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Abstract

Tensor methods for nonlinear equations base each iteration upon a standard linear
model, augmented by a low rank quadratic term that is selected in such a way that the
model is efficient to form, store, and solve. These methods have been shown to be very
efficient and robust computationally, especially on problems where the Jacobian matrix
at the root has a small rank deficiency. This paper analyzes the local convergence prop-
erties of two versions of tensor methods, on problems where the Jacobian matrix at the
root has a null space of rank one. Both methods augment the standard linear model by
a rank one quadratic term. We show under mild conditions that the sequence of iterates
generated by the tensor method based upon an “ideal” tensor model converges locally
and two-step Q-superlinearly to the solution with Q-order —Z», and that the sequence of
iterates generated by the tensor method based upon a practical tensor model converges
locally and three-step Q-superlinearly to the solution with Q-order % In the same sit-
uation, it is known that standard methods converge linearly with constant converging
to % Hence, tensor methods have theoretical advantages over standard methods. Our
analysis also confirms that tensor methods converge at least quadratically on problems
where the Jacobian matrix at the root is nonsingular.

1 Introduction
Efficient numerical methods for solving the nonlinear equations problem
given F : R" — R", find z* € R™ such that F(z") =0, (1.1)

have long been sought by scientists and engineers. Standard methods widely used in practice
for solving (1.1) are iterative methods that base each iteration upon a linear model at current

point z€,
M(z®+ d) = F(z°) + J.d, (1.2)

where d € R",J, € R"*™. These methods can be put into two categories, those where J, is
the current Jacobian matrix or a finite difference approximation to it (Newton’s methods),
and those where J, is a secant (quasi-Newton) approximation to the Jacobian. When the.
Jacobian is available, the linear model (1.2) becomes

M(z® +d) = F(z°) + F'(z°)d. (1.3)

This paper analyzes tensor methods that are extensions to the first category, those that use

analytic (or finite difference) Jacobians.
The standard method for the nonlinear equations, Newton’s method, is defined when
F'(z°) is nonsingular, and consists of setting the next iteration z* to the root of (1.3),

gt = 2%~ F’(xc)‘lF(a:c).’ (1.4)

The distinguishing feature of Newton’s method is that if F’(z¢) is Lipschitz continuous in a
neighborhood containing the root z* and F'(z*) is nonsingular, then the sequence of iterates



produced by (1.4) converges locally and Q-quadratically to z*. This means that there exist
6§ > 0 and ¢ > 0 such that the sequence of iterates {z*} produced by Newton’s method
obeys

2%+t = 2*|| < elfo* - 2|2

if ||z° - z*|| < 6.

Newton’s method is not quickly locally convergent, however, if F'(z*) is singular. This
situation is analyzed and acceleration techniques are suggested by many authors, including
Reddien [15], Decker and Kelley [4],[5],[6], Decker, Keller and Kelley [3], Kelley and Suresh
[13], Griewank and Osborne [12], and Griewank [11]. In summary, their papers show that
when the Jacobian at the solution has a null space of dimension one, then from good
starting points, Newton’s method is locally Q-linearly convergent with constant converging
to -12- The acceleration techniques presented in these papers depend upon apriori knowledge
that the problem is singular. »

Tensor methods are intended to be efficient both for nonsingular problems and for prob-
lems with low rank deficiency. These methods augment the standard linear model by a
low rank second order term, in a way that requires no additional function or Jacobian
evaluations per iteration, and hardly more arithmetic per iteration or total storage, than
Newton’s method. The second order term supplies higher order information in recent step
directions; when the Jacobian is (nearly) singular, this usually results in supplying informa-
tion in directions where the Jacobian lacks information. Tensor methods were introduced
by Schnabel and Frank [17], and shown to be considerably more efficient and robust than
standard methods on both singular and nonsingular systems of nonlinear equations. They
have since been extended to unconstrained optimization [16] and nonlinear least squares [2]
with similar computational success.

A local convergence analysis of two versions of tensor methods for nonlinear equations is
presented in this paper. This analysis is an extension of the unpublished analysis of tensor
methods for nonlinear equations in Frank [9]. However, the convergence results presented
here are much stronger, and the versions of tensor algorithms that are analyze are much
closer to those that are implemented in practice. Furthermore, new techniques are developed
in our new analysis, which make the proofs clearer and more succinct.

The convergence results in this paper are for algorithms using a rank one second order
term. These are the simplest instances of tensor models and the only group having a
closed-form solution. Since only a rank one second order term is used, a local convergence
advantage over Newton’s method is expected only on singular problems where F'(z) has a
null space of dimension one at the solution. Thus, only the one-dimensional null space case
is considered.

The two tensor methods that we analyze here are an “ideal” temsor method and a
practical tensor method. The ideal method is motived by the fact that the closer a singular
value of F'(z) is to zero, the less information F’(z) provides in the direction spanned by the
corresponding singular vector. If F'(z) has a zero singular value at the solution z*, then as
z approaches z*, F'(z) approaches singularity, and the singular vector corresponding to the



least singular value of F'(z) approaches a null vector of F’(z*). From this observation, we
see that an excellent choice for a second order term would be to supply second derivative
information in the direction corresponding to the least singular value of F'(z) at that
iterate. We call the tensor method that does this an ideal tensor method. The ideal
method is in fact readily implementable, but it might be impractical for some problems
because it would require the computation of the smallest singular vector of the Jacobian,
and one additional function evaluation (to obtain a finite difference approximation to the
desired second derivative information), at each iteration. Nevertheless, the most important
feature of the ideal method is that it is quite easy to analyze, and demonstrates the basic
convergence behavior of tensor methods clearly. Furthermore, the techniques developed in
analyzing the ideal method shed considerable light on the analysis of the practical method,
which is our final target. The practical tensor method analyzed here is very close to that
implemented in practice, and in fact the analysis provided here is guiding our current
implementation.

The remainder of this paper is organized as follows. Tensor methods for nonlinear
equations are reviewed in section 2. Some notation and assumptions needed in the analysis
of both tensor methods are introduced in section 3. In section 4, an algorithm for an ideal
tensor method is presented and analyzed. We show that when the Jacobian at the solution
has a null space of rank one, then under mild conditions, a tensor method based upon the
“ideal” tensor model produces a sequence of iterates that is locally two-step convergent to
the solution with Q-order % In section 5 we extend this result to show that a tensor method
based on a practical tensor model produces a sequence of iterates that is locally three-step
convergent with Q-order %, under similar conditions. Finally, in section 6 we make some
brief comments about the relation of these results to the practical performance of tensor
methods, and about possible extensions of these results.

2 Tensor methods for nonlinear equations

Tensor methods for nonlinear equations were introduced by Schnabel and Frank [17].
The tensor model used in these methods is a quadratic model of F(z) formed by adding a
second order term to (1.3), giving

Mr(z* + d) = F(z°) + Jod + 5 T.dd, (2.1)

where T, € R™*"*" is intended to supply second order information about F(z) around
z°. The second derivative of F(z) at z¢, F"(z°) € R**™*" is an obvious choice for T, in
(2.1). However this choice for T, has several serious disadvantages that preclude its use in
practice. These include the computation of n®/2 second partial derivatives of F(z) and a
storage requirement of at least n®/2 real numbers for F"/(2°). Furthermore, to utilize the
model (2.1) with T, = F"(z¢), at each iteration one would have to solve a system of n
quadratic equations in n unknowns, which is expensive and might not have a root.

The difficulties associated with the use of T, = F"(z) in (2.1) are overcome in tensor
methods by choosing T, to have a restricted low rank form. This can be considered as an



extension to second order objects of the low rank update methods used to approximate
Jacobian or Hessian matrices in secant (quasi-Newton) methods. One difference is that
for reasons of efficiency in arithmetic cost and storage, at each iteration the zero tensor is
updated rather than the tensor from the previous iteration.

