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With growing interest in cislunar exploration, the importance of trajectory design in this

environment has become prevalent. The Circular Restricted Three Body Problem (CR3BP) offers

a useful dynamical model to incorporate the gravitational influence from the Earth and Moon in this

regime. Several fundamental solutions exist in this model that are beneficial for trajectory design.

One type of motion is periodic orbits that are repeating with respect to the motion of the Earth and

Moon about the system barycenter. A wide variety of stable and unstable periodic orbits have been

identified around equilibrium points and both celestial bodies. Transfers between periodic orbits

can help facilitate cislunar exploration objectives for human spaceflight, space domain awareness,

and science missions. Thus, this thesis focuses on designing transfers for low thrust spacecraft

between periodic orbits in the Earth-Moon CR3BP.

Insights of the dynamics are leveraged along with strategies to form initial guess transfer paths

between two periodic orbits. Shooting schemes are employed to produce continuous transfers for

each initial guess, and continuation is used compute potentially many transfers of interest. Finally,

direct optimization is used to compute locally fuel-optimal transfers. The process of identifying

potential initial guess paths, recovering a continuous solution, and ultimately an optimal trajectory

is shown to be an effective method to find transfers between periodic orbits. Example cases are

demonstrated between subsets of the L1 and L2 halo periodic orbit family and a near rectilinear

halo orbit (NRHO) to a distant retrograde orbit (DRO) in the Earth-Moon system.
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Chapter 1

Introduction

Lunar bound missions began in the same year Sputnik launched the Space Age. The Luna

and Pioneer programs trail blazed humanity’s presence in cislunar space[34], and since then a

myriad of missions have been conducted to better understand the Earth-Moon neighborhood. The

Apollo missions marked a cornerstone in lunar exploration, and since then a globally renewed

interest has been reignited. NASA and other space agencies in the Artemis accords[1] have joined

forces to usher in a new era of space exploration - one which includes an increased presence on and

around the Moon. To facilitate this development and make missions more effective and affordable,

advancements have been achieved in designing low energy trajectories that exploit the gravitational

force of multiple celestial bodies[34].

A common multi-body dynamics model for developing trajectories is the circular restricted

three-body model. Solutions from this non-integrable system have been exploited by mission de-

signers to facilitate low propellant cost trajectories compared to the conventional two-body model.

Examples of legacy low energy missions include ISEE-3, Genesis, the original ARTEMIS, ACE,

WIND, WMAP, and SOHO[47]. Plans for future Artemis missions and the Deep Space Gateway

(DSG)[9] include low energy trajectories to and in the vicinity of the Moon. Since the successes of

NASA’s SERT-1 and Deep Space 1[2, 40], low thrust propulsion has seen technological improve-

ments and interest for space missions. Low thrust propulsion systems, such as gridded-ion and hall

effect thrusters, offer considerably higher efficiencies over conventional chemical thrusters, but have

significantly lower thrust outputs. By design, these thrusters can operate for months on end[2] and
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overtime can accumulate a large amount of ∆V to accommodate trajectory requirements. Exam-

ples of deep space missions with low thrust propulsion include Hayabusa[24], Bepi-Colombo[22],

Dawn[44], and Psyche[45] and the technology has being applied to Earth-orbiting spacecraft as

well. This propulsion type is suitable for all types of spacecraft from cubesats up to spacecraft in

excess of 50 metric tons[28].

The benefits of combining low energy and low thrust propulsion for trajectory design can

increase spacecraft payload and satisfy complex mission requirements. Science, communications

relays, and space domain awareness[53, 10] are examples of missions that can utilize low energy

trajectories. Specifically, repeating orbits such as periodic or quasi-periodic orbits are of interest

as their motion is bounded within a chaotic system. These solutions exist to varying degrees going

from a simplified dynamical model to the full-ephemeris model. Transferring between these orbits

is an important aspect in trajectory design as it helps facilitate mission objectives.

1.1 The Restricted Problem

The study of gravitational dynamics between three-bodies has been of interest for hundreds of

years dating back to Newton in the Principia. Advancements in the understanding of this problem

can be attributed to Euler, Lagrange, Jacobi, Hill, Poincaré, Birkhoff and many others[46]. The

three-body problem is inherently a chaotic system meaning analytical solutions are not admitted

and there is a considerable sensitivity to the initial guess. However, with simplifying assumptions

which formulate the restricted problem, the model can shed light into dynamical structures that

are beneficial for spaceflight applications. The Circular Restricted Three-Body Problem (CR3BP)

is an example of a simplified model that is an autonomous dynamical system containing particular

solutions[23]. The CR3BP uses a synodic frame that aligns one of the axis along the celestial bodies

and the system’s barycenter[46]. Another axis is perpendicular to the orbit plane of the bodies, and

the final frame completes the right-hand triad. The CR3BP admits particular solutions such as

equilibrium points, periodic and quasi-periodic trajectories, and invariant manifolds. Equilibrium

points, also referred to as Lagrange or libration points, appear to be motionless in the CR3BP.
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Repeating orbits which are periodic or quasi-periodic, originally found by Poincaré[46], can be

found around these points, and have been of interest to mission designers based on their stability,

location, and geometry.

1.2 Survey of Transfer Design in the CR3BP

Transfers in the CR3BP have been of interest to astrodynamicists to facilitate current and

future mission design objectives. Creating these transfers require path planning techniques to form

initial guess trajectories. These paths can then be corrected to form continuous solutions and

ultimately optimized to reduce the propellant required or time of flight. Initial path generation

in the CR3BP stems from dynamical systems theory to systematically explore possible types of

solutions[19]. Leveraging such structures have been the focus of research into transfer design.

Gómez et al. in [14] introduce the concept of utilizing invariant manifolds for transfers, and Barden

in [3] applies this concept to generate transfers between halo periodic orbits in the Sun-Earth

system. Gómez et al. in [16] and Barden, Howell, and Lo in [19] apply invariant manifolds and

heteroclinic connections to design transfers between Lagrange point orbits in the Sun-Earth and

Earth-Moon systems. These heteroclinic connections offer low cost trajectories as the natural

motion can transfer the spacecraft from one periodic orbit to another. Parker, Davis, and Born in

[35] explore leveraging invariant manifolds and constructing periodic orbit chains to form impulsive

transfers between Lagrange point periodic orbits. Their work explores single-maneuver transfers

from a departing periodic orbit to a heteroclinic connection to the arrival periodic orbit. Vaquero

and Howell in [48] utilize an orbit chain method to planar and spatial resonant periodic orbits to find

Lagrange point tour transfers in the Earth-Moon system. Restrepo and Russell in [41, 42] explore

patching periodic orbits in the CR3BP, similar to patching conic arcs in the two-body problem, to

build transfer mechanisms. This systematic strategy is beneficial in prototyping many guess paths

from pre-computed solutions. Pritchett, Zimovan, and Howell in [37] demonstrate multi-link orbit

chaining to form initial guesses for transfers. They utilize collocation based optimization techniques

to recover fuel-optimal transfers between several Lagrange point orbits.
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1.3 Thesis Overview

This research focuses on designing low thrust transfers between periodic orbits in the Earth-

Moon system. The relevant dynamics and numerical methods are covered. Then methods for

transfer design followed by examples are presented. A summary of each chapter is provided below:

• Chapter 2: This chapter derives the equations of motion for the CR3BP and introduces

a convenient non-dimensionalization setup for characterizing the system. Additionally,

thrust-enabled equations of motion are derived for trajectory segments with spacecraft

control.

• Chapter 3: Certain numerical methods are essential for analysis in the CR3BP. This section

begins by introducing the state transition matrix which is a useful linearization of the

dynamics. The single and multiple shooting schemes are formulated in this chapter which

serve as the basis for the corrections process to recover continuous trajectories.

• Chapter 4: Now that the system dynamics and relevant numerical methods are established,

we can begin exploring particular solutions that exist in the CR3BP. The Jacobi constant

of motion, equilibrium points, and periodic orbits are introduced. Specifically, the genera-

tion of planar, spatial, and resonant periodic orbits in the Earth-Moon system are shown.

Finally, invariant manifolds, which are a unique property of the unstable periodic orbits

are discussed, which are essential in the transfer design process.

• Chapter 5: This chapter outlines the transfer design process which is the focus of this thesis.

Leveraging invariant manifolds, orbit chaining, corrections, continuation, and optimization

are discussed here to design low thrust transfers between periodic orbits.

• Chapter 6: Examples of incorporating initial path generation techniques, corrections, con-

tinuation, and optimization are disused in this chapter. The first example explores gen-

erating sets of feasible transfers between subsets of the L1 northern to L2 southern halo

periodic orbit families. Point case optimizations and continuation are used to update the
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family and reduce the propellant cost for all feasible solutions. The next example is the

NRHO to DRO transfer design problem which investigates two different initial guess paths

and two spacecraft models to compare post-optimized results for varying initial guesses.

• Chapter 7: The final chapter summarizes the techniques for constructing low thrust trans-

fers in the CR3BP. Additionally, recommendations for follow-on work are proposed.



Chapter 2

Circular Restricted Three Body Problem

The three body problem analyzes the motion of a massless particle under the gravitational

influence of two massive bodies - the primary and secondary. This dynamical model approximates

common operational environments for spacecraft missions within the Earth-Moon system. Addi-

tionally, unique low fuel cost trajectory opportunities is explored in this model compared to the

traditional two-body problem. In this chapter, the governing equations of motion of this dynamical

system are derived for the particle assumed to be a spacecraft, first for natural motion and then

with low thrust. Unique properties of this system that are useful in trajectory design are explored

in Chapter 4 after an overview of required numerical methods which is presented in Chapter 3.

2.1 Equations of Motion

To derive the equations of motion of the system, we begin with a by analyzing a general case

with dimensional quantities. Then simplifying assumptions and nondimensionalization will help

reduce the complexity of the model. Finally, the equations of motion are written in a frame that

rotates with the primary and secondary body[46].

Consider the motion of three bodies as shown in Figure 2.1. The inertial frame is defined by

axes X̂, Ŷ , Ẑ, with origin O. State quantities with dimensions are denoted by a tilde and capital

letters indicate the elements are in an inertial frame. Each body is assumed to be a point-mass

and their positions are denoted by R⃗ followed by the corresponding subscript. The complete state
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Figure 2.1: Motion of a primary (P1), secondary (P2), and third body (P3) as represented in the
inertial frame.

vector of body i is given by:

⃗̃Xi = [X̃i, Ỹi, Z̃i,
˙̃Xi,

˙̃Yi,
˙̃Zi]

T (2.1)

for i=1,2,3. Additionally, relative position vectors, denoted by ⃗̃Rij in Figure 2.1 are grey dashed

arrows. The first number in the subscript indicates the originating body and the second is the

target body. The governing equations of motion of the third body written in the inertial frame

using Newton’s Law of Gravitation as:

¨⃗
R̃3 = −G̃M̃1

R̃3
13

⃗̃R13 −
G̃M̃2

R̃3
23

⃗̃R23 (2.2)

where G̃ is the gravitational constant, R̃13 and R̃23 are vector norms, and M̃ is the mass of each

body.

Applying assumptions to the dynamical model can help simplify the problem and uncover

useful insights[46]. First, the mass of the third body P3 is considered to be negligible and won’t

have gravitational influence on the motion of the primary or secondary. The celestial body with
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the greatest mass is P1 and is referred to as the primary. Subsequently, the secondary is the

celestial body with the smaller mass. The masses of the primary and secondary are uniform and

unchanging, and so their motion about the barycenter is modeled with the two-body problem.

Further, the system’s time dependency is removed if we assume the primary and secondary follow

circular orbits about the barycenter and relate the spacecraft’s motion to the motion of the celestial

bodies. These assumptions form the basis of the circular restricted three body problem (CR3BP).

A normalization scheme is useful to improve the condition of the system parameters. The

dimensional quantities for mass, time, and length often have different magnitudes which can result in

challenges applying numerical methods. Therefore, mass, length, and time characteristic quantities

of the system are used to normalize the equations of motion. Note that in the following derivation

system parameters and state elements without a tilde indicate non-dimensional quantities. Let’s

begin by defining the system characteristic mass m∗ as M̃1 + M̃2. The primary and secondary

follow two-body circular orbits and so motion produces a constant semi-major axis. This can be

used to non-dimensionalize length l∗ and time t∗ given the orbit period equation. The following

quantities represent the characteristic mass, length, and time[23].

m∗ = M̃1 + M̃2 l∗ = R̃1 + R̃2 t∗ =

(
(l∗)3

G̃m∗

)1/2

(2.3)

Converting between dimensional and nondimensional quantities is performed using the following

relationships:

m =
M̃

m∗ l =
L̃

l∗
t =

T̃

t∗
(2.4)

where M̃ , L̃, and T̃ are dimensional mass, length, and time quantities whereas m, l, and t are

the associated nondimensional quantities. This formulation is convenient as the nondimensional

gravitational constant G simply becomes 1 when the proceeding quantities are substituted. This

nondimensionalization results in definition of the mass ratio µ as:

µ =
M̃2

m∗ (2.5)

The Earth-Moon system’s mass parameter is on the order of 10−2 and for context, the Earth-Sun
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system is 10−6. Table 2.1 summarizes the nondimensional constants for the Earth-Moon system

calculated from constants in [23].

Earth-Moon System Nondimensional Constants

m∗ (kg) 6.047175616×1024

l∗ (km) 384400
t∗ (sec) 375190.261951844
µ - 0.0121505842695422

Table 2.1: Earth-Moon System Nondimensional Constants

Using the characteristic quantities, we can relate the dimensional accelerations in the equa-

tions of motion to nondimensional quantities in the inertial frame. The X-component’s dimensional

acceleration is related to the non-dimensional quantity by:

¨̃X3 =
d

dτ

(
dX̃3

dτ

)
=

l∗

(t∗)2
d2X3

dt2
(2.6)

Eq.(2.2) is decomposed into its individual components from the vector equation. For example, the

X-component becomes:

¨̃X3 = −G̃M̃1

R̃3
13

(X̃3 − X̃1)−
G̃M̃2

R̃3
23

(X̃3 − X̃2) (2.7)

Equating the terms from Eq.(2.6) with the components of Eq.(2.7) and simplifying yields:

Ẍ3 = −(1− µ)(X3 −X1)

R2
13

− µ(X3 −X2)

R2
23

(2.8)

This process is repeated for the Y and Z-components and a vector function for the non-dimensional

equations of motion with respect to a non-rotating inertial frame is written as:

¨⃗
R3 = −(1− µ)(R⃗3 − R⃗1)

R2
13

− µ(R⃗3 − R⃗2)

R2
23

(2.9)

This expression is time dependent and thus the dynamical system is non-autonomous. The state

components of the primary and secondary vary with respect to time as they orbit the system

barycenter. This time dependency is eliminated if we incorporate this motion into the frame that

the equations of motion are with respect to. Because the celestial bodies are in circular two-body

orbits, the semi-major axis and period are constant. We can define a new rotating frame that is
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Figure 2.2: Location of a primary (P1), secondary (P2), and third body (P3) represented in the
inertial and rotating frame.

defined by the path of the primary and secondary as well as the orbit angular momentum[46]. Figure

2.2 consists of the inertial frame defined by axes X̂, Ŷ , and Ẑ and originated at the barycenter O.

