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The distinct behavior of structures of noble metals with nano-dimensions from that of the

bulk metal in visible electromagnetic spectrum has provided access to exquisite characteristics and

applications in the field of plasmonics. Plasmonics is a field of study of the interfaces of such metals

and dielectrics. Embedding nanoparticles of noble metals in dielectric materials to achieve and tune

plasmonic features to regions of spectrum, where naturally available materials do not exhibit such

phenomenon, has been a subject of great attention for researchers.

In this thesis, I present the design and fabrication of coatings composed of thin metal and

dielectric layers as a solution to tune the plasmonic features to other visible wavelengths and to

near infrared regions and vary the optical properties of the coatings. Pushing down the limits on

thickness of the layers far below the subwavelength dimensions has become a necessity to able to

tune the plasmonic properties into the near infrared spectrum and beyond. This necessity has forced

us to closely study the effects of roughness and continuity of the layers. These effects of pushing

the layers to thinner dimensions on the optical properties will be presented and discussed with the

aid of topographical nanoscopy images. Theoretical computations of transmission spectra of these

coatings are accomplished using Maxwell Garnett approximation and a comparison with empirical

results is presented.

First thin film flat layers are demonstrated to show the passive tuning of dielectric function,

while supporting them with experimental results and theoretical simulations. In later part, thickness

of the metal layers is decreased to limits where the effects of roughness and continuity of layers play

a substantial role. The surfaces of layers are characterized in detail. A new efficient statistical model

is developed that is built on the distribution of size and shapes of particles involved in percolation.

This model is used to study the tuning abilities of these layers.
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Chapter 1

Introduction

In recent years, a huge deal of work is being put into developing materials that have negative

dielectric function with very low absorption. Plasmonics is a field in which metal dielectric interfaces

are studied [1, 2, 3, 4]. Low loss is a very significant factor that needs to be conquered to be able to

use these materials in any application. Until couple of years, this absorption has been a very critical

issue and would completely dominate any plasmon features. If the loss of plasmonic structures

at visible wavelength scales can be kept under control through judicial design, a new generation

of ultra thin optical components will result. Such promise has generated considerable interest in

development and applications of plasmonic materials. Most of this thesis is focused on designing,

simulating and fabricating materials with plasmonic properties in optical and near infrared spectrum

and have low absorption. These materials are not naturally available. They are in general fabricated

by embedding metal nanoparticles with different sizes, shapes and concentration in a range of

dielectric materials by capitalizing on the phenomenon that a wave sees a heterogeneous medium as

homogeneous medium if the elements causing the heterogeneity are smaller than the wavelength of

electromagnetic wave. Changing the shape or fraction of the metal nanoparticles results in a change

in the positions of resonances in the electromagnetic spectrum. This development is exploited to

tune the plasmon wavelength in visible and near-IR (and in near future to mid IR too) regions of

electromagnetic spectrum. These mixtures can be modeled through constitutive equations while

conceding the averages of statistical variations of the elements in the material.

The main emphasis of this work is to demonstrate the sucsess of multilayered coatings for
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achieving precise tuning of plasmonic behavior. In this process, it was very important to study the

surface morphology of the layers of metals and dielectrics. This criticality of surface morphology

is because the optical properties derive significant characteristics from the structure of layers. I

show how these fabrication limitations result in bahaviour favourable in more than one direction of

applications. Being able to simulate the consequences of surface irregularities on the scattering is

advantageous for the design of any layer based devices (like surface plasmon polariton waveguides)

and materials.

The outline of the thesis is as follows. In this chapter, I start with the definitions and

relationships between optical properties of the materials and electromagnetic fields. In Chapter 2, I

review the effective medium approximation technique used as applied to disordered metal structures

of different shapes embedded in dielectric materials and the shortcomings of the methods, while

supporting them with simulations. Chapter 3 presents characterization of surfaces of thin layers

as the thickness of the deposited metal decreases establishing a theoretical model to relate optical

properties with topology of surface. In Chapter 4, I compare theoretical and experimental results

for thick and thin layers.

1.1 Electromagnetic Field and Optical Constants

When an Electromagnetic wave is applied to a dielectric material, the electron cloud and the

nucleus in an atom act like a dipole and the dipole oscillates along with the wave, resulting in a

dipole moment. The forces exerted by the field produce a polarization,

P = ε0χ̂E (1.1)

Where, P is the polarization vector andE is the applied electric field vector. χ̂ is susceptibility

tensor. For an isotropic material it would be a scalar. ε0 is the free space or vacuum permittivity

and is 8.852 ∗ 10−12 F/m.

Electric displacement D is related to E by

D = ε0E + P (1.2)
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D = ε0ε̂rE (1.3)

ε̂r is the relative permittivity tensor or dielectric function and ε̂r = 1 + χ̂.

Similarly, the response to a magnetic field B can be defined in terms of magnetization M and

relative permeability tensor µ̂r.

B = M + H (1.4)

B = µ0µ̂rH (1.5)

µ̂r = 1 + χ̂m

χ̂m is the magnetic susceptibility and free space permeability µ0 = 4π ∗ 10−7H/m.

The combined effect of electric and magnetic fields in an isotropic material are described by

Maxwell’s equation, given below

∇× B = J +
dD

dt
(1.6)

∇× E = −dB
dt

(1.7)

∇.E =
ρ

ε0
(1.8)

∇.B = 0 (1.9)

In absence of free sources and charges, Maxwells equations reduce to

∇X B =
dD

dt
(1.10)

∇X E = −dB
dt

(1.11)

∇.E = 0 (1.12)

∇.B = 0 (1.13)

Wave Equation given below in Eq.1.14 is a solution to Eq. 1.10 -1.13.

d2E

dx2
=

1

µ0µrε0εr

d2E

dt2
(1.14)
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The multiplication constant on right hand side is the phase velocity, v2 = 1
µ0µrε0εr

and the

speed of light in free space is given as c = 1√
µ0ε0

= 3 ∗ 108 m/s. Thus, v = 1√
µrεr

c = c
n . Where,

n =
√
µrεr is the refractive index of the material. At optical frequencies, µr = 1, concluding

n =
√
εr (1.15)

Refractive index is a measure of the behavior of the wave in a given medium whereas, relative

dielectric function is a measure of the behavior of the medium when illuminated by an electric field.

Refractive index can be purely real or complex based on the type of material. For absorptive

materials like metals, doped semiconductors that contain free charges, refractive index is complex

and is denoted as,

ñ = n+ ik (1.16)

The real part, n gives the direction of the wave when it travels from one medium to other

(Fig. 1.1)and the relation is given by Snell’s law,

n1sinθ1 = n2sinθ2 (1.17)

where n1 and n2 are the real parts of refractive indices and θ1 and θ2 are the angles made by

the wave with the normal to the interface in the incident and exiting media respectively.

Figure 1.1: Snell’s law gives the direction of transmitted wave in a medium on which a plane wave is

incident. The direction of wave in second medium is dependent on the refractive indices on incident

and refractive media and the angle of incidence in first medium.
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Imaginary part k is called the extinction coefficient, a measure of the losses like absorption

and scattering in the materials. It is related to absorption coefficient by,

α =
4πk

λ
(1.18)

ñ as a whole is responsible for the direction and fraction of wave that are transmitted, re-

flected and absorbed. In a similar way, dielectric function is also a complex number for conducting

materials. Dielectric function of metal is a key factor for the design and optimization of plasmonic

nanostructures. It is a quantization of behavior of a material on application of an electric field. The

resistance offered by a medium to an electric field is quantified by ε̂r. It is a complex tensor for

anisotropic lossy medium and reduces to a complex scalar εr for isotropic lossy medium. It varies

with frequency for most materials, which is why materials behave differently to different kind of

illumination. This frequency dependence reflects the fact that a material’s polarization does not

respond instantaneously to an applied field. The response must always be causal which can be

represented by a phase difference.

ε̃r = ε
′
+ iε

′′

From Eq 1.15 and 1.16, the relation between refractive index and dielectric function concludes

in

ε
′

= n2 − k2

ε
′′

= 2nk (1.19)

n =
1√
2

√
ε′ +

√
ε′2 + ε′′2 (1.20)

k =
1√
2

√
−ε′ +

√
ε′2 + ε′′2 (1.21)

ε
′ is related to stored energy in the medium. ε

′′ is related to dissipation of energy in the

medium, and is negative for a gain medium and positive for lossy medium. ε̃r and ñr satisfy

Kramers-Kronig relation between their real and imaginary parts, which will be discussed in one of

the subsequent sections.
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1.2 Properties and Applications of Plasmonic Materials

Plasma is a gas of ions and electrons. Metals and doped semiconductors are composed of equal

quantities of ions and mobile conduction electrons and they behave like plasma. Plasmonics is a

field in which the metal-dielectric boundaries are studied. Plasmonic materials exploit the charges

accumulated at metal-dielectric interfaces on application of an electric field i.e. surfaces plasmons.

