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Abstract
The ability to cool quantum gases into the quantumdegenerate realmhas opened up possibilities for
an extreme level of quantum-state control. In this paper, we investigate one such control protocol that
demonstrates the resonant amplification of quasimomentumpairs from aBose–Einstein condensate
by the periodicmodulation of the two-body s-wave scattering length. This shows a capability to
selectively amplify quantumfluctuationswith a predeterminedmomentum,where themomentum
value can be spectroscopically tuned. A classical external field that excites pairs of particles with the
same energy but oppositemomenta is reminiscent of the coherently-driven nonlinearity in a
parametric amplifier crystal in nonlinear optics. For this reason, itmay be anticipated that the
evolutionwill generate a ‘squeezed’matter-wave state in the quasiparticlemode on resonancewith the
modulation frequency. Ourmodel and analysis ismotivated by a recent experiment byClark et al that
observed a time-of-flight pattern similar to an exploding firework (Clark et al 2017Nature 551 356–9).
Since the drive is a highly coherent process, we interpret the observedfirework patterns as arising from
amonotonic growth in the two-body correlation amplitude, so that the jets should contain correlated
atompairs with nearly equal and oppositemomenta.We propose a potential future experiment based
on applying Ramsey interferometry to experimentally probe these pair correlations.

1. Introduction

The ability to tune the two-body scattering length in a Bose–Einstein condensate (BEC) by varying the
magnitude of amagnetic field in the vicinity of a Feshbach resonance has been employed in a number of seminal
experiments that aim to investigate controlled non-equilibriumquantumdynamics. One such example is the
so-called ‘Bosenova’ experiment byDonley et al [1], inwhich a BECwas subject to a sudden change of the
scattering length from a small positive value to a large negative value. This resulted in a change of the sign of the
mean-field interactions from repulsive, where the gas ismechanically stable, to attractive, where the
compressibilitymay be negative and the gas is then unstable [2].Whatwas observed experimentally after this
abrupt change in the scattering lengthwas a collapse and subsequent explosion of the quantumgas in amanner
that resembled an astrophysical supernova. Theoreticalmodels were subsequently developed and illustrated that
the emergence of a pairing field in the underlying quantummany-body system can explain the observed burst of
non-condensate atoms [3].

More recently, Bose ‘firework’ experiments [4] have observed pairs of highmomentum atoms emitted as jets
from a condensate driven by a periodicmodulation of the two-body s-wave scattering length. These experiments
demonstrated a protocol for resonantly amplifying quantum fluctuationswithwell-controlledmomenta when
starting from a stationary BEC. The fact that the jets were observed to be correlated in emission direction
motivates us to consider whether themany-body pairing field played an important role in the dynamics, in a
similarmanner to the Bosenova systempreviously studied. This aspect is related to other calculations that
explore the second order coherence of the gas [5].
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In the case of a dilute quantum gas, theGross–Pitaevskii equation (GPE)provides an accurate description of
the equilibrium and time-dependent behavior of the BEC. In this framework, the interacting condensate is
completely described by amean-field superfluid order parameter. TheGPE framework has been extensively
applied tomodel the behavior of BECs at zero temperature, and also to their coherentmanipulation through
externally applied potentials. However, when there is a significant portion of non-condensate atoms, theGPE
will fail to provide an accurate description of the system. A small amount of non-condensate atoms is always
present even at zero temperature in a dilute quantum gas arising from the beyondmean-field fluctuations that
are due to thefinite interaction strength. It is of course possible to generate substantial fractions of non-
condensate atoms by driving a pure condensate in a variety of ways, and this is typically unavoidable when the
currents that generate themagnetic confinementfields contain stochastic noise. Furthermore, non-condensate
atoms are always present in systemswithfinite temperature since they embody the thermal excitations. In order
to capture the essential dynamics associatedwith the non-condensed component, a theory that goes beyond the
mean-field approximation is necessary.

A systematic extension to the simplestmean-field approach given by theGPE is theHartree–Fock
Bogoliubov (HFB) formalism that takes into account the interactions between three components.Wewill refer
to these as the condensate, the non-condensate, and the pairing field of thefluctuations. In this formalism, the
elementary excitations are described as Bogoliubov quasiparticles [6], and the ground state condensate is a
vacuumof such quasiparticles. The quasiparticle creation operator is a linear combination of the atom creation
operator (particles) and the atomannihilation operator (holes). The vacuum state due to interactions possesses a
portion of non-condensate atoms referred to as quantumdepletion. The recent ‘firework’ experiments that tune
the scattering length by applying an appropriate externalmagneticfield potentially allow all of these components
—themean-field, non-condensate, and pairing field—to be controlled,manipulated, and engineered. In this
paperwe derive the solutions of theHFB theory as applied towell-controlled experimental geometries in order
to determine the efficacy of this framework for providing a theoretical basis for the recent observations.

One approach for describing collective excitations of a condensate involves solving the Bogoliubov de
Gennes equations [7], which ismost accurate when the excitations are weak.When the excitations are notweak,
and the non-condensate fraction can be significant, amore complete approachmust be used such as the time-
dependent self-consistentHFB equations [8], and that is themethodwewill focus on in this paper. Note that one
alternative approach that can incorporate the excitations is through the addition of a noise source to introduce
fluctuations directly into theGPE [9]. However, this assumes by construction that themany-body state can be
accurately described by a uniquemacroscopic wavefunction, and therefore amore complete theory is needed to
describe two-body correlations.

We emphasize the importance of the pairing field in our analysis. Pairing gives rise to an anomalous density
that allows us to investigate the coherence of the system and exploremethods to probe phase-sensitive
quantities. However, to incorporate the pairing field in our simulations requires a number of important
considerations. Since ourmodeling assumes contact interactions, numerical studies have to account for the
potentially divergent nature of the pairing field at both short and long length scales by appropriate
renormalization of the scattering potential.We demonstrate how to renormalize the scattering potential when
momentum is represented on a discrete grid. Furthermore, when solving for the initial condition of the system,
instead of using an approximation that ignores the pairing field [10] in order to remedy issues associatedwith the
gapless energy spectrum, we take an alternative approach inwhich the condensate, depletion and pairing field
are accounted for andwe solve for theHFB theory self-consistently.

Note that there is one other important consideration; ourmodel does not include the collisions terms in the
kinetic theory that result in equilibration of the gas to its thermal state [11]. Neglecting collisions is a good
approximation for a dilute gas at low temperature, but implicitly requires us to limit our discussion to the regime
inwhich the time-scale between consecutive two-body collision events greatly exceeds the time-scale of the
quantumdynamics thatwe investigate. Finally, all this has to be implemented inmultiple dimensions in order to
provide a useful comparisonwith experimental observations.