Note that because this frame is arbitrary, we can position it such that the X and Y-axes are in

the plane defined by the celestial bodies’ orbit. The diagram also includes a rotating frame defined

by the axes x̂, ŷ, and ẑ. The x̂-axis is aligned with the semi-major axis of the celestial bodies

where the positive direction is towards the secondary. The ẑ-axis is in the orbit angular momentum

direction. The ŷ-axis completes the right-hand triad. This frame is rotating about the ẑ-axis with

a period equal to that of primary and secondary. The angular velocity corresponding to angle θ

is then defined by the mean motion of the system n times the time. From the diagram, r⃗1 and r⃗2

expressed in the inertial frame is:

R⃗1(t) = [−µ cos (t), −µ sin (t), 0]T

R⃗2(t) = [(1− µ) cos (t), (1− µ) sin (t), 0]T
(2.10)

where R⃗i(t) = [Xi(t), Yi(t), Zi(t)]
T for i = 1, 2. Plugging these quantities into the equations of
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motion and separating the equations into each component yields:

Ẍ3 = −(1− µ)(X3 + µ cos(t))

R3
13

− µ(X3 − (1− µ) cos(t))

R3
23

Ÿ3 = −(1− µ)(Y3 + µ sin(t))

R3
13

− µ(Y3 − (1− µ) sin(t))

R3
23

Z̈3 = −(1− µ)Z3

R3
13

− µZ3

R3
23

(2.11)

These equations are then reformulated with respect to the rotating frame to remove the time

dependency. The following rotation matrix transforms the inertial coordinates (X,Y, Z) to rotating

(x, y, z): 
x

y

z

 =


cos(t) sin(t) 0

− sin(t) cos(t) 0

0 0 1




X

Y

Z

 (2.12)

The coordinates for r⃗1 and r⃗2 in the rotating frame become:

r⃗1 = [−µ, 0, 0]T

r⃗2 = [1− µ, 0, 0]T
(2.13)

The positions of the primary and secondary are independent of time in the rotating frame. We

can now write the expression for an arbitrary vector in this frame, signified by the lower case unit

vectors, with:

r⃗ = xx̂+ yŷ + zẑ (2.14)

Using the transport theorem, the velocity vector in the rotating frame is related to the inertial

frame derivative as:

Idr⃗

dt
=

Rdr⃗

dt
+I ω⃗R × r⃗ (2.15)

where
Rdr⃗
dt is the derivative of the vector in the rotating frame. The angular velocity of the rotating

frame with respect to the inertial frame is encoded through the I ω⃗R term. Note that because the

X̂-Ŷ plane and the x̂-ŷ plane are co-planar, the angular velocity has a single component in the +ẑ

axis:

I ω⃗R = nẑ = 1ẑ (2.16)
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The magnitude of the angular velocity is 1 due to the non-dimensional time definition. This

effectively eliminates the time dependency of the equations of motion. Expanding the terms from

Eq.(2.15) and rearranging yields the following expression:

Idr⃗

dt
= (ẋ− y)x̂+ (ẏ + x)ŷ + żẑ (2.17)

To calculate the acceleration, the transport theorem is applied to Eq.(2.17):

Idv⃗

dt
=

Rdv⃗

dt
+I ω⃗R × v⃗

Idv⃗

dt
= (ẍ− 2ẏ − x)x̂+ (ÿ + 2ẋ− y)ŷ + z̈ẑ

(2.18)

Vector equations Eq.(2.18) and Eq.(2.9) are equated and applying the definitions from Eq.(2.13)

which yields the non-dimensional circular restricted three body equations of motion as shown in

state-space form[46]:

˙⃗
X(t) =



ẋ

ẏ

ż

ẍ

ÿ

z̈


=



ẋ

ẏ

ż

2ẏ + x− (1−µ)(x+µ)
r31

− µ(x−1+µ)
r32

−2ẋ+ y − (1−µ)y
r31

− µy
r32

− (1−µ)z
r31

− µz
r32


(2.19)

where r1 =
√
(x+ µ)2 + y2 + z2 and r2 =

√
(x− 1 + µ)2 + y2 + z2.

The equations of motion depend on the gravitational forces from the celestial bodies of the

system. A potential function that incorporates this information and the rotation of the rotating

frame is used to form a pseudo-potential function U∗. The acceleration quantities from Eq.(2.19)

is expressed using the pseudo-potential function’s partial derivatives as[23]:

∂U∗

∂x
= ẍ− 2ẏ

∂U∗

∂y
= ÿ + 2ẋ

∂U∗

∂z
= z̈

(2.20)
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The pseudo-potential function that satisfies the preceding partial derivatives is:

U∗ =
1

2
(x2 + y2) +

1− µ

r1
+

µ

r2
(2.21)

where the first term is due to frame rotation and the second and third terms are due to the

gravitational influence of the primary and secondary bodies. This equation is beneficial when

presenting the system’s constant of motion and dynamical insights.

2.2 Thrust-Enabled Equations of Motion

The existing equations of motion is modified to incorporate thrusting from the spacecraft.

Additionally, the mass change due to thrusting is included in the dynamical model. At a particular

instant in time the dimensional acceleration vector ⃗̃A due to thrusting is defined by:

⃗̃A =
⃗̃T

M̃
(2.22)

where ⃗̃T is the dimensional thrust vector and M̃ is the dimensional mass at that instant. We can use

this expression to find the appropriate conversion from dimensional to nondimensional acceleration

to augment the equations of motion in Eq.(2.19). For this research, we will restrict the low-thrust

engine’s performance to: on at full thrust capability, or off with no thrust or mass decrement. We

can define a constant term α applied to each component of acceleration such that the dimensional

quantities of thrust and mass are converted. Because the engine is always on or off, a unit vector

u⃗ is used to define the acceleration direction, and α is used to define the acceleration magnitude.

The acceleration due to spacecraft thrusting is then defined as[4, 13]:

a⃗ =
α

m
u⃗ α =

t∗2

l∗ × 103
T̃max

M̃i

(2.23)

where T̃max is the maximum thrust output measured in Newtons, and M̃i is the initial spacecraft

mass in kilograms, and m is the instantaneous nondimensional mass term. This mass term is

constantly decreasing during numerical integration with the thrust enabled. At the initial nondi-

mensional time this value is always equal to 1. The nondimensional mass carried through integration
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can be thought of as a mass fraction of the initial mass and so post-integration the final value for

m times the initial dimensional mass yields the final dimensional mass. This term is decremented

through another constant term that converts the dimensional mass flow rate to a nondimensional

quantity. Mass flow rate is defined as the thrust divided by the engine’s specific impulse (Ĩsp) times

the gravitational constant g̃0 which is 9.80665 m/s2. Converting this expression to the nondimen-

sional quantities yields the mass flow constant (γ) defined as[4]:

γ = [t∗]
T̃max

g̃0ĨspM̃i

(2.24)

Finally, the thrust-enabled equations of motion in state-space form are defined as:

˙⃗
X(t) =



ẋ

ẏ

ż

ẍ

ÿ

z̈

ṁ



=



ẋ

ẏ

ż

2ẏ + x− (1−µ)(x+µ)
r31

− µ(x−1+µ)
r32

+ ( α
m)ux

−2ẋ+ y − (1−µ)y
r31

− µy
r32

+ ( α
m)uy

− (1−µ)z
r31

− µz
r32

+ ( α
m)uz

−γ



(2.25)

In this research, existing propulsion system values to actual low thrust engines and spacecraft are

not considered. However, a survey of current engines capabilities and spacecrafts was conducted

to select reasonable values for maximum available thrust, specific impulse, and spacecraft mass.

Table 2.2 summarizes the capabilities current and legacy operational spacecraft investigated.

Spacecraft Approximate Acceleration (m/s2)

Deep Space 1[40] 1.892×10−4

Dawn[44] 7.473×10−5

BepiColombo[22] 7.178×10−5

Hayabusa[24] 4.706×10−5

Table 2.2: Low-Thrust Spacecraft Accelerations



Chapter 3

Numerical Methods

Numerical methods are critical for analysis in the circular restricted three-body problem

because analytical solutions are not admitted. This chapter summarizes the state transition matrix

which derived from linearization of the dynamics around a trajectory. Then, correction methods

are discussed which minimize segment state discontinuities to find continuous trajectories. This can

be applied to compute periodic orbits or end-to-end transfers. The next part of the chapter covers

methods of continuation to to generate sets of solutions from an initial continuous trajectory.

3.1 State Transition Matrix

The state transition matrix (STM) is a linear mapping from an initial variation relative to

a reference trajectory to a variation at another time[23]. It must be noted that the use of the

STM is conditioned on if the linear model sufficiently approximates the true non-linear dynamics

of the system in the mapping time. For example, in highly non-linear regions, such as motion close

to the primary or secondary in the system, the STM’s ability to approximate the state along the

trajectory for increasingly large time durations significantly degrades. The specifics of whether the

STM reasonably approximates the true dynamics should be evaluated on a case-by-case basis. The

STM is valuable to other numerical methods discussed here for trajectory corrections. Let’s define

Φ(t, t0) as the STM. Figure 3.1 illustrates how the STM is used to map variations in the state

along a trajectory where δx⃗(t0) is the vector of a variation in state at the initial time t0, and δx⃗(t)

is the resulting variation vector propagated to time t by the STM. Thus, the STM is the partial
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Figure 3.1: Mapping variations using the state transition matrix

derivative of the state at the final time with respect to the state at the initial time as shown below:

Φ(t, t0) =
∂X⃗(t)

∂X⃗(t0)
(3.1)

There are several properties of STMs that make them useful in the corrections schemes[4]

discussed in the following sub-sections. For periodic orbits, the STM mapped from the initial time

to the time exactly one period after is called the monodromy matrix [23]. This is helpful when

trying to find periodic orbits in the CR3BP. When the initial and mapping time are identical, the

STM is an identity matrix. State transition matrices can be decomposed into a product of multiple

intermediate STMs. Finally, to backwards propagate, say from time t to the initial time t0, the

inverse of the STM is used [4].

We can generate the STM at each point along our trajectory during numerical integration.

The state-space vectors from Eq.(2.19) and Eq.(2.25) need to be augmented to include the STM

terms. Propagating the STM components in the integration for ballistic motion yields a state vector

that is of size 42× 1 (6 state variables and 36 STM components). Likewise, with thrust and mass
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terms, the size is 110× 1 (10 state variables and 100 STM components). Initializing a STM is the

same as mapping it from the initial time to itself; therefore the pre-integration STM is simply an

identity matrix that is the size of the propagated state vector. The state-space equations of motion

account for STM propagation as it is the partial derivative of the EOMs with respect to the state

vector:

Φ̇(t) = A(t)Φ(t) A(t) =
∂
˙⃗
X(t)

∂X⃗(t)
(3.2)

Taking the partials analytically yields the following matrix expressions to propagate the STM for

natural motion:

A(t) =



0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1

U∗
xx U∗

xy U∗
xz 0 2 0

U∗
xy U∗

yy U∗
yz −2 0 0

U∗
xz U∗

yz U∗
zz 0 0 0


6×6

(3.3)

and for motion with thrusting:

A(t) =



0 0 0 1 0 0 0 0 0 0

0 0 0 0 1 0 0 0 0 0

0 0 0 0 0 1 0 0 0 0

U∗
xx U∗

xy U∗
xz 0 2 0 − α

m2ux
α
m 0 0

U∗
xy U∗

yy U∗
yz −2 0 0 − α

m2uy 0 α
m 0

U∗
xz U∗

yz U∗
zz 0 0 0 − α

m2uz 0 0 α
m

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0


10×10

(3.4)

Components U∗ followed by two subscripts indicate the second partial derivatives of the pseudo-
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potential function from Eq.(2.21). These second-partial derivatives are shown below:

U∗
xx = 1− 1− µ

r31
− µ

r32
+

3(1− µ)(x+ µ)2

r51
+

3µ(x− 1 + µ)2

r52

U∗
yy = 1− 1− µ

r31
− µ

r32
+

3y2(1− µ)

r51
+

3µy2

r52

U∗
zz = −1− µ

r31
+

3z2(1− µ)

r51
− µ

r32
+

3µz2

r52

U∗
xy = U∗

yx =
3y(1− µ)(x+ µ)

r51
+

3µy(x− 1 + µ)

r52

U∗
xz = U∗

zx =
3z(1− µ)(x+ µ)

r51
+

3µz(x− 1 + µ)

r52

U∗
yz = U∗

zy =
3yz(1− µ)

r51
+

3µyz

r52

(3.5)

where r1 =
√

(x+ µ)2 + y2 + z2 and r2 =
√
(x− 1 + µ)2 + y2 + z2.

3.2 Correction Methods

3.2.1 Single Shooting

The single shooting method solves for the desired initial and terminal states by varying the

initial conditions such that the desired terminal conditions are achieved. Figure 3.2 conceptually

depicts an example of the single-shooting method applied to the trajectory design problem. An

initial state x⃗i propagated by ∆t is iterated on such that the TPBVP constraints are satisfied. This

criteria is met when the initial and final states lie on the desired initial and terminal conditions to

within a specified tolerance. When these conditions are met, the blue arc trajectory is sufficiently

close to the true solution indicated as the desired trajectory.

In the context of computing periodic orbits in the CR3BP, the state contains the six spatial

elements x⃗ and an orbit period element T . After propagating the initial state x⃗i by the period, the

final state x⃗f must match the initial. Formulation of this method begins by defining a free variable

vector V⃗ as shown:

V⃗i =

[
xi, yi, zi, ẋi, ẏi, żi, Ti

]T
7×1

(3.6)

This vector is modified such that our constraints of the TPBVP are satisfied. Let’s define the
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Figure 3.2: Single-shooting method overview

constraints vector as:

F⃗ (V⃗ ) = [x⃗(ti)− x⃗(tf )]6×1 (3.7)

which ensures state continuity to form a periodic orbit. We can employ Newton’s root finding

method to iterate V⃗ such that the desired free variable vector V⃗d satisfies the constraint formulation

and thus the resulting constraint F⃗ (V⃗d) is sufficiently close to 0⃗. Assuming that V⃗i is sufficiently

close to V⃗d, a first-order Taylor series expansion of the constraint formulation around the initial

free variable vector is:

F⃗ (V⃗d) = 0⃗ = F⃗ (V⃗i) +
∂F⃗

∂V⃗

∣∣∣
V⃗i

δV⃗ +H.O.T.s (3.8)

where δV⃗ is the difference between V⃗d and V⃗i. With the first-order approximation, we neglect the

higher order terms (H.O.T.s) but this will require iterating on the free variable vector such that

the constraint norm is within a specified tolerance parameter: | F⃗ (V⃗i) |< ϵ. The Jacobian of the

constraints with respect to the free variable vector will be referred to as DF⃗ (V⃗ ). In this case, the

Jacobian is expressed analytically using the state transition matrix defined earlier. Assuming this
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matrix is invertible, the correction to update V⃗i to V⃗i+1 becomes:

V⃗i+1 = V⃗i − [DF⃗ (V⃗i)]
−1(F⃗ (V⃗i)) (3.9)

This update equation is applicable only when the number of free variables and the number of

constraints are equal. In the periodic orbit problem formulation, this condition isn’t met. The

minimum norm update, which is a pseudo-inverse method, is used which minimizes the norm of

each step and is defined as[4]:

V⃗i+1 = V⃗i − ρ(DF⃗ (V⃗i)
T [DF⃗ (V⃗i)DF⃗ (V⃗i)

T ]−1F⃗ (V⃗i)) (3.10)

Additionally, a scaling term ρ is included to the update for algorithm performance. If the ini-

tial guess is sufficiently close to the desired solution, the Jacobian is full rank, and the partials

and functions are continuous, Newton’s method will converge in a quadratic manner. Step-size

modulation strategies including the Wolfe conditions [5] can be beneficial to correct solutions in

sensitive regions. The single shooting method’s ability to converge on a solution is dependent on

how accurately the linearization of the dynamics represent the true dynamics of the system. As

discussed in the prior sub-section, for long propagations durations where the dynamical model is

especially sensitive, the STM begins to inaccurately map the state. This negatively affects the

update in Newton’s method and thus can lead to divergent behavior. The ability to reset the STM

mid-trajectory to shorten the propagation duration is beneficial, and this method is discussed in

the next sub-section regarding multiple shooting.