Formation of the tensor model in Schrabel and Frank [17] is based upon the interpo-
lation of information from past iterates, and requires no additional function or derivative
evaluations. This is done by selecting some set of independent past iterates z=*,---,z7P
and requiring the model (2.1) to interpolate the function values F(z~*) at these points.
That is, the model is required to satisfy

1
F(x-k) = F(zc) + F’(.’BC)Sk + "2‘T¢Sk8k, k= 11 D,

where
—_ -k c —_
g = 2" -2°% k=1,---,p.

The directions {sg} are required to be strongly linearly independent, which usually results
in p being 1 or 2, although an upper bound of p < /n is permitted. Then T is chosen to
satisfy

minTceggnxnxn “TCHF (2 2)
subject to Tesksk = zx, k=1,---,p, .

where ||T;||F, the Frobenius norm of T} is defined by

n n n

T = 3 S (Tl A,

1=1 j=1 k=1
and zp € R™ is defined as
= 2F(z7%) = F(z°) — F'(z°)s).

The solution of (2.2) is given by
P
T. = Z QLSkSk, (2.3)
k=1

where ay, is the kth column of A € R"%P, A is defined by A = ZM ™!, M € RP*? is defined
by M[i,j] = (sFs;)?,1<4i,5<p,and Z € R"*P by column k of Z = 2, k=1,---,p.
Substituting (2.3) into the tensor model (2.1) gives

Mr(zt+d) = F(z%)+ F(z)d+1 zpj ar(sTd)>. (2.4)

k=1

The additional storage required by T is 2p n-vectors, for {ax} and {st}. In addition, the
2p n-vectors {z~*} and {F(z~*)} must be stored. Thus the total extra storage required
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for the tensor model is at most 4n!'3 since p < /7, which is small compared to the n?
storage required for the Jacobian. The entire process for forming T requires n’p + O(np?)
multiplications and additions. The leading term comes from calculating the p matrix-vector
products F'(z¢)sk, k = 1,---,p; the cost of solving A = ZM~! is O(np?). Since p < /7,
the leading term in the cost of forming the tensor model is at most n2-> multiplications and
additions per iteration, but it is usually only a small multiple of n? arithmetic operations
since p is usually 1 or 2. This cost also is small compared to the at least n3/3 multiplications
and additions per iteration required for the matrix factorizations by standard methods that
use analytic or finite difference derivatives.

Solution of the tensor model with the special form of 7, given by (2.3) also can be
performed efficiently in terms of algorithmic operations. The goal is to find a root of the
tensor model (2.4), that is,

find d € R™ such that
P
Mp(zf + d) = F(z°) + F'(z°)d + 1 Z ax(std)? = 0. (2.5)

k=1
Since (2.5) may not have a root, it is generalized to solving

min || Mr(z® + d)]}2. (26)

Schnabel and Frank [17] show that the solution of (2.6) can be reduced, in O(n?p)
operations, to the least squares solution of a system of ¢ quadratic equations in p unknowns,
plus the solution of a system of n — ¢ linear equations and n — p unknowns. (Usually, ¢ = p;
the exceptional case ¢ > p arises when the system of n — p linear equations and n — p
unknowns would be singular and generally only occurs when rank(F’(z°)) < n — p.) This
reduction is carried out by performing orthogonal transformations of both the variable and
equation spaces in a way that isolates the quadratic terms into only p equations. The details
of this process are not important to this paper, because here we deal solely with models
where p = 1, in which case the tensor model can be solved much more simply and in closed
form. In addition, the convergence analyses of sections 4 and 5 do not depend upon any
particular solution techniques. For these reasons we do not discuss the solution algorithm
further in this paper; for details, see [17]. The total cost of solving the tensor model is about
2n3/3 + n%p+ O(n?) multiplications and additions, at most n2p < n?® multiplications more
than the QR factorization of an n X n matrix. The process generally is numerically stable
even if F'(z¢) is singular but has rank > n — p. If F’(z°) is nonsingular, the Newton step
can be obtained very cheaply as a by-product of the tensor model solution process.

In practice, computational results in [17] show the tensor method is more efficient than
an analogous standard method based upon Newton’s method on both nonsingular and
singular problems, with a particularly large advantage on singular problems. In tests on a
standard set of nonsingular test problems, the tensor method is almost always more efficient
than the standard method and is never significantly less efficient. The average improvement
by the tensor method is 21 — 23%, in terms of iterations or function evaluations, on all test



problems, and 36 — 39% on the harder problems where one method requires at least ten
iterations. The tensor method is considerably more efficient than the standard method
on problems with rank(F’(z*)) = n — 1; the average improvement is 40 — 43% on all
problems and 57 — 61% on the harder problems. The advantage of the tensor method over
the standard method on problems with rank(F’(z*)) = n — 2 is not as great as for the
rank(F'(z*)) = n—1 case but is still considerable, an average of 27 — 37% improvement on
all problems and 57 — 65% on the harder problems. More recent computational experiments
in [1], including experiments on much larger problems, show similar advantages for tensor
methods.

3 Notation and assumptions

This section introduces some notation and assumptions that are used throughout the
analysis in the remainder of this paper.

We say f(z) = ©(g(z)), if both f(z) = O(g(z)) and g(z) = O(f(z)), which is a natural
extension to the big-O notation. We also denote F'(z) by J(z) and usually abbreviate
J(z°), J(z*) as J. , J. respectively. Similarly, we often abbreviate F(z°¢), F(z*), F"(z°),
and F"'(z*) as F, , F. , F , and F/ respectively. The notation || - || denotes the Euclidean
vector norm.

Next, let F'(z°) = U.D,VT be the singular value decomposition of F'(z) at z¢, where
Ue = [uf,us,---,u], V, = [v§,v5,---,v5], and D, = diag[o$, 05, -, o8], with of > 0§ >
-+« > 0§ > 0 the singular values of F'(z¢) and {u{}, {v{} the corresponding left and right
singular vectors. We observe that vj and uf are the right and left singular vectors of F'(z)
corresponding to the smallest singular value. Let N°¢ denote the space spanned by v and
X¢ its orthogonal complement, and let Pye, Pxc be Euclidean projection matrices onto N°¢
and X°¢, respectively. It is easy to see that Pye = vSv<L and Pxe = I — Pye. Furthermore,

to simplify notation, we define for any vector z € R",
zNe €ERY = Pyez,
zxc € " = Pxez.

Similarly, let F'(z*) = UDVT. Let 0} > 0§ > --- > 0%_, > 0% = 0 be the singular
values of F’(z*). We denote the null spaces of F’(z*) by N and the orthogonal complement
of N by X, and define Py, Px as the Euclidean projection matrices onto N and X, respec-
tively. Let v and u be the right and left singular vector of F'(z*) corresponding the zero
singular value, then Py = vvT and Py = I — Py. Again, to simplify notation, we define
for any vector z € R",

zy € R® = Pyz,
zx ER® = Pxz.
The sequence of iterates produced by our algorithms is invariant to the translations in

the variable space. Thus no generality is lost by making the assumption that z* = 0, and
this assumption is made throughout the paper.
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We assume that v$ and u are so chosen that ||v5—v|| = O(]|z¢|]) and |Jué—u|| = O(]|z¢|)),
whenever z¢ is sufficiently close to z*. This assumption is valid from the theorems about
continuity of eigenvectors in Ortega [14] and Stewart [18], as long as F’(z) is continuous

near z*.
We define the cone W(p,8) as

W(p,0) = {z € R" [0 < ||z]| < p, [lex]| < Ollzn (I}

This is simply a cone rooted at z* around the null space of F'(z).

We now give Assumption 3.0, a group of assumptions that will be invoked for the
remainder of this paper in every lemma and theorem involving F(z). These assumptions
basically state that near z*, the second order term supplies useful information in the null
space direction of F'(z*), where F'(z*) lacks information.

Assumption 3.0 Let F : R* — R" have two Lipschitz continuous derivatives. Let F(z*) =
0, F'(z*) be singular with only one zero singular value, and let u and v be the left and right
singular vectors of F'(z*) corresponding to the zero singular vector. Then we assume

T F'(z*Yov # 0 (3.1)

where F"(z*) € R*mx",

Assumption 3.0 is satisfied by most problems with rank(F'(z*)) = n — 1, and has
been assumed in most papers that analyze the behavior of Newton’s method on singular
problems. When n = 1, Assumption 3.0 is equivalent to f”(z*) # 0.