The paper is outlined as follows.We present themodel in section 2 and provide details of the
renormalization process in section 3. Atfirst we limit our discussion to themost straightforward case of quasi-
1D systems. In section 4, we outline the numerical procedures necessary to obtain a self-consistent ground state
solution to theHFB theory for aweakly-interacting trapped quantumgas, and quantify the quantumdepletion
aswell as the pairing field amplitude. In sections 5 and 6, we use the time-dependentHFB theory to show that the
modification of the interaction strength throughmodulation of the scattering length parametrically amplifies a
certain quasiparticlemode and generates amatter-wave solution that is analogous to a squeezed state of light. In
section 7, we use these results to explore the possibility of future experiments that utilize interferometry to probe
the pair correlation amplitude.We consider twomethods that create a phase difference between the driving field
and the pairing field, and consequently lead to the possibility for constructive and destructive interference in the
matter-wave density. Finally, in section 8, we extend the results to quasi-2D so that they can be comparedwith
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the experimental observations of angular correlations in thefirework pattern, where the atomswere confined in
a pancake-shaped confining potential well andwere ballistically expanded.

2.Generalmany-bodyfield theory

Webegin from themany-bodyHamiltonian that describes aweakly interacting Bose gas with pairwise contact
interactions:
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⎠⎟ˆ ( ) ( ) ˆ ( )
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wherem is themass of the atom andVext is the external trapping potential. Thefield operators, ˆ ( )y x and ˆ ( )†y x ,

are bosonic operators that annihilate and create particles and obey commutation relations [ ˆ ( ) ˆ ( )]†y y ¢x x, =
( )d - ¢x x . The strength of the interaction potential,V, is related to the s-wave scattering length,a, byV=TΓ,

whereT=4πÿ2a/m is the three-dimensionalT-matrix (here it is actually a simple scalar and not amatrix since
we consider the regime inwhich there is no dependence of the scattering phase shift on energy) andΓ is the
dimensionless renormalization factor that will be fully discussed in section 3.

Sincewe intend to explore excitations from aBEC,we assume that the field operator is well described by a
meanfield amplitude describing the atom condensate, ( )f xa , and afluctuating component, i.e.

ˆ ( ) ˆ ( ) ˆ ( ) ( ) ˆ ( ) ( )y y dy f dy= á ñ + = +x x x x x , 2a

where ˆ ( )dyá ñ =x 0. The second-order terms—normal and anomalous densities—are defined respectively as
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Both of these play an important role in the dynamics of the non-condensate component of the systemwe are
interested in. In particular, the diagonal elements of the normal density, ( )x xG ,N , represent the physical non-
condensate atomdensities at position x and are therefore positive semi-definite. The off-diagonal elements
represent thematter-wave correlations of the non-condensate atoms that are characterized by quantities such as
the de Broglie wavelength and effective temperature. The anomalous density, ( )x xG ,A , is the pairing field that
characterizes the two-particle correlations in the system.

If we assume that the the field fluctuations areGaussian, one can drop the third-order cumulants, and
expand the fourth-order quantities in terms of the second-order cumulants when deriving the evolution
equations. In practice, this involves repeated application ofWick’s theorem [12]. The resulting equations of
motion are closed and can bewritten in detail for the condensate as;
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for the normal density as;
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and for the anomalous density as;
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Herewe have simplified the notation by introducing two energy functionals
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for the single-particle self-energy and the gap, respectively. Due to the fact that we neglect explicit three-particle
and higher correlations, the validity of this approach is restricted to the dilute gas regime.Note that equation (4)
can simplified to theGPE if terms involving ( )x xG ,N and ( )x xG ,A are dropped. In this case, the time-
independent energy eigenvalue represents the chemical potential,μ, so that fi a=μfa. The delta function in
equation (6) arises from the bosonic commutation relation of thefield operators and can therefore be interpreted
as a quantum effect. A number of quantities are conserved in this evolution; in particular, the total atomnumber

(∣ ( )∣ ( ) ( )ò f= + x x x xGd , 8a N
2

is invariant under time evolution governed by equations (4)–(7).
In order to see how the anomalous density is related to the vacuumpair wavefunction for the interatomic

separation of two atoms, wemay neglect themean-field density and the normal density in equation (6), and then
the eigenvalue equation is simplified to

( ) ( ) ( ) ( ) ( )d m-  + =


r r r r
m

G V G G2 , 9A A A

2
2

where = - ¢r x x . Equation (9) can be identified as a one-dimensional Schrödinger equation of afictitious
particle of reducedmassm/2 scattering off a potential ( )d rV . Then ( )rGA is interpreted as the resulting
eigenstate wavefunction corresponding to the familiar two-particle scattering solution of the equationwritten in
terms of the relative coordinate.

3. Renormalization of the scattering potential

TheDirac delta function in equation (9) implies that we are implicitly building a scatteringmodel from a contact
interaction. This is convenient as it simplifies the resulting field theory, but caremust be taken to account for
divergences that can arise at small and large scales. In general, this is remedied by renormalization of the
potential strength. In order to carry out this renormalization procedure, we begin from the formal scattering
theory [13], wherewe define the bare scattering potential operator, V̂ , which has units of energy, and thereby
expand theT-matrix in an order-by-order series;

ˆ ˆ ˆ ˆ ˆ ˆ ˆ
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HereG0 is the bare single particle propagator
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G
E H
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, 110

0

the scattering energy isE, the dispersion relation is ˆ ˆ ( )=H p m20
2 with p̂ themomentum, andwe need to

implicitly consider the limit  0. TheT-matrix elements are ∣ ˆ∣= á ¢ ñk kT T , where ∣ ñk is thewavenumber
basis state. For the low energy scattering limit, theT-matrix becomes independent ofE, and does not depend on
k or ¢k . In this case theT-matrix is well characterized by a constant scalar associatedwith the s-wave scattering
length, asmentioned earlier, i.e.T=4πÿ2a/m.

Further considerations have to bemadewhen one ormore dimensions are effectively frozen out due to
imposing a strong confining potential in these dimensions.Without loss of generality, let us consider the strong
confining potential to be a harmonic potential with oscillator length given by l⊥. If one dimension is frozen out,
an effective quasi-2D geometry is realized, and if two dimensions are frozen out, an effective quasi-1D system is
generated. If we denote the number of free dimensions by nä{1, 2, 3}, the appropriateT-matrix expression,
Tn, for the reduced dimensional case can be related recursively byT3=T and ( )p=- ^T T l2n n1 [14, 15].