3.2.2 Multiple Shooting

If the single shooting method is insufficient, a multiple shooting scheme is employed. This

method is more robust than single shooting as the linearization approximation better approximates

the non-linear dynamics along shorter propagation intervals. The implementation of the multiple

shooting method discussed here is adapted from [4]. The trajectory is broken into segments and

the constraint formulation is dependent on the next segment initial state. Figure 3.3 illustrates
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Figure 3.3: Multiple-shooting method overview

the components of a three-segment multiple shooting scheme between fixed initial and terminal

states shown as black circles. These states can be either identical for finding periodic orbits, or

along two different periodic orbits to find a transfer trajectory. The scheme attempts to patch

intermediate arc discontinuities and thereby reducing the constraints norm to within a specified

tolerance. To ensure continuity, the constraint function includes all six spatial elements between

segments. Formulating the multiple shooting problem is similar to the single shooting scheme.

We begin by forming a free variable vector for each segment along the trajectory. The

left-hand expression in Eq.(3.11) shows the free variable vector for a single segment j along the

trajectory. The total free variable vector, shown on the right, consists of stacking each arc’s free
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variable vector.

V⃗j =



xj

yj

zj

ẋj

ẏj

żj

∆tj


7×1

V⃗ =



V⃗1

V⃗2

...

V⃗n


7n×1

(3.11)

The total number of arcs along the trajectory is denoted by n.

Now that the updating variables vector is defined, we can define a set of constraints to model

continuity. These are defined by a constraint function vector that ensures that the final state for

the current arc j matches the initial state of the next arc j + 1. The starting and ending states

along the periodic orbit need to be matched as well to ensure the boundary conditions are satisfied.

The individual (left) and total (right) constraint vectors are shown in Eq.(3.12):

F⃗ (V⃗ )j =



xj,f − xj+1,i

yj,f − yj+1,i

zj,f − zj+1,i

ẋj,f − ẋj+1,i

ẏj,f − ẏj+1,i

żj,f − żj+1,i


6×1

F⃗ (V⃗ ) =



F⃗ (V⃗ )1

F⃗ (V⃗ )2

...

F⃗ (V⃗ )n


6n×1

(3.12)

For periodic orbits, the final constraint vector F⃗ (V⃗ )n is the difference between the final segment’s

post-propagated state (x⃗n,f ) and the initial state vector (x⃗1,i). As discussed in the single shooting

scheme setup, the same minimum norm update equation Eq.(3.10) is used to iterate on the free
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variable vector. For clarity, the Jacobian matrix is shown in it’s sub-matrix blocks below:

DF⃗ (V⃗ ) =
∂F⃗

∂V⃗
=



∂F⃗1

∂V⃗1
, ∂F⃗1

∂V⃗2
, . . . , ∂F⃗1

∂V⃗n

∂F⃗2

∂V⃗1
, ∂F⃗2

∂V⃗2
, . . . , ∂F⃗2

∂V⃗n

...

∂F⃗n

∂V⃗1
, ∂F⃗n

∂V⃗2
, . . . , ∂F⃗n

∂V⃗n


(3.13)

The Jacobian matrix is of dimensions: length(F⃗ (V⃗ ))×length(V⃗ ). We can look at a single block

matrix within this update term. Eq.(3.14) is the first arc and constraint assuming a full-state

continuity.

∂F⃗1

∂V⃗1

=

[
∂(x⃗1,f−x⃗2)

∂x⃗1
,
∂(x⃗1,f−x⃗2)

∂∆t1

]
6×7

(3.14)

The already computed state transition matrix is leveraged to define the partials derivatives of

the integrated state x⃗1,f with respect to the initial state x⃗1. Also, the partials derivatives of the

integrated state with respect to time ∆t1 is simply the velocity and acceleration at the final state.

With this in mind, we can rewrite Eq.(3.14) and the partial of the first constraint with respect to

the second free variable state as:

∂F⃗1

∂V⃗1

=

[
Φ1(∆t, 0), ˙⃗x1,f

]
6×7

∂F⃗1

∂V⃗2

=

[
−I6×6,06×1

]
6×7

(3.15)

This process is repeated for each free variable and constraint in the total DF⃗ (V⃗ ) matrix.

Figure 3.4 illustrates the multiple shooting method applied to periodic orbit correction. In the

trajectory visual, the grey circles represent the initial states for each segment and the grey dashed

lines indicate these states propagated by the initial guess time. The colored segments indicate

the converged solution which has removed state discontinuities within a specified tolerance. The

trajectory orbits a stationary point known as the L1 Lagrange point, and this is covered in the next

section. The right plot shows the norm of the constraint vector after each iteration. We expect

quadratic convergence in the solution and this is evident by the log-scale on the y-axis.

Similar to the periodic orbit case demonstrated above, end-to-end transfers is found using

coasting and thrusting arcs. Figure 3.5 illustrates the concept of a multiple shooting trajectory with
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Figure 3.4: Example of multiple shooting applied to correct a L1 Lyapunov periodic orbit

a single thrusting arc and two subsequent coasting arcs. This diagram differs from the previous one

as it demonstrates a corrected solution where the initial and final states along each intermediate

arc are overlapping. The thrust-enabled arcs have a modified free variable vector to include the

control directions ux, uy, uz, mass m, and a slack variable β[4]. This free variable vector, for an

arbitrary segment j, is shown below:

V⃗j =

[
xj , yj , zj , ẋj , ẏj , żj , ux,j , uy,j , uz,j , mj , ∆tj , βj

]T
12×1

(3.16)

Note that the control vector is held constant in the rotating frame along the arc. Because control

and mass are propagated during integration, additional constraints need to be imposed on the arcs
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Figure 3.5: Diagram of the multiple-shooting method with thrusting and coasting arcs

to ensure continuity in the solution, and this is seen in the following constraint vector:

F⃗ (V⃗ )j =



xj,f − xj+1,i

yj,f − yj+1,i

zj,f − zj+1,i

ẋj,f − ẋj+1,i

ẏj,f − ẏj+1,i

żj,f − żj+1,i

| u⃗j |2 −1

mj,f −mj+1,i

∆tj − β2
j


9×1

(3.17)

In this formulation, the norm of the control vector squared should be equal to 1 to ensure the

vector is unit. The mass post-propagation of the current segment mj,f must be equal to the

initial mass of the next segment mj+1,i. Additionally, a slack variable β is introduced to ensure
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that the propagation time is always greater than zero. The Jacobian matrix from Eq.(3.13) is

still applicable for the free-variable vector update equation Eq.(3.10). It is important to note

that various constraint formulations is imposed on transfer design problems. For example, when

designing a transfer between two periodic orbits, the initial and final segment constraints must

include the departure and target periodic orbits states. The Jacobian matrix sub-blocks must

account for combinations of thrusting and coasting segments.

3.3 Continuation Methods

Continuation methods are valuable in computing a sets of solutions from a single result. For

example, this technique is useful in computing periodic orbit families and is used to find sets of

transfers. Two well known approaches are the natural parameter and the pseudo-arclength methods.

Both methods attempt to traverse the constraint manifold finding particular solutions along this n-

dimensional path. Natural parameter continuity is beneficial when physical constraints are desired

on the next solution. For example, when computing a set of periodic orbits if the difference in

Jacobi constant between each orbit is to remain fixed, this method ensures this constraint is met.

For transfers, natural parameter continuation is useful to find sets solutions for varying spacecraft

capabilities. It is important to note that the natural parameter method can step too far from the

constraint manifold which can result in not being able to find a solution. The pseudo-arclength

method attempts to step in the direction of the gradient of solutions to remedy this. This method

is beneficial in certain cases of periodic orbit family generation.

3.3.1 Natural Parameter

The natural parameter continuation method involves perturbing a single parameter to form a

new initial guess. Then this guess is corrected with modified constraints to enforce the parameter’s

value. This method relies on an arbitrary step size for the natural parameter, which may need to

be reduced to adequately follow the constraints manifold. For periodic orbits, we can modify the

constraint vector formulation to enforce the natural parameter value. For example, the following
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is the last constraint sub-vector for a multiple shooting correction scheme:

F⃗ (V⃗ )n =



xn,f − x1,i

yn,f − y1,i

...

żn,f − ż1,i

p− (p∗ +∆p)


(3.18)

where n is the final segment in the multiple shooting discretization, p is the natural parameter, p∗ is

the previous solution’s value for the natural parameter, and ∆p is the step size. The shooting scheme

is iterated on until a solution is found with this constraint. Note that with this additional constraint,

the number of constraints and free variables are equal and so a single solution is recovered.

3.3.2 Pseudo-Arclength

Instead of relying on a physical quantity as a step for the next solution, the pseudo-arclength

method attempts to step in the tangent direction to the solution manifold. Figure 3.6, adapted

from [4], demonstrates the difference in the step taken by the pseudo-arclength method ∆s versus

the natural parameter method ∆p along the constraint manifold. From the diagram it is seen that

stepping along the constraint manifold’s gradient yields a much closer initial guess to the manifold

and so the corrections required are smaller. While the step size doesn’t exactly yield a solution

with a specific natural parameter pnp, it is able to take a larger step. The step length can be varied

by the Wolfe conditions[5] in order to maximize the step direction. The pseudo-arclength method

initial guess free variable vector V⃗ is formulated by[4]:

V⃗ = V⃗ ∗ +∆sn̂∗ (3.19)

where V⃗ ∗ is the previous solution’s corrected free variable vector, ∆s is a scaling term, and n̂∗ is

the unit nullspace vector of the previous solution’s Jacobian matrix DF⃗ (V⃗ ∗). The nullspace is the

basis for vectors tangent to the constraint manifold and so stepping in this direction by an arbitrary

scaling term yields the appropriate pseudo-arclength step. A modified constraint is required to limit
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Figure 3.6: Conceptual overview of natural parameter and pseudo-arclength continuation methods

the distance between solutions in the tangent vector space which is formulated as:

H⃗(V⃗ ) =

 F⃗ (V⃗ )

(V⃗ − V⃗ ∗)T n̂∗ −∆s

 (3.20)

Similar to the shooting scheme correction methods, Newton’s method is applied with this modified

constraint formulation to converge on a solution. The update equation:

V⃗i+1 = V⃗i −DH⃗(V⃗i)
−1H⃗(V⃗i) (3.21)

is used to find a particular solution for V⃗ where the Jacobian of the constraint is:

DH⃗(V⃗i) =
∂H⃗(V⃗i)

∂V⃗i

=

DF⃗ (V⃗i)

n̂∗

 (3.22)

The method is iterated on until the constraint vector norm is within a specified tolerance parameter.

The process is repeated where the computed solution now becomes the V⃗ ∗ for the next solution in

the family.



Chapter 4

Particular Solutions

Despite the CR3BP being an inherently chaotic system, certain structures exist which are

beneficial in understanding the dynamics and formulating potential trajectories. This chapter

begins by introducing the Jacobi constant which is useful in categorization of trajectories. Next,

equilibrium points and their associated stability are assessed. Certain types of repeating orbits,

referred to as periodic orbits, are permitted in the CR3BP which are useful for designing missions.

Some periodic orbits exhibit naturally departing and arriving structures that are beneficial in low-

cost transfer design. Finally, a categorization method from dynamical systems theory is discussed

to find good initial guesses for the transfer design problem.

4.1 Constant of Motion

While the CR3BP does not admit sufficient constants of motion for an analytically solution, a

conserved quantity pertaining to the system’s potential energy is helpful. The Jacobi constant is es-

sential in categorizing families trajectories, validating numerical integration methods, and provides

insight into the energy difference between transfer orbits[23]. We begin the derivation of the Jacobi

Constant C with the pseudo-potential function from Eq.(2.21) and by recalling the relationship of

the pseudo-potential function to the equations of motion from Eq.(2.20). Taking the dot product

of the acceleration and velocity vectors and canceling terms yield:

ẍẋ+ ÿẏ + z̈ż =
∂U∗

∂x
ẋ+

∂U∗

∂y
ẏ +

∂U∗

∂z
ż (4.1)
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and because ∂U∗

∂t = 0, the total derivative of the system must be equal to:

dU∗

dt
=

∂U∗

∂x

dx

dt
+

∂U∗

∂y

dy

dt
+

∂U∗

∂z

dz

dt
(4.2)

Therefore, Eq.(4.1) is rewritten as:

ẍẋ+ ÿẏ + z̈ż =
dU∗

dt
(4.3)

and with a substitution to the left-hand-side to incorporate the velocity term: v2 = ẋ2 + ẏ2 + ż2

we can rewrite this expression as:

1

2

d

dt
v2 =

dU∗

dt
(4.4)

Integrating the equation above and including the integration constant C yields:

v2 = 2U∗ − C (4.5)

After substituting known quantities, we are left with the Jacobi Constant defined as [46]:

C = (x2 + y2) +
2(1− µ)

r1
+

2µ

r2
− (ẋ2 + ẏ2 + ż2) (4.6)

The Jacobi constant has an inverse relationship with the energy. Knowing the Jacobi constant of

a trajectory is beneficial as certain natural motion becomes bounded within accessible regions in

the dynamical system.

4.2 Equilibrium Points and Stability

In the CR3BP and in the rotating frame, certain points exist where the relative motion of

such point is equal to that of the motion of the primaries. These points are known as Lagrange

or Libration points and are denoted by an L followed by a numerical subscript to indicate the

exact equilibrium point. Five Lagrange points exist in the CR3BP and their locations is found

by employing analytical and numerical methods. Every point is co-planar with the primary and

secondary of the system[46], and Lagrange points L1, L2, and L3 are also co-linear along the rotating
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frame’s x-axis. The Lagrange points of any CR3BP system is found by the following derivation.

By definition, in the rotating frame these points appear stationary and so:

ẋ = ẏ = ż = 0,
∂U∗

∂x
=

∂U∗

∂y
=

∂U∗

∂z
= 0 (4.7)

Every point is co-planar due to the following condition:

∂U∗

∂z
= 0 = −(1− µ)z

r31
− µz

r32
(4.8)

where z = 0 to satisfy the equality. Similarly, the co-linear solutions are found by setting y = 0 in

the following condition:

∂U∗

∂y
= 0 = y − (1− µ)y

r31
− µy

r32
(4.9)

The remaining condition is:

∂U∗

∂x
= 0 = x− (1− µ)(x+ µ)

r31
− µ(x− 1 + µ)

r32
(4.10)

where r1 =| x+ µ |3 and r2 =| x− 1 + µ |3 after setting y = z = 0. To satisfy this final condition,

three unique solutions for x exist and are located where: x < −µ, −µ < x < 1− µ, and x > 1− µ.