There are several consequences of Assumption 3.0 that we will use in Sections 4 and 5.
First, Decker and Kelley [4] show that these assumptions imply that the singular manifold
of F'(z) is bounded away from N for z near z*. That is, for § and ||z|| small enough, F’(z)
is nonsingular for all z € W(p, 9).

Second, it is clear from (3.1) that there exist p,f# > 0, dependent upon the value of
uT F"(z*)vv, such that, if z € W(p, ), then

[T F"(z")zv] = 6(]|z])) (3.2)
since |
[T F"(z*)zv| > ||z|||cosb||ul F"(z*)vv| - |[uT F"(z*)Pxz - v],
|Pxz|| = |sinb|||z||, and F"(z*) is bounded. Third,
ugT L = 0(ll=°)1%) (3:3)
for z¢ sufficiently close to z*, since

ulT J,vf = (ué — )T Ju(vS = v).



Similarly,

s 2]l = O(lla*1). (3.4)
Fourth, it is immediate from (3.1) that for z¢ sufficiently close to z*,
wTF"(*wivs = 0(1) (3.5)
and .
wTF"(z%)ve = 0O(1). (3.6)
Finally, for z¢ € W(p,9),
a5 = 0(||z°)) (3.7)
since, using (3.3) and (3.2)
ot = uTJa8

= wST(J, = J)vE + usT Lol

= uyTF'(a")2v; + O(||=°*)

= oI F"(z")e% + O(||=°||*)

= O([l=°[})- (3.8)

These facts will be used throughout in the remainder of this paper.

4 Local convergence analysis of an ideal tensor method

4.1 Introduction

Suppose we know the right singular vector v¢ corresponding to the least singular value
of F'(z°) where z° is the current iterate and ||vS|| = 1. Then an excellent tensor model
around z°, if one is to utilize just a rank-one second order term, is

M + d) = F(z°) + F'(s9)d + %ac(vﬁTd)z, (4.1)

where a, = F"(z%)v5v5, because it contains the correct second order information in the
direction v where the Jacobian contains the least information. The main convergence
result in this section is for Algorithm 4.0, which uses (4.1) as a local model of F(z).

We note that we could approximate F”'(z¢)vvs to sufficient accuracy by finite differ-
ences, using one additional evaluation of F(z), that the convergence results of this section
would be unchanged. Therefore the “ideal” method analyzed in this section is indeed com-
.putationally implementable, although in comparison to Newton’s method or the practical
tensor method analyzed in the next section, it would require one additional evaluation of
F(z), and the calculation of v¢, at each iteration. For simplicity, in this section we will
assume that F"'(z°)vSvS is known exactly, rather than approximated by finite differences.
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Figure 1: Ilustration of Basic Idea of Proof for the Ideal Model

Algorithm 4.0

IF (4.1) has real roots THEN

d — dg where dg solves MT.(z°+d) =0
ELSE d « dp where dps minimizes || M7,(z¢+d)|] O

We will show that, given Assumption 3.0, the sequence of iterates generated by Algo-
rithm 4.0 is locally two-step convergent to z* with Q-order % Figure 1 illustrates the basic
idea of the local convergence proof.

Assume that z* is sufficiently close to z*, and consider the funnel about the null space
lzx|] € O(]lzn||}+*) for some 0 < a < 1. If z* is outside this funnel, it is most likely
that zF+! will be inside the funnel, because the error in the subspace X will be reduced
quadratically, while the tensor term generally does not provide enough information in this
situation to reduce the error in direction N more than linearly. (This is because the error
is not near the null space, so that that a second derivative cross term between the null
space and its orthogonal complement would be needed for fast convergence.) Now if z*+!
is inside the funnel, the step to z**2 will be a fast step, because the tensor model has
good information in the null space direction N and the error is basically in this direction.
Conversely, if z*+1 is outside the funnel, then the step to z**1 must already have been a fast
step, since the error reduction in direction N must have (nearly) matched the error reduction
in subspace X. The proof implicitly combines these ideas to show that the combination of
any two consecutive steps has Q-order at least %



4.2 Analysis of an ideal tensor step

We analyze the ideal tensor step by examining separately, in Lemmas 4.1 and 4.2 below,
the step to the minimizer of the model 4.1 when it has no root, and the step to the root
of 4.1 when there is one. The lemmas show that in either case, the new error in the
subspace X, [lz%|], is O(]|z%|?). The lemmas also can be viewed as showing that if ||z5/|
is sufficiently small, then the step to the minimizer of the tensor model reduces the overall
error quadratically, while a step to a root of the tensor model reduces the error by order %
This interpretation agrees exactly with the convergence analysis of the solution of a single
nonlinear equation in one unknown using a quadratic model if f/(z*) = 0 and f"(z*) # 0.
As is seen below, the multidimensional result actually is somewhat more complex.

Lemmas 4.1 and 4.2 consider the behavior of the ideal tensor method in the spaces
N°¢and X° Then lemma 4.3 easily transfers the results in subspaces N¢ and X° into the
analogous results in the subspaces N and X, the null space of F'(z*) and its orthogonal
complement. This is easier than dealing with the subspaces N and X directly in lemmas
4.1 and 4.2.

Lemma 4.1 Let Assumption 3.0 hold. If the tensor model has no real roots then for z¢
sufficiently close to z*, the step d = (z¥ — z°) minimizing |Mr,(z° + d)|| gives

lekell = OUlz%-ID + Oll=°l1*)
ekl = Oll=lI®).

Proof. Note that I = Y%, ufusT and J, = T, ofufofT. From the orthogonality of uf,
t=1,---,n, we have

Mr,(2° + d)
n n
= O wuT)F + Y otususTd + La(v5Td)?)

i=1 i=1
n

= ovfTd + usTF, + 2usTa (v T d)?)us. 4.2
. 1 Vs 1 2

=1

Thus minimizing ||M7;(2° + d)|| is equivalent to minimizing independently the n separate
problems, i.e., minimizing |o$v§7d + uéT F, + %ufTac(vﬁTd)zl, for : = 1,---,n. For each

1<i<n~—1,since of >0, d can be selected to make |ofv§Td + usT F, +I%ufTac(v$,Td)2|

zero for any given v:7d. Hence the minimum of |o¢v§Td + u$T F, + Tué a.(vsTd)?| has
to be zero for each 1 < ¢ < n — 1. Then Mr,(z° + d) having no real roots implies that
ocveTd+uiTF, + -;-uflTac(vfle)z has no root, and is minimized at v¢Td = —;g"vﬁ;:. From

Taylor series expansion and (3.3),

USt = uiTvag
usTJvg + ui TRz + O(|2°])%)
= i F/z%; + O([l=°I%). (4:3)
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Also

cT o, c,c cTpn,ct,cT cy,c cT i c ¢
uSt Flz®vS = ul” FlS(vh s 4+ ul” Flrkevs,

= (T2 )T Flvivs + O([lz°)1%) + O(llok-ll)-

Combining (4.3) and (4.5) and using a. = F"(z°)vivs, and (3.6)

wTd = -
_ o (wTa)(viTe%) | OllzgelD + O(ll=°l1?)
- ucTa, 0(1)

= —vT2 + O(llz%-l) + O(ll=°1%)
Hence,

vzt = o7z +d)
= O(llz%-l) + Oll=°|1%),

which implies [l ]| = O(llz5-) + O(|l=°[1%).

(4.4)
(4.5)

(4.6)

Next we show that ||z%.|| = O(]|z¢||?). Since (4.6) implies veTd = O(||z°]|), from (4.2)
cT
we have that for each 1 < i < n -1, v§7d = —-u—i;—;F—‘i + O0(]|z°||?). Using F., = =J.z°+ V,

where ||V|| = O(||z°||?), and of > 307 > 0,

T
_wE

C
g,

u¢T J z°
= ————+0(l="")

1

= =T+ 0(||=°|f?).

’vad =

Therefore foreach 1 <i<n-1,

viTa* = of(z° + d) = O([l=°]1").

