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Asymptotic Optimality in Byzantine

Distributed Quickest Change Detection

Yu-Chih Huang, Yu-Jui Huang, and Shih-Chun Lin

Abstract

The Byzantine distributed quickest change detection (BDQCD) is studied, where a fusion center

monitors the occurrence of an abrupt event through a bunch of distributed sensors that may be com-

promised. We first consider the binary hypothesis case where there is only one post-change hypothesis

and prove a novel converse to the first-order asymptotic detection delay in the large mean time to a

false alarm regime. This converse is tight in that it coincides with the currently best achievability shown

by Fellouris et al.; hence, the optimal asymptotic performance of binary BDQCD is characterized. An

important implication of this result is that, even with compromised sensors, a 1-bit link between each

sensor and the fusion center suffices to achieve asymptotic optimality. To accommodate multiple post-

change hypotheses, we then formulate the multi-hypothesis BDQCD problem and again investigate the

optimal first-order performance under different bandwidth constraints. A converse is first obtained by

extending our converse from binary to multi-hypothesis BDQCD. Two families of stopping rules, namely

the simultaneous d-th alarm and the multi-shot d-th alarm, are then proposed. Under sufficient link

bandwidth, the simultaneous d-th alarm, with d being set to the number of honest sensors, can achieve

the asymptotic performance that coincides with the derived converse bound; hence, the asymptotically

optimal performance of multi-hypothesis BDQCD is again characterized. Moreover, although being

shown to be asymptotically optimal only for some special cases, the multi-shot d-th alarm is much

more bandwidth-efficient and energy-efficient than the simultaneous d-th alarm. Built upon the above
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success in characterizing the asymptotic optimality of the BDQCD, a corresponding leader-follower

Stackelberg game is formulated and its solution is found.

I. INTRODUCTION

The problem of quickest change detection (QCD), a.k.a. sequential change detection, studies

detecting an abnormal event as quickly as possible after its occurrence at a deterministic but

unknown time, subject to a certain false alarm rate. It has many applications and has been

extensively researched since the early works [3], [4], [5]. In these works, it is assumed that

there is only one post-change hypothesis, which we refer to as the binary case. When there

are multiple post-change hypotheses, the problem is referred to as multi-hypothesis QCD and

has been investigated in [6], [7]. A nice tutorial on QCD can be found in [8]. However, recent

applications of cyber-physical systems (CPS) [9] typically involve multiple distributed sensors

monitoring the event and reporting their observations to the fusion center via bandwidth-limited

links. For example, the abnormal changes of voltage waveforms in smart grids are harmful

to delicate electronic devices and recent advances of massive machine-type communications

(mMTC) or internet of things (IoT) [10] allow the usage of advanced cyber-physical infrastruc-

tures for monitoring voltage quality events distributively [11]. Moreover, some sensors, whose

identities are unknown to the fusion center, may be compromised and may try to sabotage the

detection task. Motivated by these applications, this paper considers the decentralized version of

QCD, where a fusion center monitors the event through distributed sensors, with compromised

sensors collaboratively forming attack. This problem has been studied in [12], [13] and is called

Byzantine distributed QCD (BDQCD).

In [12], a special case of binary BDQCD, only one compromised sensor is considered. A de-

cision rule called second-alarm rule, where the fusion center declares the occurrence of the event

once it receives the second local report from sensors, is proposed and its asymptotic performance

is analyzed. In [13], the general binary BDQCD problem with infinite-bandwidth links and that

with 1-bit links are investigated. Multiple rules are proposed and their corresponding asymptotic

performance are analyzed. In the presence of infinite-bandwidth links, the low-sum CUSUM

scheme proposed in [13] achieves the best asymptotic performance among the schemes in [13].

Among the rules with 1-bit links proposed in [13], the voting rule that declares the occurrence of

the event after the number of received local reports exceeds a certain threshold has the best first-
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order asymptotic performance. When the threshold is set to be the total number of honest sensors,

the asymptotic performance of the voting rule, called the consensus rule in this special case,

reaches its maximum and also attains the best asymptotic performance in [13]. Two questions

naturally arise from this premise:

1) What is the fundamental limit of the first-order asymptotic performance of binary BDQCD?

2) How to handle this problem when there are multiple post-change hypotheses?

For the first question, despite the exciting results in [12], [13], it is thus far unclear what the

best first-order asymptotic performance of binary BDQCD is. Although one non-trivial converse

can be easily obtained by assuming that a genie reveals to the fusion center the identities of all

honest sensors (this simple converse will be presented in Section III), this converse bound and

the best achievable asymptotic performance in [13] do not match. This indicates that either the

best achievable scheme thus far is not optimal or the converse is not tight, or both.

The first contribution of this work is to prove a new converse to the first-order asymptotic

performance for binary BDQCD. In the proof, we first construct an attack strategy for the com-

promised sensors and then construct a genie who reveals just enough information to the fusion

center. After that, inspired by the proof technique in [14], we transform the original problem

into a centralized QCD problem. Last, evaluating the corresponding optimal CUSUM procedure

establishes the new converse. The converse turns out to coincide with the best achievable first-

order asymptotic performance known to date; thereby, the fundamental limit of the first-order

asymptotic performance of binary BDQCD is characterized. Specifically, our converse confirms

that both the consensus rule (using only 1-bit links) and the low-sum-CUSUM rule (using infinite-

bit links) in [13] achieve the optimal first-order scaling. The first optimality unveils an important

implication that, at least asymptotically, 1-bit links suffice even with compromised sensors. As

a byproduct of our proof, we explicitly construct an attack strategy, called the reverse attack,

where each compromised sensor generates fake i.i.d. observations according to post-change and

pre-change distributions before and after the change time (i.e., with pre-change and post-change

distributions swapped), and form local reports based on these fake observations. In spite of

abandoning potential cooperation among compromised sensors, this reverse attack turns out

to be strong enough for us to prove a tight lower bound on the asymptotic performance of
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BDQCD1. We note that although our converse is inspired from [14], the one-shot hypothesis

testing problem studied in [14] is fundamentally different to our sequential change detection that

deals with observation sequences having an unknown change time. More detailed comparisons

with [14] are provided at the end of Section IV-B.

Our second contribution is to tackle the second question listed above and extend the framework

of BDQCD to the multi-hypothesis setting. To this end, we formulate the multi-hypothesis version

of the BDQCD problem. We then demonstrate that blindly adopting the existing procedure

in [7][13][15] may result in catastrophic events. Two novel stopping rules are proposed and

analyzed, which requires log(Q)-bit and Q-bit noiseless links, respectively, for BDQCD with

Q+1 hypotheses. In our delay analysis, we prove an asymptotic dominance result, which confirms

the intuition that although there are multiple hypotheses, for each one being considered, we only

have to examine the statistics of another hypothesis that is closest (in the sense of KullbackLeibler

(KL) divergence) to the hypothesis being considered. The converse for the binary case is also

extended to the multi-hypothesis setting and it is shown that proposed stopping rules can achieve

the optimal first-order asymptotic performance under different bandwidth constraints; therefore,

the asymptotically optimal performance of multi-hypothesis BDQCD is again characterized.

Last but not least, we formulate a leader-follower Stackelberg game [16] where the fusion

center and honest sensors form the leader while the compromised sensors form the follower.

The first-order optimality mentioned above yields the game solution, where the leader adopts the

aforementioned asymptotically optimal stopping rule and the follower employs the corresponding

worst attack.

A. Organization

The rest of the paper is organized as follows. We will separately introduce the problem of

binary BDQCD and multi-hypothesis BDQCD in Sections II-A and II-B, respectively, and review

the current state-of-the-art in Section III. We will then split our discussion into two parts, namely

the binary BDQCD in Section IV and multi-hypothesis BDQCD in Section V, even though the

former is a special case of the latter. The main reasons are: 1) binary BDQCD is of substantial

interest in its own right and has been a subject of research in the literature [12], [13], 2) due

1Throughout the paper, such an attack strategy is said to be an asymptotically worst (to the fusion center) attack, or simply

a worst attack.
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to the nature of having multiple post-change hypotheses, one has to consider a sequence of

stopping times, which is in sharp contrast to binary BDQCD where only one stopping time is

considered, 3) our proofs for tight converse bounds in Sections IV and V are quite involved with

heavy notations and it is better to start with the binary case in Section IV and mention only

notable differences later in Section V, and 4) for achievability, we borrow existing results in [13]

for the binary BDQCD, while we devise new efficient stopping rules for the multi-hypothesis

BDQCD whose first-order asymptotic performance coincides with our converse bound. Finally,

a leader-follower Stackelberg game and its solution are then presented in Section VI.

B. Notational conventions

For a positive integer K, define [K] := {1, . . . , K} and [K]+ = {0} ∪ [K]. Function (x)+

outputs x if x ≥ 0 and zero otherwise. For two real functions f1(x) and f2(x), as x → ∞, we

write f1(x) ∼ f2(x) when f1(x)/f2(x) → 1 and f1(x) & f2(x) when lim inf(f1(x)/f2(x)) ≥ 1.

The o(.) and w(.) follow the asymptotic notations in [17].

II. PROBLEM FORMULATION

In this section, we formally state the problem of BDQCD. We will first describe binary

BDQCD and then formulate the generalization to the multi-hypothesis case.

A. Binary BDQCD

The binary BDQCD problem consists of a fusion center and K sensors indexed by [K].

Among these sensors, there is an unknown subset N ⊂ [K] of honest sensors, with the remaining

M := K − |N | sensors being potentially compromised. The goal of the honest sensors is to

monitor an event and help the fusion center decide whether the event has occurred, while the

goal of compromised sensors is to collaboratively confuse the fusion center. Although the exact

information about which sensors are honest and which sensors are compromised is unknown,

we assume that M , the maximum number of sensors the attacker can compromise, is known by

the fusion center. Moreover, it is assumed that there are more honest sensors than compromised

sensors, i.e., |N | > M . The observations of all K sensors are sequences of independent random

variables with known distributions, subject to the same distribution change at an unknown but

deterministic time ν. Before the change time ν, sensor k’s observations Xk
1 , X

k
2 , . . . , X

k
ν are
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independent and identically distributed (i.i.d.) with the density P0, while Xk
ν+1, X

k
ν+2, . . . are

i.i.d. with the density P1. If the change never happens, i.e., ν = ∞, Xk
t are i.i.d. with P0 for

all t. We denote by Xt = [X1
t , X

2
t , . . . , X

K
t ] the collection of observations at time t and we use

the notation X
t2
t1 for t1 < t2 to denote the collection [Xt1 ,Xt1+1, . . . ,Xt2 ]. Also, we define the

KL divergence from P0 to P1 as [18] to be I :=
∫

log
(

P1(x)
P0(x)

)

P1(x)dx. Throughout the paper,

we assume that I is finite and strictly positive and
∫

log (P1(x)/P0(x))
2 P1(x)dx < ∞. (1)

All the local reports from honest or compromised sensors belong to the set X , which satisfies

the underlying bandwidth constraint on the noiseless link between each sensor and the fusion

center. It is worth emphasizing that this setting encompasses many scenarios discussed in existing

works including X = {0, 1} and X = R in [13] and X being a set of finite alphabets in [19].

At each time index t, the honest sensor k individually makes a local decision by mapping its

own observations up to time t to an element in X , and then chooses to report it or not according

to the adopted reporting mechanism. Based on the received local reports from all sensors, the

fusion center adopts a stopping rule to determine when to declare that the event has occurred.

A change detection rule includes such a stopping rule and local rules at honest sensors. The

M compromised sensors, on the other hand, try to disrupt/confuse the fusion center by sending

attack signals in X . We assume a very powerful attacker that knows the exact change-time

ν and has access to the current and past observations of all nodes. The symbols sent by the

compromised sensors at time t are then produced by g, a function (called an attack strategy)

with inputs ν, Xt
1, and the change detection rule. We denote by G the set of all attack strategies

including all possible g with no more than M compromised sensors. Following [13], we analyze

the performance of a rule by its worst-case expected detection delay and mean time to a false

alarm in the sense of Lorden [4], under the worst attack strategy among G. Specifically, let T

be the stopping time of a rule, we define the performance metrics as follows.

• Detection Delay: The worst-case mean detection delay

D[T ] := sup
g∈G,ν

ess supEg
ν [(T − ν)+|Xν

1], (2)

where E
g
ν [.] means the expectation is taken w.r.t. P0 when t ≤ ν and w.r.t. P1 when t > ν

under the attack strategy g ∈ G.
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• False Alarm: Without any abnormal changes (i.e. ν = ∞), the worst-case mean time to a

false alarm is

A[T ] := inf
g∈G

E
g
∞[T ], (3)

where E
g
∞[.] means the expectation is w.r.t. P0 for all t (i.e., ν = ∞) under the attack

strategy g ∈ G.

The main theme of this paper is to investigate the optimal asymptotic behavior of how the

expected detection delay scales with the mean time to a false alarm in the worst case. Specifically,

for an optimal BDQCD rule with stopping time T satisfying A[T ] ≥ γ, we want to characterize

how D[T ] grows with γ as γ → ∞.