The process of renormalization connects theT-matrix,Tn, to the strength of the potential,Vn, by expanding
equation (10) in themomentumbasis, and this connection depends on the dimensionality of the system
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where the critical element here is the introduction ofK−andK+ as infrared and ultravioletmomentum cutoffs,
respectively. The cutoffs have to be chosen froman appropriate asymptotic limit in order to accurately capture
the dynamics of interest. The renormalization procedure can be represented by the introduction of a parameter,
Γn, defined by solving equation (12) forVn. This gives the solution,
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In order to illustrate the behavior ofαn, we consider the solution to scattering equation, equation (9), where the
stationary energy eigenvalue isE=2μ and themass is replaced by the reducedmass of two particles,m→m/2.
Solving this systemof equations has a character that depends on the dimensionality. In three dimensions, we
may setK−=0, and perform the integral to giveα3=mK+/(2π

2ÿ2) for a particle scattering at low energy,
E 0 [16]. In 2D, the integral scales logarithmically and has both ultraviolet and infrared divergences. In 1D,

there is an infrared divergence soK−must be non-zero but wemay setK+ to infinity.
We do not provide all the details here, since, in practice, these are formal considerations that do not actually

affect our numerical simulations. Indeed there are actually no divergences introduced that require the
introduction ofmomentum cutoffs to rectify when themomenta are restricted to values on discrete and finite
grids. This is always the case in a numerical computermodel that aims to describe a realistic experiment. In such
a discrete representation of possiblemomenta, it is preferable to simply calculate afinite sumover a specific
partition instead of evaluating the continuous integral analytically. This implies a numerical evaluation of

( )må -=
- - k m 2i

N
i0

1 2 2 1, givingαn, and therefore determiningVn for a givenT-matrix, which replacesV in the
HFB equations, i.e. equations (4)–(6). Here the subscripts i label individual discretemomenta, and thus {ki}
represents themomentumgrid, withN is the total number of grid points.

We carry out this renormalization procedure for all the results that we present in this paper. For each
calculation, we verify that the numerical results are independent of the details of themomentumgrid onwhich
thefield theory is represented.

4. Self-consistent ground state solution

Inorder tofinda self-consistent solution toprepare an initial condition for the subsequent time evolution, thefirst
stepwill be to consider thenon-condensate component tobe absent, and tofinda ground state representationof the
condensate by solving theGPE.We thenuse this condensatefield as input into the time-independent equations for
thenormal and anomalousdensities, anddiagonalize the resultingHFB self-energymatrix tofind thequasiparticle
basis. Aswewill see, this process exhibits a defect in the zero-energy subspace (i.e. the eigenvectors donot span the
space). The interpretation is that the eigensolution is not stationary and cannot beused as an accurate descriptionof
the initial condition for subsequent time evolution.We therefore reintroduce thenon-condensate terms thatwehave
just found into the equations for the condensate, normal density, and anomalousdensity and solve again the system
of equations, giving rise to an iterativemethod that generates an accurate self-consistent initial condition.

Our approachwill be to begin byfirst fully describing the necessary procedure using the simple case of quasi-
1Dwhere the problem ismost easily tractable. However, higher dimensions can be treated in a similarmethod to
themannerwe present (wewill consider quasi-2D later in section 8). The reduction to one-dimensional
behavior requires the transverse confinement condition

( )
^

a

n l
1 15

1D
2

to be satisfied, where n1D is the one-dimensional density [17, 18], and as defined previously, l⊥ is the harmonic
oscillator length in the two strongly confining directions, here assumed to be equal.

Thefirst part of our numerical algorithm is to solve for the ground state of theGPE
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Weuse imaginary-time propagation to derive the lowest energy solution and its energy eigenvalueμ representing
the associated chemical potential. Then, themeanfield solution,fa(x), can be used as a parameter to construct
the self-energymatrix;
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The self-energymatrix has dimensionality 2N×2NwhereN is the size of the single particle basis, as defined
previously. This energy operator ismost simply expressed in the position basis, where xä(0, L], since in that
representation the potential terms including themean-field appear as diagonal blocks. The eigenstates ofΣ are
the Bogoliubov quasiparticles. Since thematrix satisfiesσzΣ=Σ†σz, whereσz=diag(IN×N,−IN×N), the
eigenenergies come in pairs of positive and negative values,±òk, and the corresponding eigenstates are
wk=(uk(x), vk(x))

T and ( ( ) ( ))=-w v x u x,k k k
T* * . The eigenstates are normalized by satisfying the constraint
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k k
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2 2

1

2 2

Although this constructionmay appear standard and straightforward, there is awell-known and implicit
subtletywhen examining the solutions to this eigensystem.When investigating the zero-energy eigensolutions,
onefinds a pair of eigenstates that are colinear (equal up to amultiplicative scalar) that have the form

( ( ) ( ) )f f= -  x x2 , 2a a
T* . This solution creates two significant issues. First, the colinear eigenstates

cannot be normalized by equation (19). Second, they do not span the two-dimensional subspace of theHilbert
space corresponding to zero-energy.

The origin of thismathematical fact has an intuitive explanation. It arises from the approximations that lead
to this self-energymatrix, that is, by fixing the condensate solution as an unchanging parameter, one builds an
unphysicalmodel that implicitly allows the unconstrained growth of a zero energymode as a function of
increasing time. Consequently there is no stationary solution. This has to be remedied, for example, through a
self-consistent approach inwhich the condensate is treated as a variational parameter, in order to allowus to
extend the formalism so that itmay be applied to our systemof interest.

We begin by determining the remaining eigenvector to fully span the zero-energy subspace by employing the
Gram–Schmidt orthogonalizationmethod to numerically calculate the remaining basis vector. In this waywe
determine an eigenvector solution ( ( ) ( ))= - q x q x, T* such that †s = w 0L

N z k for all ¹k 0, and normalize it

to †s =  iL

N z [19]. The addition of this vector to the eigenvectors of the self-energy completes the basis of the

vector space. The reason that this is important is that it allows the field operator to be expanded as
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where b̂k and ˆ †
bk are bosonic annihilation and creation operators for the quasiparticles.We have introduced q̂

and L̂ as a pair of canonically conjugate operators that fully describe the zero-energymode and obey the
cannonical commutation relation [q̂, ˆ] =L i.