Newton’s root finding method is useful to find these solutions. The initial guess for the Lagrange

point between the primary and secondary, L1, is simple as it is bounded on either side. If the mass

ratio, µ is very small, a good initial guess would be to offset this point closer to the secondary body.

The L2 point, which is on the right side of the secondary would be of roughly similar distance from

the secondary as L1. Finally L3 is on the far left side of the axis, and a good initial guess would

be roughly the opposite distance from the barycenter as the secondary.

The triangular Lagrange points L4 and L5 are not co-linear and is found using geometry[32].

Their locations form an equilateral triangle with two sides consisting of the primary and secondary

bodies. The third side is in the positive y-direction for L4 and negative direction for L5. The

distance between the celestial bodies is unity, and so the x-coordinate of both L4 and L5 is simply

half the distance from the primary to the secondary. The associated x-component is 1
2 −µ. To find

the y-coordinate, we can plug this value into the distance formula from the primary to the Lagrange
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point r13 and the secondary to the Lagrange point r23. Doing so yields two possible solutions for

the y-coordinate: ±
√
3
2 , which correspond to the L4 and L5 points.

Figure 4.1 depicts all five Lagrange points in the Earth-Moon CR3BP. Lagrange points L1,

L2, and L3 are co-linear with the x-axis and equilateral triangles, shown as grey dashed lines,

are formed to the L4 and L5 points. Table 4.1 includes each equilibrium points’ non-dimensional

position and Jacobi constant at zero velocity.

Figure 4.1: Lagrange point locations in the Earth-Moon system
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Lagrange Point x y z C

(ND) (ND) (ND) (ND)

L1 0.836915132366261 0 0 3.18834110539176
L2 1.15568216029081 0 0 3.17216045039168
L3 -1.00506264525194 0 0 3.01214714934122
L4 0.487849415730458 0.866025403784439 0 2.98799705242855
L5 0.487849415730458 -0.866025403784439 0 2.98799705242855

Table 4.1: Earth-Moon System Lagrange Point Positions and Jacobi Constants

Each Lagrange point has an associated stability criteria which is helpful in determining the

dynamical behavior in the vicinity of these points. This criteria is evaluated by linearizing the

dynamics about such points and performing a stability analysis of the in-plane and out-of-plane

modes[46]. In the system, a total of six eigenvalues exist where four pertain to in-plane modes and

two are for out-of-plane modes. Recall the equations of motion for the CR3BP in Eq.(2.20) which

are expressed using the pseudo-potential function’s partial derivatives. Small perturbations about

the equilibrium state, denoted by subscript e, are defined as:

ξ = x− xe

η = y − ye

δ = z − ze

(4.11)

Using the Taylor series expansion and neglecting higher-order-terms, the CR3BP equations of

motion are linearized about the equilibrium states x̄eq as:

ξ̈ − 2η̇ = U∗
xx |x̄eq ξ + U∗

xy |x̄eq η + U∗
xz |x̄eq δ

η̈ + 2ξ̇ = U∗
yx |x̄eq ξ + U∗

yy |x̄eq η + U∗
yz |x̄eq δ

δ̈ = U∗
zx |x̄eq ξ + U∗

zy |x̄eq η + U∗
zz |x̄eq δ

(4.12)

where the second-partial derivatives of the pseudo-potential function in the equations above are

defined in Eq.(3.5). Note that for every equilibrium point, the z-state component is zero. The
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variational equations of motion simplify to:

ξ̈ − 2η̇ = U∗
xx |x̄eq ξ + U∗

xy |x̄eq η

η̈ + 2ξ̇ = U∗
yx |x̄eq ξ + U∗

yy |x̄eq η

δ̈ = U∗
zz |x̄eq δ

(4.13)

The first four eigenvalues are found from the in-plane variational equations. Expressed in matrix

form these equations are:

ξ̇

η̇

ξ̈

η̈


=



0 0 1 0

0 0 0 1

U∗
xx |x̄eq U∗

xy |x̄eq 0 2

U∗
yx |x̄eq U∗

yy |x̄eq −2 0


︸ ︷︷ ︸

[A]



ξ

η

ξ̇

η̇


(4.14)

where the dynamics update matrix [A] is similar to the matrix in Eq.(3.3) from the linearization

methods of the state transition matrix. The solutions for the in-plane variational equations take

the following form[46]:

ξ(t) =

4∑
i=1

Aie
λit, η(t) =

4∑
i=1

Bie
λit (4.15)

and the eigenvalues λ of the system are found by the characteristic equation:

| [A]− λ[I] |= 0 (4.16)

Setting Λ = λ2, four eigenvalues are recovered from the expression above and are:

Λ =
−4 + U∗

xx + U∗
yy

2
±

√
(4− U∗

xx − U∗
yy)

2 − 4(U∗
xxU

∗
yy − (U∗

xy)
2)

2
(4.17)

where the second-partial derivatives are evaluated at the respective equilibrium states. The re-

maining two eigenvalues are found by rearranging the out-of-plane variational equation to yield the

following solution:

δ(t) =

2∑
i=1

Die
λit (4.18)
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and solving the associated characteristic equation yields the following complex eigen values:

λ = ±i
√
| U∗

zz |x̄eq | (4.19)

Stability analysis in the linear system can help provide insight into the stability of these equilibrium

points in the nonlinear system. The equilibrium point is unstable in the nonlinear system if any

of the eigenvalues have a positive real component. Conversely, asymptotic stability exists if all

eigenvalues possess a negative real value. Marginal stability in the linear system is when the real

component is equal to zero and the eigenvalues posses imaginary components. In the Earth-Moon

system, the co-linear Lagrange points all have unstable eigenvalues in the in-plane modes and thus

are inherently unstable points in the system. The linear analysis informs us that motion near the

vicinity of these points can naturally approach or depart. L4 and L5 have stable and marginally

stable modes implying the motion in this region is bounded to a certain degree. These points

become unstable for CR3BP dynamical systems with a mass ratio greater than 0.0385208965.

4.3 Periodic Orbits

Orbits that are repeating, as in the initial state is returned to after a period, are of particular

interest in the CR3BP due to their predictability in the chaotic system. Such orbits exist around

each of the Lagrange points, the celestial bodies, and additional periodic orbits are resonant with

respect to the CR3BP system period [12, 46]. For this thesis, periodic orbits are generated and

applied to the transfer design problem.

4.3.1 Planar Orbits

Lyapunov periodic orbits are planar and repeating with motion around the co-linear Lagrange

points. These solutions can be reasonably approximated using the linearized equations of motion

about the equilibrium points in the system. Then, using correction methods the initial guess is

computed in the nonlinear dynamical model. We can begin constructing a Lyapunov periodic

orbit with the variational equations in Eq.(4.13) where the spatial component is neglected. These
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coupled differential equations have particular solutions as shown in Eq.(4.16), and at an initial time

of t = 0, the particular solution becomes:

λ2
iAi − 2λiBi = U∗

xx |x̄eq Ai + U∗
xy |x̄eq Bi

λ2
iBi + 2λiAi = U∗

yx |x̄eq Ai + U∗
yy |x̄eq Bi

(4.20)

for i = 1, ..., 4 and U∗
xy |x̄eq= U∗

yx |x̄eq= 0 evaluated at the co-linear Lagrange points. Let’s define

the constant α which is equal to:

αi =
(λ2

i − U∗
xx |x̄eq)

2λi

(4.21)

so that a relation between Bi and Ai is established as: Bi = αiAi. This expression is plugged

back into the planar variation equations of motion. From inspection it’s seen that λ1 = −λ2

and λ3 = −λ4. Therefore, α1 = −α2 and α3 = −α4. The equations in matrix form with these

substitutions become: 

ξ0

η0

ξ̇0

η̇0


=



1 1 1 1

λ1 −λ1 λ3 −λ3

α1 −α1 α3 −α3

α1λ1 α1λ1 α3λ3 α3λ3





A1

A2

A3

A4


(4.22)

Constants A1 to A4 are solved at the initial time[46]:

A1 =
1

λ2
1 − λ2

3

(
−ξ0α3λ3 − ξ̇0α3σ + η0λ3σ + η̇0

)
A2 =

1

λ2
1 − λ2

3

(
−ξ0α3λ3 + ξ̇0α3σ − η0λ3σ + η̇0

)
A3 =

1

λ2
1 − λ2

3

(
ξ0α1λ1 + ξ̇0α1σ − η0λ1σ − η̇0

)
A4 =

1

λ2
1 − λ2

3

(
ξ0α1λ1 − ξ̇0α1σ + η0λ1σ − η̇0

)
(4.23)

where σ =

√
U∗
yy |x̄eq

U∗
xx|x̄eq

. Solutions with the real eigenvalues are omitted as this corresponds to unstable

modes. This simplifies equations of motion as A1 = A2 = 0. The oscillatory modes can now be
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excited to find the periodic planar initial state. The linearized equations of motion become:

ξ(t) = A3e
λ3t +A4e

−λ3t

η(t) = α3A3e
λ3t − α3A4e

−λ3t

ξ̇(t) = λ3A3e
λ3t − λ3A4e

−λ3t

η̇(t) = α3λ3A3e
λ3t + α3λ3A4e

−λ3t

(4.24)

At the initial time, for a selected ξ0 and η0 the associated velocity components complete the initial

state as:

ξ̇0 =
η0λ3

α3
η̇0 = λ3α3ξ0 (4.25)

For the co-linear Lyapunov solutions, each periodic orbit crosses the x-axis with a zero x-velocity

component. Therefore, the solution space is further reduced to only be dependent on ξ0. The

linearized initial guess can now be corrected using either the single or multiple shooting schemes.

A family of Lyapunov periodic orbits are generated using the continuation methods from the

previous chapter. Figure 4.2 visualizes a set of L1 Lyapunov periodic orbits and are colored by

each orbit’s Jacobi constant. Apart from Lyapunov periodic orbits, other planar cases about the

Lagrange points in the CR3BP include short and long period orbits about L4 and L5. Additionally,

examples of planar periodic families around the secondary celestial body include but are not limited

to distant prograde (DPO) and retrograde (DRO) families.

4.3.2 Spatial Orbits

The CR3BP admits various families of spatial periodic orbits about Lagrange points includ-

ing: halo[18], axial, vertical, butterfly, and dragonfly orbits[43]. For this research, the halo cases

about L1 and L2 are used. From Doedel et. al. in [12] it is seen that different periodic orbit families

is found from each other by studying bifurcation points in the stability. Conversely, methods to

approximate halo periodic orbits are given by Richardson[43] which are sufficient initial guesses for

the corrections process. For L1 and L2, halo periodic orbits can be mirrored about the x/y-plane.

This yields distinct northern and southern families of solutions. Figure 4.3 contains a subset of the
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Figure 4.2: L1 Lyapunov periodic orbit family colored by Jacobi Constant

L2 southern halo orbits colored by the orbit’s Jacobi constant. In the vicinity of the L2 point, the

periodic orbits approach a planar solution which approaches the bifurcation point of the Lyapunov

and halo families. Closer to the Moon, the halo family becomes increasingly rectilinear and has

close perilunes. These orbits are often referred to as Near Rectilinear Halo Orbits (NRHOs)[18].

Specific orbits in this subset have period resonant ratios with respect to the Moon’s orbit and are

of particular interest for mission designs.

4.3.3 Resonant Orbits

A resonant relationship exists when the period of the orbit is an integer multiple of another

orbit[50]. Conventionally, resonant orbits are denoted by a n : m resonance where n is the tra-
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Figure 4.3: L2 Southern Halo periodic orbit family colored by Jacobi Constant

jectory’s integer multiple of the period that equals the system’s integer multiple m. For example,

a 3 : 1 resonance corresponds to when the spacecraft completes three revolutions in the time the

system completes a single revolution.

For this investigation, we consider generating planar-periodic orbits that have a resonant

relationship with the Earth-Moon CR3BP. We can use insights from the two-body problem, which

produces closed-form solutions, to generate initial guess states for resonant orbits in the CR3BP.

The solution procedure is as follows: 1) construct the desired n : m resonant orbit in the two-body

problem with respect to the orbital motion of the Moon about the Earth-Moon system barycenter,

2) adjust this state for a good initial guess in the CR3BP, 3) utilize corrections schemes to find

a resonant solution in the CR3BP, and finally 4) employ continuation methods to find additional
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members of the family.

In this thesis, the 1 : 2 and 2 : 3 resonant planar-periodic orbits are used as an intermediate

guess orbit to find a transfer. The 1 : 2 family initial guess process is shown here. The associated

two-body equations for designing a resonant orbit are:

T = 2π

√
a3

µTBP
, v =

√
2µTBP (

1

r
− 1

2a
) (4.26)

where µTBP is the two-body gravitational parameter (not to be mistaken with the CR3BP system

mass ratio), T is the orbit period, a is the semi-major axis, and r is the radius from the barycenter.

Using the l∗ of the Earth-Moon as the semi-major axis, yields the lunar circular period, and this

is used to find the resonant orbit’s period as: Tr = 2TMoon. With the two-body orbit period and

an arbitrary offset distance r along the x-axis, the two-body initial state is computed. Figure 4.4

visualizes this process for a offset distance r = 11500 km from the Moon’s semi-major axis. The

offset distance is selected as many potential resonant orbits exist. Selecting a value too close to the

Lunar circular orbit could yield in increased sensitivities when trying to recover the solution in the

CR3BP. Table 4.2 summarizes the initial guess states and orbit periods used to find the first 1 : 2

resonant periodic orbit. An intermediate step to adjust the two-body trajectory initial conditions

may be required to form a sufficient initial guess for the multiple-shooting scheme in the CR3BP. In

this particular case, the orbit period and y-velocity component were modified. A multiple shooting

scheme of 25 segments was constructed along the trajectory and after 9 iterations converged on

the state from the table. Now that a single resonant periodic orbit has been found, the family of

Two-Body Trajectory Adjusted Initial Guess Recovered Solution

x 0.970083246618106 0.970083246618106 0.977798491207561
y 0 0 0
z 0 0 0
ẋ 0 0 0
ẏ 1.18925270508221 1.19425270508221 1.57176545748565
ż 0 0
T 12.6434178287077 10.4434178287077 10.4441974060514

Table 4.2: 1:2 Resonant Periodic Orbit Initial Solution. All units are nondimensional
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Figure 4.4: Initial 2-Body 1:2 resonant orbit in the inertial frame

solutions is found using either the natural parameter or the pseudo-arc length continuation methods

discussed in the previous section. Because the orbits are co-planar with the primaries and cross the

x-axis with a zero x-velocity component, the natural parameter continuation scheme was employed

by varying the x-coordinate between solutions. Figure 4.5 shows the 1 : 2 resonant periodic orbit

family, where the trajectory color indicates the periodic orbit’s Jacobi constant. The bottom sub-

figure shows the trajectories in the close vicinity of the Moon and their relation to the system’s

Lagrange points.

