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Abstract

Motion estimation is an important problem in computer vision. It has applications
in video compression, artificial intelligence, stereo matching, 3D scene reconstruction
from video, and a number of other areas. I introduce the motion estimation problem
and list potential difficulties that a solution must overcome. I then describe previous
work related to edge based motion estimation and present a new algorithm to the
reader. Finally, I discuss my results and possible improvements that may be made to
my algorithm.



1 Introduction

I propose an 4-step algorithm for extracting motion data from a pair of consecutive video
frames. In logical order, edges are identified and matched across frames, then using those
edges, motion vectors are calculated and lastly interpolated. For the final step, I describe
a new method for the interpolation of data in multiple dimensions from irregularly spaced
known data points. My algorithm successfully processes a wide selection of image types,
and using an average local minimum error analysis to measure results, I found the results
to be mixed depending on image complexity and other factors. In general, I was unsatisfied
with some of the results and first suspected an interpolation error. But, detailed testing now
indicates a failure in the edge processing, so I propose three improvements to my original
algorithm.

1.1 What is Motion Estimation

In computer vision, motion estimation is the problem of taking two or more consecutive
video frames and estimating how individual pixels or small groups of pixels move from frame
to frame. Here, I restrict the problem to finding the motion from one frame to the next,
using only those two frames as input. Ideally, an accurate motion vector will be computed
for every pixel in the first frame for which motion is defined.

1.2 Applications of Motion Estimation

Motion data is useful in a number of different areas. One of the most wide spread uses
of motion data is in video compression.[6] Most modern video compression algorithms do
not store every frame of the video as a full image. Instead, they typically store only a few
percent of the frames in a video as full images (when a frame is stored as a full image, it is
called a key frame). The non-key frames are then approximated by distorting key frames or
other previously computed frames using motion data that is stored in the video file. After
generating a first approximation of the non-key frame using motion data, the quality of
the frame is then improved by subtracting an error image that is also stored in the video
file.[11][12]

The motion estimation problem is very similar to the stereo matching problem.[1][6] In
stereo matching, however, additional constraints may be placed on the generated vectors.
With stereo matching, it is much more likely that the relative positions and orientations of
the cameras are known. If this extra information is known and if the two images were taken
at the same time, the programmer may use the epipolar constraint to change the problem
from a 2-dimensional problem to a 1-dimensional problem.[1]
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Given enough motion information, it is also possible to estimate the motion of the
camera.[13] With this information and the assumption that no objects in the scene move
relative to each other, the motion data can be used to construct a 3-dimensional model of
the scene.

Motion data can also be used to track objects in a video or sequence of images.

2 Challenging Aspects of Motion Estimation

There are a number of reasons why computing accurate motion data is difficult. Here, I list
and describe a few of those reasons.

2.1 The Aperture Problem

Using only local information, the motion of a pixel often cannot be unambiguously deter-
mined. Figure 1 demonstrate this phenomenon.[1]

Figure 1: The left image is a full frame from a video and the right image shows only a small
region around the center of that frame. The arrows indicate the direction of motion of the
full frame.

Although we’re only looking at a single frame here, Figure 1 demonstrates that it is
impossible to determine the true direction of motion using only a small part of the full
frame. In general for very small apertures and black-and-white images, only the component
of motion in the direction of the image gradient can be computed accurately.
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2.2 Discontinuities in the Motion Vector Field

Discontinuities in the motion vector field can also cause problems for a motion estimation
algorithm.[2] Many motion estimation algorithms rely on the assumption that the motion
vector field is continuous.

Discontinuities in a motion vector field are typically caused when portions of the scene
are uncovered and are not visible in the first frame of the sequence.

2.3 Undefined/Non-Existent Regions in the Motion Vector Field

Undefined regions in the motion vector field can make motion estimation difficult for essen-
tially the same reason that discontinuities are difficult to handle.[2]

Regions of undefined motion are in some ways similar to discontinuities in the motion
vector field. These regions occur when portions of the first frame are not visible in the
other frames of the sequence. If we’re only using two frames to do the motion estimation,
undefined regions in the motion from frame 1 to frame 2 correspond to discontinuities in the
motion from frame 2 to frame 1.

