MetaBank: A Knowledge-Base of
Metaphoric Language Conventions

James H. Martin

CU-CS-526-91 May 1991

%University of Colorado at Boulder
DEPARTMENT OF COMPUTER SCIENCE

MetaBank: A Knowledge-Base of
Metaphoric Language Conventions

James H. Martin
Computer Science Department and
Institute of Cognitive Science
University of Colorado,
Boulder, CO
80309-0430

martin@cs.colorado.edu

CU-CS-526-91 May 1991

Abstract

The frequent and conventional use of non-literal language has been a major stum-
bling block for natural language processing systems since the early machine translation
efforts. Metaphor, metonymy and indirect speech acts are among the most troublesome
phenomena. Recent computational efforts addressing these problems have taken an
approach that emphasizes the use of systematic knowledge about non-literal language
conventions. This paper describes our current efforts to supply this knowledge in the
case of conventional metaphor. We are constructing MetaBank: an empirically derived
and theoretically motivated knowledge-base of English metaphorical conventions. More
generally, this effort can be seen as an attempt to develop methodologies for empirically
capturing language conventions in usable knowledge-base forms.

1 Introduction

The frequent and conventional use of non-literal language has been a major stumbling block
for natural language processing systems since the early machine translation efforts. Meta-
phor, metonymy and indirect speech acts are among the most troublesome phenomena. This
is both because they occur quite frequently and because they have resisted computational
efforts to deal with them in a uniform and tractable manner.

Consider the following examples of conventional metaphor.

(1) It came to me that I had to prepare a talk for the conference.
(2) It hit me that I didn’t have anything to say.
(3) It struck me that this wasn’t a good situation.

The italicized words in these examples are being used in ways that clearly deviate
from the physical or spatial meaning of the words. Nevertheless, there is little that is
novel or unconventional in these examples. In order to understand and generate uses like
these, we make use of a rich set of underlying metaphorical conventions. In these examples,
these conventions structure beliefs and believers as objects with locations. Correspondingly,
change of location indicates a change in belief, as in (1) where the new idea “comes to” the
believer.

The main thrust of this Metaphoric Knowledge approach to metaphor is that the inter-
pretation of metaphoric language should proceed through the direct application of specific
knowledge about the metaphors in the language. This approach has been embodied in MI-
DAS (Metaphor Interpretation, Denotation, and Acquisition System)[15, 16]. MIDAS is a set
of computer programs that can be used to perform the following tasks: explicitly represent
knowledge about conventional metaphors, apply this knowledge to interpret metaphoric
language, and learn new metaphors as they are encountered.

While the MIDAS project demonstrated some significant results, it nevertheless had a ma-
jor shortcoming. The effectiveness of the approach for language interpretation, generation
and acquisition was obviously dependent on the size and the correctness of the knowledge—
base of non-literal conventions. Unfortunately, the knowledge—base used by MIDAS does not
have any kind of real coverage, nor does it have an empirically verifiable basis.

This paper describes our current efforts to overcome these problems in the case of
conventional metaphor. We are constructing of MetaBank: an empirically derived and
theoretically motivated knowledge—-base of English metaphorical conventions. More generally,
this effort can be seen as an attempt to develop methodologies for empirically capturing a
wider variety of language conventions in computationally usable knowledge-base forms.

2 Knowledge-Based Linguistic Approaches

MIDAS can be seen as a part of a recent trend in the area of semantic interpretation that
uses systematic knowledge about non-literal language conventions. Among the research
projects following this general approach are Zernik’s RINA system (phrasal idioms) [25],

Fass’s META5 and MET* systems (metaphor and metonymy) [4], and Hinkelman’s system
(indirect speech acts) [6]. These systems all attempt to leverage knowledge of systematic
language conventions in an attempt to avoid resorting to more computationally expensive
methods. At the same time, however, these approaches have all avoided a simplistic phrasal
or word-sense approach that neither adequately captures generalizations nor allows for novel
cases. Finally, like MIDAS they all use small knowledge-bases of conventions with no real
coverage and little empirical validation. (Hinkleman’s corpora-based research is a notable
exception to this). The following discussion will present the details of how this general
approach has been applied to the problem of conventional metaphor.

