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Abstract

The COVID-19 pandemic and ensuing lockdown of many US States resulted in rapid changes to
motor vehicle traffic and their associated emissions. This presents a challenge for air quality

modelling and forecasting during this period, in that transportation emission inventories need to
be updated in near real-time. Here, we update the previously developed fuel-based inventory of
vehicle emissions (FIVE) to account for changes due to COVID-19 lockdowns. We first construct a
2020 business-as-usual (BAU) case inventory and adjust the emissions for a COVID-19 case using
monthly fuel sales information. We evaluate cellular phone-based mobility data products (Google
COVID-19 Community Mobility, Apple COVID-19 Mobility Trends) in comparison to embedded
traffic monitoring sites in four US cities. We find that mobility datasets tend to overestimate traffic
reductions in April 2020 (i.e. lockdown period), while fuel sales adjustments are more similar to
changes observed by traffic monitors; for example, mobility-based methods for scaling emissions
result in an approximately two-times greater estimate of on-road nitrogen oxide (NO,) reductions
in April 2020 than we find using a fuel-based method. Overall, FIVE estimates a 20%—25%
reduction in mobile source NO, emissions in April 2020 versus BAU, and a smaller 6%—7% drop

by July. Reductions in April showed considerable spatial heterogeneity, ranging from 6% to 39%
at the state level. Similar decreases are found for carbon monoxide (CO) and volatile organic
compounds. Decreases to mobile source NO, emissions are expected to lower total US
anthropogenic emissions by 9%—12% and 3%—4% in April and July, respectively, with larger
relative impacts in urban areas. Changes to diurnal and day-of-week patterns of light- and
heavy-duty vehicular traffic are evaluated and found to be relatively minor. Beyond the
applicability to modelling air quality in 2020, this work also represents a methodology for quickly
updating US transportation inventories and for calibrating mobility-based estimates of emissions.

1. Introduction

Beginning in January of 2020, the international
spread of the COVID-19 virus incurred policy inter-
ventions on mobility (e.g. lockdowns’) by govern-
ments throughout the world, causing unpreceden-
ted decreases to vehicle traffic (Parr et al 2020,
FHWA 2020c). Studies have indicated that these
changes in traffic directly affected air pollution, as
presently reported in China (Chen et al 2021) and the

© 2021 The Author(s). Published by IOP Publishing Ltd

United States (Xiang et al 2020). Ground monitoring
data in numerous US cities indicate that statistic-
ally significant reductions to nitrogen dioxide (NO;)
concentrations occurred in April relative to previous
years (25.5%, Berman and Ebisu 2020; 19%—49%,
Chen et al 2020). Changes of similar magnitude have
also been observed in Europe (Barré et al 2021) and
China (Wang et al 2020). Satellite-based retrievals of
NO, column concentrations have also been used to
observe declines across the US (19%—-28%, Bauwens
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etal 2020; 30%, Blumberg 2020; 21.6%, Goldberg et al
2020) and Europe (Barré et al 2021). The response
of secondary air pollutants such as fine particulate
matter (PM, ) and ozone has been smaller or even
opposite that of the decreases in NO, owing to atmo-
spheric chemistry (Berman and Ebisu 2020, Chen et al
2020, Wang et al 2020).

The global COVID-19 lockdowns present a
unique opportunity for assessing how different emis-
sion sectors, particularly the mobile source sector,
impact air quality. Previous studies (Tong et al 2015)
have highlighted a need for timely updates to emis-
sion inventories used in air quality models and fore-
casting, which may otherwise take years to develop.
Although many studies have investigated the effects
that the lockdown has had on air pollution, fewer
have attempted to estimate bottom-up emissions for
this period (Guevara et al 2021, Huang et al 2021).
Global inventories have updated mobile source emis-
sions using COVID-19 mobility datasets (Doumbia
et al 2021, Forster et al 2020, Le Quere et al 2020, Liu
et al 2020, Pompomi et al 2021), such as those pub-
lished by Google and Apple, which evaluate changes
in human mobility with data derived from mobile
phone locations and queries. Using mobility datasets,
Forster et al (2020) and Doumbia et al (2021) estim-
ate that total US nitrogen oxides (NO,) emissions
decreased by 40% and 21%, respectively, in April.
Also using mobility datasets, Le Quere et al (2020)
and Liu ef al (2020) estimate that monthly US sur-
face transportation carbon dioxide (CO,) emissions
fell by 42% and 50% respectively, at a maximum. In
comparison to estimates based on ground or satellite
measurements (Goldberg et al 2020, Keller et al 2020),
some mobility-based estimates of NO, reductions are
notably greater.

