HEAPS O' STACKS:
TIME AND SPACE EFFICIENT THREADS
WITHOUT OPERATING SYSTEMS SUPPORT

Dirk Grunwald

CU-CS-750-94

%University of Colorado at Boulder

DEPARTMENT OF COMPUTER SCIENCE




ANY OPINIONS, FINDINGS, AND CONCLUSIONS OR RECOMMENDATIONS
EXPRESSED IN THIS PUBLICATION ARE THOSE OF THE AUTHOR(S) AND DO NOT
NECESSARILY REFLECT THE VIEWS OF THE AGENCIES NAMED IN THE
ACKNOWLEDGMENTS SECTION.



Heaps o’ Stacks:
Time and Space Efficient Threads
Without Operating System Support

Dirk Grunwald
Department of Computer Science,
Campus Box 430, University of Colorado,
Boulder, CO 80309-0430
(Email:grunwald@cs.colorado.edu)

CU-CS-750-94 November 1994

&

“University of Colorado at Boulder

Technical Report CU-CS-750-94
Department of Computer Science
Campus Box 430
University of Colorado
Boulder, Colorado 80309






Copyright © 1994 by
Dirk Grunwald
Department of Computer Science,
Campus Box 430, University of Colorado,
Boulder, CO 80309-0430
(Email:grunwald@cs.colorado.edu)






Heaps o’ Stacks:
Time and Space Efficient Threads
Without Operating System Support

Dirk Grunwald
Department of Computer Science,
Campus Box 430, University of Colorado,
Boulder, CO 80309-0430
(Email:grunwald@cs.colorado.edu)

November 1994

- Abstract

Modern languages and operating systems often encourage programmers to manage concurrent activity
using threads, or independent control streams. Although threads can greatly simplify the control structure
of complex programs, and are almost essentially for writing parallel programs, threads are not free — in
conventional languages, each thread must store a series of activation records, usually stored on a stack.
Efficiently managing storage for activation records is important for environments with limited storage or
limit operating system support. It is also important for our intended purpose - allowing programmers to
use threads to simplify the design of scientific parallel programs.

In this paper, we show how whole-program optimization can be used to efficiently create activation
records for threads, resulting in safe, efficient threaded programs. Our method reduces TLB misses for
programs with many small threads, is time and space efficient for scientific programs, does not require
operating system support and is safe. Most importantly, we show how to create very small stacks for
parallel scientific programs, allowing hundreds of threads to be uséd.

1 Introduction

Modern languages and operating systems often encourage programmers to manage concurrent activity
using threads, or independent control streams. We are primarily interested in supporting ten’s to hundreds
of threads to mask latency in applications executing on paralle] architectures. However, managing memory
resources is also important for systems with little storage or limited operating system support, such as small,
mobile computers or embedded systems.

Thread libraries typically allocate a private stack segment for each thread. For a small number of
threads, this is suitable because a few very large stack segments can be created. Programmers writing
programs with many threads or programs intended to run in an environment with limited memory face a

more challenging problem — how large should they make each stack segment? Stack segments that are too



small can result in program faults, because most procedure calling conventions assume stacks are unbounded
and contiguous, and there is no detection for ‘over-running’ the small stack segment. On the other hand,
large stack segments cause performance problems. Since the stacks are large, they take space, leading to
TLB misses and excessive paging.

More importantly, programmers often want to use threads to simplify program design, even in situations
where memory space is at a premium. For example, programmers use threads in parallel architectures
to mask communication latency [9, 10], and some multi-threaded architectures [2, 1] provide hardware
threads for the same purpose. Although multi-threaded architectures provide register-files for tens or
hundreds of threads, a large number of threads are often needed to adequately mask the latency in complex
applications [8], and the space for activation records must still be managed by the runtime system. In
situations that have tens to hundreds of threads, it is untenable to devote kilobytes of memory to each thread.

Considerable work has been done to alleviate some of these problems. The TAM project defines an
abstract threaded machine, and there are a number of other such special-purpose runtime systems. However,
compilers must explicitly target that runtime system to take advantage of their inexpensive thread models.
An alternative model is to provide specialized threads [10], and exploit the semantics of each type of
restricted thread.

While these are solutions for some programs, we were interested in a more general solution applicable
to a number of “conventional” languages. In particular, we are building a runtime system for a parallel
object-orient language [18] that allows programmers to call external C and FORTRAN functions. We can
not modify the external compilers, nor do we know what compilers will be used. Similar problems are faced
by the designers of runtime systems for parallel data base systems, and distributed computing environments
such as OSF/DCE. In each case, a number of threads are needed, the compiler can not be radically changed,
a number of compilers may be used, space and time efficiency is important and saféty is paramount.