Remark II.1. We would like to emphasize that our setting is slightly different from that in

[13]. In [13], among honest sensors, some are affected and some are unaffected by the change.

Similar scenarios with no Byzantine attack are also considered in the literature, with exactly

one unknown sensor [20], [21] or a subset of all sensors [22], [23] being affected. For the

unaffected, their observations are sampled i.i.d. from P0 even after the change. In this paper,

we do not consider unaffected sensors purely to avoid heavy notation. With slight modifications,

our results can be easily extended to include unaffected sensors. This statement remains true

even for the multi-hypothesis setting discussed later.

B. Multi-Hypothesis BDQCD

For the multi-hypothesis version of BDQCD, we again consider a network with a fusion

center and K distributed sensors. There is an unknown subset N ⊂ [K] of honest sensors, with

the remaining M := K − |N | sensors being compromised. The fusion center tries to monitor

an abrupt event and decide whether the event has occurred regardless of which type it is2.

The observations of all K sensors are sequences of independent random variables with known

distributions, subject to the same distribution change at an unknown but deterministic time ν.

After this distribution change, there are Q different possible types. Specifically, let P0 be the pre-

change probability density function (PDF) and P1, . . . , PQ the post-change PDF corresponding

to the states 1, . . . , Q, respectively. For each k ∈ [K], we denote by Xk
t the observation made

2This is aligned with [6], [7] . In many applications, once a change has been detected, the operator can respond to it quickly

and find out which type it is.
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by sensor k at time t. We can now define Q + 1 different hypotheses as follows. Under the

hypothesis Hq, q ∈ [Q], the random variables Xk
1 , X

k
2 , . . . , X

k
ν are i.i.d. with the PDF P0, while

Xk
ν+1, X

k
ν+2, . . . are i.i.d. with the PDF Pq. Under the hypothesis H0, Xk

t are i.i.d. with the

PDF P0 for all t. We write Xt = [X1
t , . . . , X

K
t ] for each t and denote by X

t2
t1 the collection of

Xt1 ,Xt1+1, . . . ,Xt2 for each t1, t2 with t2 > t1.

As the binary case, there is a noiseless link of a finite or infinite number of bits associated

with each sensor to the fusion center. At each time t, an honest sensor k makes a local decision

individually by mapping its own observations up to time t to an element in X satisfying

the bandwidth constraint. Depending on the adopted reporting mechanism and the bandwidth

constraint, each sensor decides whether it should alarm the fusion center through the channel it

is associated with. The M compromised sensors, on the other hand, try to disrupt/confuse the

final decision of fusion center by sending attack signals which again belong to X .

As [6], [7], let us define the sequence of alarm times 0 = T0 < T1 < T2 < . . . < Tρ < . . . ,

where Tρ is the alarm time using sensor observations after previous alarm time Tρ−1, that is,

XTρ−1+1,XTρ−1+2, . . .; then the stopping time for type q ∈ [Q] is defined as

T q = inf
ρ≥1

{Tρ : q̂ρ = q}, (4)

where q̂ρ is the decision at the fusion center declared at time Tρ. Here, we use the convention

inf{∅} = ∞ and it is possible that T q = ∞, which corresponds to the case when the fusion

center never declares change of type q. With a little abuse of notation, when only the first alarm

time T1 of a rule T matters, we sometimes simply write T1 as T . Let g be an attack strategy of

the M compromised sensors. We assume that the attacker knows ν, Xt
1, and the global decision

rule (including both the stopping rule at the fusion center and local rule at each sensor), and

hence g is a function of these arguments. We also write g = ∅ when all the compromised sensors

are absent. When a change under hypothesis Hq, q ∈ [Q], happens at time ν and the strategy

employed by the M compromised sensors is g, the underlying probability measure is denoted by

P
q,g
ν . Moreover, when no change ever happens, i.e., ν = ∞, we denote by P

q=0,g
∞ the underlying

probability measure.

Following the single-sensor case [6], [7], we define the performance metrics as follows:

• Detection Delay: The worst-case mean detection delay is given by

D[T ] := sup
q∈[Q]

sup
g,ν

ess supEq,g
ν [(T − ν)+|Xν

1], (5)
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• False Alarm or False Isolation: The worst-case mean time to a false alarm or a false

isolation is given by

A[T ] := inf
q∈[Q]+

inf
g

inf
q̂∈[Q]\{q}

E
q,g
0 [T q̂]. (6)

Our objective is again to design fault-tolerant decision rules such that D[T ] can be minimized,

with large A[T ] ≥ γ.

Remark II.2. The detection delay defined in [6], [7] for the scenario with one single honest

sensor is given by

sup
q∈[Q]

sup
ν

ess supEq
ν [T − ν|T > ν,X1

1 , . . . , X
1
ν ], (7)

where X1
1 , . . . , X

1
ν are the observations of the (single and honest) first sensor up to time ν. One

may notice that (5) is not quite of the same form as the above definition. In Lemma A.1 in

Appendix A, we prove that even with multiple honest and compromised sensors, these two forms

are equivalent and one is free to work with either of them.

Before leaving this section, we quickly review the asymptotically optimal matrix CUSUM

algorithm in [7] when there is just a single honest sensor |N | = 1,M = 0, and Q ≥ 1. For

each hypothesis q ∈ [Q], this honest sensor (with index k = 1) computes the CUSUM statistics

Y k
t (q, j) for every j 6= q ∈ [Q]+ at time t, recursively through Y k

0 (q, j) = 0 and

Y k
t (q, j) =

(

Y k
t−1(q, j) + ℓkt (q, j)

)+
, (8)

where ℓkt (q, j) = log
Pq(Xk

t )

Pj(Xk
t )

is the log-likelihood ratio (LLR) between Pq and Pj . The results are

put into a Q×Q matrix Yt with the qth row given by

Y
k
t := [Y k

t (q, 0), · · · , Y k
t (q, j), · · · , Y k

t (q, Q)]. (9)

Let Y k
t,q = minj∈[Q]+, j 6=q Y

k
t (q, j) be the minimum of the qth row. The matrix CUSUM procedure

in [7] locally determines that the event has occurred at the first time that any Y k
t,q, q ∈ [Q] exceeds

a pre-defined threshold h. A hard decision is then alarmed, which means that the procedure

terminates after this alarm and no other decisions will be further made.

III. PRIOR WORK

In this section, we review some prior results directly relevant to the present work. We again

split our discussion into the binary and multi-hypothesis cases.
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A. Binary BDQCD

For the considered binary BDQCD problem with |N | = 1 and M = 0 (i.e., no compromised

sensor and thereby no Byzantine attack), the problem reduces to the standard QCD problem for

which it was shown in [4], [5] that Page’s CUSUM procedure Tsingle [3] achieves the optimal

scaling that for A[Tsingle] = γ, the expected detection delay scales like D[Tsingle] ∼ log(γ)/I

as γ → ∞. For M = 0 and general |N |, Mei in [19] developed a scheme Tconsensus, called

the consensus rule, where each sensor performs CUSUM according to its local observations and

sends a binary report to the fusion center, which declares the occurrence of the event when all the

|N | sensors simultaneously say so. It was then shown in [19] that this scheme is asymptotically

optimal that under A[Tconsensus] = γ, the expected detection delay scales like

D[Tconsensus] ∼
log(γ)

|N |I , as γ → ∞. (10)

In [15], Banerjee and Fellouris proposed two families of stopping rules for the same M = 0

and general |N | case. In the first family of stopping rules, which we refer to as the one-shot

d-th alarm, each sensor performs the CUSUM procedure locally and only reports an alarm once

at the first time the local CUSUM statistic exceeds a predefined threshold; the fusion center

then stops and declares the event as soon as receiving d ≤ |N | reports. In the second family of

stopping rules, which is referred to as the d-voting rule, each sensor again performs the CUSUM

procedure locally but gets to report multiple times whenever the local CUSUM statistic exceeds

the threshold. The fusion center then stops and declares the event as soon as receiving d ≤ |N |
reports simultaneously. The authors of [15] analyzed the second-order asymptotic performance

and the results revealed that even though it was shown in [19] that the d-voting rule with d = |N |
(i.e., the consensus rule) achieves the first-order asymptotic performance, it might be better in

practice for it to wait for only the majority of sensors’ reports, i.e., setting d = ⌈(|N |+ 1)/2⌉.

Very recently, in [13], binary BDQCD with general |N | and M was discussed and multiple

schemes were analyzed. Among these schemes, the d-voting rule τ(d), achieves the best scaling

when d = |N | is chosen3. Specifically, it was shown in [13] that the following asymptotic

performance can be achieved:

3This is also called the consensus rule in [13]. But it is noted that here, we only wait for |N |, the number of honest sensors,

responses rather than all K responses.
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Theorem III.1 ([13, Theorem 26]). Let d be an integer satisfying M < d ≤ |N |. For A[τ(d)] = γ,

the worst-case mean detection delay of the d-voting rule scales like

D[τ(d)] ∼
log γ

(d−M)I
, as γ → ∞. (11)

The best asymptotic performance reported in [13] is the above one with d = |N | (i.e.,

the consensus rule), which also coincides with another scheme in [13], low-sum-CUSUM that

requires infinite bandwidth. This leads us to conjecture that (11), with d = |N |, is the optimal

first-order behavior. A tight converse is then necessary to verify this conjecture.

We would like to point out that a non-trivial converse can be obtained by revealing the identities

of all |N | honest sensors and using the asymptotic optimality in [19], as detailed below.

Theorem III.2 (Simple converse). For any binary BCQCD rule T , with A[T ] ≥ γ, the worst-case

mean detection delay meets

D[T ] &
log γ

|N |I , as γ → ∞. (12)

Unfortunately, this converse is not tight compared to (11).

B. Multi-hypothesis BDQCD

To the best of our knowledge, the present work is the first to formulate and study the multi-

hypothesis BDQCD. Prior to this work, the single honest sensor QCD problem with multiple

hypothesis was first investigated in [6], in which Nikiforov extended Lorden’s framework to

include multiple post-change hypotheses. Nikiforov in [6] also proposed an algorithm based

on the concept of generalized likelihood ratio and showed the asymptotic optimality of this

algorithm. In [7], by cleverly switching the order of max and min in the algorithm in [6],

Oskiper and Poor developed the matrix CUSUM algorithm that admits a recursive formula

and hence can be efficiently implemented. Moreover, it was shown that, in addition to its low

complexity, the matrix CUSUM procedure is also asymptotically optimal.

IV. BINARY BDQCD

We consider the problem of binary DBQCD in this section. We first present the main result,

that is, a tight converse to the first-order asymptotic performance of the worst-case detection

delay, in Section IV-A. The proof of the main result is then given in Section IV-B.
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BDQCD
BDQCD with

reverse attack

Genie-aided
BCQCD

Transformed
QCDTheorem 3

Sec. IV-B1

Sec. IV-B3

Sec. IV-B2

Sec. IV-B4Non-Byzantine QCD
and

Fig. 1. Diagram of proof steps.

A. Main results of this section

Here, we present the main result of this section, which is a new converse of the first-order

asymptotic performance of BDQCD.

Theorem IV.1 (Tight converse). For any binary BDQCD rule T , with A[T ] ≥ γ, the worst-case

mean detection delay is lower bounded as

D[T ] &
log γ

(|N | −M)I
, as γ → ∞. (13)

A sketch of the proof of the new converse is outlined in Fig. 1 and the details are given in

the next subsection. To prove this theorem, we first note that if the optimal asymptotic scaling

is lower bounded by η(γ) under an attack strategy, then it is also lower bounded by η(γ)

under the worst attack. We thus proceed by constructing an attack strategy in Section IV-B1,

called the reverse attack, which is later shown to be an asymptotically worst attack. We then, in

Section IV-B2, construct a genie providing the identities of |N | −M out of |N | honest sensors

and the local observations used for generating the local report at every sensor. After that, by

absorbing the impact of the reverse attack into pre/post-change distributions, the problem is

transformed into an equivalent centralized QCD problem in Section IV-B3 for which CUSUM

is known to be optimal. Finally, in Section IV-B4, evaluating the CUSUM procedure for the

transformed problem reveals the connection to another non-Byzantine QCD with only |N |−M

honest sensors.

When comparing the main result of this section presented above and the achieviability result
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Theorem III.1, one immediately characterizes the optimal first-order behavior of binary BDQCD

as follows.

Corollary IV.1. For an optimal binary BDQCD rule T ∗, subject to A[T ∗] ≥ γ, the first-order

asymptotic worst-case mean detection delay is given by

D[T ∗] ∼ log γ

(|N | −M)I
, as γ → ∞. (14)

Remark IV.1. Supposed that, as in [13], there is a subset B ⊆ N such that only sensors in B
are affected by the change and those in N \B have observations drawn i.i.d. according to P0 all

the time. We can slightly alter our genie in our proof so that it reveals the identities of |B|−M

affected sensors and the |N \B| unaffected sensors. One can then follow the same technique to

prove the following converse,

D[T ] &
log γ

(|B| −M)I
, as γ → ∞. (15)

Moreover, setting d = |B| in the d-voting rule achieves the above first-order scaling; hence, the

optimal first-order asymptotic performance of this setting is also characterized as

D[T ∗] ∼ log γ

(|B| −M)I
, as γ → ∞. (16)

B. Proof of the converse for binary BDQCD

The proof presented in this section follows closely the steps shown in Fig. 1.