The mobile source sector is composed of both
on-road and off-road engines. When considering US
on-road sources, gasoline is consumed primarily by
light-duty (LD) vehicles and diesel by heavy-duty
(HD) trucks. In the previous decades, mobile source
NO, emissions have been decreasing even while the
relative contribution of on-road diesel grew, due
to successes (e.g. three-way catalysts) in controlling
on-road gasoline emissions (Dallmann and Harley
2010, McDonald et al 2012). Within the US, mobile
sources make up 53% of anthropogenic NO, emis-
sions (EPA 2017) and are disproportionately located
in cities (McDonald et al 2014), hence their import-
ance for assessing urban air quality impacts of the
COVID-19 pandemic. The US in particular experi-
enced a patchwork of different state and local pub-
lic health responses to the pandemic, suggesting non-
uniform trends in traffic (Chen et al 2020, Raifman
et al 2020). Previous studies have found that HD
traffic has a disproportionate contribution to trans-
portation NO, and PM, 5 emissions, relative to LD
traffic (Dallmann and Harley 2010, McDonald et al
2012, 2015), which can lead to inequities in primary
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air pollutant exposure among lower income and non-
white populations (Demetillo et al 2020). Lockdown
effects may also play out differently for LD and HD
traffic (Archer et al 2020, Dantas et al 2020) due to
varying impacts of the pandemic on personal and
commercial movement, indicating the importance of
capturing these trends independently. Additionally,
it has been observed that urban and densely popu-
lated areas in the US have experienced greater changes
to both traffic (Parr et al 2020) and air pollution
(Berman and Ebisu 2020, Chen et al 2020) than rural
areas due to COVID-19 lockdowns.

Here, we first develop a 2020 business-as-usual
(BAU) inventory, following the fuel-based methodo-
logy of McDonald et al (2014). In assessing a means
for estimating mobile source emissions COVID-19
scaling factors, we investigate using COVID-19
mobility datasets from Apple (Apple 2020) and
Google (Google 2020) against using fuel sales trends.
In doing so, we aim to quantify changes in US gasoline
and diesel consumption throughout the COVID-19
pandemic, using monthly fuel sales data, which have
previously been utilized to develop regional and
national-scale mobile source emission inventories
(Kim et al 2016, McDonald et al 2018a). We also aim
to determine whether COVID-19 lockdowns have
affected diurnal and day-of-week traffic patterns.
Finally, this information can be used to quantify
changes in mobile source emissions of CO, and co-
emitted air pollutants, including carbon monoxide
(CO), NO,, volatile organic compounds (VOCs),
ammonia (NHj3), sulphur dioxide (SO;), and PM; 5.
The result is a gridded 2020 monthly mobile source
emissions inventory, for the contiguous US, with BAU
and COVID-19 perturbed emissions cases, which can
be utilized in air quality models.

