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Harmon, Gage (B.A., Physics)

Mean-Field Floquet Theory for a Three-Level Cold-Atom Laser

Thesis directed by Prof. Murray Holland

My honors thesis provides a theoretical description for a lasing scheme of V-shaped three-level

atoms interacting with an optical cavity. Gain is achieved by pumping sufficiently many atoms into

the 3P1 electronic excited state. The atom can then decay back to the ground state via emitting a

cavity photon, followed by absorbing a photon from a second driving laser. Where it completes it

cycle by decaying via spontaneous emission back to the ground state. Lasing is achieved if this gain

exceeds the losses due to dissipation of cavity photons into free space. We study this system using

mean-field equations for the coupled atom-cavity dynamics. With this, we determine the lasing

threshold and the emission frequencies using a stability analysis. Furthermore, we are able to

predict the lasing intensity and frequency using a mean-field Floquet method. This method shows

a U(1) symmetric lasing solution which is visible only in Fourier components while the total cavity

field does not possess this symmetry. The non-linear nature of this open system is highlighted by

its ability to form bistable lasing, non-lasing states, and a hysteresis when slowly ramping the pump

power above threshold and back. Lastly, we compare our mean-field results with a second-order

cumulant approach to verify our findings.
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Chapter 1

Introduction and Motivation

Since its conception by Einstein in 1917 [15], the use of lasers and masers [41, 69] has revolu-

tionized a myriad of aspects of physics and, in particular, set the foundation for the ever-growing

field of quantum optics. A laser is created when a gain medium establishes optical gain within a

cavity by way of population inversion between two atomic dressed states [47, 54]. Furthermore, the

laser is classified as operating in a continuous mode when the output power is constant over time.

To achieve continuous-wave lasing, a steady pump source is required to sustain the population

inversion of the gain medium. This can be achieved by lasing between dressed states of a two-level

atom [56], but population inversion between an internal excited and ground state can be difficult

to maintain. To overcome this, techniques have been developed to lase without inversion [58]; for

example, by driving a system where the lasing photon is emitted as part of multiphoton transition.

This allows for the study of cold-atom lasers based on more complicated level structures.

With this in mind, we present a theoretical study of a cold-atom laser comprised of a cloud of

cooled and trapped ytterbium-174 atoms. We start off by introducing the two fundamental light-

matter interactions, followed by analytical and numerical tools in Chapter 2. In this, we will

provide a physical and mathematical description of a two-level atom interacting with a classical

and quantized field. Then a brief explanation of cumulants and Liouville space, which allows us

to simulate large atom numbers while reducing our simulation times. In Chapter 3, we define our

model and explain the lasing mechanism. After, we analyze the onset of lasing by performing a

stability analysis on a non-lasing state against field fluctuations to determine the lasing threshold.
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We subsequently introduce a Floquet method where we decompose the field and atomic density

operator into three primary frequency components and explore a hysteresis regime. Finally, we

compare our mean-field results with second-order cumulants and conclude with a summary of our

work.



Chapter 2

Atom-Laser Interaction Background

2.1 Atom Interacting with a Classical Field

In this section, I give a description and derivation of a two-level atom interacting with a

single monochromatic field along with the appropriate approximations. It follows similarly from

[71, Chapter 5]. To model the field due to a laser we look at the electric field operator for a

monochromatic field, with angular frequency ω at the position of the atom

Ê(t) = ε̂E0 cos(ωt), (2.1)

where ε̂ is the polarization vector of the field. This removal of the field’s spatial dependency is

called the dipole approximation, which assumes the light field changes over length scales that are

orders of magnitude larger than the size of the atom. This is generally applicable because atomic

sizes are O(10−10m) while optical wavelengths of light are O(10−7m). It is favorable to decompose

the field in terms of positive and negative rotating components

Ê(t) = ε̂
E0

2

(
e−iωt + eiωt

)
= Ê

(+)
(t) + Ê

(−)
(t). (2.2)

We will approximate the atom to having only two states, where as a true atom has an infinite

set of states. We denote these two states as the ground |g⟩ and excited state |e⟩. Then the

energy difference between these states are ∆E = Ee −Eg, and it is standard to rewrite this energy

difference in terms of the reduced Planck’s constant ℏ and angular frequency ω. Using the de Broglie

wavelength and photon energy relations we see the transition frequency is ∆E = ℏωa. Defining the
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zero-point energy to be halfway between the states, the atomic free-evolution Hamiltonian is

ĤA =
ℏωa

2
(|e⟩ ⟨e| − |g⟩ ⟨g|), (2.3)

where the projection operators |e⟩ ⟨e| and |g⟩ ⟨g| represent the corresponding energy of each state.

The atom-field interaction Hamiltonian under the dipole approximation becomes

ĤAF = −d̂ · Ê, (2.4)

where d̂ is the atomic dipole operator.

2.1.1 Dipole Operator and Parity

Let us consider the field interacts strongly with one electron of the atom, such that the dipole

operator can be expressed in terms of the electron charge q = −e and the electron’s position in

space r⃗ as

d̂ = −er̂. (2.5)

We then use a parity argument in order to gain information about the structure of the dipole opera-

tor. The parity operator changes the sign of the position operator, thus the operator transformation

is

Π̂r̂Π̂† = −r̂, (2.6)

where Π̂ is unitary such that Π̂ and Π̂† apply the same operation (i.e., Π̂r̂ = −r̂Π̂). We now turn

to the energy basis and look at the diagonal elements of the dipole operator. Projecting |a⟩ and

the identity operator Î = Π̂Π̂† onto both sides of the dipole operator we see

−e ⟨a| r̂ |a⟩ = −e ⟨a| Π̂Π̂†r̂, Π̂Π̂† |a⟩ ,

= −e ⟨a| (−1)pΠ̂†r̂Π̂(−1)p |a⟩ ,

= −e ⟨a| (−r̂) |a⟩ ,

= e ⟨a| r̂ |a⟩ .

(2.7)
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This indicates the diagonal elements ⟨a| d̂ |a⟩ = 0 for a ∈ {g, e}, as long as the states have different

parity. Thus, the off-diagonal elements are non-vanishing and have the form

⟨g| d̂ |e⟩ = ⟨e| d̂ |g⟩∗ . (2.8)

This means the dipole operator couples the ground and excited states without producing any first-

order energy shifts on the states. By applying the identity operator Î = |e⟩ ⟨e| + |g⟩ ⟨g| onto both

sides of the dipole operator, we find

d̂ = ⟨g| d̂ |e⟩ |g⟩ ⟨e|+ ⟨e| d̂ |g⟩ |e⟩ ⟨g| . (2.9)

We can choose the phase of the dipole matrix element to be real, which allows us to write the dipole

operator as

d̂ = ⟨g| d̂ |e⟩ (σ̂ + σ̂†), (2.10)

where σ̂ = |g⟩ ⟨e| is the atomic lowering operator and σ̂† = |e⟩ ⟨g| is the atomic raising operator;

these operators correspond to the emission or absorption of a photon, respectively. The atom-field

interaction Hamiltonian then becomes

ĤAF = −⟨g| d̂ |e⟩ · Ê(σ̂ + σ̂†). (2.11)

2.1.2 Rotating-Wave Approximation

We now look to decompose the dipole operator into positive and negative rotating components

as done with the electric field in Eq. (2.2)

d̂ = ⟨g| d̂ |e⟩ (σ̂ + σ̂†) = d̂
(+)

+ d̂
(−)
, (2.12)

where d̂(+) ∼ σ̂ and d̂(−) ∼ σ̂†. If one were to solve the equation of motion for the expectation

value of σ̂ they would see it has the time dependence e−iωat. Therefore, the atom-field interaction
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Hamiltonian changes to

ĤAF = −
(
d̂
(+)

+ d̂
(−)
)
·
(
Ê

(+)
+ Ê

(−)
)
,

= −d̂(+) · Ê(+) − d̂
(+) · Ê(−) − d̂

(−) · Ê(+) − d̂
(−) · Ê(−)

−
(
e−i(ω+ωa)t + e−i(ω−ωa)t + ei(ω−ωa)t + ei(ω+ωa)t

)
.

(2.13)

We see that the first and last terms oscillate rapidly, while the middle two cross terms oscillate

slowly. We can then invoke the rotating-wave approximation (RWA) which states

|ω − ωa| ≪ ω + ωa. (2.14)

This allows us to substitute the rapidly oscillating terms with their zero average value, which

amounts to a coarse-graining on fs time scales [71]. This approximation is only valid for near

resonant interactions and breaks down when the detuning is extremely large (i.e., ∆ = ω−ωa ≈ ωa)

and for strong coupling (i.e.,
∣∣∣⟨g| ε̂ · d̂ |e⟩E0/ℏ

∣∣∣ ≈ ωa). Thus, the atom-field interaction Hamiltonian

in the RWA becomes

ĤAF = −d̂(+) · Ê(−) − d̂
(−) · Ê(+)

. (2.15)

By substituting Eq. (2.2) and Eq. (2.12) with the explicit time dependencies into Eq. (2.15) we can

write

ĤAF = −⟨g| ε̂ · d̂ |e⟩
(
E

(−)

0 σ̂eiωt + E
(+)

0 σ̂†e−iωt
)

=
ℏΩ
2

(σ̂eiωt + σ̂†e−iωt),

(2.16)

where we have defined the Rabi frequency as

Ω = −2 ⟨g| ε̂ · d̂ |e⟩E(+)

0

ℏ
= −⟨g| ε̂ · d̂ |e⟩E0

ℏ
, (2.17)

and have assumed E
(+)

0 to be real. The Rabi frequency denotes the strength of the atom-field

coupling and is proportional to the square root of the laser’s intensity (i.e., Ω ∝
√
I). The total

Hamiltonian for a two-level atom interacting with a classical field is then

Ĥtot = ĤA + ĤAF =
ℏωa

2
(|e⟩ ⟨e| − |g⟩ ⟨g|) + ℏΩ

2
(σ̂eiωt + σ̂†e−iωt). (2.18)
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2.1.3 Interaction Picture

The goal of this subsection is to provide some information regarding the various pictures we

deal with when studying quantum mechanics. These pictures describe whether the time dependence

is carried by the state vectors |ψ⟩ and or operators Ô and how they evolve. I then give an example

using Eq. (2.18). I refer the reader to [71, Chapter 4, §2] for a more detailed discussion about the

interaction picture.