Under this knowledge-based approach, the proper way to approach the study of meta-
phor is to study the underlying details of individual metaphors, and systems of metaphors in
the language. This approach follows on the metaphor work of Lakoff and Johnson [10] and
builds directly on the computational approaches to metaphor begun in [9, 13, 14, 19]. The
earlier efforts of Wilks [24], Hobbs [7], and Carbonell [2] are the most relevant computational
predecessors to this work.

In order to make the problem of understanding metaphors more concrete, consider the
implications of the following examples for a system like the uUNIX Consultant [22, 23]. vc
is a natural language consultant system that provides naive computer users with advice on
how to use the Unix operating system. Metaphors like those shown above are ubiquitous in
technical domains like UNIX. A system that is going to accept natural language input from
users and provide appropriate natural language advice must be prepared to handle such
metaphorical language. MIDAS has been integrated into UC in order to give it the ability to
handle this kind of metaphoric language. Perhaps more importantly, Unix offered an ideal
domain, rich in metaphors, in which MIDAS could be tested.

Consider the following uc session illustrating the processing of a series of user queries.

How can I kill a process?
Applying metaphor: Terminating-As-Killing
You can kill a process by typing = C to the shell.

Tell me how to get out of emacs.
Applying metaphor: Uninvoking-As-Exiting
You can get out of emacs by typing ~ X~ C.

Do you know how to enter lisp?
Applying metaphor: Invoking-As-Entering
You can enter lisp by typing ‘‘lisp’’ to the shell.

In each of these examples, uc/MIDAS attempts to find the most coherent interpretation
of the user’s question, given its current knowledge of the conventions of the language. This
involves checking the structure of the input against the constraints posed by all the possible
conventional metaphorical and non-metaphorical interpretations. In each of these examples,

the only coherent interpretation is the one found through the application of a known Unix
metaphor.

3 MIDAS

Since the remainder of this paper focuses on our proposed research for building a large
realistic knowledge-base of metaphors, this section will first briefly illustrate how such
a knowledge-base could be used. This is not intended as an exhaustive list since the
knowledge-base certainly will have many unanticipated uses. Specifically, this section de-
scribes how the MIDAS system, as a part of uc, made practical computational use of the
metaphors stored in its knowledge-base. In particular, it introduces the following three
issues.

Representation: The explicit representation of the conventional metaphors in a lan-
guage in the form of explicit associations between concepts.

Interpretation: The correct and efficient application of the this metaphoric knowledge
to the interpretation of metaphoric language.

Learning: The dynamic acquisition of new knowledge about metaphors for which no
known metaphor provides a coherent explanation.

3.1 Knowledge Representation

Consider the following simple example of a conventional UNIX metaphor. The metaphor-
ical use of the word in reflects a systematic metaphorical structuring of Unix processes as
enclosures.

(6) I am in Emacs.

Metaphors like this may be said to consist of the following component concepts: a source
component, a target component, and a set of conventional associations from the source to
target. The target consists of the concepts to which the words are actually referring. The
source refers to the concepts in terms of which the intended target concepts are being
viewed. In this example, the target concepts are those representing the state of currently
using a computer process. The source concepts are those that involve the state of being
contained within some enclosure.

The approach taken here is to explicitly represent conventional metaphors as sets of
associations between source and target concepts. The metaphor specifies how the source
concepts reflected in the surface language correspond to various target concepts. In this
case, the metaphor consists of component associations that specify that the state of being
enclosed represents the idea of currently using the editor, where the user plays the role of
the enclosed thing, and the Emacs process plays the role of the enclosure. Note that these
source-target associations are represented at the conceptual and not the lexical level. Any
single lexical item or expression that can be construed as referring the source concept of a
known metaphor may invoke that metaphor. In this example, the source component of the
metaphor is attached to the concept of being enclosed, not to the lexical item in.

These sets of metaphoric associations, along with the concepts that comprise the source
and target domains, are represented using the KODIAK [21] representation language. KODIAK
is an extended semantic network language in the tradition of KL-ONE [1] and its variants.
These sets of metaphoric associations are full-fledged KODIAK concepts. As such, they can
be related to other concepts and arranged in abstraction hierarchies using the inheritance
mechanisms provided by KobIAK. Specifically, KODIAK is used to represent specialized
domain specific metaphors, pervasive high-level metaphors, and the systems of relations
among related metaphors.

