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Shaw-Cortez, Wenceslao (M.S., Aerospace Engineering)

Energy-Aware Path Planning for UAS Persistent Sampling and Surveillance

Thesis directed by Prof. Eric Frew

The focus of this work is to develop an energy-aware path planning algorithm that maximizes

UAS endurance, while performing sampling and surveillance missions in a known, stationary wind

environment. The energy-aware aspect is specifically tailored to extract energy from the wind to

reduce thrust use, thereby increasing aircraft endurance. Wind energy extraction is performed by

static soaring and dynamic soaring. Static soaring involves using upward wind currents to increase

altitude and potential energy. Dynamic soaring involves taking advantage of wind gradients to

exchange potential and kinetic energy. The path planning algorithm developed in this work uses

optimization to combine these soaring trajectories with the overarching sampling and surveillance

mission.

The path planning algorithm uses a simplified aircraft model to tractably optimize soaring

trajectories. This aircraft model is presented and along with the derivation of the equations of

motion. A nonlinear program is used to create the soaring trajectories based on a given optimiza-

tion problem. This optimization problem is defined using a heuristic decision tree, which defines

appropriate problems given a sampling and surveillance mission and a wind model.

Simulations are performed to assess the path planning algorithm. The results are used to

identify properties of soaring trajectories as well as to determine what wind conditions support

minimal thrust soaring. Additional results show how the path planning algorithm can be tuned

between maximizing aircraft endurance and performing the sampling and surveillance mission. A

means of trajectory stitching is demonstrated to show how the periodic soaring segments can be

combined together to provide a full solution to an infinite/long horizon problem.
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Chapter 1

Introduction

1.1 Motivation

The use of Unmanned Aircraft Systems (UAS) has dramatically increased in recent years.

UAS are capable of performing missions considered too dangerous for manned flight. Such mis-

sions include entering tornadic storm cells for collecting data on tornadogenesis [8] and surveying

enemy territory for military operations [7]. Additionally, they can provide communication relays

in remote locations [15] and work cooperatively for increased mission performance [12]. However

UAS applications are limited to the aircraft’s flight time. In order to increase UAS effectiveness,

the aircraft must have longer flight endurance.

One way to increase flight endurance is to extract energy from the wind by soaring. Two main

types of soaring include static soaring and dynamic soaring. During static soaring the UAS gains

potential energy by flying in upward wind currents (Fig. 1.1). These upward wind currents can be

a result of uneven ground heating, such as with thermal soaring [3], or from terrestrial formations

that direct winds upward, such as ridge soaring. In either case, the vertical wind surpasses the

aircraft sink rate and the UAS gains potential energy.
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Figure 1.1: Thermal Soaring [2]

Dynamic soaring exploits wind gradients by using flight maneuvers to gain potential and/or

kinetic energy. An albatross uses wind gradients above the ocean surface to glide for thousands

of miles with little effort [6]. An example of a dynamic soaring trajectory is shown in Fig. 1.2.

Upon reaching point 1, the albatross is flying into the wind with a positive pitch angle. It then

rolls, exposing the wing surface area to the wind, and turns away from the wind at a negative pitch

angle. At point 2, the albatross turns back into the wind to repeat the trajectory.

Figure 1.2: Dynamic Soaring Trajectory in boundary layer wind profile [14]
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Related works have looked into using optimization to develop soaring trajectories [5] [16].

Those works analyze different problem formulations and cost functions for specifically developing

dynamic soaring trajectories. Periodic constraints are used as a means to solve for these cyclic dy-

namic soaring trajectories. However, the main focus of both works is to increase aircraft endurance.

The UAS is not required to perform an additional mission. Also, both works focus specifically on

developing soaring trajectories in a boundary layer wind environment.

Other works use reactive controllers for soaring [4] [11]. Those works look into heuristic

approaches to develop online soaring trajectories. For static soaring, a reactive controller is used

to measure upward wind currents. The aircraft proceeds to orbit these currents in order to gain

potential energy [4]. Similar work identifies and exploits characteristics of dynamic soaring when

flying in a wind gradient [11]. That work also looks into measuring wind gradients online.

Yet another work combines dynamic soaring trajectories with a surveillance mission [9]. That

work uses Dubin’s paths to define straight and curved trajectory types that can perform dynamic

soaring. The properties of these dynamic soaring Dubin’s paths are exploited to perform a surveil-

lance mission while soaring. The Dubin’s path segments are shown to splice together to develop a

long term trajectory solution.

This work focuses on a broader mix of those related works. Here wind energy extraction

applies to all soaring types. The related works are tailored specifically to either dynamic or static

soaring, but not soaring in general. Additionally, most of the related works focus only on soaring

and not performing an additional mission. This work looks to combine soaring with a sampling

and surveillance mission. In order to accomplish this, the optimization approach is used in addition

to periodic soaring to develop segments of the sampling and surveillance mission. Similar to the

Dubin’s path work, these segments can be spliced together for a full trajectory solution.
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1.2 Current Work

The goal of this work is to develop a path planning algorithm that creates UAS persistent

sampling and surveillance trajectories that maximize aircraft flight endurance by extracting energy

from a known, stationary wind field. This path planning algorithm takes into account both static

and dynamic soaring as well as powered and gliding UAS.

One of the difficulties in maximizing flight endurance, or equivalently flight time, is that the

desired soaring trajectory may allow the UAS to stay aloft for a large amount of time. Solving

these potentially long horizon or infinite horizon problems is intractable. The proposed solution

divides the long horizon problem into soaring segments confined within a certain time limit. These

soaring segments are developed using optimization subject to periodic and sampling/surveillance

mission constraints to minimize thrust use. The periodic constraints allow the soaring segments

to be stitched together to then provide the solution to the long horizon problem for a known,

stationary wind field.

In this work persistent sampling and surveillance is defined as staying inside a desired sam-

pling region for as long as possible. The sampling/surveillance mission can be divided into guidance

and loiter missions. The loiter mission is identical to the original sampling and surveillance mission

of staying inside the sampling region. The guidance mission aims to reduce the thrust use as the

UAS flies to the sampling region to further improve the performance in the loiter mission.

Figure 1.3: Path Planning Algorithm Block Diagram

Figure 1.3 shows the path planning algorithm presented in this work. The trajectory design
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portion is represented by the Mission Tree and Optimization blocks. As mentioned previously,

the proposed solution splits the long horizon trajectory into soaring segments. Each segment is

formulated as an optimization problem in the Mission Tree block. The chosen problem from the

mission tree is then sent to the Optimization block. Here an optimizer is used to develop a soaring

trajectory subject to the costs and constraints defined from the mission tree.

1.3 Thesis Outline

The system model and equations of motion are derived in Chapter 2. Chapter 3 defines the

optimization aspect of the proposed solution for developing soaring trajectories. Chapter 4 defines

the decision tree used to formulate the optimization problems. Chapter 5 presents and discusses

simulations used to analyze the performance of the path planning algorithm. Finally, Chapter 6

provides concluding remarks and future work.

1.4 Thesis Contributions

The main contributions presented in this work include:

(1) Formulation of optimization problem to develop soaring trajectories

(a) Formulation of optimization problem as nonlinear program

(b) Derivation of an initial trajectory development approach using differential flatness

(2) Formulation of the mission tree to appropriately solve various optimization problems

(a) Formulation of guidance and loiter mission problems subject to soaring constraints

(b) Design of penalty function to increase versatility in loiter mission

(c) Design of myopic stitching for creating long term trajectory solutions

(3) Analysis and assessment of path planning algorithm

(a) Analysis of soaring trajectories in a linear boundary layer wind model
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(b) Analysis of wind gradient strength on the ability to soar

(c) Assessment of penalty function to tune between mission objectives

(d) Analysis of myopic stitching for providing long term trajectory solutions

(e) Identification of design applications for the presented path planning algorithm



Chapter 2

System Model

This chapter defines the aircraft model used in the path planning algorithm. The equations

of motion are derived for the aircraft model, and the sampling and surveillance mission is outlined.

2.1 Aircraft Model

The UAS is modeled by a three-dimensional point-mass aircraft [5]. The aerodynamic forces

acting on the aircraft include the lift, L, drag, D, and thrust, T . The directions of these forces

are defined by the orientation angles, which are the air-relative course angle, χa, air-relative flight

path angle, γa, and the roll angle, φ. The aircraft model also takes into account the wind velocity

vector, w. The air-relative velocity vector, ṗa, is defined as the velocity of the UAS with respect

to this wind vector. Figure 2.1 shows a diagram of the forces, orientations, and velocity vectors.

The inertial coordinate frame for this model is represented by the x, y, z axes. This is a

conventional aircraft coordinate frame with the z axis pointing down and the x and y axes abiding

by the right hand rule as shown in Fig. 2.1. This coordinate frame is used to define the inertial

position, p =

(
x y z

)T

. The derivative of p is the inertial velocity vector, ṗ =

(
ẋ ẏ ż

)T

.

The inertial velocity is the summation of the air-relative velocity and wind velocity, where the wind

is assumed known and stationary in time:

w =

(
wx wy wz

)T

(2.1)

where wx, wy, and wz are the wind components in the x, y, and z directions, respectively. The
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Figure 2.1: UAS Diagram

wind is a function of the aircraft position. The associated Jacobian of the wind, Jw, is defined by:

Jw =


∂wx
∂x

∂wx
∂y

∂wx
∂z

∂wy

∂x
∂wy

∂y
∂wy

∂z

∂wz
∂x

∂wz
∂y

∂wz
∂z

 (2.2)

The aircraft wind frame is fixed to the point mass model of the aircraft and is defined by

the x′, y′, z′ axes. The orientation angles define the rotation between the wind frame and inertial

coordinate frame. The air-relative course angle, χa, rotates from the x-axis to the projection of

the wind x′-axis on the x − y plane. The air-relative flight path angle, γa, then rotates up to the

wind x′-axis. The roll angle, φ, rotates about x′. This model assumes the aircraft thrust is always

directed into the direction of the air-relative velocity vector.

The rotation matrix, Ri/w, is used to rotate from the wind frame to the inertial frame. This

rotation matrix is composed of rotations about the orientation angles:

Ri/w = Rz(χa)Ry(γa)Rx(φ) (2.3)
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Rz(χa) =


cosχa − sinχa 0

sinχa cosχa 0

0 0 1

 , Ry(γa) =


cos γa 0 sin γa

0 1 0

− sin γa 0 cos γa

 , Rx(φ) =


1 0 0

0 cosφ − sinφ

0 sinφ cosφ


(2.4)

The lift, drag, and thrust forces are oriented based on the air-relative velocity vector. The lift

acts perpendicular to ṗa along the negative z′-axis. The lift direction about ṗa is dictated by the

roll angle. The thrust is assumed to act along the direction of ṗa, and the drag acts in opposition

to ṗa. The gravity acts on the aircraft mass, m, with acceleration, g, along the z-axis. The lift and

drag equations are defined by:

L =
1

2
ρV 2

a SCL (2.5)

D =
1

2
ρV 2

a S(Cd0 +
C2
L

πARe
) (2.6)

where ρ is the air density, Va is the airspeed or the magnitude of the air-relative velocity (‖ṗa‖2),

S is the wing surface area, AR is the aspect ratio, e is the Oswald efficiency factor, and Cd0 is the

zero-lift drag coefficient.