The free charges in metals do not experience any restoring force when an electromagnetic field is

applied. Plasma frequency ωp is the frequency at which the real part of dielectric function of the

material goes to zero. For noble metals like silver, gold, copper etc., ωp is in the visible regions of the

spectrum. For ω > ωp, ε
′ is positive and for ω < ωp , ε′ is negative. This negativity of the epsilon

and position of ωp are the reasons for the reflective appearance (Fig. 1.3) and the distinct colors

of noble metals in visible spectrum. When ε′ goes to zero, ε′′ , which is proportional to absorption

coefficient, dominates. At ωp, oscillations of plasma take place. These oscillations are longitudinal,

that is the electric field is in the same direction as the wave direction. This happens whenever ε′

goes to zero. The material is said to be plasmonic when the |ε′| > ε′′. This behavior starts beyond

plasma wavelength and lasts till collision frequency corresponding to collision wavelength,λc (listed

in Table1.1).
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Figure 1.2: The wavelength at which real part of dielectric function crosses zero is called plasma

frequency. Beyond this wavelength ε′ is negative and till collision wavelength,λr |ε′| > ε′′. Between

λp and λr metals are plasmonic.
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Figure 1.3: This picture depicts reflection of silver. This is an example of reflection of metals tending

to unity beyond plasma wavelength (138nm) till the collision wavelength (69µm).

Low values for ε′′ where ε′ = 0 result in condition called epsilon near zero (ENZ). These

materials are naturally available at limited wavelengths. So a combination of materials are used to

achieve this phenomenon at wavelengths other than that are naturally available. This phenomenon
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has been theoretically and experimentally tested for a number of applications[5, 6]. One of the

applications is termed supercoupling [7], where a wave is guided successfully through narrow waveg-

uides with arbitrary shapes which would have been very lossy if filled with a dielectric. The shift of

plasmon absorption peaks are used to detect different types of molecules and proteins like Casein

in milk [8], for transmitting data in processor chips [9], for plasmon based electronics like transis-

tors, photodetectors [10]. Plasmons have also been successfully tested in lab for high resolution

lithography and microscopy [11]. Embedding materials with magnetic resonances [12] into the ENZ

materials results in zero index materials (ZIM), also known as metamaterials or left hand materials

[13, 14]. The term left handed materials comes from the phenomenon that the light is refracted in

the opposite direction than the usual right handed materials. In addition to being the most popular

solution for the problem of reducing scattering from an object also called as cloaking [15, 16, 17, 18]

and for achieving transparency [19], ZIM materials have found applications in near field superlens

[20, 21, 22], in shaping the phase front of radiation [23, 24, 25]and directive emission [26].

1.3 Models for Dielectric Function of the Silver

The optical properties of metal particles are exceptionally different from that of bulk metal.

Silver is studied in detail in this section owing to it’s unique properties at visible frequencies. Silver

particles that are small compared to the operating wavelength have very different behavior ftrom

silver [27, 28, 29, 30]. The dielectric function of silver is dispersive i.e. it has different values as

wavelengths varies. Silver has the lowest losses in the visible range Fig.1.5. Nanoparticles of silver

exhibit plasmonic behavior. Different sets of dielectric function values and models for silver are

available in literature. Some of them derived from experiments and others are based on oscillator

models. As part of this behavior, the colors in stained glasses due to gold particles embedded

in it was first investigated by Maxwell Garnett in 1904 and scattering from small particles was

examined by Gustav Mie in 1908 [31] . Unlike dielectrics, metals like silver, gold, copper, etc. have

dispersive optical properties, that is, the optical properties are highly dependent on wavelength.

Optical properties of metals have been explicitly modeled. Two most extensively used models are
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discussed below.

1.3.1 Drude Model

Drude model [32, 33]is the most used classical model for metals which has fairly good agree-

ment with experimental deductions of dielectric functions in most of visible and near IR regions.

Near the plasmon frequencies, it is not very accurate. For instance, the plasmon wavelength for

gold is at 410 nm but Drude model predicts it to be at 138 nm, similarly for silver the plasmon

wavelength prediction of Drude model is at 138 nm but experiments show it to be at 320 nm. This

contradiction from Drude model to experimental results is due to the transitions from filled d band

to sp conduction band.

The ionized atom and the free electron cloud in metals act like a dipole oscillator on application

of an electromagnetic field. This behavior allows one to apply the Lorentz-Drude model to describe

the optical properties of metals. The displacement of the atomic dipole is modeled as damped

harmonic oscillators. The nucleus is far heavier than the electrons, so the motion of nucleus is

ignored. The equation of motion of electron when an electric field E is applied is given as,

m0
d2x

dt2
+m0γ

dx

dt
+m0ω

2
0x = −eE (1.22)

where x, m0, γ, e, and ω0, are the displacement, mass, damping rate, charge and resonance

frequency of the electron, respectively. Damping accounts for the collision of electrons with elec-

trons, phonons, and lattice defects or grains boundaries. The terms on the left hand side are the

acceleration, damping and restoring force, respectively. Since the restoring force on free charges is

zero, the third term vanishes. Considering a monochromatic light applied, E(t) = E0e−iωt, we would

have solutions for displacement of the form X(t) = X0e
−iωt, which gives us

X0 =
eE0/m0

ω2 + iγω

The dipole moment due to the atomic dipole is p(t) = ex , which results in a macroscopic
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polarization for N number of atoms per unit volume, Presonance = Np = −Nex.

Presonance = − Ne2E

m0(ω2 + iγω)

Due to this polarization term, Eq. 1.2 is modified to D = ε0E + Presonance while D = ε0εrE

still holds good. Thus the expression for relative dielectric function tensor

ε̂r(ω) = 1− Ne2

ε0m0(ω2 + iγω)

and we can define plasma frequency using this equation as

ω2
p =

Ne2

ε0m0
(1.23)

ε̂r(ω) = 1−
ω2
p

(ω2 + iγω)
(1.24)

ωp is the plasma frequency. ε′ = 0. γ is the factor that causes damping and broadening of

resonance. This value corresponds to collision frequency. The values for parameters of Drude model

for some metals are enlisted in Table 1.1.

Drude model correctly predicts the qualitative shape of ε, and therefore produce fits with a

relatively high degree of accuracy with a small number of free parameters. This model also obeys

the Kramers-Kronig relations which constrain the relationship between ε′ and ε′′. But discrepancies

have been found in values of ωp from values that were measured, as explained in the next section,

otherwise the values at non-resonant frequencies agree well with experimental results. This is

because interband transitions are not considered in Drude model.

Table 1.1: The parameters for Drude Model of some metals.

Metal Plasmon Wavelength (λp) in µm Damping factor (γ) in µm

Silver (Ag) 0.138 69

Gold (Au) 0.13738 46.442

Aluminum(Al) 0.08406 15.15

Copper(Cu) 0.1677943 136.64

Platinum(Pt) 0.2410107 17.9
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1.3.2 Kramers-Kronig Relation

Kramers-Kronig relation is a property connecting the real and imaginary parts of an analytic

function. Because refractive index and permittivity are causal functions we can apply Kramers-

Kronig relationship to calculate n from k and vice-versa and in the same way ε′ from ε′′ and

vice-versa [34].

n(ω) = 1 +
1

π
P

∞∫
−∞

k(ω′)

ω′ − ω
dω′

k(ω) = − 1

π
P

∞∫
−∞

n(ω′)− 1

ω′ − ω
dω′

where P is the Cauchy principal value. A similar relation can be obtained for permittivity by

replacing n by ε′ and k by ε′′. This is a very useful relation when inverting the optical properties

from measured transmission and reflection spectra.

1.3.3 Johnson and Christy ε Values for noble metals
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Drude−Imag(Eps)
J&C−Real(Eps)
J&C−Imag(Eps)

Figure 1.4: A comparison of ε of silver as a function of wavelength given by Drude model and

Johnson and Christy. Clearly expect around λpthese values overlap well but the prediction of λp by

Drude model (138nm) is way off from experimentally determined J&C values (310nm).
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Figure 1.5: Comparing dielectric function of copper, gold and silver which exhibit plasmonic nature
as a function of wavelength. For a wide range of wavelengths, the imaginary part of dielectric
function is very low compared to other metals while the real part is almost identical.

In 1972, Johnson and Christy published their results for ε for silver, gold and copper inverted

from experimental results [35]. Transmission and reflection spectra were measured at three different

angles. ε were derived from these values. These values are found to be accurate to a reasonable

degree when compared to results from more recent listings like [36, 37], though, there are still

conflicts between these values, more so in the imaginary parts. The reasons for the conflict could

be the surface roughness, resistivity of the layer and the substrate. These reasons will be studied

further in chapter 3. Even more recent studies on silver have confirmed better accuracy of Johnson

and Christy values [38]. The values of plasma wavelength has also been found to be in agreement

with several publications. I used values from Johnson and Christy in wavelength range of 300 nm

to 1900 nm, in this work. Fig. 1.5 plots the dielectric function of silver, gold and copper derived

by Johnson and Christy. As we see the real part of ε of the three metals have almost the same

behaviour in visible and infrared regimes. But silver has imaginary part that is much smaller than

other metals. These low values for ε′′ result in lower attentuation making silver suitable for many

applications in plasmonics field.