In this paper we show that whole-program or link-time optimization can be used to efficiently create
activation records for threads, resulting in safe, efficient threaded programs. Our technique, combined heap
allocation, works best for programs with well understood control-flow, but is applicable to modern languages
using recursion and object-oriented programming techniques. Combined heap allocation can be employed
during the initial compilation of the program, but we believe that further profile-based optimization can
improve the technique considerably.

In §2.1, we discuss alternative mechanisms to allocation activation record, and then describe combined
heap allocation. In §3, we discuss related work, including other systems that use heap-allocated activation
records. We measured the cost of combined heap allocation for a limited number of parallel programs and
several sequential programs. In §4, we describe the experimental infrastructure we used to determine the
efficiency of combined heap allocation, which we present in §5. In §5.1 we describe the performance of the

technique for a number of small parallel programs. We conclude in §6 with future work.



2 Heap Allocation For Threaded Applications

There are a number of mechanisms for allocating activation records for threaded applications, using either
the operating system, the runtime system, or a compiler-assisted runtime system. Many of these methods
have been explored in runtime systems for continuation-passing languages such as Scheme or ML, since the
issues are very similar.

Most operating systems support a stack semantics for some region of memory. Page faults in the
stack segment are filled with valid pages when a processor attempts to access those pages. This method
can be extended to multiple threads, resulting in “sparse stacks”. This method requires operating system
support, and the minimum stack size for each thread must be at least one page. Furthermore, unless certain
conventions are followed, it may be difficult to distinguish arbitrary memory access violations from stack
accesses for procedures with large activation records.

Alternatively, the responsibility for managing activation records can be vested with the runtime library.
One common technique is to allocate contiguous memory regions and check that sufficient space remains for
the current activation at each procedure call [14]. If the check occurs prior to the procedure, the caller must
know the amount of memory needed by the callee; if this information is available, we show how a simpler
implementation can be more efficient. The check can also occur in the callee; however, allocating space for
the procedure after parameters have been pushed on the stack may require those parameters to be copied,
complicating the process. In either case, these explicit checks are performed for every procedure call. For
some systems, activation records can be allocated on the heap and recovered via garbage collection [3] or

managed by explicit storage allocation.

2.1 Combined Heap Allocation

The mechanics of our proposed stack allocation technique are shown in Figure 1(a) through 1(d).
We assemble the procedures for a particular program and determine all the ‘starting” procedures. These
procedures determine the ‘roots’ of a multigraph representing the program call graph, shown in Figure 1(a).
We may have multiple call graphs within a program because we are either unable to determine the exact
control flow (due to indirect procedure calls), or because extraneous procedures were aggregated with the
program by the linker. In Figure 1(a), there is a single starting procedure, labeled ‘__start’.

We perform a depth-first search of each independent graph and determine the ‘back edges’ in the call
graph, as shown in Figure 1. Each back edge defines a ‘procedural loop,” akin to a conventional loop in a
control flow graph. Srivastava and Wall [23] have shown that it is profitable to ‘hoist’ invariant code from
such procedural loops. In this paper, we recognize that procedural loops indicate indirect or direct recursive
subroutine calls and ‘hoist’ stack allocation out of those loops. For example, in Figure 1(b), there are two

procedural loops. The first contains { B, D} and the second is the self-recursive loop {E}.



(a) Original Program Call Graph
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(c) Computing Storage Space  (d) Inserting Allocation Stubs  (e) Procedure Unrolling

Figure 1: The Process of Combined Heap Allocation: Back edges are shown dotted in (b) through (e).
Darkened nodes are procedural loop headers. Storage is allocated on entry and each time an “stub” is
executed. The values in (c) through (e) are the amount of storage needed by the current procedure and all
procedure that can be called without further storage allocation.



If there are no procedural loops in a call graph, the call graph is a directed acyclic graph (DAG) and
no recursion can occur in the program. In this éase, we can compute the space needed for an afbitrary
sequence of procedure invocations in that DAG: each procedure must allocate enough storage for itself and
the combined storage needed for each of of the procedures it calls. We use this property to compute the
amount of space needed for the graph assuming the back edges are not executed. Later, we compensate for
the possibility that the back edges are executed.