We start off by considering a time-independent Hamiltonian that can be decomposed into

two separate parts

Ĥtot = Ĥ0 + Ĥint, (2.19)

where Ĥ0 is the free evolution term and Ĥint is the interaction term. A state vector in the interaction

picture |ψ(t)⟩I is the transformed state vector of the Schrödinger picture |ψ(t)⟩S by the free part

of the Hamiltonian

|ψ(t)⟩I = eiĤ0t/ℏ |ψ(t)⟩S , (2.20)

while an operator transforms according to

Ô(t)I = eiĤ0t/ℏÔSe
−iĤ0t/ℏ, (2.21)

where ÔS is an operator in the Schrödinger picture. The third picture in quantum mechanics

is referred to as the Heisenberg picture, where the state vectors are time-independent and the

operators are time-dependent; they are defined as

|ψ⟩H = eiĤtott/ℏ |ψ(t)⟩S , (2.22)

and

Ô(t)H = eiĤ0t/ℏÔSe
−iĤ0t/ℏ. (2.23)

Let us now work through an example beginning with

Ĥtot =
ℏωa

2
(|e⟩ ⟨e| − |g⟩ ⟨g|) + ℏΩ

2
(σ̂eiωt + σ̂†e−iωt). (2.24)
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This Hamiltonian is defined in the Schrödinger picture and we wish to move this Hamiltonian into

the interaction picture. We do this by moving into a frame rotating with the laser frequency ω,

Ĥ0 =
ℏω
2
(|e⟩ ⟨e| − |g⟩ ⟨g|). (2.25)

By applying Eq. (2.21) to Eq. (2.18) we write

˜̂
Htot = eiĤ0t/ℏ(Ĥtot − Ĥ0)e

−iĤ0t/ℏ

= −ℏ∆
2

(|e⟩ ⟨e| − |g⟩ ⟨g|) + ℏΩ
2

(eiĤ0t/ℏσ̂e−iĤ0t/ℏeiωt + h.c.),

(2.26)

where we have defined the detuning ∆ = ω − ωa. We now calculate the transformation of the

atomic lowering operator from the Schrödinger picture into the interaction picture,

˜̂σ = eiĤ0t/ℏσ̂e−iĤ0t/ℏ. (2.27)

Taking the time derivative of Eq. 2.27 and using the fact that Ĥ0 commutes with itself we arrive at

d˜̂σ

dt
=
i

ℏ

(
eiĤ0t/ℏ

[
Ĥ0, σ̂

]
eiĤ0t/ℏ

)
, (2.28)

where [Â, B̂] = ÂB̂ − B̂Â is the commutator of two operators. After performing the necessary

algebra we arrive at the following differential equation

d˜̂σ

dt
= −iω ˜̂σ. (2.29)

Upon taking the limits of integration to be from 0 to t and solving the differential equation by

separation of variables we obtain

˜̂σ = σ̂e−iωt, (2.30)

where we have set the initial condition σ̂(t = 0) = σ̂. Applying the same process to the atomic

raising operator σ̂† we would get the Hermitian conjugate of Eq. (2.30). As we can see, the atomic

lowering operator in the interaction picture picks up an exponential with the frequency of the

rotating frame. Substituting these operators back into Eq. (2.18) we arrive at the interaction

picture Hamiltonian for a two-level atom interacting with a classical field under the RWA and

dipole approximation:

˜̂
Htot = −ℏ∆

2
(|e⟩ ⟨e| − |g⟩ ⟨g|) + ℏΩ

2
(σ̂ + σ̂†). (2.31)
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2.1.4 Density Operator

The state vector |ψ⟩ describes the state of a quantum system, but is limited to only repre-

senting pure states. For example, one could not write down the state vector for a mixed ensemble

of atoms, where a fraction of the atoms are characterized by |α⟩ and the other fraction by |β⟩. This

calls for the need for a more general object to represent the state of a quantum system, especially for

quantum systems that interact with an external system whose evolution is unknown. The density

operator for a mixed ensemble is defined as [64]

ρ̂ =
∑
i

wi |ψi⟩ ⟨ψi| , (2.32)

where |ψi⟩ is the set of states a system can be in. The density operator describes the statistical

state of a quantum system and can represent both pure and mixed states. We do not explicitly

know what state the system is in but rather we assign a probability or population wi to the state

|ψi⟩ ⟨ψi|. When taking the trace of the density operator the fractional populations must satisfy the

normalization condition

Tr(ρ̂) =
∑
i

wi ⟨ψi|ψi⟩ = 1. (2.33)

It is also important to note the density operator is Hermitian and completely positive. We are

interested in how a quantum system evolves in time, strictly speaking how the density operator

changes as a function of time. By taking the time derivative of the density operator and utilizing

the Schrödinger equation iℏ∂t |ψ⟩ = Ĥ |ψ⟩, we can derive the equation of motion for the density

operator under unitary time evolution:

∂tρ̂ =
1

iℏ
∑
i

wi

[(
∂t |ψi⟩

)
⟨ψi|+ |ψi⟩

(
∂t ⟨ψi|

)]
=

1

iℏ
∑
i

wi

(
Ĥ |ψi⟩ ⟨ψi| − |ψi⟩ ⟨ψi| Ĥ

)
=

1

iℏ
[
Ĥ, ρ̂

]
.

(2.34)

The expression above is the Schrödinger–von Neumann equation. However, Eq. (2.34) only encap-

sulates the coherent or reversible dynamics a system will undergo and does not take into account
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any dissipative processes. In this thesis we want to investigate the dynamics of open quantum

systems, that is when a quantum system couples to an external quantum system whose evolution

we do not directly track. In order to study the evolution of open quantum systems we choose to

use the Born–Markov master equation

∂tρ̂ = L̂ρ, (2.35)

where L̂ is the Liouvillian superoperator. The term superoperator comes from the fact that the

Liouvillian is a higher-dimensional object and operates from both sides of the density operator.

Eq. (2.35) is a compact form of the master equation, one can express the full master equation as

∂tρ̂ =
1

iℏ
[
Ĥ, ρ̂

]
+
∑
k

(
Ĵkρ̂Ĵ

†
k −

1

2
Ĵ†
kĴkρ̂−

1

2
ρ̂Ĵ†

kĴk
)
, (2.36)

where the first term is the Schrödinger–von Neumann equation and the second term is the sum of

Lindblad superoperators with corresponding jump operator Ĵk. The Lindblad superoperator is able

to encapsulate the dissipative dynamics of an open quantum system, such as spontaneous emission,

dephasing, inhomogeneous broadening, and more. These effects are represented by an operator and

decay rate, which we call jump operators.

2.2 Atom Interacting with a Quantized Field

In this section, I go over the quantization of a single-mode field and give an example of a

two-level atom interacting with a quantized field of a cavity known as the Jaynes–Cummings model.

I follow the methods prescribed in [21, Chapter 2] and [71, Chapter 8].

2.2.1 Field Quantization of a Single-Mode

Many systems we are interested in involve a quantized field interacting with atoms inside

a cavity. Often there is only one resonant mode within the cavity; here we show how to treat a

single-mode quantum mechanically. We start by introducing the canonically conjugate variables

q and p, where q is the canonical position and p is the canonical momentum. Now, consider a

monochromatic field with frequency ω inside a cavity with perfectly reflecting mirrors where the
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field is polarized along the x-direction:

E⃗(z, t) = x̂

√
2ω2

V εo
q(t) sin(kz), (2.37)

where V is the effective mode volume (length of cavity × (beam waist)2), ω is the oscillation

frequency of the field, k is the wave number, and q(t) is the dimensionless amplitude of the field.

The wave number can be related to the frequency by ω = kc. The field must obey Maxwell’s

equations in a vacuum with no charge or current:

∇⃗ × E⃗ = ∂tB⃗, (2.38)

∇⃗ × B⃗ =
1

c2
∂tE⃗, (2.39)

∇⃗ × E⃗ = 0, (2.40)

∇⃗ × B⃗ = 0. (2.41)

Substituting Eq. (2.37) into Eq. (2.39), the magnetic field in the cavity is

B⃗(z, t) =
ŷ

c2k

√
2ω2

V ε0
q̇(t) cos(kz), (2.42)

where q̇(t) = p(t). We can now write the total energy density as the sum of the electric and

magnetic energy density

U =
1

2
(εoE

2 +
1

µo
B2), (2.43)

and then the classical Hamiltonian is just the energy density over the entire volume

H =
1

2

∫
V
(εoE

2 +
1

µo
B2)dV. (2.44)

After carrying out the integral it can be shown that

H =
1

2
(p2 + ω2q2), (2.45)

and this is equivalent to the Hamiltonian of a classical harmonic oscillator of unit mass. To make

the transition from classical variables to quantum operators we replace q and p with their operator

equivalents q̂ and p̂. These operators must satisfy the canonical commutation relation

[
q̂, p̂
]
= iℏ. (2.46)
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Then the electric and magnetic fields become the operators

Ê(z, t) = x̂

√
2ω2

V εo
q̂(t) sin(kz) (2.47)

and

B̂(z, t) = ŷ
1

c2k

√
2ω2

V ε0
p̂(t) cos(kz), (2.48)

respectively. The Hamiltonian becomes

Ĥ =
1

2
(p̂2 + ω2q̂2). (2.49)

We now introduce the non-Hermitian operators ĉ, the annihilation operator which represents the

destruction of a photon, and ĉ†, the creation operator which represents the creation of a photon.

