optomechanics

As is common in many introductions [2, 3, 21], let’s consider the archetypical optomechanical

system: a Fabry-Pérot optical resonator with one of its end mirrors capable of oscillating harmon-

ically. When monochromatic laser light of frequency ωL is inserted into the cavity, it will reflect

back and forth, exerting a force Frp = 2Popt/c upon reflection (Fig. 2.1(a)). This will cause the

movable mirror to be displaced and start oscillating, which will change the frequency ωc = mc/L of

optical modes of the cavity. The resulting shift of ωc will either position the laser light frequency ωL

closer or farther away from resonance, which will cause it to reflect less or more, respectively, inside

the cavity, decreasing or increasing Frp. In fact, as described below, it is precisely the coupling of

the optical field with the mechanical motion of the mirror due to the radiation pressure force Frp

that enables all aspects achieved by cavity optomechanics.

In particular, the radiation pressure mediated coupling results in an “optical spring effect,”

not discussed in this thesis (see [3] and [21] for more information), and “optical damping”, which

leads to the the possibility of laser cooling the resonating mirror to the quantum regime.

Optical damping can be explained classically by taking into account the delay in the response

of the radiation pressure force to the induced displacements of the mirror [2, 21]. Let’s reconsider

the Fabry-Pérot cavity from above. According to Marquardt and Girvin, the force exerted on the

on the mirror by radiation pressure is a Lorenztian with respect to the mirrors displacement x

[21], as seen plotted in Fig. 2.1(b). Suppose that initially the mirror is positioned to the left of
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the resonance peak. Either the radiation pressure force or random thermal fluctuations will make

the mirror oscillate and move with respect to the Lorentzian. Let’s assume it moves closer to

the resonance peak. Now, before the radiation pressure force can “catch up” with the mirror and

increase its magnitude, all the old, “weaker” photons need to leak out of the cavity. Therefore,

in moving towards the resonance the mirror will feel a smaller force than it would if the radiation

pressure force corrected instantaneously, which reduces the work exerted by the field on the mirror.

However, as the mirror oscillates back from the resonance, the force will then be larger than it

would be without the time-delay, which will make the mirror exert more work against the optical

field than otherwise expected. Overall, the radiation pressure force will remove work from the

mirror, effectively cooling it down, damping its motion [21].

Figure 2.1: (a) Illustration of a Fabry-Pérot optical cavity with one end-mirror attached to a
movable cantilever with oscillation frequency ωM . The input laser light of frequency ωL exerts
a radiation pressure force F = 2Popt/c onto the mirror, which is displaced along x. (b) Plot
of the Lorentzian describing the radiation pressure force F exerted on the movable mirror as a
function of the mirror’s displacement x. For a mirror initially positioned to the left of the peak
force magnitude, an oscillation cycle takes away energy from the mirror. (c) If incoming light is
slightly red-shifted compared to the cavity resonance, the modulated band of frequency ωL+ωM is
coser to the resonance and its process is therefore more efficient. Since that band corresponds to the
negative-work process, the oscillating mirror is damped more efficiently. (Image credit: Marquardt
and Girvin [21]).

Clearly, if the mirror is positioned on the opposite side of the Lorentzian of the radiation

pressure force, energy will be given to the mirror and it will heat-up. To better understand how

optical damping can be selected for in a cavity, let’s consider the quantum mechanical picture.
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Incoming laser light of ωL consists of a stream of photons of energy E = ~ωL whose total

number is determined by the laser input intensity. If the cavity has both mirrors fixed, then the

photons will stay inside the cavity longer the closer their frequency ωL is closer to the cavity

resonant frequency ωc, and the leaked light intensity will be the highest when omegaL = ωc (Fig.

2.2(a)). Now, if the end mirror can oscillated, when the photons hit it they can either create or

destroy a phonon of energy ~ωM . Clearly, If a phonon is created, then the energy of the mirror

increases by an additional ~ωM (a phonon), and the reflected photon is red-detuned to a lower

energy ~(ωL − ωM ). If a phonon is destroyed, then the energy of the mirror is decreased by ~ωM

and the reflected photons is blue-shifted to a higher energy ~(ωL+ωM ). This modulation is equally

distributed about the input frequency ωL and both blue- and redshifted light leak to the outside

(Fig. 2.2(b)). However, by slightly red-detuning the incoming light, the redshifted light can be

pushed far from resonance, whereas the blueshifted can be place in resonance with the cavity, which

would enhance phonon destruction (Figs. 2.1(c), 2.2(c)). The opposite process occurs if the input

light is blue-detuned, enhancing phonon creation at the mirror (Fig. 2.2(d)).

The mirror’s quantum regime can be accessed if its thermal fluctuations are small enough

that they don’t wash out the observable effects from small quanta of motion or energy. Thus, the

optical damping has to remove enough thermal phonons from the mirror such that on average less

than one thermal phonon will be present [2]. In other words, let n, the occupation number, be the

average number of thermal phonons in the mirror. The cooling provided by optical damping has

to achieve

n ≈ kbT

~ωM
< 1

which means that the mean thermal energy kbT has to be smaller then a quantum of mechanical

energy, achieving an occupation on average less than 1. This can be achieved provided the cavity

resonance linewidth (the width at half maximum at the resonance at Fig. 2.1(c)) is smaller than

the separation 2~ωM between the two modulation bands [21]. The smaller the resonance linewidth

is compared to the band separation, the greater the rate of cooling compared to heating for a red-
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Figure 2.2: (a) A Fabry-Pérot rigid cavity with input laser light of frequency ωL = ωc. The
resonance increases the intensity of the light in the cavity, amplifying the output signal. (b) If one
of the mirrors is allowed to oscillate harmonically with frequency ωm, the input is modulated into
two bands of frequency ωL − ωM and ωL + ωM . The former gives energy to the mirror, adding
a phonon of energy ωM and the latter subtracts energy from the mirror by destroying a phonon.
(c) If the input light is red-detuned such that the blue-shifted, the phonon destroying process is
selected for by the cavity resonance, which greatly dampens the motion of the mirror. (d) If the
input light is blue-detuned, the phonon creating process is the one selected, which increases the
energy of the mirror. (Image credit: Aspelmeyer et al. [2]).
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detuned input. It also becomes clear that the number of incoming photons has to be high enough

such that the phonon-destroying process happens at a faster rate than that of thermal phonons

entering the mirror from the outside [21]. If the cavity resonance is good enough and if the sources

of thermal phonons from the outside is negligible, the optical damping can be strong enough to

reveal the mirrors quantum behavior.

Despite the apparent lack of generality of the system discussed above, the physics involved

is generic enough that it can be extended to different systems, all capable of realizing cavity

optomechanical cooling. According to Marquardt and Girvin argue:

On the most general level, we are dealing with a resonance (the optical cavity mode) that is
driven (by a laser), and whose resonance frequency is pulled by the displacement of some mechanical
degree of freedom (the movable mirror). Having the resonance frequency depend in this manner
on the position immediately implies that there will be a mechanical force. Given this general
description, it is no wonder the same physics has by now been realized in a diverse variety of
physical systems, including superconducting microwave circuits and ultracold atoms [21].

In the model discussed above, the resonance frequency is coupled to the position of the moving

resonator (mirror), which is oscillating due to the radiation pressure force. Larger forces result in

stronger coupling, as the effects on the resonance will be more pronounced. We can then derive our

first merit figure for optomechanical systems in general based on this fact. The radiation pressure

force on reflection from the mirror is given by

F = ~
ωc
L
ncav (2.1)

where G = ωc/L is the change of resonance frequency with position parameter and ncav is the

number of photons in the cavity, which is proportional to the laser intensity. We can move further

and define a vacuum optomechanical strength, which indicates how strongly a photon interacts with

the phonons in the resonator:

g0 = Gxzpf =
ωc
L

√
~

meffωM
(2.2)

where xzpf is the zero point motion of the resonator, which is the position expectation value of

a harmonic oscillator in its ground state. The vacuum optomechanical coupling strength then

indicates that the larger a resonator’s xzpf , the stronger the coupling between its phonos and the
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cavity’s photons. Notice that the couplings G and g0 have units of frequency, so intuitively we want

the interaction rates denoted g0 to be larger then any dissipation rate due to the environment.

In this way, the optomechanical processes discussed above can happen faster than the system

thermalizes and interacts with its surrounding.

Independent of the physical system, we can now understand the role of the mechanical oscilla-

tor’s performance in achieving optomechanical cooling. A mechanical resonator with an oscillating

mode of frequency ωM will lose mechanical energy at a damping rate ΓM , which relates to its qual-

ity factor by the expression QM = ωM/ΓM . In contact with a thermal bath with average thermal

occupation nth, the motion of the mechanical oscillator will dampen according to the change in its

average phonon occupation n [22]:

d

dt
n = −ΓM (n− nth) ≈ ωM

QM
(n− kbT

~ωM
) (2.3)

Where the right-most equality uses the high-temperature approximation n ≈ kbT/~ωM .

Notice that once the mechanical resonator has an average occupation number equal to zero, that

is, it is in its ground state corresponding to n→ 0, equation 2.3 implies that if will receive thermal

phonons from the surroundings at a rate inversely proportional to the resonator’s quality factor:

d

dt
n ≈ kbT

~QM
(2.4)

Equation 2.4 is referred as the thermal decoherence rate and it denotes the rate by which one

quantum of energy is gained from the environment. Clearly, the maintenance of quantum behavior

for a mechanical resonator that has been cooled down to its ground state depends on low thermal

decoherence, which occurs for high quality-factors and is likewise improved by low thermal bath

temperatures. Moreover, the product Qf of a mechanical resonator can quantify how decoupled

the system is from the thermal bath [22]. Consider the ratio between the frequency of a mode to

the thermal decoherence:
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ωM
nthΓM

=
QM

kbT/~ωM
= QMfM

h

kbT
(2.5)

The ratio is directly proportional to the QMfM product, which means more oscillations will

occur given a particular thermal decoherence, i.e., the mechanical resonator is less coupled to its

environment and can be cooled down and maintained cold more effectively.

2.2 Membrane-in-the-middle Systems

The actual implementation of a Fabry-Pérot cavity with a movable end-mirror is limited

because reflectivity, which increases the light intensity in the cavity, and pliability, which relates to

the quality factor, are almost always incompatible in the same material 1 . One way of addressing

this limitation is, for example, to physically separate the mechanical and optical properties of the

system by having a partially translucent membrane in the middle of a rigid mirrors cavity (2.3(a))

[8]. In such setups, the membrane divides the cavity optical field into two, both modulated by the

the oscillatory-mode shape of the membrane. Regardless of this difference, the generalization of

the model of section 2.1 holds, and, in this way, pursuing higher quality factors for the membrane

can be done without detriment to the reflectivity of the cavity, which is determined by the mirrors

alone.

In particular, silicon nitride (SiN) membranes (Fig. 2.3(b)) have shown promise in membrane-

in-the-middle setups. Their low-stress variant have been measured to have near-IR absorption of less

than 10−4, an important parameter in avoiding enhancing the laser-cooling described in section 2.1,

since it would be counter-productive to have the laser adding thermal phonons to the membrane at

an appreciable rate. More impressively, their measured quality factors have exceeded 106 at room

temperature, two orders of magnitude larger than cantilevers used in atomic force microscopes

[7]. The combination of these two parameters have allowed SiN membrane systems to achieve

temperatures much lower than those achieved by systems using reflective cantilevers. For example,

whereas Thompson et al. reported achieving 6.82mK using a membrane in the middle system [23]

1 with an exception presented in Norte et al. [16].
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a cantilever cavity approach implemented by Corbitt et al. was capable to cool a 1g cantilever-like

structure to 0.8K [24], more than a 100 times the temperature obtained using the membrane.