In Figure 1(c), each node has been labeled with two numbers. The first indicates the amount of space
needed by the current procedure activation and the second the space needed by the current procedure and all
procedures that can be called by this procedure, ignoring back edges. For example, procedure ‘E’ requires
16 bytes of storage. Procedure ‘D’ also requires 16 bytes of storage, but may also call procedure ‘E’, and
thus must have 32 bytes of storage available. Likewise, procedure ‘B’ requires 16 bytes of storage, but must
allocate 16 + 32 bytes in case 'C’ or 'D’ is called.

The last step is to compensate for procedure back edges. If we executed the program starting at
‘__start’ and never execute the D — B or E — E edge, we would only need to allocate 80 bytes of
storage. This storage could be allocated from the program heap. If the D — B edge is executed, than we
may need up to 48 additional bytes of storage to accommodate the storage needs of procedure ‘C’, ‘D’ and
‘E’. Again, as long as the D — B or E — FE edge is not executed again, these 48 bytes of storage should
be sufficient to accommodate all procedures callable from ‘D’. In our example, procedure calls within the
DAG use the conventional stack allocation mechanism of the native runtime system.

As shown by Figure 1(d), we can enforce this additional allocation by inserting ‘stubs’ on back edges.
For example, we create a stub for all procedures calls directed to ‘B’ along a back edge. This ‘stub’ allocates
48 bytes of storage and calls procedure ‘B’. When that invocation of procedure ‘B’ returns, the storage is
released in the ‘B stub’. Storage allocation only occurs when an “allocation stub” is executed. Similarly,
we create a ‘stub’ for the £ — E back edge that allocates a 16 byte stack segment and then calls procedure
‘E’. In fact, there is no need to place allocation stubs only on back-edges. Placing allocation stubs on
forward edges reduces the amount of storage needed by callers, at the risk of possibly longer execution time.
Likewise, in some situations, space can be sacrificed for faster execution, as shown in Figure 1(e). Here, the
E — E procedure loop is “un-rolled”; a single storage allocation is used for three invocations of procedure
‘E’.

There is one remaining control flow change that we must consider: indirect procedure calls. Our
allocation technique is efficient because we model the control flow in the program and allocate sufficient
space for the sections we can analyze. In general, we can not precisely model control flow in the presence
of indirect procedure calls, although various interprocedural analysis techniques provide very accurate
information for some programs [20, 13]. We can accommodate indirect procedure calls by noting where

the program loads the address of procedures and substitute the address of a ‘stub’ function. This correctly



handles programs written in object-oriented languages, but is expensive in the presence of many indirect

procedure calls. Fortunately, there are other alternatives and optimizations suitable for most programs.

3 Related Work

Dynamic memory allocation is usually considered to be significantly more expensive than stack allocation.
We are aware of very few people that have proposed heap allocation of procedure activation records for
threaded programs. As mentioned, the TAM system uses heap-allocated “frames” to store activation records.
Among other, Hieb ez al [14] discussed the problem of heap-allocation activation records for language with
continuations. They also described a technique of eliminating stack checks via static analysis of some
recursive routines. It is not clear from their paper how frequently these checks could be eliminated.

Appel and Shao [3] concluded that heap allocation of activation records was more efficient than stack
allocation for languages with closures if a garbage collection system is already béing used. They measured
the performance of stack and heap allocation for a variety of programs using Standard ML of New Jersey. In
their system, programs are compiled using continuation passing style, and all procedures have a fixed-sized
32 byte activation record; the system used by Hieb [14] normally used 30-byte activation records. However,
as Hieb pointed out when suggesting that garbage collection might be faster than stack allocation, such
a method assumes a large physical memory. Also, the conclusions of [3] may not hold for the programs
written for systems where garbage collection is rarely used, procedure activations come in a variety of sizes,
and continuation passing style is not used.

Nilsen and Schmidt [19] describe a hardware system for real-time garbage collection. They mention that
they initially allocated procedure activation records using this mechanism, but found it to be very expensive
because function calls contributed up to 99% of the allocation activity. They then used an efficient linked-list
mechanism to pre-allocate a number of different sized activation records, and return unneeded activations to
that linked list. Their technique allocates storage on each procedure call. However, we found that individual
procedure activation records tend to come in a variety of sizes. Figure 2 shows a histogram of activation
records for one execution of the Gnu C compiler. Although a few activation record sizes dominate, there are
many distinct sizes. Accommodating this diverse range of activation record sizes on each procedure entry
would cause internal or external heap fragmentation. Other researchers, including Hieb [14], have used a
technique that allocates a large block of storage and uses explicit checks at each procedure call to insure
there is sufficient space. Like the technique of Nilsen et al, this requires additional work for each procedure
call, but causes less fragmentation. By using a compiler-assisted runtime system that combines information
about the structure of the program control flow graph with information about the runtime environment, we
can reduce the overhead of storage allocation for traditional imperative programs. For many programs, our

technique incurs no additional execution overhead, yet it is simple to implement.



