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Throughout this thesis we explore ionization processes ranging from the single photon x-ray

and ultraviolet limit to the opposite adiabatic infrared limit where large numbers of photons are

required for ionization. We will summarize criteria responsible for the breakdown of perturbation

theory and outline key aspects of the non-perturbative theory. Our numerical calculations bridge the

short wavelength limit of single photon perturbative ionization to the long wavelength limit of non-

perturbative multiphoton ionization to demonstrate an optimal wavelength regime for generation

of electron pulses for probing chiral systems in rare gas atoms.

Breakdown of the widely used asymptotic saddle point approximation in strong-field physics

is analyzed for ionization of electrons bound to p−states. We resolve this issue by evaluating

Keldysh’s ionization amplitude exactly. Finally, we present an analytic model for the perturbative

two-photon ionization of atoms by arbitrary fields. As an application we reconstruct isolated

attosecond pulses and pulse trains from a provided autocorrelation trace generated in a pump

probe ionization measurement. The results are generalized to the non-perturbative limit.
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Chapter 1

Introduction

1.1 Background

The interaction of atoms with radiation fields is qualitatively different depending on the

intensity of the applied radiation and energy of constituent photons. Electrons with binding energy

Ip exposed to very weak radiation with photon energies h̵ω > Ip behave differently than the same

electrons interacting with intense fields comprised of photons with energy h̵ω ≪ Ip (ω is the angular

frequency of each photon and h̵ is the reduced Plank constant). When weak fields comprised of

highly energetic photons strike an atom, there is some small, but finite probability that the initially

bound electron will absorb a single quanta and ionize, where all additional energy is translated into

the kinetic motion of the ejected electron:

Ek = h̵ω − Ip. (1.1)

This single-photon ionization process was first explored by Einstein [54] in 1905.

If the weak field is now comprised of photons containing energy h̵ω < Ip, then multiple quanta

must be absorbed simultaneously for ionization, which was first discussed by Dirac in 1927 [46,153].

In this early work it was stated that “These (two-photon) terms correspond to processes in which

two light-quanta are emitted or absorbed simultaneously, and cannot arise in a light-quantum theory

in which there are no forces between the light quanta. The effects of these terms will be found

to be negligible, so that this disagreement with the light-quantum theory is not serious.” Dirac

claimed that multi-photon processes were an artifact of his theory and not a true physical process.
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Over time this has been proven untrue. Four years later the full theory of two-photon absorption

was developed by Göppert-Mayer in 1931 [67] with experimental verification three decades later by

Kaiser [91] in 1961.

In subsequent decades Dirac’s perspective changed until in 1958 [48] he stated that “Similarly

for a more general radiative process in which two or more photons are simultaneously emitted or

absorbed, the probability is proportional to (an intensity) factor I for each absorbed photon and

I +hν3/c2 for each emitted photon (where h is the Plank constant, c is the speed of light, hν is the

photon energy and I is the field intensity). Thus, the process is stimulated by incident radiation in

the same direction and with the same frequency and polarization as any of the emitted photons.”

These ideas outline the most fundamental principles of perturbative multi-photon processes. When

weak radiation interacts with an atom the probability of absorbing n quanta is proportional to

(I/Ia.u.)n ≪ 1, where Ia.u. is a characteristic value defined as the intensity associated with the

electric field binding an electron within the Hydrogen atom (see section 2.3). Ionization in this

regime is dominated by the lowest-order (nth = ⌈Ip/h̵ω⌉) photon process.

The advent of the first Ruby laser by Maiman in 1960 [120] allowed experiments to utilize

stronger coherent radiation than was possible before and allowed for serious investigations into

processes involving a large number of field quanta. This advancement allowed Agostini et al. in 1979

[3] to irradiate xenon atoms with high enough intensity to not only observe the dominant lowest-

order (nth) ionization process, but an additional perturbative (nth+1) photon process corresponding

to a single free-free transition in the continuum. This process is known as above threshold ionization

(ATI). As technology improved over the following years, higher order ATI peaks were observed

where the largest probability for emission was surprisingly found for the absorption of n > nth

photons and not the lowest order process predicted from perturbation theory [2, 138]. These were

some of the earliest explorations of non-perturbative multi-photon processes. Transitions are still

described by the absorption and emission of field quanta, but the framework of perturbation theory

breaks down.

Theoretical models for these processes have been available decades before these experimental
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observations. These models originate from Oppenheimer’s model of ionization of Hydrogen by a

static field in 1928 [132]. Here, the initial Hydrogen ground-state perturbatively interacts with

the applied field once before transitioning into a final state described by an otherwise free electron

propagating in a static electric field. The framework of perturbation theory is still used, but the

final-state includes all orders of the field-interaction. Subsequently in 1965 Keldysh [98] applied

Oppenheimer’s model to ionization of atoms by linearly-polarized alternating fields. The final state

describes the motion of an otherwise free electron in a dynamical field. Both of these models are

able to determine largely the correct ionization behavior in terms of physical parameters, but are

missing a proportionality factor due to the fact that the final state in this first-order amplitude

does not include the long-range Coulomb potential during and after ionization.

In subsequent years Keldysh’s model was extended by Perelomov, Popov and Terent’ev

[135–137] to include arbitrary initial states and both circular and elliptical polarization. These ear-

liest Keldysh-like theories employed asymptotic approximations most accurate for long-wavelength

radiation. Faisal and Reiss [57, 146] extended the model into the short-wavelength limit by eval-

uating the amplitude exactly in the vector-potential (velocity) gauge opposed to the electric field

(length) gauge used in earlier works. This method pushes the theory of strong field ionization into

the short-wavelength limit, but fails for initial states with orbital angular momentum l > 0 due to

the use of the velocity-gauge [20,146].

1.2 Structure of the thesis

The thesis is structured as follows. Starting in Chapter 2, we will outline fundamental

principles of the perturbative theory of light-matter interaction. Here, electrons propagate as they

do in atomic systems and applied weak radiation fields kick the electron a finite number of times

between atomic states before finally transitioning in the continuum. We will finish the Chapter by

discussing necessary conditions for the applicability of the theory.

Subsequently in Chapter 3, we will summarize key aspects of the non-perturbative theory

of light-matter interaction, where both atomic reference-states and reference-states of an elec-
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tron propagating in the field are required to determine a low-order expansion which describes the

non-perturbative ionization process. We will start by describing accurate numerical methods for

modeling the ionization of atoms. Afterwards we will describe the analytic models of Oppenheimer

and Keldysh [98, 132] and briefly summarize the influential models of Perelomov, Popov and Ter-

ent’ev as well as Reiss. As an application we will outline difficulties associated with the long-range

Coulomb interaction and applicability to ”real” atoms.

In Chapter 4 we present results of numerical calculations describing ionization where we

explore the transition from single photon to perturbative and non-perturbative multi-photon ion-

ization. We explore optimal wavelength regimes for how atto- or femtosecond laser pulses may

potentially provide the opportunity to generate ultrashort spin-polarized electron pulses for prob-

ing chiral systems and magnetic properties of materials. A key element in the generation of spin-

polarized electrons is a selectivity in ionization to the sense of the electron’s rotation in the initial

state with respect to the rotation direction of the laser field. We will therefore identify mechanisms

which increase the ionization from a specific magnetic sublevel over the others.

In Chapter 5 we demonstrate the breakdown of the asymptotic approximations used in the

ionization amplitude of Keldysh as well as Perelomov, Popov and Terent’ev for initial p-states irra-

diated by circularly polarized fields. To overcome this challenge we expand the ionization amplitude

for an arbitrary initial angular momentum state exactly in terms of partial wave components for

both circularly and elliptically polarized fields. Our spherical expansion has been motivated by

the cylindrical expansion employed by Reiss [146] in velocity-gauge and Bauer [23] in length-gauge,

however we believe our complementary method is more convenient for initial states consisting of

higher angular momentum components.

In Chapter 6 we will derive semi-analytic perturbative two-photon amplitudes for the ioniza-

tion of atoms by arbitrary polychromatic fields. These formulas are applied to reconstruct isolated

attosecond pulses and pulse trains from a provided autocorrelation trace. A feedback loop is used

and ionization is determined from a model laser parameterized by a set of variational parameters.

The field is recovered when variational parameters are determined such that the exact autocorre-
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lation trace agrees with the trace generated by the parameterized field. The amplitude is extended

to the non-perturbative limit where time is partitioned into slices (tm−1, tm] (m ∈ Z) [63] narrow

enough such that perturbative formulas may be applied over each interval. We believe that this ap-

proach may be a useful alternative to the earlier non-perturbative methods in applications requiring

short pulses and long-range interactions.

We will complete the thesis with a brief summary.



Chapter 2

Perturbative Theory of Light-Matter Interaction

The theory section of this thesis is intended to systematically introduce concepts such as

Green’s functions, perturbation theory and non-perturbative approaches to ionization in a way that

bridges standard upper-division undergraduate quantum mechanics, first year graduate quantum

mechanics [125, 151, 152], more advanced Green’s function approaches to strong field ionization

[5,57,98,107,132,146] and finally our own non-perturbative approach that generalizes the amplitude

of [98,132] by expanding the final scattering-state in partial waves [27,29,107] which will be discussed

in Chapter 5. We will try our best to honor the original texts, but may find our own way to their

results. The present Chapter will focus on the perturbative theory while the subsequent Chapter

will discuss the nonperturbative approaches.

The first section will focus on Green’s functions and the Lippmann-Schwinger equation. We

will use reference states of a free particle scattering off of a Yukawa potential to motivate the idea of

a reference Green’s function and perturbation theory. In the second section we will describe multi-

photon ionization of an atom interacting with a weak laser field. Here, field-free atomic states will

take the place of the plane-wave reference Green’s function and the (dipole) laser interaction will

take the place of the Yukawa potential described in the earlier section. We will focus on one- and

two-photon ionization. In the third section we will discuss the breakdown of perturbation theory

and motivate the subsequent Chapter on nonperturbative approaches. Throughout this thesis we

will use cgs units and switch to the system of atomic units (a.u.), where m = ∣e∣ = h̵ = 1, when

convenient.
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2.1 Green’s functions and the Lippmann-Schwinger equation

The time-dependent Schrödinger equation

[ih̵ ∂
∂t
−H(x)]Ψj(x) = 0 (2.1)

describes the time-evolution of a physical state Ψj(x) under the influence of the Hamiltonian

H(x) = p2

2m
+ V (x) (2.2)

for a single particle. Here, p = −ih̵∇r determines the momentum of a state and V (x) represents an

external potential with x ≡ {r, t}. The index j is included to emphasize that a system of orthogonal

states satisfies Eq. (2.1).

One may relate some known initial state Ψ(x) of the system to the state of the same system

at a later time through

Ψ(x) = ih̵∫
R3
dr0G(x; r0, t0)Ψ(r0, t0) , (2.3)

where the Green’s function

G(x;x′) = − i
h̵
θ(t − t′)⨋

j
Ψj(x)Ψj(x′) (2.4)

is determined from all states Ψj satisfying Eq. (2.1). Since we do not know the set of Ψj(x) it is

often convenient to suppose we have a complete set of eigenstates {ϕj(x)}j=1,2,⋯ corresponding to

a simpler closely related Schrödinger equation with Hamiltonian Hi/f(x) where

[ih̵ ∂
∂t
−Hi/f(x)]ϕj(x) = 0. (2.5)

Using

[ih̵ ∂
∂t
−H(x)]G(x;x′) = δ(4)(x − x′) (2.6)

from Eq. (2.1) and

[ih̵ ∂
∂t
−Hi/f(x)]Gi/f(x;x′) = δ(4)(x − x′) (2.7)

it is clear that

Ψ(x) = ϕi(x) + ∫ d4 x1G(x;x1)V (x1)ϕi(t1). (2.8)
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with

∫ d4x1 ≡ ∫
t

ti
dt1 ∫ dr1 (2.9)

and

δ(4)(x − x′) ≡ δ(t − t′)δ(3)(r − r′) (2.10)

where t1 describes the moment where the initial state ϕi(x) is set. This is called the Lippmann-

Schwinger equation [112]. Continuing along these lines the full Green’s function can be expanded

as

G(x;x0) = Gi(x;x0) + ∫ d4x1G(x;x1)Vi(x1)Gi(x1;x0)

= Gf(x;x0) + ∫ d4x1Gf(x;x1)Vf(x1)G(x1;x0) (2.11)

with respect to the reference states where i/f are referred to as an initial- and final-state expansion.

2.1.1 Scattering off an external potential

As a concrete example, consider the Hamiltonian

H0(t) =
p2

2m
(2.12)

corresponding to a free particle with states

ϕk(x) = e−(i/h̵)
h̵2k2

2m
tϕk(r) and ϕk(r) =

eik⋅r

(2π)3/2
. (2.13)

The reference Green’s function becomes

Gi(x;x′) = − i
h̵
θ(∆t)∫

dk

(2π)3
eik⋅∆r−(i/h̵) h̵

2k2

2m
∆t = − i

h̵
θ(∆t) ( m

2πih̵∆t
)
3/2
e−

m(∆r)2
2ih̵∆t . (2.14)

where in the Fourier basis

Φ̃(k) = ∫ drϕk(r)Φ(r) with Φ(r) = ∫ dk Φ̃(k)ϕk(r). (2.15)

one may find a simpler representation of the Green’s function by transforming r and r′ to give the

representation in the momentum space

G̃i(k, t;k′, t′) = −
i

h̵
θ(∆t)∫ dq ϕ̃q(k, t)ϕ̃q(k′, t′). (2.16)
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Transforming the states we have

ϕ̃q(k) = δ(3)(k − q) (2.17)

which gives

G̃0(k, t;k′, t′) = −
i

h̵
θ(∆t)δ(3)(∆k)e−(i/h̵)

h̵2

2m
∆t (2.18)

and the trivial equation of motion

F = ∆p

∆t
= h̵∆k

∆t
= 0. (2.19)

Individual momentum states ϕk(x) exactly follow the classical equation of motion and quantum

mechanics describes the interferences between momentum components k and k′ within a single

state.

Considering now Eq. (2.1) with potential

V (x) = −Z ∣e∣
2

r
e−µr (2.20)

and truncating at first order

Ψ(x) = ϕki
(x) + ∫ d4x1Gi(x;x1)V (x1)ϕki

(x1) = Ψ(in)(x) +Ψ(sc)(x) (2.21)

where the superscript (in) denotes the incoming plane-wave and (sc) the first-order scattered state.

The contribution to the scattered wave with momentum k is given by

M(sc)(k, t) = ∫ d4xϕk(x)Ψ(sc)(x) = −
i

h̵
∫

t

0
dt1 e

(i/h̵) h̵2

2m
(k 2−k2i )t1 Ṽ (k;ki) (2.22)

where

∫
t

0
dt1e

(i/h̵)∆εt = e(i/h̵)∆εt/2sinc((1/h̵)∆εt/2)t ≡ δt((1/h̵)∆ε/2)

t→∞ÐÐ→ δ(1)((1/h̵)∆ε/2) = 2m

h̵k
δ(1)(k − ki) (2.23)

enforces k = ki in the t→∞ limit and

Ṽ (k;ki) = ∫ dr1 ϕk(r1) [−
Z ∣e∣2

r1
e−µr1]ϕki

(r1) =
−Z ∣e∣2

2π2(q2 + µ2)
(2.24)
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with q = ∥k − ki∥ = 2k sin(θ/2) yielding

M(sc)(k, t) = iZ ∣e∣
2

2π2h̵

δt((1/h̵)∆ε/2)
(q2 + µ2)

(2.25)

with the scattered rate

w(sc)(k) = lim
t→∞

t−1∣M(sc)(k, t)∣2 = Z
2∣e∣4m

4π4h̵3k

δ(1)(k − ki)
(q2 + µ2)2

(2.26)

and angular distribution

dλ(sc)

dΩ
= ∫

∞

0
dk k2w(kk̂) = 1

4π4h̵3
Z2∣e∣4mk

(4k2 sin2(θ/2) + µ2)2
(2.27)

which is the Rutherford scattering angular distribution as µ→ 0.

In Fig. 2.1 an example of an angular distribution is shown for a plane-wave (electron) scat-

tering of a Yukawa potential with Z = 1, µ = 1/5 a.u. and k = 1/8 a.u..
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Figure 2.1: Angular distribution (with Γ ≡ w) in arbitrary units for a plane-wave (electron) scat-

tering of a Yukawa potential with Z = 1, µ = 1/5 a.u. and k = 1/8 a.u.

The Lippmann-Schwinger equation recursively relates the solution of a simple problem to a

more complicated problem of interest. In the next section we describe atomic reference states and
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subsequently apply the ideas from this section to discuss ionization of an atom by the perturbation

of a weak electric field.

2.1.2 Atomic states

Atomic states are often represented in spherical-polar coordinates

x = r sin θ cosϕ, y = r sin θ sinϕ and z = r cos θ (2.28)

with some spherically symmetric potential Va(r) = Va(r). Using the Laplacian

∆ = 1

r2
∂

∂r
(r2 ∂

∂r
) + L

2

r2
(2.29)

the time-independent Schrödinger equation (TISE) in atomic units is written as

1

r2
∂

∂r
(r2∂ψ(r)

∂r
) + L

2ψ(r)
r2

+ 2(E − Va(r))ψ(r) = 0 (2.30)

where the eigenspace of the angular momentum operator L2 is given by

L2Y m
l (r̂) = l(l + 1)Y m

l (r̂) (2.31)

with spherical harmonics Y m
l (r̂). Applying the separation

ψ = R(r)Y m
l (r̂) with R(r) = χ(r)

r
(2.32)

we are left with the radial equation

d2χ(r)
dr2

+ [2(E − Va(r)) −
l(l + 1)
r2

]χ(r) = 0. (2.33)

Since ψ is finite everywhere in space we have χ(r) r→0ÐÐ→ 0 and
χ(r)
r bounded for r →∞ [27, 107].

For the special case of Hydrogen the analytic solution may be determined. Using Va(r) = −1/r

and defining

n = 1/
√
−2E and ρ = 2r/n (2.34)

the radial Schrödinger equation can be written as

R′′ + 2

ρ
R′ + [−1

4
+ n
ρ
− l(l + 1)

ρ2
]R = 0 (2.35)
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where primes indicate derivatives with respect to ρ. The solution R is found by taking the product

of its solution for ρ→ 0 and for ρ→∞ with some other function which must be determined. Taking

ρ→ 0 and setting R ∝ ρν one sees

ν(ν − 1)rν−2 + 2νρν−2 − l(l + 1)rν−2 → 0⇒ ν = l. (2.36)

Similarly for ρ→∞ the TISE becomes

R′′ − 1

4
R = 0⇒ R ∝ e−ρ/2 (2.37)

yielding

R = ρle−ρ/2w(ρ). (2.38)

Inserting R back into the Schrödinger equation one obtains the hypergeometric differential equation

ρw′′(ρ) + (2l + 2 − ρ)w′(ρ) + (n − l − 1)w(ρ) = 0 (2.39)

which we will describe in the next subsection.

2.1.2.1 Hypergeometric functions

Eq. (2.39) is a particular case of the confluent hypergeometric differential equation

zu′′ + (γ − z)u′ − αu = 0 , (2.40)

which is satisfied by the hypergeometric function

1F1(α;γ; z) = 1 + α
γ

z

1!
+ α(α + 1)
γ(γ + 1)

z2

2!
+⋯ =

∞
∑
n=0

(α)n
(γ)n

zn

n!
, (2.41)

where

(a)n =
Γ(a + n)

Γ(a)
(2.42)

is the Pochhammer symbol. Here, the sum converges for all finite z and α while γ cannot be zero

or a negative integer.
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Since the confluent hypergeometric differential equation is second order there must be an

additional linearly independent solution which is determined by the substitution [107]

u = z1−γu1 , (2.43)

where

zu′′1 + (2 − γ − z)u′1 − (α − γ + 1)u1 = 0 , (2.44)

which immediately yields the independent solution

z1−γ1F1(α − γ + 1; 2 − γ; z) , (2.45)

where γ cannot be an integer greater than 1. The general solution is therefore

u = a 1F1(α;γ; z) + b z1−γ1F1(α − γ + 1; 2 − γ; z) (2.46)

where a and b are arbitrary constants.

Returning now to the determination of electronic states for atomic hydrogen we have

w = a 1F1(−n + l + 1; 2l + 2;ρ) (2.47)

since solutions must be finite at the origin. Using the boundedness of R and properties of 1F1 in

the limit where ρ→∞ from Ref. [107] we have n to be an integer with n− l−1 ≥ 0. The bound-state

solutions are therefore given by

Rkl(r) =
2

nl+2(2l + 1)!

¿
ÁÁÀ (n + 1)!
(n − l − 1)!

(2r)le−r/n1F1(−n + l + 1; 2l + 2; 2r/n). (2.48)

Following the same steps for continuum states we have parameters

n = −i/
√

2E = −i/k, ρ = 2ikr (2.49)

and radial functions

Rkl(r) =
Ck

(2l + 1)!
(2kr)le−ikr1F1(i/k + l + 1; 2l + 2; 2ikr) (2.50)

with normalization

Ck =
√

2

π
keπ/2k∣Γ(l + 1 − i/k)∣ (2.51)

on the k-scale.
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2.1.3 Single active electron approximation

For atoms other than Hydrogen analytic solutions to Eq. (2.33) are in general not known.

We assume each individual electron orbitals in an atom given by an averaged (fixed in time) atomic

potential

Va(r) = Vlong(r) + Vshort(r) + Vshell(r) (2.52)

generated from density functional theory (see Ref. [143]). The numerical potential Va(r) is fit to

the functions

Vlong(r) = −
Z ∣e∣2

r
(2.53)

which corresponds to the long-range interaction between an ionized electron and the residual charge

Z ∣e∣, while

Vshort(r) = −
Zc∣e∣2

r
e−cr (2.54)

and

Vshell(r) = −∑
j

aje
−bjr (2.55)

approximate the average interaction of all other electrons at short distances.

To find the states in this case one defines a maximum radius rmax with boundary condition

χ(rmax) = 0 and solves Eq. (2.33) numerically. The first approach we use involves expanding Eq.

(2.33) in some basis and solving the eigenvalue problem

Hl∣χl⟩ = E∣χl⟩ (2.56)

for each l to determine a truncated set of both bound-states and discrete continuum states that

span the finite box. The second approach we follow involves integrating the radial function χ from

r = 0 to rmax using Eq. (2.33) where a boundary condition d
drχ∣r=0 is set to some small constant

ϵ. For bound states a particular energy E < 0 is chosen as a lower bound. If χ(rmax) = 0 (up

to some tolerance) then the associated state is a bound-state. If the boundary condition at rmax

is not met, then E is increased by some increment and the boundary is checked yet again. For
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continuum states the procedure is simpler. All E > 0 satisfy Eq. (2.33) and therefore one only needs

to integrate the radial equation and normalize.

On the k−scale the parameter ϵ is determined by fitting each radial function to the asymptotic

solution for r →∞ [27]

χk(r) ∼
√

2

π
sin [kr + log(2kr)/k − lπ/2 + ηl(k)] , (2.57)

where the additional fit parameter ηl(k) describes the so-called scattering phase shifts relates radial

functions Rkl(r) to the scattering states

ϕ
(−)
k (r) =

1

k

∞
∑
l=0

l

∑
m=−l

il e−iηl(k)Rk,l(r)Y m
l (k̂)Y

m
l (r̂) , (2.58)

which describe the momentum of an electron in the continuum. For hydrogen atom we have

ηl(k) = arg [Γ(l + 1 − i/k)] . (2.59)

For short-range potentials the same procedure is applied to the asymptotic solution

χk(r) ∼
√

2

π
sin [kr − lπ/2 + ηl(k)] , (2.60)

where

ηl(k) = 0 (2.61)

for a zero-range potential. We almost always use the first method to determine a set of bound

states and the second method to describe the continuum.

Diagonalization ensures orthogonality of the bound states, but produces a set of discretized

continuum states. Assuming continuum wave-packets do not approach r = rmax, the discrete basis

is able to describe physical observables and represent the state well. Unfortunately, in the limit

of t → ∞, corresponding to states of ejected electrons (r → ∞), determination and interpretation

of the photo-electron distribution becomes difficult, but possible given the binning procedure of

Ref. [84] as an example.

The shooting method proves to be an inexpensive straight-forward procedure for determin-

ing final scattering states with clear physical interpretation. When applied to bound states an
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additional orthogonalization procedure is required and accuracy is not guaranteed. In practice

the discretized continuum proves to be an efficient computational basis where the true scattering

states determined through the shooting method may be projected onto the computational basis to

describe properties of the photo-electron distribution at the end of a calculation. It is important

to separate states corresponding to physical observables and convenient basis sets for numerical

calculations.

2.2 Dirac and Fermi’s golden rule

We will now consider the ionization of an atom initially occupying the atomic state

ϕi(x) = Ri(r)Y mi

li
(r̂) (2.62)

by a single photon from the linearly-polarized monochromatic electric field

E(t) = E

2
[e−iωt + eiωt] . (2.63)

Using the first-order expansion [47,62]

Ψ(x) ≈ ϕi(x) + ∫ d4x1Gi(x;x1)VL(x1)ϕi(x1) (2.64)

and laser interaction

VL(x) = ∣e∣E(t) ⋅ r (2.65)

the distribution of ejected photo-electrons can be described by

M(k, t) = ∫ d4xϕ
(−)
k (x)Ψ(x) = −

i

2h̵
∫

t

0
dt1 e

(i/h̵)( h̵
2k2

2m
+Ip−h̵ω)t1

Vi(k) , (2.66)

where

Ha(x)ϕi(x) = −Ipϕi(x), (2.67)

Ip ≡ h̵2κ2/2m and

Vi(k) ≡ ∫ drϕ
(−)
k (r) [∣e∣Ez]ϕi(r) = (∣e∣E/k)∑

l,m

(−i)leiηl(k)Y m
l (k̂)(z)

(k,l,m)
i (2.68)
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with

(z)(k,l,m)i =
√

4π

3
∫
∞

0
dr r2Rk,l(r)rRi(r)∫ dΩkY

m
l (r̂)Y

0
1 (r̂)Y

mi

li
(r̂). (2.69)

Since the energy of a final ionized state must be larger than the initial ground state we have

only included the single photon absorption contribution

∣e∣E(t) ⋅ r↦ 1

2
∣e∣Ee−iωtz (2.70)

and assumed polarization in the ẑ-direction. Additionally the integral over three spherical harmon-

ics

∫ dΩkY
m
l (r̂)Y

0
1 (r̂)Y

mi

li
(r̂) (2.71)

enforces the angular momentum selection rule mi = m and ∣li − 1∣ ≤ l ≤ li + 1 for linearly polarized

lasers in the ẑ-direction. For elliptically polarized lasers (in the x − y plane) the selection rules

remain relating l and li while m = mi ± 1 due to the harmonic contributions Y ±11 (r̂). For higher-

order photon processes corresponding to Eq. (2.11) these rules hold between photon orders.

For the simplest case of an s-state interacting with a zero-range potential one has [136]

Ri(r) ≈ Cκ,0κ
3/2 e

−κr

κr
(2.72)

and

ϕk(r) =
eik⋅r

(2π)3/2
=
√

2

π
∑
l,m

il jl(kr)Y m
l (k̂)Y

m
l (r̂) (2.73)

which immediately yields

Vi(k) = [∣e∣E ⋅ (i∇k)] ϕ̃i(k) , (2.74)

where

ϕ̃i(k) = ∫ dr1
e−ik⋅r1

(2π)3/2
ϕi(r1) (2.75)

is the Fourier transform of the initial state and Cκ,0 is an asymptotic constant which describes the

the ground-state for κr ≫ 1.

The matrix element becomes

Vi(k) = [∣e∣E ⋅ (i∇k)]∫ dr1
eik⋅r

(2π)3/2
ϕi(r1) =

−iCκ,0(2κ)1/2

π(k2 + κ2)2
[∣e∣Ekz] (2.76)
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after inserting

ϕ̃i(k) =
√
κ

2

Cκ,0

π(k2 + κ2)
. (2.77)

The amplitude is completed by using

∫
t

0
dt1e

(i/h̵)∆εt = e(i/h̵)∆εt/2sinc((1/h̵)∆εt/2)t ≡ δt((1/h̵)∆ε/2)

t→∞ÐÐ→ 2h̵ δ(1) ( h̵
2k2

2m
+ Ip − h̵ω) =

2m

h̵k
δ(1)(k − kf) (2.78)

where h̵kf =
√

2m [h̵ω − Ip] is the final momentum of the ejected electron.

The resulting amplitude is

M(k, t) = − i

2h̵
δt((1/h̵)∆ε/2)

−iCκ,0(2κ)1/2

π(k2 + κ2)2
[∣e∣Ekz] (2.79)

with partial rate

w(k) = lim
t→∞

t−1∣M(k, t)∣2. (2.80)

Using

lim
t→∞

t−1δt((1/h̵)∆ε/2)2 =
2π

vf
δ(1)(k − kf) (2.81)

with

mvf = h̵kf =
√

2m(h̵ω − Ip) (2.82)

yields

w(k) = m

2h̵3
δ(1)(k − kf)

C2
κ,0(2κ)

π(k2f + κ2)4
[∣e∣2E2kf cos2 θk] . (2.83)

Hence, angular distributions are given by

dλ

dΩ
= ∫

∞

0
dk k2w(k) = m

2h̵3
C2
κ,0(2κ)

π(k2f + κ2)4
[∣e∣2E2k3f cos2 θk] (2.84)

and

dλ

d(cos θk)
= ∫

π

−π
dφk

dλ

dΩ
= m
h̵3

C2
κ,0(2κ)

(k2f + κ2)4
[∣e∣2E2k3f cos2 θk] (2.85)

where the ionization rate is determined by

λ = 4m

3h̵3
C2
κ,0κ

(k2f + κ2)4
[∣e∣2E2k3f ]

kf→0
ÐÐÐ→

4mC2
κ,0

3h̵3κ7
∣e∣2E2k3f ∝ k

2lf+1
f (2.86)
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which follows the expected k
2lf+1
f (lf = 1) near-threshold scaling [27, 29, 172]. Exactly the same

steps are followed in the case of more complicated atomic potentials where ϕi(r) and ϕ
(−)
k (r) are

calculated numerically. This approach is taken in Chapter 6.
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10 -3
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n
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golden rule

Figure 2.2: Comparison of the total ionization yield between Fermi and Dirac’s golden rule and the

time-dependent Schrödinger equation. The linearly polarized field has an intensity of I = 1 × 1014

W/cm2, duration of 16 cycles and wavelengths between 10 nm and 91.928 nm.