3.2 Interpretation

The interpretation process in MIDAS is basically one that views a given input sentence as
providing a set of constraints on possible interpretations. MIDAS checks the input con-
straints against all the possible interpretations that can be conventionally associated with
the input. Interpretations that are coherent with the constraints are returned. The possible
conventional associations include direct non-metaphoric interpretations, as well as all the
conventional metaphors that are invoked by the input.

Consider briefly the details of the following shortened trace of a Unix example. In
this example, uc calls upon MIDAS to find a coherent interpretation for this use of enter.
MIDAS finds, and attempts to apply, all the conventional metaphorical and non-metaphorical
concepts associated directly with, or inherited by, this concept. In this case, it finds that
the only conventional interpretation that is consistent with the input is the one that results
from the application of the known Enter-Lisp metaphor.

> (do-sentence)
Interpreting sentence:

How can I enter lisp?
Interpreting concreted input.

(A Entering50 (] Entering)
(enterer50 (] enterer) (A I203 (1 I)))
(entered50 (| entered) (A Lisp58 (] Lisp))))

Failed interpretation: Enteringb0 as Entering.
Failed interpretation: Enteringb0 as Enter-Association.
Valid known metaphorical interpretation: Entering50 as Enter-Lisp.

The parser first produces a syntactic analysis and a preliminary semantic representation.
At this point in the analysis, uc calls upon MIDAS to begin a deeper analysis of this initial
representation.

The case structure of this preliminary representation is then checked against the seman-
tic constraints of the interpretations conventionally associated with the Entering concept.

In this case, MIDAS finds that the direct interpretation and one of the other known Entering
metaphors can be rejected before the appropriate Enter-Lisp metaphor is found.

Applying conventional metaphor Enter-Lisp.

(A Enter-Lisp (] Container-Metaphor Metaphor-Schema)
(enter-lisp-res enter-res — lisp-invoke-result)
(lisp-enterer enterer — lisp-invoker)
(entered-lisp entered — lisp-invoked)
(enter-lisp-map Entering — Invoke-Lisp))

Mapping input concept Entering50 to concept Invoke-Lisp30
Mapping input role enterer50 with filler I203 to
target role lisp-invoker30
Mapping input role entered50 with filler Lisp58 to
target role lisp-invoked30

Yielding interpretation:

(A Invoke-Lisp30 (| Invoke-Lisp)
(lisp-invoked30 (] lisp-invoked)
(A Lisp58 (7 Lisp)))
(lisp-invoker30 (] lisp-invoker)
(4 1203 (T I)))

MIDAS then begins the process of mapping from the given source concepts to the appro-
priate target concepts based on the constraints imposed by the metaphor. The mapping
process, called metaphoric unviewing, creates a new instance of the target concept for use
in further processing. Any further inferences that need to be performed are based on this
newly created target concept. In this example, the source concept of Entering is mapped
to the target concept Invoke-Lisp as specified by the metaphor.

Calling UC on input:

(A How-Q207 (1 How-Q)
(topic206 (] topic)
(A Invoke-Lisp30 (] Invoke-Lisp)
(lisp-invoked30 (| lisp-invoked) (4 Lisp58 (T Lisp)))
(lisp-invoker30 (| lisp-invoker) (A I203 (] I))))))

UC: You can enter lisp by typing ’lisp’ to the shell.

Finally, uc uses this new target concept as the basis for answering the user’s question by
using its long-term knowledge about how to initiate the Lisp system. Note that Uc makes
use of the metaphor in expressing its answer to the user.

3.3 Learning

MIDAS will inevitably face the situation where a metaphor is encountered for which none of
its known metaphors provides an adequate explanation. This situation may result from the
existence of a gap in the system’s knowledge-base of conventional metaphors, or from an
encounter with a novel metaphor. In either case, the system must be prepared to handle
the situation. Consider the following example.

In this example, the user has employed the conventional UNIX metaphor that the ter-
mination of an ongoing process can be viewed as a killing. However, unlike the previous
example, MIDAS finds that it is initially unable to interpret this example because it has no
knowledge of this conventional metaphor. More precisely, it determines that the given input
can not adequately satisfy the constraints associated with any of the concepts conventionally
associated with the word k:ll.

> (do-sentence)
Interpreting sentence:

How can I kill a process?
Interpreting concreted input.