2. Methods

2.1. Mapping BAU on-road fuel consumption

We follow the methodology developed by McDon-
ald et al (2014) to update the spatial mapping of
the fuel-based inventory for vehicle emissions (FIVE).
The most recent national traffic count data are avail-
able at a roadway-link level from the highway per-
formance monitoring system (HPMS) for the year
2018 (FHWA 2020a), which spatially allocate ~82%
and ~71% of LD and HD traffic, respectively, when
compared with state-level traffic statistics (FHWA
2020b). In the US, gasoline is consumed primarily
by LD vehicles and diesel by HD vehicles. Therefore,
we use LD traffic data to downscale annual state-
level taxable gasoline sales (FHWA 2020b), and HD
traffic for diesel sales. Untaxed diesel consumption
by buses is also included (Davis and Boundy 2020).
The 2018 fuel use maps are then projected to 2019
(BAU fuel is assumed unchanged from 2019 to 2020)
using the state-level taxable fuel sales records of gas-
oline and diesel. For simplicity, the balance of traffic
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unaccounted by HPMS traffic count data is spatially
apportioned using population as a surrogate (EPA
2020). While distributing on-road emissions by pop-
ulation density is known to introduce bias (Gately
et al 2015), this is diminished by the large portion
of fuel consumption already distributed at the road-
way link level. The result is a gridded 4 km x 4 km
contiguous US emissions map of on-road fuel con-
sumption, separately apportioned between LD and
HD traffic.

2.2. Mapping off-road mobile source engine
activity

Off-road gasoline engines consist of small two- and
four-stroke gasoline engines (e.g. lawn equipment,
generators, forklifts, recreational vehicles, water-
craft), consuming ~6% of total gasoline (FHWA
2020b). Though this consumption is relatively small,
it can be a significant source of CO and VOCs due to
high emission factors relative to on-road transporta-
tion (Gordon et al 2013). Off-road diesel engines are
used in heavy equipment (e.g. agricultural, construc-
tion, other industrial/commercial engines), and are
important sources of NO, and PM (Dallmann and
Harley 2010). Off-road diesel fuel use is estimated fol-
lowing Kean et al (2000), utilizing end-use surveys
reported by the Energy Information Administration
(EIA) (EIA 2019). Oft-road fuel use is mapped utiliz-
ing spatial and temporal surrogates from the National
Emissions Inventory (NEI) 2011 (EPA 2014) for two-
and four-stroke gasoline equipment, small watercraft,
and agricultural and non-agricultural diesel engines
(McDonald et al 2018a). While there are more recent
versions of the NEI, spatial and temporal surrogates
are not expected to change significantly until the US
2020 Census is complete.

2.3. Accounting for changes in mobile source
activity due to COVID-19

2.3.1. Monthly scaling factors of gasoline and diesel
fuel sales

To estimate scaling factors between BAU (assumed
unchanged from 2019) and the COVID perturbed
case, we use the EIA’s prime supplier sales volumes
(PSSV) (EIA 2020), which report sales of gasoline
and diesel fuel into regional markets, allowing separ-
ate LD and HD trends to be quantified. We develop
BAU to 2020 COVID case monthly fuel scaling factors
first at a Petroleum Administration for Defence Dis-
trict (PADD) level, which cover five regions of the
US (East Coast, Midwest, Gulf Coast, Mountain West,
and West Coast). For on-road sources, PADD-level
fuel scalings are then downscaled to the state level
using monthly state traffic volumes (FHWA 2020c¢).
Scaling factor calculations are described in appendix
S1 (available online at stacks.iop.org/ERL/16/065018/
mmedia), and tables S1 and S2. PSSV does not
distinguish between fuel consumed by on-road and
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off-road engines, and hence we use PADD-level fuel
sales as the basis for both on-road and off-road fuel
scaling factors. We later test this assumption by assess-
ing ambient monitoring data of NO,/CO.

2.3.2. Traffic monitoring data

Traffic monitoring data are used to evaluate COVID-
19 mobility datasets and assess whether traffic speed
or typical diurnal and day-of-week traffic patterns
(McDonald et al 2014) have been altered due to
COVID-19. Table S3 lists sources of real-time and
publicly available traffic monitoring data from four
locations: (a) Los Angeles, (b) San Francisco, (c)
Atlanta, and (d) New York City. These four cities
represent large population centres across the coun-
try. Nationally, interstate highway traffic is repor-
ted weekly by the FHWA, based on embedded traffic
counters (FHWA 2020d). A map of urban monitoring
locations (figure S1) and further details (appendix S2)
are included.