2.4 Image Noise

As with most algorithms, errors/noise in the input data can reduce the quality of the output
data. There are two main sources of noise in images that will be used by a motion estimation
algorithm. The first is noise generated by the camera’s detector. Additional noise can also
be caused by video compression. Since video compressors are usually lossy and typically use
motion data to reduce the amount of data that needs to be stored, errors that were made
by the video compressor’s motion estimator can be imprinted into the video. This imprint
increases the chance that a later motion estimator will observe motion in the direction that
the motion is stored in the video file.

2.5 Repeating Patterns and Flat Areas

Regions with repeating patterns or almost constant color value can be difficult for a motion
estimation algorithm to handle. Flat areas are difficult to handle, because they contain very
few features that are needed to match pixels between multiple frames. Similarly, regions
with repeating patterns are difficult to handle, because even though they may contain many
features, the features cannot be easily matched uniquely between frames.
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2.6 Non-Lambertian Surfaces and Changes in Lighting

Most motion estimation algorithms rely on the assumption that all surfaces in the scene are
Lambertian. Lambertian surfaces are surfaces that reflect light in a way that causes the
surface to look the same brightness (and color) when viewed from any direction.[14] If a
surface’s appearance depends on the angle that the surface is viewed from, estimating the
motion of an individual point on that surface can be difficult. Similarly, matching can also
be difficult if the lighting on a surface changes from frame to frame.

2.7 Non-Constant Motion

A common assumption used by most motion estimation algorithms is that the motion changes
slowly as a function of position in the motion vector field. Algorithms that use more that
two frames may also rely on the assumption that the motion of each point does not change
much in time.

2.8 Large Motion

Lastly, it is often assumed that the motion vectors are small (that is, points don’t move too
quickly in the images). Thus, many motion estimation algorithms have trouble dealing with
points that move too quickly.

3 Evaluating a Motion Estimation Algorithm

Once a motion estimation algorithm has been developed and implemented, it’s useful to know
how well the algorithm performs relative to other motion estimation algorithms. There
are several criteria for evaluating a generated motion vector field. These include average
angular error, average endpoint error, average interpolation error, and average normalized
interpolation error.[10]

The average angular error is the average error in angle of the estimated motion vectors.
The average endpoint error is the average error in the endpoints of the motion vectors. That
is, the endpoint error is the magnitude of the difference between the estimated motion vector
and the ground truth vector at a point. Of course, in order to compute the angular error and
endpoint error, one must have access to ground truth motion data for the image sequence
she is using.

Computing the interpolation error and normalized interpolation error does not require
ground truth data. These error metrics are computed by comparing the first frame in the
sequence to the second frame projected to look like the first frame using the estimated
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motion. The interpolation error is root-mean-square of the difference between the true first
frame and the projected second frame. Simply subtracting the first frame and the projected
second frame computes an error image called the residual. The normalized interpolation
error is a weighted RMS average of the pixels in the residual, using the image gradient as
the weight.

The Middlebury optical flow website (http://vision.middlebury.edu/flow/) provides
a number of image sequences with ground truth motion data. It also provides an evaluation
service. With this service, a researcher may submit her estimated motion vector fields for a
set of image sequences. Her motion vector fields are then evaluated and compared to other
researchers’ methods.

4 Previous Work

The motion estimation algorithm I present later uses edge detection, edge matching, and
interpolation algorithms. In this section, I describe previous research into these areas.

4.1 Edge Detection

Edge detection is an important part of my algorithm. Several algorithms have been developed
for edge detection. Here I present the Canny edge detector, which is a very popular edge
detection algorithm and is in some ways very similar to the algorithm I use (which I describe
later).

4.1.1 The Canny Edge Detector

The Canny Edge Detector is an edge detection algorithm developed by John F. Canny in
1986.[5]

The Canny algorithm begins by reducing noise in the image. Noise reduction is done by
convolving the image with a Gaussian filter. This reduces the effect that individual noisy
pixels will have on the final result. Next, the algorithm finds the intensity gradient of the
image by applying two filters to the image. The filters estimate the first partial derivative of
the image intensity in the horizontal and vertical directions (call the image I and the partial
derivatives Gx and Gy, respectively). The magnitude of the gradient is then given as

|∇I(x, y)| ≈ G(x, y) =
√
Gx

2 +Gy
2 (1)

and the direction of the gradient is given by

5



θ(x, y) = atan2(Gy, Gx) (2)

Each pixel’s edge direction is then rounded and is labeled as belonging to one of four
possible directions: horizontal, diagonal north-east/south-west, vertical, or diagonal north-
west/south-east.[5]

The Canny algorithm then performs a step called Non-Maximum Suppression, which
generates a binary image of the edge points in the original image. A pixel is given a value
of 1 if and only if its gradient is greater than the gradients of the pixel’s two immediate
neighbors in the pixel’s rounded gradient direction. That is, if the pixel’s rounded gradient
direction is horizontal, then the pixel is given a value of 1 iff the pixel of interest has a
greater gradient value than both its left and right neighbors. The procedure is similar for
pixels with vertical or diagonal gradients.