In Fig. 2.2 we plot the zero-range total ionization yield

Nion = 1 − exp [−λ(Ncycles
2π

ω
)] (2.87)

(solid line) for a 16 cycle laser at I = 1 × 1014 W/cm2 for wavelengths between 10 nm and 91.928

nm, with the longest wavelength corresponding to h̵ω = Ip = 13.6 eV. For comparison the blue dots
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in Fig. 2.2 correspond to the numerical solution of the TDSE using 8th order B-splines (which will

be discussed in Chapter 3) where the ground state is described by the Yukawa potential

Va(r) = −
Z ∣e∣2

r
e−r/a (2.88)

with a range of one fifth of a Bohr radii (a = a0/5), Z chosen such that Ip = 13.6 eV and Cκ,0 is

fit to the asymptotic tail of the exact ground state. The TDSE calculations use a monochromatic

16 cycle flat-top pulse which smoothly turns both on an off using a 2 cycle sin2 ramp function.

Differences in the two plots correspond to errors introduced by the asymptotic ground state and

the fact that we are not including the shape of the envelope in the analytic calculations.

2.2.1 Perturbative multi-photon ionization

Expanding Eq. (2.11) to second order

Ψ(2)(x) = ∫ d4x2G0(x;x2) [∣e∣E(t2) ⋅ r2]∫ d4x1G0(x2;x1)[∣e∣E(t1) ⋅ r1]ϕi(x1)

= ∫ d4x2G0(x;x2) [∣e∣E(t2) ⋅ r2]Ψ(1)(x2) (2.89)

describes the lowest-order two-photon correction where

Ψ(1)(x) = ∫ d4x1G0(x;x1)[∣e∣E(t1) ⋅ r1]ϕi(x1) (2.90)

corresponds to the first order correction as before. In Chapter 6 we will apply these formulas

to Helium in the case of a poly-chromatic field generated from high-order harmonic generation.

Assuming conditions described in the next section are met, Eq. (2.11) can be applied iteratively to

generate higher photon amplitudes where factors containing e−iωtj (eiωtj ) describe the absorption

(emission) of a single photon during the j−th process.

2.3 Breakdown of perturbation theory

Several criteria exists which must all be simultaneously satisfied for the validity of perturba-

tion theory. Following Ref. [101] we will outline some of the simplest ones.
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2.3.1 Coulomb force

The first criterium for the applicability of perturbation theory corresponds to the fact that

the force associated with the external (laser) field must be significantly weaker than the Coulomb

force binding a free electron to the atomic core. Here, we approximate the Coulomb force at an

electronic distance of one Bohr radius a0 in Hydrogen as

∣FCoul(r)∣ =
∣e∣2

r2
∼ ∣e∣

2

a20
(2.91)

where the force applied by the electric field is

∣FL∣ = ∣e∣E. (2.92)

Setting these two quantities equal to one another, we obtain the characteristic electric field

and intensity

Ea.u. ≡
∣e∣
a20
= 5.14 × 109 V/cm⇒ Ia.u. =

c

8π
E2

a.u. = 3.51 × 1016 W/cm2 (2.93)

binding the electron to the atomic core. For perturbation theory to be valid the external field

amplitude E must satisfy

E ≪ Ea.u. (2.94)

and therefore not significantly distort the ground state orbital motion.

2.3.2 Bound state intensity parameter

The second parameter we will describe relates the energy of a single photon h̵ω to the power

broadening of a level due to the application of a strong field ∣e∣Ea0 where the characteristic scale

a0 is the Bohr radius of the atom related to the ionization potential by Ip = h̵2/2ma20 and E is the

field amplitude. The ratio

γ = h̵ω

∣e∣Ea0
(2.95)

is referred to as the Keldysh parameter [98]. When this value is significantly greater than one

(γ ≫ 1) the level broadening is small compared to the energy contained in a single quanta. When
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(γ ≪ 1) the level broadening is large compared to the photon energy and the number of photons

needed to transition between levels is indefinite.

In the literature Reiss [146] has introduced a more convenient ”bound-state” intensity pa-

rameter

z1 =
2Up

Ip
= 1

γ2
, (2.96)

which re-expresses the Keldysh parameter in a way that it relates the ionization potential of the

initial bound state Ip to the time averaged quiver energy

Up ≡
1

2
mω⟨x(t)2⟩T =

∣e∣2E2

4mω2
(2.97)

of a free electron in an external field.

One typically refers to γ ≫ 1 as the (perturbative) multi-photon regime since associating

features with a particular photon process is possible. Here, processes involving fewer photons are

most probable. The γ ≪ 1 limit is referred to as tunneling ionization where many different photon

orders (possibly infinite) contribute to processes. In this limit the field-free atomic system is no

longer a good reference. It is important to recognize that multi-photon processes are still responsible

for ionization, but perturbation theory fails. Processes involving a large number of photons can

contribute more than lower order processes.

In the static limit (γ = 0), ionization becomes tunneling through a time-independent barrier

[107]. The electronic ground state of an atom like Hydrogen [124] is shifted and broadened by the

electric field F (in atomic units) as it increases. The energy follows the form

E(F ) = ε(F ) − i
2

Γ(F ) (2.98)

where Γ(F )/h̵ describes the tunneling rate out of the Coulomb potential [132]. Perturbatively

correcting the Hydrogen ground state as in Ref. [142] one obtains the expansion

E(F ) ∼ −1

2

∞
∑
n=0

en (
F

4
)
2n

(2.99)

where en are real coefficients that grow factorially. This expansion is real and therefore cannot

describe Γ(F ) and the ionization process.



23

2.3.3 Continuum state intensity parameter

The third parameter we will discuss relates the quiver energy of a free electron to the energy

contained in a single field quanta

z =
Up

h̵ω
(2.100)

which Reiss has called the ”continuum-state” intensity parameter [146]. A classical electron inter-

acting with a time-dependent electric field accumulates a time-averaged kinetic energy Up. If a large

number of photons with energy h̵ω are required to describe the classical motion, then the process

is inherently non-perturbative. In Chapter 5 we will expand the non-perturbative amplitude for

ionization in a strong circularly polarized field in a series with respect to z1 and z, and show that

as the laser wavelength increases so do z1 and z necessitating increasingly higher order terms.

In Fig. 2.3 we plot shaded regions where E < Ea.u., z1 < 1 and z < 1. For given laser parameters

perturbation theory is limited by the continuum state intensity parameter z. The dark red shaded

region corresponds to z < 0.1 corresponding to a region where perturbation theory should be valid.

An intensity estimate of 2.6 × 1012 W/cm2 for ionization by a Ti-sapphire laser (800 nm) is noted

by a horizontal and vertical line within the Figure.
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Figure 2.3: Shaded regions correspond to regions where E < Ea.u. (blue), z1 < 1 (green), z < 1 (red)
and z < 0.1 (dark red). An estimate for the applicability of perturbation theory is given by the
dark red region. The vertical grey line corresponds to a laser wavelength of 800 nm, at which an
intensity of 2.6 × 1012W/cm2 (horizontal line) marks the limit where perturbation theory would
approximately break down for a Ti-sapphire laser.



Chapter 3

Non-perturbative Theory of Light-Matter Interaction

Attempts made at modeling (non-perturbative) strong field ionization dates back to at least

Oppenheimer in 1928 [132] where an expansion similar to the golden rule [47, 62] was generated

for the ionization of Hydrogen by a strong static field where the final scattering states of Sec.

2.2 have been replaced by states of an otherwise free electron in a static field (Airy functions).

Later in 1964 Keldysh applied essentially the same method to time-dependent fields and derived

the ionization amplitude [98]. In Keldysh’s work the quasi-classical method of steepest descent

was applied to approximate time-integration and the final continuum states have been replaced

by states of a free electron propagating in a dynamic electric field (Volkov states [98, 165]). The

quasi-classical approximation allows for a clear classical interpretation, but fails in the ultraviolet

limit where exact (fully quantum) time integration must be performed. In Chapter 5 we discard

the quasi-classical approximation in our own work where we have further extended Oppenheimer’s

and Keldysh’s amplitude into the ultraviolet limit. Our first-order amplitude is valid for arbitrary

initial and final states, but just as in Refs. [98, 132] higher order approximations are required to

describe long-range potentials. We will focus on the first-order expansion for this thesis, but the

exact same method can be applied recursively to generate higher order corrections.

In the first section of this Chapter we will describe numerical solutions to the time-dependent

problem of ionization by a finite pulse which will be used in subsequent Chapters. Afterwards we will

discuss the main ingredients required to build the strong field approximation [57,98,107,132,136,146]

and key models that have motivated us to form our own approach. The goal here is to summarize
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the points that have influenced our own work and not to determine which models are ”best” or

provide a complete review. We will try our best to respect the original works and emphasize key

points, but our derivation may deviate at times.

Our starting point is the idea of contour deformation and asymptotic approximations of

oscillatory integrals. Direct integration of integrals encountered in strong-field ionization are either

cumbersome or not available. Asymptotic approximations are able to extract simplified properties

of a system in some reduced parameter space. These ideas are immediately applied to the quantum

propagation of a free electron in a static external field where we will recover the classical equations

of motion and describe quantum turning point behavior. Next, we will apply Oppenheimer’s

model [132] to describe the transition of a bound electron into the before mentioned states of

an electron propagating in an external field. For hydrogen atom (and all long-range potentials)

the final state must somehow include the influence of the atomic potential. Although mostly

correct, Oppenheimer’s rate [132] is missing a constant proportionality factor recovered by the

s-state Landau and Lifshitz model [107] which includes the influence of both the Coulomb and

laser interaction in the final state. Afterwards, we will average the static ionization rate of a long-

wavelength field over a laser cycle to generate the so-called adiabatic ionization rate [5, 136]. At

shorter wavelengths the adiabatic approximation breaks down and the ionized electron must be

described by a final (Volkov) state which is determined by the full time-dependent electric field as

we will discuss. We will finally discuss the non-adiabatic rate given in Ref. [98] on which our own

method is based on and the complementary methods of Perelomov, Popov and Terent’ev [136] as

well as of Reiss [146] which have also influenced our approach.

3.1 Numerical solution

The most straightforward way of modeling strong-field problems for which perturbation the-

ory fails is the direct numerical solution of the time-dependent Schrödinger equation. Ψ(x) is
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represented in spherical-polar coordinates where the state is expanded as

Ψ(x) =∑
l,m

χl,m(r, t)
r

Y m
l (r̂) (3.1)

in the basis of spherical harmonics over θ and ϕ and the radial function χl,m(r, t) is either represented

on a grid or expanded in some basis.

Finite-difference methods correspond to approaches where χl,m(r, t) is represented on a grid

with points at rj = jδr where j = 1,2, . . . ,Nr and rmax = rNr represents the edge of a finite ”box”.

r and functions f(r) are represented by a diagonal matrix evaluated at each rj . To cope with

outgoing ionized wave-packets that would otherwise reflect off the edge of the ”box” at r = rmax,

exterior complex scaling [78] is used where δr ↦ eiηδr at points rECS ≤ r ≤ rmax where, the derivative

d2

dr2
↦ e−2iη

d2

dr2
(3.2)

and η = −π/4 has been used. Oscillatory functions eikr corresponding to the kinetic energy k2/2

are replaced by −ik2/2 and exponentially suppressed. Assuming the region rECS ≤ r ≤ rmax is wide

enough and η is chosen appropriately the wave-packet is exponentially diminished as a function of

time.

For derivatives multiple different Taylor series are taken about some point rj which are added

together with appropriate weights such that all terms lower than the desired derivative vanish and

higher order terms correspond to some truncation error. The general procedure is referred to as

Fornberg’s method [64]. Using a second-order approximation in the case of the second derivative

centered about rj one has

d2

dr2
f(r)↦

f(rj−1) − 2f(rj) + f(rj+1)
(δr)2

(3.3)

where f(0) and f(rNr+1) are equal to zero and omitted. At fourth order the central difference

becomes

d2

dr2
f(r)↦

−(1/12)f(rj−2) + (4/3)f(rj−1) − (5/2)f(rj) + (4/3)f(rj+1) − (1/12)f(rj+2)
(δr)2

(3.4)
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for points corresponding to j = 2,⋯,Nr − 1 and the forward difference

d2

dr2
f(r)∣

r=r1
↦ −20f(r1) + 6f(r2) + 4f(r3) − f(r4)

12(δr)2
(3.5)

at r1 and a similar backward difference at rNr to deal with the end of the box.

For the radial functions we have used both approximate states of the field-free atomic Hamil-

tonian [36] or B-splines. For the basis of atomic states,

[−1

2

d2

dr2
+ l(l + 1)

2r2
+ Va(r) − iW (r)]χn,l(r) = En,lχn,l(r) (3.6)

is diagonalized (as a finite-difference representation) within a finite box where the complex absorbing

potential W (r) [178] suppresses wave-packets in the absorbing region at the end of the box.

Since the Hamiltonian is no longer Hermitian the energy

En,l = εn,l −
i

2
wn,l (3.7)

is now complex where wn,l corresponds to the rate with which each state leaves the box and states

are normalized as

∫
rmax

0
dr χn,l(r)2 = 1 (3.8)

with χn,l(r) ∈ C [129]. For deeply bound states wn,l ≈ 0 and χn,l(r) is approximately a real

function. For the B-spline method we expand the radial coordinate similarly as in Refs. [1, 10, 15]

where exterior complex scaling has been implemented as in Ref. [123].

For time-integration of all methods described in this section, we have applied the Crank-

Nicolson method where the known state ∣Ψ(t)⟩ at time t is used to determine the state ∣Ψ(t + δt)⟩

at a later time from the solution of

[S + (iδt/2)H(t)] ∣Ψ(t + δt)⟩ = [S − (iδt/2)H(t)] ∣Ψ(t)⟩, (3.9)

where ∣Ψ(t)⟩ is a numerical representation of the state (column vector), H(t) is the discritized

Hamiltonian (matrix) and S is an overlap matrix between states of the numerical expansion. S
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is exactly the identity matrix I for basis sets corresponding to orthonormal atomic states or grid-

points. In contrast, off-diagonal elements of S are nonzero for non-orthogonal basis-sets such as

B-splines.

Although methods discussed in this section are nearly exact in the limit of converged param-

eters difficulties arise from both the amount of time and computing resources needed for converged

calculations. In view of this as well as the need for approximate analytic models to physically inter-

pret numerical results, in the following sections as well as in Chapter 5 we will discuss perturbation-

like approximations to strong-field problems which are able to help interpret numerical results and

give a clear physical picture.

3.2 Contour deformation

Often when computing amplitudes, integrals of the form

I(s) = ∫
C
dz e−sf(z) (3.10)

are encountered where, in general, the function f is complex valued and C is some arbitrary

contour. In the limit of large s the imaginary part of f causes the integrand to oscillate rapidly

where the resulting cancellations obscure the behavior of I(s). When f is analytic one can deform

the contour of integration such that the function f is almost entirely real-valued over the new

deformed contour C ′. On this new deformed contour the now slowly oscillating integrand allows

for a clearer interpretation. As an example, we now apply this idea to extract the asymptotic

behavior of a Bessel function Jν(s) (ν > −1/2) in the large s limit.

3.2.1 Application to Bessel functions

Before applying this method to derive amplitudes we will sketch the simplest example pre-

sented in Appendix A of Ref. [155]. Intuition gained in this part is important to define the rate [98]

from which our own method is derived. For index ν > −1/2 we may define the Bessel function as

Jν(s) =
(s/2)ν

Γ(ν + 1/2)Γ(1/2) ∫
1

−1
dxeisx(1 − x2)ν−1/2 (3.11)
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which only provides a simple representation in terms of elementary functions for half-integer ν [107]

where

Jn+1/2(s) =
√

2s

π
jn(s) (3.12)

with

jn(s) = (−s)n (
1

s

d

ds
)
n sin s

s
(3.13)

for integer n.

For arbitrary ν > −1/2 we may extract the s→∞ behavior by defining

I(s) = ∫
1

−1
dxeisx(1 − x2)ν−1/2 , (3.14)

where we immediately recognize that the eisx product in the integrand rapidly oscillates obscuring

the asymptotic behavior of I(s). Realizing that f(z) = eisz(1 − z2)ν−1/2 is an analytic function

we may further define the closed loop contour CR,ϵ which contains no singularities for all R, ϵ > 0

(c.f., Fig. 3.1). Taking the limit R → ∞, ϵ → 0+ we may define the closed loop contour C =

limR→∞, ϵ→0+ CR,ϵ where the contribution from the line segment z = −1 to z = 1 describes the

desired integral I(s). I±(s) describes the integrand from z = 1 to z = 1 + i∞ (I+(s)) and the

integrand from z = −1 + i∞ to z = −1 (I−(s)). Finally, the contribution IR(s) is defined from

z = 1+ i∞ to z = −1+ i∞, which closes the loop. Since f(z) is an analytic function we immediately

see that I(s) + I+(s) + I−(s) + IR(s) = 0. Furthermore, there exists some A, c > 0 such that ∣f(z)∣ =

e−sR∣(1−(x+iR)2)ν−1/2∣ < Ae−cR, and we immediately see that the contribution IR(s) tends towards

zero as R → 0 yielding I(s) = −I+(s) − I−(s). Here, I±(s) has a simpler asymptotic behavior since

the integrand oscillates slowly with an exponential decay factor ∣eisz ∣ = e−sy.
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Figure 3.1: Contour of integration CR,ϵ (left). Taking the limit as R → ∞ and ϵ → 0+ defines the

contour C from which I(s), I±(s) and IR(s) are defined (right). Taking the limit R → ∞ forces

IR(s)→ 0 and taking the limit ϵ→ 0+ allows C to avoid the branch points z = ±1 of (1 − z2)ν−1/2.

Writing

I±(s) = ie±is∫
∞

0
dy e−sy(1 − (±1 + iy)2)ν−1/2 (3.15)

we may now approximate the integrand f(z) to extract the asymptotic behavior of I±(s) yielding

the behavior of I(s). To this end, we may expand the polynomial factor as

(1 − (±1 + iy)2)ν−1/2 =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

(∓2iy)ν−1/2 +O(yν+1/2) 0 ≤ y ≤ 1

O(y2ν−1 + yν−1/2) 1 < y.
(3.16)

Since as s → ∞, e−sR falls off faster than all polynomial orders we may replace the polynomial

factor with the 0 ≤ y ≤ 1 contribution alone yielding the Laplace transform

I±(s) = ∫
∞

0
dy e−sy [(∓2iy)nu−1/2 +O(yν+1/2)] = 2ν−1/2

sν+1/2
Γ(ν + 1/2)e±i(s−ν

π
2
+ 3π

4
) +O(s−ν−3/2). (3.17)
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Combining these contributions we immediately see that

Jν(s) =
√

2

πs
cos(s − ν π

2
− π

4
) +O(s−3/2). (3.18)

Although determining the exact behavior of Jν(x) is difficult, we were able to extract the behavior

in the limit s → ∞ for arbitrary ν > −1/2. This idea is essential when approximating Green’s

functions in the long-wavelength limit. As an example in Fig. 3.2 both the approximate and exact

form of J3(s) are plotted.
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Figure 3.2: Comparison of J3(s) with its asymptotic approximation, Eq. (3.18).

3.3 Motion in a static field: Airy functions

In a static field the motion of an otherwise free electron is described by the time-independent

Schrödinger equation

[ p
2

2m
+ ∣e∣E ⋅ r]Φ(r) = εΦ(r) (3.19)

with energy eigenvalue ε and field E = Eẑ in the case of linear polarization. States are determined

by separation of variables where

Φ(r) = Φ⊥(r⊥)Φ∥(z), ε = ε⊥ + εz (3.20)
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describes partitioning of the wave function into a part parallel to the field (∥) along the z−axis and

perpendicular (⊥) part within the x-y plane. Inserting the state into Eq. (3.19) we have

1

Φ∥(z)

⎡⎢⎢⎢⎢⎣

p2op,∥
2m
+ ∣e∣Ez

⎤⎥⎥⎥⎥⎦
Φ∥(z) =

1

Φ⊥(r⊥)
[ε −

p2
op,⊥
2m
]Φ⊥(r⊥) (3.21)

which immediately yields the perpendicular (⊥) plane-wave solution

Φ⊥(r⊥) = Φk⊥(r⊥) =
eik⊥⋅r⊥

(2π)
ε⊥ =

h̵2k2⊥
2m

(3.22)

that describes the expected free propagation.

The left-hand side of Eq. (3.21) describes the motion in the parallel direction and can be

written as Airy’s differential equation [4]

[ ∂
2

∂z2
− (z − zcl)

L3
]Φ∥(z) = 0 (3.23)

with

zcl ≡ ε∥/(∣e∣E), and L ≡ [h̵2/(2m∣e∣E)]1/3. (3.24)

Here it is clear that for values of z to the left of the classical turning point zcl (z < zcl) solutions

are locally oscillatory and to the right of the turning point, solutions either tend towards zero or

are exponentially divergent. Here, we will only concern ourselves with the solutions which tend

towards zero.

Since Airy’s differential equation takes the form

n

∑
m=0
(am + bmx)

dmy

dxm
= 0 (3.25)

Laplace’s method may be applied [68]. The solution [107]

y(x) = ∫
C
dtZ(t)ext (3.26)

is formed from the polynomials

P (t) =
n

∑
m=0

amt
m, Q(t) =

n

∑
m=0

bmt
m (3.27)
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and the function

Z(t) = 1

Q(t)
e∫ dtP (t)/Q(t), (3.28)

where the contour C is chosen such that the integral is nonzero and finite. Note that

V (t) = extQ(t)Z(t) (3.29)

returns to its original value where the contour can either be open or closed.

Starting with

[ ∂
2

∂x2
− x] y(x) = 0 (3.30)

and identifying

P (t) = t2, Q(t) = −1, Z(t) = −e−t
3/3 and V (t) = ext−t

3/3 (3.31)

the solution becomes

y(x) = A∫
C
dt ext−t

3/3 (3.32)

where the integrand goes to zero (Re t3 > 0) at each of its endpoints corresponding to the shaded

region in Fig. 3.3 and A is an arbitrary constant. In Fig. 3.3 the three most important contributions

correspond to contours CA, CB+ and CB− where CA results in a solution y(x) ≡ Ai(x) that goes to

zero at x→ ±∞ and CB± results in a divergent solution for x→∞.
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𝑡𝐶𝐴
𝐶𝐵+

𝐶𝐵−

Figure 3.3: Contours of integration for the integrand ext−x
3/3. The dark triangular regions corre-

spond to zones where the contour may begin or end (e−t
3/3 → 0). CA corresponds to a convergent

solution as x→∞, while CB± correspond to divergent solutions as x→∞.

Here we choose the bounded solutions along the imaginary axis (contour CA in Fig. 3.3,

where t = iφ) corresponding to

y(x) = Ai(x) = 1

2π
∫
R
dφeiφ

3/3+iφx (3.33)

where we have used the normalization convention

∫
R
dzAi(z − x)Ai(z − y) = δ(1)(x − y) (3.34)

yielding

Φz(z) = Φzcl(z) =
1

L
Ai[(z − zcl)/L]. (3.35)

and finally [28]

Φk⊥zcl(r) =
1

2πL
eik⊥⋅r⊥Ai [(z − zcl)/L] . (3.36)

In the next subsection we will use solutions to Eq. (3.19) to describe the motion of a free particle

in a static field.
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3.3.1 Newton’s second law

In this subsection we will use the momentum-space Green’s function G̃(k, t;k′, t′) of Eq.

(3.19) to recover the classical equation of motion

ma = −∣e∣E. (3.37)

Starting with the states in the Schrödinger picture

Φk⊥zcl(x) = e
−(i/h̵)ε(k⊥zcl)t Φk⊥zcl(r) (3.38)

we may write the position-basis Green’s function as

G(x;x′) = − i
h̵
θ(t − t′)∫

R2
dq⊥∫

R
dzcl Φq⊥zcl(x)Φq⊥zcl(x′) (3.39)

and Fourier transform with respect to each coordinate r and r′ to determine the momentum basis

representation

G̃(k, t;k′, t′) = − i
h̵
θ(t − t′)∫

R2
dq⊥∫

R
dzcl Φ̃q⊥zcl(k, t)Φ̃q⊥zcl(k′, t′). (3.40)

Evaluating

Φ̃q⊥zcl(k, t) ≡ ∫R3
dr

e−ik⋅r

(2π)3/2
Φq⊥zcl(x) = δ

(2)(k⊥ − q⊥)
ei(k∥L)

3/3

(2π)1/2
e−(i/h̵)ε(q⊥zcl)t (3.41)

yields

G̃(k, t;k′, t′) = − i
h̵
θ(∆t) δ(1)(∆k∥ + (∣e∣/h̵)E∆t) δ(2)(∆k⊥)

× exp

⎡⎢⎢⎢⎢⎣
−(i/h̵) h̵

2

2m

⎛
⎝
k2∥ + k∥k

′
∥ + k

′2
∥

3
+ k2
⊥
⎞
⎠

∆t

⎤⎥⎥⎥⎥⎦
(3.42)

after integration. h̵k′ describes the momentum of a free electron at time t′ in the past and h̵k

describes the resulting momentum at time t after the influence of E. The displacement in time is

written as ∆t ≡ t − t′ and momentum h̵∆k = h̵(k − k′).

Using properties of the δ-distribution one immediately recognizes the expected classical equa-

tions of motion

F⊥ =
∆p⊥
∆t
= h̵∆k⊥

∆t
= 0 and F∥ =

∆p∥
∆t
= h̵

∆k∥
∆t
= −∣e∣E. (3.43)
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The δ-functions in Eq. (3.42) describe classical evolution of a single momentum state, while the

phase factors correspond to quantum interferences due to initial states composed of multiple plane

wave contributions (for example in an isolated wave-packet).

3.3.2 Asymptotic behavior

Determining the properties of an electron under the influence of a constant field far from the

turning point is an important pre-requisite for describing strong field ionization. Since the Airy

function (as we will soon see) tends towards zero as e−
2
3
∣x∣3/2 , where x = (z − zcl)/L, and therefore

faster than the bound states which fall off as e−κr one immediately recognizes that the asymptotic

tail of the ground-state wave-function is most important for tunneling ionization. Steps taken here

to describe the Airy function will later be applied to determine ionization rates in an alternating

field [98, 136]. We may note that we intend to get results and gain intuition and not to provide a

rigorous proof.

Defining

f(t) = tx − t3/3 (3.44)

we may apply the saddle point approximation to determine the behavior of Ai(x) in the limit of x→

±∞. In section 3.2 we extracted the asymptotic behavior of an integral with an oscillatory integrand

by finding a new contour where the integrand was slowly changing and decayed exponentially. Here

we will do the same by deforming the contour of integration such that it passes through each value

t = ts where f ′(ts) = 0. The exponent is approximated as f(t) ≈ f(ts) + 1
2f
′′(ts)(δt)2 where

δt = t− ts = ηeiϕs and ϕs is chosen such that the coefficient of η2 becomes real. This corresponds to

selecting contours such that Imf(t) is essentially constant (removing oscillations) and the integrand

is built based on sharply-peaked Gaussian contributions corresponding to the approximation

y(z) =∑
s

ef(ts)+iϕs ∫
R
dη e(η

2/2)f ′′(ts)e2iϕs (3.45)

for complex z. It is assumed that the integrand is sharply peaked at each ts, where the precise

shape of the contour is unimportant as long as it passes through the saddle points at an angle ϕs.
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This procedure causes difficulties for the Airy function since

f ′(ts) = x − t2s = 0→ ts± = ±
√
x, f ′′(ts±) = ∓2

√
x, and f(ts±) = ±

2

3
x3/2 (3.46)

corresponds to a multi-valued integrand with branch cuts, where the original integrand was entire.

Qualitatively, this imposes restrictions on which contours are allowed.

Starting with the relatively simple case of x→ −∞ with

ts± = ±i
√
∣x∣, f ′′(ts±) = ±2i

√
∣x∣, and f(ts±) = ∓i

2

3
∣x∣3/2 (3.47)

we want the contour to start in the bottom-left shaded region and end up in the top-left shaded

region of Fig. 3.4 while traveling along steepest descent curves through ts defined by ϕs. Letting

x→ −∞ we have ϕs− = π/4 and ϕs+ = 3π/4 where we may easily draw a contour from the bottom-left

dark region through the saddle point ts− at an angle of π/4 to
√
∣x∣ and then through the saddle

point ts+ at an angle of 3π/4 described in Fig. 3.4.

𝑡

𝑡 = −𝑖 |𝑥|

𝑡 = 𝑖 |𝑥|

Figure 3.4: Plot of the real part of f(t) where t = tr + iti. Integration contours connecting the

bottom-left and top-left regions are chosen such that they pass through the saddle points in a

direction that the imaginary part of the exponent is constant.
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Near the origin of the contour, the real part of f(t) is large and negative resulting in a small

contribution to the total integral compared to contributions from the points ts± meaning that the

precise orientation of the contour is unimportant far from the saddle points as long as they locally

pass through the saddle points at an angle ϕs with respect to the real-axis. Along this first segment

the integral therefore accumulates a partial contribution

1

2
√
πi
∣x∣−1/4 exp [i(2

3
∣x∣3/2 + π

4
)] (3.48)

where we have assumed that the Gaussian is so sharply peaked that the bounds of integration for

η may extend from minus infinity to infinity. The contour of integration lies between the large

positive valued ”ridges” of Ref(t).

After passing through ts− the contour now resides in the right-most dark region where again

the integrand is small and contributions can be neglected. To arrive at the desired top left shaded

region we must pass through ts+ along a contour described by the angle ϕs+ between the ”ridges”

of Ref(t) yielding the contribution

− 1

2
√
πi
∣x∣−1/4 exp [−i(2

3
∣x∣3/2 + π

4
)] . (3.49)

and the overall approximation

Ai(x) x→−∞ÐÐÐ→ 1√
π
∣x∣−1/4 sin(2

3
∣x∣3/2 + π

4
) . (3.50)

For x→∞ the situation becomes more complicated. From

f ′(ts) = ∣x∣ − t2s = 0→ ts± = ±
√
∣x∣, f ′′(ts±) = ∓2

√
∣x∣, and f(ts±) = ±

2

3
∣x∣3/2 (3.51)

we immediately have that ϕs+ = 0 and ϕs− = π/2 corresponding to the yellow and purple curves in

Fig. 3.5 where we again want to determine a suitable contour connecting the top left and bottom left

triangular regions of Fig. 3.3. To achieve this goal we will determine contours where the imaginary

part of the exponent is zero and which connect the two regions.
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𝑡

𝑡 = |𝑥|𝑡 = − |𝑥|

Figure 3.5: Plot of the real part of f(t) where t = tr + iti. Integration contours connecting the

bottom-left and top-left regions are chosen such that they pass through the saddle points in a

direction that the imaginary part of the exponent is constant. Here only the saddle point at

t = −
√
∣x∣ contributes to the integral since t =

√
∣x∣ connects the bottom left region to the right-

most region describing divergent solutions.

