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To characterize transport in a deterministic dynamical system is to compute exit time distributions

from regions or transition time distributions between regions in phase space. This paper surveys the

considerable progress on this problem over the past thirty years. Primary measures of transport for

volume-preserving maps include the exiting and incoming fluxes to a region. For area-preserving

maps, transport is impeded by curves formed from invariant manifolds that form partial barriers,

e.g., stable and unstable manifolds bounding a resonance zone or cantori, the remnants of destroyed

invariant tori. When the map is exact volume preserving, a Lagrangian differential form can be

used to reduce the computation of fluxes to finding a difference between the actions of certain key

orbits, such as homoclinic orbits to a saddle or to a cantorus. Given a partition of phase space into

regions bounded by partial barriers, a Markov tree model of transport explains key observations,

such as the algebraic decay of exit and recurrence distributions. VC 2015 AIP Publishing LLC.

[http://dx.doi.org/10.1063/1.4915831]

The problem of transport in dynamical systems is to

quantify the motion of collections of trajectories between

regions of phase space with physical significance, for

example, to determine chemical reaction rates, mixing

rates in a fluid, or particle confinement times in an accel-

erator or fusion plasma device. For Hamiltonian systems

with a phase space containing regular (elliptic islands

and tori) and irregular (chaotic) components, transport is

impeded by partial barriers bounding resonance zones or

by remnants of invariant tori. In the former case, the bar-

riers are formed from the broken separatrices of an

unstable periodic orbit, and in the latter, they are formed

from similar stable and unstable manifolds of a remnant

torus—a cantorus. Thirty years ago, MacKay, Meiss, and

Percival discovered that cantori form robust partial bar-

riers for area-preserving maps: in any region of phase

space, the most resistant barriers are the cantori. In this

review, I discuss this work and survey subsequent devel-

opments. While much has been done, there are still many

open questions.

I. INTRODUCTION

In this article, I attempt to survey the history of the

theory of transport in deterministic, conservative dynamics,

as well as to discuss some of the many questions that remain.

My interest in this subject arose from a collaboration with

MacKay and Percival that began just over thirty years ago

with the publication of two papers on “Transport in

Hamiltonian Systems.”85,86 Like many fruitful ideas, there

was some synchronicity to this discovery: we learned at the

“Dynamics Days” meeting in June of 1983 [this was the

sixth Dynamics Days and the fourth in Enschede, organized

Robert Helleman] that David Bensimon and Leo Kadanoff

were working on a similar approach.12 I remember that when

Robert, Ian, and I celebrated the acceptance of our papers,

we thought that they contained ideas for at least ten years of

additional research. Some thirty years later, I believe there

are still many fruitful, open problems in this field. Much has

been done: our articles have been cited 697 times, according

to the Web of Science. The work of Vered Rom-Kedar and

Stephen Wiggins, which introduced the term lobe dynamics
and (with Anthony Leonard) applied these ideas to fluid mix-

ing,98,99 has also been extensively cited (443 times).

The problem of deterministic transport also has been

studied frequently in the first 24 volumes of Chaos: An
Interdisciplinary Journal of Nonlinear Science. Indeed, the

terms turnstile or lobe have been mentioned in 114 articles,

beginning with an article on transport in a four-dimensional

map in the very first issue.7 It would be impractical to try to

review all of this work. Since I wrote a review in 1992,74 I

will concentrate here on describing some of the more recent

advances as well as on posing some questions that I hope

will be answered before the 50th anniversary of Chaos.

However, to make this paper coherent, it is necessary to tell

some of the early story.

A theory of transport seeks to characterize the motion of

groups of trajectories from one region of phase space to another.

Typical dynamical systems have both regular and chaotic (irreg-

ular) trajectories. The question “Where does this trajectory go?”

is a particularly difficult one to answer for chaotic trajectories

since they—by definition—exhibit sensitive dependence upon

initial conditions. The intermixture of regular and irregular dy-

namics is particularly evident in the Hamiltonian case, where

stable periodic orbits are surrounded by elliptic islands that are

embedded in the chaotic sea as a fractal.

So how does one study transport? Our original paper86

set out a method, as follows:

In this paper, we study transport in the irregular

components and initiate a theory of the organization

inherent in the apparent chaos. This is achieved bya)Electronic address: jdm@colorado.edu
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recognizing a natural division of the irregular components

into regions separated by partial barriers formed by

joining the gaps in invariant Cantor sets. We discuss the

mechanism of transport between these regions.

There were many antecedents to these ideas. For exam-

ple, in his paper, introducing the quadratic area-preserving

map, H�enon computed the set of orbits that do not escape to

infinity, a kind of anti-transport result.49 More direct antece-

dents include the development of transition state theory in

chemistry91,96,117 and especially the notions of Wigner for

finding surfaces of minimal flux.53,112 For a chemical reac-

tion that has no activation energy and for which classical

mechanics is a good approximation, Wigner thought that

there should be a surface in phase space that distinguishes

between dissociated and reacted states. Unless the surface

has “wrinkles,” that is, unless there are trajectories that cross

it twice during one collision (similar to what MacKay later

called “sneaky returns”68), then the one-way flux across this

surface gives a bound on the reaction rate.

For the purposes of this exposition, consider a map f :
M! M on some n-dimensional manifold M. Most of the

ideas here can be applied directly to flows, either directly

using a Poincar�e or stroboscopic section or by extension to

continuous time.68,82,92 For a map, a trajectory is a sequence

fztg ¼ f…; zj; zjþ1;…g, such that zt 2 M and

ztþ1 ¼ f ðztÞ:

We will always assume that f is a homeomorphism, and typi-

cally that it is a diffeomorphism. In addition, we will suppose

that f preserves a volume measure l: for any measurable set

A

lðf ðAÞÞ ¼ lðAÞ: (1)

When the map is a diffeomorphism, volume can be com-

puted using a differential form

X ¼ qðzÞdz1 ^ dz2 ^… ^ dzn; (2)

with density q, i.e., lðAÞ ¼
Ð

AX. Then, f preserves volume

when

f �X ¼ X: (3)

Here, the pullback, f �, is the local action of the map f on dif-

ferentials. An easy mnemonic for how this works is to denote

the image as a function z0ðzÞ ¼ f ðzÞ, and then f �dz ¼ dz0 is

the differential of this function, i.e., f �dzi ¼
P

jDfi;jðzÞdzj.

Here, Dfi;j ¼ @f i=@zj is the Jacobian matrix of f. The implica-

tion is that (3) for the form (2) implies that

detðDf ðzÞÞqðf ðzÞÞ ¼ qðzÞ:

For the common case that qðzÞ ¼ 1, this implies that the

Jacobian of f has determinant one.

II. AREA-PRESERVING MAPS

Most of the theory of transport has been developed for

the area-preserving case. For an area-preserving map, there

are coordinates z ¼ ðx; yÞ such that the preserved volume

form is X ¼ dy ^ dx.122 The well-studied Chirikov standard

map on the cylinder M ¼ S�R

x0; y0
� �

¼ xþ y0 mod 1; y� k

2p
sin 2pxð Þ

� �
(4)

is one such family. A typical phase portrait for this map is

shown in Fig. 1. The standard map is an example of a twist
map on the cylinder: a map for which the image of a vertical

line is a graph over the angle.74 The powerful Aubry-Mather

theory applies to this class of maps.9,69 Another example is

H�enon’s family of area-preserving maps

ðx0; y0Þ ¼ ð�yþ 2ða� x2Þ; yÞ: (5)

Area-preserving maps are a special case of symplectic

maps on a 2d-dimensional manifold that preserve a closed

two-form. Symplectic maps are of interest because they arise

as canonical Poincar�e maps for Hamiltonian flows.74 Thus,

the theory of Ref. 86 applies to the calculation of transport in

a two degree-of-freedom Hamiltonian system and has appli-

cations to mechanics, chemical reactions,91,96,117 plasma

confinement,15,50 celestial mechanics,54,78,110 particle accel-

erator design,114 and condensed matter.105 More generally,

volume-preserving maps arise as maps between sections or

as stroboscopic maps for incompressible flows. Most physi-

cal applications correspond to three-dimensional flows such

as the motion of a passive scalar in a fluid20,46,116 or mixing

in granular media.103 There are also nontrivial examples of

periodically time-dependent two-dimensional flows, such as

FIG. 1. Phase portrait of the standard map (4) for k¼ 0.975 on the domain

[�0.5, 0.5]� [�0.5, 0.5]. Black trajectories show island chains associated

with various elliptic periodic orbits. There are no rotational invariant circles

for this value of k. The red trajectory, started near the hyperbolic fixed point

at (0.5, 0.0), is iterated 106 times and appears to be confined by rotational

circles; however, it will escape after 2.3� 109 steps. The blue and yellow

trajectories are similarly only temporarily confined. This figure was gener-

ated with the StdMap application.77
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Aref’s blinking vortex6 for which the area-preserving theory

is directly applicable.

A. Periodic orbits and resonance zones

Periodic orbits for area-preserving maps are typically

born in pairs, one a saddle (hyperbolic) and the other elliptic.

For example, the standard map (4) for k¼ 0 becomes the

trivial shear ðx; yÞ7!ðxþ y; yÞ; it is integrable with action

variable y. For this map, each circle on which y is rational is

composed of period-n orbits since

ðxn; ynÞ ¼ f nðx0; y0Þ
¼ ðx0 þ ny0 mod 1 ; y0Þ ¼ ðx0; y0Þ;

when y0 ¼ m
n with m 2 Z and n 2N. The minimal period of

the orbit is n if gcdðm; nÞ ¼ 1. These periodic orbits then

have rotation number x ¼ m
n , and we call them (m, n)-orbits.

When the integrable shear is perturbed, at least two

orbits survive for each rational rotation number; these are

called the Birkhoff orbits, since they are predicted by the fa-

mous Poincar�e-Birkhoff theorem.74 In Fig. 1, such orbits can

be seen at the centers of island chains. For the case of a twist
map, like (4), Aubry-Mather theory shows that these orbits

always exist; they are the so-called minimizing and minimax
orbits because they can be obtained from a variational princi-

ple based on the action.9,69 The minimizing orbit is hyper-

bolic whenever it is a nondegenerate minimum of the action,

and the minimax orbit is elliptic when the perturbation is

small enough.81

An elliptic-hyperbolic pair of (m, n)-orbits forms the

skeleton of a resonance zone consisting of n islands sur-

rounding the elliptic points with boundaries formed from the

stable and unstable manifolds of the saddle.31,87 One can

view an island chain as a region of phase space in which the

local rotation number is, roughly speaking, m
n . Computational

methods for delineating resonances include Laskar’s fre-
quency map60 and the width of an orbit relative to a given

rotation number.34

Geometrically, one can define a region of phase space

that is bounded by broken separatrices of the saddle, an

example is shown in Fig. 2. The boundary is formed using

points on primary homoclinic orbits. Recall that a homo-

clinic point

m 2 WuðhÞ \WsðhÞ

is primary if there are segments of stable, WsðhÞ, and unsta-

ble, WuðhÞ, manifold from the saddle h to m (that is, initial
segments) that intersect only at their endpoints30,99 (see Ref.