(A Killing16 (] Killing)
(killer16 (] killer) (A I46 (1 I)))
(kill-victimi6 (] kill-victim)
(A Computer-Process10 (] Computer-Process))))

Failed interpretation: Killingi6 as Killing.

Failed interpretation: Killingl6 as Kill-Delete-Line.
Failed interpretation: Killingl6é as Kill-Sports-Defeat.
Failed interpretation: Killingl6 as Kill-Conversation.

No valid interpretations.

At this point, MIDAS has exhausted all the possible conventional interpretations of the
primal representation. In particular, the direct non-metaphoric interpretation and three
known metaphorical interpretations are rejected because their restrictions of the role of the
kill-victim fail to match the semantics of the concept filling that role in the input, a
computer-process.

Attempting to extend existing metaphor.

Selecting metaphor Kill-Conversation to extend.

Attempting a similarity extension inference.

Creating new metaphor: Killing-Terminate-Computer-Process

(A Killing-Terminate-Computer-Process (] Kill-Metaphor)
(kill-victim-c-proc-termed-map kill-victim — c-proc-termed)
(killer-c-proc-termer-map killer — c-proc-termer)
(killing-terminate-computer-process-map Killing
— Terminate-Computer-Process))

This example illustrates the operation of the learning component of MIDAS, the Metaphor
Extension System (MES). This system is invoked by MIDAs when it discovers a metaphor
for which it has no adequate knowledge. The task of the MES is to attempt to extend its
knowledge of some existing metaphor in a way that will yield a coherent interpretation for
the new use and provide a basis for directly understanding similar uses in future. In this
case, the system finds and extends a known closely related metaphor that also uses kill to
mean terminate.

Final interpretation of input:

(A How-Q46 (] How-Q)
(topic46 (] topic)
(A Terminate-Computer-Processi0
(1 Terminate-Computer-Process)
(c-proc-termer10 (] c-proc-termer)
(A I46 (1 D))
(c-proc-termed10 (] c-proc-termed)
(A Computer-Processi10
(1 Computer-Process))))))

UC: You can kill a computer process by typing “c to the shell.

Finally, the target concept determined by the MEs is used to provide an answer to the
user.

The approach taken in MIDAS to the understanding of new or unknown metaphors is
called the Metaphor Extension Approach. The basic thrust of this approach is that a new
metaphor can best be understood by extending an existing well-understood metaphor or
combining several known metaphors in a systematic fashion. Under this approach, the
ability to understand and learn new metaphors depends critically on the availability of
systematic knowledge about existing known metaphors.

4 Limitations to the Knowledge—Based Paradigm

As mentioned in section 1 the primary current limitation to systems following a knowledge—-
based approach to non-literal phenomena is the size and correctness of the knowledge-base
itself. Consider the ways that this general problem manifests itself in MIDAS.

o There is no way of telling if the known metaphors that are included are represented
correctly.

o There is no way of telling if a given metaphor is of high enough frequency and range
to warrant significant effort.

e MIDAS lacks any empirical basis for both the abstract domain independent metaphors,
and the domain specific UNIX metaphors, that are included in its knowledge-base.

o There is no way of determining the coverage of the current knowledge—base. How
many conventional metaphors are really out there?

e There is no empirical basis for the particular hierarchical relationships embodied in
the current knowledge—base.

Of course, these problems of knowledge-base size, correctness and organization do not
differentiate these natural language processing efforts from many other knowledge-based Al
efforts. However, within the field of natural language processing, significant progress has
recently been made in the construction of large lexicons and larger more realistic grammars.
The research we are engaged in continues this trend.

5 MetaBank

The MetaBank project is an attempt to solve some of the above problems for the case
of conventional metaphor and metonymy. To be specific, we are identifying resources and
developing methodologies that will allow us to construct a robust knowledge—base of English
metaphoric and metonymic conventions. This knowledge—base will be represented in a form
that will make it generally useful to natural language processing applications. We will also
show that it has direct relevance to various projects involved in the construction of what
have been called large common-sense knowledge—bases.

10

Considered more generally, this effort is an attempt to develop a set of tools and method-
ologies that will enable us to derive useful generalizations about the non-literal and non-
compositional conventions of a language from on-line resources. Seen in this light, this
effort can be seen as a parallel to current efforts to build large lexicons using similar tools
and resources.