For this work, the states, x(t), and control inputs,u(t), of the model are defined by:

x(t) =

(
x y z Va γa χa φ CL

)T

u(t) =

(
φ̇ ĊL T

)T

Note that the roll rate, φ̇, and lift coefficient rate, ĊL, are directly controlled.
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2.2 Equations of Motion

The equations of motion for the defined states and control inputs define the dynamics of the

aircraft model. These dynamics are defined as:

ẋ(t) = f(x(t),u(t),w(p(t))) (2.7)

where the state derivatives, ẋ(t), are functions of the states, control inputs, and wind vector.

The function, f , holds the equations of motion, which are derived from aircraft kinematic

and dynamic equations. As defined in Fig. 2.1, the inertial aircraft velocity is defined as the

summation of the air-relative velocity and the wind velocity vectors with respect to the inertial

coordinate frame.

ṗ = ṗa + w = Ri/wVae1 + w (2.8)

where e1 =

(
1 0 0

)T

. Similar notation is used throughout this derivation with unit vectors

e2 =

(
0 1 0

)T

and e3 =

(
0 0 1

)T

. In Eq. (2.8), ṗa is rewritten as the airspeed along the

x′ axis rotated into the inertial coordinate frame. The inertial velocity components can now be

defined with respect to the orientation angles, airspeed, and wind vector.
ẋ

ẏ

ż

 = Va


cosχa cos γa

sinχa cos γa

− sin γa

+ w (2.9)

The derivatives of Va, γa, and χa are derived by substituting Eq. (2.3) into Eq. (2.8) and

differentiating the resulting equation:

p̈ =VaṘz(χa)Ry(γa)Rx(φ)e1 + VaRz(χa)Ṙy(γa)Rx(φ)e1

+ VaRz(χa)Ry(γa)Ṙx(φ)e1 + V̇aRz(χa)Ry(γa)Rx(φ)e1 + ẇ

(2.10)

The derivatives of the rotation matrices are defined by:

Ṙz(χa) = Rz(χa)(χ̇aê3) = χ̇aRz(χa)ê3 (2.11)

Ṙy(γa) = Ry(γa)(γ̇aê2) = γ̇aRy(γa)ê2 (2.12)
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Ṙx(φ) = Rx(φ)(φ̇ê1) = φ̇Rx(φ)ê1 (2.13)

whereˆrepresents a skew symmetric matrix of the given vector. These derivatives are substituted

back into Eq. (2.10):

p̈ =Vaχ̇aRz(χa)ê3Ry(γa)Rx(φ)e1 + Vaγ̇aRz(χa)Ry(γa)ê2Rx(φ)e1

+ Vaφ̇Rz(χa)Ry(γa)Rx(φ)ê1e1 + V̇aRz(χa)Ry(γa)Rx(φ)e1 + ẇ

(2.14)

The Rx(φ) terms can be eliminated with the multiplication by e1. Additionally, ẇ can be written

in terms of the wind Jacobian and inertial velocity vector:

p̈ =Vaχ̇aRz(χa)ê3Ry(γa)e1 + Vaγ̇aRz(χa)Ry(γa)ê2e1

+ V̇aRz(χa)Ry(γa)e1 + Jwṗ

(2.15)

The skew symmetric terms are evaluated and the Rz(χa), Ry(γa) rotation matrices can be pulled

out of the rotation terms:

p̈ = Rz(χa)Ry(γa)(Vaχ̇a cos γae2 − Vaγ̇ae3 + V̇ae1)+ Jwṗ (2.16)

p̈ = Rz(χa)Ry(γa)


V̇a

Vaχ̇a cos γa

−Vaγ̇a

+ Jwṗ (2.17)

The inertial acceleration, p̈, can be substituted using Newton’s second law.

p̈ = ge3 +Ri/w(
T −D
m

e1 +
−L
m

e3) (2.18)

Substituting Eq. (2.18) into Eq. (2.17) and solving for the vector containing V̇a, χ̇a, and γ̇a yields:
V̇a

Vaχ̇a cos γa

−Vaγ̇a

 = Rx(φ)(
T −D
m

e1 +
−L
m

e3) +Ry(γa)
TRz(χa)

T(ge3 − Jwṗ) (2.19)

Solving for the individual derivative state components yields the dynamic equations for the
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airspeed, air-relative flight path angle, and air-relative course angle.

V̇a = −g sin γa +
T −D
m

−


cos γa cosχa

cos γa sinχa

− sin γa


T

Jwṗ (2.20)

γ̇a =
1

Va
(−g cos γa +

L

m
cosφ+


sin γa cosχa

sin γa sinχa

cos γa


T

Jwṗ) (2.21)

χ̇a =
1

Va cos γa
(
L

m
sinφ+


sinχa

− cosχa

0


T

Jwṗ) (2.22)

(2.23)

The equations of motion for the roll angle, φ ,and lift coefficient, CL, are determined directly

from the control inputs, φ̇ and ĊL, respectively.
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In summary, the full equations of motion are:

ẋ(t) = f(x(t),u(t),w(p(t)) =



Va cosχa cos γa + wx

Va sinχa cos γa + wy

−Va sin γa + wz

−g sin γa + T−D
m −


cos γa cosχa

cos γa sinχa

− sin γa


T

Jwṗ

1
Va

(−g cos γa + L
m cosφ+


sin γa cosχa

sin γa sinχa

cos γa


T

Jwṗ)

1
Va cos γa

( Lm sinφ+


sinχa

− cosχa

0


T

Jwṗ)

u1

u2



(2.24)

where u1 and u2 are the first and second terms of the control input vector, u(t).
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2.3 Sampling and Surveillance Mission

The focus of this work is to extract wind energy in order to increase the amount of time a UAS

performs a sampling and surveillance mission. For this work, the sampling and surveillance mission

is defined as staying inside of a sampling region. However, in many cases the sampling region is not

at the UAS launch site. In order to perform the sampling and surveillance mission, the UAS first

needs to traverse to the desired region. The mission can be improved by extracting wind energy

as the UAS traverses, in addition to extracting energy upon reaching the desired region. For this

reason the full sampling and surveillance mission is divided into the guidance and loiter missions.

The purpose of the guidance mission is to direct the UAS in the direction of the sampling

region, while extracting wind energy. The UAS is directed along the heading angle, χd. This

heading angle lies in the x − y plane between the x axis and the ray pointing from the aircraft’s

position to the sampling region as depicted by Fig. 2.2 (a).

(a) Guidance Mission (b) Loiter Mission

Figure 2.2: Guidance and Loiter Mission Diagrams

The purpose of the loiter mission is to keep the UAS in the sampling region, while extracting

wind energy. In this work, the sampling region is defined as a cylinder of radius Rd. The center of

the sampling region is located

(
xg, yg, 0

)T

. The distance from the sampling region center to

the UAS is defined as r as shown in Fig.2.2 (b). Note the green, dashed circle is used throughout

this paper to represent the cylindrical sampling region.



Chapter 3

Optimization

This chapter formulates the trajectory optimization as a nonlinear program and derives a

method for constructing initial trajectories for the optimization.

3.1 Nonlinear Program

The aircraft model discussed in Section 2.1 defines a system with continuous states and control

inputs. The first step in formulating the optimization as a nonlinear program is to discretize these

continuous states and control inputs into finite vectors as depicted in Fig.3.1.

Figure 3.1: Discretization of Continuous UAS Trajectory

The state and control inputs are discretized into N time nodes. The time between these time

nodes is fixed by the time step, ∆t. A forward Euler approximation is used to enforce the equations

of motion on the discretized state vector:

xk+1 = xk + f(xk,uk,w(pk))∆t, ∀k ∈ [0, N − 1] (3.1)

The nonlinear program is developed with the decision vector, z, which is the concatenation
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of the discretized states and control inputs:

z =

(
∆t x0 u0 x1 u1 ... xN−1 uN−1 xN

)T

(3.2)

Note the time step, ∆t, is included in this decision vector.

The problem formulation for the generic nonlinear program is defined by:

Problem 1

min J(z)

s.t. Ff (z) = 0

Fb(z) ≤ 0

Fp(z) = 0

Fi(z) = 0

Fo(z) = 0

where J is the cost function to minimize subject to the set of constraints, F . The set of constraints

include the equation of motion constraints, Ff , system bounds, Fb, periodic constraints, Fp, and

initial condition constraints, Fi. Any additional constraints specific to a particular problem are

defined in Fo. The equation of motion constraints enforce the forward Euler approximation defined

in Eq. (3.1):

Ff (z) = xk+1 − xk − f(xk,uk,w(pk))∆t, ∀k ∈ [0, N − 1] (3.3)
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The system bounds apply upper and lower boundaries on z.

Fb(z) =



∆t−∆tmax

−∆t+ ∆tmin

xk − xmax

−xk + xmin

yk − ymax

−yk + ymin

zk − zmax

−zk + zmin

Vak − Vamax

−Vak + Vamin

γak − γamax

−γak + γamin

χak − χamax

−χak + χamin

φk − φmax

−φk + φmin

CLk
− CLmax

−CLk
+ CLmin

φ̇k − φ̇max

−φ̇k + φ̇min

ĊLk
− ĊLmax

−ĊLk
+ ĊLmin

Tk − Tmax

−Tk + Tmin



, ∀k ∈ [0, N ] (3.4)

The periodic constraints force the specified states at the final time node, k = N , to be equal
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to the corresponding states at k = 0.

Fp(z) =



xN − x0

yN − y0

zN − z0

VaN − Va0

γaN − γa0

χaN − χa0

φN − φ0

CLN
− CL0



(3.5)

Finally, the initial condition constraints force the specified states and control inputs at k = 0

to a specific initial value.

Fi(z) =



x0 − x(0)

y0 − y(0)

z0 − z(0)

Va0 − Va(0)

γa0 − γa(0)

χa0 − χa(0)

φ0 − φ(0)

CL0 − CL(0)

φ̇0 − φ̇(0)

ĊL0 − ĊL(0)

T0 − T (0)



(3.6)

The periodic and initial condition constraints may only apply to select states and/or control

inputs depending on the problem formulation. In order to address these scenarios, the notation

will explicitly define the states and control inputs included or excluded from either the periodic or

initial condition constraints. For example, if the periodic constraint excludes the inertial position

and airspeed, then the periodic constraint notation is: Fp(z \ {xk, yk, zk, Vak}) = 0. On the other



19

hand say the initial condition constraint only applies to the inertial position and air-relative flight

path angle. The initial condition constraint notation would then be: Fi(x0, y0, z0, γa0) = 0

The nonlinear program defined in Problem 1 is used to minimize the cost function,J. The

focus of this work is to reduce the thrust use in order to reduce the on-board fuel consumption.