Figure 2.3: (a) An schematic representation of a membrane in the middle system. The membrane
light trapped in the cavity exerts a force on the membrane, displacing it along x. Instead of
depicting the sinusoidal modes of the membrane, the membrane oscillation is representing by a
movable lever. As the membranes moves, it changes the length of the cavity in either of its sides,
coupling its motion to the trapped light through radiation pressure (as discussed in section 2.1).
(b) A photograph of a SiN membrane and its Si substrate. Such a membrane have superior
quality factor compared to cantilevers, and if used with high-reflectivity mirrors, result in better
optomechanical cooling. (Image credits: Thompson et al [23]).

2.3 Silicon Nitride Membrane Experiments

2.3.1 Observation of Quantum Behavior

Compared to the low-stress SiN membranes described in section 2.2, high-stress silicon nitride

membranes (Si3N4) have a larger tensile tress of around 1GPa, which, up to dimension differences,

results in larger mode frequencies, which necessarily improves its Qf product. Moreover, Si3N4

membranes seem to have even lower near IR optical absorption [25], as discussed in chapter 5.

According to the discussion of section 2.1, both improvements would make it a better mechanical

element at a cavity optomechanical experiment than a low-stress SiN membrane, itself a better

performing resonator than cantilevers (Fig. 2.3(b)).

These high-stress membranes have been used in the Regal lab with a He flow cryostat to
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reveal their intrinsic quantum behavior [4]. With good insulation from a radiation shield and a

cold window, the Si3N4 can thermalize to the Cryostat temperature of 4.2K < 300K (Fig. 2.4),

which greatly decreases the thermal decoherence to which it is subjected (eq. 2.4). In addition, the

thermal decoupling is further enhanced by the high-stress membrane’s improved Qf . These features

have allowed the group to observe the back-action on the membrane from radiation pressure, which

occurs when n < 1 and the photon induced movements become more prominent [26]. Further

studies led to “optomechanical squeezing of light,” another purely quantum effect [27], and to the

quantum back-action cooling limit [6].

2.3.2 Conversion Between Optical and Microwave Signals

Another experiment that takes advantage of the improved parameters of Si3N4 membranes

seeks to have a quantum-state preserving conversion between microwave and optical signals. The

setup consists of both the discussed Fabry-Pérot cavity with a high-stress silicon nitride membrane

in the middle and a microwave cavity formed by a superconducting LC circuit, the archetypical

cavity in electromechanics, the microwave-frequency equivalent of optomechanics. The two cavities

are coupled by having a part of the membrane coated with niobium, which superconducts below

9K. The uncoated part of the membrane modulates the optical cavity frequency of the system,

whereas the coated surface forms the top plate of the capacitor in the LC circuit (Fig. 2.5(a)

and (b)). The membrane oscillations will then not only modulate the trapped light, but also the

resonant frequency of the circuit [5].

Using a dilution refrigerator which reduces the thermal bath temperature below 40mK,

this hybrid system was capable of almost ”noiseless frequency conversion” between microwave and

optical photons, with a photon number efficiency of 0.086±0.007, an efficiency that can be improved

by using membranes or resonators with larger quality factors [5]. In order to make a link between

two cavities operating at different frequencies, both have to be pumped with red-detuned light

(Fig. 2.5(c)), which cools down the mechanics and enables a signal to be converted between the

two characteristic frequencies [5].
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Figure 2.4: (a) A Diagram of Si3N4 in a He Cryostat used in some of the experiments in the
Regal lab. The Fabry-Pérot cavity is formed by a curved and a flat mirror, with the high-stress
silicon nitride membrane position in between the two. The mirrors are affixed into an invar suport,
which is thermally connected to the He flow cryostat, and is protected by a radiation shield, a
vacuum shroud, and a cold window, all of which improve the cavity’s isolation from the surrounding
environment (Image credits: Purdy et al. [4]).
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Figure 2.5: (a) Schematic of the hybrid setup which uses a Si3N4 membrane to mediate between an
optical and a microwave cavity. The membrane is partially coated in niobium (dark blue), which
forms the top plate of a capacitor on a superconducting LC circuit, which modulates its resonant
frequency in the same fashion as its uncoated part modulates the optical cavity frequency. (b) An
illustration of the setup, with the flip-chip assembly composed of a top chip containing the partially
metallized membrane and the bottom chip containing the rest of the circuit. The flip-chip is then
inserted between the mirrors of the Fabry-Pérot cavity. (c) It is possible to convert a signal (green)
from microwave to optical frequencies and vice-versa by having the microwave cavity pumped with
light red-detuned from its resonance by ∆e and the optical cavity pumped with light red-detuned
by ∆o. (Image credit: Andrews et al. [5])
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2.3.3 Magnetic Resonance Force Detection using SiN Membranes

As a final experiment using SiN membranes, let’s consider its use in measuring magnetic

resonances. Traditionally, spin in a material are excited by an external oscillating magnetic field,

which causes them to precess and transition between states, which can then be detected by a coil

or microwave cavity [9, 30]. Such techniques, however, are limited in detecting ensembles with at

least 1012 nuclear and 108 electron spins [28]. Stronger coupling between the detecting device and

the spins are required if sensitivity is to be increased, and one proposal is to detect the spins by

using a mechanical oscillator [28, 29]

Magnetic resonance force microscopy (MRFM) uses a mechanical oscillator to detect the

oscillating forces induced by the modulation of the magnetization of the spin sample by the external

oscillating field. Clearly, if the resonant frequencies of the oscillator is appropriately chosen, its

amplitude, dependent on the force due to the spins, may be measured via optical interferometry.

More specifically (Fig. 2.6), Let’s consider a cantilever as the mechanical oscillator. We can either

attach the spin sample to it or the magnet that will provide the magnetic gradient. Affected by

the this gradient and an external rf signal, spins previously excited by an external field will create

an oscillating force felt by the cantilever, which will respond accordingly. Finally, its position can

then be detected by the by reflecting light off of it. This approach has been successfully used

in measuring an individual electron spin, a contrasting result compared to the more traditional

approach [30].

Cantilevers used in MRFM have shown an incredible force sensitivity of 0.82aN/
√

Hz, which

means they can sense, “in less than a second, a force as small as the gravitational attraction

between a person in Los Angeles and another in New York [2].” Nonetheless, the cantilevers have

a few limitations: they are very fragile, making it difficult to deposit samples or magnets on

them, they can twist and bend out-of-mode, which generates noise at the interferometer, and

their characteristic frequencies are not high enough for detecting nuclear spins [19]. Therefore, the

Hammel group at Ohio State University has elaborated a MRFM experiment that uses low stress
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silicon nitride membranes as the mechanical oscillator.

Figure 2.6: An schematic representation of an MRFM experiment done by Degen et al. [28].
In order to detect the spins from a CaF sample, the group attached it to a cantilever which is
positioned along an external Bext field and close to the magnetic gradient of a magnetic tip. An
RF coil is then responsible for exciting the spins in the sample, creating an oscillatory force that
moves the cantilever, which can be precisely detected with an interferometer. (Image credit: Degen
et al. [28])

The SiN membranes addresses all the shortcoming of using a cantilever as the mechanical

oscillator in MRFM. First, their planar dimension and clamped boundaries makes it easier to

deposit samples and read out their mode shape. Second, they can have several easily accessible

modes at MHz frequencies, which increases their magnetic resonance measuring scope [19]. Despite

its benefits and practicality, the force sensitivity of the SiN is about an order of magnitude larger

than that for a cantilever, 8aN/
√

Hz.

Intuitively, the limit on the force sensitivity of a mechanical resonator is reached when its

motion due to thermal fluctuation is larger than that due to an external force. Thus, the force

sensitivity will depend on the resonator’s quality factor, since higher Qs result in better thermal

decoupling (eq. 2.5), and on the thermal bath temperature. In fact, the expression for the thermal

force noise [19] is

S
1/2
f =

(
2kkbT

πQf

)1/2

(2.6)
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Figure 2.7: (a) A representation of the Hammel’s group MRFM experiment using a SiN membrane.
Here, the spin sample is attached to the membrane, which is held between the RF coil and the
magnet, which itself can be positioned using attocubes. An optical interferometer measured the
membrane’s displacement due to the force induced by the spins of the sample. (b) An image of
the SiN with the deposited sample. (Image credit: Scozzaro et al. [19])
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where k is the spring constant of the resonator, kbT its mean thermal energy, and Qf relates to its

how decoupled it is from thermal decoherence, again according to eq. 2.5.

An equivalent expression, emphasizing different parameters of the resonator [17], is

Sf =

(
8meffkbT

τ

)1/2

= xzpf

√
~kbT
Q

(2.7)

where meff is the effective mass of the resonator, and τ is the ringdown time. Both are defined

respectively, as follows: consider a mode of a oscillator composed of x(t), the amplitude of the

mode, and u(~r), the a-dimensional shape of the mode. The equation of motion of x(t) will be given

by the a harmonic oscillator equation for the effective mass meff [22]. Now, consider the resonator

oscillating with amplitude x(t) at a resonance. After the external drive is stopped, it will continue

to oscillate, with an exponentially decreasing x(t), for a characteristic time τ , the ringdown time. In

fact, measurement of quality factors is done precisely by exciting a resonator’s mode, then cutting

off the driving force and measuring the amplitude ringdown. The exponential fit to this data will

give the ringdown time, to which Q is inversely proportional.



Chapter 3

Loss mechanisms for Silicon Nitride

3.1 Introduction

A common theme of the experimental applications in the previous section is that larger

quality factors, i.e., lower dissipation ΓM , is always beneficial. Therefore, in designing low loss

systems, one needs to address the different loss mechanisms, which have been classified into two

categories:

• Internal Losses caused by anharmonic effects, such as out-of-phase oscillating stress and

strain, and relaxation of material defects [12, 13, 14].

• External Losses caused by lossy interactions with the surroundings, such as losses induced

by surrounding air, or elastic waves transferring energy from the resonator into the substrate

[22].

These dissipation mechanisms are indepedent of each other, in such a way that the qual-

ity factor of a mechanical oscillator can be separated into internal- and external-loss determined

portions

Γtot ∝
1

Qtot
=

1

Qinternal
+

1

Qexternal
(3.1)

In the following, we briefly discuss how this losses occur in SiN resonators, and how they can

be addressed.
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3.1.1 Internal Losses

Let’s initially consider one of the characteristic modes of oscillation of a silicon nitride string

with mode-shape (as discussed by Unterreithmeier et al [12]). The resulting displacement, given by

z(x, t) = u(x)a(t), of the string is periodic, but we are only concerned with the time independent

mode-shape given by u(x). The change of the string to u(x) from a flat, non-excited initial shape

z(x, 0) = 0 necessarily results in a strain distribution, given by ε(x, z, t) = ε(x, y)e(i2πft). The

displacement of the beam will likewise make the initial stress σ0 of a prestressed beam oscillate

σ(x, z, t) = σ(x, y)e(i2πft) out of phase with the stress, which induces an imaginary Young’s modulus

E = σ/ε = E1 + iE2 that relates stress and strain as follows

σ(x, z) = (E1 + iE2)ε(x, z) (3.2)

The imaginary part of the Young’s modulus is related to the mechanical dissipation of the string,

which can be expressed as

∆U = δV πE2ε
2 (3.3)

Where δV is volume element of the string, which can be integrated to obtain the total loss

∆Utot = πE2

∫
dV ε2 (3.4)

According to the supplementary information to Unterreithmeier et al. [12], the total dissipation

given by eq. 3.4 can be divided between the strain caused by elongation of the string and by its

bending, with the contribution from bending being much larger than that from elongation. In fact,

considering the bending energy being entirely due to the losses is an appropriate approximation

[12].