Chapter 2

Effective Medium Approximation

2.1 Introduction

Composites of nano-particulates of plasmonic metals and dielectric hosts are widely used to

artificially develop metamaterials. When dimensions of the inclusions are in subwavelength range,

the inhomogeneous medium acts like a homogeneous and anisotropic medium. Effective medium

theory describes the macroscopic properties of the mixtures based on the properties of the host

and inclusions’ properties and their relative fractions. To predict the effective optical properties of

these composites there are classical mixing rules like Maxwell Garnett (MG), Lord Rayleigh and

Bruggeman (BG) approximations available [39, 40, 41, 42, 43, 44]. Depending on the concentration

and shape of the nanoparticles, these approximations result in effective permittivity. Though, there

are other mixing methods available, involvement of a negative permittivity material rules their

choice out due to surface plasmons [45]. Most of these theories fail to characterize the behavior

close to a threshold value of the filling fraction where the inclusions are not isolated but are in

contact in a critical fashion. In this chapter, I discuss BG and MG methods, their threshold values

and their limitations. I will establish shape effects of nano-structures, shperoids in particular and

present finite element method simulations for the resonance features for more random particles.

2.2 Bruggeman Approximation

Derivation of Bruggeman approximation starts by introducing voids of identical shape and

size in a uniform medium. The change in conductivity due to these defects are summed. A different



14

kind of material is introduced into these voids. The polarization inside this void produces a change

in field E0 at the far field. An exact field around the particle is solved for and condition that

the change in field is averaged out by the polarizations from the the two materials. This self-

consistent requirement is solved for, to find the effective medium properties. Thus if we consider a

host dielectric medium with dielectric function εd (that is constant over visible and near infrared

wavelengths) and let there be identical metal nano particle inclusions of permittivity εm which are

a fraction φ of the total volume and are oriented in same the direction. Bruggeman approximation

for this biphase case gives the relation for εeff [46] of the composite as

φ
εm − εeff

Lεm + (1− L)εeff
+ (1− φ)

εd − εeff
Lεd + (1− L)εeff

= 0 (2.1)

For mixtures involving more than two components with same shape but different fill fractions,

∑
φi

εi − εeff
Lεi + (1− L)εeff

= 0

Where L is the depolarization factor of the inclusions which will be discussed in detail in the

forthcoming sections. For spherical inclusions (L = 1/3), BG approximation is,

φ
εm − εeff
εm + 2εeff

+ (1− φ)
εd − εeff
εd + 2εeff

= 0 (2.2)

These comparisons of BG approximations [47] with numerical simulations using finite element

method (FEM) indicate that BG is a good method to use in the high inclusion fraction limit, that

is φ → 1. The region where it gives nearly accurate results is φ > 0.5 in which the inclusions are

not separated but are in contact with each other. Maxwell Garnett model, discussed in next section

has been found to be more accurate in low metal fraction cases.

2.3 Maxwell Garnett Approximation

J. C. Maxwell Garnett was the one of the first researchers to study effects of inclusion in

a host medium in a quest to understand the red color of ruby caused by spherical gold particles

(that are small compared to the wavelength) and propose a model for effective permittivity [48, 49].
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MG Approximation is the most widely used effective medium approximation. Maxwell studied and

derived a model for spherical inclusions in a host medium based on propagating waves.

εeff − εm
εeff + 2εm

= φ
εd − εm
εd + 2εm

(2.3)

This model inherently addresses the effects of the fraction of metal volumes and the interaction

between adjacent particles, as it is derived from Clausius-Mossotti [50] which was based on Lorentz-

Lorentz equation [51], which included the polarization effects from neighboring particles too. The

significant feature of this approximation is the resonance that is predicted as the denominator of right

hand side goes to zero. ε′ never goes negative after the resonance and in the resonance regions where

ε′ does go negative, ε′′ has an absorption peak, making the plasmonic region almost non existant.

This resonance is dependent on the fill fraction of metal inclusions. As the filling factor increases,

the resonance shifts to red and gets broader (Fig. 2.1). From simulations shown in Fig. 2.1, it is

clear that the spectral range over which this resonance can be tuned using clusters of nanospheres is

limited, dismissing all the proposals to use them for tuning this resonance to near-IR regions. This

again fails the usage of clusters of nano-spheres for plasmonic applications. Acheiving high fractions

of metal nano spheres without agglomeration is a hard task. A maximum of only 70% only has

been obtained in laboratories. Even if high filling factors were achieved without agglomerations, λp

can be tuned only in a limited spectra. The solution I demonstrate with metal-dielectric thin films

is much more efficient, practical and simpler process.
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Figure 2.1: Resonances of clusters of nanosphere embedded in a host medium of PI − 2555. The

fill fraction of spheres is varied to notice that the resonance shifts to red and gets broader.
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The approximation Eq. 2.2 did not address for inclusiond that are spherically non-symmetric

which we often come across in this study. An extension to the method proposed by Maxwell Garnett

to non-spherical particle inclusions was published by Galeener in 1971[52], taking into consideration

the depolarization factor L [53, 39], a shape dependent and size independent parameter [54]. But

they assumed a spherical Lorentz cavity and were proved wrong by Cohen et al. [55]. Cohen et

al. corrected the Lorentz cavity to be of the shape of the particle hence using same depolarization

factor for calculating effective field as that appears in the response of ellipsoidal region to an applied

field. This is apparent as the electric field at the point of observation is due to the lowering of field

by the polarized volume. The following was the result,

εeff − εm
L εeff + (1− L) εm

= φ
εd − εm

L εd + (1− L) εm
(2.4)

where φ is the fraction of metal inclusions, εd, εm are the permittivity of the metal inclusions

and host dielectric, respectively. Depolarization factor L is discussed in detail in section 2.4. When

L = 1/3, the case of spherical particles is obtained. This MG model is good only when all particles

are of same shape, if there is a statistical distribution, MG does not hold good. In subsequent

chapter, a novel method taking into account these distributions is presented. Cohen et al. [55]

compared the results from the above dielectric theory and figured out that it’s validity is limited to

a threshold φ < 0.6. This threshold value itself has been studied and varied results were published

ranging from 0.5 to 0.7 [55, 56]. As long as the particles are separated MG is valid and this decides

the threshold value. Thus even if high fill fractions were involved, as long as the particles are well

separated MG is valid. To accomplish this nanoparticles of metals are coated with surfactants like

Tween 20 for gold particles and SiO2 for silver particles. Over this threshold value, the extended

Maxwell Garnett theory ceases to agree with measurements. The effective dielectric function is

given as,

εeff (λ;L) = εd(λ)
(εm(λ)− εd(λ) (φ+ L(1− φ)) + εd(λ)

L(εm(λ)− εd(λ)) (1− φ) + εd(λ)
(2.5)
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All the dielectric functions are being represented as a function of λ to emphasize that effective

permittivity depends on wavelength too. The resonance wavelength for the effective medium can

be obtained by equating the denominator to zero, L(εm(λ) − εd(λ) (1 − φ) + εd(λ) = 0. Hence,

for a given host material embedded with metal inclusions, the value of ε at which we would see a

resonance depends on the fraction of metal and shape of the particle.

εm(λ) = εd(λ)
L(1− φ)− 1

L(1− φ)
(2.6)

By considering εd to be constant over the spectrum of interest, if we map εm to Drude model,

we can find an approximate resonance wavelength for the composite,

λdr =

(
(1 + φεd)λ

2
pλ

2
0

λ20 − (1 + φεd)λ2p

)1/2

(2.7)

2.4 Depolarization Factor

Consider an ellipsoidal particle embedded in an electric field. Due to the small size of the

particle, the induced dipole field that forms inside it on application of an external field is uniform.