Therefore the cost function is formulated based on the summation of the thrust. The general form

of the cost function is:

J(z) =

N−1∑
k

(T 2
k + hb(z))+ ht(z) (3.7)

where hb and ht are additional cost function terms.

In order to develop a trajectory solution, the nonlinear program is solved using a commercial

solver known as the Sparse Nonlinear Optimizer (SNOPT) [1]. SNOPT is a sequential quadratic

programming algorithm that is effective for large-scale, sparse optimization problems. SNOPT

requires the cost, J, constraints, F , and can exploit expressions for the gradient of the costs and

constraints with respect to the input vector z. Recall that many of the constraints only apply to

specific states and inputs at a time. For example, the equation of motion constraint only constrains

state xk to the next state xk+1. In the periodicity constraint only the final and initial states of the

trajectory are constrained. Therefore the gradient of the constraint becomes a large, sparse gradient

matrix, which is ideal for SNOPT. Other optimization parameters associated with SNOPT include

the optimality tolerance, tolopt, and feasibility tolerance, tolfea. The optimizer uses the optimality

tolerance to determine when a trajectory is deemed optimal. The feasibility tolerance is used by

the optimizer to determine when the constraints are satisfied.
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3.2 Initial Trajectory Development

Optimizers such as SNOPT require an initial trajectory in order to begin the optimization.

To improve the performance of the optimizer, it is beneficial to provide an initial trajectory that

satisfies most of the problem constraints. One way to do this is to exploit the differential flatness

property of the presented aircraft model [10]. Due to this property, all of the states and control

inputs of the system can be determined from a given inertial position, p(t), inertial velocity, ṗ(t),

and inertial acceleration, p̈(t). By defining the inertial path of the aircraft, the entire trajectory

can be developed to satisfy the equation of motion and initial condition constraints. By choosing

an appropriate path, most of the system bounds and periodic constraints can also be satisfied. If

not all the constraints can be satisfied, the differential flatness property can still provide SNOPT

with an initial trajectory that is close enough to a neighborhood of feasible trajectories.

The states and inputs for this initial trajectory are computed by first defining the components

of Ri/w in terms of column vectors:

Ri/w =

[
r1 r2 r3

]
(3.8)

The air-relative velocity can be rewritten using Eq. (3.8).

ṗa = VaRi/we1 = Var1 (3.9)

The airspeed is substituted by the magnitude of the air-relative velocity to yield the equation

for r1:

r1 =
ṗa
||ṗa||

(3.10)

Equation (2.18) can be rewritten using acceleration terms.

p̈ = ge3 +Ri/w(ate1 − ane3) (3.11)

where at represents the tangential acceleration in the wind x′-axis due to the thrust and drag, and

an represents the normal acceleration in the negative wind z′-axis due to the lift.
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The tangential acceleration is determined by rearranging Eq. (3.11).

ate1 − ane3 = RT
i/w(p̈− ge3)

at = eT
1 R

T
i/w(p̈− ge3)

at = rT
1 (p̈− ge3) (3.12)

The normal acceleration can be solved for using Eq. (3.11) and Eq. (3.12).

atr1 − anr3 = p̈− ge3

−anr3 = −atr1 + p̈− ge3

−anr3 = (−r1r
T
1 + I)(p̈− ge3)

an = ‖(−r1r
T
1 + I)(p̈− ge3)‖ (3.13)

The rotation vector r3 can also be solved for from the previous derivation.

r3 =
(−r1r

T
1 + I)(p̈− ge3)

−an
(3.14)

Finally the rotation matrix, Ri/w, can be written in terms of the desired soaring path by

computing r2 from r1 and r3.

r2 = r3 × r1 (3.15)

The lift coefficient and thrust are computed from the tangential and normal accelerations.

CL =
2man
ρV 2

a S
(3.16)

T = mat +D (3.17)
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The roll angle is derived from the definition of the rotation matrix, Ri/w.

Ri/w = Rz(χa)Ry(γa)Rz(φ)

eT
3 Ri/w = eT

3 Rz(χa)Ry(γa)Rz(φ)

eT
3 Ri/w = eT

3 Ry(γa)Rz(φ)
eT

3 r1

eT
3 r2

eT
3 r3


T

=


− sin γa

cos γa sinφ

cos γa cosφ


T

φ = tan−1(
eT

3 r2

eT
3 r3

) (3.18)

Finally χa and γa can be derived directly by re-arranging Eq. (2.9).

χa = tan−1(
ẏ − wy
ẋ− wx

) (3.19)

γa = sin−1(
−ż + wz

Va
) (3.20)

The inputs φ̇ and ĊL can be approximated using finite differencing over a desired time step,

∆t.

φ̇ =
∆φ

∆t
(3.21)

ĊL =
∆CL
∆t

(3.22)

With all the states and inputs as functions of inertial position, velocity, and acceleration,

initial trajectories can be developed to initialize the optimization.
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3.3 Periodicity Validation

With the nonlinear program defined and the optimizer chosen, an example trajectory can

be developed to demonstrate the benefit of the periodicity constraint, which allows trajectories to

stitch together. Consider solving a trajectory for the guidance mission with an initial steady level

flight trajectory.

(a) Initial Steady Level Flight Trajectory (b) Minimized Thrust Soaring Trajectory

Figure 3.2: Periodic Soaring Example
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Figure 3.3: Periodic Stitching of Soaring Trajectory

Figure 3.2(b) shows the resulting minimized thrust soaring trajectory that the optimizer

develops from the initial trajectory in Fig. 3.2 (a). Figure 3.3 demonstrates how after solving

one soaring trajectory, the trajectory can be combined or stitched together to provide a long term

trajectory solution.

The full trajectory output by the optimizer for the soaring segment in Fig. 3.2 (b) is shown

in the following plots.
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Figure 3.4: Example trajectory output from the optimization (States/Inputs Set 1)

Figure 3.5: Example trajectory output from the optimization (States/Inputs Set 2)



Chapter 4

Mission Tree

The purpose of the mission tree is to provide the optimizer with the desired problem for-

mulation to solve. This problem formulation includes the cost, constraints, initial trajectory, and

optimization parameters defined in Chapter 3.

The mission tree is a heuristic algorithm to formulate an appropriate optimization problem.

The tree is defined prior to launch by the mission designer so that the UAS can be given a wind

model and automatically decide what optimization problems to solve. One difficulty in choosing

a problem is that there are many different ways to formulate an optimization problem for a given

mission. Some studies analyze only the performance of different cost functions let alone analyzing

the variations of cost and constraints [16] [5]. Another difficulty is that a specific problem may

be overdetermined with many possible solutions. This would suggest that the degrees of freedom

in the problem need to be reduced. Conversely, a specific problem may have no solution. For

example, the optimizer can locate a minimum trajectory in the solution space, but cannot reach it

due to the constraints of the problem. Here it may be beneficial to relax the constraints to reach

a neighborhood of feasible solutions.

Another key component of the mission tree involves setting up the logical structure for choos-

ing a problem. In some cases, iterations may be needed to compare the results between different

problems. For example, it may be beneficial to solve a gliding problem for a powered aircraft in

case the wind environment provides sufficient energy for zero thrust flight. This would allow the

UAS to improve mission performance by focusing on a cost function other than minimizing thrust.
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The development of this logic structure is important, but is not the focus of this work. Instead a

problem formulation is chosen from the guidance and loiter trees to analyze in the results section.

4.1 Guidance Tree

Recall the purpose of the guidance mission is to direct the UAS towards the sampling region,

while extracting energy from the wind.

Figure 4.1: Guidance Tree

Figure 4.1 shows the logical flow of how the guidance tree decides which problems to pass

to the optimizer. The main decisions in the tree correspond to increasing flight endurance and

performing the sampling and surveillance mission. The first decision divides the tree into powered

or gliding flight problem formulations. The gliding problems set thrust to zero and focus on

minimizing different costfunctions to improve the sampling and surveillance mission. The powered

flight problems strive to minimize the thrust and an additional costterm to maximize the aircraft’s

flight endurance.
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The second decision deals with constraining the UAS to fly in the direction of the sampling

region. In certain cases, such as when dealing with obstacles, it may be impractical to direct the

UAS straight to the sampling region. Instead the problems may include a term in the costfunction

to stay close to the direction of the goal.

The multiple problem descriptions seen in the leaves of the guidance tree demonstrate possible

problem descriptions that a mission designer could implement. For this work, Problem G.7 is

chosen to analyze the performance of the path planning algorithm for developing guidance mission

trajectories. Problem G.7 minimizes the thrust use and maximizes the speed for a powered aircraft

constrained to flying towards the sampling region. The formal problem definition of Problem G.7

is given by:

Problem 2 (G.7)

min J(z) =
∑N−1

k=0 (kT
T 2
k
2 ) + kp(

N∆t√
(xN−x0)2+(yN−y0)2

)

s.t. Ff (z) = 0

Fb(z) ≤ 0

Fp(z \ {xk, yk}) = 0

Fi(x0, y0, z0, γa0) = 0

xN = x0 +
√

(xN − x0)2 + (yN − y0)2 cosχd

yN = y0 +
√

(xN − x0)2 + (yN − y0)2 sinχd

(4.1)

where kT ≥ 0 is the thrust gain and kp ≥ 0 is the position gain.

The costin Problem G.7 consists of a summation of the thrust in addition to an average speed

term. The thrust component is to develop a minimized thrust trajectory and thereby increase the

flight endurance of the UAS. The speed term allows the mission designer to adjust how quickly the

UAS flies towards the sampling region. By applying gains to both components, the designer can

tune between reducing thrust or increasing the average speed of the trajectory. The speed in this

case is the distance between the final and initial inertial positions divided by the total time of the

trajectory.
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Problem G.7 implements periodic constraints on all states except for the inertial x and y

positions. In order to traverse to the sampling region, the final UAS position cannot be constrained

to the initial UAS position or else there would be no net movement. Instead directional constraints

are applied to xN and yN . This constraint ensures that the final x and y positions align with the

initial positions such that the soaring trajectory moves toward the sampling region. Recall the

heading angle, χd, directs the UAS towards the sampling region.

4.2 Loiter Tree

The purpose of the loiter mission is to keep the UAS inside the sampling region, while

extracting energy from the wind.

Figure 4.2: Loiter Tree

Figure 4.2 shows the logical flow for choosing a loiter mission problem and has a similar

structure to the guidance tree. The first decision once again deals with choosing between a powered

or gliding flight problem formulation. The second decision deals with whether the UAS is allowed
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to leave the sampling region. At this point the loiter tree must weigh the benefits between leaving

the sampling region if for example there is a wind energy source nearby to increase the aircraft’s

flight endurance.