The following sections describe the three-part approach we are following for the con-
struction of MetaBank. The first part involves the collection of on—line textual resources
and databases of linguistic generalizations. The second part is the development of a method-
ology for analyzing these resources and deriving generalizations from them. The final part
is the actual construction and use of a knowledge-base based on the preceding analyses.

5.1 Resources

We are planning to make use of the following on-line resources as a part of this effort.

1. Berkeley Metaphor List: An on-line list of known metaphors with analyses.
2. Domain Specific Corpora: A variety of UNIX specific texts.

3. General Text Corpora: Selected texts from the Association for Computational Lin-
guistics Data Collection Initiative.

The following sections describe our efforts to make use of these resources.

5.1.1 Berkeley Metaphor List

The Metaphor Project, at the University of California at Berkeley, under the direction
of George Lakoff, has been collecting an on-line database of conventional English meta-
phors. The database entries for each metaphor include descriptions of the source and target
domains, a set of example sentences using the metaphor, a short analysis, and where appro-
priate, pointers to a longer analysis from which the entry was derived. The entries are being
compiled by hand from the published metaphor literature, and from an on-going series of
graduate seminars at Berkeley. Currently, a total of approximately 50 metaphors of varying
levels of specificity have been entered into the database.

This Berkeley collection, merged with the metaphors already represented and analyzed
as a part of the MIDAS project, will be used as the starting point for MetaBank. As will be
discussed, it will also be used to guide the analysis of the various corpora.

5.1.2 Corpora

We are making use of two kinds of text corpora in this project: text having to do with the
UNIX domain, and more general text selected from the ACL/DCI. The focus in our initial
efforts will be on the UNIX text. More generic text will mainly be used to verify and extend
results gained from the domain specific text.

11

The primary practical reason for the use of specialized text from UNIX domain is that the
main testbed for MetaBank will be natural language application programs that operate in
this domain. It is generally agreed that NLP systems will for some time to come be most use-
ful and robust in limited, specialized domains. This has in the past entailed the construction
by hand of specialized lexicons. What we are seeking is a means by which generic lexicons
can be productively applied to new domains via knowledge of generic English conventional
metaphors. Therefore the particular UNIX and computer system metaphors discovered, are
not the primary accomplishment. We are primarily interested in the mechanisms by which
generic English metaphors are specialized into particular domains.

Within the UNIX domain, we are using two kinds of text that can be characterized as
expert prose and user prose. We currently are using two sources of expert prose. The
first source is the standard UNIX documentation known as the MAN pages. These are
descriptions of the individual commands, subsystems, and internal system calls of UNIX.
For our purposes, they are interesting in that they provide access to the language of a large
number of authors who have had significant impacts on the domain, and they are read by
almost all users of the system at some point. The second source of expert prose that we are
using is the full text of a textbook called UNIX System Administrators Handbook. This text
is intended for readers who will be primarily responsible for administering and maintaining
UNIX system.

The first set of data containing users language about UNIX was obtained from the Com-
puting Research Laboratory at New Mexico State University. A series of Wizard of OZ
studies [17, 18] were conducted with users as a part of an effort to build a natural language
consultant system for UNIX. [5] Users were told that their natural language queries were
being handled by a program, while the queries were in fact actually handled by human
experts. It, therefore, provides us with text containing both user and expert utterances.

The next, and largest, source of text for user’s language are several archives of user
mail to consultants for help in using UNIX. The first is an archive from the Computer
Science Department at Berkeley that was used in the construction of the uNIx Consultant
system. The second is from a similar ongoing effort being collected at the Computer Science
Department at Boulder. In both cases, users having difficulty with the system are asked to
mail to a trouble alias. Mail to this alias is monitored by systems personnel and dealt with.
A total of approximately 150,000 words of text (both user queries and consultants answers)
have been collected.

To illustrate the kind of text being collected, consider the following example from the
Boulder corpus.

>From rieman@tigger Wed Apr 11 17:27:13 1990
Received: by anchor.colorado.edu (cu.generic.890828)
Received: by eclipse.colorado.edu (cu.generic.890828)
Received: by tigger.colorado.edu (cu.generic.890828)
Date: Wed, 11 Apr 90 17:27:08 MDT

From: John Rieman <rieman@tigger>

Message-Id: <9004112327.AA17545@tigger.colorado.edu>

12

To: trouble@eclipse
Subject: locked terminal
Cc: rieman@tigger

My terminal hanging off of eclipse tty06 is locked again. I can see
the processes (login to tigger) on eclipse, but I can’t kill ’em --
eclipse says they aren’t mine.