This induced field is due to the uniform polarization in the particle and it tends to oppose the

applied field and thus this field is called depolarization field. This causes a depreciation of effective

field outside the particle. Thus the effective field acting on the dipole is E + L̂P/ε0. It is a measure

of the ratio of the induced electric field due to surface charges on the particle to the polarization

of the material. It is a factor strongly dependent on the shape and orientation of the particle. In

Cartesian coordinates, components of depolarization field, P can be represented as Px, Py and Pz

along the principle axes of the ellipsoid and can be written as,

Ex = −LxPx/ε0 Ey = −LyPy/ε0 Ez = −LzPz/ε0

Lx, Ly and Lz are the depolarization factors [53] in the respective directions and satisfy Lx +Ly +

Lz = 1 and 0 ≤ Lx,y,z ≤ 1. For a random shaped particle or if the axes of the ellipsoid does not

align with the coordinate axes, L̂ is a more involved tensor.
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For an ellipsoidal particle, L is dependent on the ratio of its major to minor axis. In this case,

Lx,y,z are the principle elements and are given by,

Lx =
abc

2

∞∫
0

ds

(s+ a2)Rs
(2.8)

Ly =
abc

2

∞∫
0

ds

(s+ b2)Rs
(2.9)

Lz =
abc

2

∞∫
0

ds

(s+ c2)Rs
(2.10)

Where s =
√

(a2 + b2 + c2). From the above equations we can conclude that if a > b > c, we have

Lx < Ly < Lz. So, depolarization factor is strongly dependent on the symmetry of the particle.

Oblate and prolate spheroids are most useful ellipsoids. For an oblate nanospheroid with semi

axes (a, b, c) in (x, y, z) directions and a = b, b > c , the depolarization factors satisfy [53], Lx =

Ly = 1/2(1− Lz). Lz in this case is a function of the eccentricity of the spheroid, e =
√
b2/c2 − 1

and is given as,

Lz =
1 + e2

e3

[
e− tan−1e

]
(2.11)

For a prolate nanospheroid with semi axes (a, b, c) in (x, y, z) directions and a = b, c > b, the

depolarization factors satisfy [53], Lz = (1 − 2Lx). Lx is a function of the eccentricity, e =√
1− b2/a2 and is given as,

Lx = Ly =
1− e2

2e3

[
log

(
1 + e

1− e

)
− 2e

]
(2.12)

When the ellipsoids are randomly oriented in the given mixture, the effective dielectric function

is given by [57]

εeff (λ) =
1

3

∑
i=x,y,z

εeff (λ;Li) (2.13)

where εeff (λ;L) is given by Eq. 2.5 or Eq. 2.1.

L is related to structural electromagnetic resonance. Fig. 2.2 shows some simulations of these

resonances and depolarization factors for oblate and prolate nanospheroids that are embedded in

PI − 2555 host medium with a fill fraction of 0.5. Fig.2.2(a) displays how the depolarization factor
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changes with the aspect ratio of the spheroid. Fig. 2.2(b) is a plot of resonances for different

aspect ratios. In relation to these ratios, Fig. 2.2(c) displays the actual effective permittivity of

the homogenized medium, for cases of spheres and oblate spheroids with different depolarization

factors. We can see for a sphere there is one resonance and as we deviate from this spherical

symmetry, the resonances split and shift to different wavelengths. These effective permittivities are

used to plot transmission for a layer of this mixture, Fig. 2.2(d). Sphere due to its symmetry has

Lx = Ly = Lz = 1/3 and hence has one resonance, it is illustrated in 2.2(c) for a silver particle,

starting with a spherical shape. As the shape deviates from this spherical symmetry, the resonance

splits up into more number of resonances in the electromagnetic spectrum. As the particle flattens

from a spherical shape to an oblate spheroid, Lz increases (Lx and Lydecrease) until its value reaches

maximum of 1 where the particle is a flat plate for which, Lx = Ly = 0 and Lz = 1. In terms of

structural resonance this can be explained as follows. As the particle flattens from being a sphere

( which has one resonance) to a more flat oblate, the resonance splits and each resonance moves

in opposite directions. One resonance moves to lower wavelengths and another moves to higher

wavelengths until it becomes a flat plate where the lower resonance moves to the material plasma

wavelength and higher reaches the collision wavelength (listed in Table 1.1).

2.4.1 Finite Element Simulations for Resonances

Analytic determination of resonances and depolarization factors for spheroids has been de-

tailed in previous section. But for particles of arbitrary shape, an analytical solution is very tedious.

So best solution is to use numerical methods. In this section, I present one such finite element

method to demonstrate the resonances of particles of various shapes. A quasistatic technique in

line with the method described in [58], combined with finite element method is used to predict the

resonance for particles of different shapes. A similar numerical technique to determine L for more

complex, arbitrary shapes has been discussed in [59]. I used COMSOL Multiphysics to accomplish
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(d)

Figure 2.2: This figure is to demonstrate the change in optical properties of nanospheroid with
changing aspect ratio. The particles are considered to be embedded in PI-2555 host medium. (a)
shows the variation of depolarization factor in lateral and transverse directions with aspect ratio of
the particle. (b) gives the resonance wavelengths for different aspect ratios. (c) shows the actual
dielectric function with shifted resonances for sphere and oblate spheroids. Sphere has aspect ratio of
1 and has one resonance at 550 nm when fill fraction of metal is 0.5, as aspect ratio deviates from 1,
the resonances due to transverse and lateral dimensions separate and shift in opposite directions.(d)
is the transmission of a layer filled with particles shaped as sphere and oblate spheroids with different
aspect ratios.

these simulations in 2D and 3D. Consider a particle with a dispersive dielectric function. A voltage

potential is applied in y−direction. The particle has dimensions smaller than the wavelength, so

that the electric field is uniform across the particle and also that the surface effects are substantial.

For particles with bigger dimensions, the surface effects are relatively feeble. In this approach, the

optical absorption is associated with polariton normal modes.

An electric field is applied in y−direction and periodic boundary conditions to the faces in x−

and z− directions. The surface polarization modes are determined by scanning across the negative

real permittivity, and the corresponding wavelength values are mapped out from the dispersion

relation of the material. A particle with a given shape has a number of strong normal modes that

depend on the symmetry of its shape and thus we would see as many absorption peaks. For instance

sphere has one normal mode and a cube has six. To reinforce on our previous results, we see two

resonances for spheroids that are deformed from spherical symmetry that are shifting in opposite
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directions, as shown in Fig.2.3 and 2.4. To map the resonances to depolarization factor we use

MG Eq.2.5. Depolarization factors thus calculated for a cube are tabulated in Table 2.1. Fig. 2.7

shows the normal modes in a cube. There are more absorption peaks but only six are significantly

strong. As the symmetry of cube is disturbed, more and more resonances appear, some with small

strength adn other with significantly higher strength. The same results are noticed when one of the

dimensions of the cube is increased to make it a cuboid, as shown in Fig. 2.6.

Table 2.1: Depolarization factors and εmvalues at which resonances for a cube occur are tabulated.

These are the strongest resonances. Others are relatively weak.

Depolarization factor,L εm

0.0649 -14.4

0.0746 -12.4

0.0877 -10.4

0.1042 -8.6

0.1163 -7.6

0.1471 -5.8

0.1724 -4.8

0.2174 -3.6
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Figure 2.3: FEM simulation of resonance of a sphere and oblate spheroids. Sphere has one resonance

at εm = −2εd and εd = 1 and oblate spheroid has two resonances shifted that move in opposite

directions as aspect ratio increases.

Figure 2.4: FEM simulation of resonance of a sphere and prolate spheroids. Prolate spheroid has

two resonances shifted that move in opposite directions as aspect ratio increases.
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Figure 2.5: FEM simulation of resonance of a cube. Cube has six normal modes with significant

strength and thus as many resonances.

Figure 2.6: FEM simulation of resonance of a cuboid. Cuboid is a cube with one elongated dimen-

sion. So it has more number of normal modes thus resonances.
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Figure 2.7: Cube has these dominant six normal modes.

2.5 MG for Thin Flat Layers

Maxwell Garnett emerges out to be a very advantageous tool for approximating the effective

medium properties of thin flat layer stacks. When the thickness of layers is significantly smaller

than λ/4, the inhomogeneous stack acts like a homogeneous medium that is highly anisotropic.

As discussed in the earlier section, Lz = 1 for flat plates, that is when incident light is polarized

parallel (TM polarization) [60] to the plane of layers. If the light is polarized perpendicular to the

plane of layers (TE polarized), Lz = 0. In the former case, the stack of layers act like capacitors in

parallel, and the effective permittivity is given as the weighted average of the permittivity values of

the materials of layers in the stack. Hence, if there are two different materials involved, the effective
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dielectric function is,

εeff (λ;L = 1) = φ1 ε1(λ) + φ2 ε2(λ) (2.14)

where φ1,2 are the volume fraction of materials of ε1,2, and φ1 +φ2 = 1. For thin flat layers, relative

thickness is the measure of the φ1,2. We use this particular phenomenon to design and explain the

layered structures with tunabe plasmonic features.

If the stack has layers of n kinds of materials, we can generalize Eq 2.14 and deduce

εeff (λ;L = 1) =
n∑
k=1

φk εk(λ),
n∑
k=1

φk = 1 (2.15)

When the light is polarized perpendicularly to the surface of layers, the stack would act like capac-

itors in series and the effective permittivity is given as

1

εeff (λ;L = 0)
=

φ1
ε1(λ)

+
φ2
ε2(λ)

Comparisons of several simulations, multilayer theory and effective medium theory have shown that

certain conditions need to be satisfied for applying effective medium thoery to thin film stacks.