For this work, Problem S.10 is chosen to analyze the performance of the path planning

algorithm for developing loiter mission trajectories. The formal problem definition of Problem S.10

is given by:

Problem 3 (S.10)

min J(z) =
∑N−1

k=0 (kT
T 2
k
2 + kph(x))

s.t. Ff (z) = 0

Fb(z) ≤ 0

Fp(z) = 0

Fi(x0, y0, z0, γa0) = 0

(4.2)

where h(x) is the penalty function on the UAS position with respect to the sampling region defined

by:

h(x) =


(rk−Rd)2

2 , rk ≥ Rd,

0, rk < Rd

(4.3)

The costfunction of Problem S.10 consists of a summation of the thrust in addition to the

penalty function, h(x). Once again the minimization of thrust is used to increase the flight en-

durance of the UAS. The penalty function is one way to reduce the amount of time the UAS spends

outside of the sampling/surveillance region. The penalty function works by applying a penalty to

a trajectory that takes the UAS outside of the sampling region. This penalty is proportional to the

square of the difference between the UAS distance from the center of the sampling region and the

radius of the sampling/surveillance region. The benefit of including this penalty function in the

cost is so the mission designer can tune between reducing the thrust or keeping the UAS inside the

sampling region by adjusting the thrust gain, kT , and the position gain, kp.

Problem S.10 applies the periodic constraint on all the states and inputs. In the loiter mission,

the UAS has already reached the sampling region and is trying to solve the long horizon problem of
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maximizing UAS flight endurance. Instead of using a receding horizon approach to solving the long

horizon problem, Problem S.10 takes advantage of the periodic trajectory concept as demonstrated

with the guidance mission in Chapter 3. The benefit of the periodic constraint is that the optimizer

need only solve one soaring segment trajectory for the stationary wind model. This single trajectory

can then be stitched together to provide a reduced thrust solution to the long horizon problem.

4.3 Myopic Stitching

One of the key benefits of implementing the periodic soaring constraint presented in Chapter

3.1, is to be able to develop long term trajectory solutions for the guidance and loiter missions.

However in order to create the full sampling and surveillance mission trajectory, the guidance and

loiter trajectories must be stitched together.

This work uses a myopic stitching approach in which the guidance problem is first solved in

order for the UAS to traverse towards the sampling region. Once the UAS approaches the sampling

region, a transition guidance problem is needed to actually reach the desired position inside or near

the sampling region. Finally, once the UAS reaches the sampling region, the loiter problem is

solved to complete the sampling and surveillance mission. This transition problem used to link the

guidance and loiter trajectories is defined by:

Problem 4 (Gt.7)

min J(z) =
∑N−1

k=0 (kT
T 2
k
2 ) + kp(

N∆t√
(xN−x0)2+(yN−y0)2

)

s.t. Ff (z) = 0

Fb(z) ≤ 0

Fp(z \ {xk, yk}) = 0

Fi(z) = 0

xN = xs

yN = ys

(4.4)

where xs and ys defines the inertial position in the sampling region from which the loiter problem
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will be solved. Problem Gt.7 is equivalent to Problem G.7 presented in Chapter 4.1, except for the

initial condition constraints and final constraints on xN and yN . The final constraints allow the

UAS to reach the specific location (xs,ys) in the sampling region. The initial condition constraint

in Problem Gt.7 encompasses all of the initial states to be fixed to the final states of the guidance

trajectory. This is needed for the stitching between the guidance and transition trajectories to be

continuous. The initial condition constraint in Problem Gt.7 must also be applied to Problem S.10

in order for the stitching between the transition and loiter trajectories to be continuous.



Chapter 5

Results

This chapter provides an assessment of the presented path planning algorithm.

5.1 Aircraft Parameters

The aircraft model used in the following simulations are based off the Tempest UAS [13].

The parameters that define the aircraft model are defined in Table 5.1.

Table 5.1: Aircraft Model Parameters

Parameter Value

m 5.7419 kg
S 0.6316 m2

e 0.9693
Cd0 0.0310
AR 16.4457
ga 9.81 m/s2

ρ 1.2682 kg/m3

5.2 Wind Models

The two wind models used in the following simulations are the linear boundary layer wind

model and thermal wind model. The linear boundary layer wind model is defined by:

w =

(
0, µz, 0

)T

(5.1)
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Jw =


0, 0, 0

0, 0, µ

0, 0, 0

 (5.2)

where µ defines the wind gradient or slope of the linear boundary layer.

The thermal wind model is defined by:

w =

(
0, 0, −Vcoree

−r2

R2
lift

)T

(5.3)

Jw =


0, 0, 0

0, 0, 0

2Vcoree
−r2

R2
lift

(x−xth)
R2

lift
, 2Vcoree

−r2

R2
lift

(y−yth)
R2

lift
, 0

 (5.4)

where Vcore is the core strength of the thermal, (xth, yth) defines the thermal position in the inertial

x− y plane, r is the radial distance from the aircraft to the thermal center, and Rlift is the radius

of the thermal at which the upwind strength is 30% of the core strength.

A picture representation of these two wind models is shown in Fig 5.1. Note that the linear

(a) Linear Boundary Layer (b) Thermal Wind

Figure 5.1: Wind Models

boundary layer model is a function of z which is negative for a positive altitude. For this reason,

the direction of the wind in the linear boundary layer wind models used in the following simulations

is always pointed into the negative y-axis.
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5.3 Baseline Trajectories

These baseline trajectories are used to compare the performance of the path planning algo-

rithm, and are used as the initial trajectories given to the optimizer. Figure 5.2 shows the two

(a) Guidance Baseline Trajectory (b) Loiter Baseline Trajectory

Figure 5.2: Baseline Trajectories

types of baseline trajectories used in this work. Both baseline trajectories are constant altitude

flight trajectories to accomplish the guidance and loiter missions, respectively. Both trajectories

are developed using the initial trajectory development approach from Chapter 3.2. The path used

to develop the guidance baseline trajectory is defined by:

x(t) = xf
t

tf
+ x0

y(t) = 0

z(t) = 0

(5.5)

where xf defines the distance traveled and tf = N∆t is the total time of the trajectory.

The path used to develop the loiter baseline trajectory is defined by:

x(t) = Ax sin(
2π

tf
t) + x0

y(t) = −Ay cos(
2π

tf
t) +Ay + y0

z(t) = 0

(5.6)
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where Ax and Ay define the sinusoidal amplitude in the x-axis and y-axis, respectively.

Examples of the state history for baseline trajectories in a linear boundary layer wind model

are shown in 5.2. The guidance trajectory was developed for a 10 second flight over 60 meters.

The loiter trajectory was developed for a 10 second flight with a 20 m radius orbit. The values

Table 5.2: Baseline Trajectory States

Guidance Loiter

N 100 100
tf 10 s 10 s

Va(t) 6.0 m/s 12.6 m/s
γa(t) 0.0◦ 0.0◦

χa(t) 0.0◦ [0.0◦ : 360.0◦]
φ(t) 0.0◦ 38.8◦

CL(t) 3.9 1.1
T (t) 4.8 N 3.6 N

shown in Table 5.2 represent fixed state values over the course of the baseline trajectories. The

only exception is the course angle, χa(t), for the loiter case which completes a circular orbit from

0◦ to 360◦.
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5.4 Validation Trajectories

This section characterizes the types of trajectories required to reduce thrust in a linear

boundary layer wind model. The cost function for both the guidance and loiter missions is: J(z) =∑N−1
k

1
2kTT

2
k . This means that the results will show what type of trajectories are beneficial for

only reducing thrust use. Appendix A.1 holds the optimization parameters used to develop the

trajectories.

5.4.1 Guidance Example

For the guidance mission, the sampling region is located along the x-axis with a heading

angle of χd = 0◦. The baseline trajectory traverses 80 m along this axis in 10 s. This baseline

trajectory requires a steady thrust of 3.3 N, which results in a cost of 5.4x104. The wind gradient

for the linear boundary wind model is µ = 0.12s−1.

Figure 5.3: Guidance Example 3D Trajectory (kT = 100, kp = 0, µ = 0.12 s−1)
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Figure 5.4: Guidance Example States/Inputs Set 1

Figure 5.5: Guidance Example States/Inputs Set 2
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Figure 5.3 shows the reduced thrust trajectory for this guidance mission. In this trajectory,

the UAS banks and climbs into the wind, peaks in altitude, then dives away from the wind to

return to the original heading angle. The flight path angle profile in Fig. 5.4 shows the aircraft in

a steady climb as it gains altitude between 1 s and 4 s. At around 4.5 s, as the aircraft peaks in

altitude the flight path angle becomes negative as the aircraft dives back down.

Figure 5.4 shows the lift coefficient reaching a maximum at the peak of the trajectory and a

minimum as the UAS starts to climb into the wind. The maximum lift coefficient plateaus at the

upper bound of 3. Conversely, the airspeed reaches a maximum at the lowest altitude and reaches

its minimum at the peak altitude of the trajectory. Notice that the airspeed changes linearly during

the climb and dive phases of the trajectory.

Figure 5.5 shows the reduced thrust profile with a maximum thrust less than the fixed 3.3 N

from the baseline trajectory. The cost of the reduced thrust guidance trajectory is 1.6x104. The

maximum thrust occurs at the lowest altitude and the minimum thrust occurs at the peak altitude.

Note that the thrust and airspeed profiles resemble one another throughout the trajectory.

5.4.2 Loiter Example

For the loiter mission the baseline trajectory banks around a 20 m circular orbit in 10 s, with

a steady thrust of 3.6 N. The cost of the baseline trajectory is 6.6x104. The wind gradient for the

linear boundary wind model is µ = 0.1s−1.
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Figure 5.6: Loiter Example 3D Trajectory (kT = 100, kp = 0, µ = 0.1 s−1)

Figure 5.7: Loiter Example States/Inputs Set 1
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Figure 5.8: Loiter Example States/Inputs Set 2

Figure 5.6 shows the reduced thrust trajectory developed for this loiter mission. The UAS

banks and climbs into the wind until it peaks in altitude at 4 s. It performs a shallow dive and

then climbs once more facing into the wind. After peaking in altitude for the second time, it banks

and dives away from the wind to return to the start of the trajectory.

The flight path angle shows the similar behavior of climbing into the wind and diving away

from the wind seen for the guidance case. The thrust profile in Fig. 5.8 shows a thrust reduction

from the baseline trajectory’s constant thrust of 3.6 N. The cost of the optimized loiter trajectory is

2.3x104. Once again the thrust reaches maximum values at the low altitudes of the trajectory and

minimum values at the trajectory peaks. Similar behavior to the guidance soaring case is seen in

the airspeed and lift coefficient. The reduced thrust trajectory requires 12 s to complete as opposed

to the original 10 s used by the baseline trajectory.
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5.4.3 Discussion of Validation Trajectories

Both the guidance and loiter trajectories resemble the dynamic soaring trajectory from Fig.