N
(3}

o 20
L -
3 e
®0o 15
° s
o= 10
yv— 0O
o<
o2 5
0
© 0O AN O O AN O © O N « 0O O © 0O «
g = N IO O O ON MO OMN O O v
™ ™ N O < I © © IO N ™ N MM
- = < O NN OO O

Activation Record Size

Figure 2: Fraction of activation record sizes for single run of Gnu C compiler. Activation records sizes
larger than 10,000 Bytes have been eliminated, as have sizes contributing less than 0.01% of the total
activation record.

Our technique uses whole-program or link-time optimizations. Whole program compilers are common
for functional languages, but less common for imperative languages. Wall and Powell describe the
Mahler [25] system, which allowed link-time optimizations. Benitez and Davidson [4] describe VPO, the
very portable optimizer, which was capable of some link-time optimizations. Santhanam and Odnert [21]
described an inter-procedural register allocation algorithm constructed using the compilers on the HP PA-
RISC. More recently, Srivastiva and Wall [23] describe OM, a system for intermodule code optimization.

The program analysis system we use, ATOM, is based on this technique. Link-time optimizations has
| drawbacks, because higher-level information such as variable type information or possible indirect call
targets for languages such as C++ are not represented in the final program. The compiler for the Tera [2, 15]
computer system also performs whole-program optimization using a “program database”. We feel that
whole-program or link-time optimization will become more prevalent, because it will become essential

when compiling programs for modern wide-issue architectures.

4 Experimental Design

We wanted to determine the execution penalty for combined heap allocation. We used two experiments to
evaluate the method. In the first, we modified three parallel programs to allocate activation records using

combined allocation. This experiment demonstrates the effect on cache and TLB miss rates. However, these



programs, although drawn from actual applications, use a limited programming style. How well would
combined allocation perform for different programs? To determine this, we instrumented and traced the
execution of a number of programs and estimated the additional cost from our activation record allocation
mechanism. We did not actually transform these programs.

The parallel programs were the mp3d fluid-flow program from the SPLASH-I benchmark suite, the
ocean multi-grid program from the SPLASH-II suite and a simple Red-Black SOR kernel from a turbulence
calculation in an associated NSF “Grand Challenge” program. We also instrumented the programs from the
SPEC92 benchmark suite, the Perfect club benchmark suite and other programs, including object-oriented
programs written in C++. We used ATOM [22] to instrument the programs. The programs were compiled
on a DEC 3000-400 and either the DEC C compiler, DEC FORTRAN compiler or DEC C++ compiler.
The systems were running the standard OSF/1 V2.0 operating systems, and all programs were compiled
with standard optimization (-0O). For the SPEC92 programs, we used the largest input distributed with the
SPEC92 suite. For the Perfect Club programs, we used the standard input. The alternate programs include:
cfront, version 3.0.1 of the AT&T C++ lénguage preprocessor written in C++, grof £, a version of the
ditroff text formatter written in C++, idl, a C++ parser for the CORBA interface description language
and TgX, a text formatting system. We selected these programs because we found that the SPEC92 suite
did not typify the behavior seen in large programs or C++ programs [7]. Since languages such as C++
introduce new problems in our stack allocation technique, we felt it was important to consider these alternate
programs. For these alternate programs, we used sizable inputs we hoped would exercise a large part of the
program — for example, the TrX program formatted a 45-page document.

Table 1 shows the basic statistics for the programs we instrumented. The first columns lists the number
of instructions traced; this is not shown for the parallel programs, because we ran those programs multiple
times, and present more information later. The remaining columns indicate static characteristics of the
program, or attributes éonceming the program body rather than program execution. For example, the
program doduc contained 707 procedures, and 2, 897 call instructions. We classified 28 of those calls as
‘back edges’, or potential recursive edges, and 2,781 edges as standard ‘forward edges’. There were also
180 indirect function calls, where we could not determine the program flow during static analysis. It may
seem odd that FORTRAN programs would contain so many, indeed, would contain any, indirect procedure
calls. However, the DEC FORTRAN runtime system calls subroutines written in C, and this introduces
most of the indirect function calls. Likewise, back edges in the FORTRAN programs, indicating potential

recursion, primarily arise from the FORTRAN runtime system.