4.4 Invariant Manifolds

Sets of trajectories that are unchanging in the dynamical system are said to be invariant, and

these particular structures can emanate from periodic orbits and Lagrange points. These manifolds
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Figure 4.5: 1:2 resonant periodic orbits in the Earth-Moon CR3BP in the rotating frame where the
bottom subfigure is a zoomed in view near the Moon
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govern natural transport making them useful in the transfer design process[23, 15]. A particle

traveling along a manifold is said to asymptotically approach the periodic orbit or Lagrange point

in forwards or backwards time. Manifolds are constructed at an unstable state along a periodic

orbit x⃗PO by perturbing it by the eigenvectors of the monodromy matrix at that particular state.

Two stable (left) and unstable (right) manifold initial conditions exist for a given state along a

periodic orbit[4]:

x⃗S = x⃗PO ± ϵv⃗S(x⃗PO) x⃗U = x⃗PO ± ϵv⃗U (x⃗PO) (4.27)

where superscripts S and U correspond to stable and unstable, vector v⃗ is the associated eigenvector,

and ϵ is a scaling constant. The stable manifold state is propagated backwards in time as this

manifold approaches the periodic orbit. Conversely, the unstable manifold departs the periodic

orbit and so the state is propagated forwards in time. Manifolds for periodic orbits are generated

by sampling an arbitrary number of points along the trajectory and generating stable and unstable

manifold conditions. If the periodic orbit’s monodromy matrix has been computed, it is used to

propagate the eigenvectors for these points by:

v⃗S,U (t) = Φ(t, t0)v⃗
S,U (t0) (4.28)

Figure 4.6 visualizes the manifolds created from 50 points along an example L1 northern halo

periodic orbit. When designing transfers between periodic orbits, it’s beneficial to map out the

possible trajectories to depart and arrive along manifolds. For example, when transferring between

an L1 northern halo to a L2 southern halo periodic orbit, a useful first step is to assess the unstable

departing geometry of the manifolds to see if close intersections exist with arriving stable manifolds.

In some cases, heteroclinic connections may exist where the departing and arriving manifolds are

identical, thus offering a theoretically-free transfer between periodic orbits. The full search space

is in seven-dimensions, six spatial terms and one integration time term, which can be difficult to

properly categorize to find potential initial guess paths.
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Figure 4.6: Stable and unstable manifolds emanating from a L1 northern halo periodic orbit

4.5 Poincaré Mapping

A Poincaré map visualizes a reduced number of degrees of freedom of the dynamical system,

thus making analysis of particular solutions more intuitive[4, 17, 49]. This is done by creating a

surface of section in the phase space, denoted by Σ in Figure 4.7 such that the dynamical system’s

flow ϕ(x⃗i, t) is transverse. Subsequent crossings of this hyperplane are recorded with a numerical

superscript indicating the order of crossing. Note that in example figure, crossings of a particular

direction are mapped and so the hyperplane is a one-sided map. Poincaré maps offer insights

into the flow of the system. For example, if a periodic orbit is mapped, all crossings of the plane

occur at exactly the same point. We can assess the stability of the periodic orbit by studying
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Figure 4.7: Schematic of a Poincaré Section with three transverse crossings from initial state x⃗i.

the behavior of perturbed initial conditions about the state mapped onto the same hyperplane.

Structures resembling closed curves on the map centered around periodic orbit stationary points

are indicative of quasi-periodic behavior on an appropriately constructed map - where the flow

is bounded but not necessarily repeating to the same crossings states[4]. Departing or arriving

manifolds may also form a curve-like shape on the hyperplane depending on the number of points

defining the manifold and the integration time. Plotting departing and arriving manifold crossings

on a single Poincaré map is beneficial in finding potential transfers. By finding the closest candidates

in the phase space, the required cost to transfer from one periodic orbit to another is significantly

reduced and a good initial guess for transfer design is found.



Chapter 5

Transfer Design Process

Differential correction schemes and local optimization routines both require an initial guess

for state, time, and control histories such that feasible and optimal solutions are found. The quality

of these initial guesses are critical as they directly impact the ability of such methods to recover

a solution. This chapter presents methods to utilize known solutions in the CR3BP to form this

initial guess before the corrections process. Then methods of continuity are discussed to step feasible

initial guesses towards representative transfers of interest. Finally transfers are optimized to save

propellant using a variety of methods, and in this research, the direct method of optimization is

considered.

5.1 Initial Guess Generation

Generating an initial guess path poses a significant challenge for transfer design. However,

certain strategies exist to leverage known solutions in the problem to find potential transfers.

We begin by analyzing unstable periodic orbits and their departing and arriving manifolds to

form connections. This is dependent on the fact that such connections have sufficiently low state

discontinuities such that spacecraft control is utilized to minimize discontinuous path constraints.

The assumption that periodic orbit manifolds exist and will approach each other in phase space

is inherently limiting and so an additional method of connecting arcs is discussed. It allows for

intermediate solutions such as other periodic orbits in the system to form the path connecting the

departure and arrival periodic orbits.



47

5.1.1 Periodic Orbit Departure and Arrival Manifolds

The instability of certain periodic orbit families and their associated invariant manifolds is

beneficial in designing potential transfers. Barden, Howell, and Lo in [19] demonstrate the use

of invariant manifolds and impulsive maneuvers as potential trajectories departing and arriving

Lagrange point orbits. Similarly Gómez, et al. in [16] discuss heteroclinic, zero-cost, connections

between the unstable L1 and L2 Lagrange points. For unstable departing and arriving periodic

orbits, this method is beneficial as it utilizes the natural dynamical motion near the periodic orbits

to reduce the maneuver cost.

Given two candidate periodic orbits we begin the process of creating the initial guess transfer

by generating the unstable departing manifold and the stable arrival manifold of trajectories. Figure

5.1 depicts manifolds emanating from two halo periodic orbits shown in cyan. A 50 trajectory

unstable departing manifold from a L2 southern orbit is in magenta, and a 50 trajectory stable

arriving manifold to the L1 northern halo orbit is shown in blue. It is evident that visual analysis

Figure 5.1: L2 southern halo unstable interior (magenta) and L1 northern halo stable exterior
(blue) manifolds. A Poincaré section at the lunar x-coordinate in the Y /Z-plane can help to find
potential transfers.

to find where state discontinuities are minimized is a challenging process. Therefore, we can employ

Poincaré maps to reduce the dimensionality of the phase space. In the figure, the solid black line
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starting from the lunar x-coordinate is a potential hyperplane of interest, but it is important to

note that any section can be taken that yields a convenient analysis point. The left subfigure in

Figure 5.2 is a Poincaré map containing each manifold trajectory’s y and z-coordinates where the

shaded color corresponds to the x velocity component. In the region of interest, both manifolds

have minimal discontinuities in their y and z-components. However, note that solutions in this

region may not have similar velocity states. Additional Poincaré maps can be generated at the

same section but for different variables to understand the phase space of solutions more clearly.

From the region of interest, particular departing and arriving manifold trajectories were chosen

and they’re presented in the right subfigure in Figure 5.2. A potential path with a minimal state

Figure 5.2: Poincaré Map (left) and selected manifolds from region of interest plotted (right).

discontinuity is identified, but a control profile needs to be created to enable corrections methods

to recover a fully continuous trajectory. This process is discussed in the corrections subsection of

this chapter.

5.1.2 Intermediate Periodic Orbit Arcs

The previous method relies on the assumption that the departing and arriving periodic orbits

are unstable with invariant manifolds that have minimized state discontinuities. If this condition

cannot be met, an alternative strategy needs to be considered to find potential pathways for the
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initial guess. Vaquero and Howell in [47] and [48] leverage resonant periodic orbits to form multi-

Lagrange point tour transfers. Pritchett, Zimovan, and Howell in [38] demonstrate this method

applied to periodic orbit transfer design. Restrepo and Russell in [41] form a strategy of patched

periodic orbits to find suitable transfers by stepping through periodic orbit family solutions. These

strategies all leverage existing particular solutions in the CR3BP as intermediate arcs to find

potential transfers, and this method is considered in this research.

Figure 5.3: Example of a DRO to L3 Lyapunov transfer using 2 : 3 resonant periodic orbits.
Segments along the initial, final, and any intermediate orbits in the chain is used as initial guess
states.

Figure 5.3 demonstrates the use of three arcs to construct an example transfer between a

distant retrograde orbit and a L3 Lyapunov orbit using the intermediate 2 : 3 resonant periodic

orbit family. The left subfigure overlays a set of orbits from the resonant family on top of the initial

and final periodic orbits. It is evident that strictly in terms of positional differences, there exists

a good candidate resonant periodic orbit that can serve as an intermediate arc for this transfer.

A transfer could begin at any state along the DRO and connect to the 2 : 3 resonant leg. This

example includes three-links due to including the departure and arrival periodic orbits themselves

as part of the transfer trajectory to improve the guess states. This is shown as scatter points in



50

magenta and cyan on the right subfigure. The example is one of an arbitrary number of ways to

discretize a potential transfer trajectory. In this case, the resonant leg is only used for half of the

orbit and is then joined with half of the arrival L3 Lyapunov orbit. In regards to orbit energy, all

three periodic orbits have dissimilar Jacobi constants. The Jacobi constants are 2.96025 for the

departure DRO, 2.77439 for the 2 : 3 resonant connecting orbit, and 2.89309 for the arrival L3

Lyapunov. Variation in the energy can be accommodated for using thrusting segments and this

is discussed in the next subsection. For this demonstration, we are able to find a likely transfer

by visual inspection of the left subfigure because all orbits in this transfer are planar. For more

complex cases with spatial terms, the use of one or multiple Poincaré maps to spot ideal candidate

intermediate arcs can be helpful.

Theoretically an infinite number of possibilities for intermediate orbits exist, and an arbitrary

number of links can be produced to come up with initial guess paths. While the search for possible

paths cannot be done exhaustively, we can inspect other periodic orbit families and their properties

to come up with alternate initial guesses.

Figure 5.4: Example of a DRO to L3 Lyapunov transfer using members from the DRO, L4 SPO,
and L3 Lyapunov periodic orbit families.
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For example, the DRO to L3 Lyapunov transfer could also be solved using a candidate from the

L4 short period (SPO) periodic orbit family[38]. The left subfigure in Figure 5.4 overlays selected

members of the DRO, L4 SPO, and L3 Lyapunov periodic orbit families in cyan. The magenta orbits

are the same initial and terminal periodic orbits from the case in Figure 5.3. The right subfigure

in Figure 5.4 demonstrates a potential five intermediate arcs transfer with linear discretization of

points along each connecting arc. The initial guess begins along the departure DRO and transfers

to a lower Jacobi-constant DRO. Then a connection to the L4 SPO is intended followed by an

intermediate L3 Lyapunov. Finally the terminal L3 Lyapunov periodic orbit is queried for states

to complete this potential transfer.

5.1.3 Transfer Correction

A feasible transfer is defined as having a continuous trajectory from a starting state to a

terminal state along two different periodic orbits. The prior subsections have identified potential

paths the spacecraft can take between these orbits, and now discontinuities need to be minimized

such that the feasibility condition is met. We begin the process by analyzing where control segments

in the trajectory can be included. The initial guess formulation process, discussed by Elliot et al.

in [13], sheds some light into strategies for control placement and prioritization of discontinuities.

We can utilize the system’s dynamical sensitivities our advantage. Take for example a potential

transfer that has large energy discontinuities between manifolds, but also has a close perilune.

In the vicinity of the celestial body, the sensitivity of the dynamics are increased, and so small

changes in the acceleration in this part of the transfer can yield larger changes in energy. This

can be exploited to reduce the amount of control effort required by the spacecraft. Conversely,

consider a transfer that requires a large plane-change. The reduced sensitivities of the dynamics

away from the celestial bodies in the system mean the effect of the spacecraft control in the out-of-

plane direction has a greater impact on changing the spacecraft’s velocity vector direction. Thus,

including thrusting in this direction can potentially change the transfer’s inclination for a reduced

control effort. In this work, segments for control are placed before and after the intermediate arc
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discontinuities. An initial control history is also required for the corrections process. Therefore,

we need to initialize some control direction along the transfer. In portions of the initial guess

where energy change is required thrusting in or opposite to the velocity direction of the initial

guess trajectory is considered. For inclination changes, thrusting in the ±Z-direction is used. In

the current problem formulation, the thrust magnitude is assumed to be constant. A unit vector is

used to initialize the thrust direction along each control segment to initially satisfy the constraint

formulation.

Figure 5.5: Example of a corrected DRO to L3 Lyapunov transfer initial guess with segments
starting states (blue scatter points) and with control (red quivers).

The state and propagation times along each periodic orbit and control vectors for thrusting

segments are compiled to form the free-variable vector. This discontinuous path is then corrected

using the multiple shooting method. Figure 5.5 demonstrates the transfer corrections process for

the example trajectory in Figure 5.3. The constraint function norm versus iterations is shown on

the right subfigure. For this example, a spacecraft with an initial mass of 500 kg, maximum thrust

of 0.15 N, and an Isp of 2500 s is used. For more complex trajectories, inherently guessing a control
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profile can sometimes yield an insufficient initial guess for the iterative Newton’s method in the

shooting scheme. Reducing the Newton step with the scalar term ρ in Eq.(3.10) can reduce the

update magnitude which can increase the likelihood that a possible feasible solution isn’t skipped

over. Another method to increase the chance of convergence is to reevaluate the discretization of the

initial guess arcs. Adding more segments, especially in regions of increased dynamical sensitivity,

helps to better approximate the true dynamics with the linearization from the state transition

matrix. Adding additional control segments can also help by increasing the acceleration along

the trajectory. The ability to find a feasible initial guess is dependent on the path generation

process and the discretization of the transfer, and these techniques help to increase the likelihood

of recovering solutions for more complicated transfer cases.

5.2 Continuation

We can employ the concept of continuation to explore neighboring solutions with modified

constraints or parameters. These quantities include the spacecraft physical parameters or transfers

between other periodic orbits in the same families. Spacecraft physical parameters are paramet-

rically searched by varying conditions such as the maximum thrust available, the specific impulse

constant, and initial mass. The trajectory’s sensitivities to these parameters can then be assessed

to find the limitations of a particular transfer initial guess. Figure 5.6 demonstrates spacecraft

parameter continuity applied to the DRO to L3 Lyapunov example cases from Figures 5.3 and

Figure 5.4. The spacecraft’s thrust available is varied from the initial 0.15 N to 0.05 N by a 0.01

N step using the previously computed transfer as the initial guess for the next trajectory. Blue

arcs indicate coasting periods and red arcs indicate when the spacecraft is thrusting. Alternatively,

continuation can be applied to walk the initial guess trajectory towards intended mission design

parameters. If converging a feasible solution is troublesome, increasing the control acceleration by

modifying the spacecraft parameters is beneficial. Once a solution is found, the result can be used

to reduce the acceleration back to the intended design parameters through this iterative process.

It should be noted that continuation methods will not always guarantee a solution. The limits
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Figure 5.6: Example of solution continuity applied to the DRO to L3 Lyapunov transfer using both
initial guess orbit chain paths. The initial mass and engine Isp are fixed with thrust varied from
0.15N to 0.05N in 0.01N steps.

of the method are discovered when solutions do not converge with smaller continuation step sizes

or the update magnitude constant ρ for the corrections process. These parameters are varied in

an algorithmic manner to minimum step values before the process is terminated. The continuation

algorithm varies the natural parameter by an initial step size. If a solution is not achieved within

a specified iteration limit, or there is divergent behavior, then the correction is terminated. The

update magnitude is halved and the correction is reattempted. If this does not converge, the natural

parameter step is halved and the solution is retried. The algorithm switches between halving the

update scalar and parameter step until minimum values for both are reached. Alternatively, step

size modulation using the Wolfe conditions mentioned previous can be used here. If either of these

processes do not yield a solution, intervention is required to reformulate the initial guess path.