It is convenient to identify two special combinations of  and in order to give a concise expression for the
completeness relation.We define ( )= +  w i 2 , alongwith thematrix

( ) ( )( )= + - - - - -W w w w w w w, ,..., , , ,..., 21N N1 1 1 1

so that the following completeness relation is satisfied;

( )†s s=
L

N
W W . 22z z

This allows the particle annihilation operator to bewritten as

ˆ ( ) ( ( ) ˆ ( ) ˆ ) ( )
†

ådy = +
Î

x u x b v x b , 23
k

k k k k*

where the sum is over the elements of the index set { }= + ¼ - N,1, 2, , 1 , and ˆ
+b is the annihilation

operator for the zero-energymode given by ˆ ( ˆ ˆ)q= ++b Li 2 .
At this point, we have determined the quasiparticle basis, and can populate that basis with a given set of

probabilities in order to generate particle distributions. In particular, wewould like to derive the normal
( )¢G x x,N and anomalous ( )¢G x x,A densities that are essential elements of theHFB theory. To beginwithwe

construct theHermitian densitymatrix:

⎛
⎝⎜

⎞
⎠⎟

( ) ( )
( ) ( ) ( )

( )†

d
=

¢ ¢
¢ - ¢ + ¢

= P

G
G x x G x x

G x x x x G x x

W W

, ,

, ,

, 24

N A

A N* *

where the populationmatrixΠ has the form

⎛
⎝⎜

⎞
⎠⎟ ( )P =

+
p q

q I p
. 25

*
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The diagonal elements of p are the populations of each quasiparticle ˆ ˆ†
á ñb bk k , and the off-diagonal elements

represent the correlations between different quasiparticles. In the ground state, p=0 and q=0. The identity, I,
on the lower-right block is interpreted as a bosonic analog to theDirac sea [20], inwhich the negative energy
states are occupied by boson holes.When there is an excitation, a pair of one particle and one hole is created, and
therefore p appears in both the upper-left and the lower-right block, as shown in equation (25).

This formalismnow allows an extremely concise representation of the full dynamical evolution encapsulated
in equations (5) and (6);

( )†¶
¶

= S - S G

t
G Gi , 26

whereG is defined according to equation (24). The consequence of completing the basis by establishing the
missing eigenvector throughGram–Schmidt orthogonalization is now evident. If we beginwith the bareΣ, as
defined in equation (17) and initializeG to the ground state (meaning p=0 and q=0) of the corresponding
eigenbasis, thenwhen equation (26) is propagated from this initial condition, it is evident that the solution is not
stationary. The number of non-condensate atoms is seen to grow as∼t2, as shown in figure 1. This implies that
we have not in fact determined the correct ground state.

This problem arises because, using the language of quantumoptics, we are effectively assuming that the
condensate is a coherent field thatmay act as an infinite classical pump and can provide a reservoir source for
introducing an infinite number of atom-pairs. Furthermore, it does not cost any energy to introduce a zero-
energy quasiparticle within this framework. This is clearly unphysical for a number of reasons including the fact
that, as can be seen in equation (4), the factor of two in front of the interaction between the condensate and the
non-condensate atomsmeans that it actually costs energy to take away atoms from the condensate andmove
them into the non-condensate fraction, providing the interactions are repulsive (scattering length positive).
There is some literature that suggests simply dropping the zero-modes entirely to remedy this problem, for
example, [21]; however, this generally violates the fundamental commutation relations of the bosonic field
operator and therefore the uncertainty principle, sowe do not employ that approach here.

We instead employ an alternative solution by including the second-order terms to generalize the self-energy
matrix. Thismeans that wemodify equation (18) to include the effects of the normal and anomalous densities,
and then introduce the renormalization of theT-matrix to give

[∣ ( )∣ ( )]

[ ( ) ( )] ( )

m f

f

S =-  - + +

S = +


m

V x G x x

V x G x x
2

2 , ,

, 27

N a N

A a A

2
2

1
2

1
2

with both equation (17) and equation (26) unmodified. In order to be consistent, however, wemust also
generalize theGPE, equation (16), to

Figure 1.Quantumdepletion ( )( )ò
G x x x, dN

1 as a function of time (the proportion of non-condensate atoms at zero-temperature)

simulatedwith the gaplessHFB theory (i.e. using equations (16), (18), (21), (24), and (26)) gives a depletion proportion that initially
scales as∼t2.
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( )
( ) ( ) [∣ ( )∣ ( )] ( )

( ) ( ) ( )

f
f mf f f

f

¶
¶

= -  - + +

+

 x

t m
x x V x G x x x

G x x x x

i
2

2 ,

, , . 28

a
a a a N a

A a

2
2

1
2

*

Note that the ground state solution of theGPE is stationary, and thereby determines the value of the chemical
potential that enters the renormalization (see section 3). SinceGN(x, x) andGA(x, x) are functionally dependent
on the eigenstates themselves, the problem is nonlinear, and it is necessary to solve the generalized self-energy,
equation (27), and the generalizedGPE, equation (28), iteratively until the equations are self-consistent [22].We
point out that this iterative process will typically create a small gap in the energy spectrumof the system around
zero energy, and the problemof the unphysical non-stationary eigensolution that is caused by the zero-energy
subspace is no longer present. The resulting self-consistent solution is stationary under the evolution given by
equation (26) and provides an accurate ground state initial condition for the subsequent time-dependent
simulations thatwe present in the rest of the paper.

5.Dynamics of the time-dependentHFB system

In the experiment byClark et al [4], an external sinusoidally oscillatingmagnetic field is applied, and therefore
the scattering length ismodulated in the form

( ) ( )w= +a t a a tsin , 29dc ac

where adc is the initial scattering length, and aac is the amplitude of the oscillating component of the scattering
length at angular frequencyω. The dynamics of the systemunder thismodulation is interesting to consider
because the oscillating external fieldwill inject energy into the system, and this will result in exciting atoms from
the ground state into higher quasiparticle levels.

We begin our simulations by preparing the system in the self-consistent ground-state of theHFB theory for a
small positive value of the scattering length using the procedure just described. An illustration of the resulting
condensate, normal and anomalous densities are shown infigure 2. After preparing the system in the ground
state, we solve equation (17) and equation (26) using the generalized equations (27) and (28)with a sinusoidal
modulation of the scattering potential, i.e.

( ) ( )w = +V V t V V tsin . 30dc ac

In order to interpret our results, we display the occupation probabilities via the projection ofG(t) onto the
initial quasiparticle basis found from the self-consistentHFBHamiltonian at time t=0. The procedure is as
follows. Since the quasiparticle eigenbasismatrix,W, satisfies †s s=W WL

N z z , wemaywrite

( )†s s=-W
L

N
W . 31z z

1

Then, according to equation (24)

( )

†

†s s s s

P =

=

- -W GW

L

N
W G W , 32z z z z

0
1

0
1

2

2 0 0

whereW0 is the original self-consistent quasiparticle basis determined for the initial condition. The resulting
population is shown infigure 3. The height of the peak in the off-diagonal block (i.e. q) is notable since the
coherence saturates the upper bound of theCauchy–Schwartz inequality