1) The reverse attack: For the ease of presentation in this proof, we define P0,1 = P0 and

P1,1 = P1. Recall that each honest sensor k’s observation sequence Xk
t is drawn i.i.d. according to

P0,1 before the change time ν and i.i.d. according to P1,1 after ν. We construct an attack strategy

as follows. For each compromised sensors k′, it generates a fake observation sequence Xk′

t ,

which is then input to the assigned local decision function for forming the fake report. The fake

observation sequence is generated i.i.d. according to P0,2 and P1,2 before and after the change

time ν, respectively. That is, the compromised sensors form fake reports according to observations

based on wrong distributions. To establish the tight converse, we will set P0,2 = P1,1 = P1 and

P1,2 = P0,1 = P0 in the very end of the proof; therefore, we call this attack strategy the “reverse

attack”. However, most of the steps in the proof stay valid for general densities P0,2 and P1,2.

Next, we will show that under this reverse attack, for any detection rule with mean time to a

false alarm no less than γ, the mean detection delay is lower-bounded by the RHS of (13). Note

that by definition, the worst case delay in (2) will also be lower-bounded by (13) automatically.
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2) Genie-aided Byzantine centralized QCD: First note that the worst case happens when there

are M compromised sensors. Also since the identities of the sensors are unknown, the fusion

center cannot enhance the worst-case performance by selectively accepting reports. If the fusion

center accepts reports from K − K ′, K ′ ≤ |N |, sensors only, in the worst case, the problem

reduces to the BDQCD with M compromised sensors and |N |−K ′ honest sensors, which results

in a worse performance. Moreover, when K ′ > |N |, we are left with only compromised sensors

in the worst case, which is obviously worse than accepting all reports. We therefore only have

to consider the fusion center taking reports from all K sensors for detection in what follows.

The K sensors are divided into three groups. Each of the first two groups consists of M

sensors, while the last group contains |N |−M sensors. All sensors in the first and third groups

are honest, while those in the second group are compromised. Assume that there is a genie

giving away the identities of |N |−M honest sensors to the fusion center. For the rest M honest

sensors and M compromised sensors, the identities are unknown to the fusion center. Without

loss of generality, we assume that sensors in the first two groups have indices [2M ]. We also

give the observations used at each sensor (fake observations if the sensor is compromised) for

generating its local report and the densities P0,2 and P1,2 to the fusion center. Let s : [K] → [2]

be a function that assigns each sensor to index 1 or 2 (meaning “honest” or “compromised”)

in such a way that exactly M out of the first 2M sensors are assigned to index 2, and the last

|N |−M sensors are all assigned to index 1. Let S be the collection of all possible assignments

s. Clearly, there are total |S| =
(

2M
M

)

such assignments. For θ ∈ {0, 1}, the product density

under the compromised group assignment s is

Pθ,s(Xt) =
2M
∏

k′=1

Pθ,s(k′)(X
k′

t )
K
∏

k=2M+1

Pθ,1(X
k
t ). (17)

Now, we are facing a composite change detection problem, which we refer to as genie-aided

Byzantine centralized QCD (BCQCD). Before the change time ν, the random vectors X1,X2, . . . ,Xν

are i.i.d. over time with density P0,s while Xν+1,Xν+1, . . . are generated with density P1,s,

for some s ∈ S. In this genie-aided version, the fusion center knows everything about the

compromised sensors except for their exact locations. With slight abuse of notations, as (2), the

mean detection delay of this problem is given by

Dgenie[T ] := sup
s∈S,ν

ess supEs
ν [(T − ν)+|Xν

1]; (18)



15

a) First 2M sensors under assignment {1, 2, 2, 1}

Pθ,1 Pθ,2 Pθ,2 Pθ,1 Pθ,1 Pθ,1

b) First 2M sensors under assignment {1, 1, 2, 2}

Pθ,1 Pθ,1 Pθ,2 Pθ,2 Pθ,1 Pθ,1

Fig. 2. An example of genie-aided BCQCD with |N | = 4 and M = 2 under two different assignments. Here, empty circles

and crossed circles are honest and compromised sensors under the assignment s, respectively, and thus follow Pθ,1 and Pθ,2,

respectively. Moreover, gray circles are those honest sensors whose identities are revealed to the fusion center by the genie;

thereby, their observations follow Pθ,1 always, regardless of assignment.

also as (3), the mean time to false alarm is

Agenie[T ] := inf
s∈S

E
s
∞[T ]. (19)

Example IV.1. An example of genie-aided BCQCD with |N | = 4 honest sensors and M = 2

compromised sensors is provided in Fig. 2. In this figure, we use empty circles, crossed circles,

and gray circles to represent honest sensors, compromised sensors, and honest sensors whose

identities are revealed by the genie, respectively. The distribution that each sensor’s observation

follows under hypothesis θ ∈ {0, 1} is presented. In both Fig. 2-a) and Fig. 2-b), we note that the

last |N |−M = 2 sensors are always honest and their identities are revealed to the fusion center.

Hence, their observations always follow Pθ independently. For the first 2M = 4 sensors, the

distributions under assignments {1, 2, 2, 1} and {1, 1, 2, 2} are shown in Fig. 2-a) and Fig. 2-b),

respectively. We note that there are total
(

2M
M

)

= 6 different assignments and we only show 2 of

them for demonstration.

3) Transformed Centralized QCD: We transform the genie-aided BCQCD problem into an

equivalent centralized QCD problem for which CUSUM is known to be optimal. Recall that

unlike [14], now only 2M sensors’ identities are unknown to the fusion center and we define

“masked”-symmetric strategy as follows. Let τ2M (Xt) be the masked ordering map that puts the

first 2M elements of its input Xt in descending order while keeps the other |N | −M positions

unchanged. A decision rule T (.) of the genie-aided BCQCD problem is said to be masked
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symmetric if it can be represented as T ({Xt}t≥1) = T̃ ({τ2M(Xt)}t≥1) for some decision rule

T̃ .

In the transformed centralized QCD problem, the fusion center observes X̃t = τ2M(Xt) at

time t. Let P̃θ(X̃t) be the density of τ2M (Xt), where Xt is generated according to density

Pθ,s, θ ∈ {0, 1}. Before the change, the observations {X̃t} follow P̃0 while after the change,

they follow P̃1. Also,

P̃θ(X̃t) =
∑

Xt:τ2M (Xt)=X̃t

Pθ,s (Xt) , (20)

where the equality follows from that the absolute value of the Jacobian of a permutation is

always 1. Following the proof of part 1 of [14, Lemma 4.1], we can easily show that for all

assignments s ∈ S, the density P̃θ(X̃t) does not depend on s. Suppose the change occurs at

the time ν. Under hypothesis H̃1, the random vectors X̃1, X̃2, . . . , X̃ν are drawn i.i.d. over time

with density P̃0 while X̃ν+1, X̃ν+2, . . . are generated i.i.d. with density P̃1. Under hypothesis H̃0,

there is no change, i.e. ν = ∞, and X̃t are drawn i.i.d. with density P̃0 for all t.

We first focus on a masked symmetric rule T , and show that the detection delay of the genie-

aided BCQCD is identical to that of the transformed QCD problem, defined as Dtrans[T̃ ] :=

supν ess supEν [(T̃ −ν)+|X̃ν
1]. Compared to the transformation in the one-shot hypothesis testing

[14], our delay in (18) involves all pre-change observations by taking an essential supreme over

the distributions of them. This difference complicates the transformation. Specifically, we will

show

Dgenie[T ] = sup
s∈S,ν

ess supEs
ν [(T̃ ({τ2M(Xt)}t≥1)− ν)+|Xν

1]

(a)
= sup

ν
ess supEν [(T̃ ({X̃t}t≥1)− ν)+|X̃ν

1] = Dtrans[T̃ ]. (21)

The first equality is from the definition in (18) and we will devote ourselves to proving equality
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(21a). To this end, note that

E
s
ν [(T̃ ({τ2M(Xt)}t≥1)− ν)+|Xν

1]

=

∞
∑

z=0

1− P

(

(

T̃ ({τ2M (Xt)}t≥1)− ν
)+

≤ z
∣

∣X
ν
1

)

=
∞
∑

z=0

1−
∫

1{
(T̃ ({τ2M (xt)}t≥1)−ν)

+
≤z

}

ν+z
∏

t=ν+1

P1,s(xt)dx
ν+z
ν+1

(a)
=

∞
∑

z=0

1−
∫

1{
(T̃ ({x̃t}t≥1)−ν)

+
≤z

}

ν+z
∏

t=ν+1

P̃1(x̃t)dx̃
ν+z
ν+1

=
∞
∑

z=0

1− P

(

(

T̃ ({X̃t}t≥1)− ν
)+

≤ z
∣

∣X̃
ν
1

)

=Eν [(T̃ ({X̃t}t≥1)− ν)+|X̃ν
1], (22)

where P is the associated probability measure and 1{.} is the indicator function; and (a) follows

from the change of variables in integration [24] and the fact that P̃1(.) does not depend on s.

Now, for a fixed ν and for each s ∈ S, let Ps and P̃ denote the probability measures on R
K×ν

with densities specified by (17) and (20) with θ = 0, respectively. To establish (21a), observe

that for any x ∈ R
K×ν, from (22), we have

E
s
ν [(T̃ ({τ2M (Xt)}t≥1)− ν)+|Xν

1](x) =

Eν [(T̃ ({X̃t}t≥1)− ν)+|X̃ν
1](τ2M(x)). (23)

Let DM denote ess supEs
ν [(T̃ ({τ2M(Xt)}t≥1)− ν)+|Xν

1] where the essential supremum is taken

under Ps. By definition, there exists Ω ⊆ R
K×ν with P

s(Ω) = 1 such that

DM ≥ E
s
ν [(T̃ ({τ2M (Xt)}t≥1)− ν)+|Xν

1](x)

for all x ∈ Ω. By (23), we have

DM ≥ Eν [(T̃ ({X̃t}t≥1)− ν)+|X̃ν
1](τ2M (x)), ∀x ∈ Ω.

Note that

P̃(τ2M (Ω)) =

∫

τ2M (Ω)

P̃0(y)dy =

∫

Ω

P0,s(x)dx = P
s(Ω) = 1,

where the densities P̃0 and P0,s are given by (20) and (17) respectively. We therefore conclude

that DM ≥ ess supEν [(T̃ ({X̃t}t≥1)−ν)+|X̃ν
1] where the essential supremum here is taken under
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P̃. Noting that this is true for every s ∈ S gives the relation “≥” in (21a). By using the same

argument as above, but switching the roles of the left-hand side and right-hand side of (21a),

we obtain the relation “≤”.

We have shown that the detection delay of genie-aided BCQCD (18) is equal to that of

transformed QCD under masked symmetric rules. One can similarly prove that the mean time

to false alarm Agenie[T ] in (19) is equal to that of the new problem Atrans[T̃ ] := E∞[T̃ ]. The rest

is to show that for any fusion rule T ′(.), there is a masked symmetric rule T (.) that is not worse

than T ′(.). This is shown in Lemma A.2 in Appendix and then the transformation of QCD is

established.

4) Establishing the converse: Let T ∗, T ∗
genie, and T ∗

trans be optimal stopping rules for BDQCD,

genie-aided BCQCD, and transformed QCD, respectively. So far, we have established the fol-

lowing relationships among the aforementioned problems

D[T ∗] ≥ Dgenie[T
∗
genie] = Dtrans[T

∗
trans], (24)

and

A[T ∗] ≤ Agenie[T
∗
genie] = Atrans[T

∗
trans]. (25)

We can therefore establish a converse bound by evaluating the performance of the transformed

QCD, which is a standard QCD problem with observations following P̃0 and P̃1 before and after

the change point ν, respectively. For such the problem, it is well known from [5], [19, Lemma

2] that an optimal strategy is Page’s CUSUM procedure given by σ̃(h) = inf{t ∈ N : Ỹt ≥ h},

where Ỹt = (Ỹt−1 + ℓ̃t)
+ with Ỹ0 = 0, and from (20)

ℓ̃t = log

∑

Xt:τ2M (Xt)=X̃t
P1,s(Xt)

∑

Xt:τ2M (Xt)=X̃t
P0,s(Xt)

= log

∑

π∈Π2M
P1,s(π(X̃t))

∑

π∈Π2M
P0,s(π(X̃t))

= log

∑

π∈Π2M
P1,s◦π−1(X̃t)

∑

π∈Π2M
P0,s◦π−1(X̃t)

(a)
= log

∑

s′∈S P1,s′(X̃t)
2M !

(2MM )
∑

s′∈S P0,s′(X̃t)
2M !