The total energy in the SiN string can also be considered the as being composed of elongation

and bending contributions:

δUtot = δQelongation + δUbending = δV

 σ0ε︸︷︷︸
elongation

+
1

2
E1ε

2︸ ︷︷ ︸
bending

 (3.5)
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The dissipation rate Γ of the string will can then be expressed as

Γ ≈
∆Ubending

Ubending + Uelongation
(3.6)

By eq. 3.5, the elongation energy Uelongation increases linearly with initial stress σ0, but it does

not affect the bending energy nearly as much, nor the dissipation associated with it. Therefore, an

strategy in decreasing dissipation is to have a resonator made of high-stress material [12] (Fig. 3.1).

In fact, the more energy there is in elongation, and the higher the stress, the lower the dissipation.

If σ0 is high enough, this quality factor improvement from the elongation can be expressed as [13]

Qstring =
Uelongation

Ubending
Qbending (3.7)

Eq. 3.8 can be further improved by taking into account that u(x) is not perfectly sinusoidal,

since near the clamping to the substrate it bends as a rigid cantilever being pushed at the free-

standing side (Fig. 3.2). Schmid et al. have considered the effects of the cantilever-like displacement

of the string into its quality factor

Qstring =

(
UString−bending

Uelongation
+

2Ucantilever−bending

Uelongation

)−1

Qbending (3.8)

=

(
(nπ)2

12

E

σ0

(
h

L

)2

+ 1.0887

√
E

σ0

h

L

)−1

Qbending (3.9)

where n is the mode number, E is the Young’s modulus, h is the the string thickness, and L its

length. Because h/L < 1 and E/σ0 < 1, the bending at the clamp, where u(x) is cantilever-like, is

the one the contributes the most to the mechanical loss.

For a silicon nitride membrane the internal loss analysis is the same. The oscillation of

the membrane induces oscillating strains and stresses that dissipate energy because they oscillate

out-of-phase. Generalizing eq. 3.4 to two dimensions and substituting for the strain [14] results in

∆Umem =

∫
z2dz

∫ ∫
πE2

1− ν2


 ∂2u

∂x2
+
∂2u

∂y2︸ ︷︷ ︸
mean curvature


2

+ . . .︸︷︷︸
other terms

 dxdy (3.10)

Which can be compared to the total stored energy to give the quality factor of the membrane:

Umem =
ρhω2

2

∫ ∫
u(x, y)2dxdy (3.11)
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Figure 3.1: (a) Energy stored in elongation and bending as a function of stress for a SiN string.
The elongation energy increases linearly with stress, and after a high enough stress it dominates
the total energy. (b) As stress is increased, together with the fraction of the total energy from
elongation energy, Q increases, as expected. (Image credit: Unterreithmeier et al. [12])

Figure 3.2: The mode shape u(x) of a SiN string is not a perfect sinusoidal like w(x). Out from
the clamping edge to a distance Lc, the string bends up like a cantilever under a tension force σA,
σ being the intrinsic SiN stress and A the cross-sectional area of the string. (Image credit: Schmid
et al. [13])
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Q = 2π
Umem

∆Umem
(3.12)

where, in eq. 3.10 ρ is the membrane’s mass density, h the membrane thickness, and ω the mode’s

frequency.

In summary, by taking into account only the internal losses, the quality factor Q is determined

by the bending, or curvature, of the resonator’s mode. For SI3N4, the high 1GPa stress increases the

energy stored in the elongation of modes (besides increasing the mode frequencies), which increases

their Q by eq. 3.8. Therefore, by increasing the resonator’s stress and decreasing the bending at

the clamping edges, internal loss can be greatly attenuated.

3.1.2 External Losses

The clamping edge of SiN mechanical resonators also takes a prominent role in determining

external losses. In an intuitive sense, if the mode of the resonator extends to its substrate, part of its

total energy will radiate out to the surrounding, at a rate dependent on the substrate’s dissipation.

In any realistic experiment, the substrate will be considerably lossier than the resonator, and its

“mode-extension” to the substrate will create considerable loss. More fundamentally, phonons car-

rying mechanical energy, i.e., quanta of elastic waves, can leak from the resonator to the substrate,

causing the resonator to dissipate its energy into the environment. In reality, the theory behind

these phonon leakage is much more complicated and, for the purpose of this thesis, the phonon-

tunneling theory developed by Wilson-Rae [10] will be condensed to its practical applications in

designing mechanical resonators of high Qexternal, following the results of Cole et al. [11].

The coupling of resonator and substrate modes that causes leakage of vibrational energy is

strongly geometry dependent. Specifically, the two biggest contributors to the external loss are the

cross-sectional size and the magnitude of the displacement of the contact between the resonator

and the substrate [11, 31]. Intuitively, resonators clamped by small, relatively stationary “edges”

will induce less vibration and bending of the substrate, which will dissipate less of the resonator’s

energy. Cole et al. [11] have confirmed this fact experimentally by simulating and measuring the

dissipation of the same mechanical mode connected to a substrate through different geometries.
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Similar simulations were done by [31], where they observed Qs three times higher for geometries

where the connection was made to a node of the resonator mode.

Figure 3.3: Cole et al. simulation results of the influence of the location of the connecting beam
between resonator and substrate. For the same resonator mode, whenever the connecting beam
moves the least with the resonator is the one that dissipates the least, since it is also the when
induced motion at the substrate is the smallest, which implies less energy will be leaked out. (Image
credit: Cole et al. [11])

3.2 Loss-Attenuating Designs

A better understanding of the loss mechanisms as discussed in the previous section have

inspired new designs for SI3N4 membrane resonators. The first approach discussed below, the

Phononic Crystals (PnC) designs, consists of patterning the substrate to which the membrane

is attached such that no elastic waves from membrane modes can propagate across it and leak

elastic energy. Despite addressing only external loss, the phononic crystals were able to increase

the quality factors of high-stress silicon nitride membranes by two orders of magnitude.

Another approach is a tethered-membrane design called a Trampoline. Here, a square

SI3N4 square membrane is suspended from the substrate by 4 string like SI3N4 tethers. The

original, uniform high stress of the SI3N4 redistributes, concentrating on the tethers and diminishing

considerably in the connection of the tethers with the substrate, which greatly decreases the internal
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losses. Moreover, by having smaller connections to the substrate, one expects the external losses

are also decreased in this design.

Finally, another design is to pattern a PnC with a central defect directly onto a SI3N4 mem-

brane. This approach combines the PnC decoupling of resonator and substrate and the decrease

of bending at the clamping edges, since the modes decay exponentially in the Si3N4 PnC before

getting to the edges. The measured quality factors of this design has also shown a considerable

improvement compared to pure membranes, as is discussed below.

3.2.1 Silicon Substrate PnC: Theory and Experiment

In order to understand the phononic crystal design, let’s first start with a 1D chain of identical

point masses of mass m connected by springs of constant κ, which follows closely chapter 10 of

Simons textbook [32]. If the distance between each of the masses to be L, the potential energy of

the system will be

Figure 3.4: A 1D chain of equal masses connected by springs. The distance between each mass, also
called the lattice constant, is L, and the displacement of each mass from its equilibrium position is
u. (Image credit: Levi, Essential Classical Mechanics for Device Physics. (2016)

.

Vtot =
∑
j

V (xj+1 − xj) =
∑
j

κ

2
(xj+1 − xj − a)2 =

∑
j

κ

2
(uj+1 − uj)2 (3.13)

where uj = xj − jL is the displacement of the jth mass from it’s equilibrium position xj,eq = jL.
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The force Fn of the nth mass can be found by differentiating eq. 3.13 with respect to x:

Fn = −∂Vtot
un

= κ(un+1 + δxn) + κ(un−1 − un) (3.14)

From which we can find the equation of motion for each mass

m(ün) = Fn = κ(un+1 − 2un + un−1) (3.15)

Now we use the wave ansatz un = Aeiωt−ikxn,eq = Aeiωt−iknL in eq. 3.15, obtaining

−mω2Aeiωt−iknL = κAeiωt(e−ik(n+1)L − 2e−iknL + e−ik(n−1)L) (3.16)

mω2 = 2κ(1− cos(kL)) = 4κsin2(kL/2) (3.17)

ω = 2

√
κ

m

∣∣∣∣sin(kL2
)∣∣∣∣ (3.18)

The relation between frequency ω and wavevector k is know as the dispersion relation of

the system, which is clearly periodic with period k → k+ 2π/L. In fact, if the system has a length

period of L, its reciprocal lattice over k-space will be periodic wit period 2π/L, with the periodicity

unit that repeats itself over k-space known as its Brillouin zone. Figure 3.5 shows the dispersion

relation for eq. 3.18 marked as 1, which indicates the maximum frequency the system can assume,

ωmax = 2ω0 = 2
√
κ/m.

Let’s now consider a 1D chain where the spring constant values alternate between κ1 and

κ2, that is, in Fig. 3.4 the spring between points j − 1 and j will have constant κ1 and the spring

between j and j+1 will have constant κ2. Because two adjacent masses will have a different spring

order attached to them, their displacement will then be xn and yn (see Fig. 3.6) and the lattice

constant L will include two masses, forming the unit cell of the lattice.

Using the approach above for each coordinate xn and yn, the dispersion relation for the

diatomic chain of Fig. 3.6 will have two branches [32], one for each degree of freedom of the unit

cell

ω± =

√
κ1 + κ2

m
± 1

m

√
(κ1 + κ2)2 − 4κ1κ2sin2(ka/2) (3.19)
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Figure 3.5: A 1D chain of equal masses connected by springs. The distance between each mass, also
called the lattice constant, is L, and the displacement of each mass from its equilibrium position is
u. (Image credit: Levi, Essential Classical Mechanics for Device Physics. (2016))

.

Figure 3.6: Now we consider a chain with two values for spring constants κ1 and κ2. Because
two adjacent masses will be connected different to the springs, their displacement will be different,
denoted xn and yn. Finally, because the periodicity unit has to include both masses, which then
repeat along the system. This unit is called the unit cell, which spans the system when repeated
over the lattice points. (Image credit: Simon [32])

.
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which results in the the plot of Fig. 3.7. The lower-energy, larger wavelength branch w− corresponds

to acoustic waves in which the unit cell moves in unison, which is similar to the dispersion relation

in Fig. 3.5, and the higher energy optical branch w+, corresponds to out-of-phase oscillations of

the two atoms in a cell. These are called optical because they can interact with incident phontos,

a theme explored more in chapter 5.

Figure 3.7: The dispersion relation for a unidimensional chain with two different masses or springs.
The dispersion relation will be divided into two branches (one for each degree of freedom of the
system). The low frequency, large wavelength corresponds to acoustic normal modes, whereas the
high energy correspond to optical modes that can interact with incident photons. (Image credit:
wikipedia.org).