[ ( ) ( )] ( ) ∣ ( )∣ ( )d - ¢ + ¢ ¢ ¢x x G x x G x x G x x, , , , 33N N A
2

which in turn can be interpreted as confirming that the process of exciting quasiparticles from the condensate is
maximally coherent. The diagonal elements, pk, can bemeasured by time offlight, since the quasiparticles
transform into regular particles that can be detected during ballistic expansion. In other words, when the kinetic
energy greatly exceeds the interaction energy, the kʼs then effectively label the freemomentum, i.e. kÿπ/L. As
shown infigure 3, when the periodic drive is turned on continuously formany cycles, essentially only one
quasiparticlemode is resonantly amplified. That is consistent with the narrow spectrum. This physical process
can be interpreted as being due, as a consequence of the oscillating drive, to a photonwith energy ÿω being
absorbed by a pair of atoms, with each of themgetting half the energy, òk=ÿω/2. In addition, the phonon-like
collective excitations that correspond to the observedwave-like patterns seen in the condensate density can be
interpreted as the Faraday patterns that typicallymanifest in different kinds of parametrically drivenfluids [23].
The pattern resembles thewavefunction density for the single quasiparticlemode on resonance. This simulation
illustrates that by careful engineering of the drive, one can potentially prepare a variety of quantum states,
selectively exciting atoms from the condensate field.We now show a few illustrative examples of interesting cases
that employ this technique.
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6.Dynamically generating squeezed quasiparticle states

A squeezed state refers to a quantum state that has a reduced uncertainty in one degree of freedom (‘squeezed’) at
the expense of increased uncertainty in a canonically conjugate variable [24–30]. Such states have been
extensively studied in quantumoptics and atomic physics due to their utility in quantummetrology for
producingmeasurement precision that exceeds the limits derived from classical states. Herewewill showhow to
use the resonant quasiparticle excitation in order to generate a squeezedmatter-wave state, anticipating that this
could potentially be applied to quantummatter-wave interferometry.

By driving the system resonantly, we are effectively producing resonant pairs withwell defined energy, and
this is reminiscent of nonlinear optical devices that down-convert pump photons into signal and idler pairs.
Herewewill demonstrate that this correspondence is robust and quantitative by demonstrating how onemay
calculate the squeezing parameter associatedwith the analogous quantity that is regularly computed in the
quantumdescription of light.

In order to do this we assume aweak excitation limit, so thatGN(x, x) andGA(x, x) are small compared to

∣ ( )∣f xa
2. Furthermore, we consider the kinetic energy term in the time-dependent GPE to be small, and thenwe

canfind a general solution for the condensate that has the form

( ) ( ) ( )( ) åf f f= =w w

=-¥

=¥

t J Ae e , 34a
A t

n

n

n
n t

0
i cos

0
i

where ∣ ∣f w= A V aac
2 and Jn(K) is the Bessel function of thefirst kind.Wewill limit our discussion to the case

of highmodulation frequency, inwhich the photon energy associatedwith the drive, ÿω, greatly exceeds the
meanfield shift associatedwith the drive amplitude, ∣ ∣fV aac

2, so thatA=1. In this case the n=0 term completely
dominates the series expansion andwe can drop all other terms.

The initial stationaryHamiltonian for the fluctuations can bewritten as ˆ ˆ†
= å H b bk k k k0 , where òk is the

energy of the kth quasiparticle, and the transformation to a rotating frame involvesmaking the replacement of
the quasiparticle operators

Figure 2. Solutions for a systemwith total atomnumber = ´ 6 105 in a 1D infinite potential well of size L, with the scattering
potential between atoms given by = -

^a l L10 4 2 . (a)Ground state condensate density found from the gapped self-consistent
generalizedGPE theory (i.e. replacing equation (16)with equation (28) and equation (18)with equation (27)). The length scale over
which the condensate density falls to zero at the edges of the box is known is the healing length. (b) Solution to the normal density

( )¢G x x,N in the ground state as found from the self-consistentHFB theory. (c)Solution to the absolute value of the anomalous
density ∣ ( )∣¢G x x,A in the ground state as found from the self-consistentHFB theory.
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ˆ ˆ ( )  b b e . 35k k
ti k

The contact interaction term in theHamiltonian can be derived from the interaction term of equation (1)

( ) ( ) ( ) ( ) ( )† †òw y y y y=H
V

t x x x x x
2

sin d . 36I
ac ^ ^ ^ ^

From this point, we keep only the second-order terms in ˆdy, because these terms correspond to exponential
growth and therefore dominate the solution. In order to simplify the problem further, we assume that the drive
frequencyω corresponds to the resonance conditionω=2òk/ÿ, and introduce the rotatingwave
approximation, which allows us to keep only termswith ( )/w -  e ti 2 k . By representing ˆdy in the quasiparticle
basis, we obtain an effective interactionHamiltonian

⎡
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This corresponds to the interactionHamiltonian of a parametric amplifier in nonlinear quantumoptics,
namely ( ˆ ˆ )†= - -cH a aiI 2

2 2 , whereχ represents the second-order nonlinear susceptibility that corresponds

to the squeezing rate.We refer to the resulting time-evolved state as a squeezed quasiparticle state since the
analog is an archetypal system for creating squeezed states of light. Thismapping allows us to extract the

Figure 3. Snapshots of (a) absolute value of thematrix elements of the upper-left block of the populationmatrix, ∣ ∣p , and (b) absolute
value of thematrix elements of the upper-right block of the populationmatrix, ∣ ∣q , at t=0.1(mL2/ÿ), starting from the initial
condition shown in figure 2 and then continuously drivenwith amplitude = -

^a l L10ac
4 2 and frequencyω=1000(ÿ/mL2). This

frequency resonates with the quasiparticles with energy ( )=  mL500k
2 2

* , corresponding to the resonant wavenumbers shown for
reference as white lines (at k-index (π k)2≈500). At the resonant quasiparticle excitation a clear spike is evident. (c)Density profile of
the condensate, revealing in general form the spatial dependence of the eigenmode function of the resonant quasiparticle excitation.

10

New J. Phys. 22 (2020) 033010 L-YChih andMHolland



squeezing rate, i.e.

( ∣ ∣ ) ( )òc f f f= + +


V
x v u v u

2
d 4 , 38a k k a k a k

ac 2 2 2 2 2*

and the squeezing parameter increases with time at this rate, i.e. ξ=χ t. If we choose the phases offa, uk and vk
appropriately, thenχ is real. As expected from the knownoptical solutions, the population in the kth
quasiparticlemode grows proportional to ( )ctsinh2 . Figure 4 shows the population as a function of time at
differentmodulation amplitudes. Since ( )c  ctsinh e 4t2 2 at large t, one can extract the squeezing rate from
the asymptotic slope of plog kk.We confirm that the squeezing rate is proportional to themodulation amplitude,
as indicated by equation (38).