The main conditions that need to be satisfied in order for effective medium approximations to be

valid is that 1) the optical thickness of each layer is smaller than a quarter of the wavelength of

operation,λ/4 and 2) the period thickness of the layers should also be smaller than λ/4. When these

conditions are not met, then the layered structure is no more a homogeneous medium.

A comparison of transmission calculated using MG and Fresnel’s multilayer theory is demon-

strated in Fig. 2.8 for a stack of layers composed of silver and PI-2555 [9] (refractive index 1.7)

layers. Fresnel’s multilayer theory (A) is an accurate and well accepted method to predict trans-

mission and reflection from thin flat layers. Fig. 2.8(a) shows a comparison of cases when both the

conditions stated above are satisfied. The deviation of MG from multilayer theory is evident in Fig.

2.8(b). The plots with MG-120-5 indicate that the dielectric layer thickness is 120 nm and that of

silver is 5 nm. Here optical thickness of PI-2555 layer exceeds λ thus condition 1 is not satisfied.

In the case of MG-90-5 the period thickness is greater than the λ/4 and demonstrates the need to

have the period thickness smaller than λ/4.
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Figure 2.8: Comparison of MG and ML theory for stack of PI − 2555 and Ag layers: (a) shows

cases where both layer thickness and period thickness are smaller than λ/4, hence multilayer theory

matches well with transmission using MG theory. (b) These are the two cases when MG does not

agree with ML theory. The MG-90-20 is the case where both the layer thicknesses are less than

wavelength but the period thickness is higher than λ/4 and MG-120-5 is when layer thickness of

PI − 2555 exceeds λ/4.



Chapter 3

Characterizations of Thin Films

In the previous chapters it was established that the thicknesses of layers are very critical

formaking plasmonic coatings and that the metal layers need to be made very thin in order to

satisfy the conditions for effective medium approximations. The study of surface quality of thin

films becomes very critical when the thickness of films is very low. If the metal layer is relatively

thick (>15 nm), the surface effects are less significant but as the thickness of layer decreases, surface

effects are substantial. In case of thin metal films at low thicknesses, along with the surface effects,

the imaginary part of dielectric function differs from ideal bulk metal [30, 38, 29]. Size effects become

more significant as the dimensions become smaller than the electron mean free path, which is about

50 nm for silver [61]. Thin film stacks have a wide range of applications from high quality mirrors

to plasmon polariton waveguides. The effectiveness of these stacks in these applications can be

improved if the effects of roughness are comprehended. In this chapter, I will discuss the fabrication

techniques used for all the samples used in the work and present some images from atomic force

microscope (AFM) and scanning electron microsopce (SEM) for relatively thick and thin films of

PI − 2555 and silver. I derive a model based on statistical distribution and MG approximation

showing the effects of roughness of metal layer is developed.
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3.1 Fabrication of Thin Films

3.1.1 Silver Deposition

Silver was deposited by evaporation in a vacuum chamber. The evaporation rates between

0.03nm/s-0.1nm/s were used, depending on the end thickness. As shown in section 2.5, the

thickness of the films need to be lesser than wavelength of operation, so we need to use thin layers

for tuning plasma wavelength to infrared regions. But as we go to lower thicknesses the properties

of silver layers are very different. The reasons are explained below.

Metal layer deposition by evaporation or sputtering is a dynamic process. The film growth by

evaporative metal deposition consists of three stages. As time progresses the three stages occur. In

the beginning (0-2 nm) , that is at very low thickness the layer would just be a collection of islands

at this stage it is called a percolated layer. These islands have varied dimensions that are random

about an average value. With time these islands grow bigger to agglomerate. This is the stage where

the islands are touching each other but the layer is still incomplete with a roughness (2-15 nm).

Then in third stage (>15 nm) these islands gradually homogenize to form a uniform layer [61]. The

time and thickness scale of this process is dependent on a myriad of factors, like the vacuum level in

the chamber and the temperature of the substrate [56]. We used a desktop evaporator from Balzers

(with vacuum pump BZ 43 , Balzers PKG-020 gauge Control and evaporation unit BAE-080T). In

our study, we grew metal layers with thicknesses from 2 nm to 20 nm. At a 2 nm thickness, the

silver layer is fully percolated, that is, it consists of isolated particles of silver.
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Figure 3.1: A scanning electron micrograph (SEM) image is a 4 nm Ag layer evaporated on glass

substrate. Scale shows that the metal islands are of varied sizes and the islands are connected to

form a semi-continuous layer. The transverse scale of the particle sizes are about 20± 5nm.

At a thickness of 4 nm, the layer appears as depicted in Fig. 3.1 and Fig. 3.2, that is, the

layer is a group of connected islands of varying thickness. A series of AFM measurements are shown

here to compare the surfaces of thin and thick layers of Silver. Fig. 3.2 shows surface of morphology

4 nm thick Ag layer at a scale of 100 nm.
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Figure 3.2: Surface morphology of a 4 nm Ag layer deposited on glass substrate measured using an

atomic force microscope Veeco Dimension 3100 AFM). The image on left shows the height variation

and the one on right shows the phase variation. The height scale defined left each pictures indicates

that the roughness of the layer is about 3 ± 1nm and diameter in the lateral dimension is about

20± 5nm.

The roughness on this layer is visible with an RMS of 3 nm with the lateral dimension of

involved particles being 20 nm to 30 nm. An SEM image also shows the same particle size, Fig.

3.1. At such a thickness, the islands are connected, but still have a significant standard deviation in

both height and transverse dimension. The 8 nm layer has many of the characteristics of the 4 nm

layer. It is important to note that the crystalline quality of the silver is preserved in all the stages.

The X-ray diffraction spectra given in [61] show that all the diffraction peaks are consistent.



31

Figure 3.3: An AFM micrograph of a 20 nm Ag layer. This is on a scale of 200 nm. The layer is

still rough with an RMS of the roughness is about 4 nm.

Fig. 3.3 shows surface of a 20 nm thick layer. The roughness on this one is about 4 nm.

This is kind of roughness on a 20 nm layer layer does not have very significant effects on the overall

optical properties the reason will be discussed in next section. There are numerous applications

for such percolated layers if the morphology can be controlled and characterized well [62, 63]. The

morphology of these layers can be controlled to some level [56] with the aid of physical parameters

like temperature but not to a great extent. Some of the applications are discussed in [62].
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3.1.2 Polymer Deposition

Figure 3.4: This shows a micrograph of PI-2555 layer that is 40 nm thick. The RMS roughness on

this layer is less that 3 nm.

To accomplish the required design for tuning λp, we need to make stacks of silver and polymer

layers. In order to have homogeneous material, we need to push the limit on thickness of polymer

layer down too. Polyimide PI−2555 has an index of refraction of 1.7 over visible, near IR and most

of mid infrared region. The high index helps in tuning λpto higher wavelengths. This PI has a low

cure-temperature of 1000C . Low temperature is very essential as it would reduce the delaminating

of deposited silver layers caused by high temperatures. Polyimide has a very good thermal and

environmental stability. Loss at visible wavelengths is 0.3 db/cm [64]. Sodalime substrates were

used for all the samples. The substrates are first cleaned using alconox and then the polyimide

layers are spin-coated on them. To deposit thin layers PI − 2555 diluted to about10%−30% by

volume in N −Methyl 2 − pyrrolidone (NMP ) solvent. In the first step, 20% PI − 2555 was

spun at speed of 300 rpm for 30 s which is an intermediate spin stage to allow the polyimide to

spread evenly over 80% of the substrate. At a low acceleration of 100 rpm/s the final spin speeds

of 3500 rpm, 3000 rpm or 2500 rpm is reached and is spun for 30s at these speeds. The final speed

determines the thickness of the layer. It is then pre-baked at 900C for 15 min and cured at 1000C

for 45 min , which resulted in a 130 nm thick PI − 2555 layer. During curing, the polyamic acid

is converted to polyimide and the solvent is completely driven off. Table 3.1 shows a spin curve
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determined for PI−2555, after measuring the deposited layers with Dektak. Fig. 3.4 shows surface

morphology of a 40 nm PI-2555 layer. The roughness of layer is about 3 nm. This kind of roughness

can be maintained with proper calibration of spin speeds and spin periods.

Table 3.1: Table listing the thicknesses of Samples with rough layers of silver layer that were

fabricated and measured.

Sample Number PI-2555 Thickness (in nm) Ag Thickness (in nm)

Sample 1 40 4.1

Sample 2 50 7.1

Sample 3 76 8

3.2 Optical Properties of Thin Silver Layer

As we study silver layers with decreasing thickness, we notice that below a threshold value

for thickness the permittivity values are different from one thickness to other. Over this threshold

thickness, ε values stabilize and agree with [35] for highly pure and smooth silver layers. This is due

to the particle nature of the thin layers and due to the shape distribution of those particles. The

index of refraction,n increases with increasing thickness until a threshold thickness is reached but

beyond that threshold, n stabilizes. Due to the discontinuity of the layer, electrons are trapped in

the voids and surface plasmon resonances are induced. This causes an increase in the absorption.