(2MM )

. (26)

where π : [K] → [K] is a masked permutation function that permutes the first 2M entries while

keeps the remaining |N |−M entries unchanged, Π2M is the collection of all (2M ! in total) such

π, and ◦ is the function composition operator; (a) follows from the fact that for a compromised

group assignment s, summing over all the permuted versions s ◦ π−1 is equivalent to summing
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over all the assignments s′ with each s′ being involved 2M !/
(

2M
M

)

times. In what follows, we

set P0,2 = P1,1 and P1,2 = P0,1 according to the reverse attack described in Sec. IV-B1. We now

rewrite the likelihood in (26) as

ℓ̃t = log

∑

s∈S P1,s(X̃t)
∑

s∈S P0,s(X̃t)
(27)

(a)
= log

(

∑

s∈S

∏2M
k′=1 P1,s(k′)(X̃

k′

t )
)

∏K
k=2M+1 P1,1(X̃

k
t )

(

∑

s∈S

∏2M
k′=1 P0,s(k′)(X̃k′

t )
)

∏K
k=2M+1 P0,1(X̃k

t )

(b)
= log

∏K
k=2M+1 P1,1(X̃

k
t )

∏K
k=2M+1 P0,1(X̃k

t )
, (28)

where (a) follows from (17) and (b) is because of the fact that for every s, there exists a s̄ such

that s̄(k′) = 2 whenever s(k′) = 1 and s̄(k′) = 1 whenever s(k′) = 2; therefore,

∑

s∈S

2M
∏

k′=1

P1,s(k′)(X̃
k′

t ) =
∑

s∈S

2M
∏

k′=1

P0,s̄(k′)(X̃
k′

t )

=
∑

s̄∈S

2M
∏

k′=1

P0,s̄(k′)(X̃
k′

t ), (29)

where the first equality is from P1,1 = P0,2 and P1,2 = P0,1. Note that when k = 2M + 1 . . .K,

X̃k
t is equal to the honest observation Xk

t in the BCQCD before transformation. Hence, the

optimal test reduces to the standard centralized CUSUM procedure for the change detection

with |N | −M honest sensors. Applying the results in [19] then shows (13).

5) Discussions: A byproduct obtained along the proof is that the “reverse attack” proposed

in Section IV-B1 is an asymptotically worst attack for the original BDQCD problem. This

observation is further exploited using the game theory, as described in Lemma VI.1 and Theorem

VI.1 of Section VI.

Note that although the idea of the transformation in Sec. IV-B3 is inspired by [14], our proofs

presented above are quite different. In [14], all sensors’ identities are not revealed to the fusion

center, while it is essential for us to construct a strong, but not so powerful, genie that reveals

identities of some sensors for proving a tight converse, as in Sec. IV-B2. This new genie is the

key to validate (28) in Sec. IV-B4, which shows that the optimal test under the proposed reverse

attack constructed in Sec. IV-B1 only relates to the revealed |N |−M honest sensors. Furthermore,

the transformation in Sec. IV-B3 is more involved than that in [14]. The difficulty comes from

the fundamental difference between the one-shot hypothesis testing problem in [14] and our
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sequential change detection that deals with observation sequences with an unknown change

time. Finally, in the coming Section V-B, we extend our converse to the multiple-hypothesis

case and face new challenges compared with the binary hypothesis problem in [14].

V. MULTI-HYPOTHESIS BDQCD

In this section, we consider the multi-hypothesis BDQCD. Again, we first present our main

result of this section in Section V-A, which is the characterization of the asymptotic performance

of the worst-case detection delay subject to a mean time to a false alarm or a false isolation.

We then prove a converse for the considered problem in Section V-B, followed by the proposed

stopping rules and their performance analysis in Section V-C. Throughout the section, we define

for each pair of q, j ∈ [Q]+, q 6= j, the KL divergence from Pj to Pq as

I(q, j) :=

∫

log (Pq(x)/Pj(x))Pq(x)dx. (30)

Let σ2(q, j) be the second moment of I(q, j) defined as

σ2(q, j) := Eq

[

(

log

(

Pq(x)

Pj(x)

)

− I(q, j)

)2
]

. (31)

We then make the following assumption:

Assumption V.1. For any q ∈ [Q],

(i) 0 < I(q, j) < ∞ and σ2(q, j) < ∞, ∀j ∈ [Q]+, j 6= q.

(ii) Let Iq := min0≤j≤Q, j 6=q I(q, j). Assume Iq admits a unique minimizer j∗q ∈ [Q]+ \ {q}.

Now, consider q = 0.

(iii) We define I0 := min1≤j≤Q I(j, 0), and assume that I0 admits a unique minimizer j∗0 ∈ [Q].

A. Main results of this section

Our first result for multi-hypothesis BDQCD with Q+1 hypotheses is the characterization of

the converse as follows.

Theorem V.1. Consider the multi-hypothesis BDQCD with Q + 1 hypotheses. For any rule T

with A[T ] ≥ γ, the worst-case mean detection delay is lower bounded as

D[T ] &
log γ

(|N | −M)I∗
, as γ → ∞. (32)
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where

I∗ = min
q

Iq = min
q∈[Q]

min
j∈[Q]+\{q}

I(q, j) (33)

This converse can be proved in a similar way to Theorem IV.1; hence, we only list the major

differences between the two proofs in Section V-B.

For the achievability, we propose in Section V-C a family of stopping rules, called the

simultaneous d-th alarm τ s(d), and show that this stopping rule achieves the first-order scaling of

(32) when d is set to be |N |. This simultaneous d-th alarm rule requires each sensor to send a

Q-bit signal constantly through the noiseless link to the fusion center. To reduce the demanding

bandwidth and energy requirements, another family of stopping rules, called multi-shot d-th

alarm τm(d), is proposed in Section V-C. This rule is more economic in that it only requires

the sensor sending ⌈log2Q⌉-bit signal occasionally. In what follows, we present the asymptotic

performance of the two proposed families of rules and refer the reader to Section V-C for their

proofs.

Theorem V.2. With the wort-case mean time to a false alarm or isolation no smaller than than

γ, we have

(a) among the proposed simultaneous d-th alarm rule τ s(d), the best first-order asymptotic worst-

case mean detection delay is achieved when d = |N | and is given by

D[τ s(|N |)] .
log γ

(|N | −M)I∗
, as γ → ∞; (34)

(b) among the proposed multi-shot d-th alarm rule τm(d), the first-order asymptotic worst-case

mean detection delay when d ≥ M + 1 is given by

D[τm(d)] .
log γ

I∗
, as γ → ∞. (35)

Combining the results in Theorems V.1 and V.2, we arrive at the following result of the optimal

scaling for multi-hypothesis BDQCD with Q+ 1 hypotheses.

Corollary V.1. For multi-hypothesis BDQCD with Q+ 1 hypotheses and the number of honest

sensors |N | ≥ M + 1, if the noiseless link of each sensor can support (at least) Q bits, the

first-order asymptotic worst-case mean detection delay of an optimal stopping rule T ∗ subject

to A[T ∗] ≥ γ is precisely

D[T ∗] ∼ log γ

(|N | −M)I∗
, as γ → ∞. (36)
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Moreover, if |N | = M + 1, the optimal scaling

D[T ∗] ∼ log γ

I∗
, as γ → ∞, (37)

can be achieved by a stopping rule that requires only ⌈log2Q⌉-bit links.

B. Proof of Theorem V.1, the converse for multi-hypothesis BDQCD in Theorem V.2

For extending the converse from the binary case to the multi-hypothesis case with Q + 1

hypotheses, we encounter two main challenges. First, the asymptotically worst attack adopted

in the binary case, namely the reverse attack, cannot be straightforwardly applied. As there are

Q post-change distributions, we have to carefully choose one of them for swapping in order to

make the attack strategy asymptotically worst. Second, after we manage to construct the attack

strategy and complete the transformation, there are Q+1 hypotheses in the transformed QCD and

hence Q2 LLRs (see (8)) to be tracked in the asymptotically optimal matrix CUSUM procedure.

It is difficult to make each LLR relate to only observations of (a subset of) honest sensors as

we have done in (28) for the binary case.

In what follows, to solve the first issue, we modify the reverse attack in upcoming Section

V-B1 by swapping the P0 with the post-change distribution that is closest to P0 in the sense of

having the minimum KL divergence. To circumvent the second issue, we abandon the approach

of evaluating the optimal detecting procedure in Section IV-B4 and directly perform the delay

analysis based on [6, Theorem 2].

1) The reverse attack for (Q+1)-hypotheses: To prove this converse, under the true hypothesis

Hq, q ∈ [Q]+ (defined in Section II-B), we define Pq,1 = Pq. The distribution Pq,2 for fake

observation in the proposed attack strategy is constructed as follows. Let qm = argq∈[Q]+ min Iq,

with the corresponding j∗qm defined in Assumption V.1 (ii) and (iii). We define

Pq,2 =











Pj∗q , if q 6= j∗qm ,

Pqm , if q = j∗qm .

(38)

The main intuition behind this choice is that we want the compromised sensors to follow the

distribution that is closest to the true one under the KL divergence. This is done in the first

case above. For the exception in the second case, i.e., q = j∗qm , it is for having the symmetry

Pj∗qm ,2 = Pqm and Pqm,2 = Pj∗qm
, which will become handy later in the proof.
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2) Genie-aided Byzantine centralized (Q + 1)-hypotheses QCD: To establish the tight con-

verse, we assume that a genie gives the fusion center the identities of |N |−M out of |N | honest

sensors. Without loss of generality, we let these |N |−M sensors have the indices 2M+1, . . . , K,

respectively. The genie also provides the fusion center with the observations used at each sensor

for generating its local reports. Similarly to (17) in the binary case, with the help of this genie,

the problem becomes the genie-aided BCQCD with distribution for each q ∈ [Q]+ as

Pq,s(Xt) =
2M
∏

k′=1

Pq,s(k′)(X
k′

t )
K
∏

2M+1

Pq,1(X
k
t ). (39)

For this genie-aided BCQCD, replacing g ∈ G with s ∈ S in (5) and (6), we obtain the detection

delay and mean time to a false alarm or a false isolation given by

Dgenie[T ] = sup
q∈[Q]

sup
s∈S,ν

ess supEq,s
ν [(T − ν)+|Xν

1], (40)

and

Agenie[T ] = inf
q∈[Q]+

inf
s∈S

inf
q̂∈[Q]\{q}

E
q,s
0 [T q̂], (41)

respectively.

3) Transformed Centralized (Q + 1)-hypotheses QCD: We can now follow the proof of

the binary case to transform the genie-aided BCQCD into a multiple-hypothesis QCD having

distributions generalizing (20) as

P̃q(X̃t) =
∑

Xt:τ2M (Xt)=X̃t

Pq,s(Xt), (42)

where q ∈ [Q]+ and τ2M is again the masked ordering map. Let us define the KL divergence

between transformed distributions P̃q and P̃j for q ∈ [Q] and j ∈ [Q]+ as

Ĩ(q, j) =

∫

log

(

P̃q(x̃)

P̃j(x̃)

)

P̃q(x̃)dx̃. (43)

Moreover, let Ĩ∗q = minj∈[Q]+\{q} Ĩ(q, j) and

Ĩ∗ = min
q∈[Q]

Ĩ∗q = min
q∈[Q]

min
j∈[Q]+\{q}

Ĩ(q, j). (44)

Note that in the binary case (24), we have shown that the transformed QCD would have

the same detection delay with the genie-aided BCQCD for any post-change distribution P1.
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Extending from the binary case (18) to the multi-hypothesis case (40), we just need to take an

additional supremum over all post-change distributions Pq, q ∈ [Q]; therefore, the equivalence

Dgenie[T
∗
genie] = Dtrans[T

∗
trans]

:= sup
q∈[Q]

sup
ν

ess supEq
ν

[

(

T ∗
trans({X̃t}t≥1)− ν

)+
∣

∣

∣

∣

X̃
ν
1

]

, (45)

still holds under multiple hypotheses for optimal rules T ∗
genie and T ∗

trans in genine-aided BCQCD

and transformed QCD, respectively.