2.4. Mobile source emission factors

Based on previous studies described below, we
compile fuel-based mobile source emission factors
(in g kg™! fuel) for CO, NO,, VOCs, NH3;, SO,
and PM, 5 for the 2020 BAU year (table S4). A brief
description of the methodology is provided here, and
more detail can be found in appendix S3, appendix S4
and table S5.

On-road fuel-based emission factors used in FIVE
for CO, NO,, and VOCs have been described by
several studies (McDonald et al 2012, 2013, 2018a,
2018b, Hassler et al 2016). Emission factors are
adjusted to account for the effects of cold-starting
engines based on the EPA MOVES2014a model (EPA
2015), as well as evaporative emissions of gasoline
(see appendix S4 and table S5 for details). Primary
PM,s emission factors from gasoline and diesel
exhaust have been described by McDonald et al
(2015). Trends in LD PM, 5 exhaust emissions scale
with CO (McDonald et al 2015), and we update
HD PM, 5 exhaust emission factors with more recent
measurements of HD trucks (figure S2). We also
include brake wear and tire wear emissions from
the EPA MOVES2014a model (EPA 2015). Cao et al
(2021) presents trends in tailpipe NHj; emission
factors. Lastly, the SO, emission factor is estimated
based on a sulphur content of 10 ppm and 20 ppm
(by weight) for gasoline and diesel fuel, respectively.

For off-road engines, we use emission factors
from the EPA NONROAD model (EPA 2010), except
where otherwise noted in table S4 for off-road gasol-
ine engines. Off-road gasoline CO, NOy, VOC, and
PM, 5 emission factors have been described previ-
ously for FIVE (McDonald et al 2015, 2018a, 2018b).
Emission factors of SO, are assumed to be the same
for on-road gasoline and diesel engines. Since 2014,
all non-road engines are required to utilize ultra-low
sulphur diesel (EPA 2017).
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reopening (indoor retail allowed) dates (see table S6).

Figure 1. Comparison of COVID-19 Mobility Datasets (Apple and Google) relative to 2020 traffic monitoring data for (a) New
York City, (b) San Francisco, (c) Atlanta, and (d) Los Angeles. Each trend line is normalized to their January values and shown as
a 14 days rolling average. Blue lines are 2020 mobility dataset trends: (light blue) Apple’s driving mobility dataset and (dark blue)
the average of Google’s Workplace and Retail/Recreation Mobility datasets. Black lines are 2019 (dashed) and 2020 (solid) traffic
trends, compiled from embedded roadway counters in each city (table S3). Green markers are BAU and COVID case on-road
gasoline scaling factors (described in section 3.2). Vertical dashed red lines illustrate lockdown (stay-at-home orders) and

3. Results and discussion

3.1. Analysis of COVID-19 mobility datasets
In figure 1, we compare Apple’s COVID-19 Mobility
Trends Report (Apple 2020) and Google’s COVID-19
Community Mobility Report (Google 2020) with
highway traffic monitoring data across four cities
(figure 1: (a) New York, (b) San Francisco, (c) Atlanta
and (d) Los Angeles). For Google’s mobility report,
we average the Workplace Mobility and the Retail
and Recreation Mobility metrics. For Apple’s mobil-
ity report, we use the driving mobility index. We
note that neither mobility report attempts to directly
quantify changes to on-road transportation. Google’s
report is derived from mobile phone location activ-
ity at marked locations while Apple’s report is derived
from Apple Maps personal vehicle routing requests.
Additionally, the Apple and Google mobility data-
sets do not explicitly capture HD traffic trends, which
are important to on-road trends due to differences in
emission factors by engine type (table S4).
Considering the mobility datasets alone, we find
they perform similarly in capturing the beginning
of lockdowns (figure 1). When comparing timing of
decreases in traffic monitoring and mobility to tim-
ing of public health measures, traffic decreases gen-
erally precede stay-at-home orders (table S6) by sev-
eral weeks. Apart from Atlanta, reopening measures
do not generally coincide with a significant traffic
increase. Traffic counters in each city (black lines in
figure 1) show that by July, traffic has nearly recovered

from the minimum in travel seen in April. In June
and beyond, Google’s datasets have not recovered to
prior levels, whereas Apple’s dataset shows a stronger
recovery, and even exceeds 2019 traffic levels in some
cities.