Continuation is also beneficial when finding sets of solutions between periodic orbit families.

The initial and terminal states are varied causing a small state discontinuity in the first and last

segments along the transfer. The size difference in the previous solution’s states and the new
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periodic orbit states determine the shooting scheme’s ability to recover a solution. This process

is done in an iterative manner to generate sets of initial guesses for optimization. It is important

to note that the advantage of using solution continuity can also be a limitation under certain

circumstances. Consider a scenario applying continuity to a solution to find transfers between two

different sets of periodic orbits connected directly by their invariant manifolds. The influence of the

first transfer is inherently applied to family of solutions. Suppose a heteroclinic connection exists

between one of the pairs of periodic orbits. Theoretically be a minimum control effort solution

would be such case. It is not guaranteed that the continuity process would yield such solution as

the geometry is evolving from a prior trajectory. However, applying continuity in an automated

manner can help to rapidly generate many potential transfer opportunities from a single initial

guess construction.

5.3 Trajectory Optimization

The corrections process ensures that a feasible initial guess transfer is achieved. We can

take the transfer design process a step further by optimizing the path and control profile such that

the minimum amount of propellant is required for the transfer. This in turn increases the payload

mass which is beneficial for mission designs. Paths in unpredictable and nonlinear dynamical models

can be optimized using Nonlinear Programming (NLP) methods which include indirect and direct

problem formulations[31]. Both attempt to optimize some cost function J(x⃗) subject to equality

h⃗(x⃗) = 0⃗ and inequality g⃗(x⃗) ≤ 0⃗ constraints where x⃗ is a decision vector.

Indirect methods, also referred to as optimal control, offer a locally optimal solution given

a set of extremal conditions[26]. Such methods do not require a discretization of the transfer or

an initial guess control. Indirect methods yield continuous trajectories and control profiles. This

method reformulates the dynamics such that the optimal control policy’s necessary and sufficiency

(if available) conditions are incorporated in the system Hamiltonian[26]. The optimal Hamiltonian

is one that minimizes the control effort through the propagation. This is found by selecting state

and adjoint conditions such that when propagated, the formed two-point boundary value problem
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connecting the initial and terminal conditions is satisfied. It is worth noting that this method

is inherently more sensitive to the initial guess than direct methods[39]. From [39] the thrust

acceleration magnitude of the Hamiltonian is minimized using a “bang-bang” control law that

states that the control is always on at full magnitude or off completely. This solution, though

difficult to initially converge on, can be achieved by a smoothing function approximating bang-

bang control and applying continuation to the desired such control profile[26].

Direct methods evaluate the cost function and a gradient-informed step is taken towards low-

ering the cost at a particular iteration[31]. The decision vector is varied such that the gradient of

the cost with respect to the constraints is zero and non-decreasing in the phase space. This is a nec-

essary condition for optimality which is defined as the Karush-Kuhn-Tucker (KKT) conditions[39].

One such direct method is the interior-point algorithm which is intended to solve non-convex, large

decision vector problems using the barrier approach. Sub-problems in each iteration are solved

using sequential quadratic programming (SQP) to effectively handle nonlinear constraints. Trust

regions are employed for robustness in problem convexity and traversing the constraint gradient[6].

At a high level, the interior-point method approximates the inequality based constrained minimiza-

tion problem with a series of approximate equality minimization problems. A gradient-step is taken

using the trust region method or in some cases a direct Newton step[20]. Derivative information can

either be analytically provided if available or computed numerically using finite difference meth-

ods. The second-derivative of the constraints with respect to the cost function can also be analyti-

cally provided or numerically approximated using the Broyden-Fletcher-Goldfarb-Shanno (BFGS)

algorithm[21]. Several nonlinear solver packages are available for direct methods based problems

such as: Sparse Nonlinear Optimizer (SNOPT)[36], Interior-Point Optimizer (IPOPT)[54], and

FMINCON[21]. This research utilizes the Mathworks MATLAB based FMINCON package, and

constrained local optimization using the interior-point method is performed.

The FMINCON solver is initialized by an optimoptions MATLAB structure containing prop-

erties for the optimization problem setup. The objective and constraint gradients are analytically

specified to expedite computation time instead of numerically approximating the Jacobians using



57

finite difference methods. The Hessian is numerically approximated using the BFGS method. The

parallel compute option is enabled which automatically distributes MATLAB processes across mul-

tiple cores on the system[21]. Finally, the feasibility and optimality termination conditions are left

as their default values of 1e−06. The feasibility is the maximum constraint violation, where satis-

fied conditions approach 0 [20]. The optimality criteria is the first-order optimality of the solution

which is a measure of the necessary conditions of optimality [6]. The optimization problem is as

stated:

min
V⃗

(mp) s.t. F⃗ (V⃗ ) = ϵ⃗, ∆ti ≥ ∆tmin (5.1)

The decision vector passed to the optimization algorithm is the free-variable vector V⃗ constructed

from the feasible initial guess generation process. A constraints function is specified which evaluates

the dynamics similarly to the corrections process where F⃗ (V⃗ ) is the nonlinear equality constraints

vector and DF⃗ (V⃗ ) is the nonlinear equality constraints gradient. Additionally, nonlinear inequality

constraints C⃗(V⃗ ) and its gradient DC⃗(V⃗ ) are applied to the problem to restrict the minimum

integration time ∆tmin for each segment i. This condition ensures that segment lengths do not

approach zero which can cause instability in the numerical solver. Linear equality or inequality

constraints are not considered in this problem setup. The cost J⃗(V⃗ ) and its gradient DJ⃗(V⃗ ) are

specified to FMINCON which sums the total thrust duration along the trajectory and subsequently

computes the propellant mass fraction.

For all optimal trajectories generated in this research, the optimizer is allowed to run until the

termination feasibility and optimality conditions are satisfied. The computation time is dependent

on the size of the decision vector, the initial guess quality, the trajectory’s sensitivity, and the

computer hardware. Figure 5.7 visualizes optimal trajectories computed for the example case

propagated through this chapter. For both cases, the spacecraft has an initial mass of 500 kg,

maximum thrust of 0.1 N, and a constant specific impulse of 2500s. The method for optimizing

trajectories thus far satisfy the conditions for optimality. However, it is important to note that

these trajectories may not represent the true minimum potential cost for the transfer. These
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Figure 5.7: Optimized trajectories and control profiles for both initial guesses from the example

solutions are locally optimal solutions by the optimization method, hence why two different initial

guess trajectories do not generate the same optimal solution. Davis in [11] discusses considerations

of locally optimal solutions such as transfer geometry and time. Theoretically the most optimal

solution in terms of minimum propellant expended is when the control effort approaches zero.

Consequently this forces the transfer time to approach infinity, and therefore isn’t a practical

solution for mission designs. Therefore, without explicit constraints on the flight time or initial

solution geometry a practical optimal trajectory is difficult to achieve. Additionally, the decision

vector size and quality of the initial guess play an important role in the optimizer’s ability to

recover a solution and the computation time. The trajectory from the left subfigures in Figure 5.7

consists of 26 arc segments and a decision vector size of 291 × 1. The initial guess solution takes

63.345 days and 12.9781 kg of propellant. The optimal trajectory has a flight time of 62.165 days
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and 5.0726 kg of propellant use. The trajectory from the right subfigures have 43 segments and

a decision vector of size 465 × 1. The initial solution’s time and cost are 91.078 days and 23.64

kg. The optimized solution is 94.75 days and 3.884 kg of propellant. The former trajectory took

343 seconds to compute whereas the later took 3698 seconds on the same computer system. The

optimization flight time and performance will directly vary according to the decision vector size,

the descritization of the initial guess path, and how much different the optimal solution is with

respect to the initial guess.

Many basins of locally optimal solutions exist in the gradient-space of the problem[29], and as

shown from the example transfers created in this chapter, a good initial guess formulation is essential

in the low thrust transfer design problem. Additionally, features of the initial guess are to be

expected in the post-optimized trajectory due to the locally optimal nature of the recovered solution.

In this research, the direct methods is used for its availability of industry standard optimization

routines to prototype many locally optimal trajectories in the transfer design problem.



Chapter 6

Applications in the Earth-Moon System

Corrections, continuation, and optimization are applied to compute transfer trajectories be-

tween periodic orbits in the Earth-Moon CR3BP. In this chapter, two sets of transfers are presented.

The first scenario explores families of trajectories between the L1 northern halo to the L2 southern

halo periodic orbits using initial guess continuity. The second transfer example is from a L2 south-

ern NRHO to a DRO which focuses on initial guess generation techniques and comparing different

geometries and their associated conditions.

6.1 L1 Northern to L2 Southern Halo Transfer

The intent in this first example case is to demonstrate constructing a set of potential transfers

between various members in the L1 and L2 halo periodic orbit family from a single initial guess.

Natural parameter continuation is applied to step through subsets of the families in an automated

manner to generate feasible transfers. Then, specific cases are input to the optimization process to

minimize spacecraft propellant mass fraction. For this example a spacecraft with an initial mass

of 500 kg, maximum thrust of 0.1N, and a constant specific impulse of 2500s is used. A arbitrary

subset of 600 trajectories from Jacobi constants 2.998646 to 3.173605 of the L1 northern family,

and 3.027680 to 3.151838 of the L2 southern family are selected for this transfer problem. Figure

6.1 visualizes these periodic orbits with every 20th pair plotted.
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Figure 6.1: L1 northern and L2 southern halo periodic orbit family subsets

Figure 6.2: L1 unstable and L2 stable manifolds for initial L1 to L2 halo periodic orbits pair with
Jacobi constants 2.998646 and 3.027680
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6.1.1 Initial Guess Construction

The transfer design process begins by assessing potential paths the spacecraft can take using

the invariant manifolds of the periodic orbits. We will construct a feasible initial guess for the

first pair in the set of transfers and then apply continuation. Figure 6.2 visualizes a 50 trajectory

manifold for the L1 halo unstable departure in magenta and the L2 halo stable arrival manifold

in blue. Zero or one-revolutions around the Moon for either of the manifolds is considered, but it

should be noted that multiple revolution initial guesses may exhibit better alignment of position

and velocity points at the expense of a longer transfer time. A surface of section is considered

at the Moon’s nondimensional x-component as the manifolds cross this plane to transfer from the

L1 to L2 vicinity. Note that potentially any surface of section could be selected as long as the

hyperplane is transverse to the flow. The selected surface of section will have an influence on the

initial guess generated. For this transfer, the lunar x-component was selected. Better alignment of

trajectories were noticed for negative y-component crossings, and thus the surface of section was

reduced to this region only. Integration of each trajectory is terminated at the surface of section,

and trajectories that depart the lunar vicinity are terminated at a fixed time condition and are not

considered.

The top subfigure in Figure 6.3 is the Poincaré map generated at the surface of section shown

in Figure 6.2. Magenta points indicate the L1 unstable departure manifold and blue points are the

L2 stable arrival manifold. The position components are shown as scatter points and the states’

velocity vectors are drawn as quivers originating from these points. Note that out-of-plane velocities

exist in this solution as the transfer is spatial. Also, velocity vector directions do not correspond

to the position axes of the plot. The arrow lengths are are proportional to the velocity magnitude.

The first pass at the surface of section is noted by a diamond and the second is a circular scatter

point. Additionally, the Lunar radius in the Y/Z-plane is shown as a red circle to rule out impact

trajectories. Six initial path alignments in the y and z-components with roughly similar velocity

directions are shown in the figure. Their locations on the Poincaré map are noted with black
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Figure 6.3: Poincaré Map at Surface of Section (top) and selected initial guess trajectories plotted

rectangles and are ordered corresponding to their distance from the Lunar surface. Candidate 1

has the largest position and velocity discontinuity from the set. Candidate 2 is the only zero-

revolution trajectory likely making it the fastest in terms of flight time. However, a considerable

directional discontinuity in the velocities exist. Candidates 3 and 4 were selected to show the

difference in geometry if a zero or one-revolution guess was chosen for either manifold. Finally,

candidates 5 and 6 show an evolution of the geometry from candidate 3. As the perilune radii

decreased, it was observed that the loop pinches which is indicative of a slower apolune velocity

in the loop. Candidate 6 has the smallest discontinuity in position and velocity and so this pair is

used to form the initial guess for the transfer. The path is discretized with thrusting arcs at the
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Figure 6.4: Initial guess from invariant manifolds (left), feasible transfer (right)

initial and terminal nodes to facilitate the departure and arrival trajectory from the periodic orbits.

Additional control segments are placed at perilune along the end of the departure manifold and

beginning of the arrival manifold. The discontinuous initial guess path is shown in the left subfigure

in Figure 6.4, and the recovered continuous trajectory is shown on the right subfigure. It is evident

that with the spacecraft’s acceleration capability, a short thrusting segment at perilune isn’t feasible

to account for the energy difference at the discontinuity. Therefore, the feasible solution beings

thrusting considerably in advance of the perilune encounter. We can optimize this case to yield a

trajectory geometry that balances the advantages of a close perilune while considering the limited

acceleration capabilities of the spacecraft.

Figure 6.5 contains the locally optimal trajectory for this case followed by the Jacobi constant

change and control profile versus time. From this result, it is seen that the one-loop geometry is still

retained in the optimized solution, but the perilune and thrusting segment locations are shifted

considerably. The propellant mass savings of this solution versus the initial feasible solution is

1.6927 kg from the feasible solution requiring 2.7566 kg to the optimized solution requiring 1.0639

kg of propellant. The transfer time increased to 50.3655 days as opposed to 41.5613 days as a
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consequence. The departure and arrival low thrust burns are primarily spatial, and the perilune

burn direction evolves over the burn duration. The spatial components can be seen in the top

subfigure. It’s worth noting that the optimized trajectory is similar to initial guess candidate 3

from the Poincaré map in Figure 6.3. This candidate has predominantly spatial discontinuities,

which are accounted for in the optimized solution.

Figure 6.5: Initial transfer optimized transfer path, Jacobi constant, and control profile versus time

6.1.2 Continuation and Transfer Optimization

Now that a single case has been corrected and optimized, we can leverage continuation to find

an initial set of feasible transfers. Natural parameter continuation is applied by iteratively modifying

the initial and terminal states and using the previous solution as the initial guess path. With this

formulation, an initial and terminal discontinuities are corrected using the multiple shooting scheme.

It should be noted that using the full update in the shooting scheme may lead to divergent behavior
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on certain cases which is indicative of increased sensitivity in the solution geometry. This problem is

accounted for by identifying divergent behavior in the corrections process, prematurely terminating

it, and retrying with a smaller update scaling factor. Figure 6.6 shows the evolution in the geometry

(a) (b)

Figure 6.6: Evolution in the transfer geometry for increasingly inclined transfers.

across the initial and terminal transfers in the set. Magenta arcs are the periodic orbits, red arcs

indicate thrusting, and blue arcs are coasting. The geometry begins with a revolution around the

departing periodic orbit, followed by a loop about the Moon, before a revolution about the arrival

periodic orbit. Figure 6.7 shows the set of transfers in a three-view where the moon is centered

each of the subfigures.