Squeezed states are characterized by reduced variance in one quadrature at the expense of increased variance
in the other quadrature perpendicular to it.We define the quadrature for the resonant quasiparticles as

ˆ ˆ ( )
†

º +q
q q-X b be e , 39k k

i i

where θ is the angle of the orientation of the quadrature. Then the variance is

( ) ( ˆ ˆ ) ˆ ˆ

{ } ( )

† †
á D ñ= á + ñ - á + ñ

= + +
q

q q q q

q

- -

-

X b b b b

p Re q

e e e e

2 1 2 e . 40
k k k k

kk kk

2 i i 2 i i 2

i2

The variance as a function of θ is shown infigure 5.We see that the variance at certain quadrature phase angles, θ,
of states produced bymodulation of the scattering potential can fall below the standard quantum limit. The
standard quantum limit is the level generated by the uncertainty principle under the assumption that the
variance in all angles θ is uniform.

Although directmeasurement of the squeezingmay not be as straightforward to implement as in its optics
counterpart, itmay be possible to observe directly the atom coincidence (since the particles are produced in
pairs) on detectors placed in directions corresponding to oppositemomenta, and therebymeasure the second-
order coherence. The direct analog of phase sensitive photodetection (homodyne and heterodyne detection, for
example) is generallymore complicated to implementwith atoms than light, but in the next sectionwe propose a
possible experiment that could be used to perform an analog of such interferencemeasurements on the squeezed
quasiparticle distributions that are generated.

7. Interferometrywith squeezed quasiparticles

In principle, the diagonal elements of the normal density are the quantities that can be directly probedwith
standard atomic density images, for example in dispersive, absorption, orfluorescence imaging techniques. On
the other hand, the off-diagonal elements of the normal density and the anomalous density cannot be directly
observed since they are phase dependent quantities and have complex values that require an interferometric

Figure 4.Population in the resonant quasiparticlemode (labeled k) drivenwith frequencyω=5500(ÿ/mL2) as a function of time for
differentmodulation amplitudes. The amplitudes areVref (yellow), 2Vref (red), and 4Vref (blue), whereVref=1.25×10−4(ÿ2/mL).
The slope of plog kk at large time is equal to twice the squeezing rate, which is proportional to themodulation amplitude as shown in
equation (38). The squeezing rates calculated from the slopes of the curves in the interval t=[0.3, 0.4](mL2/ÿ) are 4.3, 7.2, 14.1
(ÿ/mL2), and the squeezing rates calculated from equation (38) are 3.6, 7.1, 14.3(ÿ/mL2) respectively for amplitudesVref, 2Vref, 4Vref.
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method to determine the phases.We investigate the phase dependence of the quasiparticle production by
analyzing two distinctmethodologies. One approach is a potential experiment that is capable of performing the
phasemeasurement through the use of a protocol that is based on theRamsey sequence widely used in atomic
physics [31]. A second alternative approach is closely associatedwith a recent experiment byHu et al [32], who
demonstrated that applying a phase shift to the oscillatory field after driving the system for a period of timewill
suppress the non-condensate atomnumber, and that aπ phase shift results in the greatest suppression.

Our Ramsey protocol is as follows. First, we apply a non-zeroVac for a period of time τ to implement thefirst
oscillatoryfield in the Ramsey sequence.We then setVac zero for a brief waiting period of timeΔt. During this
interval the anomalous density evolves freely at the resonance frequency, 2òk/ÿ, and because there is no external
work done on the system, the number of non-condensate atoms remains essentially constant. Next,Vac is set to
the same non-zero value as earlier to implement the second oscillatoryfield, again for the same period of time τ.
This sequence is illustrated infigure 6(a). Fromour simulation results, shown infigure 6(b), we observe that the
number of non-condensate atoms oscillates as a function of the free evolution time,Δt. This is because a phase
difference θ=ωΔt accumulates between the anomalous density and the drivingfield during the free evolution
period.We account for this behavior by showing that the oscillations observed are a consequence of the driving
field in the second zone either amplifying or attenuating the anomalous density depending on the accumulated
relative phase.

For comparison, we now examine an abrupt phase change protocol based on theHu et al [32] experiment.
We consider the effect of the phase shift by firstmodulating the interaction for a period of time τ, then applying a
phase shift θ to the oscillating drive, and repeating again the interaction for a period of time τ, as shown in
figure 6(c). The result of the final non-condensate atomnumber as a function of the phase shift is shown in
figure 6(d). It is interesting to compare this protocol and the resulting fringe pattern to that found from thefirst
method. The explanation is that the twomethods both operate in amanner that is analogous to aMach–
Zehnder interferometer, where interference fringes are seen in the recombination of light propagating along two
paths as the relative accumulated phase is varied. In the first protocol that we have presented, the phase is
accumulated in the anomalous density, whereas in the secondmethod, a direct phase shift is applied to the
externalfield.We have observed that bothmethods result in an interference patternwith high visibility fringes
that allow direct access for the observer to probe the phase behavior.

The twomethods, the complete Ramsey sequence or the abrupt intermediate phase shift change, can be
understood in a similar formalism. Both the phase shift change and the Ramseywait-time effectively generate a
phase shift in the direction of squeezing. Thismanifests as a change in the phase of the squeezing rate, i.e.χ→χ

eiθ, and is associatedwith the resonant quasiparticle state evolving under the unitary operator

( ) ( )( ˆ ˆ )
†

=q
- -c q

U t e 41b b te k k2
i 2 2

during the subsequent time evolution period. In theHeisenberg picture, the time-evolved operator b̂k for the
quasiparticle at index k at the end of the sequence is therefore given by

Figure 5.The variance of the quadrature as a function of the angle, at t=0.05(mL2/ÿ)withmodulation amplitude
Vac=2×10−3(ÿ2/mL), evaluated using equation (40). The dotted line is the standard quantum limit, where the variance is equal
to1. For a certain range of angles, the variance falls below the standard quantum limit.More specifically, at θ=0.88π the variance has
minimum,whichmeansmeasurements of the quadrature along this directionwill have the greatest precision.
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Note that at the special point θ=π,Uπ(t)=U0(−t), and the second period ofmodulation simply reverses the
effect of the first period ofmodulation, so that the final population is zero.However, we can see that in the
numerical simulation, the final number of non-condensate atoms at a phase shift ofπ is non-zero. This is
because the analytic result is derived using the rotating-wave approximation, and in the full simulation, the
populations of the off-resonance quasiparticles are not fully reversed due to the influence of the other terms that
were dropped. In this case, the second period of themodulationmay further increase their populations even at
the special point, θ=π, leading to the observedfinite non-condensate population. As a consequence, the degree
towhich the excitations can be fully reversed can be interpreted as ameasurement of the fidelity of the protocol
for producing quasiparticle squeezing. fidelity of the preparation of the squeezed quasiparticle state.