61 for a generalization to higher dimensions). The resonance

boundary in Fig. 2 consists of two initial segments of unsta-

ble manifold—for the “upper” and “lower” boundary—con-

nected to two initial segments of stable manifold at primary

homoclinic points. The region enclosed by the pair of broken

separatrices is the resonance zone. The switch from unstable

to stable manifold can occur at any point on the homoclinic

orbit fmtg; even though the resulting geometry depends on

this choice, the area of the resonance does not. In order for

an orbit to leave the resonance zone, it must pass through

either the upper, Eu or lower, El, exit set (we will say, more

about these in Sec. III A). Similarly, an orbit can enter the

zone only by first landing in the preimage of one of the

incoming sets, f�1ðIuÞ or f�1ðIlÞ. This construction can be

done for any pair of (m, n)-orbits; a (1, 3) resonance zone for

(4) is shown in Fig. 3.

FIG. 2. Resonance zone (shaded region) for the (0, 1) orbits of (4) for

k¼ 1.5. The boundary of the zone consists of two segments of unstable (red)

and two segments of stable (blue) manifold of the (0, 1) hyperbolic point

joined at the primary homoclinic points m6
1 . The upper and lower exit sets

(dark green) and their first image (gray hatching) and preimage (light green)

are shown and the preimage of the incoming sets (violet) is also shown.

FIG. 3. Resonance zone for the (1,3)-orbits of the standard map when

k¼ 1.5. The elliptic orbit (solid circles) is labeled {e0, e1, e2}, the hyperbolic

(solid squares) {h0, h1, h2}. The � symbols label a pair of (minimizing)

homoclinic orbits fm6
t g on the unstable (red) and stable (blue) manifolds of

the saddle. The switch from unstable to stable manifold island occurs at the

points m6
3 and their two preimages. The shaded regions are turnstiles com-

posed of an exit set, Eu (El) (dark grey) and the preimage of an incoming set

Iu (Il) (light grey).
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Each exit and incoming set is a lobe for the resonance,

and the set, Eu [ f�1ðIuÞ, is a turnstile: it acts like a rotating

door [The name “turnstile” was suggested to us by Carl

Murray]. For each iteration of the map, trajectories escape

through Eu and arrive from f�1ðIuÞ.

B. Cantori

The existence of invariant tori with sufficiently irrational

frequency vectors in Hamiltonian systems that are sufficiently

close to integrable is guaranteed by KAM theory.95 However,

KAM theory says nothing about what happens to these struc-

tures far from integrability. The existence of remnants of

these tori after they have been destroyed was first deduced by

Aubry and Percival using variational arguments.8,93 Percival

named the remnants cantori because—for an area-preserving

map—they are invariant Cantor sets. Every orbit on a canto-

rus has the same irrational rotation number.

Figure 4 shows the invariant circle of (4) with golden

mean rotation number, x ¼ /, at the threshold of its destruc-

tion, k ¼ kcrð/Þ � 0:97163540631,45 and at seven larger val-

ues of k where it has become a cantorus. For twist maps, the

projection of a cantorus onto the angle coordinate, x, is a

Cantor set on the circle, so it has a countably infinite set of

gaps. The orbit of each gap is a family of related gaps. For

the standard map, each cantorus appears to have one family,

and each gap grows continuously from zero as k increases

from kcrðxÞ. More generally, there may be more than one

family of gaps and invariant circles may reform.13

Mather and Aubry showed that for twist maps there is

an invariant set for each irrational rotation number that is ei-

ther an invariant circle or a cantorus.9,69 The same analysis

applies to optical Hamiltonian flows.44 It is not clear, how-

ever, whether maps that do not satisfy a twist condition have

cantori. Cantori do exist for a large class of maps close

enough to an anti-integrable limit.1,10

Question I (Nontwist Cantori). What is the fate of invar-
iant tori for area-preserving maps that do not satisfy a twist
condition? Are there “shearless” cantori for nontwist maps
like those studied by Ref. 41?

The anti-integrable limit also can be used to show that

certain higher-dimensional symplectic maps84 and higher-

order recurrence relations modeling crystal lattices have ana-

logues of cantori.56 However, Aubry-Mather theory has not

been generalized to these cases.

Question II (Higher-Dimensional Cantori). When an
invariant torus in a multi-dimensional symplectic map is
destroyed, does it immediately become a cantorus, or are
there other topological configurations such as Sierpinski
curves? The mechanism for destruction of two-tori in
volume-preserving maps seems analogous to the symplectic
case,37 but are there remnant cantori?

III. THE PROBLEM OF TRANSPORT

The inherent loss of predictability in chaotic dynamical

systems implies that computation of individual trajectories is

neither practical nor is it especially useful. A theory of trans-

port seeks to make predictions about the longtime evolution

of ensembles of trajectories and answer questions such as

“How long does it take, on average, to get from one region

to another?” or “What is the probability distribution of

escape times from a region?” Thus, for the chemical reaction

ABþ C! Aþ BC, the first region might correspond to the

separated reactants AB and C, and the second to the products

A and BC. In plasma physics, the first region may correspond

to the interior of a confinement device such as a tokamak

and escape to the divertor.

The first step in a theory of transport is the computation

of the flux across codimension-one surfaces. For chaotic

maps, this idea was used by Channon and Lebowitz24 who

computed escape times for H�enon’s quadratic map. They

used a broken separatrix of a period-five orbit to construct a

simple, closed curve through which orbits can escape. In this

section, I review the notions of flux and net flux for volume-

preserving and exact volume-preserving maps.

It is important to note that one of the fundamental meas-

ures of chaos, the Lyapunov exponent is not usually a good

measure for transport. In Ref. 86, we said:

The Lyapunov exponents give the rate at which a nice cat

in a region of phase space turns into a mixed-up cat. The

turnstile rate constants give the mean rate at which bits of

the cat are transported to regions of the phase space.

A. Exit sets and flux

A first step in a global theory of transport is to quantify

the motion of an ensemble for short times by computing the

flux of trajectories across codimension-one surfaces in phase

space. Suppose R is a region with a piecewise smooth

FIG. 4. Destruction of the golden mean invariant circle and creation of a

cantorus for the standard map. At k ¼ kcrð/Þ, there is an invariant circle (top

curve), but it is not smooth. Successive cantori, for k¼ 0.98 up to 1.04, are

displaced downward for clarity. The largest gap forms around x¼ 0. The dis-

played orbits are actually saddle periodic orbits with rational rotation num-

bers that are convergents to the golden mean, see Sec. IV C.
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boundary @R. When R is invariant, f(R)¼R, and @R is a

“complete” barrier. When R is “almost invariant,” its bound-

ary is a partial barrier: though trajectories may escape, the

leakage is slow. For a flow, the flux through a surface is com-

puted by integrating the normal component of the velocity

over the surface.68,82 For a map, the flux is the volume that

escapes from the region upon each iterate, i.e., the volume of

the exit set E � R—the subset whose first image is not in R

E ¼ fz 2 R j f ðzÞ 62 Rg ¼ fz 2 R j z 62 f�1ðRÞg
� Rn f�1ðRÞ; (6)

see Fig. 5(a). The flux of escaping orbits from R is just the

volume of the exit set

UðRÞ ¼ lðEÞ ¼
ð

E

X: (7)

Similarly, the incoming set I for a region R is the set of

points that have just entered

I ¼ Rn f ðRÞ:

Formally, R is almost invariant in the sense of measure

if UðRÞ � lðRÞ. One technique to compute almost invariant

sets uses the Perron-Frobenius operator; this idea was pio-

neered by Dellnitz and Junge.28 In lieu of this method, we

will construct regions using resonance zones and cantori, for

which the flux can be localized to turnstiles, see Sec. IV.

A volume form (2) X is exact if

X ¼ da (8)

for some ðn� 1Þ-form a. For example, the standard map (4)

is volume preserving with X ¼ dy ^ dx. Since x 2 S
1

is peri-

odic, we cannot integrate X with respect to this variable, but

the Liouville form a ¼ ydx is well-defined on the cylinder

and satisfies (8). When (8) holds, Stokes’s theorem can be

used to reduce volume integrals to surface integrals.

The boundary of the exit set, @E, is the union of two

oriented subsets U � @R and S � f�1ð@RÞ as sketched in

Fig. 5(a). For a resonance zone, these are pieces of unstable

and stable manifolds, recall Fig. 2. Assuming that the boun-

daries are chosen with an orientation consistent with that of

R, then @E ¼ U � S, and we can use (8) to rewrite (7) as

UðRÞ ¼ lðEÞ ¼
ð

E

da ¼
ð
@E

a ¼
ð
U
a�

ð
S
a: (9)

For two-dimensional maps, U and S are curves, and the line

integrals in (9) are more efficient to compute than the origi-

nal two-dimensional integral over E.

In a sense, the complete transport problem is solved if

one knows the orbits of E and I for each region of interest.

For example, the minimum transit time from A to B is the

first time that f tðEAÞ \ IB 6¼1. Similarly, a complete

description of transport through a region requires knowing

only the future history of the entering trajectories, i.e., the

sets f tðIÞ. These ideas form the basis for the theory of lobe
dynamics as formulated by Rom-Kedar and Wiggins.97,99 As

we will recall in Sec. V, this is especially useful in the study

of transport through resonance zones.

B. Exact maps and net flux

When a region R has finite measure, it is easy to see that

the net flux through @R vanishes, so that the measure of the

incoming and exit sets must be the same

lðIÞ ¼ lðRÞ � lðR \ f ðRÞÞ ¼ lðRÞ � lðf�1ðRÞ \ RÞ
¼ lðRÞ � lðR \ f�1ðRÞÞ ¼ lðEÞ;

where we used (1) and (6).

However, when the phase space is not contractible there

may exist closed surfaces that that do not bound a region.

For example, the standard map (4) models a kicked rotor

for which the canonical coordinate is an angle, and the

phase space is the cylinder S�R. A rotational circle is a

simple closed curve that is not contractible, for example,

C0 ¼ fðx; 0Þ : x 2 Sg. An area-preserving map on the cylin-

der need not have zero net flux through rotational circles; a

FIG. 5. Exit and Incoming Sets. (a) A region R, its exit set E with boundary

U � S, and incoming set I. Orientations of the boundaries are shown by the

arrows. (b) A rotational circle C on the cylinder and its image (dashed) and

preimage (dotted). The net flux vanishes when the region above C and below

f(C), labeled f(E), has the same area as that below C and above f(C), labeled I.
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simple example is the map f ðx; yÞ ¼ ðx; yþ 1Þ that shifts

each rotational circle upward but still has det Df ¼ 1.