Finally, edges are extracted by tracing the binary edge image. The Canny edge detector
uses thresholding with hysteresis to identify important pixels in the binary edge image, then
traces those pixels. Not all pixels with value 1 in the binary edge image will eventually be
traced as an edge.[5]

4.2 Occlusion Boundary Detection and Edge Matching

Researchers have experimented with edge matching approaches to motion estimation in the
past. Edges are important because they often correspond to depth discontinuities in the
images. Edges thus often mark the positions of discontinuities and undefined regions in the
motion vector field. Here, I describe two research papers that deal with the problem of
locating depth discontinuities in image sequences.

The first, Local Detection of Occlusion Boundaries in Video by Andrew N. Stein and
Martial Hubert, focuses on rating edges by the degree to which those edges exhibit occlusion.
The authors’ algorithm locates edges using a spatio-temporal edge detector. Parts of the
images on both sides of each edge are then compared to determine how strongly that edge
looks like an occlusion boundary. The comparison is done by measuring differences in the
histogram of the pixel values on either side of the edge.[3]

The second, Layered Motion Segmentation and Depth Ordering by Tracking Edges by
Paul Smith, Tom Drummond, and Roberto Cipolla, focuses on identifying layers of motion
in a sequence of images. The algorithm uses the Canny edge detector to find the edges. It
then uses the Expectation-Minimization algorithm to match the edges. The relative depth
of segments of the images are then estimated. The method presented in the paper is not
limited to just two frames of a sequence.[4]
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4.3 Interpolation in 2D

Interpolation in 2D from scattered data points (that is, data points that are not ordered into
a regular grid) is useful in a wide variety of areas. As a result, methods have been developed
to solve this problem. One approach is to find the Delaunay triangulation of the known data
points. The function is then linearly interpolated over each of the triangles.

Another approach, and the approach I use in my algorithm, is essentially to solve
Laplace’s equation over the domain for which the interpolated function is desired. The
boundary values are taken to be the known data points.

5 My Algorithm

To estimate the motion of every pixel in the first frame of the sequence, I break the motion
estimation problem into several parts. The first part is to identify a set of edges in each frame
of the sequence. Once the edges have been located, my algorithm matches edges between
frames. During the edge matching process, only candidate matches with a high likelihood of
correctness are retained. Next, motion vectors are estimated for the matching edge pixels.
And finally, the motion vectors are interpolated between the matching edge pixels.

5.1 Finding the Edges

To find edges in the original image, my algorithm may (this is optional) first reduce noise in
the image. To reduce the image noise, I convolve the image with a Gaussian filter.

Next, to locate the edges in the given image, my algorithm first identifies two special
neighbor pixels for each pixel in the image. I call these two special pixels the left-of-gradient
neighbor (or just left neighbor) and the right-of-gradient neighbor (or just right neighbor).
For a given pixel (call this the pixel of interest), I define the left-of-gradient neighbor as the
pixel with maximum gradient magnitude that is one of the eight pixels neighboring the pixel
of interest and is left of the pixel of interest’s gradient vector. By left of the gradient vector,
I mean that the neighboring pixel’s center should be between 0◦ and 180◦ counterclockwise
of the gradient vector. Any pixel that is not left of the gradient vector is by definition
right of the gradient vector. Similarly, I define the right-of-gradient neighbor as the pixel
with maximum gradient magnitude that is one of the eight pixels neighboring the pixel of
interest and is right of the pixel of interest’s gradient vector. Figure 2 demonstrates left/right
neighbors.
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Figure 2: The arrow represents the gradient vector for the center pixel, and the ”grad=#”
values indicate the gradient magnitude at each pixel. The top three pixels and the middle-
left pixel are all left of the center pixel’s gradient. The center pixel’s left neighbor is colored
blue and the center pixel’s right neighbor is colored orange.