They can be expressed in terms of the Hermitian operators q̂ and p̂ as

ĉ =
1√
2ℏω

(ωq̂ + ip̂), (2.50)

and

ĉ† =
1√
2ℏω

(ωq̂ − ip̂). (2.51)

The electric and magnetic field operators then become

Ê(z, t) = x̂

√
ℏω
V εo

(ĉ+ ĉ†) sin(kz), (2.52)

and

B̂(z, t) = −iŷ µo
k

√
εoℏω3

V
(ĉ− ĉ†) cos(kz). (2.53)

Since the operators ĉ and ĉ† are non-Hermitian they have the following commutation relation

[
ĉ, ĉ†

]
= 1, (2.54)

and, as a result, the Hamiltonian operator takes the form

Ĥ = ℏω
(
ĉ†ĉ+

1

2

)
. (2.55)

As we can see this is the same Hamiltonian for a one-dimensional quantum harmonic oscillator, an

interesting correspondence nonetheless.



13

2.2.2 Jaynes–Cummings Model

The Jaynes–Cummings model describes a two-level atom interacting with a quantized mode

of a cavity in the “good-cavity” limit. The “good-cavity” limit is when the cavity linewidth κ is

much smaller than the collective atom-cavity coupling
√
Ng (i.e.,

√
Ng ≫ κ). We start with the

free evolution Hamiltonian for a two-level atom and a single mode field

Ĥ0 = ĤA + ĤF = ℏωa |e⟩ ⟨e|+ ℏωc

(
ĉ†ĉ+

1

2

)
, (2.56)

where ωa is the atomic transition frequency and ωc is the cavity resonance frequency of the field

mode. The atom-field interaction Hamiltonian is a modified version of Eq. (2.4), except now we

use Eq. (2.52) for the quantized field without sin(kz) because we assume homogeneous atom-cavity

coupling. The atom-field interaction Hamiltonian is then

ĤAF = ℏg(σ̂ + σ̂†)(ĉ+ ĉ†). (2.57)

In the rotating-wave approximation, we drop the nonconserving energy terms, so Eq (2.57) becomes

ĤAF = ℏg(ĉ†σ̂ + ĉσ̂†), (2.58)

where the atom-cavity coupling constant g is defined as

g = −ε̂ ⟨g| d̂ |e⟩
√

ω

2ℏε0V
. (2.59)

The Jaynes–Cummings Hamiltonian while ignoring the vacuum-field energy is

ĤJC = ĤA + ĤF + ĤAF = ℏωa |e⟩ ⟨e|+ ℏωcĉ
†ĉ+ ℏg(ĉ†σ̂ + ĉσ̂†). (2.60)

2.3 Analytical and Numerical Methods

In this section, I discuss an analytical and numerical method that allows for larger atom

numbers to be simulated, while reducing simulation times. For a more thorough explanation of

cumulants I direct the reader to [40] and for Liouville space [26].
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2.3.1 Cumulants

As the atom number N increases in our simulations, the scaling of the density matrix ρ̂ makes

an exact numerical solution of the master equation Eq. (2.36) quickly intractable. The Monte Carlo

wave function method [57, 54] can be used to reach higher atom numbers, but the state vector

used here soon becomes intractable as well. This is because, as N increases, both the total atomic

Hilbert space and the maximum required truncated Fock space used in our simulations increase

rapidly. To simulate higher atom numbers above the experimentally observed lasing threshold in

[22], we now turn to the use of cumulant theory. Here, the joint cumulant ⟨·⟩c of n operators

is a general measure of correlations between operators. It is given by the generalized culumant

expansion method, in which cumulants can be explicitly represented by the lower moments [40]

〈
X̂

(a1)
1 . . . X̂(an)

n

〉
c
= −

∏
j

aj !
m∑
l=1

∑
∑l

i=1 α=aj

(∑
i

ki − 1

)
!(−1)

∑
i ki

l∏
i=1

 1

ki!


〈∏n

j=1 X̂
(bij)
j

〉
∏

j bij !

ki
 ,

(2.61)

where X̂
(j)
i represents the operator X̂i for atom aj and α = kibij . Thus, each term decomposes

m =
∑n

j=1 aj objects into
∑l

i=1 ki subsets, and the total cumulant is a linear combination of

products of these subset moments. The first few cumulants can be calculated as [20]〈
X̂

(j)
i

〉
c
=
〈
X̂

(j)
i

〉
,〈

X̂
(j)
i X̂

(l)
k

〉
c
=
〈
X̂

(j)
i X̂

(l)
k

〉
−
〈
X̂

(j)
i

〉〈
X̂

(l)
k

〉
,〈

X̂
(j)
i X̂

(l)
k X̂(n)

m

〉
c
=
〈
X̂

(j)
i X̂

(l)
k X̂(n)

m

〉
+ 2

〈
X̂

(j)
i

〉〈
X̂

(l)
k

〉〈
X̂(n)

m

〉
−
[〈
X̂

(j)
i

〉〈
X̂

(l)
k X̂(n)

m

〉
+
〈
X̂(n)

m

〉〈
X̂

(j)
i X̂

(l)
k

〉
+
〈
X̂

(l)
k

〉〈
X̂(n)

m X̂
(j)
i

〉]
.

(2.62)

We now assume that operators are statistically independent of each other, such that ⟨·⟩c = 0 for

n > 1. We may therefore invert the expressions of Eq. (2.62) in order to derive an expansion of

nth order moment in terms of moments on the order of n− 1 or smaller. For the second and third
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order moments we obtain:〈
X̂

(j)
i X̂

(l)
k

〉
=
〈
X̂

(j)
i

〉〈
X̂

(l)
k

〉
,〈

X̂
(j)
i X̂

(l)
k X̂(n)

m

〉
=
〈
X̂

(j)
i

〉〈
X̂

(l)
k X̂(n)

m

〉
+
〈
X̂(n)

m

〉〈
X̂

(j)
i X̂

(l)
k

〉
+
〈
X̂

(l)
k

〉〈
X̂(n)

m X̂
(j)
i

〉
− 2

〈
X̂

(j)
i

〉〈
X̂

(l)
k

〉〈
X̂(n)

m

〉
.

(2.63)

We focus on the decomposition of second-order moments
〈
X̂

(j)
i X̂

(l)
k

〉
=
〈
X̂

(j)
i

〉〈
X̂

(l)
k

〉
, which

corresponds to a mean-field treatment.

2.3.2 Liouville Space

Let us consider an atom with d states, these states are represented as unit vectors of dimension

(d× 1):

|x1⟩ =



1

0

...

0


, |x2⟩ =



0

1

...

0


, . . . |xd⟩ =



0

0

...

1


, (2.64)

and are elements of a d-dimensional Hilbert space, where they form an orthonormal basis. Operators

in this Hilbert space are represented as matrices of dimension (d× d)

Ô =


O11 . . . O1d

...
...

Od1 . . . Odd

 . (2.65)

In Liouville space the density operator is transformed into a vectorized operator of dimension

(d2 × 1) and is represented by a superket ||⟩⟩, where the i-th column of the density matrix ρ•1

(counting from the left) is stacked onto the next column.

ρ̂ =
∑
i

∑
j

ρij |i⟩ ⊗ ⟨j| −→ |ρ̂⟩⟩ =
∑
i

∑
j

ρij |i⟩ ⊗ |j⟩ , (2.66)
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|ρ̂⟩⟩ =



ρ•1

ρ•2

...

ρ•d


, where ρ•i =



ρ1i

ρ2i

...

ρdi


. (2.67)

All other operators except for the Liouvillian become (d2×d2) superoperators by taking the tensor

product with the (d× d) identity operator Îd

Ô = Îd ⊗ Ô. (2.68)

It is important to note that Liouville space is also a Hilbert space, therefore the postulates of

quantum mechanics are preserved. In Liouville space we can now simulate the master equation

by performing matrix-vector multiplication instead of matrix-matrix multiplication, which greatly

reduces our simulation times.



Chapter 3

Mean-Field Floquet Theory for a Three-Level Cold-Atom Laser

3.1 Motivation

Lasing is realized when a pumped medium provides sufficient optical gain for a cavity or

resonator mode. This gain is often provided by stimulated emission which needs to overcome the

dissipation of cavity photons and the rate of photon reabsorption. Due to the symmetry between

stimulated emission and absorption this usually requires population inversion in conventional two-

level systems. However, advances in tailoring emission and absorption spectra e.g. by dynamically

driving multi-level systems [17] have led to the realization of lasing or amplification without inver-

sion [17, 68, 70, 1, 38, 58, 2], exciton-polariton condensates [3, 13, 67, 7], and photon Bose–Einstein

condensates [36, 37].

One main application of lasers relies on their ability to produce coherent and stable light

that can be used to probe materials in spectroscopy [27], but also as ultra-stable oscillators in

metrology [10, 45]. Often these oscillators are stabilized by using highly engineered cavities that

trap the light and shield the coherence against environmental noise [76]. Instead, only recently, it

was pointed out that ultra-coherent light can also be extracted directly from atoms with metastable

states that possess ultra-narrow linewidths [51]. In this case one requires sufficient control over the

atomic external degrees of freedom such that they are trapped or confined within the cavity and

sufficiently cooled. One example of such cold-atom lasers is the superradiant laser [51, 4, 59, 12,

42, 66] which uses population inversion on a ultra-narrow transition to achieve lasing in the optical

domain with a potential mHz linewidth. However, so far the continuous-wave operation regime of
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this laser is elusive because of radiative heating due to the driving and trapping lasers and the need

of finding efficient repump schemes. This is why guided atomic beams [8] are currently explored as

a potential alternative [72, 9, 18, 44, 33].