Zero net flux is equivalent to exactness: a map f is exact
volume-preserving when there exists a Lagrangian form k
such that

f �a� a ¼ dk; (10)

where a satisfies (8) (recall the discussion of pullback in

Sec. I). The Lagrangian for a two-dimensional map is a zero-

form—a function—and is the discrete-time analog of the

continuous-time Lagrangian of mechanics. Indeed, for a

flow, k is the time-integral of the Lagrangian along a trajec-

tory between sections.82,115

For example, using a ¼ ydx, the standard map (4) is

exact with the Lagrangian

k x; yð Þ ¼
1

2
y02 þ k

4p2
cos 2pxð Þ; (11)

where y0ðx; yÞ ¼ y� k
2p sinð2pxÞ. This follows because

f �a� a ¼ y0dx0 � ydx ¼ y0dðxþ y0Þ � ydx

¼ y0dy0 þ y� k

2p
sin 2pxð Þ

� �
dx� ydx

¼ d
1

2
y02 þ k

4p2
cos 2pxð Þ

� �
;

the differential of (11). In our original work for area-

preserving twist maps, we wrote k ¼ Fðx; x0Þ, which is one

of the standard generating functions for canonical transfor-

mations.86 I first learned of the more general formulation

from Bob Easton.31

For n-dimensional maps k is an ðn� 2Þ-form. For exam-

ple, the ABC map36

x0

y0

z0

0
B@

1
CA ¼

xþ A sin zþ C cos y

yþ B sin x0 þ A cos z

zþ C sin y0 þ B cos x0

0
B@

1
CA; (12)

preserves the standard volume X ¼ dx ^ dy ^ dz, a fact that

is most easily seen by viewing it as the composition of

three shears, f ¼ sz 	 sy 	 sx, where, sxðx; y; zÞ ¼ ðxþ A sin z
þC cos y; y; zÞ, etc. Though it is natural to view (12) as a

map on the three-torus, it can also be thought of as a map on

the cover M ¼ T
2 �R. Now the volume form X is exact

with a ¼ zdx ^ dy, and (12) is also exact with Lagrangian

one-form

k ¼ A½sinðzÞðdx0 þ zdyÞ þ cosðzÞðdy� zdx0Þ

þB sinðx0Þdy0 þ C cosðy0Þdx0:

Here, the primed variables are to be thought of as the func-

tions defined in (12). Such a representation is especially per-

tinent when B;C� 1, since then z is an action-like variable

(invariant when B ¼ C ¼ 0), and one can use it to compute

fluxes that correspond to vertical motion.

It is also possible to generalize the idea of canonical

generating functions to generating forms for volume-

preserving transformations when a generalized twist condi-

tion is satisfied.62

Question III (Generating Forms). Can Lagrangian forms
be used for perturbation theory and near-integrable normal
forms, just as canonical generators are used for the symplectic
case? Can they be used to build volume-preserving integra-
tors, like those found for area-preserving maps in Ref. 115?

When f is homotopic to the identity, the net-flux

“across” a closed ðn� 1Þ-dimensional surface S has mean-

ing: it is the signed volume contained in the region R
bounded by S and f(S). If @R ¼ f ðSÞ � S, Stokes’s theorem

implies that

UNetðSÞ ¼
ð

R

X ¼
ð

f ðSÞ�S

a

¼
ð

S

ðf �a� aÞ ¼
ð

S

dk ¼ 0; (13)

because the integral of a total differential (exact form) over a

closed surface S vanishes. For example, in Fig. 5(b), the rota-

tional circle C on the cylinder is the upper boundary of an

unbounded set with y! �1. This set has exit set E, the

region below C whose image is above C, and incoming set I,
the region below C whose preimage is above C. The region

contained between f(C) and C is R ¼ f ðEÞ [ I, and when

the map has zero net flux (13) implies that lðf ðEÞÞ ¼ lðEÞ
¼ lðIÞ.

Maps with nonzero net flux also have interesting trans-

port properties.35

IV. ACTION AND FLUX

Perhaps the most surprising aspect of the calculation of

Ref. 86 is the connection between Mather’s action difference

and the flux of trajectories across curves in phase space.

In the general context of an exact volume-preserving

map (10), let S and U be a pair of codimension one surfaces

that together bound a region E, as sketched in Fig. 6.

Suppose that

FIG. 6. A three-dimensional lobe bounded by a pair of surfaces U (dark

red) and S (light blue) that intersect along a loop B on their common

boundaries.
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B ¼ U \ S ¼ @U ¼ @S

is the common ðn� 2Þ-dimensional boundary of the surfa-

ces. The volume of E is given by the difference between

integrals over the surfaces as in (9). Each of these ðn� 1Þ-
dimensional integrals can be partially integrated using (10)

with Stokes’s theorem; for example,

ð
S
a ¼

ð
S
ð�dkþ f �aÞ ¼ �

ð
B
kþ

ð
f ðSÞ

a: (14)

This iterative formula can be used to compute lobe volumes

in a number of different contexts. For example, suppose that

U ¼ f nðSÞ; then, we can iterate (14) n-times to obtain

ð
S
a ¼ �

Xn�1

t¼0

ð
f tðBÞ

kþ
ð

f nðSÞ
a: (15)

Note that the final integral in (15) is, by assumption, exactly

the integral over the surface U, and so from (9) we have

lðEÞ ¼
ð
U
a�

ð
S
a ¼

Xn�1

t¼0

ð
B

f �tk: (16)

The last sum represents a generalized action of the periodic

boundary B ¼ f nðBÞ.
A second case in which (14) is useful is when S is a

patch of stable manifold of some lower-dimensional invari-

ant set, i.e., S � WsðAÞ, where A is a normally hyperbolic

invariant manifold. In this case, the limit of the remainder in-

tegral in (15) as n!1 is zero, and thus

ð
S
a ¼ �

X1
t¼0

ð
f tðBÞ

k (17)

is the forward action sum. Similarly, if U � WuðBÞ is a patch

of unstable manifold of an invariant set B, it is appropriate to

reverse (14) to iterate backwards and obtain

ð
U
a ¼

X�1

t¼�1

ð
f tðBÞ

k: (18)

Lomel�ı and I showed how to compute flux for a 3D
volume-preserving map,63 and MacKay showed how to com-

pute flux over a saddle in a Hamiltonian flow67,91 (a result

implicit in Ref. 105, as well). Nevertheless, the general prob-

lem in higher dimensions still has many mysteries.

Question IV (Multidimensional Flux). Can one use the
flux formulas to compute flux through 2D manifolds in a 3D
map, see e.g., Ref. 80, and through resonance zones formed
from 2D normally hyperbolic invariant sets in a 4D symplec-
tic map, see, e.g., Ref. 42?

A. Flux through periodic orbits

When n¼ 2, B in (14) degenerates to a set of points, andÐ
Bk reduces to evaluation at its upper and lower limits. For

example, suppose that U and S are curve segments joined at

their endpoints, points on a pair of period-n orbits. An

example would be, e.g., the pair fe0g and fh0g that form an

island chain, recall Fig. 3. In this case, k is a function, and the

boundary B ¼ e0 � h0 is a pair of points, e0 on the minimax

orbit and h0 on the hyperbolic orbit. Then, (16) becomes

lðEÞ ¼
Xn�1

t¼0

½kðetÞ � kðhtÞ
 ¼ DW½e; h


ðperiodic orbit fluxÞ (19)

the difference between the actions of the two orbits.

Indeed, DW½e; h
 is the flux “through” the pair of orbits,

as can be seen by constructing (if possible) a region R with

boundary C that satisfies two hypotheses.

(H1) Suppose C ¼ @R is a simple closed curve alter-

nately joining successive points on a pair of period-n orbits,

fetg and fhtg.
(H2) Suppose that f ðCÞ \ C ¼ fetg [ fhtg.
An example of such a curve is sketched in Fig. 7. The

requirement (H2) means that the exit and incoming lobes are

bounded by segments of C and f(C) that connect pairs of

points on the two orbits. By definition (6), f(E) is the region

outside C and inside f(C). Each of the n-lobes of the image

of the exit set is bounded by U t � St, where St ðU tÞ is the

segment of C (f(C)) from ht to et. Since f ðStÞ ¼ U tþ1 and

f ðSn�1Þ ¼ U0, (10) implies that the escaping flux is

UðRÞ ¼ lðf ðEÞÞ ¼
Xn�1

t¼0

ð
U t�St

a ¼
Xn�1

t¼0

ð
St

f �a� a

¼
Xn�1

t¼0

ð
St

dk ¼
Xn�1

t¼0

ðkðetÞ � kðhtÞÞ ¼ DW½e; h
:

Thus, the flux crossing C is exactly the action difference of

(19). It is especially interesting, I think, that the flux is inde-

pendent of the choice of curve C, given that it satisfies (H1)

FIG. 7. Sketch of the construction of a partial barrier through a pair of (1, 3)

orbits. The exited area is the region outside C and inside f(C), the hatched

areas. Under (H1) and (H2), this flux is (19).

097602-7 J. D. Meiss Chaos 25, 097602 (2015)

 This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to  IP:

174.16.144.241 On: Mon, 23 Mar 2015 14:39:24



and (H2). Such curves are easy to construct for twist map

examples, where the (m, n) orbits are ordered relative to x,

but it is not obvious that it is always possible to construct

such curves for a pair of period n orbits.

Question V (Periodic Flux). Under what conditions is it
possible to find a curve C that satisfies (H1) and (H2)?

B. Separatrix lobe and resonance areas

The iterative formula (14) can also be used to compute

lobe and resonance zone areas for 2D maps. Recall from

Sec. II A that a resonance zone is bounded by segments of

stable and unstable manifold of a hyperbolic periodic orbit

joined at a primary homoclinic point. A separatrix lobe is a

region bounded by segments of stable and unstable manifold

that intersect on a neighboring pair of primary homoclinic

points.

More generally, following Ref. 31, suppose that R is a

region bounded by K alternating segments of stable and

unstable manifold, thus, @R ¼
PK

j¼1ðU j þ SjÞ, where the

lengths of f tðSjÞ and f�tðU jÞ limit to zero as t!1, since

they are stable and unstable segments, respectively. Denote

the 2 K “corner points,” where these curves are joined, by mj

and hj, j ¼ 1; 2;…K, so that @U j ¼ mj � hj and @Sj ¼ hjþ1

�mj, with hKþ1 ¼ h1. Labeling the orbits of the corner

points with subscripts, f tðmjÞ ¼ mj
t, as usual, then (17) and

(18) become

ð
Sj

a ¼ �
X1
t¼0

ðkðhjþ1
t Þ � kðmj

tÞÞ;

ð
U j

a ¼
X�1

t¼�1
ðkðmj

tÞ � kðhj
tÞÞ:

Finally, summing over the K alternating segments to obtain

the full boundary of R implies, from (9)

lðRÞ ¼
ð
@R

a ¼
X1

t¼�1

XK

j¼1

ðkðmj
tÞ � kðhj

tÞÞ: (20)

For example, suppose that f and p are saddle fixed points

and that U � Wuðf Þ and S � WsðpÞ are segments that inter-

sect on a pair of heteroclinic points h0 and m0 as shown in

Fig. 8. Then, (20) applies with K¼ 1: there are just two seg-

ments and two corner points. Thus, the area of the lobe is the

action difference

lðRÞ ¼
X1

t¼�1
ðkðmtÞ � kðhtÞÞ ¼ DW½m; h
;

ðheteroclinic lobe areaÞ: (21)

This applies to the computation of the lobe area shown in

Fig. 2. The same formula applies when the saddles are peri-

odic orbits.

The action principle can also be used to compute the

area of a resonance zone as well, recall Sec. II A. Each island

in the resonance is bounded by four segments of manifold

and so the result (20) applies with K¼ 2. There are four cor-

ner points: hl and hr, the “left” and “right” saddle points of

one island, and m6, the “upper” and “lower” homoclinic

points. For example, for the period-three resonance of Fig. 3,

the leftmost island has corners hl ¼ h2; mþ2 ; hr ¼ h0, and

m�2 . Since each of the islands have the same area, the total

area of the resonance is n times that of one island

lðRÞ ¼ n
X1

t¼�1
ðkðmþt Þ � kðhl

tÞ þ kðm�t Þ � kðhr
t ÞÞ;

ðperiod–n resonance areaÞ: (22)

The result was first used to compute resonance areas in Ref.