Notice that the acoustic and optical branches never intersect, making a band-gap of “forbid-

den” values for ω(k). This happens because κ1 6= κ2, since the maximum value the acoustic branch

ω−(±π/L) =
√

2κ1/m is smaller than the minimum value of the optical branch ω+(±π/L) =√
2κ2/m. The band would close if κ1 = κ2, and the shape of the dispersion relation would be

the same as in Fig. 3.5, but with double the size. In other words, the reciprocal unit cell

(reciprocal because [k] = 1/distance) would be twice as big in this case because the unit cell

would include two masses and would also be twice as big. Consequently, as the difference be-

tween κ1 and κ2 is increased, the largest the band-gap between them will become, moving the
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two branches farther apart. The split of the two branches and the formation of a band-gap would

also happen if instead of different elastic constants we had different masses in the unit cell, since

ω−(±π/L) =
√

2κ/m1 6=
√

2κ/m2 = ω+(±π/L).

For 2D structures, the dispersion relation will also be given as w(k) over all values of k in

the reciprocal unit cell, the only difference being how complicated the reciprocal unit cell in this

case is (for more details, see chapters 12 and 13 of [32]). As in the case of a 1D chain, if a 2D unit

cell contains regions of different mass or spring constant, a band-gap can open up in the dispersion

relation, preventing normal modes with certain frequencies. Thus, if such a 2D structure is the

substrate to a SI3N4 membrane, normal modes of the membrane with frequencies in the band-gap

won’t be able to extend to the substrate and induce any motion, diminishing external loss.

Yu et al. [15] have successfully applied the idea of patterned substrate with a band-gap to

isolate membrane modes and significantly decrease energy leakage. The commercially available

1cm-across silicon chip with a 0.5mm SI3N4 membrane was patterned into a PnC crystal composed

of a mesh of high-mass squares connected by low-mass tethers (Fig. 3.8(a)). The central high-mass

square encloses the membrane, whose normal modes inside the PnC crystal band-gap should not

excite neither its immediate frame, nor the surrounding (according to the colored points in Fig.

3.8(b)), but if a membrane mode is outside the crystal’s band-gap, then the mode and its energy

should leak out. The band-gap of the PnC crystal can be plotted by tracing the dispersion relation

for the reciprocal unit cell vectors as indicated in Fig. 3.8(c). the wavevector ~k goes from the

reciprocal space origin denoted Γ, goes to X, follows to M , and then returns to Γ. The resulting

frequency response ω(k), depicted in Fig. 3.9, clearly indicates two band-gap regions, one centered

around 3MHz and another just under 4MHz.

The decoupling of membrane and crystal modes was measured using Mach-Zehnder interfer-

ometry (see Fig. 3.10(a) for a in-band-gap membrane mode, and Fig. 3.10(b) for a out-band-gap

membrane mode). At mK temperatures, these PnC crystal chips have allowed quality factors more

than an order of magnitude higher than those for un-patterned chips.
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Figure 3.8: (a) The Si PnC crystal (blue) surrounding the membrane (yellow). (b) Membrane,
membrane frame, and adjacent large-mass square in the PnC. If a membrane mode is withing the
band-gap of the PnC, only the mebrane should oscillate, but not the surrounding PnC. (c) Unit
cell of the PnC crystal and the reciprocal cell vectors. The dispersion relation for this structure is
obtaining by tracing k along the vectors and plotting ωk. (Image credit: Yu et al. [15]).

.

Γ
𝑋

𝑀
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Figure 3.9: The dispersion relation for the unit cell depicted in Fig. 3.8(c). Again, k spans three
different directions, first along the vector connecting the reciprocal lattice points Γ and X, then
X and M , and finally M and Γ. The corresponding dispersion relation shows two band-gaps, one
around 3MHz and another just below 4MHz (Image credit: Yu et al. [15]).
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Figure 3.10: (a) Displacement of different parts of the system for in-band-gap frequencies, according
to Fig. 3.8(b). Notice that only the membrane and its immediate frame actually move for membrane
modes. The PnC and the chip frame remain stationary, except for some piezo modes excitation.
(b) Out-of-band-gap displacements. Here, all parts of the system have a resonant mode around
2224kHz, which indicates the membrane modes are coupled to the substrate, which, as seen above,
will cause energy to dissipate (Image credit: Yu et al. [15]).
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3.2.2 An Overview of Trampolines

Another design that addresses both external and internal losses is the trampoline, which

is obtained by patterning the SI3N4 membrane into a smaller membrane region connected to the

substrate by tethers. The uniform, high initial stress σ0 of the membrane is reduces in the tether

membrane connection, increasing tether elongation (blue colors on Fig. 3.11(c)). Additionally, for

sufficiently large outer fillet radius rout, the bending close to the clamping edges will be greatly

reduced, as the high stress holds the“flaps” in place.

Figure 3.11: (a) Overall geometry of a SI3N4 trampoline. (b) and (c) The new geometry redis-
tribute the initial stress of the membrane, providind elongation of the tethers and reducing the
bending at the clamping edges, which are obviously also reduced in size (Image credit: Norte et al.
[16]).

Norte et al. have measured an incredibly high room temperature quality factor of 108, which

was obtained by optimizing the parameters shown in Fig. 3.11: tether width w, central membrane

size amem, window size aw, and outer and inner fillet radii rin and rout. Most changes in these

parameters change the quality factor Q and mode frequency f in such a way that the fQ product

remains the same; the exception being membrane size amem, which when increased decreases the

fQ product, and outer filler radius rout, which when increased also increases the fQ product [16].
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3.2.3 Silicon Nitride PnC with Membrane-like Defect

A final design that addresses the loss mechanisms in silicon nitride is the SI3N4 PnC with

a central defect (Fig. 3.12(a)), which combines the decreased external loss of a PnC with less

bending of the resonator near the clamping edges, which decreases the internal losses. This design

manages to decouple the modes of the central defect from those of the surrounding PnC without

an abrupt change of the mode at the edge of the defect and PnC. In fact, the defect’s mode decays

exponentially along the PnC region, eliminating the “extreme bending” of the membrane at the

edge with the substrate (i.e, of the defect with the crystal, and then of the crystal with the Si

substrate).

Because the nearly 2D unit cell in this design is made of SI3N4, the initial uniform stress

distribution changes, increasing at the cell tethers and decreasing at the central pad (Fig. 3.12(b)).

The unit cell lattice constant a control for all other elements of the cell, more importantly the

radius of the “wholes” in the crystal.

Figure 3.12: (a) Geometry of the SI3N4 phononic crystal designed by Tsaturyan et al. [18]. The
regular lattice pattern is broken at the very center by a membrane like defect, whose in band-gap
mode is depicted. Notice how the mode amplitude decreases more “softly” across the PnC, which
allows for less curvature overall and reduced internal loss. (b) The hexagonally symmetric unit cell
shows a stress redistribution similar to that of a trampoline (Fig. 3.11(b)) (Image credit: Tsaturyan
et al. [18]).

The dispersion relation following the path in the reciprocal lattice shown in fog. 3.12(b) leads

to a band-gap 300Hz wide around 1.5MHz which includes five defect modes, all measured having

much greater amplitude than non-defect modes of the structure within the band-gap (Fig. 3.13).
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For the defect in-band-gap modes, such as mode A (Fig. 3.12(a)), the “soft clamping” of the defect

to the PnC and the PnC to the results in an exponential decay of the out-of-plane motion along

the crystal, as shown in Fig. 3.14.

Figure 3.13: The dispersion relation for the reciprocal cell depicted in Fig. 3.12(b) and the corre-
sponding in band-gap defect modes (Image credit: Tsaturyan et al. [18]).

Moreover, let’s consider a normalized curvature∣∣∣∂2u∂x2
+ ∂2u

∂y2

∣∣∣
√
Umem

(3.20)

where the numerator is the mean curvature and the denominator is the total energy of the system,

given by eq. 3.11. Calculating eq. 3.20 along the SI3N4 PnC structure and a membrane of the

dimensions of the central defect reveals that, near its edges, a membrane’s curvature is two orders

of magnitude larger than that of the defect. Clearly, this greatly reduces the internal loss of SI3N4

PnC, which, combined to the external loss reduction from the PnC lattice, enables a measured

room-temperature fQ product ∼ 1014, the highest ever achieved [18].
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Figure 3.14: For the first in band-gap defect mode the out-of plane, “mode-shape” displacement
decays exponentially along the PnC lattice. This soft clamping corresponds to a much reduced
curvature of the defect-PnC edge compared to the curvature of the membrane-substrate edge for a
membrane of the same dimensions as the defect(Fig. 3.12(a)) (Image credit: Tsaturyan et al. [18]).



Chapter 4

FEM modeling of Hybrid Trampoline-PnC Designs

4.1 Introduction

Despite the superior quality factor of trampolines due to reduced bending at the edges and,

thus, less dissipation, the effects of external loss due to energy leakage are harder to understand.

One of the goals of my research was to implement finite element modeling (FEM) of trampoline and

substrate geometries and simulate the resulting mode coupling between the two domains. With

a successful model, different trampoline geometries could be tested for their quality factor, but

unfortunately the I was unable to reproduce within one order of magnitude known membrane

quality factors. The first section of this chapter covers the results of these simulations.

Because modeling accurate external losses for resonators was found to ultimately be too

involved, modeling low external loss Si3N4 PnC designs proved a more successful approach. In the

remaining sections of this chapter we discuss COMSOL FEM simulations of Si3N4 PnC structures

with trampoline-like defects. The motivation for including a trampoline as a defect is to have a

lower mass defect-resonator, which would improve the force sensitivity of of the resonator Sf , as well

as increase the optomechanical coupling g0. This discussion is divided in two parts: (a) the correct

simulation of a PnC unit cell and the calculation of the dispersion-relation and (b) the simulation

of structures with finite number of cells and trampoline defects. The goal was to find a design with

trampolines modes inside the bandgap of the PnC lattice, and that would be small enough (less

than the 3mm sized resonators discussed in the previous chapter) for in-cavity operation. Part (a)

is a reproduction of the unit cell by Tsaturyan et al. [18] and a brief study of the effects of the
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lattice constant a on the bandgap. Part (b) is a discussion of two models, the flower and the web,

that have been found to possess trampoline modes inside the bandgap.

4.2 External Loss Simulation via Perfectly Matched Layers

In order to calculate and model for the quality factor of different trampoline and other Si3N4

geometries, one can use a finite element software to numerically solve for the normal mode partial

differential equations under “trampoline” geometries. In fact, only simple domains with simple

boundary conditions, such as rectangles under constant-value boundaries (Dirichlet conditions), are

ever solved analytically. Complex geometries with complicated boundaries and multiple external

sources are usually solved via finite elements approach. In summary, a complex domain is

partioned into smaller subdomains where the global differential equations can be simplified to sets

of algebraic equations or ODEs (for steady or transient solutions, respectively). The solutions for

the subdomain equations is then recombined into a global solution for the original problem. Such

an “divide-and-conquer” approach is especially suited for problems with domains with different

parts, since each part can be divided into separate sets of partitions and solved separately.

The Finite element software used in this work was COMSOL multiphysics, which has a GUI

that allows the user to draw objects, implement different physical boundary conditions, and solve

numerically for multiple situations. For the results that followed, we used the structural-mechanics

physics set to calculate eigenfrequencies (normal mode frequencies) and stress distributions for

trampoline and PnC designs. COMSOL is also able to calculate quality factors for normal modes,

if internal losses are designated to different materials used. Nonetheless, external losses need also

to be included separately if COMSOL is to calculate Qs accurately.