For your info here’s how this happened (it has happened before):

I typed ‘‘remote’’ at the eclipse login prompt and logged into tigger.
default terminal setting is vt100 -- that’s what I use most of
the time. I only use the zenith when I’m not doing anything

important or time-consuming.
I forgot to tell tigger I was using a zenith and I more’d a file.
The zenith locked.

I hit shift-reset to knock some sense into the zenith, then pressed
ctrl-z to get out of more. I killed the more process.

I typed ‘‘setenv TERM z89’’ to tell tigger I was using a zenith.

Then I tried again to use more. It locked again, and that’s where I
am now. Resetting the terminal has no effect, and killing my tigger
process from another machine has no effect.

-john

Consider some of the metaphorical conventions illustrated by this message. (Eclipse and
tigger are the names of computers in the following).

I can’t kill ’em -- eclipse says they aren’t mine

The use of kill here reflects a metaphor that views processes as being alive, where ter-
mination corresponds to killing The use of say reflects the metaphor that views computers
as communicative agents capable of carrying on dialogs with users. In this case, program
output is viewed as dialog by the computer. Finally, the use of the possessive mine illus-
trates the process as possession of the user metaphor, that underlies many of the security
mechanisms in computer systems.

...ctrl-z to get out of more. I killed the more process.

This sentence illustrates a use of the process as enclosure metaphor. It manifests itself
here in the notion of exiting or get out of as suspension of an ongoing process. Note that
in the immediately following sentence the user switches metaphors to refer to a different
aspect of the same process.

13

My

...to tell tigger I was using a zenith...

This sentence is another instance of the communicative agent metaphor. Here, however,
we see simple input to a program as a speaking to the computer.

...and thats where I am now. ..

This final example is an illustration of a general metaphor structuring states as locations.
Note that this final metaphor illustrates an important point. These domain specific corpora
will also contain uses of non-domain specific metaphors. Therefore, domain independent
abstract metaphors will be derived from all the textual sources we collect, including the
technical ones.

Preliminary study of this data indicates that unconstrained user language is quite meta-
phorical in nature. Moreover, users are much freer in their use of metaphor than are the
authors of corresponding manuals and text books.

5.2 Metaphor Analysis

The text analysis methodology we are developing uses the Berkeley metaphor list as a
generator of probes into the various text corpora. The following steps illustrate our current
methodology.

Step 1: Choose a metaphor of interest from the current list of metaphors. This is the
target metaphor.

Step 2: Generate a set of linguistic probes for this metaphor. This involves selecting
a set of words associated with the source domain of the chosen metaphor. The selection of
these words will be guided by the analysis of the metaphor provided by the Berkeley list
to ensure that the words are likely to occur with the metaphor. These words will typically
be chosen from a well-defined and well-studied semantic field from a spatial or physical
domain.

Step 3: Choose a corpus of interest appropriate to the metaphor being studied. This
will typically involve an alternation between the domain specific corpora and the more
general corpora. The purpose of this alternation is to determine that the behavior of the
metaphor in the domain specific corpora is consistent with its behavior in other domains
and with its description in the Berkeley list.

Step 4: Probe the selected corpus for uses of these verbs. This step simply involves
searching the corpus for instances of the probes.

Step 5: Classify the resulting sentences according to their meaning. This typically
involves classifying the use according the the semantic properties of the arguments to the
probe verb. This classification step will initially be dependent on the subjective ability
of the human classifier to identify various uses. This step will result in one the following
possibilities.

1. A literal use of the probe word.

2. An instance of the metaphor in question.

3. Another metaphor in the known metaphor list.

14

4. Another conventional metaphor not yet in the list.
5. An isolated homonymous word sense with no metaphoric basis.

6. A novel use of some kind.

The result of each probe is, therefore, a combination of information about the metaphor
in question, and information about other uses of the probe words. Some of the information
that can be gleaned about the target metaphor is:

¢ How frequently does this metaphor occur?
¢ How frequently are the probe words used with the target metaphor?

¢ How many of the probe words from the source semantic field actually occur with this
metaphor.

¢ What is the correct level of abstraction for the source and target domains of the
metaphor.