87. Explicit results were obtained for the sawtooth map, a

piecewise linear version of (4).18,25

For a twist map like (4), the rotational periodic orbits

are vertically ordered according to their rotation numbers,

and there is a resonance zone for each (m, n)-minimizing/

minimax pair of periodic orbits. A choice of homoclinic

points can be made so that different zones intersect only in

their turnstiles, and since the net flux vanishes, the areas of

the two intersections must be equal. Thus, one can partition

phase space into rotational resonance zones.87 An example

is shown in Fig. 9. Chen showed that when there are no

rotational invariant circles, the total area of the infinitely

many resonance zones is the full area of phase space, that

is, the partition is “complete.”21 One way to visualize this

is to plot the area below each rotational curve as a function

of rotation number.87 Rotational curves can be formed

from invariant circles, cantori, or broken separatrices. This

area function jumps by the value (22) at every rational

rotation number. The partition is a complete devil’s stair-
case when the total rise of the staircase is the sum of the

jumps.

Question VI (Resonance Partition). Is the resonance
partition complete for nontwist area-preserving maps when
there are no rotational invariant circles? Is there a similar
(complete) partition for one-action, volume-preserving
maps? How could one construct a resonance partition for
4D symplectic maps (some of the intriguing geometry has
been recently explored in Ref. 65)?

FIG. 8. Lobe formed from segments of stable, S and unstable, U, manifold

of hyperbolic fixed points p and f, respectively, with heteroclinic orbits {ht}

and {mt}. The lobe area l(R) is the difference in between the actions of het-

eroclinic orbits (21).
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C. Cantori as partial barriers

During the early years of the study of chaos, it was com-

monly observed that transport in a mixed phase space is

highly nonuniform and is particularly slow as an orbit wends

its way through regions containing recently destroyed tori.

Indeed, Chirikov’s famous numerical experiments for the

standard map seemed to show that the time to cross from

y� 0 to y� 0.5 goes to infinity as k # 0:989;22 recall Fig. 1.

Thus, it seemed reasonable to speculate that cantori, even

though they are typically hyperbolic, could act as strong bar-

riers to transport. The importance of cantori was confirmed

in Ref. 86 when we discovered that the flux is locally mini-

mal on cantori. We also were able to explain Chirikov’s

result, showing that the average crossing time for (4) has a

power law singularity with exponent 3.05 at kcrð/Þ � 0:971.

For symplectic twist maps, every orbit on an invariant

Lagrangian torus is a minimum of the action.88 For the area-

preserving case, as noted in Sec. II B, a destroyed invariant

circle becomes a cantorus: the minimizing orbits persist and

are typically hyperbolic. Suppose that a cantorus Tx with

rotation number x has is a single family of gaps: there are

two minimizing orbits fltg; frtg � Tx that correspond to the

left and right endpoints of the gaps. When the cantorus is

hyperbolic there exist c; k > 0 such that krt � ltk < ce�kjtj.
Aubry-Mather theory implies that there is another distin-

guished orbit fmtg, the minimax orbit, that falls in the gaps

of the cantorus and is homoclinic to the orbit of gap end-

points, i.e., mt ! lt as t! 61.

The flux through Tx can be computed using the general

action principle (20). Suppose C is any curve that satisfies

hypotheses (H1) and (H2): it is a simple closed curve

through the cantorus that crosses each gap going through the

minimax point, and f ðCÞ \ C ¼ Tx [ fmtg is exactly the

cantorus and the minimax orbit. The same analysis as before

implies that the flux crossing C is the action difference

UðTxÞ ¼
X1

t¼�1
ðkðmtÞ � kðltÞÞ ¼ DW½m; l
;

ðcantorus fluxÞ: (23)

This action difference is also prominent in Aubry-Mather

theory: when it is zero Tx is an invariant circle, and when it

is positive, Tx is a cantorus.9,69

Computing invariant tori is difficult since orbits with irra-

tional rotation numbers are infinitely long. One algorithm uses

a Newton-like method to compute the Fourier series for the

conjugacy to rigid rotation of an invariant torus.48 However,

this method does not seem to permit the computation of can-

tori. Another algorithm approximates a torus by periodic

orbits. For the 2D case, this can be done using the continued

fraction expansion x ¼ ½a0; a1;…
, with a0 2 Z; aj 2N, of

the rotation number to give a sequence of rationals

mj

nj
¼ a0; a1; a2;…aj½ 


� a0 þ 1= a1 þ 1= a2 þ � � � þ 1=aj

� �� �
; (24)

the convergents of x. A similar technique uses the Farey

tree, which, beginning with an interval ml

nl
; mr

nr

� �
bounded by

neighboring rationals, mrnl � mlnr ¼ 1, constructs the

daughter md ¼ ml þ mr, and nd ¼ nl þ nr, with ml

nl
< md

nd
< mr

nr
.

Repeating this construction on the two new intervals gener-

ates a binary tree that contains every rational in the original

interval and for which every irrational is a limit of an infinite

path.

The flux through a cantorus can be approximated as the

flux through a sequence of approximating (m, n)-orbit pairs,

using (19). An example of the resulting flux function on the

Farey tree is shown in Fig. 10 for (4) at k ¼ kcrð/Þ when the

golden mean invariant circle is at the threshold of destruc-

tion. What is remarkable is that this function appears to

monotonically decrease: the flux through a Farey daughter is

always smaller than that through each of its parents. For a

Farey path that limits to the rotation number of an invariant

circle, the flux goes to zero; this is the case in Fig. 10 for

x ¼ /�2, which has the path

1

2
;

1

3
;

2

5
;

3

8
;

5

13
;

8

21
;

13

34
; …:

When the Farey path limits to the rotation number of a canto-

rus, the periodic flux (19) limits to (23). Thus, the strongest

barriers, corresponding to the smallest flux, are associated

with cantori.

An alternative notion of minimal flux through cantori

was formulated by Polterovich.94

Question VII (Cantori and Minimal Flux). Find a cate-
gory of twist maps for which the flux is provably a monotone
decreasing function on the Farey tree. For example, if the
map is analytic, is the flux asymptotically monotone?

Though there is no completely satisfactory generaliza-

tion of continued fractions to higher dimensions, Kim and

FIG. 9. Partition of the phase space of the standard map into resonance

zones for k¼ 1.1. Shown are portions of the stable (blue) and unstable (red)

manifolds for the 0
1
, 1

3
; 1

2
; 2

3
, and 1

1
resonance zones. Exit sets (green) and

Incoming sets (violet) for the 0
1

and 1
1

resonances shown. The partition is

complete because there are no rotational invariant circles.
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Ostlund invented a binary tree that has most of the properties

of the single frequency Farey tree57 (it does not have a

unique path to each rational vector). Even though there have

been many numerical studies of the break-up of invariant

tori for symplectic maps19,55,106 and volume-preserving

maps,37 there is no conclusive evidence for the formation of

remnant tori that are Cantor sets.

Question VIII (Higher-Dimensional Cantori). Is there a
multidimensional generalization of the Farey tree or continued
fraction that is optimal for approximating tori and cantori?
After destruction, is a torus replaced by a remnant invariant
set with the same rotation vector; if so, what is its topology?

V. EXIT AND RETURN TIMES

Though a region’s escaping and entering fluxes give one

measure of transport, fluxes represent only the first step, both

dynamically and theoretically. More global measures are

obtained from distributions of exit, crossing, and return

times.76,99 Early numerical experiments were done by

Channon and Lebowitz, who showed that the exit time distri-

bution from a resonance zone for the H�enon map (5) has a

surprising power law form.24 This observation was greatly

extended by Karney,52 who used integer arithmetic to elimi-

nate floating point errors, and also by Chirikov and

Shepelyansky.26 From the many subsequent observations of

power law decays, it seems clear that this phenomenon is

due to the presence of stable structures within the region of

interest: these structures are extremely sticky. However,

there is still much controversy about whether the asymptotic

decay is truly a power law, and—if it is—if there are univer-

sal values for the exponent.

A. Exit time distributions

Given a subset A of phase space M, the (forward) exit
time of a point a 2 A is the number of iterates for it to leave

tþA ðaÞ � min
t>0
ft : f tðaÞ 62 Ag: (25)

Similarly, the backward exit time is

t�A ðaÞ � min
t>0
ft : f�tðaÞ 62 Ag:

In either case, the exit time is set to1 if the images remain

in A for all t 2N. By definition (6), the exit set, E, of a

region is the set with forward exit time one, and the incom-

ing set, I, is the set with backward exit time one. The transit
time is the time for an orbit to move from the incoming to

the exit set of A; since this is constant along an orbit we can

define

ttransit
A ðaÞ ¼ tþA ðaÞ þ t�A ðaÞ � 1; (26)

subtracting the 1, to measure the time to get from I to E.

Finally, the return time for a point a 2 A is

treturn
A ðaÞ � min

t>0
ft : f tðaÞ 2 Ag: (27)

Note that if a is not in the exit set, its return time is 1 since

the minimum is taken over positive t.
Chaos by its very definition precludes accurate long-

time computations of (25)–(27). Nevertheless, one would

like to obtain estimates of their distributions. Whenever A is

has finite, nonzero measure, its exit time distribution

p6
A jð Þ ¼

l fa 2 A : t6A að Þ ¼ jg
� �

l Að Þ
; (28)

is the probability of exiting in time j. Another common mea-

sure of transport is the distribution of recurrence times: the

probability that an orbit beginning in A has first return time j

preturn
A jð Þ ¼

l fa 2 A : treturn
A að Þ ¼ jg

� �
l Að Þ

:

It is not hard to relate this distribution to others that we have

defined. If a point in A is not in the exit set, then its return

time is 1, so we have

preturn
A 1ð Þ ¼ l AnEð Þ

l Að Þ
¼ 1� l Eð Þ

l Að Þ
:

Points that exit A are in E, and f(E) is the incoming set for

MnA. The first return to A thus occurs when the orbit transits

MnA, so

preturn
A jð Þ ¼ l Eð Þ

l Að Þ
ptransit

MnA j� 1ð Þ; j > 1: (29)

Thus, the return time distribution to A is essentially the

transit time distribution through MnA.

To compute the statistics of exit and return times, any

invariant subset of A should be excluded since it has infinite

exit time. For example, the islands of stability that generi-

cally surround any elliptic periodic orbit should be excluded

from exit time computations for the resonance zone of an

area-preserving map. It is convenient to define the accessible

FIG. 10. Flux for the standard map at k ¼ kcrð/Þ through periodic orbits on

the Farey Tree. Reproduced with permission from Meiss and Ott, Physica D

20, 387 (1986). Copyright 1986 Elsevier Publishing.
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subset of A is the subset of points that can be reached from

the outside, or equivalently, the set of points with finite back-

ward exit time

Aacc � fa 2 A : t�ðaÞ <1g:

This set has the same volume as the set with finite forward

exit time. In order that the distribution (28) be normalized

over N, it should be redefined using Aacc instead of A.