Another solution to this problem is the realization of a hybrid device which achieves lasing

and, at the same time, cooling and trapping of the atoms [65, 75, 34, 31, 32]. The experiment

described in Ref. [22] is a potential platform for such a device where lasing on a narrow line has

been realized while a magneto-optical-trap cools and traps the atoms. Moreover, in this setup las-

ing is achieved without obvious population inversion on the narrow transition, instead the emission

spectrum is modified due to a two-photon Raman resonance of a cavity mode and the trapping

lasers. Remarkably, one can then achieve lasing by applying a coherent drive to the narrow tran-

sition which obtains sufficient population in the excited state without inversion. The theoretical

description of such system is challenging because it requires the correct description of the internal

and external degrees of the atoms and the cavity field.

In this thesis, as a first step towards such a description, we will provide a simple mean-field

approach which allows us to determine the lasing threshold, intensity, and emission frequency.

While we do not describe atomic motion in this thesis, we want this theory to be a first benchmark

for future theories that describe atomic motion, internal, and cavity degrees of freedom on equal

footing. We develop general methods to predict the lasing threshold and emission frequency. More-

over we use a Floquet method to predict the lasing intensity and frequency at steady-state and

compare these results to previously used second-order cumulant approaches [32, 62]. Furthermore

we highlight the non-linear aspect of this system by showing the existence of bistable lasing and

non-lasing solutions, which was also evident in the experiment [23].

This chapter is organized as follows. We begin in Sec. 3.2 by introducing a fully quantum

description of the system and then applying the c-number and mean-field approximations. We then

analyze the onset of lasing in Sec. 3.3. Here, we preform a stability analysis on a non-lasing state

against field fluctuations in Sec. 3.3.1 in order to derive an apparent lasing threshold. We then, in

Sec. 3.3.2, introduce a Floquet method to study the lasing intensity and frequency. In Sec. 3.3.3, we
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also study the bistability in this setup by analyzing a hysteresis behavior. In Sec. 3.4.1 we compare

our mean-field results to a second-order cumulant approximation and we conclude the thesis in

Sec. 3.4.2.

3.2 Theoretical Model

3.2.1 System Dynamics

Our theoretical model basically follows the setup and level scheme that has been used in

the experiment of Ref. [22], depicted in Fig. 3.1(a), and explained as follows. A cloud of N non-

interacting three level atoms composed of two excited states |e⟩ and |a⟩ and one ground state |g⟩,

creating a V -level structure [see Fig. 3.1(b)], are cooled and trapped in an optical cavity. We

consider the scenario where two external lasers drive the atoms homogeneously. The |g⟩ ↔ |a⟩

transition with frequency ωa and lifetime γa is driven by an off-resonant laser with Rabi frequency

Ωm and frequency ωm. The transition |g⟩ ↔ |e⟩ with frequency ωe and lifetime γe is driven by a

second laser with Rabi frequency Ωp and frequency ωp. In addition, the |g⟩ ↔ |e⟩ also couples to

a cavity mode with resonance frequency ωc, linewidth κ, and a vacuum coupling gc. The dynamics

of the system is described by a Born–Markov master equation. This describes the time evolution

of the density operator of both the atomic and cavity degrees of freedom ρ̂AF and takes the form

∂tρ̂AF =
1

iℏ

[
Ĥ, ρ̂AF

]
+ L̂dρ̂AF , (3.1)

where we have used ∂t = ∂/(∂t). The coherent dynamics of the atom-cavity system is given by the

Hamiltonian

Ĥ = ℏ∆′
cĉ

†ĉ+
N∑
j=1

{
− ℏ∆pσ̂

(j)
ee − ℏ∆mσ̂

(j)
aa +

ℏΩp

2

(
σ̂(j)ge + σ̂(j)eg

)
+

ℏΩm

2

(
σ̂(j)ga + σ̂(j)ag

)
+ ℏgc

(
ĉ† σ̂(j)ge + ĉσ̂(j)eg

)}
,

(3.2)

where ĉ (ĉ†) is the annihilation (creation) operator of the cavity mode and σ̂
(j)
kl = |k⟩j ⟨l|j is

the transition matrix element of an atom indexed by j between the states k, l ∈ {g, e, a}. The

Hamiltonian is reported in the frame where the cavity and |e⟩ state rotates with frequency ωp
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Figure 3.1: (a) Sketch of an ensemble of N three-level atoms coupling to a high-finesse optical
cavity and driven by two external lasers. (b) V -shaped atomic level diagram of atom j. The
|g⟩ ↔ |e⟩ transition is driven by the coherent pump laser and is coupled to the cavity mode while
the |g⟩ ↔ |a⟩ transition is driven by a MOT laser.
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and the |a⟩ state rotates with frequency ωm. In this rotating frame we introduce the detunings

∆′
c = ∆c −∆p, ∆c = ωc − ωe, ∆p = ωp − ωe, and ∆m = ωm − ωa. The dissipative dynamics of the

atom-cavity system are encapsulated by the Lindblad superoperator Ld given by

L̂d = κD̂ [ĉ] +
N∑
j=1

{
γeD̂

[
σ̂(j)ge

]
+ γaD̂

[
σ̂(j)ga

]}
, (3.3)

with D̂
[
Ĵ
]
ρ̂AF = Ĵ ρ̂AF Ĵ

† −
(
Ĵ†Ĵ ρ̂AF + ρ̂AF Ĵ

†Ĵ
)
/2 for a jump operator Ĵ .

3.2.2 Parameter Regime and Lasing Mechanism

Following the experimental setup of Ref. [22], we consider the parameters associated with

the states |g⟩ ≡ 1S0, |e⟩ ≡ 3P1, and |a⟩ ≡ 1P1 in 174Yb. We mention here that similar parameter

regimes can also be realized with other elements such as 40Ca and 88Sr. Here, the |g⟩ ↔ |a⟩

transition is dipole-allowed resulting in a much broader linewidth compared to the narrow dipole-

forbidden |g⟩ ↔ |e⟩ transition (i.e., γe ≪ γa). In Ref. [22], the laser that is driving the |g⟩ ↔ |a⟩

transition is also used to cool and trap the atoms in a magneto-optical trap (MOT) which is why

we denote this driving laser as the MOT laser (see also the subscript m in Ωm, ωm, ∆m) and is red-

detuned from resonance ∆m < 0. A second laser denoted as the pump laser (see also the subscript

p in Ωp, ωp, ∆p) drives the |g⟩ ↔ |e⟩ transition. This will usually be operated close to resonance

∆p ≈ 0 with a high power Ωp ≫ γe such that sufficiently many atoms can be pumped into the |e⟩

state and undergo the resonant Raman transition. The cavity resonance is chosen such that the

decay from |e⟩ to |g⟩ via emitting a cavity photon is far-off resonant, |∆′
c| ≫ κ, γe.

However, the two-photon transition, |e⟩ to |g⟩ by emitting a cavity photon and then |g⟩ to

|a⟩ by absorbing a photon from the MOT laser is resonant, ∆′
c ≈ ∆m [see Fig. 3.1(b)]. This process

allows the |e⟩ state to decay back to |g⟩ via emitting a cavity photon, absorbing a MOT laser

photon and then subsequent spontaneous emission inducing a transition from |a⟩ to |g⟩. This rate,

for ∆′
c ≈ ∆m, can be estimated as γeff ≈ g2Ω2

m/(γa∆
2
c). It provides an additional broadening on the

|e⟩ ↔ |g⟩ transition which one can usually neglect at the single-particle level γeff ≪ γe. However, it

provides a gain G for emission into the cavity mode which is proportional to the number of atoms
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in the |e⟩ state times γeff , thus G = Nγeff ⟨σ̂ee⟩.

Lasing is realized in this model if this gain exceeds the losses L of the cavity given by L = κ,

which leads to a qualitative inequality to achieve lasing ĉ. While this inequality is oversimplified,

since it excludes various light-shifts and additional broadening effects, it captures the main idea

behind the lasing mechanism, that is the balance of gain and losses. We emphasize there is no

population inversion needed between the states |e⟩ and |g⟩, instead one simply requires enough

atoms in the |e⟩ state such that the mean number of atoms in the |e⟩ state satisfies ⟨σ̂ee⟩ > κ/(Nγeff).

A central purpose of this work is to develop a simple theoretical model that can predict the laser

threshold and intensity while including the appearing light shifts and broadening mechanisms that

are introduced by the two driving lasers. Such a description is needed because the simplified picture

given above does completely ignore that |g⟩ ↔ |e⟩ and ĉ must have various frequency components

including the frequency of the pump but also the frequency of the laser light in the cavity. To

provide such a description we use a mean-field method that we introduce in the next section.

3.2.3 Mean-Field Theory

While the master equation Eq. (3.1) fully encapsulates the dynamics we wish to evaluate, it

is not convenient to use for numerical simulations other than for extremely small atom numbers

N ∼ O(1). This is not only because the atomic Liouville space scales as 9N , but also because the

cavity field in the lasing regime is assumed to be extremely large
〈
ĉ†ĉ
〉
≫ 1 and therefore requires

a substantial number of Fock states to model quantum mechanically.