8.Quasi-2D system

In order tomake amore robust connectionwith the recent Bose firework experiment [4], wewould like to
generalize the formalismwe have presented from a quasi-1D gas trapped in a box potential to a quasi-2D gas that
is initially trapped by a circular potential with the third out-of-plane direction frozen. Although this geometry
adds new degrees of freedom to our previous analysis, wemay exploit the fact that the circular systempossesses
cylindrical symmetry, so that thewavefunction of the condensate can be solved effectively as a 1Dproblem in the
radial coordinate. Even though in a real experiment, the initial conditionsmay deviate from a perfectly isotropic
system, it is still reasonable to assume an isotropic initial condition theoretically because the fluctuations are
expected to be isotropically distributed overmany runs of the experiment.

Figure 6.The twomethods for probing the phase of the quasiparticle squeezing. In both cases, the scattering length atfirst oscillates at
frequencyω=5500(ÿ/mL2) for a period of time τ. At t=τ, in (a) the amplitude of the oscillation remains at zero for a time interval
Δt, and then the scattering length again oscillates for another period of time τ, and in (c) a phase shift θ is applied to the oscillation .
Panels (b) and (d) show the resulting non-condensate fraction at the final time as a function ofΔt or phase shift θ, respectively, for the
two cases.
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Note that the quasi-2D systemdiffers from the quasi-1D system in a number of important ways. The
momentum correlations willmanifest as angular correlations thatmay be detected by looking for atom–atom
coincidence on two detectors aligned in opposite directions. Furthermore, the divergence properties of the
renormalization problem are qualitatively different in two dimensions, as discussed previously.

We begin bywriting thefluctuations in thefield operator in the quasiparticle basis using appropriate indices
for two-dimensions

ˆ ( ) ( ) ˆ ( ) ˆ ( )
†

ådy q = +q q-r u r b v r b, e e , 43
k l

k l
l

k l k l
l

k l
,

,
i

, ,
i

,*

where k corresponds to the excitation in the radial coordinate and l represents the angularmomentumquantum
number. The angularmomentumwillmodify the formof the kinetic energy for the 2Dquasiparticles by
including a new centrifugal term, ÿ2l2/2mr2, that arises physically from circulation about the trap center. Due to
cylindrical symmetry, the normal and anomalous densities should be functions of only three real variables, two
radii and a relative angle, whichwe denote by r1, r2, andf≡θ2−θ1, respectively. For both normal and
anomalous densities, wewrite the functions in terms of their expansion in angularmomentum

( ) ( ) ( )( )åf = fG r r G r r, , , e . 44N A
l

N A
l l

, 1 2 , 1 2
i

The time evolution can then be solved by substituting this expansion into equations (4)–(6) and using the
appropriate form for the two dimensional kinetic energy.

Thefirst case we consider is for the situation inwhich the circular trap potential well is infinite and has
radiusR0,

{( ) ( )= <
¥

V r
r R0
otherwise

. 45ext
0

Weprepare the quantum gas in the ground state with a small repulsive scattering lengtha in order to stabilize
the systemmechanically. The repulsive interactions are characterized by the appropriate 2DT-matrix, as
discussed in section 3. Procedurally, we carry out a similar sequence of steps to those previously discussed for
quasi-1D. First we solve theGPEusing imaginary-time propagation, and use thatmean-field solution as thefirst
iteration for the solution of theHFB equations, ignoring the non-condensate terms in theHFB self-energy. As
before, this solution is non-stationary andwemust iterate between theGPE andHFB solutions in order tofind a
self-consistent solutionwhose resulting evolution gives rise to densities that do not depend on time. The
resulting three components, the condensate, the normal density, and the anomalous density, are illustrated in
figure 7.Note that the anomalous density diverges in general as theHankel function of thefirst kind as a function
of the relative distance ∣ ∣-r r1 2 close to the origin. This is an analytic result that can be derived by solving the
scattering equation, equation (9), in 2D [33]. This emphasizes an important point; the anomalous density cannot
be accessed directly in experiment and does not form an observable.

Now that we have prepared an accurate initial state, we can then begin to examine its time evolutionwhen
subjected to a drive via amodulation of the scattering length. Similar towhat we saw in quasi-1D, the
modulation leads to excitation of quasiparticles with energies on resonancewith themodulation frequency.
Figure 8 shows the normal and anomalous density as a function of time and relative distance at the center of the
trap. A principal feature of the radial density dependence is the appearance of phonon-like excitations withwell
definedwave-number. The non-condensate density increasesmonotonically with time, as is consistent with the
squeezing picture discussed earlier. On the other hand the anomalous density oscillates in time tracking the
externalfield.

In order to capture the the dynamics of the highmomentum atoms emitted outwards in the Bosefireworks
experiment, we extend our simulations to a systemwith afinite trap potential that is higher than the initial
chemical potential but lower than the kinetic energy of the excited atoms, using a smooth hypertangent
functional of form

⎛
⎝⎜

⎛
⎝⎜

⎞
⎠⎟

⎞
⎠⎟( ) ( )

z
= +

-
V r

V r R

R2
1 tanh , 46ext

well 0

0

whereVwell and ζ are positive constants. The formof this external confining potential was chosen to reduce
numerical artifacts. Figure 9 shows snapshots of the condensate and non-condensate densities at time t=0.04
and 0.08(mR0

2/ÿ) during the drive. At ( )= t mR0.04 0
2 , we observe that the condensate density is pushed

towards the edge of the trap, and that some non-condensate atoms are generated. At ( )= t mR0.08 0
2 , we see

phonon-like patterns in the condensate and non-condensate densities that appear as ripples orwaves.We see
qualitatively a residual excited condensate that represents a component that does not have sufficient energy to
overcome the potential barrier, and a non-condensate density containingmuchmore energetic atoms that is
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observed to propagate outwards and leave thefinite trap region. These are due to the energetic quasiparticles
created by the drive and form an experimentally observable quantity in ballistic expansion images.

Figure (9) also shows the density currents, which indicate the flowof atoms, including those in the
condensate and the non-condensate. They are computed from

( ) ( ) · ( )ò r= - ¢ ¢ ¢J r
r t

r r r
1 d

d
d , 47

r

0
tot

where ρtot is the total density. At ( )= t mR0.04 0
2 , the number of highmomentum atoms is still relatively

small, and therefore the density current is also small. The density currents at r=0.4R0 point outwardswhile
those at r=0.8R0 point inwards. Outside the trap there are few atoms, and the currents are essentially zero. At

( )= t mR0.08 0
2 , the density currents near the edge of the trap and outside the trap point outwardswith large

magnitudes, which represents the emission of highmomentum atompairs.
Unlike in the experiment, where jet-like patternswere observed, our simulation results show isotropic

images. This is anticipated since the functionals we calculate for the condensate, normal, and anomalous
densities, represent probability densities and not individual realizations (i.e. they are ensemble averages over
many experimental realizations). On the other hand, a given experiment is fundamentally different in that it
represents a single trial that exhibits shot-to-shot noise associatedwith the projection that occurs in a single
quantummeasurement. In order tomodel this projection noise it would be necessary to simulate quantum
trajectories [34], rather than solving for the densitymatrix evolution, and thismay be done by addingwhite noise
to the initial condensate wavefunction(see for example [9]).