5 Performance Comparison

We first describe the performance for the parallel programs, and then the sequential programs. In each

case, we are concerned with different metrics. We use the parallel programs to demonstrate that combined



Occurances in Program Text

Program | Instructions Traced | Procedures | Call Sites | Back Edges | Foreward Edges | Indirect Calls
RB - 190 556 6 503 47
mp3d - 287 1,101 6 996 99
ocean - 249 821 6 766 49
doduc 1,149,864,756 707 2,897 28 2,781 88
fpppp 4,333,190,877 684 2,729 29 2,612 88
hydro2d 5,682,546,752 715 2,946 29 2,829 88
nasa’ 6,128,388,651 705 2,874 29 2,757 88
ora 6,036,097,925 667 2,630 19 2,523 88
spice 16,148,172,565 814 5,046 28 4,930 88
swm256 11,037,397,884 676 2,666 29 2,549 88
tomcatv 899,655,317 616 2,480 18 2,374 88
APS 1,490,454,770 796 3,855 28 3,739 88
CSS 379,319,722 817 5,075 27 4,960 88
LWS 14,183,394,882 713 3,135 28 3,019 88
NAS 3,603,798,937 739 3,448 28 3,332 88
OCS 5,187,329,629 716 3,236 27 3,121 88
SDS 1,108,675,255 767 3,257 28 3,141 88
TFS 1,694,450,064 714 3,173 27 3,058 88
TIS 1,722,430,820 680 2,755 17 2,650 88
WSS 5,422,412,141 756 3,263 17 3,158 88
alvinn 5,240,969,586 211 569 3 558 8
compress 92,629,658 148 468 3 457 8
ear 17,005,801,014 289 967 4 955 8
eqntott 1,810,540,418 211 758 41 698 19
espresso 513,008,174 550 3,213 48 3,142 23
gcc 143,737,915 1,650 8,747 621 8,051 75
li 1,355,059,387 550 1,757 48 1,697 12
sc 1,450,134,411 511 2,704 118 2,573 13
cfront 19,001,390 943 10,191 849 9,271 71
idl 21,138,201 1,458 4,761 6 3,383 1,372
tex 147,827,875 831 5,252 92 5,076 84
groff 41,522,284 1,710 6,179 113 5,407 659

Table 1: General Information Concerning Traced Programs




‘ 64KB Stack Size Small Stack Size
Program | Threads Context | Instructions || Load Miss TLB Misses || Load Miss TLB Misses
Switches | Per Switch Rate and Rate Rate and Rate
RB 4 8004 8,980,764 2.92% 41 (0.00%) 2.92% 28 (0.00%)
RB 64 128,064 582,163 3.89% 162,709 (0.06%) 3.97% 25,323 (0.01%)
RB 128 | 2,049,024 51,854 9.75% | 2,178,450 (0.47%) 10.69% 380,695 (0.08%)
MP3D 4 18,320 347,958 10.84% 14,840 (0.06%) 9.43% 4,874 (0.02%)
MP3D 64 230,228 55,187 9.75% 209,423 (0.35%) 10.13% 16,783 (0.03%)
MP3D 128 454,302 42,710 10.94% 437,453 (0.48%) 11.18% 67,335 (0.07%)
OCEAN 4 4,329 | 18,536,623 12.87% | 2,980,601 (1.55%) 12.87% | 2,979,534 (1.55%)
OCEAN 64 69,045 1,205,854 13.02% 449,258 (0.22%) 13.02% 415,494 (0.21%)
OCEAN 128 138,042 620,358 13.18% 409,637 (0.19%) 13.16% 340,244 (0.16%)

Table 2: Information Collected From Parallel Program Execution

allocation is practical, and that it can reduce TLB misses for some parallel numeric programs. We argue that
the reduced TLB misses offset the additional instructions (if any) needed to allocate storage using combined

allocation. Thus, it is possible to have efficient threads while preserving safety by combined allocation.