To overcome this obstacle, we now invoke approximative methods. The first approximation

is a mean-field approximation. Here, we assume the atomic density operator is achieved by tracing

over the cavity degrees of freedom ρ̂A = TrF(ρ̂AF ) factorizes into mean-field density matrices ρ̂j

such that ρ̂A =
⊗

j ρ̂j , where the tensor product runs over all particles indexed by j. In addition,

we assume that all of these density operators are identical, ρ̂ = ρ̂j , which is motivated by the

permutation symmetry of the master equation Eq. (3.1). To be able to simulate the cavity field,

we assume it is always in a coherent field ρ̂F = TrA(ρ̂AF ) = |α⟩⟨α|, when we partially trace out the
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atoms. In this simplified assumption, we completely throw away fluctuations in the field. Instead

of evolving the cavity degrees of freedom, we simply simulate the complex field α, by the following

equation ∂tα = TrF(ĉ∂t|α⟩⟨α|), which results in

∂tα = −
(
i∆′

c +
κ

2

)
α− iNgc

〈
σ̂(1)ge

〉
, (3.4)

where
〈
σ̂
(1)
ge

〉
= Tr

(
σ̂
(1)
ge ρ̂1

)
. The evolution of ρ̂1 can now be derived using Eq. (3.1) and tracing

out the cavity degrees of freedom and all atoms except for one. This results in the mean-field

master equation

∂tρ̂1 = L̂Aρ̂1 + L̂F [α]ρ̂1. (3.5)

Here, the atomic Liouvillian superoperator is given by

L̂Aρ̂1 =
1

iℏ

[
ĤA, ρ̂1

]
+
(
γeD̂

[
σ̂(1)ge

]
+ γaD̂

[
σ̂(1)ga

] )
ρ̂1, (3.6)

with the atomic Hamiltonian defined as

ĤA = −ℏ∆pσ̂
(1)
ee − ℏ∆mσ̂

(1)
aa +

ℏΩp

2

(
σ̂(1)ge + σ̂(1)eg

)
+

ℏΩm

2

(
σ̂(1)ga + σ̂(1)ag

)
, (3.7)

while the Liouvillian describing the coupling with the coherent field becomes

L̂F [α] ρ̂1 =
1

iℏ

[
ĤF (α) , ρ̂1

]
, (3.8)

with the field Hamiltonian given by

ĤF (α) = ℏgc
(
α∗σ̂(1)ge + ασ̂(1)eg

)
. (3.9)

The system of coupled differential equations for ρ̂1 and α is at the basis of our theoretical

mean-field analysis. We first mention by employing this mean-field analysis, we can now simulate

only a single atom that couples to a coherent field which sees N identical atoms. By doing this

we have simplified the simulation of the full master equation Eq. (3.1) to the simulation of one

complex variable α and a 3 × 3 density matrix ρ̂1. As a consequence, however, we have found a

non-linear term L̂F [α], which introduces a mean-field coupling between the atoms mediated by the

cavity field.
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3.3 Lasing Analysis

Having established the setup and a simple mean-field model of the system, we now study the

lasing regime. We do this using two different analytical methods that reveal the lasing threshold,

lasing frequency, and field amplitudes in various parameter regimes.

3.3.1 Stability Analysis

To begin, we find a set of solutions to the atom-cavity system, (ρ̂0, α0)
1 , in the non-lasing

regime after it has reached steady-state, ∂tα0 = 0 and ∂tρ̂0 = 0 . We solve these equations self-

consistently with the result

α0 =
−iNgcTr

(
σ̂
(1)
ge ρ̂0

)
i∆′

c +
κ
2

, (3.10)

where we have used Eq. (3.5) to find the steady-state of the atom ρ̂0. The mean-field component

α0 in the non-lasing regime is often considered to be zero. This is not true in our case because the

pump laser drives the |g⟩ ↔ |e⟩ transition and therefore induces a non-vanishing dipole moment

Tr
(
σ̂
(1)
ge ρ̂0

)
. This is the pump laser field that is scattered by the atoms into the cavity and is small

due to the choice of our parameters in which ∆c is a large frequency but not negligible.

In order to find the transition from a non-lasing to a lasing state, we have to analyze fluctua-

tions around the solution (ρ̂0, α0). Those fluctuations are denoted by δα = α−α0 and δρ̂ = ρ̂1− ρ̂0

and are physically always present, e.g. due to external noise but also due to quantum fluctuations.

The linearized equations of motion for the fluctuations are given by

∂tδρ̂ =
(
L̂A + L̂F [α0]

)
δρ̂+ L̂F [δα]ρ̂0, (3.11)

and

∂tδα = −
(
i∆′

c +
κ

2

)
δα− iNgcTr

(
σ̂(1)ge δρ̂

)
, (3.12)

where we have neglected terms that are second-order in fluctuations and used the steady-state

1 Variables with subscript 0 are in steady-state.
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relation in Eq. (3.10). We now use the Laplace transformation,

L[f(t)](s) =

∫ ∞

0
f(t)e−st dt, (3.13)

to find the linear and coupled equations of L[δα], L[δρ̂], and L[δα∗]. After eliminating L[δρ̂] from

those equations, we get two linearly coupled equations for L[δα] and L[δα∗] given by

C(s)b⃗(s) = x⃗(s), (3.14)

where we have introduced

b⃗ =

 L[δα]

L[δα∗]

 , x⃗ =

 δα(0)− iNgcZ(s)

δα∗(0) + iNgcZ
∗(s)

 , (3.15)

and the 2× 2 coupling matrix C with entries Cab [a, b ∈ {1, 2}] given by

C11(s) = s+ i∆′
c +

κ

2
+Ng2cY (s) = C∗

22(s), (3.16)

and

C12(s) = Ng2cX(s) = C∗
21(s). (3.17)

Here, we have used the definitions

X(s) = Tr
(
σ̂(1)ge W

−1(s)[σ̂(1)ge , ρ̂0]
)
,

Y (s) = Tr
(
σ̂(1)ge W

−1(s)[σ̂(1)eg , ρ̂0]
)
,

Z(s) = Tr
(
σ̂(1)ge W

−1(s)δρ̂(0)
)
,

(3.18)

and

W (s) = s− L̂A − L̂F [α0]. (3.19)

Details of this derivation have been shifted to Appendix A. Equation (3.14) can now be solved by

inverting C(s) for every value of s.

The stability of the non-lasing solution (ρ̂0, α0) is determined by whether δα(t) is exponen-

tially damping (stable) or exponentially growing (unstable). Stability for the fields thus require

that all poles sn of the Laplace transformed fields b⃗(s) have a negative real part. This is true since
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such a pole sn results in a field δα ∝ esnt. To determine the stability, it is then sufficient to find

the primary solution s0 with the largest real component. Before finding s0, we first mention that

an instability cannot occur from a pole of Z(s). This is true since all values of s for which W

Eq. (3.19) is not invertible are negative which is equivalent to the statement that the spectrum of

L̂A + L̂F [α0] consists of numbers with negative real part. Then, the only way to find an instability

is by a pole coming from inverting C(s). These poles can be found as the roots of the determinant

of C(s) which is called the dispersion relation

D(s) = det [C(s)] . (3.20)

Using this result, we can now numerically find s0 by calculating the zero with the largest real part

of Eq. (3.20). We plot the real and imaginary parts of this primary root in Fig. 3.2. The special case

of when Re (s0) = 0 is the threshold value of the lasing transition, which we calculate numerically

and display as a red dashed line in Fig. 3.2. When Re (s0) < 0, the non-lasing solution is stable

and Re (s0) determines the decay rate of the fluctuations. Meanwhile, the imaginary part Im (s0)

determines the frequency of the light emission as δα ∝ exp(i Im (s0) t). If Re (s0) > 0, we expect

an exponential increase in the field fluctuations, indicating that the initial state of a non-lasing

solution was unstable. Dynamically we would expect that this results on longer timescales in a

large cavity light field or lasing.

It might be interesting to compare the mean-field results in Fig. 3.2 with our simplified

threshold ⟨σ̂ee⟩ = κ/(Nγeff) ≈ 3 × 103/N that we introduced in Sec. 3.2.2. For large pump power

we expect ⟨σ̂ee⟩ ≈ 0.5 resulting in a threshold at N ≈ 6000. This is in fact close to the lower

bound of the threshold (red dashed line) visible in Figs. 3.2(a) and (b). The curvature of the red

line is likely due to ⟨σ̂ee⟩ ≈ 0.5 being violated if the pump laser becomes off-resonant. It might

seem surprising that the lowest critical value of N is not found at ∆p = 0. However, this can

be partially explained by the existence of an AC-Stark shift that is induced by the MOT laser.

Since the MOT laser is red detuned from the |g⟩ ↔ |a⟩ transition, it shifts the resonance of the |g⟩



27

Figure 3.2: (a) The real component Re(s0) and (b) imaginary component Im(s0) of the primary
zero s0, which possesses the largest real component of D(s) in Eq. (3.20), as a function of the pump
detuning and atom number. (c)–(d) The real and imaginary part of the zero s0, respectively, as
a function of the pump Rabi frequency and the pump detuning ∆p. The red dashed line is the
lasing threshold in which Re(s0) = 0. The common parameters for all plots are ∆c = −192γe,
∆m = −192γe, gc = 0.33γe, γa = 159γe, Ωm = γa/2, and κ = 0.39γe. Meanwhile, (a)–(b) has
Ωp =

√
140γe and (c)–(d) has N = 20000.
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transition relative to the |e⟩ transition down by an amount of

∆AC,MOT ≈ − Ω2
m

4∆m
, (3.21)

which is ∆AC,MOT ≈ 8.23γe for our parameters. We can then compensate this shift by using a blue

detuned pump laser.