In 1947, Mark Kac proved a result for stochastic proc-

esses that can be translated into a result for deterministic

maps.68,76,86 Namely, suppose that M has finite measure and

the invariant measure is normalized so that lðMÞ ¼ 1. If

Macc is the subset of M that is accessible to orbits beginning

in A, then the average first return time to A is

htreturn
A iA �

1

l Að Þ

ð
A

treturn
A dl ¼ l Maccð Þ

l Að Þ
: (30)

Using the relation between transit time and return time distri-

butions (29), gives the equivalent result:

Lemma 1 (Average Exit Time). If A is a measurable set
with incoming set I and accessible set Aacc the average exit
time for points in the incoming set is

htþiI ¼ httransit
A iI ¼

l Aaccð Þ
l Ið Þ : (31)

One interesting aspect of Lemma 1 is that it implies that the

exit time distribution has finite mean, and by (29), that the

mean return time to A is also finite when lðMÞ ¼ 1. Higher

moments of these distributions need not be finite; a counter-

example is given by a simple shear map.76

Since (29) is normalizable then one can define its cumu-

lative distribution, the probability that the return is at least as

long as k

Preturn
A ðkÞ ¼

X1
j¼k

preturn
A ðjÞ:

This is often called the Poincar�e recurrence distribu-
tion.26,27,118 The Poincar�e recurrence theorem states that when

lðMÞ ¼ 1, almost all trajectories return, i.e., Preturn
A ð1Þ ¼ 1.

In most cases, there are no analytical formulae for exit

and return time distributions. For a small perturbation to an

integrable map with a homoclinic connection to a saddle,

however, Melnikov theory can be used to estimate the exit

set volume.98,113 Melnikov theory, originally developed for

flows, was formulated for maps by Easton.29,64 Another case

that can be treated is that of an adiabatic perturbation, where

the lobes cover the region swept by the separatrices of the

frozen time subsystems.59 If the structures of the homoclinic

tangle or trellis can be given a topological classification, like

that developed by Easton,30,33 then these methods can be

extended to approximate additional intersection areas, and

hence the exit time distributions.72,79,97

Question IX (Higher-Dimensional Trellises). Can one
classify trellises in 3D volume-preserving and 4D symplectic
maps to obtain information about transport properties?

B. Stickiness and anomalous diffusion

If a map is uniformly hyperbolic, then the number of

periodic orbits of a given period grows exponentially at a

rate given by the topological entropy. This results in an ex-

ponential form for exit time distributions51,121

pþA ðjÞ � e�j=T :

However, as was first observed by Ref. 24, such distributions

for area-preserving maps with mixed regular and chaotic

orbits appear to decay much more slowly

pþA ðjÞ � t�c�1: (32)

Such algebraic decay is a signal of the stickiness of stable

structures in the phase space, see Sec. VI.

The existence of the average (31) implies that c> 0. It

can be shown that the exponent for f and f�1 are the same,32

thus (26) implies that the transit time distribution will have

this exponent as well, and hence, by (29), so will the return

distribution. Consequently, the cumulative recurrence distri-

bution will decay as

Preturn
A ðtÞ � t�c: (33)

Many studies have found c ’ 1:5,109 though there are fluctu-

ations that persist for large times,17 and it is still controver-

sial whether the power law (33) is valid asymptotically, and

if it is, whether there are classes of dynamical systems for

which the exponent c is universal.

Question X (Power Law Decay). Do exit and return-
time distributions in typical volume-preserving maps with
mixed regular and chaotic components have an asymptotic
power law form? Is there a universal exponent c?

The exponent c is related to another measure of trans-

port, the growth of the mean square displacement hkxt �
x0k2i with time. For Brownian motion, the squared displace-

ment grows linearly in time and there exists a diffusion

coefficient

D ¼ lim
T!1

1

2T
hkxT � x0k2i:

However, it is observed that maps like (4) sometime exhibits

anomalous momentum diffusion with

hðyt � y0Þ2i � tb: (34)

Super-diffusion, i.e., b> 1, is observed in the standard map

when there are accelerator modes, stable orbits that advance

linearly in the momentum direction.5,22,58,90,100,108 An accel-

erator island will drag nearby chaotic orbits along, so that

even when the ensemble average does not include the accel-

erating island, the effect is that b> 1. The simplest accelera-

tor mode forms at k¼ 2p, where after one step, (x1, y1)¼ (x0,

y0þ 1); however, there are probably high-period accelerator

modes arbitrarily close to kcrð/Þ. More general maps that do

not have the vertical periodicity of the standard map do not

have accelerator modes; however, the effect of sticky islands

is still important.
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Karney52 showed that (33) and (34) can be related

through the force correlation function, C(t). Indeed, the

effective diffusion after T steps is

1

2T
h yT � y0ð Þ2i ¼

1

2
C 0ð Þ þ

XT

t¼1

C tð Þ:

Karney’s result is that the power law (33) implies

CðtÞ � t�cþ1, which then, by (34), gives

cþ b ¼ 3: (35)

Consequently, the algebraic decay of the recurrence distribu-

tion and anomalous diffusion are two sides of one coin.

Since numerical experiments estimate that c� 1.5, then (35)

implies that b � 1:5 as well. This has been confirmed by

Venegeroles using the Perron-Frobenius operator to analyti-

cally estimate diffusion due to accelerator modes.108,109

Stickiness can also be studied using finite time

Lyapunov exponents: the distribution of exponents is bi-

modal due to orbits sticking near elliptic regions.102 This is

also observed in higher-dimensional systems.71

VI. MARKOV MODEL FOR TRANSPORT

The phase space of a typical area-preserving map is a

complex mixture of islands and chaotic orbits, recall Fig. 1.

Each island, a collection of nested invariant circles is also

surrounded by periodic orbits that have rational rotation

numbers relative to the elliptic periodic orbit at the island’s

center. Each elliptic periodic orbit also generically forms

islands. Numerically, there appear to be infinitely many

islands comprising a fat fractal: a chaotic region has nonzero

area but its boundary has non-integer dimension.107 Thus,

embedded in the chaotic sea is an infinite hierarchy of

islands around islands, see Fig. 11.

A connected chaotic component can be partitioned into

tree of states.86,89 The nodes of the tree correspond to regions

bounded by partial barriers. Each state is a portion of the

chaotic component surrounding a given elliptic island, i.e.,

the accessible subset of a resonance zone. Transport between

states is mediated by turnstiles. These could be lobes in reso-

nance boundaries; however, at least for twist maps, there are

also cantori between resonances (there are irrationals

between every pair of rationals). Since lowest flux is that

through a cantorus, recall Sec. IV C, these form the most re-

strictive partial barriers. The elliptic orbits inside a resonance

zone also form islands that are separated by cantori.

Transport through a chaotic region appears to be anoma-

lous whenever it has a boundary component that is a stable

invariant set. For area-preserving maps, these are typically

boundary circles of islands, the outermost of the encircling

loops. It is these that give rise to the power law (32).

The simplest model contains a single island so that the

chaotic component is bounded by a single invariant circle.

The stickiness of a boundary circle is caused by a sequence

of cantori that limit on the boundary with ever-decreasing

flux. As John Greene explained to us in 1983,86 such a sce-

nario yields a power law (32); however, the exponent is

much larger than that observed: c¼ 3.05 (Ref. 47) or c¼ 3.27

Alternatively, if only the hierarchy of islands around islands

is kept, ignoring the cantori, the exponent is still too large:

c¼ 2.25.120 The insufficiency of either model was also con-

firmed by the observations of Ref. 111: a trajectory following

either one of these hierarchies has an increasing probability

of becoming trapped by secondary islands or by smaller flux

cantori as time increases. This phenomenon results in tran-

sient local density accumulations.75,104 Note also that sys-

tems not smooth enough to have cantori and with no

hierarchy of islands, such as some piecewise linear maps,

have a different exponent, c¼ 2.4

The simplest partition that keeps both phenomena is a

binary Cayley tree (nodes have a parent and two daughters),

see Fig. 12. Each node in the tree is labeled by a sequence

S¼ s0s1…, with si � {0,1}. The root of the tree, denoted 1,

can be taken to be an absorbing state: whenever a trajectory

reaches this state, it is deemed to have escaped. For the

H�enon map of Fig. 11, the null state is the region outside the

resonance zone formed by the stable and unstable manifolds

of the hyperbolic fixed point (blue and red curves).

Transitions to the right and left on the tree correspond to

distinct topological structures in phase space. A transition to

the right corresponds to motion towards a given island

boundary. The generically irrational rotation number of a

boundary circle has a continued fraction expansion, and each

of its convergents, (24), corresponds to a periodic orbit.43

The resonance zones of every other convergent lie in the

chaotic component, giving an infinite sequence of levels that

limit on the boundary circle. A transition from one level to

the next corresponds to adding a “1” to the state, S! S1.

Each elliptic island within a state S also has its own

boundary circle and corresponding infinite sequence of levels

of encircling periodic orbits. We denote the outermost of

these new levels by S0; thus, a transition to the left on the

tree, S! S0, corresponds to being trapped around an island

of higher class.73,86 For example, in Fig. 11, the outermost

elliptic islands in the upper right pane form a (1, 7) chain.

This represents state S¼ 1 in Fig. 12. One island in this chain

is enlarged in the upper left panel of Fig. 11; it is also

encircled by a (1, 7) chain that has rotation number 1
7

relative

to the seventh image, f7, so that this orbit has period 49 rela-

tive to f. In the figures, this island is designated by its rota-

tion number sequence 1
7

: 1
7
. These are the outermost elliptic

islands of class one corresponding to the state S¼ 10.

If there is only one significant elliptic island in each

state, then the tree is binary. More generally, some states in

the tree can have more daughters when there are multiple

islands in a given state, and some may have fewer if the peri-

odic orbits are hyperbolic.3

The simplest approximate model for transport on the

tree of states is Markov. The assumption is that the chaos

within a state S causes rapid mixing, and so the probability

of a trajectory leaving at any time is proportional to the flux,

DWS;S0 , of trajectories from S to state S0, where S0 is the par-

ent, DS, or a daughter, S0 or S1. This flux is the area of the

turnstile of the most resistant cantorus that divides the states

and can be computed as an action difference, recall Sec. IV.

Note that the flux is symmetric, DWS;S0 ¼ DWS0;S, when the
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map is exact, recall Sec. III B. This model seems reasonable

when the average exit time (31) is large compared to a

Lyapunov time—the time for significant memory loss in the

dynamics. However, for a near-integrable system, the mixing

approximation probably will not work, and there are strong

correlations that result in oscillatory exit time distributions.97

Question XI (Markov Transport Models). Is there a
limit in which the Markov model is valid? When can higher-
order correlations be neglected?

Thus, a Markov model for transport on the tree is

defined by transition probabilities pS!S0 for each pair of con-

nected nodes on the tree, recall Fig. 12. Under the assump-

tion that a trajectory has equal probability to be anywhere in

S, the probability of such a transition is

pS!S0 ¼
DWS;S0

AS
; (36)

where AS is the accessible area of S. By Lemma 1, (36) is

exactly the inverse of the average transit time through the

region. Following Ref. 89, it is convenient to categorize the

change in transition probabilities on the tree by two ratios

wi Sð Þ ¼ pS!Si

pS!DS
; ei Sð Þ ¼ pSi!S

pS!DS
; (37)

for i 2 f0; 1g. The first ratio measures asymmetry between

motion “down” and “up” the tree, and the second measures

the slowing of time scales deeper in the tree.

FIG. 11. Island around island structure

for the H�enon map (5) at a¼
�0.17197997940. Successive enlarge-

ments are indicated by the arrows.

Boundary circles for the states S¼ 1

and 10 are shown (brown). For this pa-

rameter, the map has a self-similar

sequence of islands around islands,

each with relative period 7. Five

levels of this sequence are shown.