Hence || Pxczt|| = || Srot (v§vsT)zt|| = O(||z¢||2), which completes the proof.

1=1

Lemma 4.2 Let Assumption 3.0 hold. If the tensor model has real roots then for z¢ suffi-

ciently close to z*, the step d = (z — z°) solving Mr,(z° + d) = 0 gives

lagell = O(/lellle%ID + O(ll=°]1%)
lekell = O(llz°l%).
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Proof. Using the same arguments as in the proof of Lemma 4.1, we have

Mr,(z° + d)
n
= S (ofvfTd +ufTF. + dufTa(viT d)?)ul.

=1
From the orthogonality of u{, i = 1,- -, n, solving Mr,(z° + d) = 0 is equivalent to solving

independently the n separate problems, of(vfTd) + u¢TF, + %ufTac(v;Td)z = 0, for i =
1’ cee M.

Solving
wSTF, + oS (veTd) + 1(u&Tac)(veTd)? = 0
gives
Lor,_ 0hE /o5~ 2T F)(wTe.) W
" u¢Ta, ) )
From (4.3)
(05)? = (ug T Fl'zv;)? + O(||=°)|®). (4.8)
Using (4.4) and defining @, = Fv5vE,
wST FYzo08 = (veT20) (usTa.) + uST Fl 5.0, (4.9)

Thus
(02)% = (0372 (unTac)® + 2(vy T 2°) (us G Jus T Flzkevy, + O([lokell®) + O(1|=°])(4.10)
Also, from Taylor series expansion, (3.3), (3.4), and @, = F/vive,
wTF, = ueTJz®+ ueTF2°2° + O(||z°|°)
= 'U,CTJ 2% + (ucTJ ,Uc)(chIc) + l(UCTF”’UCvC (chzc)Z
n vY*xvXc n YxYn n 2\%n * UnUn n
T F 2ol )(05Ta) + Jus T Py
= O(llellllek<l) + O(l=°1®) + 3(usT @) (v 2%)? |
+H(up T FloSevs ) (vi 7 2%) + O(l|=%-|%) (4.11)

Combining (4.10) and (4.11) and using (u$7a.) = O(1) from (3.5), ||a. — ac|| = O(||z¢||)
from the continuity of F”'(z), and uSTF, = O(||z°||?) from (4.11),

(02) = 20w F)(wiTae) = (07)" = 2(uiT Fo)(ugTac) + O(|l=°)°)
O(llzlMllz%- 1) + O(ll=°I1),
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which gives

\/agz -2usTFucTa, s
= O(y/llzellllz%-ID + O(ll=°l|7)- (4.12)

ucTa,

Thus, using (4.6) for ;;‘-’f%: and u¢%a, = (1) from (3.6) in (4.7),

vsTat = 7z + d) = O(y/lleelllla%.]) + O(ll=°II%).

The proof of ||lz%.|| = O(||z°||?) is identical as in the proof of Lemma 4.1, since veTd =
O(||z¢||). The proof is complete. O

A subtle point about Lemma 4.2 is that, even though our computational method always
chooses the closer of the two real roots, Lemma 4.2 is true for either real root. This is
because the roots of the model, if they exist, are very close together near a singular root.

The following lemma allows us to transfer the above results in terms of the subspaces
N¢ and X°¢ into the analogous results in terms of the subspaces N and X.

Lemma 4.3 If z and z° are close enough to z* then

lznell = llznll + O(l=lll=°]])
lzx<ll = llzxIl + Ol=llllz°]])-
Proof. Since
IPxe = Px|| = ||Pnc— Pull = [logos” — voT|

13 (v + )(v5 = 0)T + (v = v)(vr, + )|

< ln + vllllvg = ofl = O(ll=°lD),

then
lzxsll = llzx +(Pxe - Px)z|
= |lzx|l + O(ll=°llll=ll)

and
lejll = llzn + (Pne = Pn)z||

= [lznll + OClI=°llH))-

The proof is complete. O

By applying lemma 4.3, one can easily get the results stated in lemmas 4.1 and 4.2, but
with =%, x}, and z?\} replacing z% , m}c, and x}c, respectively.

13



4.3 Local convergence of Algorithm 4.0

In this section the main convergence result for Algorithm 4.0 is proved. Theorem 4.4
shows that the sequence of iterates generated by Algorithm 4.0 converges to z* from close
starting points with a two-step Q-order %

Theorem 4.4 Let Assumption 3.0 hold and {z*} be the sequence of iterates produced by
Algorithm 4.0. There ezist constants K1, Ky such that if ||z°|| < K, then the sequence {z*}
converges to z* and

&*+2)] < Kol|a*||3 (4.13)
for k=0,1,2,---.

Proof. For any iteration k, by Lemmas 4.1, 4.2 and 4.3, at least

I8 = o(/lls*llil=% 1) + Olla*)1?) (4.14)
=5 = Oll=*I). (4.15)
Combining (4.14) and (4.15) gives

Iz5*1)] = O(ll=*]). (4.16)
Again applying Lemmas 4.1, 4.2 and 4.3 and using (4.15) and (4.16)

l5l = oGyl lleH ) + O(ll=*+11%)

O(y/ll=*|lllz*[12) + O(ll=*(17)

= O(|l=*[%), (4.17)
and
| 1252 = O(l|=z**1||2) = O(||=°|[?). (4.18)
Using (4.17) and (4.18)
ll2*+2)| = |l2%2)| + 12572 = O(ll=*||).

The proof is complete. a

Note that Lemma 4.1 remains true even if the ideal tensor model has real roots; the
proof and the results are unaffected. Using this fact, it is easy to use the techniques of the
proof of Theorem 4.4 to show that if the ideal tensor method always selected the step to
the minimizer, whether there was a root or not, then under Assumption 3.0, the method
would be two-step quadratically convergent to z*. It is also easy to see from the proof of
Lemma 4.2 that if F'(z*) is nonsingular, then the tensor model always has real roots near
z*, and that a tensor method that always takes a step to the nearer real root is at least
(one-step) quadratically convergent.
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5 Local convergence analysis of a practical tensor method

5.1 Introduction

Since each iteration of the ideal tensor method requires the calculation of the singular
vector vg corresponding to the least singular value of F'(2°), and requires an extra evaluation
of F(z) to approximate F"(z°)vSvS, Algorithm 4.0 is not as practical as one would like.
In this section we analyze a practical tensor algorithm, Algorithm 5.0, that corresponds
very closely to the tensor methods we have implemented and tested. Like Algorithm 4.0,
it uses a rank-one second order term in the tensor model. However it uses the difference s
between z~, the previous iterate, and z¢, the current iterate, to approximate the null vector
of F'(z*), and it uses the values of F(z~), F(z¢), and F'(z¢) to approximate the value of
F"(z%)ss. That is, the tensor model is

My, (z° + d) :F(x") + F'(z%)d + -;-a(sT d)?, (5.1)

where
s = z7 -2 (5.2)
. = AFGET) -—(fT(:)B - J(z%)s) (5.3)

In this section we will establish a local convergence resuit for Algorithm 5.0, which uses
(5.1) as a local model for F(z). We denote the /3 norm condition number of a matrix J by

K(J).
Algorithm 5.0

The constants Cy,Cqy > 0,% > € > 0, are given.

Let
oo I it 12 < e,
—(JTJ. 4+ D) 'JTF. otherwise, where D = C,||F.||I.
Let

dr = dp if dg solves Mt (z¢+ d) =0,
T=1\ duy if dpy minimizes | Mz, (z¢ + d)|).

IF ¢1]ldn|| < |ld7]| < d2lldn||, for ¢1 < } and @3 > 3 being constants THEN
d—dn

ELSE
d—dr O
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There is one significant, high-level difference between Algorithms 4.0 and 5.0 : Algorithm
5.0 provides the option of using the Newton step at each iteration. This is necessary because,
since the tensor model may not contain second order information in a direction near the
null vector of F’(z*), the tensor step is not guaranteed to be good when F’(z¢) is nearly
singular. The condition for choosing between the tensor step and the Newton step will be
seen to guarantee that the tensor step is selected if both z° and z~ are inside a funnel
around the null space of F'(z*), but will allow either the tensor step or the Newton step to
be selected otherwise. It will also guarantee that whenever the tensor step is taken, it has
the desirable properties mentioned in the discussion of Figure 2 below.