Regarding the mean time to a false alarm or false isolation, it is a bit more involved than the

proof for detection delay since in addition to false alarm considered in Section IV-B3, we also

need to deal with false isolation. We again first focus on a masked symmetric rule T satisfying

T ({Xt}t≥1) = T̃ ({τ2M (Xt)}t≥1) for some rule T̃ . We aim to prove

Agenie[T ] = Atrans[T̃ ] (46)

Consider Agenie[T ] in (41), for each q ∈ [Q]+ and s ∈ S, we have

inf
q̂∈[Q]\{q}

E
q,s
0 [T q̂] = inf

q̂∈[Q]\{q}
E
q,s
0

[

inf
ρ≥1

Tρ

1{q̂ρ=q̂}

]

= inf
q̂∈[Q]\{q}

∞
∑

z=0

1− P

(

inf
ρ≥1

Tρ

1{q̂ρ=q̂}
≤ z

)

, (47)

where the first equality is from (4) and the convention a/0 := ∞ for positive a ∈ R. Observe

that

P

(

inf
ρ≥1

Tρ

1{q̂ρ=q̂}
≤ z

)

=

∫

1{
infρ≥1

Tρ({Xt}t≥1)

1{q̂ρ=q̂}
≤z

}

z
∏

t=1

Pq,s(xt)dx
z
1

=

∫

1{
infρ≥1

T̃ρ({τ2M (Xt)}t≥1)

1{q̂ρ=q̂}
≤z

}

z
∏

t=1

Pq,s(xt)dx
z
1. (48)

Plugging (48) into (47), then (47) equals to

inf
q̂∈[Q]\{q}

∞
∑

z=0

1−
∫

1{
infρ≥1

T̃ρ({X̃t}t≥1)

1{q̂ρ=q̂}
≤z

}

z
∏

t=1

P̃q,s(x̃t)dx̃
z
1

= inf
q̂∈[Q]\{q}

∞
∑

z=0

1− P

(

inf
ρ≥1

T̃ρ

1{q̂ρ=q̂}
≤ z

)

= inf
q̂∈[Q]\{q}

E
q,s
0

[

inf
ρ≥1

T̃ρ

1{q̂ρ=q̂}

]

= inf
q̂∈[Q]\{q}

E
q,s
0 [T̃ q̂]. (49)
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Taking infimum over q ∈ [Q]+ and s ∈ S on the above shows (46) for a masked symmetric

rule T . In Lemma A.3, we show that it suffices to consider masked symmetric rules as for any

general rule T ′, there exists a symmetrized rule which is not worse than it in Agenie[T
′].

We have extended (25) and again shown that Agenie[T
∗
genie] = Agenie[T

∗
trans] for optimal rules

T ∗
genie and T ∗

trans in the multi-hypothesis cases and completed the transformation. To establish

the converse, we now provide a converse to the asymptotic performance of the transformed

QCD in Lemma A.4. That is, the first-order scaling of an optimal stopping rule T ∗
QCD with

Atrans[T
∗
QCD] ≥ γ is given by

Dtrans[T
∗
QCD] ∼

log γ

Ĩ∗
. (50)

4) Establishing the converse by evaluating the transformed delay: To establish the converse,

we now look into the structure of Ĩ∗ in (50), which is defined in (44). First, we note from

(42)-(43) that for any pair of hypothesis indexes (q, j)

Ĩ(q, j) =

∫

log

(
∑

x:τ2M (x)=x̃
Pq,s(x)

∑

x:τ2M (x)=x̃
Pj,s(x)

)

P̃q(x̃)dx̃

(a)
=

∫

log





∑

s∈S Pq,s(x̃)
2M !

(2MM )
∑

s∈S Pj,s(x̃)
2M !

(2MM )



 P̃q(x̃)dx̃

(b)
=

∫

log





∑

s∈S

∏2M
k′=1 Pq,s(k′)(x̃

k′) 2M !

(2MM )
∑

s∈S

∏2M
k′=1 Pj,s(k′)(x̃k′) 2M !

(2MM )



 P̃q(x̃)dx̃

+

∫

log

(

∏K
2M+1 Pq,1(x̃

k)
∏K

2M+1 Pj,1(x̃k)

)

P̃q(x̃)dx̃

(c)
=

∫

log

(

P̂q,s(x̃
1, . . . , x̃2M )

P̂j,s(x̃1, . . . , x̃2M)

)

P̂q,s(x̃
1, . . . , x̃2M)dx̃1 . . . dx̃2M

+

∫

log

(

∏K
2M+1 Pq,1(x̃

k)
∏K

2M+1 Pj,1(x̃k)

)

P̃q(x̃)dx̃

(d)

≥
∫

log

(

∏K
2M+1 Pq,1(x̃

k)
∏K

2M+1 Pj,1(x̃k)

)

K
∏

2M+1

Pq,1(x̃
k)dx̃2M+1 . . . dx̃K

=
K
∑

k=2M+1

∫

log

(

Pq,1(x
k)

Pj,1(xk)

)

Pq,1(x
k)dxk

(e)
= (|N | −M)I(q, j), (51)
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where (a) follows from the same steps reaching (26), that is,

∑

x:τ2M (x)=x̃

Pq,s(x) =
∑

s∈S

Pq,s(x̃)
2M !
(

2M
M

) ; (52)

(b) is because of the independence in (39); (c) holds by P̃q(x̃) equals to (52) and marginalizing

x̃2M+1, . . . , x̃K out for the first integration, where we define a new PDF

P̂q,s(x̃
1, . . . , x̃2M ) =

∑

s∈S

2M
∏

k′=1

Pq,s(k′)(x̃
k′)

2M !
(

2M
M

) ; (53)

(d) follows by noting that the first integration in (c) is the KL divergence between P̂q,s and

P̂j,s, which is always non-negative [18], together with marginalizing x̃1, . . . , x̃2M in the second

integration and the fact that the sensors in the third group are always honest in (42) (see (39));

and (e) follows from the selection of reverse attack in Section V-B1 and definition (30). Now,

recall qm = argq min Iq . For the pair (qm, j
∗
qm) defined in Section V-B1, besides the inequality

in (51), we can further show the following equality

Ĩ(qm, j
∗
qm) =

∫

log

(

∑

s∈S Pqm,s(x̃)
∑

s∈S Pj∗qm ,s(x̃)

)

P̃qm(x̃)dx̃

(a)
=

∫

log

(

∏K
2M+1 Pqm,1(x̃

k)
∏K

2M+1 Pj∗qm ,1(x̃k)

)

K
∏

2M+1

Pq,1(x̃
k)dx̃2M+1 . . . dx̃K

=

K
∑

k=2M+1

∫

log

(

Pqm,1(x
k)

Pj∗qm ,1(xk)

)

Pqm,1(x
k)dxk

= (|N | −M)I(qm, j
∗
qm) = (|N | −M) min

q∈[Q]
Iq, (54)

where equality (a) follows from the symmetry enforced in the second case of the reverse attack

in (38) and the steps for reaching (28). More specifically, in (51 b)

∑

s∈S

2M
∏

k′=1

Pqm,s(k′)(x̃
k′) =

∑

s∈S

2M
∏

k′=1

Pj∗qm ,s(k′)(x̃
k′)

from Pqm,1 = Pqm = Pj∗qm ,2 and Pqm,2 = Pj∗qm
= Pj∗qm ,1. Now plugging (51) and (54) into (44)

shows that

Ĩ∗ = (|N | −M)I∗, (55)

since (|N | − M)I∗ ≤ (|N | − M)I(q, j) ≤ Ĩ(q, j), ∀q, j. Noting that D[T ] ≥ Dtrans[T
∗
QCD] ∼

log γ
(|N |−M)I∗

under A[T ] ≥ r, as γ → ∞, it completes the proof of the converse part.
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C. Proof of the acheivability for multi-hypothesis BDQCD in Theorem V.2

Now, we first describe the local decision rule at each honest sensor, and then propose two

global fault-tolerant decision rules for the acheivability in part (a) and (b) of Theorem V.2

respectively.

1) Local decision rule: “Soft” Matrix CUSUM: Since the honest sensors are not allowed

to cooperate with each other, it is natural to adopt the matrix CUSUM algorithm reviewed in

Section II-B. Note that for the original matrix CUSUM in [7], since there is only one honest

node, it makes perfect sense for the procedure to make a hard decision and terminate after the

alarm; however, in our setting, the task is not done yet until the fusion center has determined the

occurrence of the event. Therefore, we adapt the matrix CUSUM procedure to the “soft” version

as follows. Whenever a Y k
t,q under (9) exceeds the threshold h at time index t, the hypothesis Hq

is softly decided by informing the fusion center that this hypothesis is acceptable at the sensor

k. Now each honest sensor may keep monitoring the event and report multiple hypotheses to the

fusion center. Later in Sec. V-C3, this soft version will help us resolve the “undecidable event”,

which disables the fusion center to make a conclusive decision.

Formally, for the soft matrix CUSUM procedure, a hypothesis Hq is acceptable by the node

k at time

σq
k(h) := inf

{

t ∈ N : Y k
t,q ≥ h

}

. (56)

In contrast, for the original matrix CUSUM [7], a hypothesis Hq is hard decided at time σq
k(h)

if σq
k(h) equals to

σk(h) := min
q̂∈[Q]

σq̂
k(h) and q = argmax

q̂∈[Q]

(

Y k
t,q̂|t=σk(h)

)

.

2) Global fault-tolerant decision rules: As a baseline, the one-shot rule which uses the original

matrix CUSUM is first introduced as

One-shot d-th alarm: This family of rules is a direct extension of the one-shot rule for the binary

case in [13], [15] to the multi-hypothesis setting. Each sensor adopts the original matrix CUSUM

[7] as its local report mechanism and reports the first acceptable non-zero hypothesis as soon as

the sensor finds it. The fusion center declares that an abrupt event has occurred at the first time

that a hypothesis, say Hq, has received d local reports. It also declares that the hypothesis Hq

is true.
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Now, we propose two rules based on the “soft” matrix CUSUM.

i) Multi-shot d-th alarm τm(d)(h): This family of rules requires each sensor to adopt the soft

version of matrix CUSUM and to alarm whenever a hypothesis Hq̂, q̂ ∈ [Q], is acceptable.

Formally, for each k ∈ N , sensor k reports Hq̂ at the time index σq̂
k(h), for every q̂ ∈ [Q]. In

this reporting mechanism, we stipulate that for each sensor, every hypothesis can be reported at

most once, and a reported hypothesis cannot be withdrawn. In other words, once reported by a

sensor, a hypothesis will be promoted as a candidate by that sensor ever since. If a tie happens at

an honest node k, then all the hypothesis indexes have the same σq̂
k(h) will be reported one after

another, starting from the one with the largest Y k
t,q̂. For the case where two or more hypotheses

have the same Y k
t,q̂, we break the tie randomly. Consecutive ties and/or multi-way ties can be

easily resolved by equipping each node with a queue of size Q−1 and clearing the queue on the

first-come first-serve basis. The fusion center declares that an abrupt event has occurred at the

first time that a hypothesis, say Hq, has been deemed acceptable by d sensors. It also declares

that the hypothesis Hq is true.

ii) Simultaneous d-th alarm τ s(d)(h): Each sensor constantly transmits Q bits local decision at

time index t to indicate whether Hq̂ is acceptable, ∀q̂ ∈ [Q]. The fusion center declares that

an abrupt event of type q has occurred at the first time that a hypothesis, say Hq, has been

simultaneously accepted by no less than d sensors.

We note that the three families of rules have different bandwidth and/or energy requirements.

The one-shot scheme is the most bandwidth- and energy-efficient one as it requires each link to

support ⌈log2Q⌉ bits and this link is used only once. The multi-shot scheme also requires links

to support ⌈log2Q⌉ bits, but each link may be used up to Q times. As for the simultaneous rule,

it requires each link to support Q bits and each link is constantly used. Also, it is worth noting

that the soft matrix CUSUM reduces to the original CUSUM adopted in [13] when Q = 1,

i.e. binary hypothesis. Thus, the proposed multi-shot and simultaneous d-th alarm include the

one-shot and voting rules in [13], [15] as special cases, respectively. Moreover, depending on

the application at hand, the fusion center can opt to stop only once or multiple times. When

the fusion center chooses to stop only once as [13], Tρ = ∞ in (4) for ρ > 1. For the scenario

where the fusion center makes multiple alarms, it restarts with the same global decision rule

after each alarm at Tρ. Our upcoming Proposition V.1 applies to both scenarios.
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3) Performance analysis: We now carry out the worst-case analysis on the performance of the

multi-shot d-th alarm and simultaneous d-th alarm rules. For the one-shot d-th alarm, we point out

a notable difference from the binary counterpart [13] which significantly degrade the performance

from the converse in Theorem V.1. The undecidable event may happen: it is possible that there

is no non-zero hypothesis index with enough local alarms for making a decision, even though

all honest sensors have raised alarms; thereby, the detection delay is infinity. Unfortunately, even

more advanced multi-shot d-th alarm can only achieve the converse when |N | = M + 1 from

the upcoming analysis. When |N | = M+1, if the one-shot d-th alarm is used, the compromised

sensors can easily trigger the undecidable event.

To further characterize (5) and (6) for the two proposed rules, we will prove asymptotic

dominance results in upcoming Lemma V.1, which greatly simplifies the delay analysis. Intu-

itively, although there are multiple sensors and Q+ 1 hypotheses, for each honest sensor being

considered, we only have to examine the statistics between the q-th hypothesis and the one that

is “closest” to q, for every q ∈ [Q]. Note that this intuition also comply with our asymptotic

converse. Before introducing Lemma V.1 and the complete analysis, some definitions and a

proposition regarding the compromised sensors will be provided first. Similarly to [13], from

(56), we define the ordered time indexes σq
(1)(h) ≤ . . . ≤ σq

(|N |)(h), for all q ∈ [Q], over |N |
honest sensors as if there is no compromised sensor, for softly deciding hypothesis Hq (cf. the

qth row of CUSUM matrix (9)) We also let Sq
ℓ (h) be the first time that the hypothesis Hq is

simultaneously softly-decided by ℓ honest sensors, defined as

inf
{

t ∈ N :Y k
t,q ≥ h ∀k ∈L, for someL⊂ [N ], |L| = ℓ

}

. (57)

Finally, we will use E
q
ν to represent the expectation when the change with hypothesis index q

happens at time ν and the compromised sensors are absent.