Writing t = tr + iti (tr, ti ∈ R) we have

Imf(t) = 0⇒ tr = ±
√
x + t2i /3 or ti = 0 (3.52)

where only the solution tr = −
√
x + t2i /3 connects the desired regions. Defining a contour which

accumulates a contribution from t = −
√
∣x∣ connecting the bottom-left and top-left regions is straight

forward. We may use the contour mentioned above to pass through the saddle point t = −
√
∣x∣.

Since the integrand is essentially zero everywhere except through the saddle point we may replace

the contour with a vertical line passing through ts− and the job is done.

Deforming the contour such that it passes through t =
√
∣x∣ we are stuck in the right-most

shaded region in Fig. 3.3, which describes exponentially divergent solutions to Airy’s differential

equation. The only way to return the contour back to the top-left region is by crossing ”ridges”
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perpendicular to t =
√
∣x∣ which is ”forbidden”. The approximation therefore only includes the

solution corresponding to the saddle point t = −
√
∣x∣ along the path of ”steepest descent” forming

the approximation

Ai(x) x−>∞ÐÐÐ→ 1

2
√
π
∣x∣−1/4e−

2
3
∣x∣3/2 (3.53)

Plotting Ai(x) with each of its asymptotic solutions, we see acceptable agreement as early as ∣x∣ ≳ 2

in Fig. 3.6.

-20 -15 -10 -5 0 5
-0.5

0.0

0.5

1.0

x

Airy comparison

Ai(x)

AsymAi(x)

Figure 3.6: Airy function (blue), compared with the asymptotic approximations for x → ∞ (Eq.

(3.53), orange x > 0) and x→ −∞ (Eq. (3.50), orange x < 0).

3.4 Ionization by a static field

In section 2.3 we have shown that modeling the ionization of Hydrogen by a static electric

field is not possible at any order of (the standard) perturbation theory. In this section we will

describe two different approaches towards ionization of an atom by a static electric field.

The first approach given by Oppenheimer essentially follows the golden rule expansion of
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section 2.2 where the final scattering state has been replaced with states of an electron in a static

field, as discussed in the prior section. Methods we will discuss later for ionization by dynamic

fields follow this idea. The Airy functions in section 3.3 are replaced by the time-dependent states

of an electron in a time-dependent field (section 3.5). For long-range potentials these methods

require higher order corrections or additional modifications since the final state does not see the

atomic potential.

The second approach which is able to predict the correct ionization rate for Hydrogen is given

by Landau and Lifshitz. The final ionized state is described by the atomic ground-state whenever

the atomic potential is significantly stronger than the field-interaction. The Wentzel–Kramers–Brillouin

(WKB) approximation is used to include both the field-interaction and atomic potential wherever

both contribute.

3.4.1 Oppenheimer’s rate

In this section we will use states of the electron in a static field discussed in the prior section to

approximate the static field rate. The original work [132] contained errors in the derivation. Later

in Ref. [177] the corrected version was reported with no derivation. We will therefore systematically

derive the corrected rate and find our own way to the results of Ref. [177]. Keldysh [98] (section

3.6.1) uses the exact same method to describe ionization of an atom in an alternating field where

the Airy functions of section 3.3 are replaced by the Volkov states of section 3.5 which describe

motion of an electron in a dynamic field. In Ref. [98] and similarly in Ref. [136] the ionization rate

was derived using a similar contour deformation approach as discussed in section 3.2 and the saddle

point approximation (see section 3.3.2) which is valid for sufficiently low laser frequencies. In our

own work (chapter 5) we will generalize the work in Refs. [98, 132,136] to arbitrary frequencies.

We start with the Hamiltonian

H(x) =Ha(x) + VDC(r) (3.54)
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which is partitioned into an atomic contribution and a field interaction

Ha(x) =
p2

2m
−Z ∣e∣

2

r
, VDC(r) = ∣e∣E ⋅ r and E = Eẑ (3.55)

as before where the initial 1s state is given as

ϕi(x) = e(i/h̵)Iptϕi(r) and ϕi(r) =
κ3/2√
π
e−κr. (3.56)

with ionization potential and bound-state κ-vector

Ip =
h̵2κ2

2m
and κ ≡mZ ∣e∣2/h̵2. (3.57)

The rate is determined by expressing the exact wave function Ψ(x) with the initial-state Lippmann

Schwinger equation where

Ψ(x) = ϕi(x) + ∫ d4x1G(x;x1)[∣e∣E ⋅ r1]ϕi(x1). (3.58)

In the standard perturbation theory one would continue by expanding the exact Green’s function

G(x;x1) up to higher orders with respect to the atomic Green’s function Ga(x;x′) of Ha(x) and

rest interaction [∣e∣E ⋅r]. Unfortunately, such a perturbation series breaks down as described in the

prior section and therefore an alternative expansion is required.

Oppenheimer’s approach involved now expressing G(x;x1) by the final-state Lippmann

Schwinger equation

G(x;x1) = GDC(x;x1) + ∫ d4x2GDC(x;x2) [−Z
∣e∣2

r2
]G(x2;x1) (3.59)

where GDC(x;x′) describes the otherwise free propagation of an electron in a static field corre-

sponding to

HDC(x) =
p2

2m
+ ∣e∣E ⋅ r (3.60)

as discussed in a prior section.

SettingG(x2;x1) ≈ GDC(x2;x1) we immediately arrive at the first and second order correction

Ψ(1)(x) = ∫ d4x1GDC(x;x1)[∣e∣E ⋅ r1]ϕi(x1) (3.61)
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and

Ψ(2)(x) = ∫ d4x2GDC(x;x2) [−Z
∣e∣2

r2
]∫ d4x1GDC(x2;x1)[∣e∣E ⋅ r1]ϕi(x1) (3.62)

as given in Ref. [132]. Here, Ψ(1)(x) intuitively describes the transition of the initial ground state

ϕi(x) into a free particle state accelerating down the ∣e∣E⋅r potential surface, while Ψ(2)(x) describes

the same exact process where the ejected electron may scatter once of the atomic potential −Z ∣e∣2/r

before again propagating as a free particle down the surface ∣e∣E ⋅ r. G(x;x′) can be expanded up

to arbitrary order in −Z ∣e∣2/r although convergence is not guaranteed (just as in any perturbation

series). Although the first and second order terms were introduced in Ref. [132] only the first order

contribution was considered.

The rate is determined by considering

M(k⊥, zcl, t) ≡ ∫
R3
drΦk⊥zcl(x) [Ψ(x) − ϕi(x)] ≈M

(1)(k⊥, zcl, t) (3.63)

which corresponds to

M(1)(k⊥, zcl, t) = (−
i

h̵
)∫ d4x1 Φk⊥zcl(x1) [∣e∣E ⋅ r1]ϕi(x1)

= (− i
h̵
)∫

t

0
dt1Vi(k⊥, zcl) e(i/h̵)∆ε(k⊥,zcl)t1 (3.64)

where

∆ε(k⊥, ztp) ≡ ε⊥ + ε∥ + Ip (3.65)

and

Vi(k⊥, zcl) ≡ ∫ drΦk⊥zcl(r) [∣e∣E ⋅ r]ϕi(r). (3.66)

Time-integration may be immediately performed as

∫
t

0
dt1e

(i/h̵)∆εt = e(i/h̵)∆εt/2sinc((1/h̵)∆εt/2)t ≡ δt((1/h̵)∆ε/2) , (3.67)

where in the t→∞ limit the energy conservation law

zcl = −
1

∣e∣E
(ε⊥ + Ip) < 0 (3.68)
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is satisfied. Electrons have zero parallel velocity at the tunnel exit and as the perpendicular

momentum at ionization, k2
⊥, increases, states corresponding to the classical turning points zcl are

pushed further away from the Coulomb potential. For ε⊥ = 0, Fig. 3.7 shows the atomic potential

and the laser interaction as well as the initial- and final-state wave-functions for F = 0.05 a.u..

classical turning
point zcl
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Oppenhimer model for the tunnel ionization of Hydrogen
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Figure 3.7: Sketch of components required to compute the Oppenheimer rate. Blue represents the

initial 1s state of hydrogen atom, orange shows the final continuum state Φk⊥,zcl(r) (with k⊥ = 0),

green represents the field free Coulomb potential and red depicts the DC Stark potential. The

classical turning point zcl = −10 a.u. is noted for a field-strength of F = 0.05 a.u.. For F → 0

ionization is determined by the tail of the initial bound-state alone (Eq. (3.92)).

Completing the amplitude involves computing the overlap matrix element

Vi(k⊥, zcl) = ∫
R2
dr⊥

e−ik⊥⋅r⊥

(2π) ∫R
dz

1

L
Ai [(z − zcl)/L] [∣e∣Ez]

κ3/2√
π
e−κ
√
r2⊥+z2 . (3.69)

For the 1s-state of Hydrogen, the ionization amplitude in the perpendicular r⊥ direction has cylin-
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drical symmetry around the z-axis allowing for the simplification

∫
R2
dr⊥

e−ik⊥⋅r⊥

(2π)
=

∞
∑

m=−∞
(−i)m∫

∞

0
dr⊥r⊥ Jm(k⊥r⊥)∫

π

−π

dφr

(2π)
eim(φk−φr) = ∫

∞

0
dr⊥r⊥ J0(k⊥r⊥).

(3.70)

Utilizing Ref. [69]

∫
∞

1
dxJ(α

√
x2 − 1)e−βx = 1√

α2 + β2
e−
√
α2+β2

, (3.71)

the perpendicular contribution

∫
∞

0
dr⊥r⊥ J0(k⊥r⊥)e−κ

√
r2⊥+z2 = (− ∂

∂κ
)∫

∞

∣z∣
dr J0(k⊥

√
r2 − z2)e−κr

= ∣z∣ (− ∂
∂κ
)∫

∞

1
duJ0(k⊥∣z∣

√
u2 − 1)e−κ∣z∣u = κ

k2⊥ + κ2
⎡⎢⎢⎢⎣
∣z∣ + 1√

k2⊥ + κ2
⎤⎥⎥⎥⎦
e−
√
k2⊥+κ2∣z∣ (3.72)

is complete.

Defining K ≡
√
k2⊥ + κ2, the final parallel contribution

Vi(k⊥, zcl) =
∣e∣E√
π

κ5/2

K2
( 1

K
− ∂

∂K
)∫

R
dz z

1

L
Ai [(z − zcl)/L] e−K∣z∣∣

K=
√
k2⊥+κ2

(3.73)

must now be computed. The integral over z is evaluated by using the variable substitution u =

(z − zcl)/L:

∫
R
dz z

1

L
Ai [(z − zcl)/L] e−K∣z∣ = ∫

R
du (Lu − ∣zcl∣)Ai(u)e−K∣Lu+zcl∣ (3.74)

and partitioning the integral into two parts:

∫
R
du (Lu − ∣zcl∣)Ai(u)e−K∣Lu+zcl∣

= ∂

∂K
[e−K∣zcl∣∫

∣zcl∣/L

−∞
duAi(u)eKLu − eK∣zcl∣∫

∞

∣zcl∣/L
duAi(u)e−KLu] (3.75)

corresponding to each piecewise portion of ∣z∣. The second integral from ∣zcl∣/L to infinity may

be neglected in the weak field E → 0 limit where the bound of integration ∣zcl∣/L goes to positive

infinity and the magnitude of the Airy function falls off faster than Ae−αu for all A,α > 0 as u→∞

since

Ai(u) u→−∞ÐÐÐ→ 1

2
√
π
∣u∣−1/4e−

2
3
∣u∣3/2 . (3.76)
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The first integral is evaluated with the help of the Heaviside step function

θ(∣zcl∣ −Lu) = lim
η→0+

1

2πi
∫
R

dτ

τ − iη
ei(∣zcl∣−Lu)τ (3.77)

to give

∫
R
duAi(u)epu = ep

3/3 (3.78)

where

∫
∣zcl∣/L

−∞
duAi(u)eKLu = lim

η→0+
1

2πi
∫
R

dτ

τ − iη
ei∣zcl∣τe[(K−iτ)L]

3/3 = 1

2
e(KL)3/3. (3.79)

In Eq. (3.79) the integral over τ was determined using the Sokhotski–Plemelj theorem [125,139,154]

lim
η→0+

−i
x − iη

= πδ(x) − ip.v.
1

x
. (3.80)

where we will show that the term corresponding to the Cauchy principal value (p.v.) is negligible

in the E → 0 limit.

Here

p.v.∫
R

dτ

τ
ei∣zcl∣τe[(K−iτ)L]

3/3 = e(KL)3/3 p.v.∫
R

dτ

τ
ei(∣zcl∣−K

2L3)τei(τL)
3/3e−L

3Kτ2 . (3.81)

To show that this term is negligible one must consider that the p.v. integral after the e(KL)3/3 factor

on the right hand side is significantly smaller than 1/2. Since the overall integral is real we should

expect that the real part of the p.v. integral is identically zero. Explicitly writing it out we have

Re [p.v.∫
R

dτ

τ
ei(∣zcl∣−K

2L3)τei(τL)
3/3e−L

3Kτ2]

= p.v.∫
R

dτ

τ
cos[(∣zcl∣ −K2L3)τ + (τL)3/3]e−L

3Kτ2 (3.82)

which is zero since we have an odd integrand over an even interval.

Investigating the imaginary part we have

Im [p.v.∫
R

dτ

τ
ei(∣zcl∣−K

2L3)τei(τL)
3/3e−L

3Kτ2]

= ∫
R

dτ

τ
sin[(∣zcl∣ −K2L3)τ + (τL)3/3]e−L

3Kτ2 . (3.83)
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Since the sin-function has a zero at τ = 0, the first order pole exactly cancels out.

To the best of our knowledge, there is no analytic solution to this integral, therefore we will

bound it from above and show that as E → 0 the integral goes to zero. Starting with the triangle

inequality

∣∫
R

dτ

τ
sin[(∣zcl∣ −K2L3)τ + (τL)3/3]e−L

3Kτ2 ∣ ≤ ∫
R

dτ

∣τ ∣
∣sin[(∣zcl∣ −K2L3)τ + (τL)3/3]∣ e−L

3Kτ2

(3.84)

and replacing the ∣ sin(⋯)/τ ∣ factor by its maximum value M we have

∫
R

dτ

∣τ ∣
∣sin[(∣zcl∣ −K2L3)τ + (τL)3/3]∣ e−L

3Kτ2 ≤M ∫
R
dτe−L

3Kτ2 =M
√

π

KL3
. (3.85)

Taking E → 0 we have L→∞ and therefore the principal value contribution is negligble.

Applying Eq. (3.68) the matrix element is given by

Vi(k⊥, zcl) = −
κ1/2√
π

Ip

K
e−

2
3
K∣zcl∣ ≡ Vi(k⊥). (3.86)

Computing then the ionization rate

w = lim
t→∞∫R2

dk⊥∫
R
dzcl

∂

∂t
∣M(1)(k⊥, zcl, t)∣2 (3.87)

we have

w = 2π

h̵
∫
R2
dk⊥∫

R
dzcl ∣Vi(k⊥, zcl)∣2 δ(ε⊥ + ε∥ + Ip) =

(2π)2

∣e∣Eh̵ ∫
∞

0
dk⊥k⊥ ∣Vi(k⊥)∣2

= 4π2m

∣e∣Eh̵3 ∫
∞

0
dε⊥∣Vi(k⊥)∣2 ≈

4πm

∣e∣Eh̵3
I2p

κ
∫
∞

0
dε⊥e

− 4
3
K∣zcl∣ (3.88)

where in the prefactor we set K ≈ κ since the exponential factor is sharply peaked at ε⊥ = 0.

Integration is now performed by writing

4

3
K ∣zcl∣ ≈

4

3

Ip

∣e∣Ea
+ 2

ε⊥
∣e∣Ea

(3.89)

which yields

w = π (
Ip

h̵
) e−

4
3

Ip
∣e∣Ea ”=”

π

2
e−2/3F (3.90)
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where the ”=” symbol denotes that the right-hand side is expressed in atomic units. Here the total

ionization rate, as shown in Fig. 3.8, is exponentially proportional to 1/F .
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1.0
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Figure 3.8: Ionization rate Γ ≡ w of Oppenheimer as a function of 1/F in atomic units.

This first approximation of at an ionization rate in a static field predicts the correct expo-

nential dependence in the F → 0 limit, but contains an incorrect pre-factor since the Coulomb

potential is neglected in the final continuum states, which will be explored further in section 3.4.2.

3.4.1.1 Final state form

In section 3.6.2 we will discuss a so-called final state ionization amplitude which uses −Z ∣e∣2/r

as a perturbation instead of ∣e∣E ⋅ r in the case of an alternating field. Here,

M(1)(k⊥, zcl, t) = (−
i

h̵
)∫ d4x1 Φk⊥zcl(x1) [−Z

∣e∣2

r1
]ϕi(x1)

= (− i
h̵
)∫

t

0
dt1Vi(k⊥, zcl) e(i/h̵)∆ε(k⊥,zcl)t1 . (3.91)
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represents the equivalent final state amplitude for the case of a static electric field. Setting Z ∣e∣2 =

2Ip/κ we have

Vi(k⊥, zcl) ≡ ∫ drΦk⊥zcl(r) [−2
Ip

κr
]ϕi(r) (3.92)

and

Vi(k⊥, zcl) = ∫
R2
dr⊥

e−ik⊥⋅r⊥

(2π) ∫R
dz

1

L
Ai [(z − zcl)/L]

⎡⎢⎢⎢⎣
−2

Ip

κ
√
r2⊥ + z2

⎤⎥⎥⎥⎦

κ3/2√
π
e−κ
√
r2⊥+z2

= ∫
R
dz

1

L
Ai [(z − zcl)/L] [−2

Ip

κK
] κ

3/2
√
π
e−K∣z∣ = −κ

1/2
√
π

Ip

K
e−

2
3
K∣zcl∣ (3.93)

exactly as before leading to the same rate

w = π
h̵
Ip e

− 4
3

Ip
∣e∣Ea . (3.94)

In section 3.6.2.1 we show that initial state and final state amplitudes will also be identical

for the case of an arbitrary alternating electric field. If the final state is modified to account for

the atomic potential, this property does not hold in general.

3.4.2 Landau and Lifshitz rate: Correcting the pre-factor

The rate derived by Oppenheimer predicted the correct weak-field exponential factor with an

incorrect proportionality constant. Landau and Lifshitz improved the pre-factor by including both

the atomic Coulomb potential and the applied field within the final state through the quasi-classical

WKB approximation [34,72,89,103,111,171]. The method requires determining the ground state of

hydrogen atom in parabolic coordinates and then determining regions of the wave function modified

with the quasi-classical approximation by the applied field.

3.4.2.1 Parabolic coordinates

The transformation to parabolic coordinates from the Cartesian system [107] involves

ξ = r + z, η = r − z, φ = tan−1(y/x). (3.95)
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with backwards transformation

x =
√
ξη cosφ, y =

√
ξη sinφ, z = 1

2
(ξ − η) (3.96)

and

r =
√
x2 + y2 + z2 = 1

2
(ξ + η). (3.97)

In this system the length element is determined by

(dl)2 = ξ + η
4ξ
(dξ)2 + ξ + η

4η
(dη)2 + ξη(dφ)2 (3.98)

and the volume element is given by

dr = 1

4
(ξ + η)dξdηdφ. (3.99)

Determining the atomic states requires the Laplacian

∇2 = 4

ξ + η
[ ∂
∂ξ
(ξ ∂
∂ξ
) + ∂

∂η
(η ∂
∂η
)] + 1

ξη

∂2

∂φ2
(3.100)

which gives for the Schrödinger equation

4

ξ + η
[ ∂
∂ξ
(ξ ∂ϕ(r)

∂ξ
) + ∂

∂η
(η∂ϕ(r)

∂η
)] + 1

ξη

∂2ϕ(r)
∂φ2

+ 2(E + 2

ξ + η
)ϕ(r) = 0. (3.101)

Writing

ϕ(r) = f1(ξ)f2(η)eimφ (3.102)

separation of variables may be applied giving

d

dξ
(ξ df1(ξ)

dξ
) + [1

2
Eξ − 1

4
m2/ξ + β1] f1(ξ) = 0 (3.103)

and

d

dη
(ηdf2(η)

dη
) + [1

2
Eη − 1

4
m2/η + β2] f2(η) = 0 (3.104)

with separation parameters described by

β1 + β2 = 1. (3.105)
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Defining parameters

n = 1/
√
−2E, ρ1 = ξ/n, ρ2 = η/n (3.106)

we have

d2f1(ξ)
dξ2

+ 1

ρ1

df1(ξ)
dξ

+ [−1

4
+ 1

ρ1
(∣m∣ + 1

2
+ n1) −

m2

4ρ21
] f1(ξ) = 0 (3.107)

and a similar expression for f2(η).

Solving exactly as in the spherical-polar case before we get

ϕn1,n2,m(r) =
√

2

n2
fn1,m (

ξ

n
) fn2,m (

η

n
) e

imφ

√
2π

(3.108)

with

fp,m(ρ) =
1

∣m∣!

√
(p + ∣m∣)!

p!
1F1(−p; ∣m∣ + 1;ρ)e−ρ/2ρ∣m∣/2 (3.109)

and the ground state given by

ϕ1s(r) =
1√
π
e−

1
2
(ξ+η) (3.110)

3.4.2.2 Hydrogen rate

The initial state

ψ(r) = 1√
π
e−

1
2
(ξ+η) (3.111)

from the earlier subsection is the starting point of the approximation. Far from the atom the

Schrödinger equation

d2χ

dη2
+ [−1

4
+ 1

2η
+ 1

4η2
+ 1

4
Fη]χ = 0 (3.112)

now includes the laser interaction where χ = √ηψ. Choosing some point 1≪ η0 ≪ 1/F within the

barrier and applying the WKB approximation one has

χ =
√

η0∣p0∣
πp

exp(χ + η0
2
+ i∫

η1

η0
pdη + 1

4
iπ) (3.113)

with momentum p(η1) = 0 at the tunnel exit and

p(η) =
√
−1

4
+ 1

2η
+ 1

4η2
+ 1

4
Fη ≈ 1

2

√
Fη − 1 − 1

2η
√
Fη − 1

(3.114)
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within the barrier.

Taking the square

∣χ∣2 = η0
π
e−ξ
∣p0∣
p

exp [−2∫
η1

η0
∣p(η′)∣dη′ − η0] (3.115)

and using ∣p0∣ ≈ 1
2 one has

∣χ∣2 = η0

π
√
Fη − 1

e−ξ exp [−∫
η1

η0

√
1 − Fη′dη′ + ∫

η1

η0

dη′

η′
√

1 − Fη′
− η0] (3.116)

where the first term of Eq. 3.114 has been used to approximate p in the prefactor and both terms

have been retained within the exponent.

Integrating and using Fη0 ≪ 1 whenever possible

∣χ∣2 = 4

πF
e−2/3F

e−ξ√
Fη − 1

(3.117)

may be used to give the total rate

w = 2π∫
∞

0
dr r vz ∣ψ∣2 (3.118)

where

dr ≈ 1

2

√
η

ξ
dξ, vz =

√
Fη − 1 (3.119)

and

w = 4

F
e−2/3F . (3.120)

Restoring units the ionization becomes (a = 1/κ)

w = 16(
Ip

h̵
)(

Ip

∣e∣Ea
) exp(−4

3

Ip

∣e∣Ea
) (3.121)

which has the same exponential factor as the ionization rate of section 3.4.1 with the correct weak-

field prefactor 4/F [177].

3.4.2.3 Short-range rate

The same procedure may now be followed for short-range potentials. The short-range asymp-

totic ground state

ψ(r) = 1

2
Cκ,0

√
κ

π

e−κr

r
= Cκ,0

√
κ

π

e−
κ
2
(ξ+η)

ξ + η
≈ Cκ,0

√
κ

π

e−
κ
2
(ξ+η)

η
(3.122)
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is used and gives

w = 1

4
C2
κ,0Fe

−2/3F = 1

4
C2
κ,0

∣e∣E
h̵κ

exp(−4

3

Ip

∣e∣Ea
) (3.123)

where Cκ,0 is fit to the asymptotic tail of the field-free ground-state. The exponential factor is a

general property of ionization of particles bound by both long- and short-range potentials, while

the prefactor is determined by properties of the binding potential.

3.5 Motion in a dynamic field: Volkov states

In section 3.3 we solved Airy’s differential equation to determine the dynamics of an otherwise

free electron in an external electric field. These states were applied by Oppenheimer [132] (section

3.4.1) to determine an estimate for the ionization rate of Hydrogen. We now will follow the same

steps as in section 3.3 to determine the behavior of a free electron experiencing an arbitrary time-

dependent field. In the next subsection 3.6.1 we will follow the derivation by Keldysh [98] to apply

exactly the same method as in Ref. [132] and determine an estimate for the ionization of Hydrogen

by a linearly polarized field. The so-called Volkov states form the basis for many standard non-

perturbative approaches [57, 98, 136, 146] including our own generalization of Ref. [98] which will

be discussed in Chapter 5.

Motion of an otherwise free electron interacting with a time-dependent electric field is de-

scribed by the Schrödinger equation

ih̵
∂

∂t
Φ(r) = [ p

2

2m
+ ∣e∣E(t) ⋅ r]Φ(r). (3.124)

Recognizing that

E(t) = −1

c

∂

∂t
A(t) and ih̵

∂

∂t
e

i∣e∣
h̵c

A(t)⋅r = [∣e∣E(t) ⋅ r] e
i∣e∣
h̵c

A(t)⋅r (3.125)

we immediately see that the set of solutions must follow the form

Φk(x) = T (t)
eik(t)⋅r

(2π)3/2
(3.126)

where

k(t) = k + ∣e∣
h̵c

A(t) (3.127)
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is the kinetic momentum of an electron in the field. Inserting this solution one obtains the

Schrödinger equation

ih̵
∂

∂t
T (t) = h̵

2k(t)2

2m
T (t) (3.128)

and the states

Φk(x) = e−(i/h̵) ∫
t
0 dτ

h̵2k2(τ)
2m

eik(t)⋅r

(2π)3/2
. (3.129)

3.5.1 Newton’s second law

In this subsection we will use the momentum-space Green’s function G̃(k, t;k′, t′) of Eq. 3.19

to recover the classical equation of motion

ma(t) = −∣e∣E(t). (3.130)

Starting with the Volkov states Φk(x) we may write the position-basis Green’s function as

G(x;x′) = − i
h̵
θ(t − t′)∫

R3
dqΦq(x)Φq(x′) (3.131)

and Fourier transform with respect to each coordinate r and r′ to determine the momentum basis

representation

G̃(k, t;k′, t′) = − i
h̵
θ(t − t′)∫

R3
dq Φ̃q(k, t)Φ̃q(k′, t′). (3.132)

Evaluating

Φ̃q(k, t) ≡ ∫
R3
dr

e−ik⋅r

(2π)3/2
Φq(x) = δ(3)(k − q(t)) e−(i/h̵) ∫

t
0 dτ

h̵2q2(τ)
2m (3.133)

yields

G̃(k, t;k′, t′) = − i
h̵
θ(∆t) δ(3)(∆k − (∣e∣/h̵c)∆A) exp [−(i/h̵)∫

t

t′
dτ
h̵2q2(τ)

2m
] (3.134)

after integration. h̵k′ describes the momentum of a free electron at time t′ in the past and h̵k

describes the resulting momentum at time t after the influence of E(t). Displacements are defined

as ∆t ≡ t − t′ in time, h̵∆k = h̵(k − k′) in momentum and ∆A =A(t) −A(t′) in vector potential.
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Using properties of the δ-distribution one immediately recognizes the expected classical equa-

tions of motion

Favg =
∆p

∆t
= h̵∆k

∆t
= ∣e∣
c

∆A

∆t
= −∣e∣Eavg where Eavg ≡ −

1

c

∆A

∆t
. (3.135)

The δ-functions in Eq. (3.134) describe classical evolution of a single momentum state, while the

phase factors given by

q(τ) = k + ∣e∣
h̵c
[A(τ) −A(t)] = k′ + ∣e∣

h̵c
[A(τ) −A(t′)] (3.136)

relate to quantum interferences due to initial states composed of multiple plane wave contributions

(for example, in an isolated wave-packet).

3.6 Ionization by a dynamic field

We will now describe some of the standard golden-rule-like approaches to strong field ioniza-

tion in a dynamic field. The earliest one is by Keldysh [98] to describe ionization of a hydrogen-like

atom in which the saddle point approximation for ionization is introduced. Additionally, we will

use the parameter γ described in section 2.3 to connect the γ ≫ 1 regime where perturbation theory

is valid to the static-field case (γ ≪ 1) where the exponential factor exp (−4
3

Ip
∣e∣Ea) is recovered. Af-

terwards we will show the equivalence of Keldysh’s amplitude with the complementary amplitude

of Perelomov, Popov and Terent’ev [136] where the results of Ref. [98] were generalized to arbitrary

initial states and additional laser configurations. We will focus on the case of short-range potentials

and circular polarization to show agreement with the TDSE in the long-wavelength limit. Finally,

we will discuss the velocity-gauge amplitude given by Reiss [146], where the saddle point method

is abandoned and the amplitude is integrated exactly.

3.6.1 Keldysh rate

Ionization is modeled for a hydrogen atom interacting with the linearly polarized field

E(t) = E cos(ωt) (3.137)
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and prepared in the initial state

Ri(r) ≈ Cκ,0κ
3/2e−κr. (3.138)

Following steps given in Refs. [30, 98] we will use the saddle point approximation to determine a

rate accurate for a large range of γ-values. In the limit of tunnel and multi-photon ionization we

will simplify the rate.