1.2. The related state profiles help identify properties of dynamic soaring. One such property

includes the behavior of the flight path angle. The UAS climbs when flying into the wind, and

dives when flying away from the wind. In addition, there is a trade off between kinetic and potential

energy that correlates to the airspeed and altitude of the UAS, respectively.

It is also important to note the behavior of the thrust and lift coefficient. The thrust and

airspeed profiles closely resembled one another for both guidance and loiter missions . This suggests

that propulsive energy and kinetic energy work together in this reduced thrust, dynamic soaring

trajectory. The lift coefficient acts in accordance with the potential energy because it reaches

its upper bound as the UAS peaks in altitude. This suggests that improved dynamic soaring

performance is capable by using an aircraft with a large maximum lift coefficient in order to gain

more potential energy.

5.5 Wind Gradient Strength vs. Thrust Use

This section investigates the impact of the wind gradient strength on the ability to reduce

thrust use. The cost function is set to J(z) =
∑N−1

k
1
2kTT

2
k for both guidance and loiter missions.

The optimization parameters used in this study are defined in Appendix A A.2.

5.5.1 Guidance

For the guidance mission the sampling region is located in the direction of the x axis with

a heading angle of χd = 0◦. The initial baseline trajectory traverses 80 m along the x axis over a

time span of 10 s. Figure 5.9 shows how the varying wind gradient strength affects the thrust of

the resulting trajectories.

Figure 5.9 in general shows decreasing thrust trajectories as the wind gradient strength

increases for the guidance mission in a linear boundary layer wind environment. However when µ
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Figure 5.9: Problem G.7 Thrust Component of Cost vs. Wind Gradient Strength

is below a value of 0.1 s−1, the thrust cost plateaus at a fixed value of about 3.9x106. Note that

even when there is no wind (i.e. µ = 0.0 s−1), the optimizer outputs a trajectory that reduces the

thrust from the initial baseline trajectory. In this plateau region, the trajectories are steady level

flight trajectories. When µ is greater than 0.1 s−1, the cost drops as the optimizer outputs soaring

trajectories. Once µ surpasses 0.18 s−1, the optimizer outputs zero thrust soaring trajectories .
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Figure 5.10: Problem G.7 Reduced Thrust Trajectories

Figure 5.11: Problem G.7 Reduced Thrust States/Inputs Set 1
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Figure 5.12: Problem G.7 Reduced Thrust States/Inputs Set 2

Figure 5.10 shows some of the trajectories in the reduced thrust region of Fig. 5.9. These

trajectories have the same general behavior where the UAS banks and climbs into the wind, peaks

in altitude, then turns and dives to the original heading direction. Note that as the wind gradient

increases in strength, the trajectories reach higher altitudes.

Figures 5.11 and 5.12 show how the states and control inputs vary with increasing wind

gradient strength. Both of these figures show that the profile of each state and control input shifts

later in time as the wind gradient strength increases. Note that as the wind gradient increases,

the airspeed increases, while the thrust profile decreases. Also, as the wind gradient increases, the

UAS spends more time in the trajectory.
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Figure 5.13: Problem G.7 Zero Thrust Trajectories

Figure 5.14: Problem G.7 Zero Thrust States/Inputs Set 1

Figure 5.13 shows some zero thrust trajectories from Fig. 5.9. The trajectories shown in

Fig. 5.13 have distinct shapes from one another. At µ = 0.18s−1, the trajectory resembles those
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Figure 5.15: Problem G.7 Zero Thrust States/Inputs Set 2

from Fig. 5.10. The trajectory at µ = 0.26s−1 has exaggerated bends and a steep climb and dive

phase. The trajectory at µ = 0.34s−1 has two soaring cycles. One general trend between the three

trajectories is that as µ increases, the altitude of these zero thrust trajectories decreases.

Figures 5.14 and 5.15 show drastically different states and control inputs for the three zero

thrust trajectories. The key point is that the trajectory behavior will be difficult to predict when

the wind gradient is strong enough to support zero thrust trajectories.
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5.5.2 Loiter

For the loiter mission, the initial baseline trajectory banks in a 20 m radius circular orbit in

10 s. Figure 5.16 shows how the varying wind gradient strength affects the thrust of the resulting

trajectories.

Figure 5.16: Problem S.10 Thrust Component of Cost vs. Wind Gradient Strength

Figure 5.16 shows decreasing thrust trajectories as the wind gradient increases in strength

. This trend differs from that of Fig. 5.9 because the thrust does not plateau at a nonzero µ

value. Instead, the plot shows that the thrust always decreases as µ increases until the optimized

trajectories reach zero thrust. Once again at zero wind (µ = 0.0 s−1), the optimizer is able to

develop a minimized thrust, constant altitude flight trajectory from the baseline trajectory. The

optimizer outputs zero thrust trajectories around a wind gradient just above 0.18 s−1, similar to

the guidance mission case.
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Figure 5.17: Problem S.10 Reduced Thrust Trajectories

Figure 5.18: Problem S.10 Reduced Thrust States/Inputs Set 1)
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Figure 5.19: Problem S.10 Reduced Thrust States/Inputs Set 2)

Figure 5.17 shows three of the reduced thrust trajectories from Fig. 5.16 . These trajectories

have similar shapes to that of Chapter 5.4.2 where the UAS has two climb/dive phases. Similar to

the guidance case, the trajectories increase in altitude as the wind gradient strength increases.

Figures 5.18 and 5.19 show similar trends for the three reduced thrust loiter trajectories. As

the wind gradient increases in strength, the trajectories not only increase in altitude, but expand

in the y direction, while shrink in the x direction. Just as with the reduced thrust trajectories for

the guidance mission, there is a direct relation between the airspeed and thrust.
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Figure 5.20: Problem S.10 Zero Thrust Trajectories

Figure 5.21: Problem S.10 Zero Thrust States/Inputs Set 1
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Figure 5.22: Problem S.10 Zero Thrust States/Inputs Set 2

Figure 5.20 shows three zero thrust trajectories from Fig. 5.16. Unlike with the zero thrust

guidance trajectories, these zero thrust trajectories share similar behaviors. The UAS starts by

banking and climbing into the wind. It then plateaus at a maximum altitude as it turns around,then

dives back to the initial position. These zero thrust trajectories do not peak in altitude like the

reduced thrust trajectories of Fig. 5.17.

Figures 5.21 and 5.22 show similar trends among the three zero thrust trajectories. As the

wind gradient increases in strength, the airspeed actually decreases in airspeed. Note that there is

a considerable amount of jitter in the roll rate and lift rate inputs.

5.5.3 Discussion of Wind Gradient Strength vs. Thrust Use

The purpose of this section is to identify how the wind gradient affects the trajectories output

from the path planning algorithm. For the guidance mission, it is interesting to note the plateau

of thrust below a certain wind gradient strength (Fig. 5.9). This suggests that for these weak

wind gradients it is inefficient to deviate from the original heading direction to implement dynamic
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soaring. Despite not soaring, the optimizer is still able to find a minimal thrust, constant altitude

flight trajectory to maximize the flight endurance. This is also seen for the zero wind case in the

loiter mission.

In the loiter mission, the only time the UAS is not soaring is when there is no wind. This

suggests that for the loiter case, it is always beneficial to soar so long as there is some wind gradient.

This makes sense because due to the circular, periodicity of the loiter trajectory, the UAS will face

into and away from the wind at some point in the trajectory. The results show the UAS climb into

the wind, and dive away from the wind to perform dynamic soaring. The degree to which the UAS

climbs and dives correlates to the strength of the wind gradient. In a reduced thrust trajectory,

the UAS performs steeper climbs and dives as the wind gradient increases (Fig. 5.11). Once a zero

thrust trajectory is reached, these climbs and dives become shallower.

In both the guidance and loiter missions, the thrust in the trajectories reaches zero once

the wind gradient increases past a certain value. These zero thrust trajectories have different

shapes than that of the reduced thrust trajectories. However the state profiles resemble the same

dynamic soaring properties with the exception of the thrust profile. The different zero thrust soaring

trajectories in Fig. 5.13 suggest that there are multiple zero thrust solutions for the same wind

gradient. As mentioned the results in this section only focus on reducing the thrust. Therefore

the optimizer finds a particular zero thrust trajectory most likely dictated by the initial baseline

trajectory, and stops. In such a case it would be beneficial to implement a different problem than

Problem G.7 or Problem S.10. By looking at the study of thrust vs. varying wind gradient, the

mission tree can determine when the UAS will or will not require thrust inside a certain linear

boundary layer wind environment. If zero thrust flight is possible, the first branch in the mission

tree can choose a zero thrust problem that minimizes a different cost function. This allows the

mission performance to improve by, for example, maximizing the exploration of the UAS to improve

data collection inside the sampling region.

In addition to helping design the mission, the study of thrust vs. wind gradient can be

used to determine the desired aircraft for flying in a given wind environment. Some of the zero
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thrust trajectories contain sharp bends or changes in direction. These sharp bends correspond

to large wing loading on the aircraft. Neither Problem G.7 nor Problem S.10 implement a wing

loading constraint. By looking at the resulting trajectories output by the path planning algorithm,

a mission designer can predict the wing loading a UAS will experience in a given linear boundary

layer wind model. As a result, the designer can choose the appropriate aircraft to follow a desired

soaring trajectory.
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5.6 Effect of Position Gain on Loiter Mission

This section investigates the use of the penalty function in tuning between performing the

loiter mission and maximizing flight endurance. The penalty function is tested by adjusting the po-

sition gain in Problem S.10 given a linear boundary layer wind model. The optimization parameters

used to develop the following results are found in Appendix A.3.

5.6.1 Demonstration of Penalty Function

In this example, Problem S.10 is formulated to minimize the thrust and penalize trajectories

that leave the 20 m radius sampling region. The given linear boundary layer wind model has a

strength of µ = 0.07s−1. Problem S.10 is solved for kp = 0.1, kp = 1, kp = 10, and kp = 100. The

optimization parameters used in this problem are displayed in Appendix A.3.1.

Figure 5.23 shows the output trajectory shrinking into the sampling region defined by the

green dashed circle as kp increases. Figure 5.23(a) shows the optimized trajectory with a low kp

gain where the optimizer chooses to leave the sampling region to reduce thrust use. As kp increases,

the UAS trajectory spends more of the trajectory inside the sampling region.
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(a) kp = 0.1 (b) kp = 1.0

(c) kp = 10 (d) kp = 100

Figure 5.23: Problem S.10: Demonstration of Penalty Function

Figure 5.24 and 5.25 shows how the tuning of the position gain affects the output trajectory.