As the surface becomes smoother and continuous, the electrons are capable of moving freely and

the probability of excitation of surface plasmons and amplitude of absorption decrease.

Transmission measurements from a 4 nm thick layer were made. Fig. 3.5 shows a comparison

of measured transmission and transmission calculated using Johnson and Christy’s values for a 4

nm flat layer and multilayer theory. The huge conflict between the two is due to the deposited

layer being percolated (Fig. 3.2). The measured transmission flattens which is an indication of
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formation of surface charges on the percolations. For a percolated layer, we cannot just use the

Fresnels relations. To characterize these layers, the first step would be to model dielectri function of

these layers. We need to use the MG approximations to model silver inclusions in air dielectric host.

The following section describes in detail the method to deal with roughness effects on permittivity.

Besides considering the roughness, the loss also increases because of the scattering by the particles.

The surface scattering losses are in the order of 10−5 − 10−4.
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Figure 3.5: This a comparison of transmissivity measured from a percolated 4 nm Ag layer with

transmittance calculated using J&C values and multilayer theory for a continuous smooth layer.

3.3 Modeling Rough and Percolated Layers

Fig. 3.5 proves that using multilayer theory alone with J&C values for ε does not suffice to

characterize the thin metal layers that are percolated or rough. In this section, I present a method

to model such layers. This is an efficient method for characterizing the permittivity of rough layers

based on the distribution of shape of the particles.

3.3.1 Percolated Metal Layer

For very thin layers with thickness less than 2nm, layers are isolated islands and a thicker

layer has connected islands. When the islands are isolated, charges accumulate on the surfaces of the
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metal particles and surface plasmons are induced resulting in a condition where the effective medium

acts like a capacitors in series. Each particle will have a surface plasmon resonance corresponding

to its shape or aspect ratio which is also affected by interaction with neighboring particles, which

results in inhomogeneous broadening of the plasmon resonance [65]. The particles are of random

sizes but can be approximated as oblate nanospheroids considering their symmetry in the xy-plane.

From the AFMs and SEMs (Fig. 3.2), we notice that the particles are in the size range of

20nm−30nm in lateral direction. In transverse dimension, the particle size is between 2nm−4nm.

The aspect ration of these particles corresponds to betweeb L of 0.05 and 0.2. Fig. 3.6 shows a

distribution of particles of different depolarization factors in the AFM image measured on the silver

layer.

(c)

Figure 3.6: This is a histogram of distribution of involved particles of different depolarization factors

in the AFM image.

So one can expect a spread of L in this range. Let us consider a weight function, f(L) for the

depolarization factor. For a flat smooth layer, f(L) is a delta function at L = 0 corresponding to

z−direction and zero value at all other values, that is between 0 to 0.99 (Fig. 3.7(b)). For a very

flat oblate spheroid with very small aspect ratio, f(L) would have a delta function at L = 1 −∆

(corresponding to xy−direction), with small value for delta. This gives values for Lx = Ly =
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1/2 (1− L), thus resulting in two delta functions for f(L). As the oblateness of spheroid increases

(aspect ratio increases), ∆ increases and the delta function corresponding to z-direction moves to

lower values of L and the one for lateral dimension moves to higher values of L.
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Figure 3.7: This figure summarizes the effects of a rough semi percolated silver layer with an

example. (a) shows the broadening of depolarization function due to shape distribution of particles

in the percolated layer. This is a weighing function that is used in calculation of effective ε of the

group of islands. (b) is the distribution of L when silver is a flat and smooth plate. (c) shows the

broadening of resonance in ε due to the L distribution. (d) is the effective epsilonroughSilver plotted

for a combination of a completely uniform and completely percolated layer (roughness part) , as

formulated in Eq. 3.3.

Now we try to derive this weighing function to our situation, where the particles are oblate

and have a deviation from a mean value of aspect ratio as is evident from the surface morphology

images. This distribution of shape can be translated into a broadening of the delta function about

the mean value. Thus for the realistic case of our percolated layers, f(L) can be taken as two
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broadened delta functions centered at some mean values for Lz and Lxy. This theory is formulated

below.

For modeling a percolated layer, start by considering the layer to be dielectric medium such

as air or polyimide which is partially implanted with isolated silver nano inclusions [56, 66]. The

inclusions are approximated as oblate spheroids (a, b, c) in (x, y, z) directions and a = b and a > c,

in line with the AFM images. Each nanospheroid has different dimensions that are random but

over a mean value. Thus the depolarization factor of each spheroid is different. Effective ε of the

entire layer is a weighted average of contributions from particles of different depolarization factors.

Contribution from each nanospheroid with a depolarization factor is given by Eq. 2.5. The effective

ε is then given by,

εpercolated(λ) =

L2∫
L1

εeff (λ;L).f(L) dL (3.1)

Where L1 , L2 are the lower and higher limits of depolarization factors in the layer, εeff (λ;L)

is the contribution from a particle of a given L over λ and f(L) is the weighing factor for the

contribution of the particle. Since the distribution of Ls is random over a mean value, normal

distribution can be used for f(L).

f(L) =
1√

2πσ2
e−

(L−Lp)2

2σ2 (3.2)

where σ2 is the variance and Lp is the mean value of Ls. These values are the unknowns and

the fitting parameters [67, 68]. These values are determined by fitting experimentally measured

transmission with the transmission values calculated by substituting results of 3.1 into Eq. A.1. In

this integration process, the effective dielectric function is represented as a sum of poles that are

identified with resonances related to the topology of the layer. Results from this random distribution

function are found to be in agreement with the approach used in [56], considering the spectral density

theory. Fig. 3.7 shows an example of distribution of a set of particles in an evaporated metal layer.

These plots were obtained by fitting measured data with the results from approach discussed above.

Fig. 3.7 (a) displays a weight function distribution of the depolarization factor for the layer. Some

fabricated samples are described in next chapter. The weighing function f(L) consists of two normal
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distributions corresponding to transverse and lateral dimensions. The effect of this broadening of

f(L) reflects in effective ε as a broadening of resonance, shown in Fig. 3.7(c).

3.3.2 Rough Metal Layer

In the stage before the silver layer is uniform (between 2- 15 nm), the layer is semi-percolated

layer or a rough layer. To model this rough layer, we divide it into top and bottom layers, one that

is uniform and is under a layer of roughness which can be modeled as a layer of nano particles in a

dielectric material that is the top layer as shown in Fig. 3.8. So, the roughness layer is not treated

in the same way as discussed in previous section.

Figure 3.8: A schematic of thin film coating model used for theoretical modeling for effective dielec-
tric function and the transmission coefficients. The a rough semi-percolated Ag layer is considered
as two layers, one that is fully uniform and another that is completely percolated then each layer is
treated separately.

The roughness part of the layer has an effective permittivity given by Eq. 3.1. Effective

permittivity of the silver layer with the roughness included is given by using Eq. 2.14, so

εroughsilver = φ1εpercolated + φ2εflat (3.3)

Where φ1,2 = d1,2/(d1 + d2), and d1 and d2 are the thicknesses of the roughness layer and flat

layer respectively. This approximation is used to calculate the effective permittivity of rough silver
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layers in the metal-dielectric stacks that tune λp. To be in the limit that the medium is homogeneous

we have to go down to thicknesses of silver that are not uniform. Fig. 3.7 (d) shows an example of

the result of including the roughness effects on ε of the silver layer. This was obtained by averaging

the results given in Fig. 3.7(c) and J&C ε values for flat layer, with appropriate fill factors (relative

thickness). Since this a weighted average, the effect of the roughness layer has substantial effect

when the uniform layer is also relatively thin. But when the roughness layer is thin compared to

the uniform layer the effects is negligible. Taking 20 nm layer as an example, the rms of roughness

on this layer is about 4 nm and as the relative thickness is small the effects of roughness can be

safely ignored.

In the next chapter, plasmonic thin film coatings are presented. The coatings consist of nano-

metric silver layers separated by nano-metric layers of polyimide. Maxwell Garnett calculation of the

effective dielectric function of the coating for the light propagating normal to the coating predicts

a zero crossing of the real part of this function at a visible wavelength. The measured behavior of

the reflectivity as a function of the wavelength is in agreement with the behavior of the reflectivity

of a glass slab coated with a material with the Maxwell Garnett effective dielectric function. The

concurrence of the experimental and theoretical results demonstrates that filter properties of the

stack may be tuned by varying the stack geometry.
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Results and Discussion

Using classical theory we predict that metal layers stacked along with dielectric layers can

tune plasmon wavelength λp to wavelengths that are not naturally available. But this tuning is

significantly limited by the topological resonances occurring due to the fabrication limitations and

effective medium approximation limitations. In this chapter, results from fabricated samples are

shown. Samples with λp at different visible and near IR wavelengths are demonstrated. Two cases

are studied in which 1) the predictions from classical theory are valid and 2) classical theory is

contradicted due to surface irregularities. It is demonstrated that special treatment is needed for

samples with relatively thin metal layers and the effects of irregularities are shown.