Each pixel is then given a numeric ”score”/classification which corresponds to the likeli-
hood that the pixel belongs to an edge. To compute a given pixel’s score, the pixel’s score
is first set to zero. If the pixel’s left neighbor’s right neighbor happens to be the given pixel,
its score is increased by one. If the pixel’s right neighbor’s left neighbor happens to be the
given pixel, the given pixel’s score is increased by one again.

8



Figure 3: A closeup of a map of the score values for an image. White pixels have score 0,
gray pixels have score 1, and black pixels have score 2.

Once each pixel has been classified we may then extract two types of edges from the
image. Type 1 edges can be found by tracing consecutive pixels with a score of at least 1.
Type 2 edges can be found by tracing consecutive pixels with a score exactly 2.

After the edges have been traced, I recommend that only edges with length greater than
some threshold be kept. In my implementation, I discard all edges that contain fewer than
16 pixels.

I also recommend that the edges be stored in a consistent way. In my implementation
of this algorithm, I store all edges starting at the pixel that is rightmost with respect to
the edge’s gradient. That is, when storing a nearly straight edge that has a gradient to the
south-east direction, I store the south-western-most pixel of the edge first (imagine standing
on the edge facing in the direction of the gradient, the pixels to your right are stored before
pixels to your left). If the edge is a loop, I cut the edge at it’s leftmost point on the image,
then store the edge as if it did not contain a loop.

5.1.1 Properties of Type 2 Edges

Due to the way that type 2 edges are extracted, they have a number of properties. The most
important of which is that it is impossible for a type 2 edge to contain a fork (that is, a type
2 edge cannot split into two edges that go in different directions). This property makes the
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comparison of edges easier, since without forks comparing two edges can at its most basic
level be viewed as a problem of matching sequences of features values. If the edges were to
contain forks, matching the edges would be a more complex problem of matching graphs.

Another property of type 2 edges that simplifies matching is that type 2 edges are ”double-
checked”, meaning that only the highest quality pixels are extracted. Although this improves
the probability that edges will be correctly matched, it unfortunately also reduces the total
number of matches that are possible.

5.1.2 Differences with the Canny Edge Detector

My edge detection algorithm is in some ways similar to the Canny Edge Detector. Both edge
detectors use the same noise reduction/blurring step, both algorithms use only the gradient
of the image once it is computed, and both algorithms produce a classification image, which
is traced to produce the final set of edges. The difference between the two algorithms is the
way in which edges are extracted from the gradient image.

It could be said that both algorithms round the gradient direction to a ”precision” of 45◦.
The Canny edge detector rounds to the nearest angle that is a multiple 45◦ off the x-axis, and
throws away the sign of the direction. That is, to the Canny edge detector east is equivalent
to west and north-east is equivalent to south-west. The Non-Maximum Suppression step
can then be seen as a possible shift in the position of the edge pixels by at most one pixel
to maximize the gradient magnitude. Instead of shifting the position of the edge pixels to
maximize the gradient, my algorithm rounds the direction of the gradient to maximize the
gradient along the traced edge.

The other major difference is in how each algorithm decides which pixels of the clas-
sification image to extract as edges. As mentioned before, the Canny edge detector uses
thresholding on the gradient magnitude and hysteresis. My method, instead, only extracts
pixels from the classification image that have a consistent gradient direction along the edge.
Since I’m extracting edges that may later be matched with edges from other images, it is
not so important that the edges extracted at this stage be only edges with a large gradient
magnitude.

5.1.3 Example Output of Edge Detector

Figure 4 shows an example of the results of my edge detection algorithm. All edges with
fewer than 16 pixels have been discarded.
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Figure 4: The left image is a full frame from the RubberWhale dataset[9] and the right
image shows all edges containing at least 16 pixels extracted using my algorithm.

5.2 Matching the Edges

The next step in my motion estimation algorithm is to match the edges extracted from
different frames. For each edge in an input image, the edge matching step tries to find the
corresponding edge in the other images. If no such correspondence is found, the edge is
discarded. For simplicity, I will restrict the number of input images to two.