Reproduced with permission from

Phys. Rev. E 90(6), 062923 (2014).

Copyright 2014 AIP Publishing LLC.
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For example, renormalization theory implies that for a

noble invariant circle, w1¼ 0.053112: it is 19 times more

likely for an orbit to move away from the circle—to the par-

ent state—than to move one level deeper.66 For the self-

similar sequence of period-seven islands shown in Fig. 11,

the class ratio is even smaller, w2¼ 0.014158, implying that

trapping around an island is an even rarer event.73 For this

reason, anomalous transport is observable only for extremely

long trajectories. Accordingly, it is debatable whether an as-

ymptotic regime is reached even for the longest computa-

tions (e.g., quadruple precision computations for orbits of

length 1012, Ref. 111).

In the original Markov tree model, Ott and I assumed

that the tree is self-similar.89 This would asymptotically hold

if every boundary circle were noble and every island chain

had the same period relative to its parent. In this case, the

ratios (37) are independent of the state S, though they depend

on the choice of class, i¼ 0, or level, i¼ 1. More generally,

the results of Ref. 43 imply that the level hierarchy is

approximately self-similar, and that for almost all boundary

circles

w1 ’ e3:05
1 : (38)

Similarly, there are cases in which the class hierarchy is

asymptotically self-similar.73 Numerical studies again show

that the scaling coefficients are related

w0 ’ e2:19
0 ; (39)

even as the period of the successive islands varies.

If the binary tree is exactly self-similar, then there is an

integral equation for the recurrence distribution.89 A solution

to this gives the power law (32), with an exponent deter-

mined by the dispersion relation

w0e
�c
0 þ w1e

�c
1 ¼ 1:

Given the relations, (38)–(39), there are still two parameters

needed to solve for c. Reasonable values for the ei give

c¼ 1.96, which is closer to the observed value, c ’ 1.5, than

the models with no tree hierarchy. The analysis of Ref. 89

implies that each branch added to the tree decreases the

value of c.

Note, however, that for a typical map, neither self-

similar scenario will hold, and the scaling factors (37) will

depend upon the state S. Recent studies have modeled the

lack of self-similarity statistically. The idea is that an orbit

will sample different regions of phase space, and its long-

time behavior will be equivalent to an ensemble of scalings.

Effectively, the coefficients of the Markov tree model should

be taken as a random draw from some probability distribu-

tion. Numerical studies do appear yield different values of c
in different regions of phase space.2,111 Using such a model,

Cristadoro and Ketzmerick find c¼ 1.57, in remarkable

agreement with numerical experiments.23 A similar model,

using a different ensemble was studied in Ref. 17. Indeed, it

is not clear which random ensemble of scaling coefficients is

valid, though there may be some sense in which there is a

universal ensemble.3 The ensemble picture also provides an

explanation for the difficulty of observing an asymptotic re-

gime: the correlation function of the fluctuations in the mean

decay exponent has a log-periodic behavior that decays very

slowly in time.17

The Markov model, then, not only gives a qualitative

explanation for the power law decay of the exit time distribu-

tion (32) but also gives a value of c close to that observed.

Of course, this is only for the area-preserving case.

Question XII (Higher-Dimensional Transport). Are
there Markov tree models that quantitatively explain trans-
port in higher-dimensional volume-preserving and symplec-
tic maps?

VII. THE NEXT THIRTY YEARS

I have tried to summarize both the state of the art in the

theory of transport for conservative dynamical systems and

to indicate some directions that seem to me to be still ripe

for future research.

There are other fruitful techniques that I did not include

in this survey, such as the characterization of mixing in two-

dimensional flows by the braiding of trajectories,11,40 and the

FIG. 12. Tree for the H�enon map (5) at

a¼�0.17197997940 with the phase

space shown in Fig. 11 where it has a

period-seven self-similar hierarchy,

from Ref. 3. Each node is labeled by

the state S and the winding number

sequence for the main island of that

class, p1

q1
: p2

q2
: …. Several transition

probabilities, pS!S0 , are also indicated.

Reproduced with permission from

Phys. Rev. E 90(6), 062923 (2014).

Copyright 2014 AIP Publishing LLC.
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set theoretic methods based on the Perron-Frobenius or

Koopman operator formalisms.14,16,38,39 I also did not dis-

cuss the continuous time and space approximation of anoma-

lous transport models to obtain phenomenological, fractional

kinetic equations. This theory, which is reviewed in Refs.

120 and 119, does not have as close a connection with the

underlying topology of the dynamics as the discrete Markov

tree. Finally, I did not discuss the application of the ideas of

turnstiles to semi-classical and quantum mechanics. Indeed,

in Ref. 86, we speculated that classical cantori whose turn-

stiles were small in units of Planck’s constant might play a

significant role in the semiclassical mechanics of molecules,

and MacKay and I later applied this idea to compute the ioni-

zation threshold for hydrogen in a strong microwave field.83

Several recent advances in this area confirm our original

speculation.70,101

There is much that remains intriguing about this prob-

lem: the infinite complexity of phase space and the long-time

correlations that result in apparent power law decays and

anomalous diffusion. Even after thirty years, I still cannot

resist the allure of phase space portraits for simple area-

preserving maps.

In Ref. 86, we noted that “the theory is not yet complete,

but we believe that the ideas introduced here are of central

importance for a broad range of systems that are neither

completely ordered nor completely chaotic”.

While there has been considerable progress, I think—as

indicated by the series of questions posed in this paper—that

there is still much to do in the study of transport.

ACKNOWLEDGMENTS

The work was partially supported NSF Grant No. DMS-

1211350. I would like to thank Robert MacKay, Ian

Percival, and Bob Easton for long and fruitful collaborations,

many discussions, and a profusion of insights.

1S. Aubry and G. Abramovici, “Chaotic trajectories in the standard map,

the concept of anti-integrability,” Physica D 43, 199–219 (1990).
2C. V. Abud and R. E. de Carvalho, “Multifractality, stickiness, and

recurrence-time statistics,” Phys. Rev. E 88(4), 042922 (2013).
3O. Alus, S. Fishman, and J. D. Meiss, “Statistics of the island-around-

island hierarchy in Hamiltonian phase space,” Phys. Rev. E 90(6),

062923 (2014).
4E. G. Altmann, A. E. Motter, and H. Kantz, “Stickiness in Hamiltonian

systems: From sharply divided to hierarchical phase space,” Phys. Rev. E

73(2), 026207 (2006).
5T. Albers and G. Radons, “Weak ergodicity breaking and aging of chaotic

transport in Hamiltonian systems,” Phys. Rev. Lett. 113(18), 184101

(2014).
6H. Aref, “Stirring by chaotic advection,” J. Fluid Mech. 143, 1–21

(1984).
7V. V. Afanasiev, R. Z. Sagdeev, and G. M. Zaslavsky, “Chaotic jets with

multifractal space-time random walk,” Chaos 1(1), 143–159 (1991).
8S. Aubry, “The new concept of transitions by breaking of analyticity in a

crystallographic model,” in Solitons and Condensed Matter Physics,
Volume 8 of Solid State Sciences, edited by A. R. Bishop and T.

Schneider (Springer-Verlag, New York, 1978), pp. 264–277.
9S. Aubry, “The twist map, the extended Frenkel-Kontorova model and

the devil’s staircase,” Physica D 7, 240–258 (1983).
10S. Aubry, “Anti-integrability in dynamical and variational problems,”

Physica D 86, 284–296 (1995).
11P. L. Boyland, H. Aref, and M. A. Stremler, “Topological fluid mechanics

of stirring,” J. Fluid Mech. 403, 277–304 (2000).

12D. Bensimon and L. P. Kadanoff, “Extended chaos and disappearance of

KAM trajectories,” Physica D 13, 82–89 (1984).
13C. Baesens and R. S. MacKay, “Cantori for multiharmonic maps,”

Physica D 69(1–2), 59–76 (1993).
14M. Budisic, R. Mohr, and I. Mezic, “Applied Koopmanism,” Chaos

22(4), 047510 (2012).
15A. H. Boozer, “Physics of magnetically confined plasmas,” Rev. Mod.

Phys. 76, 1071–1141 (2005).
16E. M. Bollt and N. Santitissadeekorn, Applied and Computational

Measurable Dynamics, Volume 18 of Mathematical Modeling and

Computation (SIAM, Philadelphia, 2013).
17R. Ceder and O. Agam, “Fluctuations in the relaxation dynamics of mixed

chaotic systems,” Phys. Rev. E 87(1), 012918 (2013).
18Q. Chen, I. Dana, J. D. Meiss, N. Murray, and I. C. Percival, “Resonances

and transport in the sawtooth map,” Physica D 46, 217–240 (1990).
19A. Celletti, C. Falcolini, and U. Locatelli, “On the break-down threshold

of invariant tori in four dimensional maps,” Regul. Chaotic Dyn. 9(3),

227–253 (2004).
20J. H. E. Cartwright, M. Feingold, and O. Piro, “An introduction to chaotic

advection,” in Mixing: Chaos and Turbulence, edited by H. Chat�e, E.

Villermaux, and J. M. Chomez (Kluwer, 1999), pp. 307–342.
21Q. Chen, “Area as a devil’s staircase in twist maps,” Phys. Lett. A 123,

444–450 (1987).
22B. V. Chirikov, “A universal instability of many-dimensional oscillator

systems,” Phys. Rep. 52, 263–379 (1979).
23G. Cristadoro and R. Ketzmerick, “Universality of algebraic decays in

Hamiltonian systems,” Phys. Rev. Lett. 100, 184101 (2008).
24S. R. Channon and J. L. Lebowitz, “Numerical experiments in stochastic-

ity and heteroclinic oscillation,” Ann. N. Y. Acad. Sci. 357, 108–118

(1980).
25Q. Chen and J. D. Meiss, “Flux, resonances and the devil’s staircase for

the sawtooth map,” Nonlinearity 2, 347–356 (1989).
26B. V. Chirikov and D. L. Shepelyansky, “Correlation properties of dy-

namical chaos in Hamiltonian systems,” Physica D 13, 395–400 (1984).
27B. V. Chirikov and D. L. Shepelyansky, “Asymptotic statistics of

Poincar�e resurrences in Hamiltonian systems with divided phase space,”

Phys. Rev. Lett. 82, 528–531 (1999).
28M. Dellnitz and O. Junge, “On the approximation of complicated dynami-

cal behaviour,” SIAM J. Numer. Anal. 36(2), 491–515 (1999).
29R. W. Easton, “Computing the dependence on a parameter of a family of

unstable manifolds: Generalized Melnikov formulas,” Nonlinear Anal.