The perturbation that Algorithm 5.0 makes to the Newton step when K(J) is too large
is a typical type of modifications used in standard methods (see e.g. [7]). The particular
choice of when to perturb the Newton step used in Algorithm 5.0 guarantees that the
unperturbed Newton step always is selected if z° is close to the null space of F'(z*), and
the amount of the perturbation guarantees that the linear model step step causes the next
iterate to be close to the null space otherwise. We note that our convergence results could
be proven using more general conditions on the perturbation matrix D, but we will just
. consider the simple choice in Algorithm 5.0 because it is what we would use in practice.

Algorithm 5.0 is very close to the tensor method we have previously implemented, as
long as a rank-one tensor always is selected. The only differences are the specific rules for
choosing between the tensor and the Newton steps, and for deciding when to perturb the
Newton step; we have used slightly different rules that have very similar effects. Guided
by this analysis, we expect to use the rules from Algorithm 5.0 in the future. The only
modification we would make would be to approximate X(J) by well known efficient methods
(see e.g. [8]) rather than calculating it exactly. A reasonable value for the constants C; and
C, would be one.

In the remainder of this section we will show that, given Assumption 3.0, the sequence
of iterates generated by Algorithm 5.0 is locally three-step convergent to z* with Q-order
%. Figure 2 illustrates the basic idea of the local convergence proof. Assume that z*
is sufficiently close to z*, and consider again the funnel about the null space ||zx]| <
O(||lzn||**) for some 0 < a < 1. If zF is outside this funnel, either a Newton step or a
tensor step can be taken from z* to z**1. In either case the step either puts z**! inside
the funnel (the likely case), or it has to be a fast step because either step reduces the error
in the subspace X quadratically, so that the overall error has to be reduced significantly in
order to stay outside the funnel. Now suppose z¥*! is inside the funnel. Again, either a
Newton step or a tensor step can be taken to z¥*2. Furthermore, either z**2 is inside the
funnel, in which case the step selection rules guarantee that the step is long enough that it
is nearly parallel to the null vector of F'(z*) (this is the likely case), or the step must be
a fast step. Finally, suppose both z**! and z**? are inside the funnel and the step from
z%*1 to zF+2 is near the null vector. Then the tensor model at z¥*2 has good second order
information in the null space direction. In this case Algorithm 5.0 selects a tensor model
based step to z¥*3 and the step is fast. The proof again implicitly combines these ideas to
obtain desired convergence result.
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Null Space of F'(z")

e 1= llxull‘“

ZJ‘N

Singular Manifold of F'(z")

z Range Space of F'(z")T

Figure 2: Dllustration of Basic Idea of Proof for the Practical Model

Note that the practical method obtains a three step result, versus the two-step result for
the ideal method. This is because once an iterate (z**! in Figures 1 and 2) is in the funnel,
the ideal method immediately takes a fast step, whereas at least in theory, the practical
method may require an additional step to make the previous step direction nearly parallel

to the null vector before it takes a fast step.

For the sake of convenience, we rewrite the tensor model (5.1) in an equivalent form.

From Taylor expansion,
F(z~) = F(a°+s)=F.+J.s+ -;—F(_f'ss + 4
where [|A1]] = O(||s||®). Substituting this into (5.3),
a; = als|® = Flpp+ &g

where p = 2 and [|Asf| = O([ls]]). (5.1) can be rewritten as -
c —_ 4 l te T N2
MTr(x +d) - FC +ch+ 2ac(p d) )

which has a form similar to (4.1).
Note that when the angle v between p and v is O(]|z¢||*),

lpxell> = (I = vsueT)pll?
1= (pT05)* = 1= cosy = sin®y = O([}2°|*),

17
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or ||pxe<|l = O(]|z¢||*). Furthermore, if we define

[ el > el
""{ o> 1 for which [la¢]| = lz=[|* otherwise, 50

so that ||s|| = O(HmCH%), then using also p = (pTv%)vE + pxe, (5.4) and (5.6) we have

la, —acll = [IF/pp+ Ag — Frusof|
< || Fpp — Fosvlll + O(lsll)
= ((PTv)? = DESS + 20T vS Fl'pxevy + F'pxepxe|| + O(la°ll*)
< O(sin®y]) + O(llpx<ll) + O(llpx<l®) + O(ll=°]|*)

= O([laef™n(e)), (5.8)

It is also easy to verify that u¢Ta/ = ©(1) from (5.8) and u¢Ta, = ©(1). These facts will
be used in the proofs in this section.

The remainder of this section is organized as follows. Subsection 5.2 analyzes the Newton
step defined in Algorithm 5.0. Subsection 5.3 analyzes the practical tensor step. Finally,
the overall convergence theorem for Algorithm 5.0 is stated and proved in subsection 5.4.

5.2 Analysis of a Newton step

The following lemma analyzes the linear model step dy defined in Algorithm 5.0. This
step is either the Newton step if ||F,|| < /_CT-%W (which will be shown to imply that
|zl < O(]|z¢||**¢)), or the perturbed Newton step otherwise. The lemma states that in
either case, the linear model step reduces the error in the subspace X°¢ quadratically. In
addition, when the unperturbed Newton step is selected it asymptotically reduces the error
in the null space direction by 3, otherwise the perturbed Newton step keeps the error in
the null space in the same order of magnitude.

Lemma 5.1 Let Assumption 3.0 hold and let z+ = z° + dy, where dy is defined by Algo-
rithm 5.0. At the current iteration z¢, if || F¢|| < m%,—;;, then

lakel = gllaivell+ O(l=*) (59)
ekl = 0=, (5.10)
otherwise,
ekl = O(lle°l) (5.11)
Ikl = oI (512)
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Proof. From Taylor series expansion, J. = %, ofufv§T, and o = O(||z¢|]),

I£x + Jea®l + O(l|=°]%)

) \ji[af(vaxc)P + 0(ll=°(1")

[| £l

=1
n-1
> on_iy| 2 (vTee)? + O(||2°))
=1
= op_illzkell + O(ll=°)1?). (5.13)
Clearly,
1 ol
T OAN ;15-. (5.14)

First, ||[Fe|| £ % Ji') = implies
c c 0 cl|2 < Z_CnL 1+4¢
Tn-allekell + O(I=°N%) < (53)
1

or

ekl < O(ll=°I"*)

since of = O(||z¢||]) and of_; and of are bounded below. This implies z° is inside the
funnel ||z%.|] = ©(||z°||***), hence it is in W(p,H). Therefore, of satisfies oS = O(||z°||)
from (3.8).

Note also that if [|z%.|| < ||z¢||**€ for any 1 > & > ¢, then ||F.]| < a%m’ since in this
case o = O(||z°||) from (3.8) so that

IFl < afllekell + Ollz)1?)
205 [|=|I"F

C1 c €
CIRAC

IAN A

A

]C(Jc)l-i-c

for z¢ sufficiently small. This fact will be used in the final portion of this proof and in the
proof of Theorem 5.5.

cT
By the definition of the Newton step, v7d = —vSTJI1F, = —Eﬁ'—c-&. From Taylor series
expansion,

uf,TFc = uflT(F, + J.z¢ - %Fc”a:czc) + O(||z°|®)
= oS(viTe%) - LusT Flz2® + O(||z°|®). (5.15)

19



From the continuity of F”,

uiTFe'z® = i Flz%a® + O(|la°|)
= (vsT 2 2us T Flvivs + 2(vs T ao)us T Fl a5 e
+ug T Flz§eake + O(|12°)
= (072 u T o] + O(|lz°) ™) (5.16)

since [|z5.|| = O(|}z¢||**¢). Furthermore,

= utTJ e

= uiT Loy, + uiT Flzoof + O(||=°|1%)
(vi T2 )ug T Flvg vy + ug T Flakevs, + O(l=°|1%)
(05T ug T Flvg v + O(J|2°)'*). (5.17)

[+
Un

Hence from (5.15), (5.16) and (5.17), and using v57z® = O(||z°||) and (3.6),

ch . U;TFC
vy, = -
n
Ty, BT 4 O
= ¢ pr
_ _yeTye o 30T ZV T Fluner + O(flac]**)
" (viTz)ug T Flvgog + O([|lze(|T+)
= —o;Te + §(v72%) + O(l|=)'F),
which implies -
viTet = §(uiT2%) + O([la°l**)
or
lz&ell = gllakell + Oll=*).
cT
Also, by the definition of the Newton step, vfTd = —v$TJ 1 F, = -3"7;;—&, i=1,---,n-1.