The approximation starts by expanding the exact Green’s function in the initial state Lippmann-

Schwinger equation

Ψ(x) = ϕi(x) + ∫ d4x1 G(x;x1)VL(x1)ϕi(x1) (3.139)

to zeroth order in Volkov states

Φ
(−)
k (x) = e

−(i/h̵) ∫ t
t0

(h̵k+ ∣e∣c A(τ))2
2m

dτ+ i∣e∣
h̵c

A(t)⋅r
ϕ
(−)
k (r). (3.140)

Here, we will choose ϕ
(−)
k (r) to be plane waves as it was done in Keldysh’s original paper [98],

which has been recently generalized to exact atomic scattering states [58]. When the (plane-wave)

Volkov Green’s function

G(V )(x;x′) = − i
h̵
θ(t − t′)∫ dkΦk(x)Φk(x′) (3.141)

is inserted into Eq. (3.139) we get the approximation

Ψ(x) ≈ ϕi(x) + ∫ d4x1G
(V )(x;x1)VL(x1)ϕi(x1). (3.142)

Emission of electrons is described by the outgoing partition

Ψ(out)(x) = ∫ dkM(k, t)Φ(−)k (x) (3.143)

with coefficients

M(k, t) = ∫ drΦ
(−)
k (x)Ψ(x). (3.144)

The zeroth order contribution

M(0)(k, t) = ∫ drΦ
(−)
k (x)ϕi(x) (3.145)
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is identically zero for finite-range Volkov states and vanishes for plane-wave Volkov states in the

long pulse limit [136]. The lowest order contribution therefore arises from

M(1)(k, t) = −( i
h̵
)∫ d4x1Φ

(−)
k (x1)[∣e∣E(t1) ⋅ r1]ϕi(x1), (3.146)

where the ionization rate is determined by

w = lim
t→∞∫ dk

∂

∂t
∣M(1)(k, t)∣2

= lim
t→∞
( 2

h̵2
) Re∫ dk cos(ωt)L(k, t)∫

t

0
dt1 cos(ωt1)L(k, t1) (3.147)

in the long pulse limit (ti → 0, t→∞) with

L(k, t) ≡ Vi (k −
∣e∣E
h̵ω

sin(ωt)) e(i/h̵)S(k,t), (3.148)

the matrix element

Vi(k) ≡ ∫ dr1ϕ
(−)
k (r1)[∣e∣E(t) ⋅ r]ϕi(r) (3.149)

and the action

S(k, t) ≡ ∫
t

ti
dτ

⎡⎢⎢⎢⎢⎣

(h̵k − ∣e∣c A(τ))
2

2m
+ Ip
⎤⎥⎥⎥⎥⎦
. (3.150)

The rate, Eq. (3.147), is evaluated by expanding L(k, t) in the Fourier components

L(k, t) =
∞
∑

n=−∞
exp [(i/h̵) (Ek + Ĩp − nh̵ω) t]Ln(k) (3.151)

where Ĩp = Ip +Up is the shifted ionization threshold, Ek = h̵k2

2m is the ionized kinetic energy,

Up =
∣e∣2

2mc2
⟨A±(t)2⟩T (3.152)

is the ponderomotive or cycle-averaged quiver energy and the Fourier component corresponding to

nh̵ω can be interpreted as the contribution determined by the absorption of n photons. Inserting

this expansion we have

w = lim
t→∞

π

h̵
∫ dk

∞
∑

n=−∞
∣Ln+1(k) +Ln−1(k)∣2δ(Ek + Ĩp − nh̵ω) (3.153)

with

Ln(k) =
1

2π
∫

π

−π
dφ exp [−(i/h̵ω)(Ek + Ĩp − nh̵ω)φ]L(k, φ/ω) (3.154)



59

and h̵kn =
√

2m(nh̵ω − Ĩp).

Using properties of the δ-distribution the rate simplifies to

w = lim
t→∞

2π

h̵
∫ dk

∞
∑

n=−∞
∣L(k)∣2δ(Ek + Ĩp − nh̵ω) (3.155)

with

L(k) = 1

2π
∫

π

−π
dφ cosφL(k, φ/ω) = 1

2π
∮
C
duVi (k −

∣e∣E
h̵ω

u) e(i/h̵ω)S(u) (3.156)

where the Fourier integral is expressed as a contour integral around the dog-bone contour C sur-

rounding branch points u = ±1 and cut connecting the two [30]. The effective action is given

by

S(u) = ∫
u

0

dv√
1 − v2

⎡⎢⎢⎢⎢⎢⎣

(h̵k − ∣e∣ω Ev)
2

2m
+ Ip

⎤⎥⎥⎥⎥⎥⎦
. (3.157)

Concepts from sections 3.2 and 3.3 are applied to determine the Fourier coefficients when h̵ω ≪ Ip

and h̵ω ≪ Up. The action S(u) is expanded to second order and the contour is deformed such that

it passes through saddle points us (determined from S′(us) = 0) along the path of steepest descent.

The slowly changing pre-exponential factor Vi (k − ∣e∣ω Eu) may be evaluated at u = us and Gaussian

integration is performed to evaluate L(k).

In Ref. [98] the rate is evaluated for a Hydrogen-like initial state

Ri(r) ≈ 2Cκ,0κ
3/2e−κr (3.158)

with plane-wave Volkov states yielding

Vi(k) = [∣e∣E ⋅ (i∇k)]∫ dr1
eik⋅r

(2π)3/2
ϕi(r1) =

−iCκ,0(2κ)5/2

π(k2 + κ2)3
[∣e∣Ek∣∣] (3.159)

where k∣∣ is the momentum component parallel to the field E. The matrix element contains a pole

at k = ±iκ corresponding to the initial bound state [27, 107]. Setting S′(u)∣u=us = 0 and defining

γ ≡ (h̵ωκ/∣e∣E) the two saddle points

us± = γ
⎡⎢⎢⎢⎢⎢⎣

k∣∣
κ
± i

¿
ÁÁÀ1 + (k⊥

κ
)
2
⎤⎥⎥⎥⎥⎥⎦

(3.160)

are obtained which correspond exactly to the poles of Vi(k) after the substitution k→ k − ∣e∣Eh̵ω u.
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Expanding S(u) to second order and assuming k2 ≪ κ2 the integral is evaluated with de-

formed contour passing through the saddle points us± (without crossing them) yielding

w =
C2
κ,0

2

√
ω

2Ip

h̵

⎛
⎝

γ√
1 + γ2

⎞
⎠

3/2

S (γ,
Ĩp

h̵ω
) exp

⎡⎢⎢⎢⎢⎣
−

2Ĩp

h̵ω

⎛
⎝

sinh−1 γ − γ
√

1 + γ2
1 + 2γ2

⎞
⎠

⎤⎥⎥⎥⎥⎦
(3.161)

after integration [30,98] with

S(γ, x) ≡
∞
∑
a=0

exp

⎡⎢⎢⎢⎢⎣
−2(⟨x + 1⟩ − x + a)

⎛
⎝

sinh−1 γ − γ√
1 + γ2

⎞
⎠

⎤⎥⎥⎥⎥⎦

×D+
⎧⎪⎪⎨⎪⎪⎩

⎡⎢⎢⎢⎣

2γ√
1 + γ2

(⟨x + 1⟩ − x + a)
⎤⎥⎥⎥⎦

1/2⎫⎪⎪⎬⎪⎪⎭
. (3.162)

a describes the number of quanta absorbed above the ionization threshold Ĩp, ⟨x⟩ corresponds to

the integer part of x and D+(z) ≡ ∫
z
0 e

y2−z2dy is the Dawson function. When performing the final

integral over k interference effects between the two saddle points u = us± are neglected. Errors

introduced by this approximation are small for the total rate w, but must be included to describe

the angular emission rate dw
dΩ [30]. Cκ,0 is numerically fit to the asymptotic tail of the initial state.

Here we follow Ref. [98] and set Cκ,0 = 2 for the 1s state of Hydrogen.

3.6.1.1 Multiphoton limit

Keldysh’s amplitude has been approximated in the weak-field multiphoton limit. Here the

lowest near-threshold order a = 0 dominates and the rate

w = 2

√
ω

2Ip

h̵
( 1

4γ2
)
⟨Ĩp/h̵ω+1⟩

exp(2 ⟨
Ĩp

h̵ω
+ 1⟩ −

Ĩp

h̵ω
)D+

⎡⎢⎢⎢⎢⎣

¿
ÁÁÀ2(⟨

Ĩp

h̵ω
+ 1⟩ −

Ĩp

h̵ω
)
⎤⎥⎥⎥⎥⎦

(3.163)

is determined by taking γ ≫ 1 in the rate, truncating the sum and approximating sinh−1 γ ≈ log(2γ).

Portions containing ⟨Ĩp/h̵ω+1⟩ describe the influence of ionization thresholds and quanta absorbed

in the perturbative limit. Care must be taken since the saddle point approximation may not be

valid. We will discuss this further in Chapter 5.

3.6.1.2 Tunnel Limit

For very long wavelengths and/or very strong fields where γ ≪ 1 the sum in Eq. (3.162) is

approximated as an integral since large a are the dominant contributions yielding S(γ, Ĩp/h̵ω) ≈
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√
3π/4γ2. Expanding the exponent to 3rd order in γ the rate of tunnel ionization is given by

w =
√

6π

2

√
ωIp

h̵γ
exp [−

4Ipγ

3h̵ω
(1 − γ

3

10
)] . (3.164)

Taking ω → 0 the exponent in Eq. (3.164) corresponds to the ionization rate of atoms in a quasi-

static field. Here, one has

w =
√

6π

2

√
∣e∣EIp
h̵2κ

exp [−4

3

Ipκ

∣e∣E
] =
√

6π

2

√
∣e∣Ea

Ip

h̵2
exp [−4

3

Ip

∣e∣Ea
] . (3.165)

Averaging the static Landau and Lifshitz rate wstat from section 3.4.2 over a laser cycle [5,136] an

adiabatic rate

wadiabatic =

¿
ÁÁÀ 3

2π

∣e∣Ea
Ip

wstat = 16(
Ip

h̵
)
√

3

2π

Ip

∣e∣Ea
exp [−4

3

Ip

∣e∣Ea
] (3.166)

is determined.

The Keldysh rate [98] is unable to recover the correct adiabatic pre-factor since the final

(ionized) Volkov state does not include the Coulomb potential as in Ref. [132]. In later sections

as well as in Chapter 5 we will show that the approximation is accurate for short-range potentials.

Often semi-classical long-range Coulomb corrections are applied in the limit of long wavelength

radiation. We will discuss one of the simplest Coulomb corrections [102] to give an idea of how one

might better approximate the long-range rate.

3.6.2 PPT rate

In this section we will show that the first order Keldysh ionization amplitude is equivalent

to the PPT amplitude [136] up to boundary terms for zero-range final states and all applied fields

E(t). After establishing equivalence with the Keldysh rate we will quickly summarize the rate of

s− and p−state ionization in circularly polarized fields [20]. Numerical solutions of the TDSE will

be used to establish accuracy of the rate for s-states and in Chapter 5 we will use the p−state rate

to discuss breakdown of the saddle point approximation and when asymptotic approximations to

the initial state become inappropriate.
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3.6.2.1 Equivalence with the Keldysh amplitude for zero-range Volkov states

We may write Keldysh’s amplitude as

M(1)(k, t) = −(i/h̵)∫ d4x1 Φk(x) [∣e∣E(t1) ⋅ r1]ϕi(x1)

= ∫
t

t0
dt1e

(i/h̵)S(k,t1) (− ∂

∂t1
) ϕ̃i (k(t1)) (3.167)

where

ϕ̃i(k,A(t)) = ∫ dr1ϕk+ ∣e∣
h̵c

A(t)(r1)ϕi(r1) ≡ ϕ̃i (k(t)) (3.168)

and

h̵k(t) ≡ h̵k + ∣e∣
c
A(t) ≡ p(t). (3.169)

Acting on both sides with ih̵ ∂
∂t we see that

ih̵
∂

∂t
[M(1)(k, t) + e(i/h̵)S(k,t)ϕ̃i (k(t))] = −(

∂S

∂t
) e(i/h̵)S(k,t)ϕ̃i (k(t)) (3.170)

and solving for the amplitude we get

M(1)(k, t) = − [M(0)(k, t1)∣
t

t1=t0
+ ( i

h̵
)∫

t

t0
dt1 (

∂S

∂t1
) e(i/h̵)S(k,t1)ϕ̃i (k(t1)) (3.171)

where we recognize that the boundary term

M(0)(k, t) = e(i/h̵)S(k,t)ϕ̃i (k(t)) , (3.172)

can be neglected. Using

(∂S
∂t
) = p2(t)

2m
+ Ip (3.173)

the remaining term is written as

M(1)(k, t) = ( i
h̵
)∫ d4x1Φk(x1) [

p2(t1)
2m

+ Ip]ϕi(x1). (3.174)

To arrive at the plane-wave PPT formulas we recognize

−Ipϕi(x) = [
p̂2

2m
+ Va(r)]ϕi(x) (3.175)
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which gives us

M(1)(k, t) = −( i
h̵
)∫ d4x1Φk(x1) [

p̂2
1 − p2(t1)

2m
+ Va(r1)]ϕi(x1). (3.176)

Integrating by parts we see that

p̂2

2m
Φk(x1) =

p2(t)
2m

Φk(x1) (3.177)

yields the desired result

M(1)(k, t) = −( i
h̵
)∫ d4x1Φk(x1)Va(r1)ϕi(x1). (3.178)

For finite-range final states the situation is different. Writing down the PPT amplitude

and substituting in finite-range states gives a different rate than using the equivalent Keldysh

amplitude with the same states. Starting with Eq. (3.176) we separate the amplitude into a PPT-

like contribution and a perturbation

M(1)(k, t) =M(1,PPT)(k, t) + δM(1)(k, t) (3.179)

where

M(1,PPT)(k, t) = −( i
h̵
)∫ d4x1Φ

(−)
k (x1)Va(r1)ϕi(x1) (3.180)

and

δM(1)(k, t) = −( i
h̵
)∫ d4x1Φ

(−)
k (x1) [

p̂2
1 − p2(t1)

2m
]ϕi(x1). (3.181)

Using the Fourier representation

ϕi(x) = (2π)−3/2∫ dk′eik
′⋅rϕ̃i(k′, t) (3.182)

and

Φ
(−)
k (x) = (2π)

−3/2∫ dk′′eik
′′⋅rΦ̃(−)k (k

′′, t) (3.183)

we see that the perturbation becomes

δM(1)(k, t) =

− ( i
h̵
)∫

t

t0
dt1∫ dq Φ̃

(−)
k (k + q, t1)

⎡⎢⎢⎢⎢⎣

(h̵q)2 + 2(h̵k) ⋅ (h̵q − ∣e∣c A(t1)) − (
∣e∣
c A(t1))

2

2m

⎤⎥⎥⎥⎥⎦
ϕ̃i(k + q, t1).

(3.184)
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If ϕ
(−)
k is a plane wave then the corresponding Volkov state contains a single Fourier com-

ponent corresponding to h̵q = ∣e∣c A(t) and gives δM(1) = 0 as before. Atomic scattering states

are described by a distribution of vectors q which leads to δM(1) ≠ 0 in general and therefore a

different result.

3.6.2.2 Ionization by circularly polarized fields

In Refs. [135–137] the amplitude was generalized to the case of arbitrary initial states and ex-

tended to both circular and elliptical polarizations. Additional quasi-classical Coulomb corrections

have been applied to the PPT formulas. We will instead describe the simpler Coulomb correc-

tions [23, 102] which are closely related to the WKB corrections used by Landau and Lifshitz in

their static rate (Sec.3.4.2).

Starting with the right-/left- handed (±) circularly polarized field

A±(t) = −A [sin(ωt)ex ∓ cos(ωt)ey] (3.185)

the final state Lippmann-Schwinger equation is applied to determine the first order expansion

M(1)(k, t) = −( i
h̵
)∫ d4x1Φk(x1)Va(r1)ϕi(x1). (3.186)

Using

Va(r)ϕi(x) = (ih̵
∂

∂t
− p̂2

2m
)ϕi(x) (3.187)

and integrating by parts the amplitude becomes

M(1)(k, t) = ( i
h̵
)∫

t

0
dt1 [

h̵2k(t1)2

2m
+ Ip] e(i/h̵)S(k,t1)ϕ̃i(k(t1)). (3.188)

with k(t) ≡ k + ∣e∣h̵cA(t) and

ϕ̃i(k) ≡ ∫ dr
e−ik⋅r

(2π)3/2
ϕi(r). (3.189)

The rate can then be determined as

w = lim
t→∞∫ dk

∂

∂t
∣M(1)(k, t)∣2 = lim

t→∞
( 2

h̵2
) Re∫ dk L(k, t)∫

t

0
dt1L(k, t1) (3.190)
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in the long pulse limit (ti → 0, t→∞) with

L(k, t) ≡ [ h̵
2k(t1)2

2m
+ Ip] e(i/h̵)S(k,t1)ϕ̃i(k(t1)). (3.191)

Expanding L(k, t) again as a Fourier series the rate is represented as

w = 2π

h̵
∫ dk

∞
∑

n=−∞
∣Ln(k)∣2δ(Ek + Ĩp − nh̵ω) (3.192)

with

Ln(k) ≡
ω

2π
∫

π/ω

−π/ω
dt [ h̵

2k(t)2

2m
+ Ip] e(i/h̵)S(k,t)ϕ̃i(k(t))∣

k=kn
. (3.193)

Switching now to atomic units

∣Ln±(k)∣2 = ∣
1

2π
∫

π

−π
dφ Ξi(k±(φ/ω))eiS±(k,φ/ω)∣

2

k=kn
(3.194)

with

Ξi(k±(t)) ≡ [
k±(t)2

2
+ Ip] ϕ̃i(k±(t)) (3.195)

where the integral is approximated using the saddle point approximation to obtain [20]

∣Ln±(k)∣2k=kn =
∣Ξi(k(ti))∣2k=kn

2πn
√

1 − 1/χn(kz)2
e−2n[arcoshχn(kz)−

√
1−1/χn(kx)2] (3.196)

from the zero-range initial state Eq. (2.72) with saddle points

ωti =
π

2
± ϕk + 2πN + i arcoshχn(kz) (3.197)

which gives

w
(li=0)
± =

C2
κ,0κ

2π

∞
∑

n=nth

1

n
∫

kn

0
dkz

e−2n[arcoshχn(kz)−
√
1−1/χn(kz)2]

√
1 − 1/χn(kz)2

(3.198)

for an s-state,

w
(li=1,mi=0)
± =

3C2
κ,1

2πκ

∞
∑

n=nth

1

n
∫

kn

0
dkz

k2ze
−2n[arcoshχn(kz)−

√
1−1/χn(kz)2]

√
1 − 1/χn(kz)2

(3.199)

for a p0-state and

w
(li=1,∣mi∣=1)
± =

3C2
κ,1A

2
0

16πκ

∞
∑

n=nth

1

n
∫

kn

0
dkz

e−2n[arcoshχn(kz)−
√
1−1/χn(kz)2]

χn(kz)2
√

1 − 1/χn(kz)2

× [2χn(kz)2(1 ∓ sgn(mi)
√

1 − 1/χn(kz)2) − (1 + (κ/A0)2)n/n0]
2

(3.200)
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for a p±1-state where

χn(kz) =
nω

A0

√
k2n − k2z

, (3.201)

nth = ⌈n0⌉, n0 = Ĩp/ω and A0 ≡ (1/ω)
√
I/2 with I is the laser intensity in atomic units.

Results for the s-state yield:

Nion = 1 − exp [−w (Ncycles
2π

ω
)] (3.202)

are compared with those of numerical solutions of the TDSE (8’th-order B-splines) in Fig. 3.9 for

the Yukawa potential

Va(r) = −
Z

r
e−r/a (3.203)

with a = 1/5 a.u. and Z are chosen such that Ip = 1/2 a.u.. TDSE calculations are performed for a

16 cycle flat-top pulse with a 2 cycle sin2 ramp on and off. The laser intensity is fixed at I = 1×1014

W/cm2 and wavelengths are chosen in the interval from 10 nm to 800 nm. Jumps at 91.928 nm

and longer wavelengths correspond to the single photon and higher order ionization thresholds.



67

10 20 40 100 200 400 800
λ (nm)

10−5

10−4

10−3

10−2

10−1

N
io
n

S-State PPT Comparison

PPT

TDSE

Figure 3.9: Comparison of results for the total ionization yield obtained by the time-dependent

Schrödinger equation and the s−state PPT formulas [20]. The circularly polarized field has an

intensity of I = 1×1014 W/cm2, duration of 16 cycles and wavelengths between 10 nm and 800 nm.

Properties of the Yukawa potential are discussed in the main text.

At the first threshold (91.928 nm) disagreement between the results of TDSE calculations

and those for the PPT formulas are due to the use of a short pulse in the TDSE calculations and

the approximate long-pulse rate in the PPT formulas. For longer pulse durations errors of this form

diminish. At the short wavelength (10 nm) limit the PPT rate starts to deviate from the TDSE

data set due to breakdown of the saddle point approximation. For zero-range s− states and current

laser parameters the approximation works well even for single-photon ionization. In Chapter 5 we

show that this disagreement greatly increases in the case of p-states where we will derive our own

complementary rate.
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3.6.2.3 Coulomb corrections

In the long-wavelength limit the Landau and Lifshitz ionization rate [107] may be recovered

by applying a similar quasi-classical correction to the final ionized Volkov state. We will stick to

one of the simplest [23,102] where

Φk(x)↦ exp [i∫
1/2F

r
dr′ δp(r′)]Φk(x), (3.204)

with δp(r) = 1
rp0(r) and p0(r) ≈ i

√
1 − 2Fr. We assume sufficiently weak fields giving:

exp [i∫
1/2F

r
dr′ δp(r′)] ≈ 2

Fr
(3.205)

where the long-range Hydrogen rate may be approximated as

wHydrogen ∼ Qwzero-range (3.206)

with Q = (2/F )2 and Cκ,0 = 2. The WKB-like Coulomb correction relates the Hydrogen rate to

a closely related zero-range rate. In Ref. [140] improvements were made to the correction with

acceptable, but not perfect agreement with results of ab-initio numerical calculations. The lack of

fully quantum Coulomb corrections for ionization of atoms where γ ≳ 1 proves to be one of the

largest difficulties associated with the theory of strong field ionization.

In Fig. 3.10 we show a comparison of the PPT yield [20, 136] with the simplified WKB-like

Coulomb correction given in Refs. [23, 102] and the TDSE results for ionization of hydrogen atom

by a 16-cycle flat top laser pulse with a two cycle sin2 ramp up and down with an intensity of

I = 1 × 1014 W/cm2 and wavelengths between 10 and 800 nm. In the long wavelength (∼ 800 nm)

limit where γ is smallest the approximation performs well, while for the shortest wavelengths (∼ 350

nm and shorter) the approximation fails completely.
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Figure 3.10: Comparison of the total ionization yield for hydrogen atom between results of the

time-dependent Schrödinger equation (+ symbols) and the s−state PPT formulas (solid line). The

circularly polarized field has an intensity of I = 1 × 1014 W/cm2, duration of 16 cycles and wave-

lengths between 10 nm and 800 nm. The black curve represents application of the Coulomb

correction [23,102] to the circular s-state PPT rate [20,136]. The approximation only agrees in the

limit of γ ≪ 1 and outlines difficulties associated with Coulomb corrections when γ ≳ 1.

For the remainder of the thesis we will apply the amplitude in the short-range case and

consider only this simplest correction. In Chapter 4 we will compare p-state ionization ratios

N+1/N−1, and N0/N−1 between its three magnetic projections m = −1,0 and 1. Approximating

Nion = 1 − exp [−w (Ncycles
2π

ω
)] ≈ w (Ncycles

2π

ω
) (3.207)

the Coulomb pre-factor Q vanishes in ionization ratios and it is clear that zero-range estimates of

long-range properties are valid in the long-wavelength limit where Nion ≲ 0.1.
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3.6.3 Velocity-gauge approach

When solving the TDSE exactly, all observables are gauge-independent. In other words exact

solutions to the TDSE within the dipole approximation should yield the same observables when

either

VL(x) = ∣e∣E(t) ⋅ r (3.208)

or

VL(x) =
∣e∣
mc

A(t) ⋅ p + A(t)2

2mc2
(3.209)

is used to describe interactions between an electron and an external field [151,152]. However, both

perturbative approximations [33] and nonperturbative approaches [23, 146] are, in general, gauge

dependent unless expanded to infinite order.

We will outline the most common velocity-gauge amplitude given by Reiss [146] and note that

Faisal [57] has produced a similar rate which allows for more general final states. The amplitude

starts with the velocity-gauge version of the same initial state Lippmann-Schwinger expansion as

used in Keldysh’s amplitude. The first order contribution is

M(1,VG)
± (k, t) = −( i

h̵
)∫ d4x1Φ

(VG)
k± (x1)V

(VG)
L± (x1)ϕi(x1), (3.210)

where

V
(VG)
L± (x) = ∣e∣

mc
A±(t) ⋅ p̂ +

∣e∣2

2mc2
A±(t)2 (3.211)

and

Φ
(VG)
k± (x) = e

−(i/h̵) ∫ t
t0

(h̵k+ ∣e∣c A±(τ))2
2m

dτ eik⋅r

(2π)3/2
. (3.212)

Using

ih̵
∂

∂t
Φ
(VG)
k± (x) =

(h̵k + ∣e∣c A±(t))
2

2m
Φ
(VG)
k± (x) (3.213)

with

p̂Φ
(VG)
k± (x) = (h̵k)Φ

(VG)
k± (x) and ih̵

∂

∂t
ϕi(x) = −Ip ϕi(x) (3.214)

we have

M(1,VG)
± (k, t) = ( i

h̵
) (Ek + Ip)∫ d4x1Φ

(VG)
k± (x1)ϕi(x1) (3.215)
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where vanishing boundary terms have been omitted.

Proceeding as before

∫ d4x1Φ
(VG)
k± (x1)ϕi(x1) = ϕ̃i(k)∫

t

0
dt1e

(i/h̵)S±(k,t1) (3.216)

where

ϕ̃i(k) = ∫ dr1
e−ik⋅r1

(2π)3/2
ϕi(r1) (3.217)

is the Fourier transform of the initial state and using the asymptotic state

ϕi(r) = Cκ,liκ
3/2(κr)ν−1e−κrY mi

li
(r̂), (3.218)

the momentum representation is given as

ϕ̃i(k) = (−i)li
Cκ,liκ

ν+1/2
√
k

Y mi

li
(k̂) Γ(li + ν + 2)
(
√
k2 + κ2)ν+3/2

P
−(li+1/2)
ν+1/2 ( κ√

k2 + κ2
) ≡ R̃i(k)Y mi

li
(k̂), (3.219)

which simplifies to

ϕ̃i(k) =
√
κ

2

Cκ,0

π(k2 + κ2)
(3.220)

in the case of a zero-range (ν = 0) s-state.

To complete the amplitude the k ⋅ ξ±(t) term in e(i/h̵)S±(k,t1) is expanded using the Jacobi-

Anger expansion

eik⋅ξ±(t) = eikρξ cos(±φk−ωt) =
∞
∑

n=−∞
ine−inωtJn(kρξ)e±inφk (3.221)

which gives

∫
t

0
dt1e

(i/h̵)S±(k,t1) = e−ik⋅ξ±(0)
∞
∑

n=−∞
inJn(kρξ)e±inφkδt([N(k) − n]ω/2) (3.222)

and

M(1,VG)
± (k, t) = ( i

h̵
) (Ek + Ip) ϕ̃i(k)e−ik⋅ξ±(0)

∞
∑

n=−∞
inJn(kρξ)e±inφkδt([N(k) − n]ω/2) (3.223)

after time integration. Taking the long pulse limit as before we have

dwn

dΩ
= (2π)mkn

h̵3
(nh̵ω −Up)2∣ϕ̃i(kn)∣2J2

n(knξ sin θk) (3.224)
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and

wn =
(2π)2mkn

h̵3
(nh̵ω −Up)2∫

π

0
dθk sin θk∣ϕ̃i(kn)∣2J2

n(knξ sin θk) (3.225)

where we assumed that ϕ̃i(kn) contains a single spherical harmonic component which removes the

φk dependence from the angular integral (∣eimiφk ∣2 = 1).

Additionally, as given the velocity-gauge formulas incorrectly predict an identical ionization

rate for co- and counter-rotating electrons [166, 167] since ∣Y mi

li
(k̂)∣2 = ∣Y −mi

li
(k̂)∣2 in the ∣ϕ̃i(kn)∣2

product. The inclusion of e−i
∣e∣
c
A(t)⋅r in the length-gauge Volkov states resolves this issue, as shown

in Refs. [20, 136]. In Fig. 3.9 we compare the yield from Reiss’ rate

w =
∞
∑

n=nth

wn (3.226)

(with nth = ⌈Ĩp/ω⌉) to the numerical data produced by simulations of the TDSE, as discussed in

the PPT section 3.6.2. Again differences persist near ionization thresholds since we have modeled

the total yield using a long pulse rate.
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Figure 3.11: Comparison of the total ionization yield between the time-dependent Schrödinger

equation (data from Fig. 3.9) and s−state Reiss’ formulas [146]. The circularly polarized field has

an intensity of I = 1 × 1014 W/cm2, duration of 16 cycles and wavelengths between 10 nm and 800

nm.

For zero-range s-states and laser parameters considered, both the velocity-gauge expansion

discussed here as well as the PPT expansions of section 3.6.2 are able to accurately describe the

ionization yield. In Chapter 5 we will show that for ionization of an initial p−state, the velocity-

gauge formulas discussed here fail at all wavelengths and the saddle point approximation applied

to the PPT formulas is unable to accurately predict ionization across a large range of wavelengths.

We will resolve this issue by integrating the length gauge rate of Keldysh [98] exactly using a similar

expansion as used in this section.



Chapter 4

Selectivity in electron emission induced by ultrashort circularly polarized laser

pulses

4.1 Introduction1

Spin polarization of atomic photo-electrons is an important aspect in exploring the structure

of atoms, molecules and solids [99]. The generation of ultrashort spin-polarized electron pulses can

be achieved by ionizing a gaseous atomic target with ultrashort circularly polarized laser pulses.

These electron pulses are useful tools to characterize and probe chiral systems and magnetic prop-

erties of materials on an ultrafast time scale. Towards an understanding of the mechanisms behind

the generation of spin-polarized electrons it is essential to study the sensitivity of the ionization

probability on the sense of the electron’s rotation in the initial state of the atom with respect to

the helicity of the applied circularly polarized laser field [18, 77]. Thus, it is interesting to identify

laser parameter regimes in which the ionization rate strongly depends on the number and/or the

sign of the magnetic quantum number in the initial state.

Spin polarization of photo-electrons and the related dependence of atomic photoionization

on the relative rotation between electrons in the initial state and the applied field has first been

studied for single-photon ionization. While it was first believed that spin polarization of photo-

electrons is a relativistic effect [141], Fano showed that electrons can be spin polarized in the

nonrelativistic energy region as well [59]. In general, for single-photon ionization the emission

1 Part of the material presented in this Chapter has been previously published in S. Walker, L. Kolanz, J. Venzke,
and A. Becker, Physical Review A 103, L061101 (2021) and in S. Walker, L. Kolanz, J. Venzke, and A. Becker,
Physical Review Research 3, 043051 (2021).
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of electrons co-rotating with respect to the rotation of the electric field of the applied field is

more likely than that of counter-rotating electrons. Stronger spin polarization was predicted for

energy regions near Cooper minima. Experimental [26,79] and further theoretical [38] investigations

supported these predictions by Fano. Preference of the emission of co-rotating over counter-rotating

electrons has also been found in the ionization of atoms prepared in Rydberg states with microwave

radiation [150, 180]. In the seventies and eighties of last century the quest for sources generating

spin-polarized electrons continued along with the development of laser technology. Significant

electron spin polarization has been predicted and observed in two- and three-photon ionization

of atomic targets [8, 16, 49, 50, 60, 61, 70, 71, 104–106, 157]. At the corresponding laser frequencies

the mechanism for spin polarization is related to intermediate resonances. The cross sections for

near-resonant two- or three-photon ionization can be large if high-power lasers with narrow spectral

bandwidth are available.