A similar shift is also found in Figs. 3.2(c) and (d). Here, the threshold line seems to be

nearly symmetric with respect to its minimum. Such a behavior is expected, according to our

considerations in Sec. 3.2.2. In fact the critical pump power in this picture is solely meant to pump

enough atoms in the |e⟩ state. The population of this state approaches 0.5 for a diverging value

of Ω2
p/
(
(∆p − ∆opt

p )2 + Γ 2/4
)
. Here Γ is the effective linewidth of |e⟩ and ∆opt

p accounts for all

frequency shifts. Thus we would expect the critical value of Ωp to scale with
√

(∆p −∆opt
p )2 + Γ 2,

which is symmetric in∆p around∆
opt
p and also explains the linear slope of the red line in Figs. 3.2(c)

and (d) for large detuning |∆p|. The asymmetry of the transition line in Figs. 3.2(a) and (b) is

likely due to a dependence of ∆opt
p and Γ on N .

Finally we want to discuss the results of Im(s0) that are visible in false colors in Figs. 3.2(b)

and (d). We find that close to the lasing threshold the frequency of the amplified light field is

Im(s0) ≈ −∆′
c. This means that, since all equations are reported in a reference frame where

â rotates with −ωp, the light is emitted approximately in resonance with ωc. Nevertheless, we

find a non-negligible shift of the light emitted into the cavity, which can be far detuned from the

cavity resonance with respect to the cavity linewidth, especially for the case of a off-resonant pump

laser.

3.3.2 Floquet Method

While the stability analysis offers insight about the onset of the lasing dynamics, it inherently

assumes an underlying non-lasing solution. This stability analysis can be used to calculate the lasing

threshold. However, it cannot be used to calculate the intensity and frequency at steady state of

the actual lasing solution.
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To find a description for the lasing solution, we now employ a Floquet method. We assume

the field and atomic density operator can be decomposed in components corresponding to multiples

of the frequency ω. The frequency ω has to be found self-consistently. We first make a Fourier

decomposition of the field and atomic density operator into 2m + 1 components for some cutoff

frequency ωcut = mω. The decomposition of α and ρ̂ is a sum of time-independent amplitudes

given by

α =
m∑

n=−m

αne
iωnt, ρ̂ =

m∑
n=−m

ρ̂ne
iωnt. (3.22)

Substituting this into Eqs. (3.11) and (3.12) results in

iωnρ̂n = L̂Aρ̂n +

m∑
n′=−m

(
Ĝu[αn−n′ ] + Ĝd[α

∗
n′−n]

)
ρ̂n′ , (3.23)

and

iωnαn = −
(
i∆′

c +
κ

2

)
αn − iNgcTr(σ̂geρ̂n), (3.24)

where we introduced Ĝu[α]ρ̂ = −igcα[σ̂eg, ρ̂] and Ĝd[α
∗]ρ̂ = −igcα∗[σ̂ge, ρ̂], such that we decompose

the coupling of the atomic density operator with the field as L̂F [α] = Ĝu[α] + Ĝd[α
∗].

The non-lasing solution, whose stability we have analyzed in the previous Sec. 3.3.1, can be

understood as a limiting case of Eq. (3.24) where we impose ρ̂n = αm = 0 for m ̸= 0. This is the

case when there is, to good approximation, no additional field in the cavity except for the scattered

laser light given by α0 Eq. (3.10). Since this non-lasing solution becomes unstable we expect to

observe a component in the sideband α1, where the frequency ω is close to −∆′
c. This is by far

the largest component and all other components are suppressed due to the cavity linewidth being

much smaller than the emission frequency κ≪ ω.

Consequently, to a good approximation we can only consider three frequency components

which is equivalent to performing a cut-off at m = 1. Imposing this cutoff onto Eq. (3.24) and

therefore disregarding higher and lower frequency terms, let us rewrite Eq. (3.24) intoL(α⃗, ω)ρ⃗ = 0⃗,
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where ρ⃗ = (ρ̂−1, ρ̂0, ρ̂1)
T , α⃗ = (α−1, α0, α1)

T , and

L(α⃗, ω) =



−iω − L̂0 −L̂−1 0

−L̂1 −L̂0 −L̂−1

0 −L̂1 iω − L̂0


. (3.25)

The elements of L(α⃗, ω) are given by

L̂−1 = Ĝu[α−1] + Ĝd[α
∗
1], (3.26)

L̂0 = L̂A + Ĝu[α0] + Ĝd[α
∗
0], (3.27)

and

L̂1 = Ĝu[α1] + Ĝd[α
∗
−1]. (3.28)

We can now find the steady-state ρ⃗(α⃗, ω) by calculating the kernel of L(α⃗, ω) and imposing the

normalization condition. This steady-state depends on the choice of the field α⃗ and frequency ω

which has to be updated self-consistently. To do this we calculate

˜⃗α(α⃗, ω) = (α̃−1(α⃗, ω), α̃0(α⃗, ω), α̃1(α⃗, ω))
T , (3.29)

with

α̃n(α⃗, ω) =
−iNgcTr(σ̂geρ̂n(α⃗, ω))

i(∆′
c + ωn) + κ

2

, (3.30)

and where ρ̂n(α⃗, ω) is the n component of the steady-state vector ρ⃗(α⃗, ω). Then we define a

function

F (α⃗, ω) =
m∑

n=−m

|αn − α̃n(α⃗, ω)|2, (3.31)

such that F (α⃗, ω) = 0 results in the realization of a steady-state for the field α⃗, the state of the

atom ρ⃗ and the frequency ω. We emphasize that one special case of this steady-state solution is the

non-lasing state that is imposing ρ̂n = αm = 0 for m ̸= 0. Finding a solution α⃗ and ω of Eq. (3.31)



31

Figure 3.3: (a) The function F defined in Eq. (3.31) in arbitrary units for N = 20000, ∆p = 10γe,
and Ωp = 2γe, , α0 ≈ −3.3 − 2.6i, α1 ≈ 0 + 0i, and ω = undefined. (b) for Ωp = 15γe, α0 ≈
−5.6− 1.3i, α1 ≈ 0 + 0i, and ω = 205.5γe.
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is achieved numerically and we show F (α−1, α0, α1, ω) in the non-lasing (a) and lasing regime (b)

in Fig. 3.3 for a fixed choice of α0, α1 and ω [see caption of Fig. 3.3]. In the non-lasing case we find

there is only one zero when α−1 = 0, as seen Fig. 3.3(a). This indicates that the only light field in

the cavity is the scattered laser light by the atoms given by α0. In the lasing regime Fig. 3.3(b) we

find a U(1) symmetric set of solutions indicating a non-vanishing lasing field amplitude |α−1|2 with

an arbitrary phase. The found U(1) symmetry is a direct consequence of the underlying equations

that are invariant under a transformation

α−1 7→ α−1e
−iφ, ρ̂−1 7→ e−iφσ̂ee ρ̂−1e

iφσ̂ee , (3.32)

with arbitrary phase φ. This transformation is defined in the Fourier components. Notice that the

total field α and atomic density ρ̂ is not invariant under this transformation. The appearance of a

U(1) symmetric solution is a common feature of laser systems and highlights that the phase of the

laser is spontaneously broken. In fact this directly implies that the field α−1 is not locked to the

phase of an external driving laser.

Using Eq. (3.31) we now find the solution α⃗ and ω and calculate the total, time-averaged

field

|α|2av = lim
tav→∞

1

tav

∫ tav

0
|α(t)|2 dt = |α−1|2 + |α0|2 + |α1|2. (3.33)

We are now in a position to reexamine the lasing threshold by studying the intensity of the field

for different parameters using our three-component Floquet method. We do this in Fig. 3.4 where

we examine the same parameter regimes as in Fig. 3.2 and display the threshold found using the

stability analysis as a red dashed line in each plot. The intensities are visible in Fig. 3.4(a) and (c).

We find the red dashed line is in good agreement with the onset of a large cavity field for negative

and small values of ∆p. Instead, interestingly, we find there exists a region for large ∆p in which

the stability analysis suggests that the non-lasing solution is stable and yet our Floquet method

predicts a large intensity. This implies there exists a bistability, where a lasing and non-lasing

solution are both stable.
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Figure 3.4: Floquet method calculations of the intensity [(a) and (c)] and emission frequency [(b)
and (d)] of the lasing field. The first row (a)–(b) shows values as a function of atom number and
pump detuning while the second row (c)–(d) plots the values as a function pump Rabi frequency
and pump detuning. The red dashed lines were calculated using Eq. (3.20). All parameters are the
same as in Fig. 3.2.
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In Fig. 3.4(b) and (d) we show the emission frequency ω for the same parameters. In the

case where we found α−1 = 0 this frequency is not defined which we indicate in these plots by

the “No Lasing” regime. In the lasing regime we find the frequency ω to be close but detuned

from the cavity resonance −∆′
c. This shows there are non-trivial light-shifts that modify the lasing

frequency. As seen in Fig. 3.4(d) this frequency seems to be almost independent of Ωp and ∆p,

while we see a major dependence of the frequency ω on the atom number N [see Fig. 3.4(d)]. Here,

we see an increase of the detuning ω +∆′
c with the number of atoms N .