5.1 Parallel Programs

We modified three parallel programs to use a simple light-weight thread library based on the Quick-
Threads [16] library. We modified the programs assuming we were using a compiler assisted runtime
system for parallel programs and only applied combined allocation to the code executed by threads. We
used ATOM to construct the call graph for each program and determine the amount of storage needed for -
each procedure. We then manually changed the stack allocations for the individual threads and ATOM to
build a simulator modeling the first cache level and TLB of the Alpha AXP 21064. The stack modifications
to the programs were very simple, and in practice, we would use a tool such as OM [23] to transform the
binaries. However, we can not currently modify programs using OM and then trace those programs using
ATOM. The need to trace the final applications introduces another complication into our study: the ATOM
analysis routines also require stack space to store activation records specific to the tracing task. When
" modifying the programs, we had to leave additional room for the ATOM analysis routines. !
As with many scientific programs, each of the programs we examined contained no recursion. Only the
initial stack segment allocated for a thread needed to be modified. For these application, we are concerned
with three ways that combined allocation can affect the program and its performance: total storage needed

for threads, any increase or decrease in TLB misses and any increase or decrease in cache miss rates.

'We hope to avoid this in the future by modifying ATOM. Furthermore, we hope to examine more parallel programs in the
future. However, many programs in the SPLASH benchmark suite are 32-bit specific, and require pre-emptive threads and strongly-
consistent memory because of implicit synchronization. Although I modified those applications and ported them to the Alpha, they
still suffer from floating point exceptions and unaligned access violations.
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We ran the programs with a “Large” stack size of 64KBytes, and a “Small” stack size particular to each
application. When executing the instrumented program, we also added sufficient storage for the ATOM
analysis routines; this storage was computed by disassembling and analyzing the instrumented programs.
Each thread in the “Red-Black” and “mp3d” programs required 384 bytes, or 1200 bytes when instrumented.
“Ocean” required 2256 bytes, or 3072 bytes when instrumented. In each program, an error routine requiring
~ 12,000 bytes of storage was called; we modified the forward call to that routine to allocate a new
stack segment, but that routine was never called. The RB and MP3D applications used small datasets
(/= 256K Bytes each) and the OCEAN model used a larger dataset (= 4M B).

Table 2 shows the information collected from the parallel programs, using four, 64 and 128 threads. The
table shows the number of context switches and the number of instructions executed per context switch using
the large threads. We recorded the load miss rate and TLB misses and miss rate for both the large and small
stack sizes. We modeled a memory system similar to that of the Alpha AXP 21064 processor, including a
8KB direct-mapped, no-write-allocate cache with 32 bytes cache lines and a 32-entry fully associative TLB
for 8KByte pages dedicated to data references. We only report the load miss rate because the cache did not
allocate cache lines on stores to addresses not already in the cache; missing stores assemble in a write buffer
and would not greatly delay the processor.

Uniformly, threads using smaller stack segments have a slightly higher load miss rate and a slightly
lower TLB miss rate. The applications were very sensitive to memory organization for reasons we have not
determined, with three cache lines accumulating ~ 25% of all misses. The lower TLB miss rate is a direct
outcome of the smaller stack segments. For threads larger than a virtual memory page, each thread stack
requires a full TLB entry. When using 1200 bytes for a stack segment, six threads can share the same TLB
entry, indicating the reason for the six-fold decrease in the TLB miss rate for “mp3d” and “RB”. The TLB
miss rate for the “Ocean” program decreases because the threaded implementations change the access order
to the main data structure, effectively blocking the computation [17].

Although TLB misses are relatively expensive on most architectures and reducing those misses is
important, the most important point to conclude from the examination of the parallel programs is how little
space is needed for threads in these applications. We believe that runtime systems for parallel, scientific
computation can benefit from a large number, possibly thousands, of threads per processor. This example
demonstrates that for some applications, the memory needed by for these threads is fairly small, and can

managed by a simple compiler-assisted runtime system.?