To continue the worst-case analysis in (5) and (6), recall that all the compromised sensors

know the actual ν and the actual hypothesis q. They can then collaboratively attack/confuse

the fusion center. Thus, it is obvious that choosing any d ≤ M is bad for false alarm or false

isolation in (6), while any d > |N | is bad for detection delay in (5). We therefore confine the

choice of d to some reasonable region and obtain the following result.

Proposition V.1. Fix h > 0. For any positive integer Q, and d ∈ {M+1, ..., |N |}, for multi-shot
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d-th alarm, we have

A[τm(d)(h)] ≥ min
q∈[Q]+

min
q̂∈[Q]\{q}

E
q,∅
0 [σq̂

(d−M)(h)], (58)

D[τm(d)(h)] ≤ max
q

E
q,∅
0 [σq

(d)(h)] +Q− 1; (59)

while for simultaneous d-th alarm

A[τ s(d)(h)] ≥ min
q∈[Q]+

min
q̂∈[Q]\{q}

E
q,∅
0 [S q̂

d−M(h)]; (60)

D[τ s(d)(h)] ≤ max
q

E
q,∅
0 [Sq

d(h)]. (61)

Proof: See Appendix B.

Based on Proposition V.1, in what follows, we provide explicit upper bounds on the detection

delay. Lemma V.1 is shown first, which states that for each hypothesis q ∈ [Q], although there

are total Q+1 hypotheses, one only has to worry about the one that is “closest” to q in terms of

the KL divergence. By writing Pq for P
q,g=∅
0 and recall the definition of j∗q in Assumption V.1,

we have:

Lemma V.1. Suppose h is large enough and Assumption V.1 holds. For any q ∈ [Q], it holds

Pq-a.s. that

(i) The first time Hq is softly decided at the honest sensor k, σq
k(h) in (56), equals to

σ
q,j∗q
k (h) := inf{t ∈ N : Y k

t (q, j
∗
q ) ≥ h}. (62)

(ii) For any |N | ≥ d ≥ 1, the first time Hq is simultaneously softly-decided by d honest sensors,

Sq
d(h), equals to

S
q,j∗q
d (h) := inf

{

t ∈ N : Y
(|N |−d+1)
t (q, j∗q ) ≥ h

}

, (63)

where Y
(1)
t (q, j∗q ) ≤ . . . ≤ Y

(|N |)
t (q, j∗q ) are the ordered CUSUM statistics of Y k

t (q, j
∗
q ), for

hypotheses q and j∗q at time t.

Proof: See Appendix C.

We are now ready to present the results on the asymptotic delay performance. Let Z(1), Z(2),

. . . , Z(|N |) be the order statistics of independent standard normal random variables. For each

d ∈ {1, 2, . . . , |N |}, we denote by ξd the expected value of Z(d). Moreover, for each q ∈ [Q],

we set Dq
d:|N | := ξd

√

σ2(q,j∗q )

Iq
.
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Theorem V.3. Suppose Assumption V.1 holds. As h → ∞, for any q ∈ [Q] and 1 ≤ d ≤ |N |,
we have

E
q,∅
0 [σq

(d)(h)] =
h

Iq
+Dq

d:|N |

√
h(1 + o(1)), (64)

and the detection delay of the multi-shot d-th alarm in (59) is upper-bounded as

D[τm(d)(h)] ≤ max
q

(

h

Iq
+Dq

d:|N |

√
h(1 + o(1))

)

. (65)

Proof: See Appendix D.

Theorem V.4. Suppose Assumption V.1 holds. As h → ∞, for any q ∈ [Q] and 1 ≤ d ≤ |N |,
we have

E
q,∅
0 [Sq

d(h)] ≤
h

Iq
+Dq

d:|N |

√
h(1 + o(1)), (66)

and the detection delay of the simultaneous d-th alarm in (61) is upper-bounded as

D[τ s(d)(h)] ≤ max
q

(

h

Iq
+Dq

d:|N |

√
h(1 + o(1))

)

. (67)

Proof: See Appendix D.

The asymptotic performance of the mean time to false alarm/isolation of the proposed families

of rules are given in the following.

Theorem V.5. Fix h > 0. If M < d ≤ |N |, the mean time to a false alarm or a false isolation

A[τm(d)(h)] in (58) for the multi-shot d-th alarm is lower-bounded by

d−M

(d−M + 1)





|N |
d−M





−1
d−M

exp(h). (68)

Proof: See Appendix E.

Theorem V.6. Fix h > 0. If M < d ≤ |N |, the mean time to a false alarm or a false isolation

A[τ s(d)(h)] in (60) is lower-bounded by

1

2





|N |
d−M





−1

exp ((d−M)h) . (69)

Proof: See Appendix E.

Although the delay upper bounds in Theorems V.3 and V.4 are identical, we will show the

superiority of the simultaneous rule when detection delay and mean time to false alarm/isolation
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are jointly considered, which also validates Theorem V.2. For simultaneous d-th alarm τ s(d)(h),

one can ensure A[τ s(d)](h) ≥ γ from (69) by selecting local threshold

1

d−M



log γ + log



2





|N |
d−M











 . (70)

Also by plugging h in (70) into (67), with γ → ∞,

D[τ s(d)(h)] . max
q

(

log γ

(d−M)Iq

)

. (71)

Then part (a) of Theorem V.2 is valid since d = |N | minimizes the right hand side above.

Moreover, for the multi-shot d-th alarm τm(d)(h), one can ensure A[τm(d)(h)] ≥ γ from (68) by

selecting local threshold

h = log γ +
1

d−M
log





|N |
d−M



+ log

(

d−M + 1

d−M

)

. (72)

Plugging h in (72) into (65) and let γ → ∞, we have

D[τm(d)(h)] . max
q

(

log γ

Iq

)

. (73)

This validates part (b) of Theorem V.2.

Remark V.1. Apart from being the building block of our proof, Lemma V.1 also reveals another

practical benefit. It basically confirms that for large h, for each row of the matrix CUSUM, i.e.,

each abnormal hypothesis Hq, an honest sensor only has to compute and update the CUSUM

statistics Y k
t (q, j

∗
q ). This is particularly useful in applications where sensors are subject to

stringent energy constraints. Moreover, although Lemma V.1 only shows asymptotic optimality of

this approach, we provide in Fig. 3 an example showing that the intuition of updating only the

closest hypothesis also applies to small h. In this example, we consider Q = 2 with P0, P1, P2 the

PDFs of Gaussian random variables with means 0, 1,−1 and same variances σ2, respectively.

Instead of the original CUSUM matrix, we use the following reduced one




Y k
t (1, 0) ∞
∞ Y k

t (2, 0).



 (74)

As shown in Fig. 3, the detection performances of full CUSUM matrix and the reduced one are

almost identical, as expected.



33

5 10 15 20

SNR 1/ 2 (dB)

10

15

20

25

30

35

D
et

ec
tio

n 
de

la
y(

un
it 

tim
e 

in
de

x) Reduced Matrix CUSUM
Full Matrix CUSUM

Fig. 3. Detection delay of full Matrix CUSUM and that of the reduced one in (74) for an honest sensor. The local threshold

is set such that exp(h) = 104 (h ≈ 9.21) and each curve is calculated based on 20000 realizations.

VI. GAME-THEORETIC FORMULATION

In this section, we formulate a leader-follower Stackelberg game [16, Section 3.6] for the

considered BDQCD, where the fusion center and honest sensors act as the leader and the

compromised sensors act as the follower. It turns out that the characterization of the first-order

optimality in the previous sections will help us characterize the Stacklberg equilibrium.

In the game, the information available to the two players are as follows:

• The follower knows the leader’s strategy g1, all the current and past local observations X
t
1,

the change time ν, and the actual hypothesis.

• The leader is oblivious of the exact indexes of compromised sensors, but knows the maxi-

mum number of compromised sensors M .

Now we define the strategy spaces of the two players. With Q + 1 hypotheses, we assume the

noiseless link of each sensor can support (at least) Q bits and use the K × 1 vector λ̂t ∈ Z
K
2Q

to denote the Q-bit local decisions at time t, where Z2Q is the integer ring modulo 2Q. The

compromised sensors cooperatively form the attack vector et ∈ Z
K
2Q which has at most M non-

zero components, reflecting that there are at most M compromised sensors. At time t, the fusion
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center receives

λ̂t + et, (75)

where the addition is over Z2Q . A strategy g1 of the leader at time t includes a local decision

rule that maps Xk
1 , . . . , X

k
t into the kth entry of λ̂t at each sensor k ∈ [K] (the leader treats

all K sensors as honest), and a stopping rule at the fusion center which maps K × t matrix

[λ̂1+ e1, . . . , λ̂t+ et] to a decision q̂t ∈ [Q]+. An alarm is fired if q̂t 6= 0. The stopping time for

type q ∈ [Q] is given in (4) and again let T be the first alarm time. A strategy g2 of the follower

at time t is the vector et in (75), where all K elements are from Z2Q but elements in a subset

of indices with size |N | (corresponding to indexes of honest sensors) is deterministically 0. We

use G1 and G2 to denote the pure-strategy spaces of aforementioned g1 and g2, respectively.

We first focus on the binary case as in Section IV, i.e., Q = 1, and refer to the game as the

binary BDQCD Stackelberg game. From the detection delay in (2) and false alarm in (3), we

define the corresponding performance metrics under strategies (g1, g2) as

D(g1, g2) := sup
ν

ess supEg2
ν [(T − ν)+|Xν

1], and

A(g1, g2) := E
g2
∞[T ], (76)

respectively, where we note that the stopping time T is a function of (g1, g2). Since we wish the

mean time to false alarm to be larger than a given γ, the cost for the leader is then defined as

J1(g1, g2) , lim
γ→∞

(D(g1, g2)

log γ
+ I− (γ −A(g1, g2))

)

, (77)

where function I−(u), as defined in [25, Section 11.2], is ∞ when u > 0 and zero otherwise. Note

that the change point ν is known at the follower, and thus g2 can be different before and after the

change time ν. The cost for the follower is the mean time to false alarm J2(g1, g2) , A(g1, g2)

as the follower wants to sabotage detection by making false alarm more frequent.

For our game, the Stackelberg equilibrium strategy for the leader and cost are defined as

follows. As [16, Definition 4.1], we define

Definition VI.1. Fix ε > 0. For any g1 ∈ G1, the set R2
ε(g1) ⊆ G2 defined by

R2
ε(g1) =

{

g2 ∈ G2 : J
2(g1, g2) ≤ inf

ξ∈G2

J2(g1, ξ) + ε

}

(78)

is the ε-optimal response set of the follower to the strategy g1 of the leader.
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Definition VI.2. The Stackelberg cost of the leader is defined as

J1∗ = inf
g1∈G1

inf
ε>0

sup
g2∈R2

ε(g1)

J1(g1, g2). (79)

For any ε > 0, a strategy g1∗ε ∈ G1 is an ε-Stackelberg equilibrium strategy for the leader if

inf
ε̄>0

sup
g2∈R2

ε̄(g
1∗
ε )

J1(g1∗ε , g2) ≤ J1∗ + ε

Based on the above definitions, we first prove the following lemma which results in the game

solution later in Theorem VI.1.

Lemma VI.1. For the binary BDQCD Stackelberg game, if there exists a pure strategy ǵ2 ∈ G2

that results in a lower bound J1(g1, ǵ2) ≥ η for any g1 ∈ G1, then

sup
g2∈R2

ε(g1)

J1(g1, g2) ≥ J1(g1, ǵ2) ≥ η (80)

for any ε > 0.

Proof. We prove that supg2∈R2
ε(g1)

J1(g1, g2) ≥ J1(g1, ǵ2). If ǵ2 ∈ R2
ε(g1), then the inequality

is trivial. If not, for any g2 ∈ R2
ε(g1) we have A(g1, g2) ≤ A(g1, ǵ2). If A(g1, ǵ2) < γ, then

J1(g1, g2) = J1(g1, ǵ2) = ∞ from (77). Now consider A(g1, ǵ2) ≥ γ. If A(g1, g2) < γ ≤
A(g1, ǵ2), from (77),

J1(g1, ǵ2) ≤ J1(g1, g2) = ∞.

Otherwise, if γ ≤ A(g1, g2) ≤ A(g1, ǵ2), then

I− (γ −A(g1, ǵ2)) = I− (γ −A(g1, g2)) = 0,

we construct an attack ĝ2 acting as g2 when ν = ∞ and as ǵ2 otherwise. This ĝ2 will lie

in R2
ε(g1) and result in J1(g1, ĝ2) = J1(g1, ǵ2), which results in J1(g1, ǵ2) = J1(g1, ĝ2) ≤

supg2∈R2
ε(g1)

J1(g1, g2).