An usual way to implement external losses in simulations like these is to include what is

called a perfect matched layer (PML) in the system. Such a layer is a designated subdomain

that implements a coordinate transformation on incoming waves, causing the exponential decay

of their amplitude before they can reflect back into non-PML subdomains [33]. Effectively, the

PML is implemented as an infinite extension of a resonator’s substrate, which causes any elastic
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waves to be lost inside of it. Such an approach has been successful in reproducing the measured

quality factors of diamond and other resonators [34], and has become a common computational

implementation of external losses [33].

We aimed to create COMSOL models that would predict the quality factor for different res-

onators by using PMLs for external losses. Even though bending losses would not be appropriately

included, we hoped to be able to calculate Q within an order of magnitude of measured values. To

make sure such models was accurate, we first used PMLs with membrane designs, since these have

well known measured quality factors that we could use to validate our model.

Our model had a Si3N4 membrane and its substrate supported from glue joints from an

hemispherical invar base whose outer parts of the invar base were designated as the PML domain

(Fig. 4.1). Such a model was able to reproduce satisfactorily membrane modes that clearly induced

motion of the Si chip and the invar base, which showed some of the elastic waves were reaching all

the to the PML as expected (Fig. 4.2).

Nonetheless, to calculate accurate quality factors with this model, it is necessary to also

included the material losses for the different parts of the model, which accounts in part for the

internal losses. COMSOL implements material losses using an η = Q−1 factor, which tells us that

ηSi = 10−5 and ηSi3N4 = 10−6 are good estimates. The glue we consider to be a lot lossier, however,

which may contribute too much for the overall loss, as seems to be the case in Fig. 4.2, where the

oscillations beying the glue joints are very reduced. Using these parameters, the calculated quality

factors for the first few membrane modes (table 4.1) did not reproduce the measured behavior of

considerably higher Qs for symmetric modes [14]. It is also clear that the glue joints can easily

overshadowed the PML effects and, even without the the glue, the correct trend is not reproduced.

Table 4.1: Calculated Qs for membrane with PML COMSOL model.

Glue loss ηglue 11 mode Q (×106) 21 mode Q (×106) 22 mode Q (×106) 31 mode Q (×106)

0 (without PML) 2.29 21.1 93.5 25.6, 2.6
0 (with PML) 0.0366 1.28 1.44 0.946, 0.409

0.01 0.0865 1.52 12.5 0.980, 0.250
0.05 0.0181 0.320 2.80 0.190, 0.0490
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Figure 4.1: Tsaturyan et al. unit cell parameters. Notice that there are only two degrees of freedom:
the lattice constant a and either the size of the radius or the width of the cell tether.

.

Figure 4.2: The 22 mode of a the membrane induces displacement in all parts of the geometry,
which indicates external losses due to waves reaching the PML.

.
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The fact that the glue joint affects the quality factor considerably is disheartening, because

the glue amounts and shapes will never be the same from experiment to experiment. Furthermore,

the fact that the glue matters so much also indicates that the PML, even if functioning correctly

as a “infinite” substrate, is not enough to handle the losses of the system, and neither is it enough

in conjunction with the material η losses of COMSOL. In fact, table 4.1 indicates that the model

of Fig. 4.1 is not detailed enough, since a small factor, such as the glue which is very complicated

to correctly model in a generic fashion, greatly influences the calculations results.

4.3 Unit Cell Simulations

Since building a model with reliable external loss parameters proved too involved, an obvious

approach is to deal with a resonator design that we already know has very low external loss, such as

phononic crystals. These structures can be simulated more easily, since we do not need to include

in our models any exterior objects such as substrate, glue joints, etc.

4.3.1 Simulation Considerations

Let’s start with the geometric parameters of the unit cell by Tsaturyan et al. 3.12 (“Circular

cell”). There are only two free parameters: the size of the lattice constant a and the size of the cell

tether w. The long size of the cell and the radius of the holes in the cell are functions of the a and

w, as shown in table 4.2 and illustrated in Fig. 4.3.

Table 4.2: Geometric parameters of Tsaturyan et al. unit cell depicted in figure 4.3.

Parameter Expression Tsaturyan et al [18] Reference Values Description

a control value 160µm size of the unit cell
w control value - width of the cell tether

L a/
√

3 - long length of cell

rf −w
2a +

√
3

6 0.26 -
r rf × a - radius of holes

After drawing the geometry in COMSOL, the next step was to choose boundaries that de-

marcate the intrinsic periodicity of the PnC crystal. By choosing such boundaries, COMSOL is
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Figure 4.3: Tsaturyan et al. unit cell parameters. Notice that there are only two degrees of freedom:
the lattice constant a and either the size of the radius or the width of the cell tether.

.
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capable of effectively simulating an infinite periodic structure, just like the unidimensional mass

chain of Fig. 3.4, and calculate the dispersion relation for such geometry. Clearly, the very thin

faces parallel to the z-axis have to be selected as the periodic boundaries. In particular, we need

to use COMSOL’s Floquet Periodicity to define wave vectors ~k perpendicular and the reciprocal

lattice points Γ = (0, 0), X = (π/a, 0), and M = (π/a, π/L).

Figure 4.4: One of the two sets of opposing boundaries that delimit the periodicity of the unit cell.
The Floquet Periodicity indicates a periodic structure in reciprocal k-space, which is the periodicity
characteristic of dispersion relation calculations, as seen in chapter 3.

.

In COMSOL, this takes the form of a parametric sweep of the coordinates of the ~k = (kx, ky)

in the path vector as it spans all the possible |k| values when circling Γ → X → M → Γ. Table

4.3 shows how this is implemented using auxiliary values k1 and k2 that values from 0 to 1 in the

parametric sweep.

A dispersion relation can be computed by an eigenfrequency (mode frequency), analysis for

each (k1, k2) value in the parametric sweep. However, to obtain a correct result, a preliminary step

is required where the stress of the cell is redistributed to match the stress of tethered-membranes

as discussed in chapter 3 and shown in Fig. 3.12(b). To accomplish this in COMSOL, we must first
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Table 4.3: The parameters necessary to define the basis of the k-space for the unit cell in Fig. 4.3.

Parameter Expression

k1 1
k2 1
kx (π/a) ∗ k1
ky (π/L) ∗ k2

fixate some part of the unit cell model so that the stationary (equilibrium) analysis can find a finite,

singular solution (it cannot recognize that displacing the origin results in the same exact problem).

However, the fixed point needs to be chosen in such a way that keeping it cannot move after the

stress is redistributed. As Norte et al. trampoline indicates (Fig. 3.11(b) and 3.11(c)), everywhere

in the trampoline clearly moves away from stress concentration, with the exception of the point

right at the center of the membrane, since no movement would make sense if the symmetry is

to be conserved under the non-uniform stress distribution.Thus, following the behavior shown by

trampolines, we fixate the vertical “edge” at the center of the pads in the unit cell (Fig. 4.5). This

guarantees the stationary study is capable of obtaining the correct stress (Fig. 4.6).

The eigenfrequency analysis can then use the correctly calculated stress-distribution for the

unit-cell as its initial values. Effectively, COMSOL calculates all mode frequencies for the different

~k = (k1, k2) values in the parametric sweep, and we can then plot them to obtain the dispersion

relation (Fig. 4.7). From the figure, we can clearly see the bandgap occurs around 1.6MHz and

is about 300Hz wide. Notice that it agrees well with the dispersion relation of Tsaturyan et al.

[18] depicted in Fig. 3.13(a), despite an upward shift of ∼ 150Hz. It also reproduces the lateral

lines that indicate an imperfect, quasi-bandgap, due to the extreme aspect ratio of the structure.

Nonetheless, this quasi-bandgap reduces external loss, as is discussed more extensively in section

4.4.

4.3.2 Effects of Lattice Parameter a and Cell Tether size w

A typical dispersion relation with a bandgap as in Figs. 4.7, 3.13, and 3.9 assumes infinite

periodic structures with no boundaries, as used in the derivations of section 3.2.1. Evidently, no
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Figure 4.5: (a) Symmetry points of the unit cell that are fixed in place for the correct calculation
of the stress distribution of the cell (Fig. 3.12(b)). These points were carefully chosen because, by
symmetry, they will not move under a non-uniform stress-distribution, which guarantees a correct
stress distribution result if they are taken as fixed. (b) Magnification of one of the points points
of Fig. 4.5. Notice that the symmetry point is actually an edge along the z-axis.

.

Figure 4.6: Correctly calculated stress distribution of the unit cell, after selecting appropriate fixed
points as depicted in Fig. 4.5. Of the original σ0 = 1.27GPa, most of it concentrates on the tethers,
which presumably decreases the internal loss of the entire structure. This result clearly reproduce
those by Tsaturyan et al. [18], and are essential for a correct eigenfrequency analysis of the cell.
(Fig. 3.12(b))

.
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Figure 4.7: Results of the eigenfrequency analysis with Floquet Periodicity, plotted along the k
values in degrees and showing f(k) = w(k)/2π in Hz. The bandgap has the same size and shape
of that in Fig. 3.13(a), even though it is shifted upwards by ∼ 150Hz. The results also show the
lateral lines that occur due to the extreme aspect ratio of the unit cell. Nevertheless, despite the
bandgap not being perfectly open, its still decreases external loss considerably (see Section 4.4).

.
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infinite structure is fabricated for experimental applications, and the number of cells of a PnC

crystal is an important constraint in designing finite structures. For example, in Yu et al. design

(Fig. 3.8(a)), the entire structure had to fit in 1cm-across silicon substrate, which limited the

maximum number of cells depending on the size of the lattice constant, since a fewer large cells will

fit in the space available. For the center bandgap frequency of 3MHz, as shown in Fig. 3.9, 7 × 7

unit cells fit inside the Si substrate, providing good decoupling between membrane and substrate

modes [15]. Likewise, for Tsaturyan et al. structure, 11 × 19 cells with a = 160µm could fit inside

the 3mm Si3N4 membrane (Fig. 3.12) [18].

For our envisioned uses, hybrid PnCs need to be considerably smaller, since we want higher

frequency structures that are not as fragile. Tsaturyian et al. [18] have determined the expression

for the mid-bandgap frequency as a function of the lattice parameter a

fband = 251Hz× a−1 (4.1)

Which intuitively makes sense, as larger structures would have lower oscillation speeds. We were

able to confirm this dependence with COMSOL (compare Fig. 4.8 where a = 160µm and Fig. 4.9,

where a = 67µm).

Another way to manipulate the bandgap for this unit cell is to change the size of the cell

tether w. Intuitively, a larger mass difference between the pad and tethers in the cell would result

in a larger bandgap. We were able to verify this for smaller cells (Fig. 4.9), but not for larger

cells (Fig. 4.8), as the effects seems to not be as pronounced for larger unit cells. Nonetheless,

by changing the lattice parameter and the tether width, a range of mid-bandgap frequencies and

bandgap sizes can be accessed.

4.4 Flower and Web Designs

Integrating a trampoline defect into a PnC becomes possible with working COMSOL models

for the unit cell and a reasonable understanding of how to make arbitrary bandgaps, since we

need to make sure that at least one trampoline mode fits inside a trampoline. Unfortunately, the
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Figure 4.8: Bandgap Dependence on Cell Tether w Size for a = 160µm.The smaller the cell tether
width, the lower the midgap frequency fband.

.

Figure 4.9: Bandgap Dependence on Cell Tether w Size for a = 67µm.The smaller the cell tether
width, the lower the midgap frequency fband.

.