Theory Methods Appl. 8, 1–4 (1984).
30R. W. Easton, “Trellises formed by stable and unstable manifolds in the

plane,” Trans. Am. Math. Soc. 294(2), 719–732 (1986).
31R. W. Easton, “Transport through chaos,” Nonlinearity 4, 583–590

(1991).
32R. W. Easton, “Transport of phase space volume near isolated invariant

sets,” J. Dyn. Syst. Differ. Eq. 5(3), 529–535 (1993).
33R. W. Easton, Geometric Methods for Discrete Dynamical Systems

(Cambridge University Press, Cambridge, 1998).
34R. W. Easton, J. D. Meiss, and S. Carver, “Exit times and transport for

symplectic twist maps,” Chaos 3(2), 153–165 (1993).
35A. M. Fox and R. de la Llave, “Barriers to transport and mixing in

volume-preserving maps with nonzero flux,” Physica D 295–296, 1–10

(2015).
36M. Feingold, L. P. Kadanoff, and O. Piro, “Passive scalars, three-

dimensional volume-preserving maps and chaos,” J. Stat. Phys. 50, 529

(1988).
37A. M. Fox and J. D. Meiss, “Greene’s residue criterion for the breakup of

invariant tori of volume-preserving maps,” Physica D 243(1), 45–63

(2013).
38G. Froyland, “Using Ulam’s method to calculate entropy and other dy-

namical invariants,” Nonlinearity 12, 79–101 (1999).
39G. Froyland, “Statistically optimal almost-invariant sets,” Physica D

200(3–4), 205–219 (2005).
40M. D. Finn and J.-L. Thiffeault, “Topological optimization of rod-stirring

devices,” SIAM Rev. 53(4), 723–743 (2011).
41K. Fuchss, A. Wurm, A. Apte, and P. J. Morrison, “Breakup of shearless

meanders and “outer” tori in the standard nontwist map,” Chaos 16,

033120 (2006).
42R. E. Gillilan and G. S. Ezra, “Transport and turnstiles in multidimen-

sional Hamiltonian mappings for unimolecular fragmentations:

Application to van der Walls predissociation,” J. Chem. Phys. 94(4),

2648–2668 (1991).

097602-15 J. D. Meiss Chaos 25, 097602 (2015)

 This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to  IP:

174.16.144.241 On: Mon, 23 Mar 2015 14:39:24

http://dx.doi.org/10.1016/0167-2789(90)90133-A
http://dx.doi.org/10.1103/PhysRevE.88.042922
http://dx.doi.org/10.1103/PhysRevE.90.062923
http://dx.doi.org/10.1103/PhysRevE.73.026207
http://dx.doi.org/10.1103/PhysRevLett.113.184101
http://dx.doi.org/10.1017/S0022112084001233
http://dx.doi.org/10.1063/1.165824
http://dx.doi.org/10.1016/0167-2789(83)90129-X
http://dx.doi.org/10.1016/0167-2789(95)00109-H
http://dx.doi.org/10.1017/S0022112099007107
http://dx.doi.org/10.1016/0167-2789(84)90271-9
http://dx.doi.org/10.1016/0167-2789(93)90180-9
http://dx.doi.org/10.1063/1.4772195
http://dx.doi.org/10.1103/RevModPhys.76.1071
http://dx.doi.org/10.1103/RevModPhys.76.1071
http://dx.doi.org/10.1103/PhysRevE.87.012918
http://dx.doi.org/10.1016/0167-2789(90)90037-P
http://dx.doi.org/10.1070/RD2004v009n03ABEH000278
http://dx.doi.org/10.1016/0375-9601(87)90343-4
http://dx.doi.org/10.1016/0370-1573(79)90023-1
http://dx.doi.org/10.1103/PhysRevLett.100.184101
http://dx.doi.org/10.1111/j.1749-6632.1980.tb29680.x
http://dx.doi.org/10.1088/0951-7715/2/2/009
http://dx.doi.org/10.1016/0167-2789(84)90140-4
http://dx.doi.org/10.1103/PhysRevLett.82.528
http://dx.doi.org/10.1137/S0036142996313002
http://dx.doi.org/10.1016/0362-546X(84)90023-3
http://dx.doi.org/10.1016/0362-546X(84)90023-3
http://dx.doi.org/10.1090/S0002-9947-1986-0825732-X
http://dx.doi.org/10.1088/0951-7715/4/2/017
http://dx.doi.org/10.1007/BF01053534
http://dx.doi.org/10.1063/1.165981
http://dx.doi.org/10.1016/j.physd.2014.12.003
http://dx.doi.org/10.1007/BF01026490
http://dx.doi.org/10.1016/j.physd.2012.09.005
http://dx.doi.org/10.1088/0951-7715/12/1/006
http://dx.doi.org/10.1016/j.physd.2004.11.008
http://dx.doi.org/10.1137/100791828
http://dx.doi.org/10.1063/1.2338026
http://dx.doi.org/10.1063/1.459840


43J. M. Greene, R. S. MacKay, and J. Stark, “Boundary circles for area-

preserving maps,” Physica D 21, 267–295 (1986).
44C. Gol�e, Symplectic Twist Maps: Global Variational Techniques, Volume

18 of Advanced Series in Nonlinear Dynamics (World Scientific, 2001).
45J. M. Greene, “A method for determining a stochastic transition,”

J. Math. Phys. 20, 1183–1201 (1979).
46G. Haller, “Langrangian coherent structures,” Annu. Rev. Fluid Mech.

47, 137–162 (2015).
47J. D. Hanson, J. R. Cary, and J. D. Meiss, “Algebraic decay in self-similar

Markov-chains,” J. Stat. Phys. 39(3–4), 327–345 (1985).
48G. Huguet, R. de la Llave, and Y. Sire, “Computation of whiskered invar-

iant tori and their associated manifolds: New fast algorithms,” Discrete

Contin. Dyn. Syst. 32(4), 1309–1353 (2012).
49M. H�enon, “Numerical study of quadratic area-preserving mappings,” Q.

Appl. Math. 27, 291–312 (1969).
50R. D. Hazeltine and J. D. Meiss, Plasma Confinement, 2nd ed. (Dover

Publications, Mineola, NY, 2003).
51M. Hirata, B. Saussol, and S. Vaienti, “Statistics of return times: A gen-

eral framework and new applications,” Commun. Math. Phys. 206(1),

33–55 (1999).
52C. F. F. Karney, “Long time correlations in the stochastic regime,”

Physica D 8, 360–380 (1983).
53J. C. Keck, “Variational theory of reaction rates,” Advances in Chemical

Physics (John Wiley & Sons, Inc., 1967), pp. 85–121.
54W. S. Koon, M. W. Lo, J. E. Marsden, and S. D. Ross, “Heteroclinic con-

nections between periodic orbits and resonance transitions in celestial

mechanics,” Chaos 10(2), 427–469 (2000).
55H. T. Kook and J. D. Meiss, “Periodic-orbits for reversible, symplectic

mappings,” Physica D 35(1–2), 65–86 (1989).
56V. Knibbeler, B. Mramor, and B. Rink, “The laminations of a crystal near

an anti-continuum limit,” Nonlinearity 27(5), 927–952 (2014).
57S. Kim and S. Ostlund, “Simultaneous rational approximations in the

study of dynamical systems,” Phys. Rev. A 34, 3426–3434 (1986).
58C. F. F. Karney, A. B. Rechester, and R. B. White, “Effect of noise on the

standard mapping,” Physica D 4, 425–438 (1982).
59T. J. Kaper and S. Wiggins, “Lobe area in adiabatic Hamiltonian sys-

tems,” Physica D 51, 205–212 (1991).
60J. Laskar, “Frequency analysis for multi-dimensional systems. Global dy-

namics and diffusion,” Physica D 67, 257–283 (1993).
61H. E. Lomel�ı and J. D. Meiss, “Heteroclinic primary intersections and

codimension one Melnikov method for volume-preserving maps,” Chaos

10(1), 109–121 (2000).
62H. E. Lomel�ı and J. D. Meiss, “Generating forms for exact volume-

preserving maps,” Discrete Contin. Dyn. Syst. Ser. S 2(2), 361–377

(2009).
63H. E. Lomel�ı and J. D. Meiss, “Resonance zones and lobe volumes for

volume-preserving maps,” Nonlinearity 22, 1761–1789 (2009).
64H. E. Lomel�ı, J. D. Meiss, and R. Ram�ırez-Ros, “Canonical Melnikov

theory for diffeomorphisms,” Nonlinearity 21, 485–508 (2008).
65S. Lange, M. Richter, F. Onken, A. B€acker, and R. Ketzmerick, “Global

structure of regular tori in a generic 4D symplectic map,” Chaos 24,

024409 (2014).
66R. S. MacKay, “A renormalisation approach to invariant circles in area-

preserving maps,” Physica D 7, 283–300 (1983).
67R. S. MacKay, “Flux over a saddle,” Phys. Lett. A 145(8–9), 425–427

(1990).
68R. S. MacKay, “Transport in 3D volume-preserving flows,” J. Nonlinear

Sci. 4, 329–354 (1994).
69J. N. Mather, “Existence of quasi-periodic orbits for twist homeomor-

phisms of the annulus,” Topology 21, 457–467 (1982).
70M. Michler, A. B€acker, R. Ketzmerick, H.-J. St€ockmann, and S.

Tomsovic, “Universal quantum localizing transition of a partial barrier in

a chaotic sea,” Phys. Rev. Lett. 109(23), 234101 (2012).
71C. Manchein, M. W. Beims, and J. M. Rost, “Characterizing weak chaos

in nonintegrable Hamiltonian systems: The fundamental role of stickiness

and initial conditions,” Physica A 400, 186–193 (2014).
72K. A. Mitchell and J. B. Delos, “A new topological technique for charac-

terizing homoclinic tangles,” Physica D 221(2), 170–187 (2006).
73J. D. Meiss, “Class renormalization: Islands around islands,” Phys. Rev.

A 34, 2375–2383 (1986).
74J. D. Meiss, “Symplectic maps, variational principles, and transport,”

Rev. Mod. Phys. 64(3), 795–848 (1992).
75J. D. Meiss, “Transient measures for the standard map,” Physica D 74(3-4),

254–267 (1994).

76J. D. Meiss, “Average exit time for volume-preserving maps,” Chaos 7,

139–147 (1997).
77J. D. Meiss, “Visual explorations of dynamics: The standard mapping,”

Pramana 70, 965–988 (2008).
78N. Murray and M. Holman, “The role of chaotic resonances in the solar

system,” Nature 410(6830), 773–779 (2001).
79K. A. Mitchell, “The topology of nested homoclinic and heteroclinic

tangles,” Physica D 238(7), 737–763 (2009).
80J. D. Mireles-James, “Quadratic volume-preserving maps: (Un)stable

manifolds, hyperbolic dynamics, and vortex-bubble bifurcations,”

J. Nonlinear Sci. 23(4), 585–615 (2013).
81R. S. MacKay and J. D. Meiss, “Linear stability of periodic orbits in

Lagrangian systems,” Phys. Lett. A 98, 92–94 (1983).
82R. S. MacKay and J. D. Meiss, “Flux and differences in action for

continuous time Hamiltonian systems,” J. Phys. A 19, L225–L229

(1986).
83R. S. MacKay and J. D. Meiss, “Relationship between quantum and clas-

sical thresholds for multiphoton ionization of excited atoms,” Phys. Rev.