Across the cities considered, neither mobility
dataset performs well at capturing trends in 2020
traffic. Considering the month of April, normalized
mean bias relative to traffic counters of Google mobil-
ity data is —29% and —27% for Apple (figure 1).
Considering the COVID-19 timeframe from March
to December, biases are —28% for Google (R = 0.72)
and +5% for Apple (R = 0.80). While Apple mobil-
ity data exhibits little overall bias, the direction and
magnitude of bias varies largely by month and loca-
tion (figure 1). For Google, the bias is more consistent
throughout the year but varies by location.

While the mobility datasets evaluated here may
not precisely capture the magnitudes of traffic trends,
their value for rapidly understanding the onset of
the pandemic and general traffic trends should not
be underestimated. Mobility datasets are daily estim-
ates, available within a few days at a county-level spa-
tial resolution. With proper calibration of the rela-
tionship between mobility data and traditional traffic
counting and fuel sales data used in bottom-up emis-
sion inventories (Gurney et al 2012, Gately et al
2013, McDonald et al 2014), these datasets could be
improved for future research and air quality forecast-
ing efforts. As an alternative to using mobility data
to estimate COVID-19 emission scaling factors, and
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Figure 2. Ratio of 2020 versus 2019 (a) gasoline and (b) diesel fuel sales by month. The coloured band represents regional
variability at the PADD-level (orange boundaries in panel c). Green error bars in gasoline sales represent variability across states.
Also shown are urban traffic monitoring data (solid black line) averaged across New York City, Atlanta, Los Angeles, and San
Francisco and the sum of interstate traffic nationally (open circle black line). (c) Reduction in on-road CO, emissions in April
2020 versus business-as-usual at 4 km X 4 km resolution and summarized by PADD region.

to facilitate future use of mobility datasets, we next
explore scalings based on monthly fuel sales data.

3.2. Impacts of COVID-19 on gasoline and diesel
fuel sales

Figure 2 shows changes in US gasoline (panel a)
and diesel (panel b) fuel sales, as well as a map
of 2020 BAU on-road CO, emissions with reduc-
tions due to COVID-19 lockdowns by PADD dis-
trict overlaid (panel c). Fuel sales data are de-
seasonalized by representing each month as a fraction
relative to the same month in 2019. Under BAU
conditions, on-road traffic peaks in summer and
is lower in winter (McDonald et al 2014), so a
de-seasonalized trend better portrays how COVID-
19 lockdowns impact transportation. The coloured
uncertainty bands reflect regional variability at a
PADD level. Although fuel sales trends are similar
across PADDs (figures 2(a) and (b)), variations in
the fraction of total on-road fuel consumed as diesel
result in on-road CO; reductions (figure 2(c)) that
are 35% larger in the most affected PADD than the
least affected PADD (PADD scaling factors included
in table S7). The PADD district to state-level down-
scaling we apply to on-road LD activity (appendix S1)

suggests even greater variability in fuel sales when
examined by state rather than by region (green error
bars shown in figure 2(a), table S8).

Overall, we estimate US states experienced
25%-51% decreases in gasoline sales in April 2020,
relative to April 2019. Traffic and fuel sales both
decrease in March and reach a minimum in April
as lockdown measures go into effect (figure 2(a)).
Public health policies surrounding the reopening of
states have been staggered and vary by state, but in
both traffic and fuel sales we observe that most of
the recovery occurs in May and June. Traffic recovery
then plateaus and remains below normal through-
out July and August. By July, we estimate gasoline
sales decreased 1%—15% across states, relative to 2019
levels.