*Ideally, I would have shown detailed timing to contrast the change in cache and TLB miss rates; however, all of our Alpha
workstations were being used to collect information for another paper, and it was hard to collect consistent results.
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Program Foreward . Backward Indirect Non-Zero Zero
Calls Calls Calls Allocs Allocs
doduc 6,729,093 (99%) 0 (0%) 7(0%) 1 7
fpppp 3,254,384 (99%) 0(0%) 7(0%) 1 7
hydro2d 4,944,298 (99%) 1,603 ( 0%) 9(0%) 1 1,612
nasa7 11,240,400 (99%) 0 (0%) 7(0%) 1 7
ora 44,232,393 (99%) 0 (0%) 7(0%) 1 7
spice 46,172,975 (99%) 0 (0%) 7 (0%) 1 7
swm256 138,265 (99%) 1,200 ( 0%) 7 (0%) 1 1,207
tomcatv 10,206 (99%) 0(0%) 4 (0%) 1 4
APS 3,242,555 (99%) 2,880 (0%) 29 (0%) 1 2,909
. CSS 1,873,265 (99%) 0(0%) 7 (0%) 1 7
LWS 98,720,298 (99%) 10 (0%) 10 (0%) 1 20
NAS 21,349,424 (99%) 0(0%) 29 (0%) 1 29
OCS 702,861 (99%) 0(0%) 4 (0%) 1 4
SDS 284,360 (99%) 2,018 (0%) 13 (0%) 17 2,015
TFS 1,414,912 (99%) 0 (0%) 9 (0%) 1 9
TIS 1,396 (99%) 0(0%) 4 (0%) 1 4
WSS 6,228,623 (99%) 0 (0%) 22 (0%) 1 22
alvinn 3,065,741 (99%) 0(0%) 5(0%) 1 5
compress 251,419 (99%) 0(0%) 3(0%) 1 3
ear 240,592,630 (99%) 127 (0%) 4 (0%) 128 4
eqntott 1,457,027 (31%) 8,436 (0%) | 3,215,050 (68%) 8,620 | 3,214,867
espresso 1,982,372 (94%) 27,509 ( 1%) 84,753 (4%) 27,510 84,753
gce 1,133,555 (76%) 275,925 (18%) 80,811 ( 5%) 306,342 50,395
li 27,512,772 (86%) | 3,427,531 (10%) 919,968 (2%) | 4,347,497 3
sc 13,996,239 (87%) | 1,920,865 (12%) 39,969 (0%) | 1,960,780 55
cfront 266,849 (94%) 15,984 (5%) 85 (0%) 16,067 3
idl 376,200 (43%) 0(0%) 497,087 (56%) 205,689 291,399
tex 817,104 (95%) 36,063 (4%) 24 (0%) 36,064 24
groff 589,627 (70%) 40,110 (4%) | - 207,082 (24%) 130,552 116,641

Table 3: Information from Trace Driven Simulation

5.2 Sequential Programs

The parallel programs demonstrate that combined allocation can reduce TLB misses and memory
requirements for some programs. However, we could only examine a limited number of parallel programs
because such programs are less common and frequently not portable. To measure the performance of
combined allocation across a broader spectrum of programs, we instrumented and measured several

sequential programs, reasoning that most parallel programs will be no more complex than common sequential

programs.

Table 3 shows the information we collected using trace-driven simulation of our sequential program
suite. We recorded the number of procedure calls executed along ‘forward’ edges - these calls use the
stack semantics to allocate activation records. We also recorded the number of ‘backward’ (i.e., potentially

recursive procedufe calls) and ‘indirect’ procedure calls. Not all of these procedure calls requires heap-based
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allocation. Many procedure calls are to procedures that do not allocate an activation record. In these cases,
shown in the column labeled “Zero Allocs’, no storage is needed. The column labeled ‘Non-Zero Allocs’
shows the number of actual heap-based allocations needed during the program execution. Note that most
of the scientific programs use a single heap-based allocation at the beginning of the program execution.
By comparison, programs with highly recursive control flow, such at ‘11’, use considerable heap-based
allocation. Note that althrough ‘egqntott’ makes many indirect calls, the callee allocates no storage.

Figure 3 shows the total amount of space allocated by the programs. For each program, the bottom
portion of the bar represents the fraction of memory allocated that was actually needed. The allocated
and needed values are overlayed on the bars. In general, we allocate about twice as much storage as for

. the scientific programs, and four to five times as much storage for the C and C++ programs. Why? The
conventional calling mechanism only allocates space for what is actually needed — we allocate space for
what may be needed. For example, under OSF/1, the ‘abort’ routine in the C library requires 64 bytes
of space. Although this routine is not executed in the normal course of execution, our technique allocates
space in case it is called. It may be possible to reduce the amount of space needed during typical executions
using profiles or execution estimates [24, 6].

It’s interesting to note how little space is required by most of the programs. Thread libraries that
allocate large stack segments (e.g., 64Kbytes) would be wasting considerable space if these programs are
representative of parallel programs; in fact, we found that parallel programs allocated considerably less
space. However, ‘cfron’ shows that using such fixed sized stack allocations are too small for some
programs.

Figure 4 shows the normalized instruction count for each program using two variants of heap based
activation record allocation. The normalized instruction count is ‘1.0” for each program. Values higher
than ‘1.0” indicate that more instructions were executed — for example, the value ‘1.05” indicates that 5%
more instructions were executed. Without a more detailed architectural simulation, we can only state the
execution cost using instruction counts — the actual execution time may be greater or smaller.