Theorem VI.1. For the binary BDQCD Stackelberg game, the Stackelberg cost J1∗ is 1
(|N |−M)I

when |N | > M and zero elsewhere; and for any ε > 0, the |N |-voting rule is the ε-Stackelberg

equilibrium strategy for the leader.

Proof. From Lemma VI.1, for the converse J1∗ ≥ 1
(|N |−M)I

it suffices to construct an attack ǵ2

such that for any g1 ∈ G1, we have

J1(g1, ǵ2) ≥
1

(|N | −M)I
, (81)
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when |N | > M . This is valid from the proof of Theorem IV.1 by choosing ǵ2 as the proposed

reverse attack. On the other hand, the achievability comes from (11). That is, the |N |-voting

rule, which uses only 1 bit from each sensor, achieves

max
g2∈R2

ε

(

τs
(|N|)

(h)
)

J1
(

τ s(|N |)(h), g2
)

=
1

(|N | −M)I
, ∀ε > 0, (82)

by selecting local threshold h for the worst case attack (where all compromised sensors send

“1” always) such that

A(τ s(|N |)(h), g2) ≥ γ, ∀g2 ∈ R2
ε

(

τ s(|N |)(h)
)

. (83)

Then J1∗ ≤ 1
(|N |−M)I

and it concludes the proof.

We now consider Q > 1 and define the multi-hypothesis BDQCD Stackelberg game. From the

detection delay defined in (5) and false alarm/isolation defined in (6), we define the corresponding

performance metrics under strategy (g1, g2) as

D(g1, g2) := sup
ν

sup
q∈[Q]

ess supEq,g2
ν [(T − ν)+|Xν

1]. (84)

A(g1, g2) := inf
q∈[Q]+

inf
q̂∈[Q]\{q}

E
q,g2
0 [T q̂]. (85)

Unfortunately in this case, we are unable to prove results similar to Lemma VI.1 with the

follower’s cost J2(g1, g2) = A(g1, g2). The main difficulty is that when ν = 0, one needs to

consider jointly the mean time to a false alarm and that to a false isolation, when it comes to

constructing an attack ǵ2. Therefore, we instead define J2(g1, g2) = −J1(g1, g2) and show the

following result.

Theorem VI.2. For multi-hypothesis BDQCD Stackelberg game, the Stackelberg cost is J1∗ =

1
(|N |−M)I∗

when |N | > M and zero elsewhere; and for any ε > 0, the simultaneous |N |-th alarm

is the ε-Stackelberg equilibrium strategy for the leader.

Proof. In this case, J1∗ in (79) becomes

inf
g1∈G1

sup
g2∈G2

J1(g1, g2) (86)

If we can construct an attack ǵ2 such that for any g1 ∈ G1, J
1(g1, ǵ2) ≥ 1

(|N |−M)I
, and then

supg2∈G2
J1(g1, g2) ≥ J1(g1, ǵ2) ≥ 1

(|N |−M)I
by definition. The game solution simply follows

from the proof of Theorem V.1 and V.2 (a) by choosing ǵ2 as our reverse attack for the multi-

hypothesis case in Section V-B1.
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VII. CONCLUSIONS

In this paper, the problem of BDQCD has been studied, where a fusion center sequentially

monitors an abrupt event via distributed sensors which might be compromised. Both the binary

hypothesis and multi-hypothesis cases have been considered. For the binary case, a novel converse

bound for the first-order asymptotic detection delay performance in the large mean time to a

false alarm regime has been proved. By comparing the converse bound and the first-order scaling

achieved by the existing consensus rule, we have characterized the fundamental limit of binary

BDQCD in the large mean time to a false alarm regime (or the small false alarm rate regime

in a sense). For the multi-hypothesis BDQCD, the novel converse has been generalized from

the binary case and the optimal first-order asymptotic performance has again been characterized.

Along with establishing this fundamental result, two novel families of stopping rules have been

proposed, namely the multi-shot d-th alarm and the simultaneous d-th alarm. The former is

much more energy-efficient and bandwidth efficient while the latter can achieve asymptotically

optimal performance under sufficient link bandwidth whenever there are more honest sensors than

compromised ones. Finally, a leader-follower Stackelberg game has been formulated based on

the BDQCD problem discussed. The asymptotically optimal stopping rule and the asymptotically

worst attack proposed for BDQCD have led us to the game solution, in which the leader adopts

the proposed asymptotically optimal stopping rule (i.e., the simultaneous rule) and the follower

employs the corresponding asymptotically worst attack.

APPENDIX A

LEMMAS

In this appendix, some useful lemmas are presented and their proofs are given.

Lemma A.1. For any decision rule T , ν ≥ 0, q ∈ [Q], and attack strategy g,

ess supEq,g
ν [(T − ν)+ | Xν

1] = ess supEq,g
ν [T − ν | T > ν, X

ν
1]. (87)

Proof: For any decision rule T , ν ≥ 0, q ∈ [Q], and attack strategy g, consider the subset

S of RK×ν on which T > ν. By the definition of S, observe that

P
q,g
ν [T > ν | Xν

1] =











1, on S,

0, on Sc.
(88)
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Also, note that Eq,g
ν [(T − ν)+ | Xν

1] is well-defined on R
K×ν, and by definition constantly zero

on Sc. On the other hand,

E
q,g
ν [T − ν | T > ν, X

ν
1] (89)

is well-defined only on S; specifically, since P
q,g
ν [T > ν | X

ν
1] = 0 on Sc, the conditional

probability needed to evaluate (89) is not well-defined on Sc.

Now, by the law of total expectation,

E
q,g
ν [(T − ν)+ | Xν

1]

= E
q,g
ν [(T − ν)+ | T > ν, X

ν
1] P

q,g
ν [T > ν | Xν

1]

+ E
q,g
ν [(T − ν)+ | T ≤ ν, X

ν
1] P

q,g
ν [T ≤ ν | Xν

1]

= E
q,g
ν [T − ν | T > ν, X

ν
1] on S, (90)

where the last equality follows from (88). Since E
q,g
ν [(T − ν)+ | Xν

1] is constantly zero on Sc,

the desired result is a direct consequence of (90).

Lemma A.2. In binary genie-aided BCQCD, for any general (not necessarily masked symmetric)

fusion rule T ′({Xt}t≥1), there is a masked symmetric rule T ({Xt}t≥1) that is not worse than

T ′({Xt}t≥1).

Proof: The proof is a constructive one. Recall we have defined π : [K] → [K] a masked

permutation function that permutes the first 2M entries while keeps the remaining |N |−M entries

unchanged. Let Π2M be the collection of all (2M ! in total) such π. For Xt = [X1
t , . . . , X

K
t ], we

slightly abuse the notation to write π(Xt) = [X
π(1)
t , . . . , X

π(K)
t ]. Let

T ({Xt}t≥1) =
1

2M !

∑

π∈Π2M

T ′({π(Xt)}t≥1). (91)

Following the proof of part 1 of [14, Lemma 4.2], one can show that T ({Xt}t≥1) is indeed a

masked symmetric strategy. Now the detection delay Dgenie[T ({Xt}t≥1)] is

sup
s∈S,ν

ess supEs
ν

[(

1

2M !

∑

π∈Π2M

T ′({π(Xt)}t≥1)− ν

)+ ∣
∣

∣

∣

X
ν
1

]

.
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Thus Dgenie[T ({Xt}t≥1)] is no longer than

1

2M !

∑

π∈Π2M

sup
s∈S,ν

ess supEs
ν

[

(T ′({π(Xt)}t≥1)− ν)+|Xν
1

]

(a)
=

1

2M !

∑

π∈Π2M

sup
s∈S,ν

ess supEs◦π−1

ν

[

(T ′({Xt}t≥1)− ν)+|Xν
1

]

(b)
=

1

2M !

∑

π∈Π2M

sup
s′∈S,ν

ess supEs′

ν

[

(T ′({Xt}t≥1)− ν)+|Xν
1

]

=
1

2M !

∑

π∈Π2M

Dgenie[T
′({Xt}t≥1)] = Dgenie[T

′({Xt}t≥1)]. (92)

Note that essential supremum of the right-hand side of (a) is taken under the probability measure

whose density is specified by (17) under θ = 0 and the compromised group assignment s ◦ π−1.

Then (a) can be proved similar to (21a) by the fact

E
s
ν

[

(T ′({π(Xt)}t≥1)− ν)
+
∣

∣

∣
X

ν
1

]

(x) =

E
s◦π−1

ν

[

(T ′({Xt}t≥1)− ν)
+
∣

∣

∣
X

ν
1

]

(π(x)), ∀x ∈ R
K×ν

since the permutation π(.) is one-to-one; and (b) is due to the fact that {s◦π−1|s ∈ S} = S. We

can similarly show that for the mean time to false alarm of the new rule, Agenie[T ({Xt}t≥1)] ≥
Agenie[T

′({Xt}t≥1)]. Then we conclude that the masked symmetric strategy T ({Xt}t≥1) is at

least as good as T ′({Xt}t≥1).

Lemma A.3. In multiple-hypothesis genie-aided BCQCD, for any general (not necessarily

masked symmetric) fusion rule T ′({Xt}t≥1), there is a masked symmetric rule T ({Xt}t≥1) that

has longer mean time to a false alarm or a false isolation than T ′({Xt}t≥1).

Proof: Again, the symmetrized rule T is formed as (91) in the binary BCQCD. It is obvious
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that

Agenie[T ] = inf
q∈[Q]+

inf
s∈S

inf
q̂∈[Q]\{q}

E
q,s
0 [T q̂({Xt}t≥1)]

= inf
q∈[Q]+

inf
s∈S

inf
q̂∈[Q]\{q}

E
q,s
0

[

1

2M !

∑

π∈Π2M

T ′q̂({π(Xt)}t≥1)

]

≥ 1

2M !

∑

π∈Π2M

inf
q∈[Q]+

inf
s∈S

inf
q̂∈[Q]\{q}

E
q,s
0

[

T ′q̂({π(Xt)}t≥1)
]

=
1

2M !

∑

π∈Π2M

inf
q∈[Q]+

inf
s∈S

inf
q̂∈[Q]\{q}

E
q,s◦π−1

0

[

T ′q̂({Xt}t≥1)
]

=
1

2M !

∑

π∈Π2M

inf
q∈[Q]+

inf
s′∈S

inf
q̂∈[Q]\{q}

E
q,s′

0

[

T ′q̂({Xt}t≥1)
]

=
1

2M !

∑

π∈Π2M

Agenie[T
′] = Agenie[T

′]. (93)

As a remark, the above proof generalizes that for the mean time to false alarm part for the binary

BCQCD which is omitted in Lemma A.2.

Lemma A.4. For any centralized multi-sensor and (Q + 1)-hypothesis QCD rule T̃ , subject to

A[T̃ ] ≥ γ, the detection delay is lower-bounded by

D[T̃ ] &
log γ

Ĩ∗
, as γ → ∞,

where Ĩ∗ is defined in (44).

Proof: One can follow the same arguments in the proof of [6, Theorem 2] to show this

Lemma. Specifically, for any q ∈ [Q], take an arbitrary εq ∈ (0, 1). We extend the sequence of

additional stopping variables T̃a,0 := 0 < T̃a,1 < T̃a,2 < ... introduced in the beginning of the

proof of [6, Theorem 2] into multi-sensor version as

T̃a,i+1 = max
q∈[Q]

T̃ q
a,i+1,

T̃ q
a,i+1 = inf

{

n ≥ T̃i + 1 :
P̃q(X̃T̃i+1)...P̃q(X̃n)

P̃0(X̃T̃i+1)...P̃0(X̃n)
≤ εq

}

.

Then the rest of the proof simply follows [6].
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APPENDIX B

PROOF OF PROPOSITION V.1

To prove (58) and (60), we note that in the worst case, all the compromised sensors can

raise alarms about the same hypothesis continuously. This implies that as soon as d − M ,

d ∈ {M + 1, ..., |N |}, honest sensors raise alarms of the same hypothesis, the compromised

sensors can cooperatively enforce a false alarm event. If the fusion center stops only once, for

the false isolation, it may declare the correct decision before the first σq̂
(d−M)(h) for τm(d)(h) (or

S q̂
d−M(h) for τ s(d)(h)) and then T q̂ = ∞ in (6), which results in a lower bound instead of equality

in (58) (and (60)). When the fusion center stops multiple times, recall that in both τd(h) and

τ s(d)(h), the fusion center resets local CUSUM matrices of all sensors to the all zero matrix after

each stop time. The mean of false alarm or isolation time T q̂ of τd(h) (respectively τ s(d)(h))

is clearly lower bounded by that obtained by applying τd(h) (respectively τ s(d)(h)) but without

reset, which corresponds to the right hand side of (58) (respectively (60)).

For the detection delay (5), the worst-case attack G for both the proposed stopping algorithms

happens when all compromised sensors always output local decisions corresponding to H0.