One of the most dramatic effects is in decreasing the trajectory time by half. The thrust profile in

Fig. 5.25 for kp = 100 is similar in shape to that of kp = 0.1, but the trajectory at kp = 100 requires

more thrust for the same time span. It is interesting to note that many of the states including

the altitude, airspeed, and flight path angle share similar profiles despite shrinking the kp = 100

trajectory surface coverage into the sampling region.
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Figure 5.24: Demo of penalty function States/Inputs Set 1, kp = 0.1 (black), kp= 100 (red)

Figure 5.25: Demo of penalty function States/Inputs Set 2, kp = 0.1 (black), kp= 100 (red)

5.6.2 Thrust Reduction vs. Loiter Mission

This simulation assesses how the penalty function affects the total thrust use and amount of

time the UAS spends outside of the 20 m radius sampling region. The optimization parameters
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used to develop these results are found in Appendix A.3.2.

Figure 5.26: Problem S.10 Cost vs. Position Gain (kT = 100, µ = 0.1 s−1)

Figure 5.26 shows how the position gain affects the thrust and time spent outside of the

sampling region. The thrust component of the cost (in red) increases as the position gain increases.

The percentage of time outside the sampling region (in blue) decreases as the position gain increases.

For the given scenario, the aircraft endurance improves if the UAS is allowed outside of the sampling

region. However as the plot shows, there is a trade off between increasing flight endurance and

staying inside the sampling region.
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5.6.3 Discussion of Position Gain on Loiter Mission

In this section, the position gain is used to balance between performing the sampling mission

and increasing the flight endurance of the UAS in the loiter mission. As shown in Fig. 5.26, the

larger the position gain, the more time the UAS stays inside the sampling region at the price of

increased thrust. This is expected due to the penalty function in Problem S.10 that penalizes

trajectories that leave the sampling region. As the position gain increases, more emphasis is placed

to minimize this penalty and the resulting trajectories favor performing the sampling mission. As a

result, the penalty function implementation in the cost of Problem S.10 allows for mission versatility.

The penalty function allows the mission designer to tune between increasing flight endurance and

the sampling region instead of having to define a new branch and problem formulation in the

mission tree.

The position gain study presented in Fig. 5.26 can be used by mission designers in accordance

with the thrust vs. wind gradient studies presented in Chapter 5.5. This study of the position gain

provides a trade off between thrust use and amount of time the UAS spends inside the sampling

region. If given a thrust-to-fuel model, the designer can determine the amount of time the UAS

can stay aloft in the loiter trajectory. One important scenario to consider is when the thrust vs.

wind gradient study predicts that a zero thrust trajectory is possible in a certain linear boundary

layer wind environment. The UAS will only lose fuel from control surface actuation and non-flight

related power consumption. In this scenario, it may be beneficial to set the position gain to zero.

This way the amount of time the UAS spends inside the sampling region in one loiter cycle may

be reduced, but the total time spent in this region may be maximized due to the total amount of

time the UAS stays aloft.
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5.7 Trajectory Stitching

This section demonstrates how the guidance and loiter trajectories for a given problem can

be stitched together to form a full sampling and surveillance trajectory. In this scenario, Problem

G.7 and Problem Gt.7 are used to develop the guidance trajectory to take the UAS from the origin

to the sampling region at (x = 110, y = 0) m. Once this position is reached, Problem S.10 is solved

to keep the UAS inside the 20 m sampling region. The parameters used to develop this stitching

trajectory are found in Appendix A.4. Figure 5.27 shows the resulting stitched trajectory.

Figure 5.27: Myopic Trajectory Stitching (µ= 0.2 s−1)
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Figure 5.28: Myopic Stitching States/Inputs Set 1 (µ= 0.2 s−1)

Figure 5.29: Myopic Stitching States/Inputs Set 2 (µ= 0.2 s−1)
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In Fig. 5.27, the guidance mission, Problem G.7 is first solved and takes the UAS from

(0,0,0) m towards the sampling region at (110,0,0) m. The final position of the UAS after this first

trajectory is (61.4,0,0) m. The next segment is the transition trajectory that takes the UAS from

(61.4,0,0) m to the sampling region at (110,0,0) m. This transition problem is used to transition to

the loiter mission. Finally, the loiter mission Problem S.10 is solved to try to keep the UAS inside a

20 meter radius sampling region shown by the green dashed circle. However Problem S.10 includes

extra constraints to force the initial and final states/inputs to match the final states/inputs of the

previous guidance missions. This allows for the different trajectories to be stitched together into a

continuous long term trajectory as shown in Fig. 5.27.

The resulting state profiles of the stitched trajectory are shown in Fig. 5.28. The two

guidance trajectories span the time from t = 0 s to t= 17.4 s. The time from 17.4 s to 27.3 s is

the loiter trajectory. Note that the two guidance trajectories are zero thrust trajectories, but the

loiter mission requires thrust.

5.7.1 Discussion of Myopic Stitching

The stitched trajectory presented in Fig. 5.29 shows that the loiter mission requires thrust

in the given linear boundary wind model. It is important to note that according to the thrust

vs. wind gradient study from Chapter 5.5 there is a possible zero thrust loiter trajectory in the

given linear boundary layer environment. However due to forcing the loiter trajectory to match the

guidance trajectory states, the resulting loiter mission requires thrust. This suggests the proposed

myopic stitching approach is sub optimal. The purpose of the guidance mission is to increase the

flight endurance for the loiter mission. However the proposed myopic solution favors the guidance

mission instead of the loiter mission. A different stitching approach should be used to not hinder

the performance of the loiter mission. Another approach involves developing an unforced loiter

and guidance trajectory. This allows the optimizer to find the best soaring trajectories for both

the loiter and guidance trajectories. Then the transition trajectory can be developed to transition

between the final state of the guidance trajectory to the initial state of the loiter trajectory. This
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way the loiter trajectory can be repeated with the minimal thrust needed to soar.

5.8 Thermal Soaring

This section assesses the optimized trajectories developed for a thermal wind model. The

optimization parameters used in these simulations are found in Appendix A.5.

Figure 5.30: Problem G.7 Thermal Soaring Example (Vcore = 6 m/s)
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Figure 5.31: Problem G.7 Thermal Soaring States/Inputs Set 1 (Vcore = 6 m/s)

Figure 5.32: Problem G.7 Thermal Soaring States/Inputs Set 2 (Vcore = 6 m/s)
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Figure 5.30 shows the UAS extracting energy from a thermal for a zero thrust guidance

trajectory. The trajectory in Fig. 5.30(a) shows the UAS deviate from its heading to dive into

and climb out of the thermal. The UAS then regains its original course. As shown in Fig. 5.30(b)

the airspeed drops just prior to the UAS diving into the thermal. The airspeed peaks as the UAS

finishes its dive, then drops again as the UAS levels out after the climb to its original heading

direction. The lift coefficient hits its upper bound just prior to the UAS diving into the thermal

and as the UAS climbs out of the thermal. There is an additional peak as the UAS finishes its

dive. Note that Problem G.7 still implements periodic soaring constraints that force the optimizer

to return the UAS to the original z position.

Figure 5.33: Problem S.10 Thermal Soaring Example (Vcore = 6 m/s)
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Figure 5.34: Problem S.10 Thermal Soaring States/Inputs Set 1 (Vcore = 6 m/s)

Figure 5.35: Problem S.10 Thermal Soaring States/Inputs Set 2 (Vcore = 6 m/s)
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Figure 5.33 shows the UAS extracting energy from a thermal for a zero thrust loiter trajectory.

The trajectory in Fig. 5.33 shows the UAS flying in a circular orbit that passes through a thermal.

Figure 5.34 shows the airspeed reaching a maximum as the UAS leaves the thermal. The lift

coefficient peaks as the UAS enters the thermal. Also, note the roll angle that drops as the UAS

enters the thermal and peaks as the UAS leaves the thermal.

5.8.1 Discussion of Thermal Soaring

So far all the results apply the path planning algorithm to a linear boundary layer wind model.

The purpose of this section is to show that the path planning algorithm can develop trajectories in

other wind models as well. The results show the algorithm developing zero thrust trajectories for

the guidance and loiter missions in a thermal wind environment.

In the guidance trajectory, the results show the UAS deviating from its original heading

direction to dive into the thermal. The UAS then climbs out of the thermal to return to the original

heading direction towards the sampling region. The UAS however does not gain altitude due to

the periodic constraint on z that forces the UAS to return to its original z position. This suggests

that the resulting trajectory is not a static soaring trajectory, but a dynamic soaring trajectory.

The reason for dynamic soaring is that the thermal is itself composed of a wind gradient that

increases the vertical wind speed as the UAS moves closer to the thermal center, and decreases

the vertical wind speed as the UAS moves away from the thermal center. The difference with the

linear boundary layer case is that instead of a lateral wind field, the wind is vertical. This result of

performing dynamic soaring inside a thermal suggests that Problem G.7 prefers dynamic soaring

over static soaring. This result may be influenced by the periodic constant on z in addition to the

time limit on ∆t. The upper bound on the time may prevent longer trajectories where the UAS

circles the thermal to gain altitude.

The loiter trajectory result shows that Problem S.10 also prefers dynamic soaring. It is

more difficult to see the dynamic soaring directly, but the UAS shows little gain in altitude, which

rules out a static soaring trajectory. The behavior of the states in this thermal dynamic soaring
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case can be used to demonstrate how dynamic soaring can be implemented in a thermal. In both

the guidance and loiter trajectories, the lift coefficient increases prior to entering the thermal,

and the airspeed increases as the UAS passes through the thermal. Additionally, the UAS dives

when entering the thermal, and climbs when exiting the thermal. Aside from this dynamic soaring

behavior, it would be beneficial to determine how to influence static soaring to then compare when

dynamic or static soaring is beneficial in a thermal wind environment.

5.9 Limitations

The main limitations with this path planning algorithm include the high degree of freedom

in formulating the optimization problem and the computational effort required to develop soaring

trajectories. The mission tree component of the path planning algorithm requires a full problem

definition including cost, constraints, bounds, initial conditions which involves determining values

for a variety of gains, tolerances, and other parameters. This high degree of freedom in the problem

formulation is difficult to implement autonomously and still guarantee soaring trajectories similar

to those displayed in the results section.

The results were developed using a Macbook Pro with 2.6GHz intel i7 processor with 8GB

of RAM. The solutions presented were developed within a time range of 1s to 2 min. In order to

implement this algorithm online, the soaring segments need to be developed in less time than it

takes to execute a soaring segment. This way the UAS will have a soaring segment to follow as

soon as it completes the current soaring segment. The current trajectory development time range

does not allow for the system to be implemented online. The path planning algorithm needs to be

improved to quickly and robustly develop soaring trajectories.



Chapter 6

Conclusion

6.1 Summary of Findings

In this work, a path planning algorithm was presented to tractably solve the long horizon

problem of maximizing the flight endurance of a UAS, while performing a persistent sampling

and surveillance mission. In Chapter 1 the motivation for developing persistent sampling and

surveillance trajectories was presented. In addition, an overview of the path planning algorithm

was provided.