Using ultrashort laser pulses fine-tuning of the laser frequency to specific resonances is gen-

erally not possible and (near-)resonant effects, previously observed with lasers having a long pulse

duration, are often less pronounced in the ultrashort pulse regime. However, in the highly non-

perturbative tunneling regime of strong-field ionization a different selectivity in the emission of

electrons on the sense of the electron rotation in the initial state has been predicted recently [18].

In contrast to the general observations in the single-photon ionization regime, strong-field tun-

nel ionization yields larger ionization probabilities for counter-rotating electrons than for those

co-rotating with respect to the helicity of the applied field. The effect is due to nonadiabatic tun-

neling in which the two kind of electrons have, contrary to the standard assumption in strong-field

tunneling theory, nonzero velocities at the exit of the tunnel barrier. This prediction sparked sig-

nificant experimental [45, 52, 53, 77, 80, 85, 118, 158, 176] and theoretical [11–14, 17, 19–22, 24, 25, 35,

40, 44, 45, 74, 76, 82, 88, 90, 92–97, 110, 113–118, 122, 128, 166, 169, 170, 174–176, 179, 181, 182] interest

over the last decade, including the observation of spin polarization of electrons of about 30%-50%

for the interaction of atoms with laser pulses at 800 nm [21, 77, 158] and even larger one at about

400 nm [176].
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The role of excited states on the selectivity in the emission of counter- versus co-rotating

electrons has been investigated in a few studies [13, 25, 44, 82, 90, 166, 176, 182]. It has been shown

that resonant excitation can lead to peaks in the helicity dependent enhancement of ionization at

wavelengths in the deep multiphoton regime [182]. On- and off-resonance two-photon ionization

of an inner p-sub-shell electron has been discussed in the context of fluorescence polarization [82].

More recently, experimental and theoretical work has demonstrated that at wavelengths of about

400 nm Freeman resonances [65] provide a scheme to separate counter-rotating electrons from

co-rotating electrons in the photo-electron energy spectrum of xenon atoms [176]. In this case

resonant ionization via an intermediate state close to the threshold, which is accessible to the

counter-rotating electrons only, leads to a selection in the electron emission at a specific kinetic

energy. Therefore, the scheme provides an opportunity to generate spin-polarized electrons by

energy gating. Furthermore, strong asymmetries in the ionization with left- and right-handed

circularly polarized light for the lithium atom prepared in the polarized 2p(m = +1) state has been

observed [44]. In that combined experimental-theoretical study the emission of counter-rotating

electrons is found to be favored when the wavelength is tuned to the 2p−3s transition. We have more

generally analyzed the impact of resonant transitions via excited states, that – due to the selection

rules – can only be accessed by counter-rotating electrons. As we will show below, these states act

as doorway states in the few-photon ionization regime and are responsible for a dependence of the

total ionization probability on the magnetic quantum number of the initial state which is stronger

than those in both the single-photon and the tunneling regimes. The maximum ratios of total

ionization of counter- over co-rotating electrons, found in the numerical calculations, are about ten

to one, indicating the possibility to achieve a large selectivity in the overall electron emission.

More specifically, based on numerical solutions of the time-dependent Schrödinger equation

we predict a surprisingly large enhancement in the emission of electrons, that are initially counter-

rotating with respect to rotation of the applied field, during the interaction of rare-gas atoms with

ultrashort circular polarized laser pulses in a previously unexplored wavelength regime [166, 167].

In order to determine the mechanism behind this surprising enhancement we performed additional
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numerical calculations where specific emphasis was given to the intermediate-wavelength regime

where the trend in the ionization probability of counter-rotating electrons strongly differs from those

for electrons in the other two initial magnetic sub-levels. Theoretical analysis and numerical results

indicate that the enhanced emission of counter-rotating electrons occurs via photon absorption

channels, which are only accessible for electrons rotating opposite to the rotation direction of

the external electric field. Physical mechanisms behind the enhancement are identified as threshold

effects, in which the emission into continuum states with low angular momentum quantum numbers

is favored, and resonant enhanced ionization involving transitions via specific excited states in the

atom [166,167].

4.2 Numerical methods

To study the dependence of strong-field ionization on the value and the sign of the magnetic

quantum number, we have solved the TDSE for the interaction of an atom with an intense laser

pulse in atomic units, where

i
∂

∂t
Ψ(r, t) = [−∇

2

2
+E(t) ⋅ r + V (r)]Ψ(r, t) . (4.1)

Here, V (r) is a single-active electron (SAE) model potential for an electron in the 2p-shell in Neon

and in the 3p shell in Argon given by:

V (r) = −1

r
− Zce

−cr

r
−∑

j

aje
−bjr , (4.2)

where for Neon, ZC = 9, c = 2.0872, a1 = −5.4072, a2 = 1.0374, b1 = 4.1537 and b2 = 67.1114.

Similarly for Argon ZC = 17, c = 0.8472, a1 = −15.3755, a2 = −27.7431, a3 = 2.1705, b1 = 1.2484,

b2 = 4.3924 and b3 = 87.9345. The potential has been constructed using a method for benchmarking

tests between TDSE and time-dependent density functional theory calculations [143]. We will

discuss general features in detail for Neon [167] and note that we have observed the exact same

trends in Argon [166].
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For the circularly polarized laser pulse we set the vector potential of the applied field as:

A(t) = A0 sin2 (πt
τ
) [sin (ωAt) x̂ − ϵ cos (ωAt)ŷ] (4.3)

where A0 =
√
c2I/(1 + ϵ2)ω2

A, τ = 2πN
ωA

, c is the speed of light, I is the peak intensity, N is the

number of cycles in the pulse, and ωA is the central frequency of the vector potential. This ensures

that the electric field integrates to zero. ωA is determined such that the spectral distribution of the

E-field matches the given physical central frequency ωE [164]. The electric field is obtained by

E(t) = −1

c

∂

∂t
A(t) . (4.4)

We have considered a wavelength regime from 10 nm, which corresponds to ionization by

a single-photon, to 1000 nm, corresponding to tunneling ionization. At all wavelengths we have

applied intense laser pulses with a duration of 10-cycles and a peak intensity of 5 × 1014 W/cm2.

Without loss of generality we have chosen left-handed circularly polarized pulses (i.e. ϵ = −1). In

each calculation we have prepared the atomic system in one of the three magnetic sub-levels of

the p-shell. Eq. (4.1) has been solved in three spatial dimensions by using previously discussed

grid-based [163] and numerical basis-state methods [37, 168]. At the end of each simulation we

have determined the population in the excited states, characterized by the quantum numbers n,

l and m, via projection on the corresponding bound states of the atomic potential, which have

been determined numerically. The ionization probability has then been evaluated as the difference

between unity and the total probability left in the bound states.

In the grid-based method we have expanded Ψ(r, t) in spherical harmonics up to lmax =

∣mmax∣ = 40 and discretized the radius using fourth order finite difference. The wave function has

been propagated in time with a time step of 0.05 a.u., on a grid with spacing of 0.05 a.u., maximum

radius of 500 a.u., and exterior complex scaling on the outer 25 a.u. of the grid using the Crank-

Nicolson method to propagate the wave function in time. This method was mainly used for the

simulations at long wavelengths.

In the numerical basis state method we have also expanded Ψ(r, t) in spherical harmonics

with lmax = ∣mmax∣ = 40 in a box with maximum radius of 500 a.u. The basis was generated by
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diagonalizing the field-free Hamiltonian including a double-exponential complex absorbing potential

[78] on the outer 50 a.u. of the domain using a second order finite difference method with a grid

spacing of 0.03 a.u. In the calculations we have chosen a maximum principal quantum number

nmax = 500 corresponding to a maximum energy per angular momentum block of about 4.9 a.u.

The wave function is propagated in time using the Crank-Nicolson method with a time step of 0.05

a.u. We account for outgoing boundary conditions and the results have been checked against those

of the grid-based approach. Transitions to occupied states other than the initial state have been

prohibited in the basis code calculations.

4.3 Selectivity in electron emission

We first discuss concepts to enhance the emission probability of electrons from initial atomic

states with different magnetic quantum numbers via photon absorption. The absorption of a

photon from a left-handed circularly polarized field leads to changes of orbital angular and magnetic

quantum numbers of ∆l = ±1 and ∆m = −1. The schematic representations in Fig. 4.1 show the

allowed pathways for the absorption of the first three photons from initial (a) p and (b) d states.
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Figure 4.1: Photon absorption channels for interaction of a left-handed circularly polarized laser

field (∆l = ±1, ∆m = −1) with an atom in initial (a) p (red: m = −1, green: m = 0, blue: m = 1) and

(b) d state (red: m = −2,−1, green: m = 0,1, blue: m = 2) [167].

In the case of an initial p state (Fig. 4.1(a)) for electrons in each of the three magnetic sub-

levels transitions with ∆l = 1 are allowed leading to a successive increase of the orbital angular

quantum number with the absorption of each photon, where additional photon absorption channels

are accessible for the counter-rotating electrons (here, electrons in the initial m = 1 level, blue

arrows). For example, for a counter-rotating electron the absorption of a (left-handed circularly

polarized) photon induces a change in magnetic quantum number to m = 0 and therefore transitions

into both l = 2- and l = 0-levels are allowed. In contrast, for the other two initial sub-levels only

the transition to l = 2 is possible. Similar considerations hold for the absorption of additional

photons. If the probability via these additional channels can be enhanced, we should therefore

expect a strong selectivity of the emission of counter-rotating electrons in the interaction with a

circularly polarized laser field. As our results below indicate this can be achieved either near the

thresholds of photon absorption (section 4.3.2) or via intermediate resonances which act as doorway

states accessible for the counter-rotating electrons only (section 4.3.3). These additional pathways
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to ionization have been also mentioned in Refs. [13, 25, 44, 82, 90, 166, 176]. Resonant transitions

via different pathways for counter-rotating electrons in two-photon ionization has been discussed

in Refs. [82,90]. Since selective emission via these additional pathways does not rely on a splitting

of energy levels, the enhancement can be achieved independent of the duration of the applied laser

pulse, which is interesting for the generation of ultrashort spin-polarized electron pulses.

With our numerical results presented below we study the applicability of these concepts for

the initial 2p state in the neon atom, similar results have been found for argon atom as well [166].

Reasoning along similar lines as above can be however done for initial states with a larger orbital

angular momentum number as well, as it is illustrated for an initial d state in Fig. 4.1(b). Besides

the ∆l = 1 pathway, which is open for electrons from each of the five initial m-levels, additional

pathways are available for electrons from the initial levels with m = 0,1 (red arrows) and even

more for those from the m = 2 state (blue arrows). Thus, by identifying specific frequency regions

in which the transition probability via one or some of these additional pathways is large one can

expect an enhancement in the emission of certain groups of electrons.

4.3.1 General trends

In Fig. 4.2 we present the numerical results for the ionization probability from the three 2p

orbitals of neon-like atom as a function of wavelength in a 10-cycle left-handed circularly polarized

laser pulse at peak intensity of 5×1014 W/cm2. P+, where the index denotes the magnetic quantum

number of the initial orbital (m = 1, 2p+, stars with line), corresponds to the ionization probability

for counter-rotating electrons, while P− (circles with line) is the one for co-rotating electrons and

P0 (squares with line) denotes the ionization probability for the initial state with m = 0.
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Figure 4.2: Ionization probabilities P+ (stars with line), P0 (squares with line), and P− (circles

with line) as function of wavelength for neon-like atom at 5×1014 W/cm2 interacting with 10-cycle

left-handed circularly polarized laser pulses [167].

There are a few general trends which we will discuss before we further analyze more specific

features in the next subsections. In the short wavelength regime the single-photon ionization

probability for each of the three sub-shells increases approximately proportional to λ7/2, as it is

expected at large photon energies based on the Born approximation [32]. In agreement with earlier

work [59, 104] for single-photon transitions co-rotating electrons are easier to ionize than counter-

rotating electrons, while the ionization probability for the initial orbital with m = 0 remains in

between those for the other two sub-shells (section 4.3.2). The differences in the trends of the

ionization probabilities near the one-photon threshold will be discussed in section 4.3.2.

In the two-, few- and multiphoton ionization regime the dependencies of P− and P0 on the

wavelength remain rather similar. As discussed out the outset of section 4.3 (c.f., Fig. 4.1(a)), for

electrons in initial p− and p0 states absorption of photons is allowed through the pathway with
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∆l = 1 only. Therefore, the absorption of N photons results in the final state with lf = N + l and

mf =m−N , where l is the angular momentum quantum number of the initial state. In lowest order

perturbation theory the transition amplitudes for both initial states share identical intermediate

reduced matrix elements and differ from each other only by a 3j symbol. A perturbative scaling

law for the ratio of ionization probabilities via the ∆l = +1 pathway for electrons in initial states

(l,m) and (l,m′) is therefore given by

Pm

Pm′
=

Nmin

∏
k=1

⎛
⎜⎜
⎝

l + k 1 l + k − 1

k −m −1 m + 1 − k

⎞
⎟⎟
⎠

2

⎛
⎜⎜
⎝

l + k 1 l + k − 1

k −m′ −1 m′ + 1 − k

⎞
⎟⎟
⎠

2
, (4.5)

where Nmin = ⌈Ip/ω⌉ is the minimum number of photons absorbed and Ip is the field free ionization

potential. Using

⎛
⎜⎜
⎝

l + k 1 l + k − 1

k −m −1 m + 1 − k

⎞
⎟⎟
⎠
= (−1)l−m

¿
ÁÁÀ (2k + l −m − 1)(2k + l −m)
(2k + 2l − 1)(2k + 2l)(2k + 2l + 1)

, (4.6)

we get

Pm

Pm′
=

Nmin

∏
k=1

(2k + l −m − 1)(2k + l −m)
(2k + l −m′ − 1)(2k + l −m′)

= (l −m
′)!(2Nmin + l −m)!

(l −m)!(2Nmin + l −m′)!
. (4.7)

Thus, for an initial p state with l = 1 we have

P0

P−
= 1

Nmin + 1
(4.8)

and

P+(lf = Nmin + 1)
P−

= 1

(Nmin + 1)(2Nmin + 1)
, (4.9)

where P+(lf = Nmin + 1) is the perturbative ionization probability for counter-rotating electrons

along the ∆l = +1 pathway only.

The comparison in Fig. 4.11(a) shows that the numerical results for P0/P− (circles with line)

overall agree well with the perturbative scaling law (solid line, Eq. (4.8)) at the shorter wavelengths.

The differences near the photon absorption thresholds are due to the bandwidth of the short pulse
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used in the calculations. The deviation at large wavelengths indicates the transition to the tunneling

regime. In this regime the numerical results for P0/P− agree rather well with predictions based on

nonadiabatic tunneling theory (dotted line in Fig. 4.11(a), [18, 20]):

P0

P−
=

¿
ÁÁÀ I

16I3p

1 + γ2
ζ20 + γ2

γ3(ζ0 − 1)2(ζ0 + 1)

(
√
ζ20 + γ2 − ζ0

√
1 + γ2)

2
, (4.10)

where I is the laser intensity, γ is the Keldysh parameter and ζ0 is determined by

¿
ÁÁÀζ20 + γ2

1 + γ2
= tanh

⎛
⎜
⎝

1

1 − ζ0

¿
ÁÁÀζ20 + γ2

1 + γ2
⎞
⎟
⎠
. (4.11)

In contrast, the results for P+/P− (circles with line) in Fig. 4.11(b) show a deviation from

both the perturbative scaling law (solid line, Eq. (4.9)) and the prediction of the nonadiabatic

tunneling theory (dotted line, [18, 20]):

P+
P−
=
⎛
⎝

√
ζ20 + γ2 + ζ0

√
1 + γ2

√
ζ20 + γ2 − ζ0

√
1 + γ2

⎞
⎠

2

(4.12)

in the intermediate two- and few-photon ionization regime. Here, P+/P− changes by two orders

of magnitude, reversing from 1:10 to 10:1. An enhancement of the emission of counter-rotating

electrons in the few-photon ionization regime has also been observed in numerical results for strong-

field detachment of F− [13]. As we will discuss in the next subsections, for the present results the

strong variation in the ratio can be explained as due to the impact of the additional pathways

available for the counter-rotating electrons (c.f., Fig. 4.1(a)). From the results in Fig. 4.11(b) we

can identify that these pathways should have a strong impact at the one- and two-photon ionization

thresholds, the region at about 70 nm and the few-photon ionization regime.
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Figure 4.3: Comparison of numerical results (circles with line) for the ratios (a) P0/P− and

(b) P+(lf = Nmin + 1)/P− with the scaling laws from lowest order perturbation theory for ∆l = 1

pathway (solid lines, Eqs. (4.8,4.9)) and those from nonadiabatic tunneling predictions (dotted lines,

Eqs. (4.10,4.12)) as function of wavelength. Laser parameters are the same as in Fig. 4.2 [167].
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Before proceeding, we note that the present numerical results agree well with the predictions

of the nonadiabatic tunneling theory at long wavelengths. A similar degree of agreement has been

reported before for results from an analytical R-matrix theory [94], 2D-TDSE calculations [17]

and the R-matrix with time dependence method [13]. Furthermore, the results of the analytical

R-matrix theory [94] indicate a maximum in the P+/P− ratio as well, which occurs in a wavelength

regime close to that one where the maximum is found in the present results. Finally, we note that

the trend of the results for P+ and P− in Figs. 4.2 and 4.11(b) near 1000 nm may indicate that

the relative emission probability of counter- versus co-rotating electrons reverses at even longer

wavelengths. Such a reversal has been predicted in past theoretical studies [174,182].

4.3.2 Ionization thresholds and two-photon ionization

At wavelengths near the one-photon ionization threshold the relative probability for emission

of counter-rotating electrons increases as compared to those from the initial levels with m = −1 and

m = 0. This can be seen from the ratios P+/P− (Fig. 4.4(b), stars with line) and P+/P0 (Fig. 4.4(c),

stars with line). The enhancement is due to the fact that for small photo-electron energies the

transition in the continuum is favored for final states with low angular momentum quantum numbers

[32]. Since transitions into continuum states with lf = 0 are only allowed for counter-rotating

electrons (Fig. 4.4(a)) the emission of those electrons is enhanced near the threshold, which raises

the two ratios. This interpretation is verified by the comparison with reduced ratios, in which we

deliberately neglected the probability for the channel to one of the final states in the P+ results.

To this end, we have computed the continuum populations for a certain angular momentum by

projecting the wave function onto the corresponding continuum functions used in the basis method

and adding these coefficients squared. The reduced ratios show the dominant emission in the lf = 2-

channel (squares with line) and the lf = 0-channel (circles with line) at short wavelengths and near

the threshold, respectively.
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Figure 4.4: Upper row: (a) Channels for single-photon ionization. Lower row: Comparison of

ratios (b) P+/P− (stars with line), P+(l = 2)/P− (circles with line), and P+(l = 0)/P− (squares with

line), and (c) P+/P0 (stars with line), P+(l = 2)/P0 (circles with line) and P+(l = 0)/P0 (squares with

line) as function of wavelength. Also shown are the predictions based on lowest order perturbation

theory for the ∆l = 1 channels (solid lines without symbols, Eqs. (4.8,4.9)) [167].

The same effect explains the enhancement in the emission of counter-rotating electrons for

wavelengths near and just above 100 nm, at which the two-photon ionization channel closes. Since

the pathway into the lf = 1-channel is allowed for the counter-rotating electrons only (Fig. 4.5(a)),
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predominant emission of counter-rotating electrons into the final channel with the lowest possible

angular momentum quantum number enhances the ratio of P+/P− and P+/P0 near the threshold

(Fig. 4.5(b,c)).
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Figure 4.5: Upper row: (a) Channels for two-photon ionization. Lower row: Comparison of ratios

(b) P+/P− (stars with line), P+(l = 3)/P− (circles with line), and P+(l = 1)/P− (squares with line),

as well as (c) P+/P0 (stars with line), P+(l = 3)/P0 (circles with line) and P+(l = 1)/P0 (squares

with line) as function of wavelength. Also shown are the predictions in lowest order perturbation

for the ∆l = 1 channels (lines without symbols) [167].
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The impact of the channels with lowest angular momentum quantum number in the final

state can be also investigated via photo-electron angular distributions. For ionization along the

∆l = 1 pathway, available for all electrons, we expect an angular distribution proportional to the

spherical harmonics ∣Y m−1
2 ∣2 (for single photon ionization) and ∣Y m−2

3 ∣2 (for two-photon ionization).

As can be seen, from the comparison of the numerical results in Fig. 4.6, obtained at the one-photon

(left column, 53.8 nm) and the two-photon threshold (right column, 104.12 nm), this is the case

for ionization from both 2p0 (panels (b) and (e)) and 2p−1 (panels (c) and (f)). In contrast, the

angular distributions for the counter-rotating electrons at the one-photon threshold (Fig. 4.6(a))

show signatures of an interference. Specifically, in the projections it is seen that the node that would

occur for a pure ∣Y 0
2 ∣2 distribution is not present. This indicates the presence of an interference

with a spherical harmonic having a different, here lower, angular momentum, as expected. At the

two-photon threshold the contribution from l = 3 is significantly smaller than that from l = 1 so

interference is barely visible in the photo-electron angular distributions (Fig. 4.6(d)).
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Figure 4.6: Comparison of photo-electron angular distributions for ionization from initial state

m = 1 (a,d), m = 0 (b,e) and m = −1 (c,f) near one-photon (a-c: 53.8 nm) and two-photon (d-f:

104.12 nm) threshold [167].



91

The enhancement in the P+-yield and the corresponding ratios at a wavelength of about 70 nm

in the two-photon ionization regime is due to resonant ionization via the intermediate 3s doorway

state. While transition into the 3d state is allowed from all three initial states via the absorption

of one left-handed circularly polarized photon, the 3s state is only accessible for electrons in the

initial 2p−1 state (c.f., Fig. 4.1(a)). Indications for the impact of the doorway state are given by the

ratios P+(lf = 1)/P− and P+(lf = 1)/P0 in Fig. 4.5(b,c) and the large population in the 3s state for

ionization from the initial 2p+ state at the end of the pulse (Fig. 4.7(a)). The relative importance of

resonant transition via s and d states in the two-photon ionization regime has also been discussed

for interaction of counter-rotating electrons prepared in excited 2p state in hydrogen atom [90].

Similarly, an enhancement in the emission of counter-rotating electrons has been observed for a

resonant 2p−3s transition in the three-photon ionization of lithium atoms, prepared in the polarized

2p(m = +1) state [44]. Together, the data clearly support the interpretation that the resonant

ionization pathway, which is accessible for the counter-rotating electrons only, is the origin for the

enhancement in the P+-yield. The comparison with the final populations in the states of the n = 3-

level for the other two initial states in Fig. 4.7(b,c) show that in those cases only the 3d state is

populated and the population decreases as a function of wavelength in the two-photon ionization

regime.
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Figure 4.7: Excitation probabilities in 3s (orange squares), 3d (red circles) and all states (blue

stars) for ionization from initial states (a) 2p1 , (b) 2p0 and (c) 2p−1 for neon-like atom at 5 × 1014

W/cm2) interacting with 10-cycle laser pulses [167].

4.3.3 Doorway states in few-photon ionization regime

In contrast to the two-photon ionization regime, for few-photon ionization states in the n = 3-

level can only be accessed by the counter-rotating electrons, as shown in the two schemes in Fig. 4.8.

Corresponding to each of these additional pathways one can expect resonant enhanced ionization

in the P+-yield. In contrast, there are no pathways for resonant enhanced ionization via the n = 3
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states for electrons in the other initial states.

Figure 4.8: (a) Two- and (b) three-photon transitions into doorway states in the n = 3 shell

from initial 2p1 state. Other non-resonant transitions are also shown using same arrow styles as in

Fig. 4.1 [167].

The importance of the resonant transitions is supported by the results of our numerical cal-

culations in Fig. 4.9. The comparison of the total and 3l-excitation probabilities for the three initial

states at the end of the pulse shows the stronger role of the overall excitation for counter-rotating

electrons (Fig. 4.9(a)) as compared to the other initial states (Fig. 4.9(b,c)) in the wavelength

regime between 100 nm and 200 nm. It is also seen that a major part of the total excitation arises

from populations in either the 3p-level (two photon resonant transition) or the 3d-level (three pho-

ton resonant absorption). In contrast, there is only very small final population in the 3d state for

the other two initial states. This population arises from one-photon transitions due to the broad

bandwidth of the ultrashort pulse. Similarly, we see some small population in the 3s state due to

one-photon absorption for the initial 2p1 state.
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Figure 4.9: Comparison of excitation probabilities in 3s (orange squares), 3p (green triangles), 3d

(red circles) with total excitation probability (blue stars) from initial states (a) 2p1, (b) 2p0 and

(c) 2p−1 for neon-like atom with 10-cycle laser pulses at peak intensity 5 × 1014 W/cm2) [167].

The remaining part of the total excitation probabilities for the counter-rotating electrons as

well as the contributions for the other initial states arise from higher excited states. This is shown in

Fig. 4.10, where we present the corresponding populations in states with n ≥ 4, separately for each

l-quantum number up to l = 6 (i states). The excitation for the initial states with (b) m = 0 and (c)

m = −1 both solely arise from the f - (at about 110 nm), g- (∼ 170 nm), h- (∼ 200 nm), and i−levels
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(∼ 240 nm), confirming that mechanism and pathway to excitation and ionization from these two

states are similar. The population of levels with successively larger l-value in separate regimes, as

the wavelength increases, is in agreement with the interpretation of a resonant enhancement along

the ∆l = 1 pathway. In contrast, the results for the counter-rotating electrons (Fig. 4.10(a)) again

indicate the strong impact of the additional pathways. In this case the populations in the excited

states along the ∆l = 1 pathway do not provide significant contributions to the total excitation

probability. For example, the population in the nf states (purple crosses) at about 110 nm for

initial state m = 1 is smaller than the populations in the corresponding states for the interaction

with the other two initial states. However, its contribution to the total excitation probability is

negligible. Instead, the populations in the excited states with lower l are, in general, by about

two orders of magnitude stronger than those with the higher l’s. This observation agrees with

theoretical results for on-resonance two-photon ionization of an inner atomic np-sub-shell by a

circularly polarized light field [82].
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Figure 4.10: Same as Fig. 4.9 but for ns (orange squares), np (green triangles), nd (red circles), nf

(purple crosses), ng (brown diamonds), nh (pink plus signs), and ni (grey 3 pointed stars) states

with n ≥ 4. Total excitation probabilities are represented by blue 5 pointed stars [167].
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4.3.4 Application to Argon atoms

Figure 4.11: Ratio P+/P− (stars with solid lines) and P0/P− (open circles with dotted lines) as a

function of wavelength for (a) neon-like atom (5 × 1014 W/cm2) and (b) argon-like atom (5 × 1013

W/cm2) interacting with 10-cycle laser pulses [166].

In general, the results for an argon-like atom can be interpreted in the same way as those for

the neon-like atom. A few additional features arise due to the more complex level structure among

the doorway states closest in energy to the initial 3p-levels.

In Fig. 4.11, we plot the P+/P− ratio (solid blue line) and P0/P− ionization ratio (solid black

line) now for both neon atoms (panel a) and argon atoms (panel b), where all laser parameters in

the case for argon have been chosen identically to the neon-like case except the use of a reduced

laser intensity of 5 × 1013 W/cm2. The large maximum in the single-photon regime for the argon-

like atom at about 30 nm and several of the small maxima in the two-photon regime for both

atoms are due to the Cooper minimum and resonant transitions, respectively. These signals are

therefore short-pulse features of the effects studied for continuous lasers or long pulses in earlier

studies [59,104]. Here, the vertical solid lines correspond to ionization thresholds where a maxima

in the co- vs. counter-rotating ratio for both neon and argon atoms again lies approximately at the

five-photon ionization threshold corresponding to the transition between tunneling and multiphoton

ionization.
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When analyzing the P0/P− ratio we again see the perturbative scaling law, Eq.(4.8), where

the effects of resonances and Cooper minima are not observed. We must note that the upward

slope of the ratio in Fig.(4.11 b) above 600 nm is likely a convergence error in the numerical results

but does not alter our results and analysis.

4.4 Summary

To summarize, we have performed ab-initio numerical calculations of the time-dependent

Schrödinger equation to study the dependence of the interaction of argon- and neon-like atoms

[166, 168] with an intense ultrashort circularly polarized laser pulse on the magnetic quantum

number of the initial state. In our analysis we have considered a broad wavelength regime, ranging

from single-photon to tunneling ionization. The numerical results for ionization of electrons co-

rotating with respect to the rotation direction of the field and those from the initial level with m = 0

agree well with the predictions from lowest order perturbation theory at short and nonadiabatic

tunneling theory [18,20] at long wavelengths. In contrast, the data for the counter-rotating electrons

deviate significantly from both these predictions in the intermediate wavelength regime.

At the one- and two-photon ionization thresholds the enhancement in the emission of counter-

rotating electrons can be explained via the transition into channels with low angular momentum

quantum number in the continuum, which are accessible for these type of electrons only. Further

increase in the ionization yield for counter-rotating electrons (Fig. 4.2) and in the ionization ratio

of counter- over co-rotating electrons (Fig. 4.11(b)) in the two- and few-photon ionization regime

comes along with much stronger excitation probabilities found for the interaction of counter-rotating

electrons with a circularly polarized short laser pulse. Together with the finding that the population

is mainly in excited states with lower angular momentum quantum number our results indicate that

resonant enhanced ionization via specific pathways and doorway states, which are accessible for the

counter-rotating electrons only, is the physical mechanism behind the enhancement. The overall

similar trends in ionization and excitation probabilities for initial states with m = 0 and m = 1,

from which none of the doorway states can be excited, further support this interpretation.
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The additional pathways for counter-rotating electrons exist in all atoms with ground states

having l ≥ 1 and may therefore provide an alternative route towards the generation of ultrashort

spin-polarized electron pulses. Energy gating of the photo-electrons, as proposed and demonstrated

in Ref. [176], can even further enhance the selectivity in the ionization process. Increasing the wave-

length beyond the few-photon ionization regime, the excitation probability becomes less relevant

due to the large number of photons needed for resonant transitions into excited states close to

the threshold. Correspondingly, the relative strength of the emission of counter-rotating over co-

rotating electrons gets significantly smaller, decreasing from a ratio of ten to one at 250 nm to less

than three to one in the tunneling regime at 1000 nm (Fig. 4.11(b)).