We also compare gasoline fuel sales trends with
LD traffic trends from publicly available embedded
traffic counters at urban and national scales. The
urban locations included are the same as in figure 1.
Generally, we observe that both urban only and
national LD traffic on interstates follow a similar
trend throughout 2020, which also follow the gasoline
fuel sales trend line (figure 2(a)). In contrast, diesel
sales follow a different monthly pattern through-
out 2020 (figure 2(b)). In April 2020, diesel sales
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decreased by 4%-17% relative to 2019. Urban HD
traffic has a greater decrease in April 2020 (—30%)
than national interstate HD traffic (—16%) by a
factor of ~2, a difference not apparent in LD traffic.
This suggests that intra-city HD truck traffic was
impacted greater than interstate goods movement.
We provide COVID-19 inventory scaling factors for
LD/HD traffic separated by urban and rural regions
in table S8 (see appendix S1 for methodology).
State-level on-road gasoline fuel scalings are plot-
ted for the four cities in figure 1. The April fuel
scalings we develop exhibit less normalized mean
bias relative to monthly averaged traffic counting
data (4+12%) than monthly averaged mobility data
(—29%, Google; —27%, Apple). Between March
and December, bias in our fuel scalings is +8%,
which outperforms Google mobility (—28%). Bias
in Apple’s dataset is smaller (+5%) due to offset-
ting directions in the bias throughout the year across
locations. Over the same timeframe, our fuel scal-
ings have lower normalized mean absolute error
(NMAE = 0.09) compared to either mobility data-
set (NMAE = 0.28, Google; NMAE = 0.17, Apple).
Fuel scalings also correlate with traffic counters
(R = 0.90) better than for mobility data (R = 0.72,
Google; R = 0.80, Apple). While a state-level fuel-
based method has reasonable bias and correlation
with respect to traffic counters, a positive bias in
each city suggests our fuel-based scaling may slightly
overestimate urban traffic throughout 2020. Further
research is needed to separate urban and city-level
variations in traffic from state-level variations, such as
top-down emissions estimate techniques using high-
spatial resolution satellite data (e.g. TROPOMI).

3.3. Evaluating changes in traffic speed, and
diurnal and day-of-week traffic patterns

Traffic volume reductions in 2020 likely impacted
speed patterns, which affect vehicle fuel consump-
tion rates. We investigate this by looking at highway
speeds in several locations. In Los Angeles, the aver-
age highway speed increased +17% (84 km h™! to
98 km h™') in April 2020 versus April 2019. Similar
trends are found in San Francisco (+18%, 87 km h™!
to 103 km h™!) and Atlanta (+21%, 89 km h~!
to 108 km h™!). Throughout the rest of the 2020,
highway speed increases averaged +10%, +16% and
+9% for Los Angeles, San Francisco, and Atlanta,
respectively. While a reduction in stop-and-go con-
gestion improves fuel economy, high speed driving
exceeding 90 km h™! also degrades fuel economy
and could offset fuel economy gains from reduced
congestion (Davis and Boundy 2021). While spatially
resolved speed information could help improve our
bottom-up emissions inventory at finer spatial scales,
at coarser resolutions (e.g. state-level), fuel sales data
reflect the combined effect of changes in the amount
of driving and in fuel economy. For co-emitted
air pollutants, fuel-based emission factors are much
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less sensitive to changes in speed and engine load-
ing in comparison to activity-based emission factors
(i.e. g km~!) (Bishop and Stedman 2008, McDonald
et al 2013, McDonald et al 2018a). This implies that
reductions in fuel use also translate to similar reduc-
tions in co-emitted air pollutants.

When examining changes to weekday passen-
ger diurnal traffic patterns throughout 2020 versus
2017-19, we find insignificant changes during morn-
ing (5-9 AM) and evening (2-6 PM) rush hours,
by +1% and +6%, respectively (figure S3). Daytime
truck traffic (6 AM—6 PM) in April also changes
insignificantly by +4% (figure S4). For LD and HD
vehicles, weekday traffic saw minor increases while
weekend traffic saw minor decreases (figure S5). In
the months following April, the magnitude of these
deviations decreases. Traffic monitoring data aggreg-
ated at a state level, typically has 95% confidence
bounds of £15%-19% (FHWA 2016), meaning that
the changes in day-of-week and diurnal traffic pat-
terns due to COVID-19 are likely not statistically sig-
nificant relative to uncertainties in traffic monitoring
datasets. In general, we find that while the overall level
of traffic changed due to the COVID-19 pandemic,
the timing of traffic was not significantly altered.