Moreover, we note that both the global decision rules mentioned above are non-decreasing

functions in each entry of local CUSUM matirx Y k
t (q, j) in (8) and the worst CUSUM statistic

that the pre-change observations can impose is Y k
t (q, j) = 0, t ≤ ν. Hence, for the proposed

algorithms, in the worst case, T is not a function of previous observations and Lemma 3 in [13]

can be applied to show the equivalence between (5) and

D[T ] = sup
q∈[Q]

sup
g

E
q,g
0 [T ], (94)

which corresponds to the scenario where the change occurs at t = 0. We therefore only have to

consider as the worst-case expected detection delay in the sequel. For mulit-shot D[τm(d)(h)] in

(59), the fusion center has to wait for d honest sensors accepting the true Hq. However, false

isolation qf 6= q may still happens if σq′

(d)(h) < σq
(d)(h), q

′ ∈ [Q] \ {q}. Moreover, the longest

extra delay caused by ties is Q − 1. Thus we have the upper-bound in (59). The upper-bound

for simultaneous D[τ s(d)(h)] in (61) can be obtained similarly.
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APPENDIX C

PROOF OF LEMMA V.1

Fix q ∈ [Q] and k ∈ N . For any j ∈ [Q]+ with j 6= q, the CUSUM statistics Y k
t (q, j) at

sensor k can be decomposed as Y k
t (q, j) = Zk

t (q, j) + ξkt (q, j), where

Zk
t (q, j) :=

t
∑

s=1

log

(

Pq(X
k
s )

Pj(Xk
s )

)

, ξkt (q, j) := − min
0≤s<t

Zk
s (q, j).

Under Pq, Zk(q, j) is a random walk with drift I(q, j) > 0 and variance σ2(q, j) < ∞. It

follows that Zk
t (q), defined as (Zk

t (q, 1), . . . , Z
k
t (q, q − 1), Zk

t (q, 0), Z
k
t (q, q + 1), . . . , Zk

t (q, Q)),

is a Q-dimensional random walk. Also Y k
t (q), which is similarly defined as Zk

t (q) by replacing

Zk
t (q, j) with Y k

t (q, j), is a Q-dimensional perturbed random walk, as discussed in [26, Section

6.10]4.

Now for any j ∈ [Q]+ with j /∈ {q, j∗q}, at time index σ
q,j∗q
k (h) in (62), the CUSUM statistics

for hypotheses (q, j)

Y k

σ
q,j∗q
k

(h)
(q, j)

h
→ I(q, j)

I(q, j∗q )
=

I(q, j)

Iq
as h → ∞, Pq-a.s.,

by [26, Theorem 10.1, p.206]. This, together with Assumption V.1, implies that it holds Pq-a.s.

that ∀j ∈ [Q]+ \ {q, j∗q}
Y k

σ
q,j∗q
k

(h)
(q, j)

h
> 1, (95)

as h is large enough. Now, observe that from (56), σq
k(h) = inf

{

t ∈ N : min0≤j≤Q, j 6=q Y
k
t (q, j) ≥ h

}

,

and the RHS equals to

inf

{

t ∈ N : min
0≤j≤Q, j /∈{q,j∗q }

Y k
t (q, j) ≥ h and Y k

t (q, j
∗
q ) ≥ h

}

= σ
q,j∗q
k (h), as h is large enough, Pq-a.s.,

where the last line follows from (95). Since this relation is true for all k ∈ N and N is a finite

set, we conclude that σq
k(h) = σ

q,j∗q
k (h) for all k ∈ N as h is large enough, Pq-a.s. This concludes

the proof for part (i).

4Note that while the exposition in [26, Section 6.10] focuses on two-dimensional perturbed random walks, the same results

there can be generalized to multi-dimensional cases as stated in [26, Remark 10.1, p. 208].
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For part (ii), from (57), Sq
d(h) is equal to

inf
{

t ∈ N : min
0≤j≤Q, j 6=q

Y k
t (q, j) ≥ h ∀k ∈ L,

for some L ⊂ [N ], |L| = d
}

.

Then from (95), Sq
d(h) becomes

inf
{

t ∈ N :Y k
t (q, j

∗
q ) ≥ h ∀k ∈L, for someL⊂ [N ], |L|=ℓ

}

= inf
{

t ∈ N : Y
(K−d+1)
t (q, j∗q ) ≥ h

}

.

Then as h → ∞, Pq-a.s. we have Sq
d(h) = S

q,j∗q
d (h).

APPENDIX D

PROOFS OF THEOREMS V.3 AND V.4

We first prove Theorem V.3.

Proof: Fix a 1 ≤ d ≤ |N |. From [15, Theorem 3.1], we know that as h → ∞,

E
q,∅
0 [σ

q,j∗q
(d) (h)] =

h

Iq
+Dq

d:|N |

√
h(1 + o(1)). (96)

Since σq
(d)(h) and σ

q,j∗q
(d) (h) are both nonnegative and non-decreasing in h, the monotone conver-

gence theorem yields

lim
h→∞

E
q,∅
0 [σq

(d)(h)] = E
q,∅
0

[

lim
h→∞

σq
(d)(h)

]

= E
q,∅
0

[

lim
h→∞

σ
q,j∗q
(d) (h)

]

= lim
h→∞

E
q,∅
0

[

σ
q,j∗q
(d) (h)

]

, (97)

where the second equality follows from Part (i) of Lemma V.1. The above two equations together

show (64). Finally, plugging (64) into (59) and observing that Q− 1 vanishes as h → ∞ results

in (65).

We then provide a proof to Theorem V.4.

Proof: Fix a 1 ≤ d ≤ |N |. From [15, Theorem 3.2], it follows that as h → ∞,

E
q,∅
0 [S

q,j∗q
d (h)] ≤ h

Iq
+Dq

d:|N |

√
h(1 + o(1)). (98)

Since Sq
d(h) and S

q,j∗q
d (h) are both nonnegative and non-decreasing in h, the monotone conver-

gence theorem yields

lim
h→∞

E
q,∅
0 [Sq

d(h)] = E
q,∅
0

[

lim
h→∞

Sq
d(h)

]

= E
q,∅
0

[

lim
h→∞

S
q,j∗q
d (h)

]

= lim
h→∞

E
q,∅
0

[

S
q,j∗q
d (h)

]

, (99)

where the second equality follows from Part (ii) of Lemma V.1. The previous two equations

together then give (66). Finally, plugging (66) into (61) results in (67).
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APPENDIX E

PROOFS OF THEOREMS V.5 AND V.6

We first provide a proof to Theorem V.5.

Proof: We assume that whenever a tie happens, every competing hypothesis becomes

acceptable simultaneously at the fusion center. This would only make the mean time to a false

alarm or a false isolation smaller; hence, is valid for deriving lower bounds.

Let qa be the actual hypothesis index and

q∗ = arg min
q̂∈[Q]\{qa}

E
qa,∅
0 [σq̂

(d−M)(h)]. (100)

Recall that P
qa,∅
0 is the probability measure when the change of type Hqa happens at ν = 0 and

the compromised sensors are absent. With a fixed d, we have

E
qa,∅
0 [σ̃q∗

(d−M)(h)] =
∞
∑

t=0

P
qa,∅
0

(

σ̃q∗

(d−M)(h) > t
)

. (101)

Now, let Nq(s) , {k ∈ N : σq
k(h) ≤ s} be the set of honest sensor indices with σq

k(h) ≤ s. For

every t ∈ N, the event σq∗

(d−M)(h) ≤ t happens if and only if the following is true,

t
⋃

s=1

{(

Q
⋂

q 6=q∗

|Nq(s)| < d−M

)

⋂

{

|Nq∗(s)| ≥ d−M
}

}

. (102)

Then, we have

P
qa,∅
0

(

σq∗

(d−M)(h) ≤ t
)

≤ P
qa,∅
0

(

t
⋃

s=1

|Nq∗(s)| ≥ d−M

)

= P
qa,∅
0 (|Nq∗(t)| ≥ d−M) (103)

Also, we know that |Nq∗(t)| ≥ d−M happens if and only if there are sensor indices k1, . . . , kd−M ∈
N with σq∗

kj
(h) ≤ t for j ∈ [d−M ]. We further bound (103) by union bound as follows,

P
qa,∅
0 (|Nq∗(t)| ≥ d−M) ≤

∑

k1,...,kd−M∈N

P
qa,∅
0

(

d−M
⋂

j=1

σq∗

kj
(h) ≤ t

)

=
∑

k1,...,kd−M∈N

d−M
∏

j=1

P
qa,∅
0

(

σq∗

kj
(h) ≤ t

)

=





|N |
d−M





(

P
qa,∅
0

(

σq∗

1 (h) ≤ t
))d−M

. (104)
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where the first and second equalities are from the independent and identical distributions of

different sensor observations, respectively.

Note that from the definition of matrix CUSUM in (56), it follows that

P
qa,∅
0

(

σq∗

1 (h) ≤ t
)

= P
qa,∅
0

(

t
⋃

s=1

{

{

Y 1
s,q∗ ≥ h, q∗ = arg max

q′∈[Q]
Y 1
t,q′

} s−1
⋂

s′=1

max
q′∈[Q]

Y 1
s′,q′ < h

})

≤
t
∑

s=1

P
qa,∅
0

(

{

Y 1
s,q∗ ≥ h, q∗ = arg max

q′∈[Q]
Y 1
t,q′

} s−1
⋂

s′=1

max
q′∈[Q]

Y 1
s′,q′ < h

)

≤
t
∑

s=1

P
qa,∅
0

(

Y 1
s,q∗ ≥ h

)

=
t
∑

s=1

P
qa,∅
0

(

⋂

0≤j≤Q,j 6=q∗

Y 1
s (q

∗, j) ≥ h

)

≤
t
∑

s=1

P
qa,∅
0

(

Y 1
s (q

∗, 0) ≥ h
)

. (105)

Now, we know from [19] that P
qa,∅
0 (Y 1

s (q
∗, 0) ≥ h) ≤ e−h. Thus, from (104) and (105), we have

P
qa,∅
0

(

σq∗

(d−M)(h) ≤ t
)

≤





|N |
d−M



 td−Me−(d−M)h. (106)

Plugging (106) into (101) results in

E
qa,∅
0 [σq∗

(d−M)(h)] >

∞
∑

t=0



1−





|N |
d−M



 td−Me−(d−M)h





+

≥
∫ ∞

0



1−





|N |
d−M



 td−Me−(d−M)h





+

dt, (107)

where the second inequality comes from the non-increasing property in t of

1−





|N |
d−M



 td−Me−(d−M)h. (108)

Finally, noticing that the lower bound in (107) is not a function of the actual hypothesis qa

concludes the proof of A[τm(d)(h)].

In what follows, we present a proof to Theorem V.6.

Proof: Again, let qa be the actual hypothesis and let

q∗ = arg min
q̂∈[Q]\{qa}

E
qa,∅
0 [S q̂

d−M(h)]. (109)

With a fixed d, we have

E
qa,∅
0 [S q∗

(d−M)(h)] =
∞
∑

t=0

P
qa,∅
0

(

S q∗

(d−M)(h) > t
)

. (110)
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Note that for every t ∈ N, the event S q∗

(d−M)(h) ≤ t happens if and only if the following event

is true,
t
⋃

s=1

{(

Q
⋂

q 6=q∗

Y (K−(d−M)+1)
s,q < h

)

⋂

Y
(K−(d−M)+1)
s,q∗ ≥ h

}

. (111)

Then, we have

P
qa,∅
0

(

S q∗

(d−M)(h) ≤ t
)

≤ P
qa,∅
0

(

t
⋃

s=1

Y
(K−(d−M)+1)
s,q∗ ≥ h

)

≤
t
∑

s=1

P
qa,∅
0

(

Y
(K−(d−M)+1)
s,q∗ ≥ h

)

(112)

Also, we know that event Y
(K−(d−M)+1)
s,q∗ ≥ h happens if and only if there are d − M sensors

with indexes k1, . . . , kd−M ∈ N which have local decisions q∗ at time index s. Therefore,

P
qa,∅
0

(

Y
(K−(d−M)+1)
s,q∗ ≥ h

)

=
∑

k1,...,kd−M∈N

d−M
∏

j=1

P
∅
qa

(

Y
kj
s,q∗ ≥ h

)

=





|N |
d−M





(

P
qa,∅
0

(

Y 1
s,q∗ ≥ h

)

)d−M

(113)

where the first and second equalities are from the independent and identical distributions of

different sensor observations, respectively. Now as in (105), it follows that

P
qa,∅
0

(

Y 1
s,q∗ ≥ h

)

≤ P
qa,∅
0

(

Y 1
s (q

∗, 0) ≥ h
)

≤ e−h (114)

Thus, from (112)-(114),

P
qa,∅
0

(

S q∗

(d−M)(h) ≤ t
)

≤





|N |
d−M



 te−(d−M)h. (115)

Plugging (115) into (110) and noticing that the bound in (115) is independent of qa completes

the proof for the lower bound on A(τ s(d)(h)).
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