We considered two activation allocation mechanisms and two different costs for the memory allocation
routines. Combined allocation is not used in the columns labeled ‘Alloc Each Call, resulting in many
heap allocations. This could be implemented in existing compilers that do not support whole-program
or link-time optimization, and provides an indication of the value of applying whole-program analysis
to this problem. The columns labeled ‘Combined Allocation’ list the normalized instruction count using
our proposed mechanism. The values for combined allocation for all the FORTRAN programs, alvinn,
compress, ear, egqntott, espresso and tex are present, but very close to zero.

Since the naive allocation strategy makes considerable use of memory allocation, increased memory
allocation costs dramatically affect that method. From previous experience with memory allocation
routines [11, 12], we felt that we could allocate and release memory in 22-cycles or fewer on almost

any architecture and operating system, given the information available to the compiler. Thus, the ‘Slow
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Alloc’ column represents our estimate of the ‘worst case’ performance we would expect for a uniprocessor,
or ‘good case’ performance for a parallel processor, where additional locking is needed. With a good deal
more work, we believe that we could allocate and release most activation records in eight cycles, using the
technique described below. We feel that it’s unlikely that we could reduce this allocation time. Thus, the
‘Fast Alloc’ columns reflect our estimate of the ‘best case’ performance for each technique. We assumed
that the conventional allocation mechanism typically uses two machine instructions - a register-relative add
instruction to increment or decrement the stack. For larger stack segments, more complicated instruction
sequences are needed, but this rarely occurs in practice. In CUSTOMALLOC, we optimized heap allocations
using distinct linked-lists for each allocation size. This process is suitable for combined heap allocation,
since the compiler knows the size of each activation record. This technique was also used by Nilsen and
Schmidt [19], but they performed the allocation on every procedure call, and has to address a many allocation
record sizes. By combining the allocations, we require fewer allocation sizes.

What do our performance estimates tell us? First, if we assume that heap-based memory allocation
isn’t that expensive (e.g., between 22 and 8 cycles), combined allocation offers significant advantages
over the naive allocation. We believe heap-based allocation must be efficient for all programs for it to be
widely adopted. Happily, our combined allocation mechanism reduces the space and time needed, making
heap-based allocation a negligible part of the execution cost.

There are opportunities to improve upon our technique. Object oriented programs tend to use a large
number of indirect function calls. In our technique, we assume that we can not improve any of these
indirect function calls. In a related paper, we measured the performance and behavior of a number of C++
programs [5, 7]. Many programs have a few, limited number of possible call targets for a given indirect
function call. For example, in the ‘id1’ program, simple whole-program analysis?can eliminate almost
100% of the indirect function calls - this would then evince the program flow and reduce the cost of heap
based allocation. Furthermore, even in cases where we can not eliminate indirect procedure calls, we may
still be able to use heap-based allocation. For example, assume that program analysis indicates that an
indirect function call may call four different procedures. We can simply allocate storage to accommodate

the largest of those procedures — this may waste some space, but would improve program execution time.

6 Conclusions and Future Work

We have shown that heap-based allocation of procedure activation records is a tenable option for threaded
programs. Using our technique, heap based allocation is usually as fast as conventional stack allocation,
increases the safety of programs using explicit threads, may use considerably less memory than heuristics
in existing thread libraries and can reduce TLB misses and paging in some applications.

For parallel programs that do require a great deal of memory, such as “RB” and “mp3d”, the smaller

stack segments reduce TLB misses, improving performance. For programs that require more memory,
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such as “Ocean”, smaller stacks permit more threads that can be used to mask communication latency.
For all programs, regardless of memory needs, combined allocation provides efficient stack allocation that
safely accommodates recursion. Whole program analysis can also be used to reduce the execution overhead
of threaded applications using inter-procedural live-register analysis to reduce the cost of context switch
routines. We are implementing both combined allocation and context switch reduction using a link-time

optimization package.

Future Work: Table 3 showed that combined heap-based allocation occasionally consumed considerably
more memory than the conventional allocation method. It is also useful for activation records to use a few,
distinct sizes to reduce the cost of memory allocation. We are using measured and estimated [6] program
profile information to identify infrequently called sections of the program, to insert additional ‘allocation
stubs’ at those points. This reduces the amount of memory needed during normal execution. We are also

exploring the time savings of “procedure loop unrolling.”
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