Chapter 5

Extending the theory of strong-field ionization into the UV limit

Our recent work [166,167] discussed in the previous Chapter motivated us to seek out accurate

models of strong field ionization from a general initial state at arbitrary photon energies. The

current approach involves expanding the Keldysh ionization amplitude [98] in Fourier components

(in time) and partial waves (in space). We are able to describe the strong field process in terms

of photon absorption pathways and angular momentum selection rules. Almost exact results for

the ionization of electrons bound to short range potentials in the presence of a strong circularly

polarized field at an intensity of I = 1× 1014 W/cm2 and with wavelengths between 10 and 800 nm

are found in comparison with ab-initio numerical TDSE simulations. We will, in particular, discuss

the correct choice of states in the 10-200 nm wavelength regime where the asymptotic tail of the

wave-function alone cannot describe ionization.

5.1 Circular polarization

In section 3.6.2, we summarized the results of Refs. [20, 136], for the ionization of electrons

bound by short-range potentials for the case of a strong circularly polarized field. The success of

these formulas was then demonstrated in Fig. 3.9, where satisfactory agreement was found with

numerical solutions of the TDSE applied to a 16-cycle laser pulse with an intensity of I = 1 × 1014

W/cm2 and wavelengths between 10 nm and 800 nm. Discrepancies were observed near ionization

thresholds since we did not include the pulse envelope, and at the short (10 nm) limit due to the use

of the quasi-classical saddle point approximation. Errors of the first kind are well understood and
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may be resolved using rate equations and numerical time integration including the pulse envelope.

In this section we will discuss errors of the second kind introduced by the use of saddle points.

5.1.1 Short-wavelength breakdown of the saddle point approximation

In Fig. 5.1 we integrate the length gauge amplitude exactly in time (Eq. (5.42)) to demon-

strate short-wavelength errors introduced by the saddle-point approximation. The exact results

will be derived in the subsequent section. In the left panel of Fig. 5.1 we compare the saddle point

PPT result of section 3.6.2, as also shown in Fig. 3.9, to the exact same amplitude without the

approximation for an initial s-state. It is clear that for nearly all wavelengths longer than the

single photon ionization threshold (∼ 92 nm), both the exact (black curve) and the approximate

amplitude (red dashed curve) predict essentially the same results.
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Figure 5.1: Total ionization yield for the length gauge amplitude (sections 3.6.1 and 3.6.2) corre-

sponding to a 16 cycle laser pulse with an intensity of 1014 W/cm2. Results are compared between

the saddle-point approximation (red dashed curve) and the exact time integration (solid black

curve) for s-states (left panel) and p-states (right-panel).

In contrast, in the right panel of Fig. 5.1 the same comparison is done for initial p-states,

where it is clear that the exact (black curve) and the approximate amplitude (red dashed curve)
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disagree over almost the entire wavelength regime considered. To further explore this behavior we

decompose the ionization yield into contributions corresponding to each of the three initial states

m = −1,0 and 1 where the field is assumed to be right handed circularly polarized.
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Figure 5.2: Total ionization yield for the length gauge amplitude (sections 3.6.1 and 3.6.2) corre-

sponding to a 16 cycle laser pulse with an intensity of 1014 W/cm2. The yield is compared between

the saddle-point approximation (red dashed curve) and exact time integration (solid black curve).

Top-left, bottom and top-right panels correspond to initial magnetic quantum number mi = −1, 0

and 1, respectively.

From this comparison it is obvious that the saddle-point approximation overestimates the

yield for each magnetic sub-level, where the worst agreement is observed near the short wavelength
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10 nm limit, while the best agreement is found at the 800 nm long wavelength limit. To verify that

the correct pre-factor has been used, the p0−yield was calculated exactly from the s−yield used

in the left panel of Fig. 5.1, where the s−state factor κ/2π was replaced with 3k2z/2πκ with the

appropriate term for Cκ,li .

5.1.2 Ionization amplitude

We will now discuss the accurate ionization amplitude used in Figs. 5.1 and 5.2 for the case of

circular polarization with application to elliptically and linearly polarized pulses in a later section.

The exact solution to the TDSE can be expressed as a Lippmann-Schwinger-type integral equation

Ψ±(x) = ϕi(x) + ∫ d4x1 G±(x;x1)VL±(x1)ϕi(x1), (5.1)

where we use the notation

∫ d4x1 ≡ ∫
t

t0
dt1∫ dr1 (5.2)

for integration over intermediate coordinates and + and − in ± correspond to right- and left-handed

polarized fields. Here, t0 is the moment when the field is turned on and t is the time instant when

the field is turned off and measurements are made.

The initial atomic state is either chosen to be the exact numerical eigenstates for a SAE

potential

ϕi(x) ≡ e(i/h̵)Iptϕi(r) = e(i/h̵)IptRi(r)Y mi

li
(r) (5.3)

with Ri given by

Ĥa(r)ϕi(r) = [
p̂2

2m
+ Va(r)]ϕi(r) = −Ipϕi(r) (5.4)

or the approximate asymptotic states from Ref. [136], where

Ri(r) ≈ Cκliκ
3/2(κr)ν−1e−κr (5.5)

which is accurate for calculations at long wavelengths, where ionization is dominated by the tail

(κr ≫ 1) of the ground state. As before, Ip is the ionization potential, h̵κ ≡
√

2mIp is the bound
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state momentum and we obtain Cκli by fitting the asymptotic state to the κr ≫ 1 part of the exact

state.

We will investigate accurate solutions for the case of short range potentials where the solution

to the atomic Schrödinger equation for κr ≫ 1 gives ν = 0. For long range potentials (which we

will treat in a later work) the power law becomes ν ≡ (κC/κ) with the Coulomb momentum

h̵κC = mZ ∣e∣2/h̵ and residual ionic charge Z ∣e∣. To derive the first order amplitude we expand the

full Green’s function in Eq. (5.1) to zeroth order in Volkov states

Φ
(−)
k± (x) = e

−(i/h̵) ∫ t
t0

(h̵k+ ∣e∣c A±(τ))2
2m

dτ+ i∣e∣
h̵c

A±(t)⋅rϕ(−)k (r). (5.6)

Here, ϕ
(−)
k (r) is chosen to either be plane-waves or atomic continuum states obtained through

the shooting method. The earlier correspond to the usual zero-range Volkov states and the latter

correspond to the finite-range atom Volkov states with properties given in Ref. [58].

When the Volkov Green’s function

G
(V )
± (x;x′) = − i

h̵
θ(t − t′)⨋

k
Φ
(−)
k± (x)Φ

(−)
k± (x′) (5.7)

is inserted in Eq. (5.1) we arrive at the approximation

Ψ±(x) ≈ ϕi(x) + ∫ d4x1G
(V )
± (x;x1)VL±(x1)ϕi(x1). (5.8)

To determine ionization properties we restrict ourselves to the outgoing part of the wave-function

spanned by continuum Volkov states

Ψ
(out)
± (x) = ∫ dkM±(k, t)Φ(−)k± (x) (5.9)

with the coefficient given by

M±(k, t) = ∫ drΦ
(−)
k± (x)Ψ±(x). (5.10)

The zeroth order contribution

M(0)
± (k, t) = ∫ drΦ

(−)
k± (x)ϕi(x) (5.11)
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is identically zero for finite-range Volkov states and dies off for plane-wave Volkov states in the long

pulse limit [136]. The lowest order contribution therefore comes from

M(1)
± (k, t) = −(

i

h̵
)∫ d4x1Φ

(−)
k± (x1)[∣e∣E±(t1) ⋅ r1]ϕi(x1) (5.12)

and is the well known Keldysh amplitude [98].

5.1.3 Photon Absorption/Emission

We select t0 = 0 and write the amplitude as

M(1)(k, t) = ∫
t

0
dt1e

(i/h̵)S(k,t1) (− ∂

∂t1
) ϕ̃i(k,A(t1)) (5.13)

with

ϕ̃i(k,A(t)) = ∫ dr1ϕ
(−)
k (r1)e

− i∣e∣
h̵c

A(t)⋅r1ϕi(r1) (5.14)

We then expand the terms in Eq. (5.13) in partial waves to determine the ionization amplitude.

To evaluate time integrals via Fourier components we replace the sum over saddle points by a sum

over discrete energy levels. The discrete states describe the total quanta absorbed (n) and the final

energy after ionization.

Starting with the ϕ̃i term we express the vector potential contribution as

e−
i∣e∣
h̵c

A±(t)⋅r = 4π
∞
∑
lA=0

lA

∑
nA=−lA

(−i)lAjlA(kAr)Y
±nA

lA
(Â±(0))Y ±nA

lA
(r̂)e−inAωt (5.15)

where kA ≡ ∣e∣Ah̵c is the vector potential momentum. Y ±nA

lA
(r̂) represents the angular momentum

transfer and e−inAωt represents the total energy transfer nAh̵ω. Since lA ≥ ∣nA∣, we note that, in

general, nA describes the net absorption or emission of energy and not necessarily an order of

perturbation theory. This factor is completed by expanding the continuum state in the term as

ϕ
(−)
k (r) =

1

k

∞
∑
lk=0

lk

∑
mk=−lk

ilke−iηlk(k)Rk,lk(r)Y
mk

lk
(k̂)Y mk

lk
(r̂) (5.16)

where Rk,lk is the radial continuum state with phase shift ηlk(k). Here, ϕ
(−)
k describes scattering

states which are asymptotically given at r →∞ by a plane wave plus an ingoing spherical wave [107].



106

Putting it all together we have

(− ∂
∂t
) ϕ̃i(k,A(t)) = (i/h̵) ∑

lA,nA

(nAh̵ω)A±nA

lA
e−inAωt

×∑
lk

Klk(k)I
lk,lA
li
(k)

⎡⎢⎢⎢⎢⎢⎢⎣

lk lA li

−(mi ± nA) ±nA mi

⎤⎥⎥⎥⎥⎥⎥⎦

Y mi±nA

lk
(k̂) (5.17)

with coefficients

A±nA

lA
≡ 4π(−i)lAY ±nA

lA
(Â±(0)), (5.18)

and

Klk(k) ≡ (−i)
lkeiηlk(k). (5.19)

The Fourier component e−inAωt describes the transfer of nA quanta of energy to the ionized

electron and the angular integrals are given by

⎡⎢⎢⎢⎢⎢⎢⎣

l3 l2 l1

−m3 m2 m1

⎤⎥⎥⎥⎥⎥⎥⎦

≡ ∫ dΩr1Y
m3

l3
(r̂1)Y m2

l2
(r̂1)Y m1

l1
(r̂1) (5.20)

which provides the corresponding angular momentum selection rules which are evaluated as Wigner-

3j symbols. The radial integral

I lk,lAli
(k) ≡ 1

k
∫
∞

0
dr1 r

2
1Rk,lk(r1)jlA(kAr1)Ri(r1), (5.21)

determines how the initial state influences the photo-electron distribution. We numerically evaluate

this integral for all cases in this section and the subsequent section on numerical applications.

Using the expansion

jl(x) =
√

π

2x
Jl+1/2(x) =

√
π

2

(x/2)l

Γ(l + 3/2)0
F1(l + 3/2;−x2/4), (5.22)

for asymptotic initial states and zero-range Volkov states the integral can be evaluated exactly as

I lk,lAli
(k) = Cκ,li

2ν−1/2

κ3/2
Γ([lk + lA + ν + 2]/2)Γ([lk + lA + ν + 3]/2)

Γ(lk + 3/2)Γ(lA + 3/2)

× (k
κ
)
lk

(kA
κ
)
lA

F4 (
lk + lA + ν + 2

2
,
lk + lA + ν + 3

2
; lk +

3

2
, lA +

3

2
;−(k

κ
)
2

,−(kA
κ
)
2

) . (5.23)
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The Appell F4 function [9] is defined as

F4(a, b; c1, c2;x, y) =
∞
∑

m,n=0

(a)m+n(b)m+n
(c1)m(c2)n

xm

m!

yn

n!
(5.24)

with domain of convergence
√
∣x∣+
√
∣y∣ < 1 (or k+kA < κ) and can be extended to the entire domain

via various analytic continuations [6, 7, 56, 83]. In section 5.3 we will find a simpler expansion in

terms of orders of the intensity parameters z1 and z, where lowest-order contributions correspond

to the weak-field limit and progressively higher-order terms are required when transitioning into

the strong-field limit.

To finish the derivation we expand the action term in partial waves and perform time integrals

such that

S±(k, t) = ∫
t

0
dτ

⎡⎢⎢⎢⎢⎣

(h̵k + ∣e∣c A±(τ))
2

2m
+ Ip
⎤⎥⎥⎥⎥⎦
= N(k)h̵ω t + h̵k ⋅ (ξ±(t) − ξ±(0)) , (5.25)

N(k) ≡ 1

h̵ω
(Ek + Ĩp) , Ek =

h̵2k2

2m
, Up ≡

h̵2k2A
2m

(5.26)

and

ξ±(t) ≡
∣e∣
mc
∫

t
A±(τ)dτ = ξ[cos(ωt)x̂ ± sin(ωt)ŷ] (5.27)

with ξ ≡ ∣e∣Aωmc . Using the same partial wave expansion as before we have

eik⋅ξ±(t) = 4π
∞
∑
lS=0

lS

∑
nS=−lS

ilSjlS(k ξ)Y
±nS

lS
(ξ̂±(0))Y

±nS

lS
(k̂)e−inSωt. (5.28)

For a given number of quanta nA from the vector potential term we have

∫
t

0
dt1e

(i/h̵)S±(k,t1)−inAωt1 =

e−ik⋅ξ±(0)
∞
∑
lS=0

lS

∑
nS=−lS

X±nS

lS
(k)Y ±nS

lS
(k̂)δt([N(k) − (nA + nS)]ω/2) (5.29)

with coefficient

X±nS

lS
(k) ≡ 4πilSjlS(kξ)Y

±nS

lS
(ξ̂±(0)). (5.30)

The shape term

δt(x) ≡ eixtsinc(xt)t (5.31)
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describes the distribution of final energy states after the absorption of nA + nS photons by a finite

flat-top pulse.

Combining all contributions we get for the ionization amplitude

M(1)
± (k, t) = (i/h̵)e−ik⋅ξ±(0)

∞
∑
lA=0

lA

∑
nA=−lA

(nAh̵ω)A±nA

lA

×
li+lA
∑

lk=max(∣li−lA∣,∣mi±nA∣)
Klk(k) I

lk,lA
li
(k)

⎡⎢⎢⎢⎢⎢⎢⎣

lk lA li

−(mi ± nA) ±nA mi

⎤⎥⎥⎥⎥⎥⎥⎦

Y mi±nA

lk
(k̂)

×
∞
∑
lS=0

lS

∑
nS=−lS

X±nS

lS
(k)Y ±nS

lS
(k̂)δt([N(k) − (nA + nS)]ω/2) (5.32)

with angular momentum components determined by

Y ±nS

lS
(k̂)Y mi±nA

lk
(k̂) =

lk+lS
∑

l=max(∣lk−lS ∣,∣mi±[nA+nS]∣)

⎡⎢⎢⎢⎢⎢⎢⎣

l lS lk

−(mi ± [nA + nS]) ±nS mi ± nA

⎤⎥⎥⎥⎥⎥⎥⎦

Y
mi±(nA+nS)
l (k̂) (5.33)

and the yield given by

P
(ion)
± (t) = ∫ dk ∣M±(k, t)∣2. (5.34)

5.1.4 Long Pulse Limit

To determine the time-averaged rate for a long pulse we use

w± = lim
t→∞

t−1P (ion)± (t) (5.35)

where it is useful to introduce the distribution

W±(k) = lim
t→∞

t−1∣M±(k, t)∣2 ≈ lim
t→∞

t−1∣M(1)
± (k, t)∣2. (5.36)

Taking the limit we see that the only time-dependence comes from cross terms involving δt(x).

Using the sinc representation of the Dirac delta function we see that

lim
t→∞

t−1δt([N(k) − n]ω/2)δt([N(k) − n′]ω/2)

= 2πh̵ δ([N(k) − n]h̵ω) δn,n′ =
2π

vn
δ(k − kn) δn,n′ (5.37)
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which results in the quantized final state momenta

h̵kn ≡
√

2m (nh̵ω − Ĩp) ≡mvn (5.38)

and the distribution

W±(k) =
∞
∑

n=nth

∣M(1)
± (kn)∣2δ(k − kn) (5.39)

after the absorption of n photons with threshold value nth = ⌈Ĩp/h̵ω⌉ and effective ionization po-

tential Ĩp = Ip +Up.

The amplitude for each photon process becomes

M(1)
± (kn) = e−ikn⋅ξ±(0)

∞
∑

l=∣mi±n∣
Cmi±n
l (kn)Y mi±n

l (k̂). (5.40)

with components

Cmi±n
l (kn) ≡ (i/h̵)

√
2π

vn

∞
∑
lA=0

lA

∑
nA=−lA

(nAh̵ω)A±nA

lA

×
li+lA
∑

lk=max(∣li−lA∣,∣mi±nA∣)
Klk(kn) I

lk,lA
li
(kn)

⎡⎢⎢⎢⎢⎢⎢⎣

lk lA li

−(mi ± nA) ±nA mi

⎤⎥⎥⎥⎥⎥⎥⎦

×
∞
∑

lS=∣n−nA∣
X
±(n−nA)
lS

(kn)

⎡⎢⎢⎢⎢⎢⎢⎣

l lS lk

−(mi ± n) ±(n − nA) mi ± nA

⎤⎥⎥⎥⎥⎥⎥⎦

. (5.41)

Performing the sum of the contributions for each photon process we obtain the rate as

w± = ∫ dkW±(k) =
∞
∑

n=nth

∫ dΩk
dwn±
dΩk

=
∞
∑

n=nth

∞
∑

l=∣mi±n∣
wln± =

∞
∑

n=nth

wn± (5.42)

where we have introduced the partial rates

wln± = k2n ∣C
mi±n
l (kn)∣2 and wn± =

∞
∑

l=∣mi±n∣
wln± (5.43)

as well as the angular differential rates

dwn±
dΩk

= k2n∣M±(kn)∣2 and
dw±
dΩk

=
∞
∑

n=nth

dwn±
dΩk

. (5.44)
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5.2 Numerical Applications

5.2.1 Ionization Yield

As an initial test we compare predictions for the ionization of spinless Hydrogen-like and

Neon-like anions using Eq. (5.42) with results of the time dependent Schrödinger equation. Our

application involves using a Yukawa potential

Va(r) = −
Za∣e∣2

r
e−r/a (5.45)

with valence binding energy of Ip ≈ 13.6 eV and the electron interacting with a 16 cycle circular

flat-top pulse with intensity 1 × 1014 W/cm2 at wavelengths between 10 nm and 800 nm. The

exponential factor a describes the range of the Yukawa potential while the prefactor Za is chosen

such that the binding energy remains the same for all ranges considered.

Numerical comparisons with the TDSE results are performed for three selections of initial- and

final-states. In the first set we use zero-range initial and final states to determine errors introduced

by the saddle-point approximation. In the next set of calculations we replace the asymptotic initial

states with numerical states of the atomic Hamiltonian to determine errors introduced by the use

of asymptotic zero-range initial state. Finally, we report another set of calculations in which for

the Volkov states the plane-wave scattering state has been replaced with scattering states of the

atom [58].

In Fig. 5.3 we compare the predictions of the model rate to the TDSE results for the case of

an s-state and exponential parameters a = a0/5, a0/3, a0 and ∞ (a0 is the Bohr radius) to show

that the model can provide accurate results for short-range potentials at all wavelengths. For the

TDSE calculations we use velocity gauge and expand the wave function in a basis of spherical

harmonics for the angular dimensions (lmax = ∣mmax∣ = 30) and a basis of 8th order B-splines in

the radial dimension. The 600 B-spline nodes are placed such that the spacing between nodes is

quadratic near the origin then becomes constant at a chosen radius (30 a.u.). The maximum radius

of the box is 500 a.u., where exterior complex scaling has been applied to the last 50 a.u.. The
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Crank-Nicolson method has been used to propagate the wave function in time with a step size of

0.1 a.u.. Additional two cycle sin2 ramp on and ramp off are included to the 16 cycle flat-top pulse

to ensure that the vector potential smoothly goes to zero at t → ±∞ . The zero-range yield for

s-states predicts essentially the same yield for all but the shortest wavelengths and agrees well with

the TDSE results for the case a = a0/5. Expanding the atomic range to a = a0/3 and a0 makes it

clear that atomic initial and final states are required to obtain reliable results. The case of a =∞

is included in the bottom-right panel of Fig. 5.3, where the quasi-classical Coulomb corrections

from section 3.6.2.3 are applied (blue curve), but a break down is observed in the short wavelength

limit. In contrast, Coulomb-Volkov states (solid black curve) predict the correct ionization yield for

wavelengths shorter than the single photon ionization threshold. An additional green curve which

disagrees for all wavelengths has been included showing the results for using an atomic initial state

and a plane-wave Volkov state.
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Figure 5.3: Comparison of predictions for the s-state model with the TDSE results for exponential

parameters a = a0/5, a0/3, a0 and ∞. The red solid (dashed) line corresponds to calculations using

zero-range initial and final states without (with) the saddle-point approximation. The green curve

in the calculations the asymptotic initial states are replaced by numerical states of the atomic

Hamiltonian. The black curve corresponds to calculations with the same numerical initial state,

but now with Volkov states where the plane-wave scattering state has been replaced with scattering

states of the atom. a = ∞ is included for the initial Hydrogen ground-state and final Coulomb-

corrected WKB Volkov state (blue curve) [23,102].

For the case of a Neon-like anion we chose a valence ionization potential Ip(2p) = 13.6 eV to

enable direct comparison with the Hydrogen-like data. The Yukawa range parameter of a = a0/2

was chosen to obtain 1s, 2s and 2p bound states with parameters given in Table 5.1. We will assume
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all orbitals are occupied and neglect spin. Calculating the total ionization includes calculating the

ionization for each occupied orbital and adding the results. This corresponds to the single active

electron approximation. Although we work with Yukawa potentials, application to other potentials

should be straightforward.

State 1s 2s 2p a = a0/2
Ip(Hartree) 33.9 1.32 0.50 Zc = 10.15

Table 5.1: Table of bound-state energy levels and Yukawa parameters.

To obtain the total ionization yield for the Neon-like anion we calculate the single orbital

yield

N
(j)
ion = 1 − e−w

(j)T (5.46)

as before and add those up

Nion = N (1s)ion +N
(2s)
ion +N

(2p1)
ion +N (2p0)ion +N (2p−1)ion (5.47)

to get the total yield. The results are shown in Fig. 5.4 for the case of a Yukawa potential with

range parameter a = a0/2.

As one can anticipate, the occupied core 1s orbital can be neglected since the yield is much

smaller than all the other yields for all wavelengths considered. The TDSE results show reduced

ionization in the co-rotating (2p1) orbital due to transitions into the occupied 2s state. This is

marked by the dashed E2p −E2s line in the left panel of Fig. 5.4. At the same time, the 2s orbital

experiences resonance enhanced ionization due to the occupied co-rotating state. The combination

of these effects are negated and the model produces accurate predictions for the total ionization

yield (right panel of Fig. 5.4). The effect of resonances can be included explicitly as shown in

Ref. [98]. We have again plotted results for each initial/final state combination, as in Fig. 5.3.

Ionization is best described by the use of initial and final atomic states, where some disagreement

is observed near ionization thresholds since we have not included properties of the pulse envelope.
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Figure 5.4: Comparison of the results of the p-state model with the TDSE results for exponential

parameter a = a0/2, where the left panel corresponds to the sum of all p-orbitals and the right panel

corresponds to 2s ionization in addition to ionization by all p−states. The blue line corresponds to

calculations using zero-range initial and final states. For the results presented by the orange curve

the asymptotic initial states is replaced by numerical states of the atomic Hamiltonian. The results

shown by the green curve correspond to calculations with the same numerical initial state, but now

with Volkov states where the plane-wave scattering state has been replaced with scattering states

of the atom.

5.2.2 Photoelectron Energy and Angular Distributions

After we have verified the accuracy of the formulas we will describe how to extract energy

and angular photo-electron distributions with application to the before mentioned Neon-like anion.

The population of the ground state and each energy level in the continuum is described by

d

dt

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Ni

Nnth

Nnth+1

⋮

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−w

wnth

wnth+1

⋮

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Ni. (5.48)
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Inserting the solution into the rate equations we get the yield for each ATI peak n

Nn =
wn

w
Nion. (5.49)

Using

wn = ∫ dΩk
dwn

dΩk
(5.50)

we obtain the total angular distribution

dNion

dΩk
= 1

w

dw

dΩk
Nion (5.51)

and that for each photon process

dNn

dΩk
= 1

wn

dwn

dΩk
Nn. (5.52)

Angular distributions for ionization by a circularly polarized field and initial states that include a

single Y mi

li
(r̂)-term have cylindrical symmetry in the φk direction. Integrating over this degree of

freedom, one obtains the distributions

dNion

d(cos θk)
≡ ∫

2π

0
dφk

dNion

dΩk
= 2π

dNion

dΩk
∣
φk=0

(5.53)

and

dNn

d(cos θk)
≡ ∫

2π

0
dφk

dNn

dΩk
= 2π

dNn

dΩk
∣
φk=0

. (5.54)

In Fig. 5.5 we plot the photo-electron energy and angular distributions corresponding to the

Neon-like anion data with both atomic initial and final states as for the results presented in Fig. 5.4.

Wavelengths of 10 nm, 100 nm and 800 nm are selected. The 10 nm and 100 nm data correspond to

the perturbative multiphoton limit since the energy distribution is linear on a log scale. In contrast,

the kinetic energy distribution at 800 nm is peaked at energies larger than the threshold value nth

demonstrating the expected behavior in the non-adiabatic limit [20]. The angular distributions

become more localized at the equator as wavelengths increase since ionized electrons belong to

higher-order spherical harmonic contributions with l ≈m [167].
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Figure 5.5: Photo-electron energy (left panels) and angular distributions (right panels) for the Neon-
like anion data given in Fig. 5.4. Both atomic initial and final states are chosen and wavelengths
of 10 nm (top panels), 100 nm (middle panels) and 800 nm (bottom panels) are selected.
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5.3 Intensity parameters

The general ionization formula can be accurately approximated as a two-step process for laser

parameters used in the current work. The initial state is promoted to a small set of intermediate

momentum states via the absorption of nA photons before an additional n−nA photons is absorbed

to transfer in a final state. We will consider an initial s-state and use these ideas to determine dom-

inant pathways for ionization. Furthermore, we will determine a simplified weak-field description

and discuss successive corrections required when transitioning into the strong-field limit.

Starting with an initial s-state (li =mi = 0) we immediately recognize the rule lk = lA from

⎡⎢⎢⎢⎢⎢⎢⎣

lk lA 0

−(mi ± nA) ±nA 0

⎤⎥⎥⎥⎥⎥⎥⎦

=
δlk,lA√

4π
(5.55)

which yields the coefficient

C±nl (kn) = (i/h̵)
1√
2vn

∞
∑

nA=−∞
(nAh̵ω)

∞
∑

lA=∣nA∣
A±nA

lA
KlA(kn) I

lA
0 (kn)

×
∞
∑

lS=∣n−nA∣
X
±(n−nA)
lS

(kn)

⎡⎢⎢⎢⎢⎢⎢⎣

l lS lA

∓n ±(n − nA) ±nA

⎤⎥⎥⎥⎥⎥⎥⎦

. (5.56)

As lA increases the integral I lAli (kn) ≡ I
lA,lA
li
(kn) decreases due to decreased overlaps of both the

continuum state Rk,lA(r) and the Bessel function jlA(kAr) with the initial bound state Ri(r). The

coefficient should therefore be dominated by the lowest order contribution lA = ∣nA∣. Similarly,

we should expect that for the intensity and wavelengths considered the sum over lS should be

dominated by the lowest order contribution (∣n − nA∣) yielding

C±nl (kn) = (i/h̵)
1√
2vn

∞
∑

nA=−∞
(nAh̵ω)A±nA

∣nA∣K∣nA∣(kn) I
∣nA∣
0 (kn)

×X±(n−nA)
∣n−nA∣ (kn)

⎡⎢⎢⎢⎢⎢⎢⎣

l ∣n − nA∣ ∣nA∣

∓n ±(n − nA) ±nA

⎤⎥⎥⎥⎥⎥⎥⎦

. (5.57)

Continuing along the same lines, the sum over nA may be reduced by restricting ourselves

to the largest contributions. This is done by choosing the set of nA which minimizes ∣n−nA∣+ ∣nA∣
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for a particular n. Geometrically this amounts to identifying the set of nA which minimizes the

total distance (∣n − nA∣ + ∣nA∣) over which the magnetic quantum number changes from the initial

state to the intermediate state (∣nA∣) and then to the final state (∣n − nA∣). This is achieved for all

0 ≤ nA ≤ n for l = n. Thus, the l > n contributions may be neglected for fixed n since the distance

∣nA∣ + ∣n − nA∣ is larger than for n = l yielding the approximation

w± ≈
∞
∑

n=nth

wnn±. (5.58)

In Fig. 5.6 we show that approximating the rate as described above accurately determines the

ionization yield for the case of a = a0/5. For later comparison we use zero-range Volkov states and

an asymptotic initial state, but the conclusion holds in general.

5.3.1 Weak-Field Limit

We will now apply the above mentioned selection rules to the special case of a zero-range

potential for kA ≪ κ. The radial integral is approximated by

jlA(kAr) ≈
lA!(2kAr)lA
(2lA + 1)!

(5.59)

yielding

InA
0 (kn) =

Cκ,linA!

Γ(nA + 3/2)

√
κ

2

(knkA)nA

(k2n + κ2)nA+1
. (5.60)

Using

Y ±ll (θ,φ) =
1

l!

√
(2l + 1)!

4π
(∓1

2
sin θe±φ)

l

(5.61)

the final-state angular integral can be evaluated as

⎡⎢⎢⎢⎢⎢⎢⎣

n (n − nA) nA

∓n ±(n − nA) ±nA

⎤⎥⎥⎥⎥⎥⎥⎦

= n!

(n − nA)!nA!

¿
ÁÁÀ(2(n − nA) + 1)!(2nA + 1)!