52

process is not as easy as simulating a defect-sized trampoline by itself, checking which are its mode

frequencies, and then making a bandgap that includes the trampoline mode frequencies. This is

likely due to soft-clamping, which will effectively extend the trampoline mode into the PnC, making

the resonator larger than it would be (besides making it look different at its ends, since it includes

partial unit cells) and changing its modes.

It is important to emphasize, however, that this conjecture was not studied, and the approach

in making the designs was more of a tedious trial-and-error approach. One would initially imagine

that, because a hybrid PnC is a finite structure, the only way of checking if a in-bandgap tram-

poline mode exists would be to check each normal mode of the structure one-by-one. Fortunately,

we chosen a rather simple parameter that, when plotted against the normal frequencies, clearly

indicates where and how big the bandgap is and whether there are any defect modes inside it. This

parameter, which is the ratio between the energy in the resonator and the energy in the frames, is

discussed in section 4.4.1. The following sections discuss in details the two hybrid-PnCs that we

have designed: the small-defect flower and the large-defect web.

4.4.1 Characterizing a Bandgap in COMSOL

As mentioned previously, to make the search of in-bandgap defect modes more tractable,

we define the energy ratio Er, which should capture how much of a particular mode’s energy is

located in the PnC frame, where we assume it will leak out to the substrate. For a defect mode

well isolated from external loss, we expect very little of the total energy of the mode to be in either

the frame, where it is dissipated, or the PnC cells, where the bandgap prevents energy to be stored.

However, for non-defect normal modes that are inside the bandgap, most of the energy should be

in the frame, since it cannot be in the PnC cells, nor in the defect.

Let’s define this energy ratio Er as follows

Er =
Udefect

Uframe
(4.2)

where Udefect is the energy stored in the defect (Fig. 4.10(a)) and Uframe is the energy stored in the
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frame (Fig. 4.10(b)), defined as

Udefect =

∫
Vdefect

ρw(x, y)2dV (4.3)

Uframe =

∫
Vframe

ρd(x, y)2dV (4.4)

where w is the out-of-plane (i.e., along the z-axis) displacement and d is the total displacement.

It is expected that in-bandgap defect modes will exponentially decay away from the center, which

results in barely any displacement of the frame. However, for in band-gap modes of the structure

that are not defect modes, the PnC will not allow displacement anywhere besides the frame. Thus,

the energy ratio for a in-bandgap defect mode Edr will be larger than that for a non-defect in-

bandgap energy ratio Ebr . Moreover, we expect an out-of-bandgap mode to have about the same

displacements in both frame and defect, which implies Ebr will also be smaller than the energy ratio

for outside of bandgap modes Eor , but Eor will be smaller than Edr :

Edr > Eor > Ebr (4.5)

Figure 4.10: A well isolated defect mode will have a much larger displacement field w(x, y) in
the defect than in the frame, since the PnC cell between the two would exponentially dampen
the displacements. Therefore, we calculate the ratio of the energy in the two domains to have a
indication of how well a particular membrane mode is .

.

In a plot of the energy ration Er versus all the mode frequencies, the bandgap will look like a

dip in the Ebr values, whereas the in-bandgap defect modes will show as points way above not only
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Figure 4.11: COMSOL Results for In-Bandgap Defect Mode and Non-Defect Mode.

.
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the bandgap points, but also the regular, out-of-bandgap Er points. For the membrane-like defect

PnC published in [18], our energy ratio plot can clearly distinguish bandgap and defect modes 4.12,

which gives a convenient, if not fast, way of characterizing hybrid defect-PnC designs.

Even though it may be tempting to think of the defect-modes energy ratios as direct indi-

cation of their quality factor, it is important to remember that Er does convey any internal loss

information. Nonetheless, for the defect modes in particular, it is possible to estimate Q = U/∆U

by calculating the total energy lost from bending ∆U , given by eq. 3.10, and the total energy U ,

given by eq. 3.11. For the five modes in Fig. 4.12, the Qs calculated in this way relate according

to table 4.4.1, which are not related to the energy ratio Er values in Fig. 4.12. Unfortunately, we

were unable so far to calculate absolute values for Q, but it remains as a tangible goal in the near

future.

Figure 4.12: Our calculations of the energy ratios for a COMSOL model of the 11x19 PnC by
Tsaturyan et al [18]. The energy ratio can clearly delineate the bandgap and show the in-bandgap
modes, which are colored yellow and labelled A to E.

.
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Table 4.4: Mode Q Ratios for the Membrane-Defect PnC.

Mode ratio Q ratio

E/E 1
E/D 1.22
E/A 1.46
E/C 3.70

4.4.2 Flower

Designing PnC structures with trampolines defects becomes an achievable and manageable

goal with a working COMSOL structure models and with a convenient way of characterizing

bandgaps and defect modes. Nonetheless, in principle figuring out which particular trampoline

design has a in-bandgap mode is more of a guess than it would be practical. Surprisingly, however,

the first and most direct attempt in introducing a trampoline defect worked well for our purposes.

This design, called a flower, consists of a hexagonal trampoline of size ≈ a × a attached to

the holes of the adjacent unit cells (Fig. 4.13). The free parameters of the design are the tether

width W and the central pad diameter D, and the outer fillet radius, denoted r in Fig. 4.13, was

chosen to be equal to the radius of the holes in the PnCs unit cells (see table 4.2 for an expression

of r).

Initially, we simulated a flower-defect PnC structure with 11× 19 cells (a = 160µm) so that

the bandgap and defect modes could be compared to the modes of the membrane-defect PnC. We

found that the energy ratios for the normal modes of this structure revealed even better external

loss reduction when compared to the membrane-defect PnC structure. However, only the first mode

of the trampoline was located inside the bandgap, compared to the five modes of the membrane-

defect. Since, as discussed previously, we cannot predict absolute Q values at the moment, a true

comparison between trampoline and membrane defects for the same PnC geometry remains to be

studied.

Nevertheless, we are more interested in smaller PnC structures with up to 1mm length on

the side, and with defect mode frequency fdefect = ω/2π ∼ 1.5MHz, so they can be more robust
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Figure 4.13: A flower trampoline-defect consists of a six-tethered trampoline with size ∼ a × a,
where a is the size of the unit cell. The flower defect itself has two free parameters: tether width
W and central pad diameter D. The outer fillet radius r is the same as the radius of the holes in
the PnC unit cells.

.

Figure 4.14: Our simulations for the flower-defect PnC with 11 × 19 cells (a = 160µm) show a
unique, very-well isolated, in-bandgap defect mode.

.



58

and work better with cavities. By reducing the cell size, we can get more unit cells and guarantee a

better defect mode isolation, but if this would increase the mid-bandgap frequency of the structure.

A compromise has to made such that there are enough cells to decrease dissipation, but also both

the size and the bandgap frequencies are within the desired values.

After trying a few combinations, the best flower-defect PnC found is a 5 × 9, a = 111µm

PnC structure with unit cell tether width of w = 3µm, which increased the bandgap enough for a

mode to fit inside at fflower ≈ 2MHz. Unfortunately, the energy ratio plot indicates this structure

barely isolates the defect mode from the frame, which is corroborated by COMSOL results for the

displacement in the structure (Fig. 4.15).

Figure 4.15: The best flower design with 5×9 cells and that is small enough (< 1mm) with bandgap
frequencies around 2MHz is not as well insulated from external loss as the much bigger 11 × 19
design. Nonetheless, this design has a bandgap and a defect mode, even if not entirely decoupled
from the frame.

.

4.4.3 Web

A natural complement to the flower-defect is a larger hexagonal trampoline defect which

has higher-order modes inside the bandgap, instead of just the one in-bandgap first mode of the
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flower. After trying a few different configurations, a working larger-trampoline defect was designed,

obtaining the web geometry. Similarly to the flower, the web consists of six tethers connected to

the adjacent PnC unit cells. In this design, the web defect is twice as big as the flower, spanning

two unit cells (≈ 2a × 2a in size). The free parameters are the same as in the flower, i.e., tether

width W and pad diameter D, with the outer filler radius r fixed to the value of the unit cell r

(Fig. 4.16).

Figure 4.16: A web trampoline-defect consists of a six-tethered trampoline with size ∼ 2a × 2a,
where a is the size of the unit cell, being essentially a bigger version of the flower. Thus, like the
flower defect, the web has two free parameters: tether width W and central pad diameter D. The
outer fillet radius r is the same as the radius of the holes in the PnC unit cells.

.

Again, we compare the energy ratio of the web modes in a 11× 19 PnC with the membrane-

defect PnC. For the web there are many higher order modes in the bandgap, as desired, but all

are somewhat less isolated then the flower mode or the modes of the membrane-defect PnC (Fig.

4.17). One possible explanation for this is that, being for times as large than a flower defect, the

web reduces the effective number of unit cells in the PnC, which decreases the attenuation of in-

bandgap normal modes of the whole structure. COMSOL also calculated a few spurious, completely

unphysical modes, which seem to be the membrane stretching upwards, creating big Si3N4 “flaps.”

It is unclear what causes such modes to appear, but luckily any normal modes outside the bandgap

are not of interest or relevant to our design considerations, so we can be reasonably confident this
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particular simulation gives the actual in-bandgap web modes.

Figure 4.17: The Web-defect PnC with 11 × 19 cells (a = 160µm) has several in-bandgap defect
mode, all less decoupled from the frame then the flower mode.

.

In fact, the larger size of the web makes it less suited for small structures with ∼ 1.5MHz

mid-bandgap frequencies. If a web defect is inserted into a 5×9 PnC, the remaining number of cells

is too small to form a bandgap, even though it is still possible to identify the web modes among

the other, non-defect normal modes of the structure 4.18.

Nonetheless, we can use the web to access higher frequency defect-modes by using it in a

PnC with smaller unit cells. In particular, we found that by making a = 67µm and w = 2µm,

we can have a 9 × 15 structure that opens a ∼ 0.8MHz bandgap with several web-defect modes

4.19. Moreover, compared to the 5× 9 flower PnC, this web PnC design has a significantly better

in-bandgap defect modes, with less displacement induced at the frame.
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Figure 4.18: Inserting a web defect in a 5×9 PnC erases any PnC attenuation effects of in-bandgap
normal modes.

.

Figure 4.19: By making a PnC with smaller a = 67µm cells and thinner cell tethers with w = 2µm,
several web modes appear inside a significantly broad bandgap that opens for a 9 × 15 unit cells.
Because, compared to the flower design, this web PnC has more unit cells, the web modes inside
the bandgap are better insulated agains external losses, as can be seen in the inset.

.



Chapter 5

Modeling Optical Absorption for Si3N4

5.1 Introduction

In chapter 2 we discussed how the optomechanical effects could be increased with a more

intense intra-cavity field, that is, with more photons inside the cavity interacting with the resonator.

The ultimate goal is to have g0 significant compared to the systems mechanical decay rate ΓM and

optical decay rate κc. Increasing the light intensity is a way to compensate for the optical decay,

increasing the number of optomechanical interactions per decay “cycle.”

Intuitively, increasing the number photons in a cavity will increase the photon-backaction

on the membrane, i.e., how big the brownian motion of a membrane will be in the intracavity

“photon fluid.” Clearly, as discussed in chapter 2, the average thermal occupancy of the resonator

needs to be below zero, i.e. nth < 1, for such effects to be observed. In principle, this requirement

would place a limit in how many photons could be in inserted in the cavity, since the resonator

will end up absorbing some of the light, and heating up, i.e., the light will create phonons in the

resonator, taking it out of the ground state if the rate of absorption is high enough. Therefore, in

the experiment where the photon backaction limit is observed [6], one concludes that the absorption

of Si3N4 needs to be exceedingly small.