3.3.3 Hysteresis Regime

Now, we want to study the regime where we expect to have bistable lasing and non-lasing

solutions. We do this by dynamically ramping the pump power up and down again. We initialize

the system with
〈
σ̂
(1)
gg (t = 0)

〉
= 1 and |α(t = 0)|2 ≈ 0, as well as the pump laser being switched

off Ωp(t = 0) = 0. This is the non-lasing regime when the cavity field is basically empty. Using this

initial state we simulate the dynamics of the field and the mean-field atomic density operator whose

evolution is governed by Eq. (3.4) and Eq. (3.5), respectively. While integrating those equations, we

sweep the pump Rabi frequency with a linear profile Ωp(t) = At with a slow rate A until Ωp = 20γe

at time T . This value is chosen such that for all parameters visible in Fig. 3.4 we end up with only

the lasing solution. After ramping up the power we ramp the power back down with the same but

negative linear slope −A such that Ωp(t) = 20γe−A(t−T ) and Ωp(2T ) = 0. We show the ramping

scheme as an inset in Fig. 3.5(a).

We perform these simulations for two different detunings representing the parameters where

we do not expect to find bistability ∆p = 10γe [see Fig. 3.5(a)] and where we expect to find

bistability ∆p = 25γe [see Fig. 3.5(b)]. In Fig. 3.5(a) and (b) we plot the dynamics of the field

intensity |α(t)|2 for ramping up the power as gray dotted lines and for ramping down the power as

a black solid line. As visible in Fig. 3.5(a) the black line completely overlaps with the gray data

point therefore indicating that the lasing solution is the same when ramping up or down the pump

power. We also compare the dynamically simulated laser intensity with |α|2av obtained from the



35

Figure 3.5: Intensity |α|2 as a function of Ωp ∝ t for 20000 atoms. The evolution uses (a) ∆p = 10γe
which should does not possess a hysteresis regime and (b) ∆p = 25γe which has a hysteresis regime
for 4γe ≲ Ωp ≲ 10γe. In both plots, the gray curve represents the “forward” evolution as Ωp

increases linearly, while the black curve represents the “backwards” evolution with Ωp decreasing
linearly, with ramping rate A ≈ 3.1 × 10−4γ2e and integration time T = 64000/γe. Meanwhile,
the red dashed curves are the lasing thresholds calculated from the stability analysis, i.e., when
Re(s0) = 0. The orange dotted curves display the value of |α|2 calculated from the Floquet method
for a particular pump power. The inset displays the forward and backwards ramping of Ωp.
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mean-field Floquet method displayed as orange dots. We find excellent agreement showing that we

adiabatically move along the lasing solution.

In Fig. 3.5(b) we see a different behavior due to the existence of bistability. When ramping

up the pump power, the atomic system starts lasing for a pump power that is even beyond the one

predicted by the stability analysis (vertical dashed line). We expect this is due to the fact that

although our ramp speed A is slow it can never be adiabatic when crossing a transition. When

ramping the power down we find that in the regime where we previously found only a very small

cavity field, we are now in a lasing regime. The light intensity then suddenly jumps to zero for

sufficiently weak pumping Ωp ≲ 4γe. This is in agreement with the mean-field Floquet method

(orange dots). Our findings show a clear indication of hysteresis in this atom-cavity system which

is highlighting the non-linear nature of the atom-light coupling.

3.4 Discussion and Conclusion

3.4.1 Discussion of the Mean-Field Results

Our analysis treats both atom-atom and atom-cavity interactions at a mean-field level. In

addition it is assumed that the field is in a “classical” coherent state which is often a good ap-

proximation in laser theory. However, the disregard of fluctuations and correlations only allows

us to derive certain properties such as the laser intensity and frequency of the cavity field. In the

following we want to benchmark our results with a second-order cumulant approximation which

includes fluctuations in the atomic and cavity degrees of freedom to a certain extent.

3.4.2 Second-Order Cumulants vs. Mean-Field Results

The second-order cumulant description is derived by calculating the time derivative of all

mean-field values ⟨Â⟩ and second moments ⟨ÂB̂⟩ where Â, B̂ are arbitrary single atom operators

or the cavity field operator ĉ. Using permutation symmetry and factorizing third-order moments

one can then find a closed set of equations for all first ⟨Â⟩ and second-order moments ⟨ÂB̂⟩. The
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exact derivation is described in Ref. [61] and also applied to a similar system in Ref. [32]. Since

the cumulants also include the dynamics of second moments they are considered to go beyond the

mean-field description that is presented in this thesis.

We now want to compare the second-order cumulant approximation with our mean-field

results. In a first comparison we analyze the dynamics for parameters above and below the lasing

threshold. In Fig. 3.6(a) we show the dynamics of |α|2 calculated from the mean-field results,

shown as the black solid line. The dynamics are shown for Ωp =
√
140γe, ∆p = 0, and N = 10000

which is slightly below the lasing transition visible in Fig. 3.2. We compare the dynamics of this

mean-field trajectory with the ones of the second-order cumulants results for |⟨ĉ⟩|2 and ⟨ĉ†ĉ⟩. The

mean-field predicts a very similar trajectory compared to |⟨ĉ⟩|2 while ⟨ĉ†ĉ⟩ is significantly higher.

The reason for this is that the mean-field result α is mostly dominated by the coherently scattered

laser field [see Eq. (3.10)]. This is also described as a coherent field in the second-order cumulants

as ⟨ĉ⟩. However, the second-order cumulants also describe the incoherent field ⟨ĉ†ĉ⟩ − |⟨ĉ⟩|2 which

is significant below the lasing threshold. Above the lasing threshold for N = 20000 and same

pump power Ωp =
√
140γe and detuning ∆p = 0 we show the dynamics of the mean-field and

second-order cumulant description in Fig. 3.6(b). Now we observe that the mean-field trajectory α

oscillates around the mean intensity ⟨ĉ†ĉ⟩ of the second-order cumulant description. The coherent

field amplitude |⟨ĉ⟩|2 of the second-order cumulant description is instead very small. Here, the

scattered laser field is just a minor part of the total light field which explains the small value of

|⟨ĉ⟩|2. Instead the lasing field that oscillates approximately at the cavity resonance is much more

intense. This lasing field is described completely differently by the mean-field and the second-order

cumulant descriptions. In mean-field this lasing field is purely coherent and achieved by breaking an

underlying U(1) symmetry. Our mean-field approach assumes a vanishing linewidth of this lasing

field, which is an artifact of our approach coming from ignoring noise. The second-order cumulant

description includes noise to a certain extent therefore the lasing field has a finite linewidth. The

latter results in the fact that this lasing field is described as a incoherent component. Notice that

the lasing component in mean-field |α−1|2 ≈ ⟨ĉ†ĉ⟩−|⟨ĉ⟩|2 is approximately the incoherent light field
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Figure 3.6: Dynamical comparison of the intensity |α|2 for mean-field (MF, black curves) and
〈
ĉ†ĉ
〉

for second-order cumulants (SOC, dark gray curves). Also shown is the coherent component of the
field |⟨c⟩|2 from the second-order code (light gray curves). The evolution uses the same parameters
as Fig. 3.2 expect: (a) N = 10000, Ωp =

√
140γe, ∆p = 0; (b) N = 20000, Ωp =

√
140γe, ∆p = 0;

Steady-state intensities of MF (circles), SOC (pluses), and SOC coherent field (×’s) as a function
of Ωp. The parameters are the same as in Fig. 3.2 with N = 20000 and ∆p = 0.
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in the second-order cumulant theory. This analysis shows the power and also the limitations of

the discussed mean-field theory. Mean-field theory can describe the lasing intensity and dynamics,

however, it completely fails to describe the coherence time of this lasing field and instead assumes

it is completely coherent.

To compare the second-order cumulant results of the intensity to that of a mean-field descrip-

tion, we show different thresholds as function of Ωp and N in Fig. 3.6(c) and (d). We find good

agreement of the time-averaged mean-field intensity |α|2av and the second-order cumulant results

for
〈
ĉ†ĉ
〉
across the non-lasing to lasing transitions. Moreover, we observe that both mean-field and

second-order cumulants predict a lasing transition at sufficiently large atom number N and again

a transition to non-lasing for even larger atom number N [see Fig. 3.6(d)]. The second transition

is explained by a increasing frequency shift for increasing atom number N as it was also noticed

in the emission frequency of Fig. 3.4(b). We expect that this shift eventually becomes too large to

achieve enough population in |e⟩ state and therefore leads again to a non-lasing configuration. The

fact that this is described by both mean-field and second-order cumulant descriptions, is a strong

indicator for mean-field being reliable to describe the correct frequency shifts.

3.4.3 Conclusion

In this thesis, we developed a theoretical model to study a lasing scheme of V -level atoms

trapped in an optical cavity. Our model employed a mean-field approximation of the cavity field

and for the atomic operators which allowed us to simulate the large atom and intracavity photon

numbers required to study the lasing transition. We performed a stability analysis of a non-lasing

solution which allowed us to find the threshold for lasing and the initial emission frequency. We

have analyzed these quantities in terms of changing the pump laser power and frequency as well as

the total number of atoms. In addition, we were able to predict the intensity and emission frequency

of the lasing solution using a Floquet analysis on the mean-field master equation and cavity field.

This Floquet solution shows a U(1) symmetry in one of the frequency components while the total

atomic density operator and cavity field does not possess a U(1) symmetry. Furthermore, within
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this analysis we were also able to predict a bistable region that we tested by observing a hysteresis

within our mean-field approach. Finally we benchmarked our mean-field descriptions with results

from a second-order cumulant theory and discussed its validity.

We expect that the methods presented here can be extended in several ways. One possibility

is to add noise in the cavity and atomic variables such that we can predict a finite, non-vanishing

linewidth of the laser field. In addition it might be interesting to study motion in this model.

Motion can result in additional inhomogeneous broadening due to the Doppler shift of emitted

photons which might alter the lasing threshold and emission frequency. On the other hand, it

might be possible to control the motion of the atom in the lasing regime leading to cooling and

trapping in coexistence with lasing [75, 34, 32]. The realization of the latter would be an example

of a self-sustainable quantum device which produces coherent light, cools, and traps the atoms at

the same time.
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[34] Simon B. Jäger, Minghui Xu, Stefan Schütz, M. J. Holland, and Giovanna Morigi. Semiclassical
theory of synchronization-assisted cooling. Phys. Rev. A, 95:063852, Jun 2017.