In Chapter 2, the equations of motion for an aircraft in wind were derived. The states and

control inputs were defined for a 3D point mass model of an aircraft. The sampling and surveillance

mission was defined and broken down into guidance and loiter missions.

In Chapter 3, the nonlinear program was constructed to solve the nonlinear optimal control

problem of developing soaring trajectories. The commercial optimizer SNOPT was introduced

as the solver used in the presented path planning algorithm. The initial trajectory development

approach was presented to show to develop initial baseline trajectories as a function of a desired

inertial path and its first and second derivatives. The periodic constraints were presented for

developing periodic soaring segments.

In Chapter 4, the guidance and loiter trees were presented as decision trees to choose appro-

priate optimization problems to solve. The organization of the trees was presented to show the flow

of how a particular problem can be chosen depending on the mission objectives and environment.

One problem from each tree was chosen to use in the results section. Each problem was defined
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with explanations for the costs and constraints.

In Chapter 5, the path planning algorithm was analyzed for a linear boundary layer wind

model and thermal wind model. Validation trajectories were shown to demonstrate the output of

the path planning algorithm for both guidance and loiter missions in a linear boundary layer wind

model. The properties of dynamic soaring trajectories were then identified based on the behavior

of the aircraft’s state throughout the trajectory.

The effect of the wind gradient on aircraft thrust was discussed. The results show that under

certain weak wind gradients, it is more beneficial to follow a steady level flight trajectory for the

guidance mission. On the other hand, it is always beneficial to implement dynamic soaring when

performing the loiter mission in a linear boundary layer wind field. In both guidance and loiter

missions zero thrust trajectories were possible when in sufficiently strong linear boundary layer

wind gradients. The study of thrust vs. wind gradient was applied as a sampling and surveillance

mission design tool. Examples demonstrated how to use this study to choose an appropriate

problem definition in the mission tree, and how to choose an appropriate aircraft for a specific

sampling/surveillance mission.

The effect of a position gain on the performance of the sampling/surveillance mission was also

discussed. The results show that the use of the penalty function in the defined loiter problem allows

for a mission designer to tune between performing the sampling/surveillance mission or maximizing

the flight endurance of the UAS. The study of position gain on mission performance offered a trade

off between thrust use and time spend outside of the surveillance region for a given linear boundary

layer wind model. An example showed how the study of position gain on mission performance

coupled with the thrust vs. wind gradient strength study can be used to improve the performance

of the overall sampling/surveillance mission for a specific linear boundary layer wind model.

An example of trajectory stitching approach was demonstrated and analyzed. The proposed

myopic stitching showed how the guidance and loiter trajectories could be stitched together with

an additional transition trajectory to develop a long term sampling/surveillance solution. This

stitching approach was shown to be suboptimal and a new approach was suggested to improve
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performance in trajectory stitching.

A thermal soaring wind model was used with the path planning algorithm to show that

solutions are not specific to a specific wind model. The thermal soaring results show that the

path planning algorithm was able to find zero thrust soaring trajectories for both the guidance

and loiter missions. However the results showed that both guidance and loiter trajectories were

implementing dynamic soaring, and not static soaring, to extract energy from the thermal wind

model. An explanation was provided for this phenomena and the properties for dynamic soaring

in a thermal wind model were identified.

Finally, the limitations of the presented path planning algorithm were identified. The two

main limitations included the high degree of freedom in formulating an optimization problem and

the computational effort in developing soaring trajectories. The high degree of freedom limita-

tion deals with the many non-trivial optimization parameters that need to be defined for each

soaring segment to be developed. The computational limitation hinders the algorithm from being

implemented on an online system.

6.2 Future Work

Future work can be tailored to many aspects of the presented work. The final goal of this

work is to use the path planning algorithm online with UAS flight experiments. With this re-

spect, the future work includes exploring efficient trajectory development methods. Some efficient

development methods may combine the nonlinear program optimization with a trajectory track-

ing optimal control algorithm. In this approach, the nonlinear program could be used to quickly

develop a coarse soaring trajectory that becomes the initial baseline trajectory for the optimal

control algorithm. This optimal control algorithm can be used to quickly develop a refined soaring

trajectory.

Other future work can include testing the solutions of the path planning algorithm presented

in this thesis with a trajectory tracking controller. The 3D point mass model used in this work uses

many assumptions that are invalid for an autopilot system. For example, the aircraft inertias are
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ignored, the body frame is assumed to always point into the relative wind, and the lift coefficient rate

and roll rate are assumed to be directly controlled. When applied to an actual UAS, the developed

trajectory will need to be converted into control surface deflections and throttle actuation. It

would be beneficial to then develop a trajectory tracking controller around an autopilot simulation.

The trajectory controller will attempt to keep the simulated UAS on the trajectory from the path

planning algorithm. The results will then define performance bounds on how well the aircraft model

used in this work develops actual UAS soaring trajectories.
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Appendix A

Problem Setup

A.1 Validation Trajectories

Table A.1: Optimization Bounds- Validation Trajectories

∆tmin 0.05 s Vamin 4.0 m/s CLmin -0.5
∆tmax 0.12 s Vamax 50.0 m/s CLmax 3.0

xmin −1e20 m γamin −90◦ φ̇min -200 deg/s

xmax 1e20 m γamax 90◦ φ̇max 200 deg/s

ymin −1e20 m χamin −1e20◦ ĊLmin -200 s−1

ymax 1e20 m χamax 1e20◦ ĊLmax 200 s−1

zmin −1e20 m φmin −90◦ Tmin 0 N
zmax 0 m φmax 90◦ Tmax 1e20 N
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A.1.1 Guidance Example Trajectory Data

Table A.2: Optimization Parameters- Guidance Example Trajectory

tf 10 s N 100 µ 0.12 s−1

x(0) 0.0 m kT 100 χd 0.0 deg
y(0) 0.0 m kp 0.0 tolopt 1x10−4

z(0) 0.0 m Ax 80.0 m tolfea 1x10−5

γa(0) 0.0 deg Ay 0.0 m optimal cost 1.6362x104

baseline cost 5.3879x104

A.1.2 Loiter Example Trajectory Data

Table A.3: Optimization Parameters- Loiter Example Trajectory

tf 10 s N 100 µ 0.10 s−1

x(0) 0.0 m kT 100 Rd 30.0 m
y(0) 0.0 m kp 0.0 tolopt 1x10−4

z(0) 0.0 m Ax 20.0 m tolfea 1x10−5

γa(0) 0.0 deg Ay 20.0 m optimal cost 2.3486x104

(xg, yg) (0.0,20.0) m baseline cost 6.5859x104
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A.2 Wind Gradient Strength vs. Thrust Use Data

Table A.4: Optimization Bounds- Wind Gradient Strength vs. Thrust Use

∆tmin 0.05 s Vamin 4.0 m/s CLmin -0.5
∆tmax 0.12 s Vamax 50.0 m/s CLmax 3.0

xmin −1e20 m γamin −90◦ φ̇min -200 deg/s

xmax 1e20 m γamax 90◦ φ̇max 200 deg/s

ymin −1e20 m χamin −1e20◦ ĊLmin -200 s−1

ymax 1e20 m χamax 1e20◦ ĊLmax 200 s−1

zmin −1e20 m φmin −90◦ Tmin 0 N
zmax 0 m φmax 90◦ Tmax 1e20 N
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Table A.5: Optimization Parameters- Problem G7: Reduced Thrust Trajectories

tf 10 s N 100 µ 0.0 s−1

x(0) 0.0 m kT 100 χd 0.0 deg
y(0) 0.0 m kp 0.0 tolopt 1x10−4

z(0) 0.0 m Ax 80.0 m tolfea 1x10−5

γa(0) 0.0 deg Ay 0.0 m optimal cost 3.9478x104

baseline cost 5.3879x104

A.2.1 Problem S10: Zero Thrust Trajectories

Table A.6: Optimization Parameters- Problem G7: Reduced Thrust Trajectories

tf 10 s N 100 µ 0.112 s−1

x(0) 0.0 m kT 100 χd 0.0 deg
y(0) 0.0 m kp 0.0 tolopt 1x10−4

z(0) 0.0 m Ax 80.0 m tolfea 1x10−5

γa(0) 0.0 deg Ay 0.0 m optimal cost 2.0569x104

baseline cost 5.3879x104
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Table A.7: Optimization Parameters- Problem G7: Reduced Thrust Trajectories

tf 10 s N 100 µ 0.12 s−1

x(0) 0.0 m kT 100 χd 0.0 deg
y(0) 0.0 m kp 0.0 tolopt 1x10−4

z(0) 0.0 m Ax 80.0 m tolfea 1x10−5

γa(0) 0.0 deg Ay 0.0 m optimal cost 1.6362x104

baseline cost 5.3879x104

Table A.8: Optimization Parameters- Problem G7: Reduced Thrust Trajectories

tf 10 s N 100 µ 0.14 s−1

x(0) 0.0 m kT 100 χd 0.0 deg
y(0) 0.0 m kp 0.0 tolopt 1x10−3

z(0) 0.0 m Ax 80.0 m tolfea 1x10−5

γa(0) 0.0 deg Ay 0.0 m optimal cost 7.1137x103

baseline cost 5.3879x104

Table A.9: Optimization Parameters- Problem G7: Zero Thrust Trajectories

tf 10 s N 100 µ 0.18 s−1

x(0) 0.0 m kT 100 χd 0.0 deg
y(0) 0.0 m kp 0.0 tolopt 1x10−4

z(0) 0.0 m Ax 80.0 m tolfea 1x10−5

γa(0) 0.0 deg Ay 0.0 m optimal cost 1.6436x10−5

baseline cost 5.3879x104

Table A.10: Optimization Parameters- Problem G7: Zero Thrust Trajectories

tf 10 s N 100 µ 0.26 s−1

x(0) 0.0 m kT 100 χd 0.0 deg
y(0) 0.0 m kp 0.0 tolopt 1x10−4

z(0) 0.0 m Ax 80.0 m tolfea 1x10−5

γa(0) 0.0 deg Ay 0.0 m optimal cost 3.0619x10−11

baseline cost 5.3879x104

Table A.11: Optimization Parameters- Problem G7: Zero Thrust Trajectories

tf 10 s N 100 µ 0.34 s−1

x(0) 0.0 m kT 100 χd 0.0 deg
y(0) 0.0 m kp 0.0 tolopt 1x10−4

z(0) 0.0 m Ax 80.0 m tolfea 1x10−5

γa(0) 0.0 deg Ay 0.0 m optimal cost 1.5046x10−34
baseline cost 5.3879x104
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Table A.12: Optimization Parameters- Problem S10: Reduced Thrust Trajectories