4π(2n + 1)!
. (5.62)

The coefficient now requires evaluating

A±nA
nA

KnA
(kn)X±(n−nA)

(n−nA) (kn) = (4π)
2i(n+nA)j(n−nA)(kξ)Y

±(n−nA)
(n−nA) (ξ̂±(0))Y

±nA

lA
(Â±(0)). (5.63)
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Using the same spherical harmonic identity as earlier

Y
±(n−nA)
(n−nA) (ξ̂±(0))Y

±nA
nA
(Â±(0)) =

(−i)nA

(n − nA)!nA!
(∓1

2
)
n
√
(2(n − nA) + 1)!(2nA + 1)!

4π
(5.64)

and the weak field approximation

jlS(knξ) ≈
lS !(2knξ)lS
(2lS + 1)!

(5.65)

we have

A±nA
nA

KnA
(kn)X±(n−nA)

(n−nA) (kn) = 4π (∓ i
2
)
n (2knξ)(n−nA)

nA!

¿
ÁÁÀ (2nA + 1)!
(2(n − nA) + 1)!

. (5.66)

Applying

nA! Γ(nA + 3/2) =
√
π(2nA + 1)!/22nA+1 (5.67)

we finally have

C±nn (kn) = 2(i/h̵)
(∓i)n n! Cκ,li√
(2n + 1)!

√
κ

vn

(knξ)n

(k2n + κ2)

n

∑
nA=0

(nAh̵ω)
(n − nA)!

( 2kA/ξ
k2n + κ2

)
nA

. (5.68)

The coefficient can be simplified using the exponential integral function

n

∑
nA=0

nA
(n − nA)!

znA = 1

z n!
[1 + e1/z (n − 1

z
)E−n (

1

z
)] (5.69)

yielding

C±nn (kn) = i
Cκ,li(∓iknξ)n√
(2n + 1)!

√
h̵κ

mkn
[1 + (

Up

h̵ω
) enE−n(n)] (5.70)

after the weak-field substitution

k2n + κ2 = (
2m

h̵2
) (nh̵ω −Up) ≈ (

2m

h̵2
)nh̵ω. (5.71)

Using the hypergeometric representation of E−n(1/z)

C±nn (kn) = i
Cκ,li(∓iknξ)n√
(2n + 1)!

√
h̵κ

mkn
[1 + (

Up

nh̵ω
) 2F0 (−n,1; ;− 1

n
)] (5.72)

and Up ≪ Ip < nh̵ω we see that the 2F0 term is negligible leading to the simplified coefficient

C±nn (kn) = i
Cκ,li(∓iknξ)n√
(2n + 1)!

√
h̵κ

mkn
(5.73)
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and the partial rate

w
(s)
n,n± = C2

κ,li

(κ vn) (knξ)2n

(2n + 1)!
(5.74)

which gives the expected near-threshold (l = n) scaling of ∼ k2l+1n [27, 29,172] shown in section 2.2.

In Fig. 5.6 we demonstrate the accuracy of the above mentioned weak field approximations.

The black (+) symbol represents the total ionization yield for a = a0/5 obtained from the TDSE

calculations, as in Fig. 5.3a). The cyan curve represents data when we keep only the dominant

pathways described in this section. The green curve represents the results obtained by application

of the first weak field approximation (Eq. (5.72)). Finally, the red curve represents predictions

we get by applying the second simplified weak field approximation (Eq. (5.74)). We observe that

the dominant pathways accurately describe ionization for all wavelengths considered. Additionally,

both weak field approximations accurately reproduce the yield for one, two and three photon

ionization while application of Eq. (5.74) holds well up to five photon ionization. This result is

surprising since Eq. (5.74) is a further approximation of Eq. (5.72).

Since kA ≪ κ we see that jlA(kAr) is approximated accurately by the lowest (kAr)lA term at

short wavelengths. Similarly, since dominant contributions to ionization are described by the lowest

energy near-threshold photo-electrons we have knξ ≪ 1 yielding that jlS(knξ) is approximated well

by the term with order (knξ)lS . The additional purple curve in Fig. 5.6 represents results obtained

using the application of Eq. (5.74) where only the lowest order n = nth has been included to show

accuracy of the near-threshold approximation for photon orders above the threshold value (n > nth).
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Figure 5.6: Comparison of the weak field approximations. The black (+) symbol represents the

total ionization for a = a0/5 obtained from the TDSE calculations, as in Fig. 5.3a. The cyan curve

represents results for the dominant pathways described in this section. The green and red curves

represent data obtained from Eq. (5.72) and Eq. (5.74), respectively. The purple curve shows data

using the application of Eq. (5.74) where only the lowest order n = nth has been included.

5.3.2 Strong-Field Limit

The light blue curve in Fig. 5.6 demonstrates that the reduced set of pathways described in

the prior weak-field subsection describe ionization up to the largest 800 nm wavelength considered.

Other curves in Fig. 5.6 further approximate the rate from the lowest-order polynomial terms of

jlA(kAr) and jlS(knξ). One would therefore expect that the weak-field approximations will tend

towards TDSE predictions as higher contributions are used to approximate jlA(kAr) and jlS(knξ).

To demonstrate this trend we will expand the radial integrand as

jlA(kAr) ≈ (2kAr)
lA

αmax

∑
α=0

(−1)α(lA + α)!
α!(2lA + 2α + 1)!

(kAr)2α (5.75)
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to express the radial integral as a series expansion

I lk0 (kn) ≈
αmax

∑
α=0

zα1 I
lk(α)
0 (kn) (5.76)

with respect to the bound-state intensity parameter z1 ≡ 2Up/Ip [146, 148] (see section 2.3) which

is related to the Keldysh parameter γ [98] by z1 = 1/γ2. In Fig. 5.7 we have compared predictions

using Eq. (5.76) with orders αmax = 0− 4 to the TDSE results which show that significantly higher

order expansions are required to approximate the rate as the wavelength increases.
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αmax = 3
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TDSE

Figure 5.7: Dominant ionization pathway yield from Fig.(5.6) where jlS(knξ) is treated exactly and

jlA(kAr) is expanded as in Eq.(5.76) to zeroth, first, second, third and fourth order αmax (solid

lines). Crosses correspond to the a = a0/5 s-state TDSE data from Fig.(5.3).

We will express jlS(knξ) in a similar series expansion with respect to the non-perturbative

intensity parameter z = Up/h̵ω, yielding

jlS(knξ) ≈
βmax

∑
β=0

zβB
(β)
lS
(kn) with B

(β)
lS
(kn) ≡

(2knξ)lS(lS + β)!
β!(2lS + 2β + 1)!

[−4(Ekn

h̵ω
)]

β

. (5.77)
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In Fig. 5.8 we have compare results using Eq. (5.77) with βmax = 0− 7 with the TDSE results. It is

again clear that significantly higher order expansions are required to approximate the rate as the

wavelength becomes large.
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Figure 5.8: Dominant ionization pathway yield from Fig.(5.6) where jlA(kAr) is treated exactly

and jlS(knξ) is expanded as in Eq.(5.77) from zeroth to seventh order βmax (solid lines). Crosses

correspond to the a = a0/5 s-state TDSE data from Fig.(5.3).

Combining these expansions it is obvious that probability amplitudes may be written as

C±nn (kn) ≈
αmax

∑
α=0

βmax

∑
β=0

zα1 z
βC±n(α,β)n (kn), (5.78)

where an expansion is performed over both z1 and z in disagreement with Reiss [147] who claimed

that the length-gauge rate corresponds to an expansion over z1 = 1/γ2 only. To summarize, in

this section we were able to evaluate the first-order Keldysh amplitude exactly for the case of

arbitrary initial and final states. We described the importance of using correct atomic initial and

final states at the shortest wavelengths and identified issues with the application of the saddle-point
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approximation to p−states. We finished the section by finding simplified rates in the UV limit and

appropriate strong-field corrections while transitioning into the strong-field IR limit.

5.4 Linear and elliptical polarization

5.4.1 Results

Expanding linearly and elliptically polarized laser pulses as a linear combination of both right-

handed and left-handed circularly polarized fields exactly the same steps can be used to determine

the ionization amplitude. The TDSE for ionization by an elliptically polarized field can be written

as

ih̵
∂

∂t
Ψϵ(r, t) = [Ha + ∣e∣Eϵ(t) ⋅ r]Ψϵ(r, t) (5.79)

with

Eϵ(t) = E [cos(ωt)x̂ + ϵ sin(ωt)ŷ], (5.80)

Eϵ(t) = −
1

c

dAϵ

dt
(t), Aϵ(t) = −A [sin(ωt)x̂ − ϵ cos(ωt)ŷ] , and A = cF

ω
. (5.81)

The vector potential is now represented as

Aϵ(t) = (
1 + ϵ

2
)A+(t) + (

1 − ϵ
2
)A−(t) (5.82)

in terms of the right-handed (+) and left-handed (−) circularly polarized fields A±(t). Expanding

the exponential terms as in Eq. (5.28) and Eq. (5.15) a rate is determined exactly as in the last

section dedicated to circular polarization. We will now give numerical comparisons of the predictions

with the TDSE results before deriving the amplitude in the next subsection.

In Fig. 5.9 we reproduce the right panel of Fig. 5.4 where all laser parameters are the same

except for the laser ellipticity. In the top panel (bottom panel) we show the good agreement with

the TDSE results for the case of linear (elliptical ϵ = 0.5) polarization at all wavelengths, where the

best agreement is again found for the case when both atomic initial and final states are used. It is

clear that the formulas yield a similar level of agreement for these cases as we have found earlier

in the case of circular polarization.
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Figure 5.9: Comparison of the predictions of the p-state model with the TDSE results for exponen-

tial parameter a = a0/2. The top (bottom) panel corresponds to interaction with a laser pulses with

an ellipticity of ϵ = 0 (ϵ = 0.5). The blue line shows the predictions for zero-range initial and final

states. The orange curve represents data for the asymptotic initial states with numerical states of

the atomic Hamiltonian. The green curve corresponds to the application of the same numerical

initial state, but now with Volkov states where the plane-wave scattering state has been replaced

with scattering states of the atom.
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5.4.2 Derivation

Using the partial wave expansion, Eq. (5.15), the amplitude

M(1)
ϵ (k, t) = ∫

t

0
dt1e

(i/h̵)Sϵ(k,t1) (− ∂

∂t1
)∫ dr1ϕ

(−)
k (r1) e

− i∣e∣
h̵c

Aϵ(t1)⋅r1ϕi(r1) (5.83)

is evaluated using

(− ∂

∂t1
)∫ dr1ϕ

(−)
k (r1) e

− i∣e∣
h̵c

Aϵ(t1)⋅r1ϕi(r1) = ω
∞
∑

lA+=0

lA+
∑

nA+=−lA+
Y

nA+
lA+
(Â+(0))

×
∞
∑

lA−=0

lA−
∑

nA−=−lA−
A

nA+ ,nA−
lA+ ,lA−

Y
−nA−
lA−

(Â−(0))e−i(nA++nA−)ωt1
∞
∑
lk=0

lk

∑
mk=−lk

Klk(k)Y
mk

lk
(k̂)

× I lk,lA− ,lA+ni,li
(k, kA, ϵ)

⎡⎢⎢⎢⎢⎢⎢⎣

lk lA− lA+ li

−mk −nA− nA+ mi

⎤⎥⎥⎥⎥⎥⎥⎦

, (5.84)

where

A
nA+ ,nA−
lA+ ,lA−

= 16π2i(nA+ + nA−)(−i)lA++lA− , and Klk(k) = (−i)
lkeiσlk

(k). (5.85)

Other contributions correspond to the angular integral

⎡⎢⎢⎢⎢⎢⎢⎣

l4 l3 l2 l1

−m4 m3 m2 m1

⎤⎥⎥⎥⎥⎥⎥⎦

≡ ∫ derY
m4

l4
(r̂)Y m3

l3
(r̂)Y m2

l2
(r̂)Y m1

l1
(r̂) (5.86)

expanded in terms of 3j-symbols and the radial integral

I
lk,lA− ,lA+
ni,li

(k, kA, ϵ) ≡
1

k
∫
∞

0
dr1 r

2
1Rk,lk(r1)jlA− ((

1 − ϵ
2
)kAr1) jlA+ ((

1 + ϵ
2
)kAr1)Rni,li(r1) (5.87)

which is evaluated numerically.

For asymptotic initial states and plane-wave Volkov states the radial integral becomes

I
lk,lA− ,lA+
ni,li

(k, kA, ϵ) =
Cκli

23/2−ν

√
π

κ3/2

Γ ( lk+lA−+lA++ν+12 )Γ ( lk+lA−+lA++ν+22 )

Γ (lk + 3
2
)Γ (lA− + 3

2
)Γ (lA+ + 3

2
)

× (k
κ
)
lk

[(1 − ϵ
2
) kA
κ
]
lA−
[(1 + ϵ

2
) kA
κ
]
lA+

F
(3)
C ( lk + lA− + lA+ + ν + 1

2
,
lk + lA− + lA+ + ν + 2

2

; lk +
3

2
, lA− +

3

2
, lA+ +

3

2
;−(k

κ
)
2

,− [(1 − ϵ
2
) kA
κ
]
2

,− [(1 + ϵ
2
) kA
κ
]
2

) (5.88)
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where

F
(3)
C (a, b; c1, c2, c3;x1, x2, x3) ≡

∞
∑

i1,i2,i3=0

(a)i1+i2+i3(b)i1+i2+i3
(c1)i1(c2)i2(c3)i3

xi11
i1!

xi22
i2!

xi33
i3!

(5.89)

is the Lauricella hypergeometric series [108] which may be evaluated past its radius of convergence

√
∣x1∣+

√
∣x2∣+

√
∣x3∣ < 1 (or k+kA < κ) through various analytic continuations. This exact solution

allows for systematic approximations in the weak field limit (kA ≪ κ) just as we have shown it for

circular polarization in section 5.3.

The amplitude is completed from the action

Sϵ(k, t) = ∫
t

0
dτ

⎡⎢⎢⎢⎢⎣

(h̵k + ∣e∣c Aϵ(τ))2

2m
+ Ip
⎤⎥⎥⎥⎥⎦
= (Ek + Ip) t + h̵k ⋅ (ξϵ(t) − ξϵ(0)) +

∣e∣2

2mc2
∫

t

0
dτAϵ(τ)2,

(5.90)

where the ponderomotive term

∣e∣2

2mc2
∫

t

0
dτAϵ(τ)2 = Upt +

∣e∣2A2(1 − ϵ2)
8ωmc2

sin(−2ωt) with Up ≡
∣e∣2A2(1 + ϵ2)

4mc2
(5.91)

has additional time-dependent oscillations due to the presence of both right- and left-handed fields.

The quiver motion

ξϵ(t) = (
1 + ϵ

2
)ξ+(t) + (

1 − ϵ
2
)ξ−(t) (5.92)

is separated into left- and right-handed contributions giving the exponential partitions

e(i/h̵)Sϵ(k,t) = e−ik⋅ξϵ(0)eiN(k)ωtei
∣e∣2A2(1−ϵ2)

8h̵ωmc2
sin(−2ωt)ei(

1−ϵ
2
)k⋅ξ−(t)ei(

1+ϵ
2
)k⋅ξ+(t) (5.93)

with

N(k) ≡ 1

h̵ω
(Ek + Ĩp) . (5.94)

The factors

ei(
1±ϵ
2
)k⋅ξ±(t) =

∞
∑

lS±=0

lS±
∑

nS±=−lS±
XlS± (k, ξ, ϵ)Y

±nS±
lS±

(ξ̂±(0))Y
±nS±
lS±

(k̂)e−inS±ωt (5.95)

are evaluated as before, where

ei
∣e∣2A2(1−ϵ2)

8h̵ωmc2
sin(−2ωt) =

∞
∑

a=−∞
Ba(A,ω, ϵ)e−2iaωt (5.96)
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completes the exponential with

X±(k, ξ, ϵ) ≡ 4πilS+/LjlS+/L ((
1 ± ϵ

2
)kξ) and Ba(A,ω, ϵ) = Ja (

∣e∣2A2(1 − ϵ2)
8h̵ωmc2

) . (5.97)

Putting it all together the exponential action factor becomes

e(i/h̵)Sϵ(k,t) = e−ik⋅ξϵ(0)
∞
∑

lS+=0

lS+
∑

nS+=−lS+
XlS+ (k, ξ, ϵ)Y

nS+
lS+
(ξ̂+(0))Y

nS+
lS+
(k̂)

×
∞
∑

lS−=0

lS−
∑

nS−=−lS−
XlS− (k, ξ, ϵ)Y

−nS−
lS−

(ξ̂−(0))Y
−nS−
lS−

(k̂)
∞
∑

a=−∞
Ba(A,ω, ϵ)ei[N(k)−(nS++nS−+2a)]ωt. (5.98)

Using

∫
t

0
dt1e

i[N(k)−(nA++nA−+nS++nS−+2a)]ωt1 = δt([N(k) − (nA+ + nA− + nS+ + nS− + 2a)]ω/2) (5.99)

the amplitude for a finite pulse becomes

M(1)
ϵ (k, t) = ωe−ik⋅ξϵ(0)

∞
∑

lA+=0

lA+
∑

nA+=−lA+
Y

nA+
lA+
(Â+(0))

∞
∑

lA−=0

lA−
∑

nA−=−lA−
A

nA+ ,nA−
lA+ ,lA−

Y
−nA−
lA−

(Â−(0))

×
∞
∑
lk=0

Klk(k)I
lk,lA− ,lA+
ni,li

(k, kA, ϵ)

⎡⎢⎢⎢⎢⎢⎢⎣

lk lA− lA+ li

−(mi + nA+ − nA−) −nA− nA+ mi

⎤⎥⎥⎥⎥⎥⎥⎦

×
∞
∑

lS+=0

lS+
∑

nS+=−lS+
XlS+ (k, ξ, ϵ)Y

nS+
lS+
(ξ̂+(0))

∞
∑

lS−=0

lS−
∑

nS−=−lS−
XlS− (k, ξ, ϵ)Y

−nS−
lS−

(ξ̂−(0))

×
∞
∑
l=0

⎡⎢⎢⎢⎢⎢⎢⎣

l lS− lS+ lk

−(mi + nA+ − nA− + nS+ − nS−) −nS− nS+ (mi + nA+ − nA−)

⎤⎥⎥⎥⎥⎥⎥⎦

Y
mi+nA+−nA−+nS+−nS−
l (k̂)

×
∞
∑

a=−∞
Ba(A,ω, ϵ)δt([N(k) − (nA+ + nA− + nS+ + nS− + 2a)]ω/2). (5.100)

5.4.2.1 Long pulse limit

Next, we will compute the rate for a long pulse

Wϵ(k) = lim
t→∞

t−1∣Mϵ(k, t)∣2 ≈ lim
t→∞

t−1∣M(1)
ϵ (k, t)∣2. (5.101)
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To carry out the t→∞ limit we only need to consider properties of δt([N(k) − n]ω/2) and known

properties of the Dirac delta distribution

lim
t→∞

t−1δt([N(k) − n]ω/2)δt([N(k) − n′]ω/2) =

lim
t→∞

ei(n
′−n)ωt/2 sin([N(k) − n]ωt/2) sin([N(k) − n′]ωt/2)

t[N(k) − n][N(k) − n′]ω2/4

= π δ([N(k) − n]ω/2) δn,n′ = 2πh̵ δ([N(k) − n]h̵ω) δn,n′ . (5.102)

To finish the derivation of the rate we will replace the delta function in energy by a delta function

in k-space where

2πh̵ δ([N(k) − n]h̵ω) δn,n′ =
2πm

h̵kn
δ(k − kn) δn,n′ , with kn ≡

√
2m

h̵2
(nh̵ω − Ĩp) (5.103)

and

Wϵ(k) = lim
t→∞

t−1∣M(1)
ϵ (k, t)∣2 =

∞
∑
n=n0

∣M(1)
nϵ (k̂)∣2δ(k − kn). (5.104)

Using the selection rules

n = nA+ + nA− + nS+ + nS− + 2a ⇒ nS− = n − nA+ − nA− − nS+ − 2a (5.105)

the sum over nS− is eliminated and we get the amplitude as

M(1)
nϵ (k̂) = ω

√
2π

vn
e−ikn⋅ξϵ(0)

∞
∑

lA+=0

lA+
∑

nA+=−lA+
Y

nA+
lA+
(Â+(0))

∞
∑

lA−=0

lA−
∑

nA−=−lA−
A

nA+ ,nA−
lA+ ,lA−

Y
−nA−
lA−

(Â−(0))

×
∞
∑
lk=0

Klk(k)I
lk,lA− ,lA+
ni,li

(k, kA, ϵ)

⎡⎢⎢⎢⎢⎢⎢⎣

lk lA− lA+ li

−(mi + nA+ − nA−) −nA− nA+ mi

⎤⎥⎥⎥⎥⎥⎥⎦

×
∞
∑

lS+=0

lS+
∑

nS+=−lS+
XlS+ (k, ξ, ϵ)Y

nS+
lS+
(ξ̂+(0))

∞
∑

lS−=0

∞
∑

a=−∞
Ba(A,ω, ϵ)XlS− (k, ξ, ϵ)

× Y nA++nA−+nS++2a−n
lS−

(ξ̂−(0))
∞
∑
l=0
Y

mi+2(nA++nS++a)−n
l (k̂)

×

⎡⎢⎢⎢⎢⎢⎢⎣

l lS− lS+ lk

−[mi + 2(nA+ + nS+ + a) − n] (nA+ + nS+ + nA− + 2a − n) nS+ (mi + nA+ − nA−)

⎤⎥⎥⎥⎥⎥⎥⎦

. (5.106)

The partial wave expansions used when expanding the ionization amplitude for circularly po-

larized fields apply directly to the case of linearly and elliptically polarized fields as well. Although
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tedious, we believe that these formulas will prove to be an inexpensive alternative to numerical cal-

culations by the TDSE. The amplitude can be greatly simplified in specific limits such as ϵ ≈ ±1 just

as in section 5.3 where the right- (left-)handed circularly polarized fields may be non-perturbative

with corrections by a perturbative field of opposite left- (right-)handed polarization.



Chapter 6

Strong-field processes involving polychromatic fields

6.1 Introduction1

The generation of ultrashort vacuum ultraviolet (VUV) and deep ultraviolet (DUV) laser

pulses [41, 66, 145] is important since excitation and ionization energies of many atoms, molecules,

nanoparticles, and materials lie in this spectral region. Such laser sources are used to trigger,

steer, probe, and image physical processes and chemical reactions on the ultrafast time scale, down

to the attosecond regime of electron dynamics [31, 55, 100, 109, 119, 127, 131, 156, 162]. Temporal

pulse characterization is often required to enable the analysis of the spectroscopic data. Many

ultrashort pulse characterization methods rely on the measurement of ions or photoelectrons via

the autocorrelation or the cross correlation approach (for an overview, see [133]). In cross correlation

methods the pulse to be characterized is used in superposition with a well-characterized infrared

pulse [39,73,87,121,134,159], while for autocorrelation measurements, two replicas of the unknown

pulse are used [126,130,149,160,161].

In this Chapter we will derive semi-analytic perturbative two-photon amplitudes for the

ionization of atoms by arbitrary polychromatic fields (section 6.2). These formulas are applied

to reconstruct isolated attosecond pulses and pulse trains from a provided autocorrelation trace

(ionization as a function of relative delay). A feedback loop is used and ionization is determined

from a model laser parameterized by a set of variational parameters. The field is recovered by

1 Part of the material presented in this Chapter has been previously published in S. Walker, R. Reiff, A. Jaron-
Becker, and A. Becker, Optics Letters 46, 3083–3086 (2021) [168].
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determining variational parameters such that the exact autocorrelation trace agrees with the trace

generated by the parameterized field. In the last section (section 6.3) of this Chapter we will extend

the formulas into the non-perturbative limit. Time is partitioned into slices (tm−1, tm] (m ∈ Z) [63]

narrow enough such that the formulas of section 6.2 may be applied. We see that time-slicing

extends analytic perturbative principles into the nonperturbative limit. These formulas may prove

to be useful for nonperturbative processes involving short pulses and electrons bound by long-range

potentials.

6.2 Characterization of vacuum and deep ultraviolet pulses via two-photon

autocorrelation signals

In an autocorrelation measurement, ion signals are recorded as a function of the time delay

between the two replicas of the pulse. Generalized two-photon ionization cross sections for the

interaction of a single Gaussian pulse with the target are then used to fit the autocorrelation

trace and determine the pulse duration. This powerful method has been applied to estimate the

duration of attosecond extreme ultraviolet (XUV) pulses [160, 161], VUV and DUV pulses [66,

149]. Overall, the application of current pulse characterization techniques in the important VUV

and DUV spectral region is limited, since many methods, such as the widely used reconstruction

of attosecond beating by interference of two-photon transitions (RABBITT) [134] or attosecond

streaking technique [87], rely on the ionization of the target by absorption of a single photon from

the unknown pulse.

We consider an extension of the single-Gaussian autocorrelation technique, which enables

the characterization of the temporal pulse envelope of an isolated ultrashort VUV pulse or a pulse

train, i.e. the time-dependent amplitude and phase variation of the electric field. The extension

is based on the analytical solution of the time-dependent Schrödinger equation (TDSE) for the

perturbative two-photon ionization of an atom by a Gaussian laser pulse in the single-active-electron

approximation [86]. Since the solution includes both resonant and non-resonant pathways, it can

be used for the characterization of broadband pulses with photon energies in the regime of typical
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atomic excitation energies. The unknown pulse is approximated as a superposition of Gaussian

pulses, for which the amplitudes and temporal widths are determined via fitting to the two-photon

autocorrelation signal generated by the unknown laser pulse. We demonstrate this extension of

the single-Gaussian autocorrelation technique via applications based on results for ultrashort VUV

pulses from numerical simulations of macroscopic high harmonic generation (HHG).

6.2.1 Multi-color Gaussian approach

For the characterization, we use that the electric field of any arbitrary pulse can be written

as the real part of an expansion in a basis of multi-color Gaussian functions (Hartree atomic units

are used: e = h̵ =m = 1 a.u.):

f̃(t) = ∣f̃(t)∣e−iϕ(t) =∑
n,j

f̃n,j exp
⎡⎢⎢⎢⎣
−
(t − τn,j)2

2T 2
n,j

− iωjt
⎤⎥⎥⎥⎦
, (6.1)

where ∣f̃(t)∣ and ϕ(t) are the time-dependent amplitude and phase of the unknown pulse. f̃n,j is

the complex amplitude, τn,j is a translation in time, and Tn,j is the width of a Gaussian pulse

with central frequency ωj . In the examples below, we consider linearly polarized pulses, but the

expansion can be applied to other polarizations as well. Since each Gaussian has an independent

phase factor, in the multi-Gaussian approach the nonlinear phase accumulation ω(t) ≡ dϕ
dt can be

determined from the interferences in the two-photon autocorrelation trace. If a large frequency

variation is expected, an alternative basis of linearly chirped Gaussian functions can be utilized by

substituting T−2n,j → T−2n,j + iαn,j , where αn,j is an additional parameter. For all pulses considered in

the present work, we have used αn,j = 0 to limit the number of fitting parameters.

Next, we utilize the analytic solution of the two-photon ionization amplitude for interaction

of an atom in the single-active-electron approximation with two Gaussian laser pulses:

a
(2)
f,i (τn2,j2 , τn1,j1) = −

π

4
f̃n2,j2 f̃n1,j1Tn2,j2Tn1,j1 ∑

Em<0
zf,mzm,i

× exp(−1

2
T 2
n2,j2∆2

f,m −
1

2
T 2
n1,j1∆2

m,i + i∆f,mτn2,j2 + i∆m,iτn1,j1)

× {1 + erf [ 1√
2T̄
(τn2,j2 − τn1,j1 + i (T

2
n2,j2∆f,m − T 2

n1,j1∆m,i))]} . (6.2)
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We note that Eq. (6.2) is a generalization of the solution for a single Gaussian pulse given in Ref. [86]

and is derived in section 6.2.2. Here, T̄ 2 = T 2
n2,j2

+ T 2
n1,j1

, ∆m,i = Em,i − ωj1 , and ∆f,m = Ef,m − ωj2 ,

where Em,i and Ef,m are the energy differences between the field-free intermediate (m) states

and the initial (i) and the final (f) states, respectively. zf,m and zm,i are the transition dipole

moments between the respective states which can be obtained via various theoretical techniques

for an atom. In the present applications, we restrict the sum to intermediate states with Em < 0.

To compute erf(x + iy), we have used a continued fraction approximation for the majority of the

complex plane [43] and patched the (nonphysical) singularities near the origin with the global

Padé approximation [173] and other singularities near the imaginary axis with the standard Padé

approximation. Since we want to characterize ultrashort pulses with large bandwidths, we have

also taken into account the one-photon ionization amplitude for interaction with the n-th Gaussian

pulse which is given by

a
(1)
f,i (τn,j) = −i

√
π

2
f̃n,jTn,jzf,i exp(−1

2
T 2
n,j∆

2
f,i + i∆f,iτn,j) . (6.3)

The autocorrelation signal for the interaction with two replicas of the arbitrary pulse delayed

by a time interval τ to each other can then be approximated by the multi-color Gaussian approach

as:

PNg(τ) = ∫
Ef>0

∣A(1)f,i (τ) +A
(2)
f,i (τ)∣

2
dEf , (6.4)

where the integral over Ef includes all final levels f for the one- and two-photon processes, respec-

tively,

A
(1)
f,i (τ) =∑

n
∑
j

a
(1)
f,i (τn,j) (1 + e

iEf,iτ) , (6.5)

A
(2)
f,i (τ) =∑

n2

∑
j2

∑
n1

∑
j1

a
(2)
f,i (τn2,j2 , τn1,j1) (1 + e

iEf,iτ)

+ a
(2)
f,i (τn2,j2 + τ, τn1,j1)e

iωj2
τ + a(2)f,i (τn2,j2 , τn1,j1 + τ)e

iωj1
τ (6.6)

In order to characterize the envelope of the unknown ultrashort pulse, we introduce an objective

function between the autocorrelation signal Pexact(τ), measured with the unknown pulse, and the
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approximate multi-Gaussian signal PNg(τ) as:

objNg
(τ) =

∣Pexact(τ) − PNg(τ)∣
Pexact(0)

, (6.7)

where Pexact(0) is the maximum ionization yield for which the two replicas of the pulse perfectly

overlap. For a given number of Gaussian pulses, Ng, the L2 norm of the objective function is

then minimized with respect to variation of f̃n,j , τn,j and Tn,j using the standard non-linear least

squares approach, where the objective function has a complexity that scales as the square of the

number of basis functions used. Without loss of generality, for exactly one n, j we chose f̃n,j real

and fix τn,j = 0.