The edges produced by my edge detection algorithm have two main properties which
make edge matching more difficult. The first is that the edges are typically just fragments of
the full edge. And the second is that the endpoints of the edges are not very stable. Figure
5 shows a few of the longest edges extracted from two consecutive frames as an example.
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Figure 5: Both images show a few of the longest edges extracted from two consecutive frames
of the RubberWhale sequence.[9]

As can be seen in Figure 5, the end points of edges can vary quite a bit between frames.
Figure 5 also demonstrates that what a person would call an edge is typically represented
by multiple edge fragments by my program.

5.3 Computing the Motion Vectors Along the Edges

Once the edges have been matched, the task of computing the motion vectors along the
overlapping portion of matching edges requires that individual pixels in both images be
matched. Internally the representations of the matching edges are aligned. To align the
edges, my algorithm uses a function for comparing edges assuming different alignments. The
function then chooses the possible alignment that minimizes the error. The error between
edges assuming a given alignment is computed by matching individual pixels in the edges.
Once these individual pixels are matched, the motion vector is simply the difference in
position of the matching pixels in consecutive frames.

Figure 6 shows the direction of the gradient vector as a function of position along the
edge for the same edge in two different images. The edges are aligned internally by shifting
the starting position of the edge in the second frame.
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Figure 6: An edge from two different frames.

Figure 7 shows the edge, after it has been aligned.

Figure 7: Properly aligned edge representations.

5.4 Interpolating the Motion Vectors

Once motion vectors have been generated for the edge pixels, the final step to generate the
full vector field is to interpolate those ”known” motion vectors. The x and y components of
the motion are each interpolated separately. Each component of the final motion vector field
is given as an approximate solution to Laplace’s equation, with the known motion vectors
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used as the boundary conditions. Laplace’s equation is a partial differential equation and is
given by

∇2f =
∂2f

∂x2 +
∂2f

∂y2 = 0 (3)

To solve Laplace’s equation, I use an iterative fixed point method. Replacing the second
partial derivatives by finite difference approximations results in equation (4):

(f(x+ 1, y)− 2f(x, y) + f(x− 1, y)) + (f(x, y + 1)− 2f(x, y) + f(x, y − 2)) = 0 (4)

Thus, any pixel that is not given as a boundary value in the interpolated motion vec-
tor field should be approximately equal to the average of its four closest neighbors. My
interpolation algorithm converges to this approximation.

Initially, I tried repeatedly replacing all unknown motion vectors with the average of their
four closest neighbors. Although this method should eventually converge, I’ve found that it
tends to converge very slowly in regions that are not near any boundary value pixels.

To improve convergence, I attach a weight value to each pixel. Initially, all boundary
value pixels are given a weight of 1, and pixels with unknown motion are given a weight of
0. Motion vectors are then updated using the following formula:

f(x, y)← w(x, y) ∗ f(x, y) + w(x− 1, y) ∗ f(x− 1, y) + w(x+ 1, y) ∗ f(x+ 1, y)

w(x, y) + w(x− 1, y) + w(x+ 1, y) + w(x, y − 1) + w(x, y + 1)

+
w(x, y − 1) ∗ f(x, y − 1) + w(x, y + 1) ∗ f(x, y + 1)

w(x, y) + w(x− 1, y) + w(x+ 1, y) + w(x, y − 1) + w(x, y + 1)

where w(x, y) is the current weight at pixel (x, y) and f(x, y) is the current estimate of
the motion at pixel (x, y). That is, each pixel is set to the weighted sum of itself and its
four closest neighbors. Motion vectors are only updated when w(x, y) +w(x− 1, y) +w(x+
1, y) + w(x, y − 1) + w(x, y + 1) > ε for some small ε > 0, to avoid divide by zero problems.
In my implementation, I choose ε = 10−10. The weight values are then updated using the
following formula:

w(x, y)← w(x, y) + w(x− 1, y) + w(x+ 1, y) + w(x, y − 1) + w(x, y + 1)

5
(5)

I update the motion vectors in each of the four possible row orders (increasing column, in-
creasing row; increasing column, decreasing row; ...) multiple times. In my implementation,
I do this update a fixed number of times, typically between 64 and 1024.
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6 Results and Analysis

To test my algorithm, I used the publicly available image sequences and ground truth motion
data provided on the Middlebury optical flow website.[9] For your reference, here are the
four natural (non-synthetic) image pairs with public ground truth motion data:

Name First Frame Ground Truth Motion

Dimetrodon

Hydrangea

RubberWhale

Venus

Figure 8: The first frame of each of the four natural image sequences with publicly available
ground truth motion on the Middlebury site.[9]

The coloring for all motion vector images was generated using the color flow program
(source code provided on the Middlebury website).[9] I used 10 for the maxmotion parameter
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in all images. Pixels that are colored black have no motion associated with them.
Before interpolation, my algorithm produced the following results for each of the four

image sequences:

Dimetrodon Hydrangea

RubberWhale Venus

Figure 9: Motion estimated by my algorithm before interpolation. (With minimum allowed
edge length of 20 pixels.)