This chapter describes a heat equation model used to provide an lower bound on the optical

absorption for Si3N4, given literature values for the thermal conductivity at cryogenic temperatures

and temperature vs power data points for different experiments.
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5.2 Heat Equation Modeling

Let’s start by deriving a 2D heat equation for a square membrane illuminated by a Gaussian

beam. The goal is to obtain the steady-state temperature distribution as a function of optical

absorption Aopt, and then compare the maximum temperature the model reaches, as a function of

laser input power Pin, with measured membrane and string temperatures.

In deriving a heat equation, we consider a 2D infinitesimal membrane element of height h,

which corresponds to the membrane thickness. Energy enters the membrane element from the sides

due to thermal conductivity, and each membrane element also gains energy from the gaussian beam

of intensity I(x, y).

Figure 5.1: Energy balance of a 2D infinitesimal membrane element illuminated by a gaussian beam
of intensity I(x, y). The beam injects energy into the elements, which also comes from the sides
through thermal conductivity.

Using the parameters of table 5.1, the change in the energy of the infinitesimal membrane

segment is given by the heat balance across ∆x and ∆y and the heat source due to the absorbed

light of the laser beam

cρ×∆x∆yh× (u(x, y, t+ ∆t)− u(x, y, t)) = ∆t× h∆y ×K
(
∂u(x+ ∆x)

∂x
− ∂u(x)

∂x

)
(5.1)

+∆t× h∆x×K
(
∂u(y + ∆y)

∂y
− ∂u(y)

∂y

)
(5.2)

+∆t× h∆x∆y × (AoptI(x, y))

h
(5.3)
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Table 5.1: Parameters of the Heat Equation.

Parameter Description

u(x, y, t) temperature distribution
c heat capacity
ρ mass density
h membrane thickness
K thermal conductivity
Aopt optical absorption
I(x, y) laser intensity

We divide the heat balance equation by h∆x∆y∆t to get

cρ×
(
u(x, y, t+ ∆t)− u(x, y, t)

∆t

)
=

K

h


(
∂u(x+∆x)

∂x − ∂u(x)
∂x

)
∆x

 (5.4)

+
K

h


(
∂u(y+∆y)

∂y − ∂u(y)
∂y

)
∆y

 (5.5)

+
(AoptI(x, y))

h2
(5.6)

And, by using the limits ∆t,∆x,∆y → 0, we get the time-dependent heat equation for the 2D

membrane under laser light of intensity I(x, y)

cρ
∂u(x, y, t)

∂t
=
K

h

∂2u(x, y, t)

∂x2
+
K

h

∂2u(x, y, t)

∂y2
+
Aopt

h
I(x, y) (5.7)

Naturally, we are interested in the steady state solution, as discussed in the introduction. Thus,

we make ∂u/∂t = 0 and substitute the expression for the intensity of a Gaussian beam of waist ω0

and power P :

∂2u(x, y)

∂x2
+
∂2u(x, y)

∂y2
= −Aopt

K
× 1

h
× 2

π

P

ω2
0

exp

(
−2(x2 + y2)

ω2
0

)
(5.8)

Equation 5.8 shows reasonable behavior: if power is increased or absorption are increased, the

temperature distribution curvature increases, indicating a larger heating peak. On the other hand,

if the thermal conductivity is increased, or the beam waist, the temperature curvature decreases,

indicating a lower peak temperature.

In solving the 2D heat equation, we assume that the membrane boundaries are at constant

u(x, y) = 0 temperature, i.e., all of the heat diffuses perfectly in the substrate without heating
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it. Moreover, because the we are looking for an lower bound on the optical absorption Aopt, we

are really interested in only the peak temperature of the distribution u(x, t). Thus, to simplify

the numerical solution, we transform eq. 5.8 to polar coordinates and solve it using the numerical

ODE solvers in MATLAB, since u(r = L/2) = 0 is a good approximation of the constant boundary

conditions if the beam waist is considerably smaller than the membrane side length L.

∂2u(r)

∂r2
+

1

r

∂u(r)

∂r
= −Aopt

K
× 1

h
× 2

π

P

ω2
0

exp

(
−2(r2)

ω2
0

)
(5.9)

Similarly, we follow the same derivation process to obtain a 1D heat equation to model the heating

of a Si3N4 tether under illumination, which is necessary if we are to use the heating data of Si3N4

tethers and strings, for instance. As before, we start with an 1D infinitesimal element and write

down its energy change in time ∆t

Figure 5.2: Energy balance of a 1D infinitesimal tether element illuminated by a gaussian beam of
intensity I(x). The beam injects energy into the elements, which also comes from the sides through
thermal conductivity.

cρ× wh∆x× (u(x, t+ ∆t)− u(x, t)) = ∆t× hw ×K
(
∂u(x+ ∆x)

∂x
− ∂u(x)

∂x

)
(5.10)

+∆t× hw∆x× (AoptI(x, y))

hw
(5.11)

Where w is the tether’s width. Dividing by hw∆x∆t and applying the limits ∆t,∆x→ 0 we
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get

cρ× ∂u(x, t)

∂t
=
K

x

∂2u(x)

∂x2
+Aopt

I(x)

hw
(5.12)

The steady state solution ∂u/∂t = 0 is

∂2u(x)

∂x2
= −Aopt

K

I(x)

hw
(5.13)

For which we need the 1D intensity expression of the laser beam. A requirement is that integrating

I(x) over all 1D space has to give the total power on the membrane:
∫∞
∞ I(x)dx = P . Therefore

I(x) =

√
2

π

P

ω0
exp

(
−2x2

ω2
0

)
(5.14)

And the final 1D steady state heat equation for a tether under a “1D” Gaussian beam of waist ω0

and power P is

∂2u(x)

∂x2
= −Aopt

K

1

hw

√
2

π

P

ω0
exp

(
−2x2

ω2
0

)
(5.15)

5.3 Cryogenic Thermal Conductivity Values

In order to estimate the minimum optical absorption of Si3N4 that fits measured heatings due

to laser light, we need thermal conductivity values K, specifically at the temperatures corresponding

to experiments.

A first concern in determining the thermal conductivity of Si3N4 at cryogenic temperatures

would be to figure out if the quantization of thermal conductance is of importance. If we consider

a tether connecting two heat reservoirs at different temperatures, the conductance between the

two decreases as the cross-sectional area of the tether decreases. It would be reasonable to expect

that this relation is smooth all the way to zero conductance at zero cross-sectional area, but this

is not true. There is a minimum of thermal conductance that each phonon of the tether carries,

which means a tether of non-zero cross-sectional area will always correspond to a minimum thermal

conductance. A quasi one-dimensional tether will have a minimum of four phonon (one dilation

lattice mode, one torsional, and one flexural mode for each cross-sectional dimension), which will

carry each a thermal conductance phonon. As the dimensions of the cross-sectional are of the tether
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are increased, mode phonons can fit inside, to a point where adding a new phonon is virtually

negligible to the conductance. In order to know if thermal conductance, and therefore thermal

conductivity, is relevant, we have check how comparable are the geometrical dimensions of our

resonators thermal contact to the bath and the wavelength of phonons at the bath temperature.

We can estimate the wavelength of a phonon of lattice vibration under certain temperature

as follows

λphonon ∼
h
√

E
ρ

kbT
(5.16)

where h is Planck constant, E is the young’s modulus, and ρ is the resonator’s mass density.

The effects of thermal conductance quanta become relevant when λphonon ∼ w, where w is the

width of the thermal contact between bath and resonator [35]. For the smallest bath temperatures

T = 40mK we achieve in the experiments described in section 5.4, the equivalent wavelength

λphonon ∼
h
√

E
ρ

kb(T = 40mK)
≈ 10µm (5.17)

is considerably smaller than the membrane cross-sectional length of 500µm. This indicates that

for membrane there’s “plenty of room” for phonon modes. However, for trampoline geometries

discussed in chapter 4, the quantization of thermal conductance is definitely relevant, as the width

w of trampoline tethers was smaller than the λphonon.

Therefore, the 1D heat-equation of section 5.2, which assumes thermal conductivity as a

purely material property and a correspondingly smooth thermal conductance, will inevitably lead

to unreasonable results if the tether length is similar to the typical phonon wavelengths. The 2D

equation, however, is justified for membrane heating since the typical 500µm × 500µm membrane

sizes is considerably larger than the phonon wavelengths. Thus, the analytical heat equation

solutions can be pursued by using available values of thermal conductivity K.

Unfortunately, measured values of cryogenic thermal conductivity of silicon nitride are still

scarce, specially at milikelvin temperatures. In fact, there are no measurements of the thermal

conductivity of high-stress silicon nitride at cryogenic temperatures. Nevertheless, it is possible to

extrapolate from measured low stress silicon nitride values for a couple different reasons. First,
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silicon nitride is an amorphous solid, and all amorphous solids have K(T ) ∝ T 2 for T < 1K, as

seen in Fig. 5.3. This indicates that at milikelvin temperatures the thermal conductivity will be

very small, enhancing heating of SiN devices under laser light, which supports the notion that their

optical absorptions need to be exceedingly small for the observation of quantum backaction from

an intense intracavity field.

Figure 5.3: Thermal Conductivity of Amorphous Solids is quadratic with T for cryogenic temper-
atures (Image credit: Pohl et al. [36])

The K(T ) ∝ T 2 behavior was somewhat confirmed by Leivo and Pekola [37], who measured

the thermal conductivity of membrane- and trampoline-like low-stress SiN devices for temperatures

from T = 70mK to T = 1K (table 5.2). Unfortunately, the strong geometrical dependence of these

values suggest a not-perfect adequacy of the derived heat eqs. 5.9 and 5.15. Nonetheless, the

expressions in table 5.2 were the only ones found in literature.

It is not obvious that the thermal conductivity of high-stress silicon nitride should follow the

results of Leivo and Pekola, but Ftouni et al. [38] have measured converging thermal conductivities

for low and high stress SiN at cryogenic temperatures, which allows for the use of Leivo and Pekola’s
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Table 5.2: Thermal Conductivity Expressions for SiN at mK Temperatures.

Device Thermal Conductivity K(T) (W/mK)

Membrane-like [37] (1.45× 10−2)T 1.8

Trampoline-like [37] (1.58× 10−3)T 1.58

Membrane-like (Holmes et al. (unpublished)) (1.62× 10−2)T 2.5

results in our heat equation models.

Figure 5.4: The thermal conductivity of both stress variants of silicon nitride converge to the same
values at cryogenic tempeatures (Image credit: Ftouni et al. [38])

Together with some measurements by Zink and Hellman [39], we can select a few useful

thermal conductivity values, used in sections 5.4.2 and ?? below.

Table 5.3: Thermal Conductivity Values for SiN at Cryogenic Temperatures.

Temperature (K) Thermal Conductivity K (W/mK) [39]

5 0.13
3 0.07

Because at cryogenic temperatures silicon nitride’s thermal conductivity behaves like those of

amorphous solid, but the results by Leivo and Pekola are geometry-dependent, we compromise and

chose the most reliable result based on it being the closest geometry 1 : K(T ) = (1.45× 10−2)T 1.8.