3.4. 2020 mobile source emissions

Figure 3 presents a map of COVID-19 changes to
mobile source NO, emissions (panel a) and their
impact on total anthropogenic NO, emissions (panel
b) for the month of April. Non-mobile emissions (e.g.
industry and power plants) are from the NEI 2017
(EPA 2020) and are not adjusted, thus our estimates
of how total anthropogenic emissions have changed
due to COVID-19 should be treated as a lower bound
estimate as other emission sectors have likely been
impacted by the pandemic. The fuel sales data used in
estimating fuel scaling factors include both on-road
and off-road mobile source engines, and we apply
the same fuel scaling factors to both types of engines
at a PADD level. Ambient NO,/CO ratios in 2019
and 2020 are assessed by month (see figure S6 and
appendix S5), a diagnostic previously used to evalu-
ate mobile source emission inventories (Parrish et al
2006, McDonald et al 2013, Hassler et al 2016). For
Los Angeles and New York City, ambient NO,/CO
stayed remarkably similar in 2019 and 2020, suggest-
ing that the mix of gasoline and diesel fuel use has not
changed in urban areas during the COVID-19 pan-
demic though overall activity levels are down.

At a state level, reductions to April NO, emissions
vary between 6% and 39% (figure 3(a)) for mobile
source emissions, which are expected to lower total
anthropogenic emissions by 1%-26% (figure 3(b)).
Summed over the contiguous US during the month
of April, mobile source NO, emissions decreased
20%—-25% (figure S7(a)), which lowers total anthro-
pogenic NO, emissions by 9%—12% (figure 4(c)). The
recovery in emissions reductions is steady throughout
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Figure 3. (a) Percent change in April 2020 versus business-as-usual mobile source NO, emissions only by state. (b) Percent change
in April 2020 versus business-as-usual total NOy emissions resulting from mobile source reductions only. Other non-mobile

May and June but slows in July and beyond, where
emissions remain below normal (figure S8). In July,
NO, reductions are limited to 6%-7% (mobile
sources) and 3%-4% (total), respectively (figures
S7(b) and 4(d)). Overall, we find that 2020 NO,
reductions are greatest for East and West Coast states,
where transportation appears to be more impacted
by public health measures to combat the spread
of COVID-19. Additionally, in many coastal states,
diesel fuel makes up a smaller fraction of on-road fuel
consumption than in central states. For example, in
Wyoming 52% by volume of on-road fuel consump-
tion is diesel whereas only 17% is diesel in Califor-
nia (FHWA 2020b). Diesel consumption was not as
heavily impacted by COVID-19 lockdowns as gasol-
ine (figure 2), which helps to explain the greater relat-
ive decrease in mobile source NO, emissions in Cali-
fornia versus Wyoming.

Lastly, we assess the impact COVID-19 lockdowns
had on emissions in urban areas. In figure 4, we

present a sectoral breakdown of mobile source related
total emissions reductions in urban areas (figures 4(a)
and (b)) and across the contiguous US (figures 4(c)
and (d)) in April and July. Urban is defined by
the US Census Bureau, as >1000 people mi—2 (386
people km~2). In both urban areas and across the
contiguous US, COVID-19 related reductions to
highly impacted pollutants such as CO, NOj, and
NHj;, are generally dominated by on-road and oft-
road gasoline, due to greater reductions in gasol-
ine sales than diesel sales. The impacts on emis-
sions we estimate are also relatively larger in urban
areas than across the whole US (figure 4(c)) or in
rural areas. We estimate that mobile source reduc-
tions lower total urban CO emissions by 25%-35%
and total urban NO, emissions by 18%—-22% in April
(figure 4(a)), which are larger than the 20%-34%
and 9-129%, respectively, reductions seen nationally
(figure 4(c)). By July, total emissions reductions from
mobile sources, as well as the enhanced reductions to
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Figure 4. Percent change in US anthropogenic emissions in April 2020 versus business-as-usual summed across (a) urban and
(b) urban and rural areas. Non-mobile source emission sectors (e.g. industry, power plants, etc) are not adjusted. Error bars
represent uncertainty in fuel consumption and fuel emission factors (table S4) (right column). Same as (left column) except for

urban emissions that we estimate, have greatly dimin-
ished (figures 4(b) and (d)).