6.2.2 Derivation of ionization amplitudes

Before applying the multi-color Gaussian approach we discuss the derivation of the one- and

two-photon ionization amplitudes used in the approach. The perturbative ionization amplitude

(Chapter 2) used in the previous section can be described by the Lippmann-Schwinger equation

Ψ(x) = ϕi(x) + ∫ d4x1G(x;x1)VL(x1)ϕi(x1), (6.8)

where ϕi is the initial atomic state calculated from the time-independent Schrödinger equation for

a single-active electron potential and VL is the laser interaction. The exact Green’s function G is

now expanded as

G(x;x1) = G0(x;x1) + ∫ d4x2G(x;x2)VL(x2)G0(x2;x1) (6.9)

in terms of the atomic Green’s function

G0(x;x′) = −i θ (t − t′)⨋
j
ϕj(x)ϕj(x′), (6.10)

where ⨋j describes a sum over all bound and an integral over all continuum states ϕj(x).

The two photon ionization amplitude is then determined from the second order truncation

Ψ(x) ≈ ϕi(x) + ∫ d4x1G0(x;x1)VL(x1)ϕi(x1)

+ ∫ d4x2∫ d4x1G0(x;x2)VL(x2)G0(x2;x1)VL(x1)ϕi(x1) (6.11)
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using the interaction potential

VL(x) = F(t) ⋅ r = Re [f(t)] ẑ ⋅ r, (6.12)

where

f̃(t) = ∣f̃(t)∣ e−iϕ(t) =∑
n,j

f̃n,j exp
⎡⎢⎢⎢⎣
−
(t − τn,j)2

2T 2
n,j

− iωjt
⎤⎥⎥⎥⎦

(6.13)

is the laser field expanded in a basis of multi-color Gaussian functions. f̃n,j is the complex ampli-

tude, τn,j is a translation in time, and Tn,j is the width of a Gaussian pulse with central frequency

ωj . A detailed description of the first- and second-order terms are presented in sections 6.2.2.1

and 6.2.2.2.

6.2.2.1 One-photon ionization amplitude

The first-order term in Eq. (6.11), corresponds to the lowest order one-photon process

Ψ(1)(x) = ∫ d4x1G0(x;x1)VL(x1)ϕi(x1). (6.14)

Inserting the field interaction and taking t0 → −∞ for a finite pulse the correction becomes

Ψ(1)(x) = −i
2
⨋
m
ϕm(x)zm,i∑

n,j

t

∫
−∞

dt1 exp
⎡⎢⎢⎢⎣
−
(t1 − τn,j)2

2T 2
n,j

⎤⎥⎥⎥⎦
ei(Em−Ei)t1 (f̃n,je−iωjt1 + f̃n,jeiωjt1)

and simplifies to

Ψ(1,abs)(x) = −i
2
⨋
m
ϕm(x)zm,i∑

n,j

f̃n,j

t

∫
−∞

dt1 exp
⎡⎢⎢⎢⎣
−
(t1 − τn,j)2

2T 2
n,j

+ i∆m,i,jt1
⎤⎥⎥⎥⎦
. (6.15)

for photon absorption processes. Taking the limit as t→∞ and projecting onto a continuum state

ϕf(x) gives the contribution for each Gaussian in the laser field as

a
(1)
f,i (τn,m) = −i

√
π

2
zf,iTn,j f̃n,j exp

⎛
⎝
iτn,j∆f,i −

∆2
f,i

2T 2
n,j

⎞
⎠
. (6.16)

6.2.2.2 Two-photon ionization amplitude

The second-order, two photon term in Eq. (6.11) is given by

Ψ(2)(x) = ∫ d4x2∫ d4x1G0(x;x2)VL(x2)G0(x2;x1)VL(x1)ϕi(x1). (6.17)
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Inserting the field and following the same steps as the one-photon case before we obtain the ϕf(x)

component

a
(2)
f,i (τn2,j2 , τn1,j1) = −

π

4
⨋
m
zf,mzm,if̃n1,j1Tn1,j1 f̃n2,j2Tn2,j2

× exp
⎛
⎝
iτn1,j1∆m,i + iτn2,j2∆f,m −

∆2
m,i

2T 2
n1,j1

−
∆2

f,m

2T 2
n2,j2

⎞
⎠

×
⎧⎪⎪⎪⎨⎪⎪⎪⎩

erf

⎡⎢⎢⎢⎢⎢⎣

1
√

2
√
T 2
n1,j1

+ T 2
n2,j2

(τn2,j2 − τn1,j1 − i∆m,iT
2
n1,j1 + i∆f,mT

2
n2,j2)

⎤⎥⎥⎥⎥⎥⎦
+ 1

⎫⎪⎪⎪⎬⎪⎪⎪⎭
after Gaussian integration where photon absorption processes alone are considered.

In general, erf(x+iy), is poorly conditioned and expensive to compute in the standard integral

form. We use a continued fraction approximation for the majority of the complex plane [43] and

patch the nonphysical singularities near the origin with the global Padé approximate and other

singularities near the imaginary axis with the standard Padé approximate. The evaluation involves

defining g(z, a) = eaerf(z), and approximating it as

g(z, a) ≈

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ea [5/5]erf(±2i) (z) ∣z ∓ 2i∣ < 1.1

sign (Re [z])
√
e2a − e2a−z

2 4/π+bz2
1+bz2 z ∈ Ω

sign (Re [z]) ea
⎛
⎝

1 − ze−z
2

√
π
(z2 + 1/2

1+ 1
z2+3/2

)
−1⎞
⎠

else,

(6.18)

in the complex plane. Here b ≈ 0.14, Ω is the set of all z such that ∣z∣ < 1.4 and ∣z ± 2i∣ ≥ 1.1, and

[m/n]f(z0) (z) is the Padé approximate of a function f centered around z0 with order m in the

numerator and order n in the denominator.

6.2.3 Application and results

To test the characterization with this multi-Gaussian approach, we have obtained ultrashort

pulses using results of numerical macroscopic simulations of HHG spectra [144]. First, calcula-

tions of the microscopic single-atom response have been performed by solving the time-dependent

Schrödinger equation within the dipole approximation with Hamiltonian

H(t) = −1

2
∇2 − 1

r
+E(t) ⋅ y , (6.19)
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where E(t) and y are the electric field and polarization direction of the driving laser pulse. The

wavefunction has been expanded in 30 spherical harmonics and the radial part of the wavefunction

and the potential have been discretized utilizing fourth order finite difference on a radial grid with

spacing dr = 0.2 a.u. and grid sizes up to rmax = 100 a.u. [163]. As absorbing boundary, we

have used exterior complex scaling (ECS), where the edge of the grid (10%) is rotated into complex

space by an angle η = π/4. We have used the Crank-Nicolson method to propagate the wavefunction

starting from the initial state of the hydrogen atom with time step dt = 0.1. To obtain the HHG

spectra P (ω) = ∣ã(ω)∣2, the dipole acceleration a(t) has been evaluated using the Ehrenfest theorem

a(t) = ⟨− ∂
∂y
(−1

r
)⟩ and the complex harmonic response ã(ω) is then obtained by taking the Fourier

transform (without windowing).

For the macroscopic radiation signal, we have considered the low gas density regime that is

free from longitudinal phase-matching effects. We then followed the approach used in Ref. [81],

in which the macroscopic yield is obtained as the superposition of the fields generated at different

points in the medium. Application of this approach requires single-atom simulations for a large

number of intensities and phase factors. In the present simulations 5 × 105 single-atom results

have been used via an interpolation scheme based on 100 exact TDSE results. The success of the

interpolation method has been verified elsewhere [144].

In Fig. 6.1(a), we show the below- and near-threshold part of the numerical macroscopic

HHG signal obtained for a gas jet of hydrogen atoms interacting with a 20-cycle, 800 nm pulse

at peak intensity 4 × 1013 W/cm2. From this spectrum, we have first extracted isolated ultrashort

pulses by applying a Gaussian filter in the frequency domain centered about the harmonic H0, i.e.

e−(H−H0)2/2β2
where β = 0.35 in the present work. The temporal shape of the pulse filtered about the

9th harmonic varies significantly from that of a Gaussian pulse (Fig. 6.1(b)). For the application of

the characterization method, we used replicas of the pulse with an intensity of 3.16×1011 W/cm2 to

determine the autocorrelation signal shown in Fig. 6.1(c). The signal has been obtained by solving

the time-dependent Schrödinger equation for the interaction of a helium atom with the two pulses;

a single-active-electron potential for the helium atom [143] has been used for these calculations.
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Figure 6.1: (a) Macroscopic high harmonic spectrum in hydrogen atom driven by 20-cycle, 800

nm laser pulse at 4 × 1013 W/cm2: full spectrum (black line) and spectrum after application of a

Gaussian filter about 9th harmonic (red line). (b) Temporal profile of filtered 9th harmonic and

(c) autocorrelation signal using filtered 9th harmonic [168].

To characterize the filtered 9th harmonic, we have chosen a single-color approach in which all

Gaussian pulses have the central frequency of the 9th harmonic. The results of the approximations

for the time dependent amplitude ∣f̃(t)∣ (blue) and phase variation ω(t) (red) using up to six

Gaussian pulses (solid lines) are compared in Fig. 6.2 with the original pulse (dashed lines). The

reconstruction with a single Gaussian (panel (a)) provides an estimate of the pulse width, but

the double-hump structure in the amplitude and the phase variation is, of course, not reproduced.

Already inclusion of a second Gaussian pulse (panel (b)) provides a significant improvement in this

respect, however the minimum in between the two humps, the small post-pulse structure and most
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of the phase variation is still not well reproduced. Using four (c) and six (d) Gaussian pulses, first

the main part of the amplitude and then the post-pulse structure and even the phase variation in

major parts of the pulse, is well reproduced. We however note that using autocorrelation signals,

time-independent phases cannot be determined and a certain pulse cannot be distinguished from

the pulse with time-reversed envelope.
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Figure 6.2: Comparison of time-dependent amplitude ∣f̃(t)∣ (blue line) and phase variation ω(t)

(red line) of the filtered 9th harmonic (dashed line) and reconstructed pulse with (a) 1, (b) 2, (c)

4 and (d) 6 Gaussians (solid line). The temporal profile is also provided as insets within each

subplot [168].

While the results in Fig. 6.2 visualize the potential of the method, we quantify the convergence

by errors for the ionization signal using the objective function as:

ErrorNg[Pion] =
√
∫ dτ objNg

(τ)2 , (6.20)
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and the error in the field defined as:

ErrorNg[f̃] =
√
∫ dt ∣f̃exact(t) − f̃Ng(t)∣

2
(6.21)

in Fig. 6.3. Results for both the filtered 9th (blue) and the filtered 11th (red) harmonic are

compared with each other. In both cases, the error in the ionization signal (panel (a)) drops

smoothly with an increase of the number of Gaussians included in the method. The number of

Gaussians necessary for similar degree of convergence is smaller for the 11th harmonic, since the

pulse envelope (not shown) is less complex than that of the 9th harmonic. The convergence in

the error for the ionization signal corresponds to a decrease of the error in the field (panel (b))

that reflects the observation in Fig. 6.2 that the pulse envelope is well reconstructed with just a

few Gaussians. At the same time, we note that already two Gaussians are sufficient to provide an

estimate of the FWHM pulse duration below 10 a.u. for for both harmonics.
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Figure 6.3: Error analysis of Gaussian pulse characterization method for filtered 9th (blue) and

11th harmonics (red): (a) ErrorNg[Pion] (Eq. 6.20), and (b) ErrorNg[f̃] (Eq. 6.21) [168].

After applying the method to isolated ultrashort pulses by filtering the spectrum about a

single harmonic, we consider the more complex temporal profile of a pulse train. To this end, we

have used a flat top filter to the macroscopic HHG spectrum, where the leading edge is the same

Gaussian filter used for the 9th harmonic and the trailing edge is a Gaussian filter applied to the

11th harmonic. The temporal shape of the resulting pulse train and the autocorrelation signal
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obtained with the pulse train are shown in Fig. 6.4(a) and (b), respectively.
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Figure 6.4: (a) Temporal profile of the filtered 9th to 11th harmonic spectral range, (b) autocor-

relation signal, and comparison of time-dependent amplitude (blue) and phase variation (red) of

the original pulse (dashed lines) and reconstructions (solid lines) obtained with one (c) and three

(d) Gaussians per central frequencies at 9th and 11th harmonic [168].

Since the spectral filtering covers two harmonics, we have used a two-color approach with

central frequencies equal to those of the 9th and 11th harmonics. Comparison of the original pulse

train with the reconstructions shows that one Gaussian pulse per central frequency (panel (c))

provides a good approximation, including the duration of the train as well as the duration of the
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individual pulses in the train. However, the rather flat overall envelope with several pulses in the

train having similar amplitudes as well as most of the phase variation is not well reproduced. Using

three Gaussian pulses per central frequency (panel (d)) improves the agreement with the original

pulse in these aspects significantly.

Thus, using an extension of the two-photon autocorrelation technique based on multiple

Gaussian pulses about one or several central frequencies enables a characterization of the amplitude

and phase variation of isolated ultrashort pulses and pulse trains. The potential of the method is

demonstrated using VUV pulses obtained from numerical simulations of macroscopic high harmonic

spectra. We note that the method can be further improved by using alternative basis sets with more

parameters or more sophisticated search algorithms in the fitting procedure. The same approach

can also be applied to two-photon cross-correlation signals of two isolated ultrashort VUV pulses,

e.g., if one of the two pulses is first characterized via autocorrelation. Furthermore, the analytic

solutions of two-photon absorption may be extended to other techniques such as RABBITT for

VUV and DUV pulse characterization. The accuracy of the method depends on the determination

of one- and two-photon transition dipoles, for which several theoretical methods are available.

6.3 Non-perturbative limit

6.3.1 Time-slicing

In the prior section we derived efficient semi-analytical models for perturbative multipho-

ton processes via arbitrary polychromatic pulses. In this limit difficulties such as the long-range

Coulomb potential are non-existent and there are no limitations on the properties of the incident

radiation as long as the intensity is sufficiently weak and perturbation theory is extended to a

sufficiently high order. Unfortunately, when transitioning into the strong field limit perturbation

theory will break down (section 2.3) and alternative methods are required.

In the previous Chapters 3, 4 and 5 we explored various non-perturbative models for strong

field processes, where each had unique benefits and difficulties. The first and most reliable method
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is the direct numerical integration of the time dependent Schrödinger equation, which proves to be

exact in the limit of converged parameters, but may become prohibitively computational expensive

and requires additional models for analysis. The rest of the strong field approximations [57,98,136,

146] provide nearly exact analytic results for short-range potentials and long monochromatic pulses.

For short polychromatic pulses these formulas either become cumbersome or require additional

numerical time integration. Additionally, due to the lack of accurate Coulomb corrections across

the entire electromagnetic spectrum (Chapter 5) application to electrons bound by long-range forces

may be reliably approximated only in the limits γ ≫ 1 and γ ≪ 1. Higher order corrections such

as in Ref. [58] may yield correct long-range threshold behavior for arbitrary γ, but those have not

been systematically investigated.

In this section we will combine favorable properties of both perturbative and non-perturbative

models in order to determine a semi-analytic strong field amplitude for processes involving arbi-

trary polychromatic fields and electrons bound by arbitrary (possibly long range) forces. Here, we

decompose the interaction picture propagator UI(tf , ti) [151] defined by

∣ΨI(tf)⟩ = UI(tf , ti)∣ΨI(ti)⟩ (6.22)

into M different time-levels tm between some initial time ti ≡ t0 and final time tf ≡ tM , where

t0 < t1 < ⋯ < tM [63, 75]. Taking final and initial matrix elements ∣EM ⟩ and ∣E0⟩ we have

⟨EM ∣UI(tM , t0)∣E0⟩ = ⟨EM ∣T [
M

∏
m=1

UI(m)] ∣E0⟩, (6.23)

where we introduce the shorthand notation

UI(m) ≡ UI (tm, tm−1) (6.24)

and T is the time-ordering operator.

Assuming each time-slice δtm ≡ tm − tm−1 is sufficiently small, then the propagator UI(m)

may be approximated perturbatively over the interval as it is done in numerical time integration

schemes such as the Crank Nicolson method [42] which we have used for direct numerical solutions
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of the TDSE. Each interval is perturbative, but the combined contribution from all intervals is non-

perturbative. Instead of evaluating the propagator over δtm numerically, we now choose UI as the

interaction picture propagator for a complete basis of atomic reference states ∣Em⟩ interacting with

an external laser field VL(x) = E(t) ⋅ r just as we have done for perturbative two-photon ionization

by short pulses (section 6.2.2). We expand the external field as

f̃(t) =∑
n
∑
j

f̃n,j(t)ẑ =∑
n
∑
j

f̃n,j exp
⎡⎢⎢⎢⎣
−
(t − τn,j)2

2T 2
n,j

− iωjt
⎤⎥⎥⎥⎦
ẑ. (6.25)

and

E(t) = Re[f̃(t)] (6.26)

as before. We will use E(t) = F (t)ẑ to avoid confusion with what we will later call the energy at

time t, E(t).

The approximation involves finding sufficiently small time intervals δtm such that

UI(m) = 1 +
∞
∑
k=1

U
(k)
I (m) ≈ 1 +U (1)I (m) (6.27)

approximates the interval well. The last expression on the right is the first order Dyson approxi-

mation [51]. Here δtm may be chosen independently for each m.

In this approximation we decompose the transition amplitude into a linear combination of

Gaussian contributions

U
(1)
I (m) =∑

n,j

U
(1)
n,j (m)

with approximation

U
(Dyson)
I (m) ≈ 1 +∑

n,j

U
(1)
n,j (m).

Next, one partitions the first order coefficient into a part responsible for absorption and one for

emission of a photon

U
(1)
n,j (m) = U

(abs)
n,j (m) +U

(emi)
n,j (m),
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where

⟨Em∣U (abs)n,j (m)∣Em−1⟩ = −i
√
π

8
f̃n,jTn,jzmexp(−1

2
T 2
n,j(∆(abs)

m )2 + i∆(abs)
m τn,j)

× {erf [ 1√
2Tn,j

(tm − τn,j − iT 2
n,j∆

(abs)
m )] − erf [ 1√

2Tn,j
(tm−1 − τn,j − iT 2

n,j∆
(abs)
m )]} (6.28)

and

⟨Em∣U (emi)
n,j (m)∣Em−1⟩ = −i

√
π

8
f̃n,j Tn,jzmexp(−1

2
T 2
n,j(∆(emi)

m )2 + i∆(emi)
m τn,j)

× {erf [ 1√
2Tn,j

(tm − τn,j − iT 2
n,j∆

(emi)
m )] − erf [ 1√

2Tn,j
(tm−1 − τn,j − iT 2

n,j∆
(emi)
m )]} (6.29)

are the dipole-transition matrix elements for single photon absorption and emission process, re-

spectively. The shorthand notations ∆
(abs)
m = Em − Em−1 − ωj and ∆

(emi)
m = Em − Em−1 + ωj are

used.

6.3.2 Perturbation theory

The approximate propagator becomes

UI(T /2,−T /2) = T [
M

∏
m=1

UI(m)] ≈ T [
M

∏
m=1
(1 +U (1)I (m))] ≡

M

∑
K=0

U
(K,M)
I (6.30)

after each time-slice has been expanded in a first-order Dyson series. The sum over K on the right-

hand side corresponds to terms containingK first-order Dyson contributions, where the zeroth-order

term

U
(0,M)
I ≡ 1 = U (0)I (6.31)

corresponds to the zeroth order of the standard Dyson series.

At first order

U
(1,M)
I ≡

M

∑
m=1
∑
n,j

U
(1)
n,j (m) = U

(1)
I (6.32)

similarly represents the first-order Dyson series, where all ”diagrams” containing a single photon

are summed over. At second order

U
(2,M)
I ≡

⎡⎢⎢⎢⎢⎣

M

∑
m2=m1+1

∑
n2,j2

U
(1)
n2,j2
(m2)

⎤⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎣

M−1
∑

m1=1
∑
n1,j1

U
(1)
n1,j1
(m1)

⎤⎥⎥⎥⎥⎦
(6.33)
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deviates from the Dyson result unless δtm → 0 (M →∞) where

U
(2)
I = lim

M→∞
U
(2,M)
I . (6.34)

Continuing now to the Kth order process

U
(K,M)
I ≡

⎡⎢⎢⎢⎢⎣

M

∑
mK=mK−1+1

∑
nK ,jK

U
(1)
nK ,jK

(mK)
⎤⎥⎥⎥⎥⎦
⋯
⎡⎢⎢⎢⎢⎣

M+2−K
∑

m2=m1+1
∑
n2,j2

U
(1)
n2,j2
(m2)

⎤⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎣

M+1−K
∑

m1=1
∑
n1,j1

U
(1)
n1,j1
(m1)

⎤⎥⎥⎥⎥⎦
(6.35)

where the Dyson prediction

U
(K)
I = lim

M→∞
U
(K,M)
I (6.36)

is again recovered for δtm → 0 (M →∞).

Such an expansion extends analytic perturbative principles into a new non-perturbative limit

where results agree with the time-dependent Schrödinger equation in the limit of converged pa-

rameters. The approximation is immediately applicable to problems involving short pulses and

long-range interactions. Integration over each finite time-interval (tm−1, tm] is performed analyti-

cally and may be interpreted in terms of photon absorption and emission processes. The propagator

accounts for the temporal variation of the field over the interval in contrast to the Crank-Nicolson

method which assumes a piecewise constant over each δtm. Since the time-dependence of the field is

approximated over the interval it is expected that significantly larger δtm may be required yielding

an improvement over the Crank-Nicholson method. We plan on exploring these ideas more in the

future.



Chapter 7

Summary

Throughout this thesis we have explored ionization processes ranging from the x-ray and

ultraviolet limit where electrons propagate as they would in an atomic system and applied radi-

ation induces electronic transitions between atomic states before eventually transferring into the

continuum to the opposite adiabatic infrared limit where large numbers of photons are required for

ionization and electrons appear to tunnel through a static barrier. We summarized criteria respon-

sible for the breakdown of perturbation theory and outlined key aspects of the non-perturbative

theory. We discussed key steps responsible to derive the ionization amplitude of Keldysh and rec-

ognized its origins in the tunneling model of Oppenheimer. Additionally, we proved equivalence

of Keldysh’s amplitude with the model of Perelomov, Popov and Terent’ev for the case of a final

plane-wave Volkov state and all possible combinations of initial states and applied radiation fields.

Numerical calculations were performed bridging the short wavelength limit of single photon

perturbative ionization to the long wavelength limit of non-perturbative multiphoton ionization.

These calculations found an optimal wavelength regime for generation of electron pulses for probing

chiral systems in the intermediate wavelength limit where neither adiabatic tunneling theory nor

perturbation theory are capable of describing the ionization process.

Breakdown was demonstrated of the asymptotic saddle point approximation for ionization of

electrons bound to p−states. We overcame this issue by evaluating Keldysh’s amplitude exactly. Our

explorations recognized the intermediate wavelength limit where the asymptotic tail of the initial

bound-state alone cannot determine ionization. Descriptions of ionization in this intermediate
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wavelength regime prove difficult for electrons bound by long-range potentials both due to the

inapplicability of perturbation theory and lack of sufficient Coulomb corrections to describe proper

long-range threshold behavior in the strong field theories.

In the final Chapter we developed an analytic model for the perturbative two-photon ioniza-

tion of atoms by arbitrary polychromatic radiation fields. As an application these formulas were

applied to reconstruct isolated attosecond pulses and pulse trains from a provided autocorrelation

trace generated in a pump probe ionization measurement. We generalized the amplitude to the

non-perturbative limit by partitioning time into sufficiently small slices such that our perturbative

formulas may be applied over each interval. We believe that this complementary approach may al-

low for an accurate semi-analytic physical description of strong-field processes involving long-range

Coulomb potentials and short laser pulses.
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Markus Schöffler, Kunlong Liu, Ingo Barth, Jivesh Kaushal, Felipe Morales, Misha Ivanov,
Olga Smirnova, and Reinhard Dörner. Ultrafast preparation and detection of ring currents
in single atoms. Nature Physics, 14(7):701–704, July 2018.



154
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[81] C. Hernández-Garćıa, J. A. Pérez-Hernández, J. Ramos, E. Conejero Jarque, L. Roso, and
L. Plaja. High-order harmonic propagation in gases within the discrete dipole approximation.
Physical Review A, 82(3):033432, September 2010.



156

[82] J. Hofbrucker, A. V. Volotka, and S. Fritzsche. Fluorescence polarization as a precise tool
for understanding nonsequential many-photon ionization. Physical Review A, 100(1):011401,
July 2019.

[83] Markus Huber. Infrared behavior of vertex functions in d-dimensional Yang-Mills theory. na,
2007.

[84] Etienne Huens, Bernard Piraux, Alejandro Bugacov, and Mariusz Gajda. Numerical studies
of the dynamics of multiphoton processes with arbitrary field polarization: Methodological
considerations. Physical Review A, 55(3):2132, 1997.

[85] M. Ilchen, N. Douguet, T. Mazza, A.J. Rafipoor, C. Callegari, P. Finetti, O. Plekan, K.C.
Prince, A. Demidovich, C. Grazioli, L. Avaldi, P. Bolognesi, M. Coreno, M. Di Fraia, M. De-
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[87] J. Itatani, F. Quéré, G. L. Yudin, M. Yu. Ivanov, F. Krausz, and P. B. Corkum. Attosecond
Streak Camera. Physical Review Letters, 88(17):173903, April 2002.

[88] I. A. Ivanov and A. S. Kheifets. Time delay in atomic photoionization with circularly polarized
light. Physical Review A, 87(3):033407, March 2013.

[89] Harold Jeffreys. On certain approximate solutions of lineae differential equations of the second
order. Proceedings of the London Mathematical Society, 2(1):428–436, 1925.

[90] Shih-Da Jheng, Tsin-Fu Jiang, Jen-Hao Chen, and Jinn-Liang Liu. Magnetic quantum num-
ber dependence of hydrogen photoelectron spectra under circularly polarized pulse in barrier
suppression ionization regime. Physica Scripta, 93(8):085401, July 2018.

[91] WGCGB Kaiser and CGB Garrett. Two-photon excitation in ca f 2: Eu 2+. Physical review
letters, 7(6):229, 1961.

[92] Jivesh Kaushal, Felipe Morales, and Olga Smirnova. Opportunities for detecting ring currents
using an attoclock setup. Physical Review A, 92(6):063405, December 2015.

[93] Jivesh Kaushal, Felipe Morales, Lisa Torlina, Misha Ivanov, and Olga Smirnova. Spin–orbit
Larmor clock for ionization times in one-photon and strong-field regimes. Journal of Physics
B: Atomic, Molecular and Optical Physics, 48(23):234002, October 2015.

[94] Jivesh Kaushal and Olga Smirnova. Nonadiabatic Coulomb effects in strong-field ionization
in circularly polarized laser fields. Physical Review A, 88(1):013421, July 2013.

[95] Jivesh Kaushal and Olga Smirnova. Looking inside the tunnelling barrier: I. Strong field
ionisation from orbitals with high angular momentum in circularly polarised fields. Journal
of Physics B: Atomic, Molecular and Optical Physics, 51(17):174001, August 2018.



157

[96] Jivesh Kaushal and Olga Smirnova. Looking inside the tunnelling barrier: II. Co- and counter-
rotating electrons at the ‘tunnelling exit’. Journal of Physics B: Atomic, Molecular and
Optical Physics, 51(17):174002, August 2018.

[97] Jivesh Kaushal and Olga Smirnova. Looking inside the tunnelling barrier III: spin polarisation
in strong field ionisation from orbitals with high angular momentum. Journal of Physics B:
Atomic, Molecular and Optical Physics, 51:174001, September 2018.

[98] LV Keldysh. Ionization in the field of a strong electromagnetic wave. Sov. Phys. JETP,
20(5):1307–1314, 1965.

[99] J. Kessler. Polarized Electrons. Springer (Berlin), 1985.

[100] Takayoshi Kobayashi and Yuichiro Kida. Ultrafast spectroscopy with sub-10 fs deep-
ultraviolet pulses. Physical Chemistry Chemical Physics, 14(18):6200–6210, April 2012.

[101] Vladimir P Krainov, Howard R Reiss, and Boris M Smirnov. Radiative processes in atomic
physics. Wiley Online Library, 1997.

[102] VP Krainov and B Shokri. Energy and angular distributions of electrons resulting from
barrier-suppression ionization of atoms by strong low-frequency radiation. Journal of
Experimental and Theoretical Physics, 80(4):657–661, 1995.

[103] Hendrik Anthony Kramers. Wellenmechanik und halbzahlige quantisierung. Zeitschrift für
Physik, 39(10-11):828–840, 1926.

[104] P. Lambropoulos. Spin-Orbit Coupling and Photoelectron Polarization in Multiphoton Ion-
ization of Atoms. Physical Review Letters, 30(10):413–416, March 1973.

[105] P. Lambropoulos. On producing totally polarized electrons through multiphoton ionization.
Journal of Physics B: Atomic and Molecular Physics, 7(2):L33–L35, February 1974.

[106] P. Lambropoulos and M. R. Teague. Two-photon ionization with spin-orbit coupling. Journal
of Physics B: Atomic and Molecular Physics, 9(4):587–603, March 1976.

[107] L D Landau and E M Lifshits. Quantum Mechanics : Non-Relativistic Theory. Pergamon
Press, 1965.

[108] Giuseppe Lauricella. Sulle funzioni ipergeometriche a piu variabili. Rendiconti del Circolo
Matematico di Palermo, 7(Suppl 1):111–158, 1893.

[109] Stephen R. Leone, C. William McCurdy, Joachim Burgdörfer, Lorenz S. Cederbaum, Zenghu
Chang, Nirit Dudovich, Johannes Feist, Chris H. Greene, Misha Ivanov, Reinhard Kienberger,
Ursula Keller, Matthias F. Kling, Zhi-Heng Loh, Thomas Pfeifer, Adrian N. Pfeiffer, Robin
Santra, Kenneth Schafer, Albert Stolow, Uwe Thumm, and Marc J. J. Vrakking. What will
it take to observe processes in ’real time’? Nature Photonics, 8(3):162–166, March 2014.

[110] Yang Li, Pengfei Lan, Hui Xie, Mingrui He, Xiaosong Zhu, Qingbin Zhang, and Peixiang
Lu. Nonadiabatic tunnel ionization in strong circularly polarized laser fields: counterintuitive
angular shifts in the photoelectron momentum distribution. Optics Express, 23(22):28801–
28807, November 2015.



158
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[124] Héctor Mera, Thomas G Pedersen, and Branislav K Nikolić. Nonperturbative quantum
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