For the most part, the edge motion vectors do visually appear to match the ground truth
data fairly well. After interpolation, these motion vector fields become the following:
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Dimetrodon Hydrangea

RubberWhale Venus

Figure 10: Motion estimated by my algorithm after interpolation. (With minimum allowed
edge length of 20 pixels.)

Visually, the Venus motion estimates appear to be the most correct and the Hydrangea
estimates appear to be the worst. The Venus estimates likely appear better than the Hy-
drangea estimates because there are many more matching edges for the Venus dataset and
the motion for the Venus dataset is much simpler than that for the Hydrangea dataset.

Ideally, the motion estimates should clearly show boundaries in the motion. Since, in its
current form, the interpolation algorithm does not behave differently for occlusion bound-
aries and non-occlusion boundaries, motion boundaries do not show up in the final motion
estimates. Figure 11 shows the average endpoint error of my algorithm for each of the above
natural sequences as well as for four other synthetic image sequences. It also shows the
average endpoint error for these sequences along only the edge pixels. For comparison, the
average magnitude of the ground truth vectors is also shown.
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Sequence Error (edges) Error (all) GT Magnitude (edges) GT Magnitude (all)

Dimetrodon 2.015 1.160 2.208 2.058
Hydrangea 5.110 4.240 5.368 3.731

RubberWhale 0.975 1.179 1.255 1.257
Venus 1.031 1.039 3.376 3.795

Grove2 3.863 2.332 3.290 3.089
Grove3 5.027 3.689 4.390 3.903
Urban2 10.975 8.403 9.257 8.394
Urban3 12.681 11.521 7.095 7.310

Figure 11: The average error in the estimated motion vector fields and the average magnitude
of the ground truth vectors. (All numbers are in units of pixels.)

To compute the average errors given in Figure 11, I computed the average local minimum
error. To compute the local minimum error, I compute the minimum magnitude of the
difference between the estimated motion vector and each of the nine ground truth motion
vectors in its neighborhood. I use the local minimum error to remove any possibility that
at an occlusion boundary I’m comparing the background ground truth motion with the
foreground motion generated by my algorithm. Equation (6) shows the formula I used to
compute the error values in the above table.

E(S) = |S|−1 ·
∑
z∈S

min{||vgt(w)− vest(z)||2: ||w − z||2 ≤
√

2} (6)

Where S is the set of all pixel coordinates for which the error is to be averaged, E(S)
is the average error on that set, and vgt(w) and vest(z) are the ground truth and estimated
motion vectors at w and z, respectively. |S| is the cardinality of the set S, and ||v||2 is the
two-norm of a vector v. All vectors have units of pixels. To compute the average ground
truth magnitude values in table 11, I use equation (7).

M(S) = |S|−1 ·
∑
z∈S

||vgt(z)||2 (7)

Where M(S) is the average ground truth magnitude shown in the table.
As can be seen from the error table, my original hypothesis that most of the error

comes from the interpolation is false. In fact, in most cases the interpolated motion vectors
are better on average than the edge vectors. I have manually tested to be sure that my
implementation does indeed accurately represent my algorithm. For these tests, I manually
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created several simple image sequences and verified that the motion vectors are what I
expected them to be for those sequences.

7 Conclusion

My motion estimation algorithm successfully processes image data with varying results. It
accurately identifies important edges in the source images and does a better than expected
job of interpolating motion vectors. But the algorithm can also be improved. By analyzing
the results from a variety of public datasets, I now believe the edge processing stages have
defects.

In the paper, I discuss three main suggestions for improving the edge matching and
detection. First, there should be a high density of ”known” motion vectors. Second, the
interpolation algorithm should behave differently for occlusion boundaries and non-occlusion
boundaries. And third, more than just edges should be used to generate ”known” motion
vectors. I am also interested in the advantages that might be gained by segmenting the
images and applying block matching to each segment, but have not yet explored this avenue.
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