Keller et al (2020) estimates a ~30% decrease to
NO, emissions in the US in April. The NO, monit-
ors used in their analysis are located predominantly in
urban areas, meaning their estimate may better reflect
urban reductions than total US reductions. Adjust-
ing mobile sources alone (67% of urban NO, emis-
sions), we estimate an 18%-22% decrease to urban
NOy emissions, similar to Keller et al. If we accoun-
ted for COVID-19 impacts for other sources of NO,
(e.g. industry), then it is possible that the inventory-
observation agreement could be closer. Our urban
reduction estimate (figures 4(a) and (b)) is also com-
parable to the decreases in tropospheric column NO,
observed by TROPOMI over US cities, when meteor-
ology and seasonality are accounted for (Goldberg
et al 2020). Specifically, we estimate reductions of
17%, 30%, and 35%, for New York City, Atlanta,
and Los Angeles, respectively, compared to the mean
decreases reported by Goldberg et al (2020) of 20%,
27%, and 33%.

Finally, our estimate of maximum change to on-
road CO, emissions (—31%, figure S7(c)) is not-
ably less than estimates by Doumbia et al (2021),
Forster et al (2020), and Liu et al (2020) (—40%,
—45% and —50% respectively), which is likely
due to using the fuel-based, rather than mobility-
based, method presented here. While these stud-
ies do not separate LD and HD traffic trends,
their on-road CO, emission scalings can be applied

to on-road NO, emissions, resulting in a mean
mobility-based estimate of US on-road NO, reduc-
tions of 45% in April. These mobility-based reduc-
tion estimates are twice as large for US on-road
NO, emissions in April compared to our fuel-based
method (22%, figure S7(c)), which demonstrates
both the importance of separating LD and HD
trends and the need for calibrating the relationship
between mobility datasets and traffic when scaling
emissions.

4. Conclusions

In this work we present an analysis of COVID-19
mobility datasets against highway traffic monitoring.
As an alternative to using COVID-19 mobility data-
sets, we demonstrate that a fuel-based method is also
capable of updating US mobile source emissions on a
near real-time basis, with results that better approx-
imate traffic trends. An advantage of a fuel-based
approach is the separate accounting of gasoline and
diesel engines. The gridded FIVE emissions inventory
is presented for January through December for a BAU
and COVID-19 perturbed case of 2020 and made
available online (Harkins et al 2021). The invent-
ory files are monthly and those who use the data for
chemical transport modelling should note the limita-
tions of monthly estimates when modelling a period
of rapidly changing emissions. This is particularly
true for March 2020, where monthly estimates can-
not capture the rapid drop in emissions.
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We estimate that 2020 US mobile source NO,
emissions were at a minimum in April, causing total
anthropogenic emissions to decrease by 9%—-12%.
Based on fuel sales and traffic monitoring, US mobile
source NO, emissions have recovered from April and
are close to BAU emission levels by July (lowers total
anthropogenic NOy emissions by 3%-4%). Addition-
ally, while mobile source fuel consumption occurs
primarily by on-road engines, off-road sources are
important contributors to CO, NO,, and VOCs, and
their emissions also need to be considered. Finally,
this study suggests that mobility-based on-road emis-
sions scaling factors may overestimate emissions
reductions when compared to fuel-based methods.
We suggest fuel-based methods as a means for cal-
ibrating the relationship between mobility and emis-
sions, for use in areas where fuel consumption data
are not broadly or rapidly available. While the focus
of this study is on how mobile source emissions have
changed in the US due to the COVID-19 pandemic,
future work will include developing COVID-19 scal-
ing factors for non-mobile source sectors, such as
industry, power generation, and consumer products.
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