In order to demonstrate a quantitative comparison of the energy of the generated quasiparticles with respect
to their ballisticmotion, we present a numerical ‘time-of-flight’ calculation. In this simulation, wemeasure the
momentumof the atoms in the systemby evaluating the speed at which the gas expands.We define the effective
size of the gas as the radius encircling a largefixed fraction of the non-condensate (saymore than 90%), so that at
t=0we beginwith sizeR0. Using thismetric, fromour simulations, we observe that initially a large amount of
non-condensate density is generated close to the center of the trap andmost of the non-condensate atoms have
not left the finite trapping region, so that the size of the gas appears to be shrinking.However, later in the
evolution and after a significant fraction of non-condensate atoms escapes the trap, the expansion of the size of
the gas becomes essentially ballistic (expansion size increasing linearly in time), and the speed of the expansion is
approximately ( )w m- m2 . The reason is as follows. From theHFB equations, we know that

Figure 7.Ground state solutions for a systemwith total atomnumber = ´ 6 105 in an infinite circular box of radiusR0. The
scattering length is set to a=3.99×10−5l⊥. (a)Condensate density as a function of radial position. (b)Quantumdepletion density
as a function of radial position. (c)Anomalous density with the center ofmass position at the center of the trap i.e. + =r r 01 2 , as a
function of the relative distance ∣ ∣-r r1 2 . The divergence that scales as theHankel function of thefirst kind close to the origin is a result
of 2D scattering theory.
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Using the approximations ∣ ∣f m»V a
2 and vk≈0 for large k, wemaywrite
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Furthermore, since the resonant quasiparticle energy is ÿω/2, wefind

⎜ ⎟⎛
⎝

⎞
⎠ ( )w

m» -


mv
1

2 2
. 502

The speed of the expansion is evaluated from the slope of the fitted curve infigure 10. Thefit only includes data
points from time ( )= ~ t mR0.065 0.08 0

2 so that we avoid the initial transients where interaction energy

Figure 8.Normal and anomalous densities in a system that is prepared in the ground state of the self-consistentHFB solutionwith a
positive scattering potential adc=3.99×10−5l⊥, and then subjected to themodulating drive with angular frequency

( )w =  mR1200 0
2 and constant amplitude aac=3.99×10−5l⊥. (a)Non-condensate density as a function of radial position

∣ ∣= +r rr 21 2 (the origin is on the right) and time, i.e. ( ∣ ∣ )- =r rG r t, 0,N 1 2 . (b)Magnitude of the anomalous density as functions
of the relative coordinate ∣ ∣-r r1 2 (the origin is on the right) and time, i.e. ∣ ( ∣ ∣ )∣= -r rG r t0, ,A 1 2 . Only a small time interval beginning
at ( )= t mR0.6 0

2 is shown, so that the oscillations are resolved.
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within the condensate and between the condensate and non-condensate is significant, and themotion is not
ballistic. The speedwe get from the slope agrees well with the analytical result derived above.

9. Conclusion

In this paper, we have developed a description of a condensate and non-condensate system starting from the
many-bodyfield theoryHamiltonian and deriving the evolution equations for the condensate, normal density
and anomalous density. Sincewe assumed contact interactions, the contact potentialmay lead to divergences in
thefield theory at small and largemomenta.We took care of this issue by properly renormalizing the scattering
potential.

We solved the quantumfluctuations in the initial stationary state in 1Dusing the self-consistentHFB theory,
which does not involve any free parameters. Then, we simulated the amplification of the quantum fluctuations
with awell-defined energy using the time-dependent equations. The amplification has aspects similar to the
generation of squeezed states of light, andwewere able to verify that the variance of the quadrature can fall below
the standard quantum limit.We proposed to observe phase sensitive quantities through two alternate
approaches including Ramsey interferometry and discrete phase jumps.We showed how this is able to provide
information on the characterization of quasiparticle squeezed states. Finally, we showed simulation results in
2D, and found that the excited non-condensate atoms eventually leave the trap and propagate outwards at a
well-defined speed, consistent with the experimentally observed time-of-flight results. Althoughwe showed

Figure 9.Densities of the condensate and the non-condensate at t=0.04 and ( )mR0.08 0
2 . The dark blue area is the range of

simulation, and thewhite line indicates the trapping potential. The yellow arrows represent the density currents, with their lengths
proportional to themagnitude. The system starts with the ground statewith adc=1.99×10−5l⊥and then the scattering length is
modulatedwith amplitude aac=1.99×10−4l⊥for all time. The smoothing parameter of thefinite circular well was set to ζ=0.2.
At ( )= t mR0.04 0

2 , the atoms in the condensate are pushed towards the edge of the trap, but because they are of low energy, they
cannot escape the trap. The number of highmomentum atoms is still relatively small, and therefore the density current is also small.
The density currents at r=0.4R0 point outwardswhile those at r=0.8R0 point inwards. Outside the trap, there are few atoms, and
the currents are essentially zero. At ( )= t mR0.08 0

2 , a large fraction of non-condensate atomswith high energy escape the trap, and
the density currents near the edge of the trap and outside the trap point outwardswith largemagnitudes. For clarity, the density
currents at ( )= t mR0.04 0

2 are scaled up 3 times compared to those at ( )= t mR0.08 0
2 .

17

New J. Phys. 22 (2020) 033010 L-YChih andMHolland



simulation results for only quasi-1D and quasi-2D systems, 3D systemswould be interesting and can be analyzed
systematically using similar approaches.

We have demonstrated amethod to generatemomentum squeezed states thatmay be useful formetrology
applications. Thismotivates us to further consider engineering the scattering length as a function of time to
generate two-mode squeezed states in quasimomentum that could be injected intomatter-wave interferometry.
The entanglement properties of such states would be interesting to investigate alongwith themetrological gain
that arises from the quantumadvantage. The importance of pairing in this work alsomotivates us to consider a
similar experiment on fermions, where the interactions could bemodulated by variation of the scattering length
in the BEC–BCS crossover regime. Themotivation for this is simply that the pairing physics is closely connected
with the previously observed fermionic condensation. These considerations will be the subject of future studies.
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