For each 1 < 7 < n — 1, from Taylor series expansion, and of = ©(1),

usT F,
- C
o;

usT J.z¢
= -5 o)

13

vad =

= -7z + O(l|=°|1%),
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which implies

lekell = Il(‘; vfofT)(a° + d)|
n-—1
I3 v (0 + v )|

=1

o(ll=°11%).

Second, when || F.|| > Z'(J%‘rw,
d = —(JTJ. +Co||FJI)TVITF,

o _owTR)
P Gl

i=1

Then for 1 <1< n -1,

c

T T g;
d = —(ué' F, ..._.__.‘__.__’
v; (U; )(O’f)2 + CZHFCH

and using u$T F, = of(v§T2°) + O(||z°||?) as was shown in the preceding part of this proof,
o¢ = 0(1), and | Fe|| = O(Jla*1)), we have

uTd = —(of(vfTe%) + 0(||th;2))(£; +0(ll=°l))

= ~ofTz* + O(ll="|P).

As above, this establishes ||z%.|| = O(||z¢||?). Finally, it was shown earlier in this proof
that in this case ||z%.|| > ||z°||}*¢ for any 1 > & > ¢, so that ||z%.]| > ||z°]|**?¢. Thus from
(5.13),

Fell 2 ofyllzefl 2. (5.18)

Now using Taylor series expansion, o2 = O(||z¢||) and (5.18),

BT = - T (n(T ) - JusT Fa 4 0(2%)
= o(la"IP),
which implies
vﬁTx+ = ch$c+chd
= oTa + O(]la7|P)
= ol

Hence ||z}.|| = O(||z°||). The proof is complete. O
Using Lemma 4.3, we can replace N° and X° in Lemma 5.1 by N and X, respectively.
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5.3 Analysis of a practical tensor step

When the current iterate is inside a funnel around the null space of F'(z*) and the previous
step is along the null space, the tensor model (5.1) has good second order information, which
can be expected to compensate for the lack of useful first order derivative information in
the null space due to the singularity of the F'(z*). In this situation, we can show that a
tensor step will reduce the error in the null space direction N substantially while reducing
the error in the orthogonal subspace X quadratically. This is shown in Lemmas 5.2 and
5.3 below, for the cases when the tensor model does not and does have a root, respectively.
Finally Lemma 5.4 shows that in any situation where Algorithm 5.0 selects the tensor step,
this step reduces the error in the subspace X quadratically and at least keeps the total error
at the same order of magnitude.

First we consider the case when tensor model has no real roots at z°. The key term
min(a, 6, = ) in the statements of both Lemmas 5.2 and 5.3 captures the fact that either the
previous step was fast (¢ > 1 and/or § < 1) or else the current step will be fast because
a will be significantly greater than one. The way these parts come together to prove the
three-step convergence result will be seen in the proof of Theorem 5.5.

Lemma 5.2 Let Assumption 3.0 hold and let ¢ be defined by (5.7). Assume that the tensor

model (5.1) has no real roots at z°, the current iterate. If the angle between p and v; is

O(||z¢]|®) and ||z%-|| = O(||z¢||**®) for a,6 > 0, then for z° sufficiently close to z*, the step
= (2% — z°) minimizing (5.1) in the least squares sense satisfies

lakll = O]+ %))
(B3] O(ll=°{%).-
Proof. First we show pTd = O(]|z°||). If the tensor model has no real roots, then the step
d is the minimizer of || Mr,(z°+ d)||. Taking the gradient of M7, (z° + d)T M7, (z° + d), we
find that at a minimizer of ||M7,(z° + d)||,
(F'(2°) + (p" d)agp™)T Mr, (2° + d) = 0,

which implies that the matrix F'(z°) + (p? d)a’p” must be singular since Mr, (z¢ +d) # 0.
From the Sherman-Morrison-Woodbury formula and the nonsingularity of F'(z¢) for z¢ €
W(p, §), we conclude that F'(z°) + (pTd)alpT is singular if and only if pd = m—,—(-‘z%):l—;,—.
However, ‘

i

i

-1 -1
pTJc—-la/c - T(Zz__1 ;'c"Uc cT)a/
n I)

= 0
(ugTac

= O(ll="[D,

since pTvf = O(||z¢||*) for i = 1,-++,n — 1 from (5.6), of = ©(1) for i = 1,---,n — 1,
oS = @(chﬂ), and u¢Tal, = ©(1). Hence

pTd = O(z°|). (5.19)

O.C
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From the same reasoning as in the proof of Lemma 4.1, one can easily obtain
Mr,(z° + d)

n
= Y (ofvfTd + ufT F. + JufTal(p7d)*us.

i=1

Then minimizing ||MT,(z° + d)|| is equivalent to minimizing independently the n separate
quantities,

otviTd + ufT F. + 1ugTal(pTd)? (5.20)

fori=1,---,n.
First we show that (5.20) has a real root for each i = 1,---,n — 1. We know that the
step d must satisfy '

1Mr,(2° + d)| < || Mz, (=°)]| = [|Fell = O(ll=°|I**). (5.21)
Observe that from the Taylor series expansion,

wTF, = —uTJ.2®+ O(||z°|?)
= —ofvfTe + O(||=°|*)
= O(flz°**%),

for 1 < i < n—1,since ||z%.|| = O(||z¢]|**%). Then from (5.20), using of = O(1) for
1<i<n—-1,u¢Ta, = ©(1), and (5.19), (5.21) implies that

vfTd = O(||z°|*+%), i=1,---,n—-1. (5.22)

since any larger value would violate (5.21). Since

n-1
pTd =3 (pTof)(v5Td) + (p702)(v: T d), (5.23)
=1
from (5.19), (5.22) and pTvf = O(||z°]|*) and pT v = ©(1) from (5.6), we have
v T d = O(||z°).- (5.24)

Foreachi =1,---,n—1, using (5.23), (5.24), (5.6) and the bounds on o¥¢, u{T F;, and u$T d/
mentioned above, (5.20) becomes

ovsTd + ueT B+ JusTal (7o) d) + O(lJa°I))?
= (0F + 02 ) Td + wT F. + O(27)) + O(llacl ) (o ),
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and it is immediate that the discriminant of this quadratic in vfZd is greater than zero.
Hence (5.20) has a real root for each ¢ = 1,---,n — 1. By this fact and (5.22), for ¢ =
1,---,n—1 the root d to (5.20) must satisfy

(0% + O(llael|+*))oiTd + usT F. + O(la°[1%) + O(l|a°|*)(vT )
= ofuTd+uTF+ O(ls]?) =0,
or

T cTF
vitd = — ——< 1 o(JJ=°1») (5.25)

1

since of is bounded below. From the same analysis as in Lemma 5.1 for [|z}.||, we can
obtain ||z%.[| = O(|z¢||?) from (5.25).
As a consequence of above analysis, M,(z° + d) has no real roots is equivalent to

c ch+ cTF + lucT l(pTd)Z (526)
ha; no real root. From (5.6) and (5.22),
pld = O(lIs°lI"**) + (v p)(vi" d).
Hence (5.26) is equivalent to
(o5 + Oz )T d + ui T Fo + Ol + J(ui T al)(v5 T p)? (v d)2.
Thus the minimizer of (5.26) obeys
(o7 + O(ll2°l"+*)) + (w5 T aQ) (v p)*(vTd) = 0

or
0% 4+ O(fla7]I*+)
uTal(vTp)?
o2 + O([J=]|+*)
ugTa, + O(||zo|™™*%))

o min(a,+
mifa + O] )

w72 + O(llaseell) + Ol %))
o572+ O(Ia7I) + O(af %)
= cT c +0(“$c“1+mm(05 ))

veld

o

from ;—ﬁ;‘: = —v5Tz¢ + O(||z%]l) + O(||z°]|?) in the proof of Lemma 4.1 and |jz%.|| =
O(||z¢||**%), which gives

vil(a+d) = Ofls"' T,
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Hence, ||z%.|| = O(”:z:"”“'min(a’s'%)). The proof is complete. a
Using Lemma 4.3, we can change the results in Lemma 5.2 to [|z}]| = O(]|z¢||?) and

14+min(a,6,%
lef )l = O(flaf™+m =59y,
Secondly we consider the case when tensor model has real roots at z°.