[35] J.R. Johansson, P.D. Nation, and Franco Nori. Qutip 2: A python framework for the dynamics
of open quantum systems. Computer Physics Communications, 184(4):1234 – 1240, 2013.

[36] Peter Kirton and Jonathan Keeling. Nonequilibrium model of photon condensation. Phys.
Rev. Lett., 111:100404, Sep 2013.

[37] Jan Klaers, Julian Schmitt, Frank Vewinger, and Martin Weitz. Bose–Einstein condensation
of photons in an optical microcavity. Nature, 468(7323):545–548, Nov 2010.

[38] Olga Kocharovskaya. Amplification and lasing without inversion. Physics Reports, 219(3):175–
190, 1992.
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Appendix A

Laplace Transformation of Field Fluctuations

In this appendix we will show how to calculate the dispersion relation given in Eq. (3.20).

Using Eqs. (3.11) and (3.12), the dynamics of δα is then governed by

∂tδα = −
(
i∆′

c +
κ

2

)
δα− iNgcTr(σ̂geδρ̂). (A.1)

The Laplace transformation of Eq. (A.1) leads to

sL[δα] = δα(0)− (i∆′
c +

κ

2
)L[δα]− iNgcTr(σ̂geL[δρ̂]). (A.2)

We look to solve for L[δα] and need the Laplace transform of Eq. (3.11) which is

L[δρ̂] =W−1(s)δρ̂(0)− igcL[δα
∗]W−1(s)[σ̂ge, ρ̂0]− igcL[δα]W

−1(s)[σ̂eg, ρ̂0], (A.3)

where W (s)−1 is the inverse of the operator given in Eq. (3.19). Then after substituting Eq. (A.3)

into Eq. (A.2), we arrive at

L[δα] =s−1
[
δα(0)−

(
i∆′

c +
κ

2

)
L[δα]− iNgcZ(s)−Ng2cL[δα

∗]X(s)

−Ng2cL[δα]Y (s)
]
.

(A.4)

Eq.(A.4) can be expressed in terms of a matrix-vector product

b⃗ = D(s)−1adj(C(s))x⃗, (A.5)

where adj (C) is the adjugate of matrix C. The elements of C are given in Eq. (3.16) and vectors

b⃗ and x⃗ are defined as

b⃗ =

 L[δα]

L[δα∗]

 , x⃗ =

 δα(0)− iNgcZ(s)

δα∗(0) + iNgcZ
∗(s)

 ; (A.6)
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the dispersion relation is then

D(s) = det [C(s)] . (A.7)

The dynamics of δα are determined by the value largest real part of s for whichD(s) is not invertible

(i.e., when D(s) = 0).



Appendix B

U(1) Transformation Derivation

This appendix is to verify that Eq.(3.30) possesses a component that is U(1) symmetric. We

look to see whether the field α−1 is invariant under the transformation

α−1 7→ α−1e
−iφ, ρ̂−1 7→ e−iφσ̂ee ρ̂−1e

iφσ̂ee , (B.1)

with arbitrary phase φ. This transformation indicates we are moving into the interaction picture

defined by H
′
= ℏσ̂ee, which means we are changing the relative phase between the |g⟩ ↔ |e⟩

transition and field. By applying Eq. (B.1) to Eq. (3.30) we get

α−1e
−iφ =

−iNgcTr
(
σ̂gee

−iφσ̂ee ρ̂−1e
iφσ̂ee

)
i(∆′

c + ωn) + κ
2

. (B.2)

We first calculate the exponential terms containing an operator by performing a Taylor expansion

e−iφσ̂ee =

∞∑
k=0

(−iφσ̂ee)k

k!
,

= Î+
∞∑
k=1

(−iφ)k

k!
σ̂ee + σ̂ee − σ̂ee,

= Î+
∞∑
k=0

(−iφ)k

k!
σ̂ee − σ̂ee,

= Î+ e−iφσ̂ee − σ̂ee,

(B.3)

where we have added a zero to obtain a more convenient form of the exponential term. Then

substituting Eq. (B.3) into the trace we get

Tr
(
σ̂gee

−iφσ̂ee ρ̂−1e
iφσ̂ee

)
= Tr

(
σ̂ge(Î+ e−iφσ̂ee − σ̂ee)ρ̂−1(Î+ eiφσ̂ee − σ̂ee)

)
. (B.4)
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Next, using the fact that the trace is invariant under cyclic permutations (i.e., Tr(ABC) =

Tr(BCA) = Tr(CAB)) Eq. (B.4) simplies to

Tr
(
σ̂gee

−iφρ̂−1

)
= e−iφTr(σ̂geρ̂−1), (B.5)

where we have also used the property Tr(cA) = cTr(A). Eq. (B.2) then becomes

α−1e
−iφ = e−iφ−iNgcTr(σ̂geρ̂−1)

i(∆′
c + ωn) + κ

2

, (B.6)

and is clear that Eq. (3.30) is invariant under this U(1) transformation. As previously stated this

indicates the field α−1 is not locked to the phase of an external driving laser.



Appendix C

Additional Mean-Field Results

This appendix shows an extension of the mean-field formalism where we simulate our mean-

field equations with a noisy classical field. We derive our equations of motion by using the many-

body master equation Eq. (2.36), then for a general time-independent operator Ô, we write

∂t

〈
Ô
〉
= Tr

[
Ô∂tρ̂

]
= Tr

[
1

iℏ

(
ÔĤρ̂− Ôρ̂Ĥ

)
+
∑
k

(
ÔĴkρ̂Ĵ

†
k −

1

2
ÔĴ†

kĴkρ̂−
1

2
Ôρ̂Ĵ†

kĴk

)]

= Tr

[(
1

iℏ

(
ÔĤ − ĤÔ

)
+
∑
k

(
Ĵ†
kÔĴk −

1

2
ÔĴ†

kĴk −
1

2
Ĵ†
kĴkÔ

))
ρ̂

]

=

〈
1

iℏ

[
Ô, Ĥ

]
+
∑
k

(
Ĵ†
kÔĴk −

1

2
{Ĵ†

kĴk, Ô}
)〉

=
〈
L̂‡[Ô]

〉
,

(C.1)

where we have used the cyclic property of the trace and {Â, B̂} = ÂB̂+B̂Â is the anti-commutator.

This is the quantum Heisenberg-Langevin equation with zero average noise, given by the dual of

the Liouvillian superoperator operating on Ô. We now choose to treat the field as a noisy complex

number with mean value α(t) = (αx − iαy) /2 and small fluctuations δα(t). The complex field α(t)

can be separated into real and imaginary components, otherwise referred to as quadratures and are

defined as

αx =
〈
ĉ+ ĉ†

〉
, αy = i

〈
ĉ− ĉ†

〉
, (C.2)

according to symmetric ordering. Substituting α(t) into the mean-field master equation Eq. (3.5)

and averaging over the field quadratures we get

∂tρ̂1 = L̂Aρ̂1 − i
〈g
2

[〈
σ̂(1)x,ge

〉
, ρ̂1

]〉
αx

+ i
〈g
2

[〈
σ̂(1)y,ge

〉
, ρ̂1

]〉
αy

. (C.3)
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where ρ̂1 = TrF [ρ̂AF ] is the reduced atomic density operator, TrX [·] is the partial trace over the

subspace X, ⟨·⟩Y denotes an average over Y , and

σ̂
(j)
x,ik = σ̂

(j)
ik + σ̂

(j)
ki , σ̂

(j)
y,ik = i

(
σ̂
(j)
ki − σ̂

(j)
ik

)
, σ̂

(j)
z,ik = σ̂

(j)
kk − σ̂

(j)
ii , (C.4)

are the x, y, z Pauli operators for the |i⟩ ↔ |k⟩ transition of spin j with Ek > Ei. We can now write

the equation of motion for the field as

∂tα(t) = −i∆′
cα(t)− iNgc

〈
σ̂(1)ge

〉
− κ

2
α(t), (C.5)

such that

∂tαx(t) = −∆′
cαy(t) +Ngc

〈
σ̂(1)y,ge

〉
− κ

2
αx(t), (C.6)

and

∂tαy(t) = ∆′
cαx(t) +Ngc

〈
σ̂(1)x,ge

〉
− κ

2
αy(t). (C.7)

We randomize the noise in our simulations by choosing random numbers rx and ry after a full RK4

step from a normal distribution centered at zero and then updating the field quadratures by

αx(t+ dt) = ∂tαx(t) + rx
√
κdt, αy(t+ dt) = ∂tαy(t) + ry

√
κdt, (C.8)

where dt is the time step and κ is the cavity decay rate. We then estimate the field intensity by

〈
ĉ†ĉ
〉
≈ |α|2 ≈

(α2
x + α2

y)− 2

4
. (C.9)

In Fig. C.1 we look to compare the steady-state intensity of the noisy mean-field and second-order

cumulant results. As we can see, the steady-state values are in good agreement. However, the

noisy mean-field simulations are much more computationally intensive and yield the same averaged

value as the mean-field without noise results. For this reason we chose to perform our simulations

without noise to have faster simulation times, yet still obtaining the same averaged results.
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Figure C.1: Dynamical comparison of the intensity |α|2 for mean-field with noise averaged over 100
simulations (MF, black curve) and

〈
ĉ†ĉ
〉
for second-order cumulants (SOC, dark gray curve). The

parameters are the same as in Fig. 3.2 with N = 20000 and ∆p = 0.