tf 10 s N 100 µ 0.0 s−1

x(0) 0.0 m kT 100 Rd 30.0 m
y(0) 0.0 m kp 0.0 tolopt 1x10−4

z(0) 0.0 m Ax 20.0 m tolfea 1x10−5

γa(0) 0.0 deg Ay 20.0 m optimal cost 5.3197x104

(xg, yg) (0.0,20.0) m baseline cost 6.5859x104

Table A.13: Optimization Parameters- Problem S10: Reduced Thrust Trajectories

tf 10 s N 100 µ 0.04 s−1

x(0) 0.0 m kT 100 Rd 30.0 m
y(0) 0.0 m kp 0.0 tolopt 1x10−4

z(0) 0.0 m Ax 20.0 m tolfea 1x10−5

γa(0) 0.0 deg Ay 20.0 m optimal cost 4.4612x104

(xg, yg) (0.0,20.0) m baseline cost 6.5859x104

Table A.14: Optimization Parameters- Problem S10: Reduced Thrust Trajectories

tf 10 s N 100 µ 0.1 s−1

x(0) 0.0 m kT 100 Rd 30.0 m
y(0) 0.0 m kp 0.0 tolopt 1x10−4

z(0) 0.0 m Ax 20.0 m tolfea 1x10−5

γa(0) 0.0 deg Ay 20.0 m optimal cost 2.3486x104

(xg, yg) (0.0,20.0) m baseline cost 6.5859x104

Table A.15: Optimization Parameters- Problem S10: Reduced Thrust Trajectories

tf 10 s N 100 µ 0.14 s−1

x(0) 0.0 m kT 100 Rd 30.0 m
y(0) 0.0 m kp 0.0 tolopt 1x10−4

z(0) 0.0 m Ax 20.0 m tolfea 1x10−5

γa(0) 0.0 deg Ay 20.0 m optimal cost 8.4098x103

(xg, yg) (0.0,20.0) m baseline cost 6.5859x104

Table A.16: Optimization Parameters- Problem S10: Zero Thrust Trajectories

tf 10 s N 100 µ 0.2 s−1

x(0) 0.0 m kT 100 Rd 30.0 m
y(0) 0.0 m kp 0.0 tolopt 1x10−4

z(0) 0.0 m Ax 20.0 m tolfea 1x10−5

γa(0) 0.0 deg Ay 20.0 m optimal cost 3.8167x10−10

(xg, yg) (0.0,20.0) m baseline cost 6.5859x104
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Table A.17: Optimization Parameters- Problem S10: Zero Thrust Trajectories

tf 10 s N 100 µ 0.24 s−1

x(0) 0.0 m kT 100 Rd 30.0 m
y(0) 0.0 m kp 0.0 tolopt 1x10−4

z(0) 0.0 m Ax 20.0 m tolfea 1x10−5

γa(0) 0.0 deg Ay 20.0 m optimal cost 0.0
(xg, yg) (0.0,20.0) m baseline cost 6.5859x104

Table A.18: Optimization Parameters- Problem S10: Zero Thrust Trajectories

tf 10 s N 100 µ 0.28 s−1

x(0) 0.0 m kT 100 Rd 30.0 m
y(0) 0.0 m kp 0.0 tolopt 1x10−4

z(0) 0.0 m Ax 20.0 m tolfea 1x10−5

γa(0) 0.0 deg Ay 20.0 m optimal cost 1.2894x10−14

(xg, yg) (0.0,20.0) m baseline cost 6.5859x104
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A.3 Effect of Position Gain on Trajectory Development Data

A.3.1 Demonstration of Barrier Function

Table A.19: Optimization Bounds- Demonstration of Barrier Function

∆tmin 0.05 s Vamin 4.0 m/s CLmin -0.5
∆tmax 0.5 s Vamax 50.0 m/s CLmax 3.0

xmin −1e20 m γamin −90◦ φ̇min -200 deg/s

xmax 1e20 m γamax 90◦ φ̇max 200 deg/s

ymin −1e20 m χamin −1e20◦ ĊLmin -200 s−1

ymax 1e20 m χamax 1e20◦ ĊLmax 200 s−1

zmin −1e20 m φmin −90◦ Tmin 0 N
zmax 0 m φmax 90◦ Tmax 1e20 N

A.3.2 Thrust Reduction vs. Loiter Mission

Table A.20: Optimization Parameters- Demonstration of Barrier Function

tf 10 s N 100 µ 0.07 s−1

x(0) 0.0 m kT 100 Rd 20.0 m
y(0) 0.0 m kp 0.1 tolopt 0.0037
z(0) 0.0 m Ax 20.0 m tolfea 1x10−5

γa(0) 0.0 deg Ay 20.0 m optimal cost 2.1705x104

(xg, yg) (0.0,20.0) m baseline cost 6.5859x104
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Table A.21: Optimization Parameters- Demonstration of Barrier Function

tf 10 s N 100 µ 0.07 s−1

x(0) 0.0 m kT 100 Rd 20.0 m
y(0) 0.0 m kp 1 tolopt 0.0037
z(0) 0.0 m Ax 20.0 m tolfea 1x10−5

γa(0) 0.0 deg Ay 20.0 m optimal cost 3.6837x104

(xg, yg) (0.0,20.0) m baseline cost 6.5859x104

Table A.22: Optimization Parameters- Demonstration of Barrier Function

tf 10 s N 100 µ 0.07 s−1

x(0) 0.0 m kT 100 Rd 20.0 m
y(0) 0.0 m kp 10 tolopt 0.0037
z(0) 0.0 m Ax 20.0 m tolfea 1x10−5

γa(0) 0.0 deg Ay 20.0 m optimal cost 3.6833x104

(xg, yg) (0.0,20.0) m baseline cost 6.5859x104

Table A.23: Optimization Parameters- Demonstration of Barrier Function

tf 10 s N 100 µ 0.07 s−1

x(0) 0.0 m kT 100 Rd 20.0 m
y(0) 0.0 m kp 100 tolopt 0.0037
z(0) 0.0 m Ax 20.0 m tolfea 1x10−5

γa(0) 0.0 deg Ay 20.0 m optimal cost 3.7690x104

(xg, yg) (0.0,20.0) m baseline cost 6.5859x104



84

Table A.24: Optimization Bounds- Thrust Reduction vs. Loiter Mission

∆tmin 0.05 s Vamin 4.0 m/s CLmin -0.5
∆tmax 0.2 s Vamax 50.0 m/s CLmax 3.0

xmin −1e20 m γamin −90◦ φ̇min -200 deg/s

xmax 1e20 m γamax 90◦ φ̇max 200 deg/s

ymin −1e20 m χamin −1e20◦ ĊLmin -200 s−1

ymax 1e20 m χamax 1e20◦ ĊLmax 200 s−1

zmin −1e20 m φmin −90◦ Tmin 0 N
zmax 0 m φmax 90◦ Tmax 1e20 N
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A.4 Trajectory Stitching

Table A.25: Optimization Bounds- Trajectory Stitching

∆tmin 0.05 s Vamin 4.0 m/s CLmin -0.5
∆tmax 0.12 s Vamax 50.0 m/s CLmax 3.0

xmin −1e20 m γamin −90◦ φ̇min -200 deg/s

xmax 1e20 m γamax 90◦ φ̇max 200 deg/s

ymin −1e20 m χamin −1e20◦ ĊLmin -200 s−1

ymax 1e20 m χamax 1e20◦ ĊLmax 200 s−1

zmin −1e20 m φmin −90◦ Tmin 0 N
zmax 0 m φmax 90◦ Tmax 1e20 N

Table A.26: Optimization Parameters- Guidance Trajectory

tf 10 s N 100 µ 0.2 s−1

x(0) 0.0 m kT 100 χd 0.0 deg
y(0) 0.0 m kp 0.1 tolopt 1x10−4

z(0) 0.0 m Ax 80.0 m tolfea 1x10−5

γa(0) 0.0 deg Ay 0.0 m optimal cost 1.4954x10−2

baseline cost 5.3879x104
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Table A.27: Optimization Parameters- Guidance Transition Trajectory

tf 10 s N 100 µ 0.2 s−1

x(0) 61.4 m kT 100 χd 0.0 deg
y(0) 0.0 m kp 0.0 tolopt 1x10−3

z(0) 0.0 m Ax 80.0 m tolfea 1x10−5

Va(0) 26.4 m/s Ay 0.0 m optimal cost 1.0700x10−7

γa(0) 0.0 deg baseline cost 5.3879x104

χa(0) -26.7 deg
φ(0) 61.0 deg
CL(0) 0.91

Table A.28: Optimization Parameters- Loiter Trajectory

tf 10 s N 100 µ 0.2 s−1

x(0) 110.0 m kT 100 Rd 20 m
y(0) 0.0 m kp 0.01 tolopt 1x10−3

z(0) 0.0 m Ax 20.0 m tolfea 1x10−5

Va(0) 26.4 m/s Ay 20.0 m optimal cost 20.2414
γa(0) 0.0 deg (xg, yg) (110,20) m baseline cost 6.5859x104

χa(0) -26.7 deg
φ(0) 61.0 deg
CL(0) 0.91
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A.5 Thermal Soaring

Table A.29: Optimization Bounds- Thermal Soaring

∆tmin 0.05 s Vamin 4.0 m/s CLmin -0.5
∆tmax 0.5 s Vamax 50.0 m/s CLmax 3.0

xmin −1e20 m γamin −90◦ φ̇min -200 deg/s

xmax 1e20 m γamax 90◦ φ̇max 200 deg/s

ymin −1e20 m χamin −1e20◦ ĊLmin -200 s−1

ymax 1e20 m χamax 1e20◦ ĊLmax 200 s−1

zmin −1e20 m φmin −90◦ Tmin 0 N
zmax 0 m φmax 90◦ Tmax 1e20 N
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Table A.30: Optimization Parameters- Thermal Soaring: Guidance Trajectory

tf 10 s N 100 Vcore 6.0 m/s
x(0) 0.0 m kT 100 χd 0.0 deg
y(0) 0.0 m kp 0.1 tolopt 1x10−4

z(0) -50.0 m Ax 80.0 m tolfea 1x10−5

γa(0) 0.0 deg Ay 0.0 m optimal cost 1.2148x10−6

(xth, yth (40,-20) m baseline cost 5.3879x104

Rlift 10.0 m

Table A.31: Optimization Parameters- Thermal Soaring: Loiter Trajectory

tf 10 s N 100 Vcore 6.0 m/s
x(0) 0.0 m kT 100 Rd 30.0 m
y(0) 0.0 m kp 0.1 tolopt 1x10−3

z(0) -50.0 m Ax 20.0 m tolfea 1x10−5

γa(0) 0.0 deg Ay 20.0 m optimal cost 1.0731x10−6

(xg, yg) (0.0,20.0) m baseline cost 6.6161x104

(xth, yth (20.0,20.0) m
Rlift 10.0 m