Lemma 5.3 Let Assumption 3.0 hold and let ¢ be defined by (5.7). Assume that the
tensor model (5.1) has real roots at z°, the current iterate. If the angle between p and v
is O(||z¢||*) and ||z%-.|| = O(||z¢[|**%) for a,6 > 0, then for z¢ sufficiently close to z*, the
step d = (z — z°) solving model (5.1) satisfies
1.

lofell = O(llae|+amniea))

lekell = Odlz°l).
Proof. First we show p?d = O(]|z°||). Since M7, (2°+ d) = 0 and J, is nonsingular,

Fo+ Jd+ Lal(pTd)? =0
implies
pFLITAF, + pTd + 1pT I al(pT d)? = 0,

which in turn implies

; —144/1- 2T I alpT s IF
pd = =
pTJ: al

However, using o = 0(||z°]]), 0f = O(1) for ¢ = 1,--+,n — 1, pTv& = O(1) and
cT / @(1),

"L (pT o) (ufT F,
pTJ;-IFC = Z(p z)( i )

i=1 Uf
_ Z":I (pTv)(usT F. + uaTJz +0(J|z°)?))

n-1
= Z(p vf)(vfT %) + O(l|z°)I®) + (pT05) (v T 2%) + O([l=°]])
= O(ll=°l),

and
a vc ucT /
pT J; 1 a/c - Z (P )(

i=1

_ Z (p vc)(uCT /))+ (p ”nl(j‘CT a
=1
= ®(llx°ll")-
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Thus

r -1+ T 0(EDO0EEY
pd = o(l=-1)

= O([l=°D-

Using the same arguments as stated in the proof of Lemma 5.2,
Mr,(z° + d)

n
= > (ovfTd+ufTF. + JusT ay(pTd)?)us.

i=1
Then solving Mr,(z¢ + d) = 0 is equivalent to solving independently the n separate equa-
tions,

ofoTd + uTF, + JusTal (o7 d)?

= ofvfTd+uTF. + 0(l2°*) = 0

fori =1,---,n. By the identical reasoning as in the proof of Lemma 5.2 for ||z %.||, we have

lz%ell = O(]|z¢||?) immediately.
On the other hand, for i = n

otveTd + uSTF, + 1uiTal(pTd)? = 0.
From the same arguments as in the proof of Lemma 5.2
050 Td + w7 Fo+ JusTal(pTd)?
= wgTF + O(|a°P**)) + (o7 + O(ll=°**))vi T d
+1usTal (v p) (w57 d)?,
which is solved with
—os + O(ll=°I"**)

(viTp)?ugTal
/(0 + O(fJz<]|+2))2 = 2(usT F. + O({a<|[2(+2)) (v Tp)(u5 T al)
(vsTp)2ugTal

vTd =

—o5 + O(ll=°|I"**)
uzTa, + O(fJo)|™rews))
+ \/agz - 2(uTF)(ugTa,) + O(chll2+mm(a,1;))
ueTae + O(||ze|™™re))

b

26



from (5.6), (5.8) and uSTF, = O(||z°||?) from (4.11). Now using (4.12), u¢Ta, = O(1), and
ekl = O(llze)*+%),

/U,de + O(”xc”min(l+a,l+-};))

]

n

JO(nxcuuzXcu) + O([Je<?) + O(fJa=] ™))
usTa, + O(flas]™™>%))

= T O ED) 4 0ol

U +0(”zcnl+2mzn(a 6,“’))

cT
naC

Hence, from the analysis of ;C—"ﬂ; in the proof of Lemma 4.1, one can easily obtain
1. 1
o7t = O(|la7H2m ).

The proof is complete. O

Using Lemma 4.3, we can change the results in Lemma 5.3 to ||z}| = O(||z°||*) and

Izl = O(llac]* 2 mn(=5),

Note that, as with the analysis of the ideal tensor model, Lemma 5.3 is true no matter
which of the two real roots of the tensor model is selected.

Now we consider the case when the tensor step is selected by Algorithm 5.0 even though
the current and/or previous iterates may not be close to the null space of F'(z*).

Lemma 5.4 Let Assumption 3.0 hold. If Algorithm 5.0 selects the tensor step dr, then z™*
= z¢ + dr satisfies

ekl = O(ll=°1"
¥l = o=l

Proof. Using the same reasoning as in the proofs of Lemmas 5.2 and 5.3, the step dr must
be a root or minimizer of

oot Td + uiT F, + LuTal(pT d)? (5.27)

fori=1,---,n. From Lemma 5.1, the linear model step dy satisfies dy = O(]|z¢||). There-
fore if the tensor model step dr is selected, it follows from the selection rule in Algorithm
5.0 that d = O(]|z°||). This shows that ||z¥|| = O(||z||). Also d7 = O(]|z°||) implies that
pTdr = O(]|z°||), and v§Tdr = O(||z°||) for i = 1,---,n. Thus from the identical reasoning
as in the proof of Lemma 5.2, (5.27) must have real roots for i = 1,---,n — 1, and

TF,
wTdr = -5 1% L o).

t
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Therefore using the same analysis as in Lemma 5.1 for Hx}cn, we obtain |lz}.|| = O(]|z°||?),
which completes the proof. o

Using Lemma 4.3, we can change the result in Lemma 5.4 to lz¥ll = O(||z°||?).

We note that, using similar techniques to those used in the proof of Lemma 5.4, it is easy
to show that if F'(z*) is nonsingular then the tensor step reduces the error quadratically, i.e.
it has at least the convergence rate of the Newton step. A sketch of the proof is as follows.
From ||F(z°)|| = O(||z¢||) and the fact that the singular values of F’(z°) are bounded below,
it is easily shown that the tensor model (5.1) must have a root, and that the closer root
satisfies dr = O(]|z°]]). Then using the same analysis as in Lemma 5.1, it is immediate that
the closer root obeys ||zt|| = O(||z°||?).

5.4 Local convergence of Algorithm 5.0

Theorem 5.5 gives the main convergence result for the practical tensor method. It shows
that given Assumption 3.0, the sequence of iterates produced by Algorithm 5.0 converges
to z* from close starting points with a three-step Q-order %

Theorem 5.5 Let Assumption 3.0 hold and {xk} be the sequence of iterates génemted by
Algorithm 5.0. There exist constants K1, Ko such that if |z°)| < K then sequence {z*}
converges to z* and

2543 < Kolle¥|? (5.28)
fork=10,1,2,---

Proof. Select € to be any number in (e, 3), where € < 1 is given in Algorithm 5.0. If

lz5F 2] > [|lz¥*+1||**+¢, then since Lemmas 5.1-5.4 show that any step taken by Algorithm
5.0 satisfies |5 = O(||=¥]|?),

25| < Ik T = O(lla*|T5) = O(ll=*|13).