4.1 Comparison of Results

4.1.1 Results from Smooth layered Stacks

Samples with alternate metal and dielectric layers were fabricated using the deposition meth-

ods described in section 3.1 [69]. Five layer pairs of metal with thickness 20 nm and PI2555

with thickness 80 nm are deposited as shown in the schematic (Fig. 4.1). Transmission and re-

flection measurements are made on this sample using the set up shown in Fig. 4.2. The set up

consists of a broadband source AvaLight-DHS, collimation lens, and a detector. The detector has

two instruments, AvaSpec-2048 for measurements in for wavelength range of 200 nm - 900 nm and

AvaSpec-NIR256-1.7 for wavelength range of 900 nm - 1600 nm.
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Figure 4.1: A schematic stack of layers of thin metal and dielectric layers that are smooth and

uniform. This stack is used to tune λp in visible and near IR.

First a calibration is made on the substrate sample so that the contribution of substrate

is subtracted from the actual measurement. It is to be noted that the resonance effects are not

completely removed in this calibration process. After calibrating, the sample is put into the setup

making sure that light in incident on coating and not the substrate, also the distances used in the

calibration step must be maintained.

Figure 4.2: The experiment setup consists of a broadband source AvaLight-DHS (200 nm - 1800

nm), collimating lens and detectors for visible (AvaSpec-2048) and near IR for AvaSpec-NIR256-1.7.
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Figure 4.3: The experiment setup for reflection measurements consists of a broadband

source/detector AvaLight-DHS (200 nm - 1800 nm), visible detector (AvaSpec-2048) and near IR

detector for AvaSpec-NIR256-1.7 and collimating lens.

This is an example of flat and smooth silver layers, hence we can apply Eq.2.14 to calculate

effective ε. Transmission and reflection for this set of layers can then be be computed using the

Eq. A.5, Eq. A.7, Eq. A.10, Eq. A.14 and Eq. A.13. Results from this sample are shown in Fig.

4.4. Fig. 4.4(a) shows comparison of theoretically calculated transmission with the transmission

measured at normal incidence and similar comparison of reflection are shown in Fig. 4.4(b). The

values agree well to a good extent in transmission. However, we see significant discrepancies in

reflection. The discrepancies though are for different reasons in different regions. The difference

below 400 nm are attributed to the resonance of substrate glass. All the glass materials like BK-7

and sodalime have a resonance between 300 nm and 350 nm. The conflict above 400 nm is because

the 1) the period thickness of layers is now close to λ/4 and 2) other reason is the delamination of

layers (Fig. 4.5) due to involvement of multiple fabrication steps. This is one compelling reason

to use reduced layers which serve the purpose equally well. The repeated heating of layers causes

deformation of layers. This causes troubles for silver layers to adhere to the underlying layers. εeff

of this coating is shown in Fig.4.6.



43

(a)

(b)

Figure 4.4: A comparison of measured and calculated transmittance and reflectance at normal

incidence for the five layer Ag-PI-2555 sample with thickness of 70 nm for PI-2555 and 20 nm for

silver. Transmittance peak goes to a peak of 45% indicating low loss of the coating.
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Figure 4.5: This SEM image displays the delamination of layers caused in the fabrication process

due to multiple steps of spinning and heating.

This coating has λp at 550 nm, which is a substantial displacement of λp from pure silver

layers λp(= 310nm).

Figure 4.6: εeff for the coating if plotted. It has λp at 540 nm and Im{εp} is about of 0.07, thus

the loss at λp is very small.
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These coatings with smooth surfaces are easily designed using the MG approximations. All

that needs to be done is to figure out a fill factor (relative thickness). Thus following equation,

derived by inverting Eq. 2.14, can be used to determine the fraction of metal to make Re{εeff}

zero at a given λ.

1

φ1
= 1− εm(λ)

εd
(4.1)

Fig. 4.7 shows a plot of required fraction of silver when the dielectric material is PI2555. To

shift λp to higher wavelengths, φ should be decreased. Hence the requirement of thinner layers of

metal is enforced to tune λp to near IR frequencies.
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Figure 4.7: The metal fraction required to make the real part of the dielectric function of the coating

zero as a function of wavelength, when the constituent layers are of PI − 2555( n=1) and silver.

Same kinds of results can also be obtained by using lesser number of layers at the cost of

coating being more sensitive to surface quality and accuracy of thickness of layers. Also, now we

use samples that have one layer of silver sandwiched between two layers of polyimide layers. This

makes the fraction of metal dm/(dm + 2 dd) as compared to dm/(dm + dd), where dm and dd are the

thicknesses of metal and dielectric layers, respectively. This allows tuning into extended spectral

range. Now combining this formula with the essential conditions for validity of effective medium
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theory we can deduce a limit over which λp can be tuned in using these thin film stacks for given

materials. we get the highest λpwhen φ1 is least. If we consider maximum period thickness and

minimum fraction of metal in a Ag-PI-2555 film stack, we can tune λpto a maximum of 3000nm.

In the next samples, we will consider thinner layers of silver that do not have smooth surfaces

or are percolated, to study the effects of surface topology and to compare results with the theory

established in previous chapters.

4.1.2 Samples With Rough Silver Layers

Samples with thicknesses given in Table 3.1 are fabricated with one layer of silver sandwiched

between two layers of PI − 2555 layers. Transmission and reflection measurements at normal

incidence are made on these samples, shown in Fig.4.8. The change in slope of transmission spectrum

indicates change in εrand thus tuning of λp. Transmission and reflection add up to 80%, indicating

low scattering and absorption by these samples.

Figure 4.8: Measured transmission and reflection spectrum are plotted in this figure. The difference

in slope of transmission indicates the tuning of λp. Transmission and reflection add up to about

80% in all cases, which is sign of low loss in the coatings.

The thickness of silver layer in sample 1 is 4.1nm. At this thickness the layer is semi-percolated

and fraction of metal in the layer is 0.0488. The thickness of percolated layer is 2.0nm and that of
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flat part is 2.1nm. This allows us to apply Eq.3.1 to approximate εpercolated and then Eq. 3.3 to

calculate ε contribution by the rough silver layer. However, the parameters for distribution function

of depolarization factor for the percolated part of the silver layer are not known yet. Hence fittings of

measured and theoretical transmission spectrum are made using σ and Lp for the normal distribution

of Ls as parameters. The minimum root mean square is calculated to arrive at approximates for σ

and Lp. Thus we calculate εpercolated and εroughsilver.
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Figure 4.9: Transmission spectra for samples 1,2 and 3 were measured using Avaspec 2048 and

AvaSpec NIR256-1.7 spectrometers. Transmissions were also calculated using the model shown in

Fig. 3.8 and method described in previous chapter and are fitted with the measured values by

varying the weighting factor parameters. The change in slope of the transmission spectra indicate

the tuning of dielectric function.

The obained distribution for depolarization factor is shown in Fig 4.10. Then for εcoating,

Eq.2.15 is applied by considering the layers to be 4 layers (two PI-2555 layers, one smooth Ag layer

and one completely percolated layer). The parameters for the weighing function f(L) are optimized
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using mean square error calculated between the theoretical and measured values for transmission

from 350 nm to 1600 nm. The theoretical transmission values are computed by substituting εcoating

in Eq. A.1.
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Figure 4.10: This figure plots the optical properties of rough silver layer obtained by fitting the

transmission spectra for the three fabricated samples. (a) shows the distribution of depolarization

function due to shape distribution of particles in the percolated layer. This is a weighing function

that is used in calculation of effective ε of the group of islands. (b) shows εpercolated for percolated

part of the silver layers (c) is the effective epsilonroughSilver , as formulated in Eq. 3.3.
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The same procedure is repeated for samples 2 and 3 with thicknesses of metal layers 7.1nm

and 8nm, respectively. In samples 2 and 3, the thickness of percolated parts are 3.7nm and 3.5nm,

while the flat parts are 3.4nm and 4.5nm thick. The volume fraction of silver in samples 2 and

3 are 0.066 and 0.05 respectively. The distribution of L, εpercolated and εroughsilver are plotted in

Fig. 4.10. These depolarization factor distribution agrees well with the histogram deduced from

the AFM image of silver layer. In Fig 4.10(b), we notice a notched filter behaviour but the loss

is very high due to the distrubution of shapes in the percolated layer. In absence of the flat layer

underlying the percolated part, the layers will be highly lossy due to scattering, but the presence of

flat layer changes this behaviour significantly as the scattering due to particles reduces.
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Figure 4.11: MG approximation combined with random distribution of depolarization factors (ac-
counting for the randomness of the roughness of metal layers) is used to determine the dielectric
function, εcoating(λ) of samples 1,2 and 3. The samples have different fractions of metal in the three-
layered sandwich coatings. In this figure, shift in λ0 is evident and so is the change in dielectric
function.