A 37(12), 4702–4706 (1988).
84R. S. MacKay and J. D. Meiss, “Cantori for symplectic maps near the

anti-integrable limit,” Nonlinearity 5, 149–160 (1992).
85R. S. MacKay, J. D. Meiss, and I. C. Percival, “Stochasticity and transport

in Hamiltonian systems,” Phys. Rev. Lett. 52(9), 697–700 (1984).
86R. S. MacKay, J. D. Meiss, and I. C. Percival, “Transport in Hamiltonian

systems,” Physica D 13, 55–81 (1984).
87R. S. MacKay, J. D. Meiss, and I. C. Percival, “Resonances in area-

preserving maps,” Physica D 27(1–2), 1–20 (1987).
88R. S. MacKay, J. D. Meiss, and J. Stark, “Converse KAM theory for sym-

plectic twist maps,” Nonlinearity 2, 555–570 (1989).
89J. D. Meiss and E. Ott, “Markov tree model of transport in area-

preserving maps,” Physica D 20, 387–402 (1986).
90T. Manos and M. Robnik, “Survey on the role of accelerator modes for

anomalous diffusion: The case of the standard map,” Phys. Rev. E 89(2),

022905 (2014).
91R. S. MacKay and D. C. Strub, “Bifurcations of transition states: Morse

bifurcations,” Nonlinearity 27(5), 859 (2014).
92B. A. Mosovsky, M. F. M. Speetjens, and J. D. Meiss, “Finite-time trans-

port in volume-preserving flows,” Phys. Rev. Lett. 110(21), 214101

(2013).
93I. C. Percival, “Variational principles for invariant tori and cantori,” AIP

Conf. Proc. 57, 302–310 (1980).
94L. V. Polterovich, “On transport in dynamical systems,” Russ. Math.

Surv. 43(1), 251–252 (1988).
95J. P€oschel, “A lecture on the classical KAM theorem,” in Smooth Ergodic

Theory and Its Applications (Seattle, WA, 1999), Vol. 69 of Proceedings

of Symposia in Pure Mathematics (American Mathematical Society,

Providence, 2001), pp. 707–732.
96P. Pechukas and E. Pollak, “Classical transition state theory is exact if the

transition state is unique,” J. Chem. Phys. 71, 2062–2068 (1979).
97V. Rom-Kedar, “Homoclinic tangles-classification and applications,”

Nonlinearity 7(2), 441–473 (1994).
98V. Rom-Kedar, A. Leonard, and S. Wiggins, “An analytical study of

transport, mixing, and chaos in an unsteady vortical flow,” J. Fluid Mech.

214, 347–394 (1990).
99V. Rom-Kedar and S. Wiggins, “Transport in two-dimensional maps,”

Arch. Ration. Mech. Anal. 109(3), 239–298 (1990).
100V. Rom-Kedar and G. M. Zaslavsky, “Islands of accelerator modes and

homoclinic tangles,” Chaos 9(3), 697–705 (1999).
101M. Richter, S. Lange, A. B€acker, and R. Ketzmerick, “Visualization and

comparison of classical structures and quantum states of four-

dimensional maps,” Phys. Rev. E 89(2), 022902 (2014).
102J. D. Szezech, S. R. Lopes, and R. L. Viana, “Finite-time Lyapunov spec-

trum for chaotic orbits of non-integrable Hamiltonian systems,” Phys.

Lett. A 335(5–6), 394–401 (2005).
103R. Sturman, S. W. Meier, J. M. Ottino, and S. Wiggins, “Linked twist

map formalism in two and three dimensions applied to mixing in tumbled

granular flows,” J. Fluid Mech. 602, 129–174 (2008).
104L. A. Smith and E. A. Spiegel, “Strange accumulators,” in Chaotic

Phenomena in Astrophysics, Volume 497 of Annals of the New York

Academy of Sciences, edited by J. R. Buchler and H. Eichhorn (New

York Academy of Sciences, New York, 1987), pp. 61–65.
105M. Toller, G. Jacucci, G. Delorenzi, and C. P. Flynn, “Theory of clas-

sical diffusion jumps in solids,” Phys. Rev. B 32(4), 2082–2095

(1985).

097602-16 J. D. Meiss Chaos 25, 097602 (2015)

 This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to  IP:

174.16.144.241 On: Mon, 23 Mar 2015 14:39:24

http://dx.doi.org/10.1016/0167-2789(86)90005-9
http://dx.doi.org/10.1063/1.524170
http://dx.doi.org/10.1146/annurev-fluid-010313-141322
http://dx.doi.org/10.1007/BF01018666
http://dx.doi.org/10.3934/dcds.2012.32.1309
http://dx.doi.org/10.3934/dcds.2012.32.1309
http://dx.doi.org/10.1007/s002200050697
http://dx.doi.org/10.1016/0167-2789(83)90232-4
http://dx.doi.org/10.1063/1.166509
http://dx.doi.org/10.1016/0167-2789(89)90096-1
http://dx.doi.org/10.1088/0951-7715/27/5/927
http://dx.doi.org/10.1103/PhysRevA.34.3426
http://dx.doi.org/10.1016/0167-2789(82)90045-8
http://dx.doi.org/10.1016/0167-2789(91)90233-Y
http://dx.doi.org/10.1016/0167-2789(93)90210-R
http://dx.doi.org/10.1063/1.166480
http://dx.doi.org/10.3934/dcdss.2009.2.361
http://dx.doi.org/10.1088/0951-7715/22/8/001
http://dx.doi.org/10.1088/0951-7715/21/3/007
http://dx.doi.org/10.1063/1.4882163
http://dx.doi.org/10.1016/0167-2789(83)90131-8
http://dx.doi.org/10.1016/0375-9601(90)90306-9
http://dx.doi.org/10.1007/BF02430637
http://dx.doi.org/10.1007/BF02430637
http://dx.doi.org/10.1016/0040-9383(82)90023-4
http://dx.doi.org/10.1103/PhysRevLett.109.234101
http://dx.doi.org/10.1016/j.physa.2014.01.021
http://dx.doi.org/10.1016/j.physd.2006.07.027
http://dx.doi.org/10.1103/PhysRevA.34.2375
http://dx.doi.org/10.1103/PhysRevA.34.2375
http://dx.doi.org/10.1103/RevModPhys.64.795
http://dx.doi.org/10.1016/0167-2789(94)90197-X
http://dx.doi.org/10.1063/1.166245
http://dx.doi.org/10.1007/s12043-008-0103-3
http://dx.doi.org/10.1038/35071000
http://dx.doi.org/10.1016/j.physd.2009.01.004
http://dx.doi.org/10.1007/s00332-012-9162-1
http://dx.doi.org/10.1016/0375-9601(83)90735-1
http://dx.doi.org/10.1088/0305-4470/19/5/002
http://dx.doi.org/10.1103/PhysRevA.37.4702
http://dx.doi.org/10.1103/PhysRevA.37.4702
http://dx.doi.org/10.1088/0951-7715/5/1/006
http://dx.doi.org/10.1103/PhysRevLett.52.697
http://dx.doi.org/10.1016/0167-2789(84)90270-7
http://dx.doi.org/10.1016/0167-2789(87)90002-9
http://dx.doi.org/10.1088/0951-7715/2/4/004
http://dx.doi.org/10.1016/0167-2789(86)90041-2
http://dx.doi.org/10.1103/PhysRevE.89.022905
http://dx.doi.org/10.1088/0951-7715/27/5/859
http://dx.doi.org/10.1103/PhysRevLett.110.214101
http://dx.doi.org/10.1063/1.32113
http://dx.doi.org/10.1063/1.32113
http://dx.doi.org/10.1070/RM1988v043n01ABEH001689
http://dx.doi.org/10.1070/RM1988v043n01ABEH001689
http://dx.doi.org/10.1063/1.438575
http://dx.doi.org/10.1088/0951-7715/7/2/008
http://dx.doi.org/10.1017/S0022112090000167
http://dx.doi.org/10.1007/BF00375090
http://dx.doi.org/10.1063/1.166444
http://dx.doi.org/10.1103/PhysRevE.89.022902
http://dx.doi.org/10.1016/j.physleta.2004.12.058
http://dx.doi.org/10.1016/j.physleta.2004.12.058
http://dx.doi.org/10.1017/S002211200800075X
http://dx.doi.org/10.1103/PhysRevB.32.2082


106S. Tompaidis, “Approximation of invariant surfaces by periodic orbits in

high-dimensional maps. Some rigorous results,” Exp. Math. 5, 197–209

(1996).
107D. K. Umberger and J. D. Farmer, “Fat fractals on the energy surface,”

Phys. Rev. Lett. 55, 661–664 (1985).
108R. Venegeroles, “Calculation of superdiffusion for the Chirikov-Taylor

model,” Phys. Rev. Lett. 101(5), 054102 (2008).
109R. Venegeroles, “Universality of algebraic laws in Hamiltonian systems,”

Phys. Rev. Lett. 102, 064101 (2009).
110J. Wisdom and M. Holman, “Symplectic maps for the n-body problem,”

Astron. J. 102(4), 1528–1538 (1991).
111M. Weiss, L. Hufnagel, and R. Ketzmerick, “Can simple renormalization

theories describe the trapping of chaotic trajectories in mixed systems?,”

Phys. Rev. E 67(4), 046209 (2003).
112E. Wigner, “Calculation of the rate of elementary association reactions,”

J. Chem. Phys. 5, 720–725 (1937).
113S. Wiggins, Chaotic Transport in Dynamical Systems, Volume 2 of

Interdisciplinary Applied Mathematics (Springer-Verlag, New York,

1992).
114E. J. N. Wilson, An Introduction to Particle Accelerators (Oxford

University Press, Oxford, 2001).

115J. M. Wendlandt and J. E. Marsden, “Mechanical integrators derived

from a discrete variational principle,” Physica D 106(3–4), 223–246

(1997).
116S. Wiggins and J. M. Ottino, “Foundations of chaotic mixing,” Philos.

Trans. R. Soc. London, Ser. A 362(1818), 937–970 (2004).
117H. Waalkens and S. Wiggins, “Geometrical models of the phase space

structures governing reaction dynamics,” Regul. Chaotic Dyn. 15, 1–39

(2010).
118G. M. Zaslavsky, Chaos in Dynamic Systems (Harwood Academic, New

York, 1985).
119G. M. Zaslavsky, “Chaos, fractional kinetics, and anomalous transport,”

Phys. Rep. 371(6), 461–580 (2002).
120G. M. Zaslavsky, M. Edelman, and B. A. Niyazov, “Self-similarity,

renormalization, and phase space nonuniformity of Hamiltonian chaotic

dynamics,” Chaos 7, 159–181 (1997).
121G. M. Zaslavsky and M. K. Tippett, “Connection between recurrence-

time statistics and anomalous transport,” Phys. Rev. Lett. 67(23),

3251–3254 (1991).
122It is convenient to choose this orientation to give conventionally oriented

boundary integrals. Note that that this means clockwise orientation is

positive.

097602-17 J. D. Meiss Chaos 25, 097602 (2015)

 This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to  IP:

174.16.144.241 On: Mon, 23 Mar 2015 14:39:24

http://dx.doi.org/10.1080/10586458.1996.10504588
http://dx.doi.org/10.1103/PhysRevLett.55.661
http://dx.doi.org/10.1103/PhysRevLett.101.054102
http://dx.doi.org/10.1103/PhysRevLett.102.064101
http://dx.doi.org/10.1086/115978
http://dx.doi.org/10.1103/PhysRevE.67.046209
http://dx.doi.org/10.1063/1.1750107
http://dx.doi.org/10.1016/S0167-2789(97)00051-1
http://dx.doi.org/10.1098/rsta.2003.1356
http://dx.doi.org/10.1098/rsta.2003.1356
http://dx.doi.org/10.1134/S1560354710010016
http://dx.doi.org/10.1016/S0370-1573(02)00331-9
http://dx.doi.org/10.1063/1.166252
http://dx.doi.org/10.1103/PhysRevLett.67.3251