Hence at least (5.28) holds. Similarly if |22 > [lz*+2||'*, then since also lz*+t]| =
O(||z*||) from Lemmas 5.1-5.3,

| ka.]..z” < [|:1:§(+2“Ti_¢ — O(”xk““%) = O(sz”%)

and at least (5.28) holds. Otherwise, let [|z%|| = [|lz***||'*** and 252 = ||lak+?||1+,
for 61,0, > €> e

Since Lemmas 5.1-5.3 show that any step taken by Algorithm 5.0 satisfies [{x’jj‘ln =
O(Jlz*|[?), then from ||| = [|z* [+,

O(ll=*|1%) = ™"+,
which along with ||z**1|| = O(||z*||) implies

25+ = o(fla* )™= D), (5.29)
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Likewise
2

le*+2]) = O(l|ls*+1 =55 ). (5.30)

We will denote the angle between v5*2? and z*+! — z¥+2 by 5, and let ¢ be the rate of error
k+1 k+2 :

reduction from z*7* to z7°, i.e.
=1 if [Ja* 2] > [|lz*+1]),
v= { @ >1 for which ||z¥+2|| = [|z¥+!||¥ otherwise. (5.31)

We will consider two cases: when ||zF+1||1+81 > ||z%+2||1+% and when ||zF+!||!*+% <
[|z%+2]|1+%2. In either case, since ||z5"|| = O(]|z*+1||1+51) = O(||z*+!||**¥), the analysis in
the proof of Lemma 5.1 shows that the linear model step from z*+1, dﬁ;"l, is the Newton
step and [|d57|| = 1|lz**Y|| + O(||]z**+ || *+¢). Thus by Algorithm 5.0, if the tensor step

is selected at iteration k + 1, [|d5*"|| € [¢1, ¢o]lld§|| which implies [|d5™!|| = O(||z**1|)).
Therefore in any case

[la**1 = 242 = O(||=**1)). (5.32)

Now consider the first case, when ||z*+1||1*+51 > ||zF+2||1+%2, Then
N
which implies
1+6 < (14 8)e
or
L+61 -

b 2 ——T. 5.33
2 2 - (5.33)

Furthermore, from Lemma 4.3, ||z%+1|| = O(I]:l:k”“%) by the definition (5.31), and (5.32)

(25! = 2¥4%) yana |

sinyy = 251 — zF+2]]
< =50+ =521+ O(ll=*+1lll=*+2|)
- O([l=*+1])
It [l i e | )
N O(ll=*+1))
< 2|21+ 4 o=+ |llI=*+2))
- o([lz*+1{))

= O(la*1%) + O(ls+?])
= O(jlak3m )
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. .8
Hence v = O(ka“]]mm(%’l)). Thus by Lemmas 5.2 and 5.3, the step from z*+2, d5+2,
satisfies

1 . .16
la&+2[] = [Ja*+2) + O(lak+2) 3™ ),

Also, the linear model step, d%f2, is the Newton step because ||z%?|| = O([|z*+?||**%) =

O(||z*+2||1+€), and by Lemma 5.1, [|d5?|| = 1||z*+?|| + O(||z**+?||**+¢). Therefore for any
$1 < 1 and ¢ > 3,

Sulldif?ll < la7**ll < dalldy’|
so that the step from z**2? to z**3 is the tensor step, and from Lemmas 5.2 and 5.3
1. .
ka+3” S. O(]|$k+2”1+-2-mm(62,mm(%,1),-‘1;)). (5‘34)

From (5.29), (5.31), (5.34), and recalling ¢ > 1, the three-step rate of error reduction from
zF to z5*3 is at least

max(—-?—- D-p-(1+ %min(éz,min(%, 1),—3;))

1+6’

2 . A4+b6—p 6 1
> - c©- 1 —r - =
> mas(pp 1) - (1+ hmin 2.9

2 .

2 .
= maz(m, 1)- %mm(l + 86+ p,01 + 20,14 2¢)

{ >3 if 6, > 1,
= 2 246, 3
2 1+6; ) Z b) if 61 < 1.

Second, consider the case when [|zF+1||!*+% < ||z¥+2||'+%2, Then from Lemma 4.3, (5.32)
and [|e**1|| = O(|[z5+2||%) from (5.31) and (5.32),
[I(z**! — 2**2) gasa|

P = 27e]
=51+ 112521 + OClle*+ {lllz*+21])

o(ll=*+1) ‘
[ i el e € [ Ead )
o(llz*+1])

20e* 2% + O(ll=* 1 ll=**2])

O(llz*+11)
2“xlc+2“1+62

AN o+
= o O

= Ol |,

siny; =
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Hence v; = O(ka+2”min(1+52—-§;,1))'

Now by the identical reasoning as was used in the first case, the step from z*t? to z%+3
is the tensor step and obeys

1 .
[2*+2]] < O(jak+2 ¥ amn it (5.35)

From (5.29), (5.30) and (5.35), the three-step rate of error reduction from z* to z*+3 is at
least

11

max(ljél,1)~¢-(1+ Fmin(by,14 63 — ;’g_a))' (5.36)
Also since (5.30) implies
0 .
®2 max(m, 1), (5.37)
we have
(14 62)p 2 2. (5.38)

Therefore from(5.36), (5.38), and ¢ > 1, the three-step rate of convergence is at least
11

1o (14 imin(6y, 1 4+ 63 — =, —
@ (1+ ymin(é 2= 55
= gmin(pdy + 2p, 082+ 30— 1,20+ 1)
= Imin(p+ (L +62),0(1+68) + 20— 1,20+ 1)
> 3
-2
Combining the above results obtained completes the proof. a

Note that it is straightforward to combine the proof of p’d = O(||z°||) in Lemma 5.3
with the remainder of the proof of Lemma 5.2 to show that Lemma 5.2 remains true even
if the tensor model has real roots. Using this fact, one can use the techniques of the proof
of Theorem 5.5 to show that if the tensor method always selects the step to the minimizer,
whether the model has a root or not, then under Assumption 3.0, the method is three-step
convergent to z* with rate 2 — ¢, for any fixed € > 0.

6 Discussion and conclusions

Theorem 5.5 shows that a practical tensor method possesses a significantly faster local
convergence rate than Newton’s method on an important class of singular problems. While
the theorem indicates that the tensor method possesses a three-step convergence behavior,
in our computational experience, tensor methods generally appear to exhibit one-step local
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superlinear convergence on problems where rank(F’(z*)) = n — 1. A proof of such a result
would entail showing that once the tensor method’s iterates enter a funnel close to the
null space, they remain in this funnel. In this case a one-step superlinear result would be
immediate from Lemmas 5.2 and 5.3. In fact analysis shows that such behavior is likely,
but may not occur if certain error terms in the null space component of the tensor step
cancel each other. This cancellation could cause the iterates to leave the funnel close to the
null space. The method would then require three steps to recover fast convergence. Thus
a one step superlinear result appears to require extra assumptions to ensure that the null
space error reduction is always subquadratic. However, since a one step superlinear result
is prevented only by the possibility of cancellation in the null space error terms, one would
expect one step superlinear convergence to occur often in practice, as has been observed.

An obvious theoretical question related to this paper is whether the results of this paper
can be extended to problems where rank(F’(z*)) < n — 1. In practice, for example, tensor
methods have been observed to exhibit considerably faster local convergence than Newton’s
method on problems where rank(F’(z*)) = n — 2. We do not expect, however, that one
can prove a faster than linear convergence result for the tensor methods of Schnabel and
Frank [16] when rank(F’(z*)) < n — 1, even if one uses a higher rank second order term
in the tensor model. The reason is that the current tensor model does not provide enough
information to approximate all the components of F/(z*) that appear to be needed for such
a result; it would appear necessary to either use past Jacobian values or previous iterates in
linearly dependent directions to obtain the necessary second order information. We doubt
whether this effort is warranted in practice. ‘

An interesting computational issue related to this paper is how the ideal tensor method
analyzed in Section 4 would perform in practice. In particular, would it be superior to
the practical tensor method in terms of the number of iterations required to solve given
problems, and would this advantage be sufficient to outweigh the extra costs associated
with each iteration? We hope to investigate these questions computationally in the future.

Finally, an intriguing question is whether the computational and theoretical advantages
of tensor methods can be extended to nonlinearly constrained optimization problems where
the Jacobian matrix of the constraints is rank deficient at the solution. We are currently
investigating this issue.
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