6.1.3 Improving Transfer Set Using Point Case Optimizations

The existing set can now be updated to reduce the propellant cost. Computing optimal tra-

jectories for the entire family of solutions is a time consuming process using the direct optimization

method. Therefore, one or more point cases are optimized, and are then these used as initial guesses

for the next pass in continuation to update the set of transfers. By utilizing the optimal transfers



67

(a) X/Y -plane (b) X/Z-plane (c) Y/Z-plane

Figure 6.7: Initial set of transfers from the L1 northern to the L2 southern halo families

and applying continuation, we can significantly decrease the propellant consumption across the

family of solutions, but it should be explicitly stated that only a selected number of locally optimal

solutions exist in the set and the rest are feasible solutions with reduced costs.

Four selected optimizations along the family of solutions are shown in Figure 6.8. Subfigure

(a) is the first transfer in the family with departing and arriving Jacobi constants of 3.1736 and

3.1518. An initial thrusting is a short duration burn lasting around 2 hours and is mostly in the

out-of-plane component to initiate the departure. Unlike the initial guess trajectory, the perilune

radius is increased such that the departure and arrival arcs are connected by control segments in

the vicinity of the Moon. This maneuver is 35 hours in duration. A final thrusting arc of 39 hours

corrects the transfer inclination and energy difference with respect to the arrival periodic orbit.

Subfigure (b) connects periodic orbits of Jacobi constants 3.1523 and 3.1384. In this solution, it is

seen that a similar single-loop transfer geometry to the existing solution is retained. The departure

begins with majority of the thrusting in the out-of-plane component to significantly reduce the

inclination and increase the energy to begin the transfer. The subsequent maneuvers are 56 and

220 hours long. A ballistic revolution around the Moon occurs before an out-of-plane, 85 hour low

thrust maneuver is performed to rendezvous with the terminal periodic orbit state. In subfigure

(c) an evolution in the trajectory geometry is observed which transfers between Jacobi constants
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(a) (b)

(c) (d)

Figure 6.8: Optimized transfers in the set of solutions

3.0791 and 3.1015 which was noted in Figure 6.6. The transfer begins with a roughly 60 hour

maneuver to depart the periodic orbit. A subsequent vertical loop reminiscent to the departure

periodic orbit occurs which is followed by the closest perilune pass. A 45 hour burn is performed

beginning near perilune and the trajectory loops back towards the vicinity of the departure periodic

orbit. It crosses the vicinity of the Moon once again before the arrival burn lasting 102 hours is

performed to arrive at the periodic orbit. Subfigure (d) is the terminal transfer in the family and

has the lowest set of Jacobi constants of 2.9987 and 3.0277. These are the most inclined set of

periodic orbits examined, but still retain a similar geometry to the case in subfigure (c). A 21 hour
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burn initiates the departure followed by a loop similar to that from the intermediate case. Up to

the perilune, the transfer requires a 69 hour burn. The transfer continues out to the L2 region

before returning back to the L1 vicinity. This is followed up with another loop and a low thrust

burn roughly along the arrival periodic orbit of 64 hours to complete the transfer. A summary of

the optimization cases according to their label in Figure 6.8 are presented in Table 6.1. As the

Transfer Time Final Mass Propellant Savings
(days) (kg) (kg) (kg)

Case (a) Feasible 41.5613 497.2434 2.7566 -
Optimal 50.3655 498.9361 1.0639 1.6927

Case (b) Feasible 54.4161 491.9583 8.0417 -
Optimal 53.9179 494.6536 5.3464 2.6953

Case (c) Feasible 59.0808 489.2310 10.7690 -
Optimal 58.6704 496.8909 3.1091 7.6599

Case (d) Feasible 58.9819 488.7287 11.2713 -
Optimal 56.4502 497.7670 2.2330 9.0383

Table 6.1: Optimized transfer results versus initial solution set

periodic orbit pairs in the family of transfers vary from the initial solution shown in case (a), the

post optimized solution propellant savings are greater. This is to be expected as such initial and

terminal periodic orbit pairs are significantly different than pairs closer to the where the initial

optimal solution was computed.

Figure 6.9 summarizes the transfer sets created between the L1 northern halo periodic orbit

family and the L2 southern halo periodic orbit family. Select cases are presented in this figure

and the Jacobi constants of the departure/arrival pairs are listed on the x-axes. On the y-axis

the propellant cost in kilograms is shown. Cyan points indicate the original set, from Figure

6.7, which are generated using the initial optimal solution for continuation. The magenta points

are the updated set of feasible transfers that were recomputed from the point case optimizations

shown as red scatter points. Continuation is applied starting from the optimal trajectories and

extending evenly forwards and backwards in the transfer set. The updated set of solutions have

lower propellant requirements due to the intermediate optimal cases providing better initial guesses

within the family. It should be noted that only four optimal solutions exist in this data set, and so
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Figure 6.9: Transfer set before (cyan) and after (magenta) applying optimization to selected tra-
jectories (red) and continuation

the improvement in the family of solutions should not be mistaken for a complete set of optimal

transfers. This is evident in the third transfer presented in the figure where using the updated

data set has a slightly higher cost for the transfer than the original. Additionally, the solutions

of both sets are nearly identical in the vicinity of the original seed case as continuity is applied

from the same case. Figure 6.10 is a three-view of the updated set. When comparing the family of

(a) X/Y -plane (b) X/Z-plane (c) Y/Z-plane

Figure 6.10: Updated set of transfers

solutions here with the original feasible set in Figure 6.7, it is evident that the geometry of these
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transfers is considerably modified, but there are resembling features of the initial feasible solution

in the updated set. Trajectories in the updated set depart the L1 vicinity with a loop, followed by

a close pass to the Moon. The trajectories continue to the L2 region before returning back to the

L1 vicinity. Finally, the trajectories cross the Moon and then rendezvous with the terminal state

along the arrival periodic orbits. Though, the orientation of the loops, perilune radii, and thrusting

locations are significantly different than the original set of transfers.

This example demonstrates the ability to prototype sets of transfers between periodic orbits

by first constructing a single transfer using the unstable departing and stable arriving manifolds.

Then, this case is optimized, and continuation is used to generate an initial set of transfers. Select

cases from the set are optimized where the the geometry evolution is most apparent. Then con-

tinuation was applied from these solutions to update the set to reduce the transfer propellant cost

across the entire set of transfers.
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6.2 NRHO to DRO Transfer

With the increased focus on returning humans to the Lunar surface, multiple spacecraft

mission concepts are actively being studied to facilitate this goal. The Deep Space Gateway (DSG)

is one of such spacecraft and theoretically will be able to sustain long term operations in a continuous

Lunar orbit. The DSG is intended to leverage the stability of a particular subset of halo periodic

orbits called the Near Rectilinear Halo Orbits (NRHO)[52] for reduced station keeping costs[9].

Disposal mission concepts for DSG, large science spacecraft, or limited propulsion bodies such as

sample asteroids are being studied[25]. The Distant Retrograde Orbit (DRO) family offers long

term stability which can help facilitate such missions. Capdevila and Howell in [7], Oshima in [33],

and Wang et al. in [51] consider the NRHO to DRO transfer design problem using the CR3BP

dynamical model. Additionally, McGuire et al. in [30] and McCarty et al. in [28] explore a similar

NRHO to DRO transfer for large spacecraft structures similar in size and capability to DSG. For

this example case, the L2 southern NRHO and the DRO are considered from [7].

Figure 6.11: NRHO and DRO periodic orbits for transfer problem
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Figure 6.11 visualizes the NRHO and the DRO the transfer is to be designed between. It

is evident that the NRHO is significantly out-of-plane and posses a close perilune. The DRO is

planar and has apparent retrograde motion (clockwise) with respect to the Moon. Table 6.2 lists

the initial nondimensional state, dimensional orbit period in days, and the Jacobi constant for these

periodic orbits which are referenced in [7].

x y z ẋ ẏ ż T (days) C

NRHO 1.0456 0 -0.19465 0 -0.14916 0 7.96 3.0277
DRO 0.84947 0 0 0 0.47939 0 10.04 2.9604

Table 6.2: NRHO and DRO periodic orbits (all units are nondimensional unless noted)

Two spacecraft models are considered for the transfer design; a small spacecraft with an

initial mass of 500 kg and a larger spacecraft with an initial mass of 3000 kg. Both spacecraft

are assumed to have a fixed maximum thrust output and specific impulse. Further, it is assumed

that the engines are not throttleable. Table 6.3 summarizes the small and large spacecraft models

properties.

Small Large

Initial Mass (kg) 500.0 3000.0
Specific Impulse (s) 2500.0 2000.0
Maximum Thrust (N) 0.1 0.45

Table 6.3: Spacecraft models considered for the transfer design.

6.2.1 Initial Guess Construction

We begin the transfer design process by constructing the initial guess path for the spacecraft.

Starting with the NRHO, we can assess the periodic orbit’s stability index to determine if a set

of invariant manifolds exist. The stability index is the sum of the eigen values of the monodromy

matrix and for this particular NRHO is 1.6926. Applying techniques discussed in Chapter 4, it is

determined that manifold structures exist for this periodic orbit. The DRO is a stable periodic orbit

and thus manifolds are not considered for the arrival leg. An unstable departure manifold from
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the NRHO is shown in Figure 6.12 in magenta consisting of 150 trajectories. A long propagation

time, in excess of 18 nondimensional units, is required to see trajectories depart the vicinity of

Moon (top subfigure). Because the intended transfer is designed to minimize propellant cost, it is

beneficial to accept this longer flight time in exchange for potentially minimal control effort. The

manifold eventually returns to the vicinity of the DRO, however a significant out of plane position

and(or) velocity components exist in each trajectory making them unfavorable to directly connect

to the DRO. Instead, the manifold is propagated to the negative x-axis crossing. This surface of

section was taken as out of plane components could be corrected for at apolune. Two arcs are

used to connect the manifold to the DRO via the 1 : 2 (shown in blue) or 2 : 3 (shown in cyan)

planar resonant periodic orbit family. Members of these families are selected for their terminal

vicinity to the DRO for positive y-velocity crossings in the L1 vicinity. Two initial guess geometries

for this transfer are implemented through this example to determine which path yields the lowest

propellant mass fraction. A one-sided Poincaré directional surface of section along the negative

x-axis is used to analyze candidate manifold and intermediate resonant orbits with minimal state

discontinuities.

Figure 6.13 is a Poincaré map generated from this surface of section with the NRHO manifold

(magenta), 1 : 2 (blue), and 2 : 3 (cyan) orbits plotted. The region of interest where position

discontinuities are minimized are indicated by black boxes. All NRHO manifold points have some

out-of-plane velocity component and candidates in the region of interest have negative velocity

values meaning in additional time, they will cross the x/y-plane. This is of interest as the motion

in the desired direction, and control arcs along these trajectories can correct for the out-of-plane

motion. Within the regions of interest in the Poincaré map, two different NRHO manifolds and

two resonant orbits are selected such that the terminal resonant orbit state is sufficiently close to

the DRO. Better suited resonant candidates connecting to the NRHO exist for both cases but these

trajectories have significantly closer perilunes than the DRO and generally proceed away from the

vicinity of the Moon early on. Therefore it is desired to find a DRO that roughly approaches the

same perilune as the DRO to minimize position discontinuities.
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Figure 6.12: NRHO unstable departure manifold (magenta) and potential resonant connecting arcs
(blue and cyan).
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Figure 6.13: Poincaré map from the y = 0 surface of section. Regions of interest are boxed for
potential transfers.

Figure 6.14 contains the two potential initial guess transfers from the NRHO to the DRO.

Subfigures (a) and (b) are of the path using a 1 : 2 resonant orbit intermediate arc in a two-link

orbit chain. Subfigures (c) and (d) are of the same context but with the 2 : 3 resonant orbit. For

all the subplots, the cyan arcs are the specific resonant periodic orbits, the blue arc is the NRHO

departure manifold trajectory, and the magenta orbits indicate the initial and terminal periodic

orbits. Control segments are placed early on in the guess path such that the manifold departing

motion is initiated. Recall that the departure manifolds have considerable out of plane components.

Therefore, additional control is necessary to patch this arc with the planar resonant orbits and DRO.

The 1 : 2 resonant candidate has a Jacobi constant of 2.793789 and the 2 : 3 has a Jacobi constant

of 2.826857. These vary significantly from the arrival DRO and so control segments are placed in

the terminal portion of the intermediate arc and along the DRO arc to create a spiraling motion.

The initial guess control profile is constructed to account for the out-of-plane motion near apoapsis.

For the DRO arrival, the control is initially assumed to be in the anti-velocity direction to increase
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the Jacobi constant. To expedite the initial feasible solution convergence for both guesses, a base

case of spacecraft properties was chosen that have significantly higher initial accelerations than the

mission design models. This simplifies the process as a single feasible solution is iteratively stepped

towards feasible solutions respective to the intended spacecraft models. The thrust, mass, and Isp

selected are: 0.5N, 500kg, and 2000s respectively.
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(a) (b)

(c) (d)

Figure 6.14: Initial guess with arc discretization for the NRHO to DRO transfer trajectory where
subfigures (a) and (b) correspond to the 1 : 2 resonant arc guess and (c) and (d) correspond to the
2 : 3 resonant arc guess
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6.2.2 Continuation of Spacecraft Parameters

Once the base case feasible solution is converged for both trajectory designs, we can employ

natural parameter continuity in the spacecraft thrust and(or) mass to tailor the initial guess to

the mission design constraints. Figure 6.15 plots the 1 : 2 intermediate base case (m0 = 500 kg)

solution and additional feasible transfers varying the initial spacecraft mass up to 3000 kg. The

maximum available thrust is fixed at 0.5N and the specific impulse is 2000s. Red arcs indicate

thrusting and blue arcs are when the spacecraft is coasting. A similar geometry in the initial guess

is seen across each of the solutions. Though, as the spacecraft acceleration capability decreases, the

transfer flight times increase, thus pushing the incoming arc further away from Moon and thrusting

for an increased time duration. Continuity is applied again from the 1 : 2 intermediate base case.

Figure 6.15: 1:2 resonant transfer continuation for varying initial mass (m0) parameter.

In Figure 6.16 a similar solution geometry is observed as the mass and specific impulse are held

constant to the base case for the small spacecraft parameters but the thrust is reduced to meet

the mission design requirement from 0.5N to 0.1N. A total of four transfers between the NRHO

and DRO are demonstrated. The following figures apply the same method of continuity to the

2 : 3 intermediate arc initial guess. In Figure 6.17 the mass is increased, and in Figure 6.18 the
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Figure 6.16: 1:2 resonant transfer continuation for varying max thrust (T) parameter.

thrust is decreased. In both cases it is evident that the initial 2 : 3 planar resonant loop occurring

around the L3 is significantly altered in each of the feasible guesses. The feasible transfers with the

Figure 6.17: 2:3 resonant transfer continuation for varying initial mass (m0) parameter.

least amount of spacecraft acceleration have the smallest loops about the L3 as they’re unable to
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modify the geometry from the initial guess path as much as higher acceleration trajectories. As the

acceleration increases, the loop motion becomes increasingly out-of-plane, which is then corrected

at the arrival low thrust burn. These cases also exhibit close perilunes and have shorter transfer

times of flight. A similar family of solutions is seen when reducing the thrust available, but these

Figure 6.18: 2:3 resonant transfer continuation for varying max thrust (T) parameter.

are slightly modified in their loop geometry. More cases appear to transfer closer to the vicinity of

the Moon prior to arrival than the mass variation family of solutions. From the families of feasible

solutions, we can now take one or multiple to optimization to reduce the propellant mass fraction.