We can then substitute this value into the heat equations 5.9 and 5.15 and get a thermal ratio R

1 Homes et al. unpublisehd result was measured for a very thick SiN circular slab, which makes it less adequate
compared to Leivo and Pekola’s 400nm-thick square membrane.
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defined as

Aopt

K(T )
=

Aopt

1.45× 10−2

1

T 1.8
=

R

T 1.8
⇒ R =

Aopt

1.45× 10−2
(5.18)

This way, we can plot several Maximum heating versus Optical Power relations for different Aopt

and discover what minimum absorption explains experimentally observed heating.

5.4 Lower-bounds on Optical absorption

5.4.1 1064nm light at Milikelvin Temperatures

Our first experimental data point comes from Peterson et al. [6] measurement of the quantum

back-action limit for a Si PnC membrane resonator at 40mK and 100mK. According to the authors,

the setup consisted of a Fabry-Pérot cavity of Finesse ∼ 30000, which corresponds to N ≈ F/π =

10000 photon reflections (Fig. 5.5). Therefore, the power incident on the membrane was 104 greater

than the input power, resulting in P = 1mW.

Figure 5.5: By having a high-finesse cavity, enough optical power, and a high-Q membrane-
resonator, Peterson et al. were able to measure the quantum-backaction of the membrane. The
inferred heating of the membrane, obtained from a thermometry measurement beyind the scope of
this thesis (see [6]), was of 100mK (Image credit: Peterson et al. [6]).

Using eq. 5.9 with R given by 5.18, the observed steady-state heating of the membrane

correspond to a minimum optical absorption of slightly less than 10−8 (Fig. 5.6), which is

4 orders of magnitude smaller than for low-stress silicon nitride membranes [8].
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Figure 5.6: Maximum Temperature on Membrane vs. Optical Power plots for different optical
absorption values and with Tbase = 40mK. The selected point shows how the 2D model peak
temperature is close to the observed values in table 5.4.

.
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Table 5.4: Heating of Si3N4 at Milikelvin Temperatures.

Base Temperature (mK) Heating (mK)

40 +100mK
100 +100mK

5.4.2 1064nm light at Cryogenic Temperatures

Another data point for Si3N4 heating comes from the optomechanical squeezing of light

experiment [27]. In this case, the base temperature was Tbase = 4.6K, the input power was Pin =

110µW, and the membrane thickness was h = 40nm. Using the the mirror transmission R = 10−4

and number of photon reflections N = F/π =
√
R/(1 −

√
R), the power on the membrane was

P = 1.1W.

Here, we have to use the thermal conductivity value for T = 5K in table 5.3, such that

K(5K) = 0.13
W

mK
= (β)(5K)1.2 ⇒ β = 5.2× 10−3 (5.19)

and the ratio R becomes

R =
Aopt

β
=

Aopt

5.2× 10−3
(5.20)

According to the 2D heat equation solutions for this particular R, all optical absorptions

above 10−9 produce too much heating, since barely no heating was observed (according to my

conversations with one of the authors), which contradicts section 5.4.1.

5.4.3 904nm light at Milikelvin Temperature

A more recent experiment measured the mode ringdown times as a function of input power

and base temperature. The setup consisted of an 904nm laser-illuminated Si PnC membrane inside

a high-finesse cavity for 1064nm light. Using a network analyzer and piezos, several membrane

modes were excited and then detected via interferometry. By disconnecting the network analyser,

the ringdown time τ = 2π/Q of each mode can be measured. In order to enhance the effects of

heating, the measurements were made at milikelvin temperatures, where thermal conductivity is
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Figure 5.7: Maximum Temperature on Membrane vs. Optical Power plots for different optical ab-
sorption values and with Tbase = 4.6K. The selected point shows that an optical absorption of 10−8

is too high to explain the experimentally observed negligible heating above the base temperature.

.

very small and the effects of the absorption of optical power should be of greater resolution (and it

is also the temperature regime of biggest interest).

Dr. Ran Fischer fitted the Q× P and Q× Tbase data and obtained a relation T × P , which

I used to compare to the maximum heating from the 2D model.

T (P ) = (P × 108.26)
1

4.26 (5.21)

For fitting results from the 2D model to this equation, we can simply choose an arbitrary

P value and compare the T (P ) value from the experimental fit (5.21) to the maximum u(r) the

model produces. In particular, choosing P ∼ 1W corresponds to T ∼ 390mK for a Tbase = 40mK.

The minimum optical absorption that corresponds to this temperature is ≈ 10−4

(Fig. 5.9), which is four orders of magnitude larger than what is expected from the preceding
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Figure 5.8: An schematic of the setup used to measure Si PnC membrane ringdowns with varying
base temperature and optical power. A network analyzer (NA) excites membrane modes that are
detected via interferometry. The amplitude of the signal decays exponentially when the NA is
disconnected, which allows to measure ringdowns,

.
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sections, and even larger than what is usually assume in the community, i.e., Aopt ≤ 10−6 for high

stress silicon nitride. It is possible that the optical absoprtion of silicon nitride has a very large

wavelength dependence, but more likely the 904nm light in a cavity designed for 1064nm may have

affected many aspects of the how the light was absorbed.

Figure 5.9: Temperature profile for different absorption values. Notice that to obtain the temper-
ature predicted by the experimentaly fitted T (P ) relation, the absorption has to be at least four
orders of magnitude larger than the necessary for other experiments, which is entirely unreasonable.

.

5.4.4 850nm Tether Heating

The 1D heat equation 5.15 can be used to compare the heating of a membrane to that of

a tether such as the one described on Wilson et al. [40], which is a whispering-gallery resonator

whose trapped light evanescent field causes an adjacent tether to oscillate.

For the 1D simulation, we use the tether dimensions in table 5.5, and the substantial heating

observed for Tbase = 2.5K and Pin = 1µW. Wilson et al. observed ”a dramatic rise in temperature”

of the tether below 4K (Fig. 5.11), and according to a email conversation with one of the paper’s

authors, they ”could observe the linear-in-power trend between 1 − 2 K, with injected powers of

0.1 − 4µW. At higher powers, < 2K, it proved difficult to avoid artifacts from optical and/or
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Figure 5.10: Cavity optomechanics geometry of Wilson et al. [40]. The evanescent field of the light
trapped in the whispering gallery couples with the adjacent tether (Image credit: Wilson et al.
[40]).

.
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mechanical nonlinearities.

Table 5.5: Wilson et al. tether parameters [40].

Length/2 65/2 = 32.5µm
Width 400nm
Thickness 70nm

Figure 5.11: As the base temperature of the cryostat in which the system in Fig. 5.10 was located
decrease below 4K, the tether heated substantially (inset).

.

Considering an injected power of 1W on the whispering gallery above, we need to figure out

how much power is inside the cavity and which fraction of this power is circulating in the tether.

The mean number of reflectionsof a photon in a cavity is N = τ/ttrip, τ = 1/∆ωFWHM = 1/910 =

1.749 × 10−10s, and ttrip = πd/c = 4.13 × 10−13s. Therefore, for the whispering gallery cavity

N = 371.

Through correspondence the author told us that the fraction of power lost to the tether is

around 1/2.Thus, if the injected power in the whispering gallery cavity is 1µW and N = 371, the

power in the tether will be

P = 1µW× 371

2
= 186µW (5.22)

Considering a base temperature of Tbase = 2.5K and guessing a heating of 1K, besides the thermal

conductivity at T = 3K in table 5.2, the absorptions that best agree are those above Aopt =
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10−6 (Fig. 5.12). Unfortunately, this lower bound also does not seem very reasonable. However,

the values provided by the authors are very rough approximates, since they did not keep a detailed

track of powers at low temperatures.

Figure 5.12: 1D model results for the maximum temperature of the tether in [40]. The minimum
absorption for the heating observed is Aopt = 10−6, which disagrees with the values of section .

.

Table 5.6: Summary of the Calculated Optical Absorption Minima for Different Experimental
Data Points.

Data Point Thermal Conductivity Optical Absorption
1)λ = 1064nm,
Tbase = 40mK, T = 140mK

K(T ) = (1.45× 10−2)T 1.8 10−6 > Aopt > 10−8

2)λ = 1064nm,
Tbase = 4.6K, T ∼ 4.9K

K(T ) = (5.2× 10−3)T 1.8 10−6 > Aopt > 10−9

3)λ = 904nm,
Tbase = 40mK, T ∼ 450mK

K(T ) = (1.45× 10−2)T 1.8 Aopt > 10−4

4)λ = 850nm,
Tbase = 2.5K, T ∼ 3.5K

K(T = 3K) = 0.13W/mK Aopt > 10−6



Chapter 6

Conclusion

In summary, this thesis has presented models and calculations that characterize the losses

and limitations of high-stress silicon nitride resonators, especially in the context of cavity optome-

chanics, and uses this understanding to design improved resonators. We started with a discussion

of cavity optomechanics and how the strong coupling between optical and mechanical modes can

be used to cooldown a macroscopic object to its ground state and access its quantum behavior. In

particular, Si3N4 membranes have shown incredible performance when place inside optical cavities.

Nonetheless, both external and internal losses limit how well they decouple from external, thermal

“noise,” which leads to an intense interest in Si3N4 resonator designs that will greatly decrease this

losses.

Patterning the substrate surrounding a resonator with a high-mass, low-mass phononic crystal

(PnC) allows for a very large reduction of external losses, which happen when membrane modes

extend to the substrate, inducing its motion and therefore taking energy away from the resonator.

By having a phononic crystal designed around the membrane, one can place some membrane

modes inside the bandgap of the crystal, which guarantees the membrane modes will be incapable

of exciting the substrate. This approach has been implemented successfully by the Regal group,

and the Silicon PnC structures have very high quality factors of ∼ 107, about an order of magnitude

higher than for pure membranes.

Another approach address mostly the bending at the edges, the biggest factor in the internal

losses for a Si3N4 membrane. By producing a tethered membrane also known as a trampoline, the
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bending at the clamping edges is greatly reduced (together with the connection with the substrate),

improving Qs one to two orders of magnitude.

A third design results from implementing a PnC directly into the Si3N4, allowing for a small

central defect area to play the role of “membrane.” Not only is the external loss extremely small

if enough unit cells are included, but also the bending at the PnC-defect edge is greatly reduced,

which have been shown to boost the quality factors of such structures to 108.

Quite naturally, we expect then that a Si3N4 PnC with a trampoline defect may have even

greater Qs, perhaps ∼ 109. Moreover, a trampoline’s reduced mass improves the force sensitivity

of these hybrid resonators, which is also great interest. In particular, in this thesis two hybrid

trampoline-PnC designs have been modeled and characterized, both adapted to the Regal group’s

current cavity optomechanics and force sensing demands, which requires smaller structures of po-

tentially higher frequencies and smaller masses. The very immediate future direction in this front

is to measure the Qs, both at room and at cryogenic temperatures, for fabricated hybrid structures.

Moreover, we also intend to use an analytical model recently developed by the Sankey group in

Canada to understand better how the unit cell geometry affects the bandgap size, position, and

the necessary number of unit cells required for good mode defect mode isolation. This would allow

us to create even better, smaller hybrid PnCs.

Finally, calculations of the lower bounds for the optical absorption of Si3N4 were discussed.

Past experiments where membranes were cooled down to their ground state and the brownian

motion of the resonators due to the intracavity optical field indicated that the optical absorption

of Si3N4 had to be very small. Fitting the data using 2D and 1D heat equations with thermal

conductivity values from the literature revealed that very low optical absorption is indeed a likely

property. Nonetheless, a few discrepancies have arisen in these analysis. Therefore, we plan to

perform further measurements of the temperature as a function of input power in the near future.
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