Fig. 4.11 shows the tuning of εcoating for samples 1, 2 and 3. Samples 1, 2 and 3 have λp are

1510nm, 1320nm, and 1400nm. As the fraction of metal in these samples changes, λp is shifted.

To understand the changes roughness brings to these coatings, I plotted the ideal cases when these
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Figure 4.12: For the samples with semi-percolated layers fabricated and measured above, if the
layers were not percolated we can directly apply Eq.2.14. If it were possible, λp in each case would
be as shown in this figure. Comparing these with actual results show that the effect of percolated
layer is to shift λp to higher wavelengths, but not very drastic changes are observed in the properties
of the coatings.

thin layers have uniform surfaces. Fig. 4.12 shows the results plotted using the 2.14 for samples 1,

2 and 3 (that is, using the same thicknesses). The ideal samples 1, 2 and 3 would have had λp at

1060nm, 1050nm and 900nm, respectively. The difference between the rough layer case is that λp

is shifted to higher wavelengths for rough layers, but no new features are introduced. Having said

that, the shift in λp cannot be ignored, as it has its own share of advantages and disadvantages.

Infact the limitations in fabrication process of the silver layers actually works in our favour in

allowing us to move λp to higher wavelengths.

4.2 Summary

The stacks of metal-dielectric layer have a huge potential in various applications. One of the

most popular applications after the high quality mirror would be for tuning the plasma wavelength

over spectral range in visible and near-IR when the dimensions of the layers are smaller than the

wavelength of operation. An inhomogeneous medium is seen as a homogeneous layers when the

particle metal nanostructure dimensions are smaller than λ/4. An extra condition for validation

of effective medium theory has been established based on comparisons of results from theory and

experiments. In case of multilayers along with the metal thickness, the metal-dielectric period
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thickness should also be smaller than λ/4. Silver is the best choice for these applications in visible

because it has lower loss than others, which is reflected in its Im{eps}.

To obtain λp in near IR regions, the fraction of metal, in other words the thickness of metal

layer should be smaller than the limit where one can get smooth flat layers. Hence such semi-

percolated and percolated layers were studied in detail. The percolated layers have random dis-

tribution of particle shapes involved. These particles have different contribution to the optical

properties of the medium defined by the depolarization factor. Depolarization factor for various

shapes with varied symmetry are studied, for example spheres, ellipsoids and cubes. The depolar-

ization factors indicate the occurrences of resonance in the medium. For the percolated layers, a

normal distribution based weighing function is defined for the depolarization factor. This statistical

model is combined with Maxwell Garnett approximation to calculate the effective properties of the

percolated layer. Maxwell Garnett gives reasonably Good results when the metal fraction is below

a certain threshold. Hence the effects of these non uniform layers on the entire coating was studied.

Fabricated layered structures with alternate thin layers of thickness far less than a quarter of

wavelength of incident light were studied. Measurements of transmittance of light incident normal

to the plane of layers are made. Dielectric functions were obtained using Maxwell Garnett theory

for smooth layers and an extended model based on the irregularities of the surfaces was used for

semi-percolated layers. Even in the case of percolated layers, the tuning of λp was successfully

accomplished. The effect of roughness was only seen as a shift in λp into higher wavelengths and is

actually advantageous if the purpose is to tune λp to higher wavelength. Thus tuning capabilities

of thin film stacks with low loss are verified experimentally and theoretically. However, proper

characterization of these layers is very critical in this procedure for the structure to be designed well

and to be used in practical applications. The statistical model, presented in this thesis, serves this

purpose very effectively while characterizing the effects of roughness of thin silver films on optical

properties.
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Appendix A

Transmission and Reflection From Multilayers

A.1 Fresnel Coefficients For Single Interface

In this work, multiple layers of metal and dielectric were used to solve for the problem of

achieving low loss plasmonic materials and for tuning the plasmon wavelength. Theoretical pre-

dictions were compared with experimental results. This was implemented by measurements of

transmission. This section briefs the theoretical calculations of the transmission and reflection of

stacked multiple layers.

Figure A.1: This figure shows a single interface between two semi-infinite medium. When a wave is
incident on an interface there is a transmitted and reflected wave.

To start with, consider two different semi infinite media sharing a boundary as in Fig. A.1.

When a plane wave is incident on the interface, it is split into reflected and transmitted wave. If
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one of the media is conductive, then some of the incident light is absorbed. Snell’s law gives the

direction of the transmitted wave. Now for amplitude of the transmitted and reflected waves, we

use Fresnel’s relations. Fresnel relations define transmission and reflection coefficients for parallel

and perpendicular polarizations as

t⊥ =
2cosθ1/η1

(cosθ1/η1 + cosθ2/η2)
(A.1)

t|| =
2cosθ1/η2

(cosθ1/η1 + cosθ2/η2)
(A.2)

r⊥ =
(cosθ1/η1 − cosθ2/η2)
(cosθ1/η1 + cosθ2/η2)

(A.3)

r|| =
(cosθ1/η1 − cosθ2/η1)
(cosθ1/η2 + cosθ2/η1)

(A.4)

ηi , i = 1, 2 are the impedances of the two media, η =
√
µr/εr. θ2is given by Eq.1.17. In

optical frequencies, µr = 1 and using n =
√
εr, and the Fresnel equations simplify to

t⊥ =
2n1cosθ1

(n1cosθ1 + n2cosθ2)
(A.5)

t|| =
2n1cosθ1

(n2cosθ1 + n1cosθ2)
(A.6)

r⊥ =
(n1cosθ1 − n2cosθ2)
(n1cosθ1 + n1cosθ2)

(A.7)

r|| =
(n2cosθ1 − n1cosθ2)
(n2cosθ1 + n1cosθ2)

(A.8)

The transmission and reflection magnitude are thus given by

T⊥/|| = |t⊥/|||2
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Figure A.2: A multilayered system is demonstrated. At each interface there is transmittance and
reflectance. All the transmissions and reflections add coherently.

R⊥/|| = |r⊥/|||2

A.2 Fresnel Coefficients For Multiple Layers

For a system with multiple layers, at each interface there is reflection and transmission.

These transmission and reflected waves interfere and give a net effect dependent on wavelength.

We can use a characteristic matrix for each layer. And for multiple layers, the product of the

characteristic matrices of each layer gives reflection and transmission coefficients of the stratified

medium[70, 71, 72].

M = M1.M2....Mn (A.9)

Mi is given as,

Mi =

 m11 m12

m21 m21

 =

 cos(knlllcosθl) − i
pl
sin(knlllcosθl)

−i pl sin(knlllcosθl1) cos(knlllcosθl)

 (A.10)
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where nl, ll, , θlare the refractive index and thickness of the layer and the angle of propagation

of light beam in the layer. k = 2π/λ is the wave vector of the light beam. θl is given by Snell’s

law Eq[]. For a s-polarized incident plane wave, pl =
√

εl
µl
cos(θl) and for p-polarized incident plane

wave, pl =
√

µl
εl
cos(θl) . To get the reflection and transmission coefficients for plane waves, we can

use,

r =
(m11 + p0m12)pi − (m21 + p0m22)

(m11 + p0m12)pi + (m21 + p0m22)
(A.11)

t =
2pi

(m11 + p0m12)pi + (m21 + p0m22)
(A.12)

Again, pi/0 =
√ εi/0

µi/0
cos(θi/0) and for p-polarized incident plane wave, pi/0 =

√µi/0
εi/0

cos(θi/0),

i is for the input medium and 0 is for the output medium . In the above equations, ni,n0 are the

refractive indices of incident medium and the output medium or substrate, respectively. θi,θ0 are

the incident and refraction angles in the incident medium and the substrate respectively. Now,

reflectivity and transmittance of the coating are given by

Rs = |rs|2 (A.13)

Ts = |ts|2
p0
pl

(A.14)

The transmittance has to be normalized with the refractive index of the substrate to account

for the fact that in the derivation of these formulas output medium is considered as infinite but the

transmission measurement is made in air.

For normal incidence in a non-magnetic medium, θ = 0 thus the formulas A.11 and A.12

reduce to

r =
(m11 + n0m12)ni − (m21 + n0m22)

(m11 + n0m12)ni + (m21 + n0m22)
(A.15)

t =
2ni

(m11 + n0m12)ni + (m21 + n0m22)
(A.16)
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and the characteristic matrix becomes

 m11 m12

m21 m21

 =

 cos(kn1l1) −i 1
n1
sin(kn1l1)

−in1sin(kn1l1) cos(kn1l1)

 (A.17)