Through this transfer example, a total of four cases are carried to optimization. For dis-

tinction between cases, Table 6.4 summarizes the case names and conditions for each transfer.

Case Name Spacecraft Type Intermediate Periodic Orbit

1A Small 1 : 2
1B Large 1 : 2
2A Small 2 : 3
2B Large 2 : 3

Table 6.4: Transfer cases considered in the NRHO to DRO transfer design example
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6.2.3 Transfer Optimization

Table 6.5 covers the feasible initial guess and post-optimization trajectory properties for

case 1A and 1B. The feasible initial guess solutions have transfer times of 153 and 156.5 days. The

propellant mass is 12.56 kg and 82.35 kg respectively which translate to a mass fraction with respect

to the initial spacecraft mass around 2.6%. Post optimization, the propellant mass decreases to

Parameter Units m0 = 500 kg m0 = 3000 kg
Initial Guess Optimized Initial Guess Optimized

Transfer Time (days) 152.989 155.3513 156.5424 155.366
Final Mass (kg) 487.4348 493.4205 2917.6407 2946.3694
Prop. Mass (kg) 12.5652 6.5795 82.3593 53.6306
Prop. Fraction - 0.02513 0.013159 0.027453 0.017877
Prop. Reduction (kg) - 5.9857 - 28.7287

Table 6.5: Optimized transfer results versus feasible initial guess for case 1A and 1B

1.31% and 1.79% for the small and large spacecraft cases, and both have a similar transfer flight

times of around 155.35 days. The propellant savings for both transfers are considerable at 5.99 kg

and 28.73 kg which accounts for roughly a 1% increase in the payload mass delivered.

The optimized trajectories are shown in Figure 6.19 where subfigures (a) and (b) correspond

to case 1A and (c) and (d) are for case 1B. Transfers depart the NRHO with a low thrust burn

of 0.25 and 8.6 hours near perilune for the small and large spacecraft cases. Both exhibit similar

geometries in the exterior region of the transfer where thrusting is performed near apoapsis. The

small spacecraft case performs a low thrust burn for 6.4 days while the larger model has a 7.1 day

maneuver. The thrust direction is generally in the the velocity direction of the trajectory as the

spacecraft needs to decrease the Jacobi constant to continue along the resonant transfer path. The

longest burn occurs at the end of the transfers and lasts roughly 11.8 days for case 1A and 19.5

days for case 1B. This burn continues through the loop around the Moon before rendezvousing with

the DRO at the fixed terminal state. The trajectory geometry of the feasible transfer is generally

retained post optimization, but control directions and thrusting durations are significantly altered

to reduce the control cost.
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The feasible initial guess and post-optimization for transfers 2A and 2B are presented in Table

6.6. The optimized transfers have flight times that are 173.3 and 174.6 days. Like the previous

set of results, the post optimization propellant savings for case 2A and 2B are considerable. The

(a) (b)

(c) (d)

Figure 6.19: Optimized NRHO to DRO trajectories for case 1A (top) and case 1B (bottom)
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cost reductions are 4.69 kg and 22.10 kg respectively. The transfers for these cases are presented

Parameter Units m0 = 500 kg m0 = 3000 kg
Initial Guess Optimized Initial Guess Optimized

Transfer Time (days) 171.1978 173.3096 174.7609 174.5944
Final Mass (kg) 488.9851 493.6738 2930.6043 2952.7034
Prop. Mass (kg) 11.0149 6.3262 69.3957 47.2966
Prop. Fraction - 0.02203 0.012652 0.023132 0.015766
Prop. Reduction (kg) - 4.6887 - 22.0991

Table 6.6: Optimized transfer results versus feasible initial guess for case 2A and 2B

in Figure 6.20. Like the previous set of solutions, a short duration burn is performed early into the

trajectory to depart the vicinity of the Moon and continue towards the exterior region. For the

small spacecraft model this burn is 6.90 hours and for large model it is 9.05 hours. In the exterior

region the second burn is conducted for both trajectories lasting for 3.3 days and 4.5 days for cases

2A and 2B respectively. These burns are shorter than the equivalent maneuvers performed in the

case 1 transfers. Both optimal solutions retain similar geometric features from the initial guess

feasible solutions. The trajectory loop from the 2 : 3 resonant family is present in the optimal

solutions, but the size and location of these features vary considerably. Thrusting arcs are moved

before the loop portion in the trajectory and the durations are much shorter. The case 2 solutions

present a considerable out-of-plane component with respect to the case 1 solutions and an example

of this is seen in Figure 6.21. Consequently the arrival low thrust burns include a much greater out-

of-plane component compared to the case 1 results. The case 2 maneuvers are 14.5 and 19 days long

for the small and large spacecraft models respectively. The trajectories generated in case 2 share

similarities to a NRHO to DRO transfer discussed in [38]. The spacecraft model used in the cited

investigation has the same initial acceleration capability as case 2A, but with varying mass, thrust,

and specific impulse values. The transfer has a final mass to initial mass ratio of 0.9870 which is

comparable to case 2A which as a mass ratio of 0.9874. The transfer geometry is similar where the

solution departs the NRHO through an unstable manifold and uses an intermediate 2 : 3 resonant

arc to arrive at the DRO. The transfer uses two revolutions about the Moon before rendezvousing
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with the terminal DRO state. The time of flight differs as it is 121.3350 days compared to case 2A’s

171.1978 days. This is likely attributed to the departure time spent in the vicinity of the NRHO.

Overall, the optimized transfer in case 2A shares similarities in geometry and final mass fraction

(a) (b)

(c) (d)

Figure 6.20: Optimized NRHO to DRO trajectories for case 2A (top) and case 2B (bottom)
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Figure 6.21: X/Z-plane view of case 1B (top) and case 2B (bottom)

with respect to a prior NRHO to DRO transfer design investigated in [38].

Two sets of initial guess paths were created for the two spacecraft to emphasize the depen-

dency of the post-optimization transfer to the initial guess. The case 1A and 1B transfers have

faster flight times at around 155 days while case 2A and 2B are around 174 days. For the small

spacecraft model, it is seen that utilizing the longer flight time case, 2A, over 1A yields a propel-

lant savings of 0.2533 kg. Similarly, for the larger spacecraft model, the propellant savings that

come from the longer duration transfer are 6.334 kg. Figure 6.22 plots the accumulated thrusting

duration measured in days versus the trajectory discretization number of segments. Each subfigure

contains two plots indicated by the magenta and red colors. The magenta points form the initial

feasible solution’s thrust duration and the red points form the optimized solution. The blue points

indicate coasting segments and thus do not increase in the y-axis. The optimization cost is directly

related to the decrease in total thrust duration, which is shown as the gap between the terminal

segments for each subplot. This is due to the constant thrust magnitude problem formulation,

and it is also evident where the initial guess thrust durations for each trajectory differs from the

optimized solution. Case 1B has roughly double the number of segment arcs as this solution was

refined to asses the sensitivity of increasing the number of total segments. The trajectory does
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(a) Case 1A (b) Case 1B

(c) Case 2A (d) Case 2B

Figure 6.22: Accumulated thrusting duration (days) versus discretization segment count

not pass in close vicinity of the primary or secondary. A larger segment count could theoretically

improve the solution as in this region, having a finer resolution in control direction can further

utilize the sensitive dynamics to reduce overall control cost. However, for this case, no significant

advantage was noticed for the aforementioned reason. Transfer cases 1B and 2B have considerably

longer thrust arcs at the end of the transfers compared to cases 1A and 2A.

Figure 6.23 compares the feasible and optimal control profiles versus time for the small space-

craft. In all cases, the location of the three low thrust burns are distinct. The short duration one

occurs early into the transfer, the exterior region burn occurs at around 25-30 ND time (roughly

108-130 days), and the arrival burn completes the transfer. The optimized control profile has signif-

icantly less variation in the unit directions compared to the initial feasible solutions. Additionally,

smooth transitions are seen in direction.
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The NRHO to DRO transfer design demonstrates the significance of initial guess path plan-

ning and its direct effect on feasible and optimal solutions. By leveraging the unstable departure

manifold emanating from the NRHO, a low cost hyperbolic escape from the periodic orbit is pos-

sible. Two intermediate arcs are applied in different cases to patch the departing manifold to the

arrival DRO using either the 1 : 2 or 2 : 3 Earth-Moon resonant periodic orbits. Both potential

paths create different sets of possible transfers which in turn changes the locally optimal transfer

trajectories. The transfers with longer flight times are seen to reduce the propellant consumption.

These correspond to using the 2 : 3 intermediate arc for the initial guess path.
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(a) Case 1A Feasible Control Profile

(b) Case 1A Optimized Control Profile

(c) Case 2A Feasible Control Profile

(d) Case 2A Optimized Control Profile

Figure 6.23: Case 1A and 2A control profile versus time for feasible initial guess and optimal
transfers



Chapter 7

Conclusion

Methods to formulate low thrust feasible and optimal periodic orbit transfers are explored in

this thesis. Dynamical structures and existing solutions in the CR3BP are leveraged successfully to

create initial guess paths for transfers. Continuation and correction methods allow the formation

of one or many feasible trajectories. Finally, direct optimization was utilized to find several fuel-

optimal transfers between periodic orbits in the Earth-Moon system.

7.1 Summary

The thesis begins by establishing the natural and thrust-enabled dynamics of a massless

particle under the influence of two circular restricted celestial bodies. The linear mapping of per-

turbations in time with the state transition matrix proves beneficial in correction and optimization

routines. The single and multiple shooting methods allow for corrections of discontinuous initial

guess trajectories. Dynamical properties of the CR3BP, including equilibrium points, periodic or-

bits, invariant manifolds, and orbit chaining are explored to utilize existing solutions for initial guess

construction. Finally, continuation and optimization methods are applied to find sets of feasible

and propellant-mass locally optimal solutions.

Two example cases are explored in this work which apply concepts of initial guess generation

and continuation differently to design one or many transfers between periodic orbits. The first

demonstration explored concepts of continuation to generate sets of feasible transfers between sub-

sets of the L1 northern and L2 southern halo periodic orbits. A single initial guess was constructed
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by patching the departing unstable and stable arriving manifolds from these periodic orbits. Then

the corrections and optimization processes yielded the first transfer in the set. Natural parameter

continuation was then applied to find an initial set of feasible transfers in the family and select

cases were optimized. Continuation was applied from the point case optimizations to update the

feasible set and reduce the propellant cost across the transfer family. The next example demon-

strated the orbit chaining method applied to a transfer scenario between candidate Deep Space

Gateway L2 southern NRHO to a long term disposal DRO. Two spacecraft types and two initial

guess paths were developed using continuation of the spacecraft’s parameters and the orbit chaining

method. Resonant intermediate periodic orbits connected the NRHO unstable departure manifold

to the stable DRO. The optimized transfers retain features of the initial guess thus emphasizing

the necessity to possibly prototype multiple initial guess paths.

By leveraging dynamical systems theory and numerical methods for correction and optimiza-

tion, low thrust transfers between periodic orbits are possible in the CR3BP. Strategies to form

these transfer paths are discussed and locally optimal solutions between periodic orbits in the

Earth-Moon system are successfully computed.

7.2 Recommendations for Future Work

Through this research, a number of potential improvements and areas of interest were noted

for follow on work. Additional transfer examples, investigation into different intermediate geome-

tries, optimization methods, and visualization techniques for initial guess construction are all areas

that can be expanded on to improve the low thrust transfer design process in the CR3BP. These

areas are discussed below:

(i) As interest in cisluar exploration continues to grow, the need for mission designs between

periodic orbits in the Earth-Moon system will also increase. This research focused on specific

cases in a multitude of possible transfers for scientific, observation, communication, and human

spaceflight activities. Leveraging stable periodic orbits or the relative stability of the L4 and
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L5 points in the system can be beneficial for long term observation spacecraft. Transfers

to and from these orbits can accommodate cislunar operations to and from the DSG Lunar

outpost. Additionally space domain awareness type missions can benefit from transfers in

this system.

(ii) Prototyping multiple initial guess trajectories should be considered for a more robust search

space analysis. Zero or multiple revolution solutions exist which have design trade offs. Ex-

ploration into different initial guesses and their effect on the current and family of solutions

is important to potentially find better transfers.

(iii) The orbit chaining examples in this thesis only consider planar periodic orbits as intermediate

arcs. However spatial resonant periodic orbits exist in the system and may be useful candidates

for the examples presented or other periodic orbit transfers. Additionally, stacking multiple

same-family orbits can be helpful in modeling spiraling motion for large energy changes.

(iv) This thesis utilizes on direct optimization with the interior point algorithm and multiple

shooting. As the complexity of the solution increases, discretization of the transfer arcs yield

increasingly large decision vectors for optimization which in turn increases the compute time.

For example, a transfer between two halo periodic orbits in the same family may require

many revolutions depending on the spacecraft’s acceleration capability. In this case, indirect

optimization or collocation schemes[37] may offer benefits.

(v) Finally, reducing inefficiencies at each point in the design process is essential for increased

search space exploration. Recommendations to streamline the process include creating inter-

active visualizations for rapid prototyping initial guess paths. A graphical tool, such as the

Deep Space Trajectory Explorer (DSTE)[27], to search for orbit chaining sequences and arc

durations would improve the efficiency in the path generation. Discretization with interactive

methods can make prototyping many variations of a single transfer more convenient.
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[42] R.L. Restrepo Gómez. Patched periodic orbits : a systematic strategy for low-energy trajectory
and moon tour design. PhD thesis, The University of Texas at Austin, Austin, TX, 09 2018.

[43] D.L. Richardson. Halo orbit formulation for the isee-3 mission. In Journal of Guidance and
Control, volume 3, pages 543–548, 1980.



96

[44] C. Russel and C. Raymond. The Dawn Mission to Minor Planets 4 Vesta and 1 Ceres. Springer,
New York, NY, 2012.

[45] J.S. Snyder, D.M. Goebel, V. Chaplin, A.L. Ortega, I.G. Mikellides, F. Aghazadeh, I. Johnson,
T. Kerl, and G. Lenguito. Electric propulsion for the psyche mission. In 36th International
Electric Propulsion Conference, 8 2019.

[46] V. Szebehely. The Theory of Orbits The Restricted Problem of Three Bodies. Academic Press,
New Haven, CT, 1967.

[47] M. Vaquero and K. Howell. Leveraging resonant orbit manifolds to design transfers between
libration point orbits in multi-body regimes. In 23rd AAS/AIAA Space Flight Mechanics
Meeting, 3 2013.

[48] M. Vaquero and K. Howell. Leveraging resonant-orbit manifolds to design transfers between
libration-point orbits. Journal of Guidance, Control, and Dynamics, 37, 2014.

[49] M. Vaquero and J. Senet. Poincare: A multi-body, multi-system trajectory design tool. In 7th
International Conference on Astrodynamics Tools and Techniques (ICATT), DLR Oberpfaf-
fenhofen, 11 2018.
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