Some of the information that can be gotten from negative probe sentences (sentences
not relevant to the target metaphor) is:

Identification of conventional metaphors not in the current database.
¢ Irequency information about other metaphors.

o Frequency information about the probe word with other meanings.

L 4

Identification of novel metaphors. (Metaphors that would not be judged as conven-
tional).

o Frequency of occurrence of novel uses.

Note that this method of classification of probe words based on the text accompanying
probe words, is analogous to the methods used in Choueka [3], Lesk [12] and Zernik [25]
for word-sense tagging. In these efforts, local context (the words immediately surrounding
the target word) was successfully used to classify a given use of a word in a text as an
instance of a pre-determined dictionary sense. In this work, the role of the dictionary sense
is replaced by a conventional metaphor. Also relevant is the corpus work done by Hinkelman
in studying speech acts. In that work, words such as please and hereby, which can be used
as performatives, were used as probes into a large corpus. The resulting text was then
analyzed to determine the intended meaning of each occurrence.

This methodology can be seen as a combination of top-down and bottom-up techniques.
On the top—down side it makes full use of the analytical linguistic work that has been
done (as it is represented in the Berkeley database) to guide the search for metaphors in
a text. The bottom-up side is the actual examination of large amounts of text. Note that
methodology we are using allows us to probe the corpus in a focussed manner by using
metaphors from the Berkeley list, while at the same time it allows us to discover metaphors
not contained in the original list.

15

5.3 An Example: The Container Metaphor

In order to make this methodology more concrete, consider the following example analysis.
In this example, the Boulder trouble mail archive is probed for instances of container meta-
phors. This is one of the more productive and well-studied kinds of metaphor in English.
The Berkeley Metaphor list contains thirteen container metaphors (thirteen distinct target
domains structured with the source concept container). In addition, significant effort was
spent on computer system container metaphors as a part of the MIDAS project.

For the purposes of the this example, the probes enter, get into, exit and get out of from
the source domain of containers or enclosures were used to probe the selected corpus. The

following table shows the results.

choose ”search” from the menu

BTW, when I try to login, it let’s me
Randomly in these two windows when I
I

prompt I have to be right there to
Kermit tells me to

I have a file called calendar that I

in. It seems that whenever I

the appointment that I just

As soon as |

they

Oh, good grief! I can’t

log me into my home directory and I cannot
a program that attempts to

an intruder making persistent attempts to

I can then do a successfull :vi to

hung up when I tried

I tried to

I was

now hangs when I want to

window, log into the machine. Now,
i was on the console

pressed ctrl-z to
the only way I can
would like to get my degree and

enter ”X”, hit "apropos”, and when the
enter my password, then prints daveheib
entered the vi editor

enter my password when ’rlogin’g in from
enter my passwd

enter a Receive command and I do so.
enter appointments

enter an item in this file,

entered. It’s not a huge

enter windows it fails (most of the time).

get into the queue, but they don’t print
get into my home directory

get into it by any other means.

get into computers around the Internet.
get into Internet

get into vi

exiting out of X windows. Keyboard, mouse, etc.
exit, at which point I received the prompt
exiting suntools when cashew choked in a

exit and save using the VI editor

exit the login

exiting suntools with crtl-d crtl-q

get out of more.
get out of it is to completely shut
get out of here sometime

This probe yielded the following results from this probe:

16

1. All the probes occurred with the interactive—system as enclosure metaphor that was
extensively studied with MIDAS. This was also the most frequent use.

2. A use of the metaphor with the MORE command which neither uc nor MIDAS had
classified as an interactive—system.

3. A conventional use, structuring the home directory as an enclosure for the user, that
was not known to MIDAS. It was used only with get into.

4. A conventional use of enter as in to enter your passwd. Again not known to MIDAS,
and not discussed in the Berkeley list.

5. A relatively new use structuring programs as entering computers from the outside.
As in a program that attempts to get into computers around the Internet. Mentioned
in the Berkeley list, not known to MIDAS.

6. One generic use contained in the Berkeley list, get my degree and get out of here, that
could be considered literally as leave, or metaphorically as graduate.

The net result of this was a strong confirmation of the Interactive-Process-As-Enclosure
metaphor as currently known to MIDAS. It occurred quite frequently, with the characteristics
predicted by the current representation. It also resulted in two conventional uses that have

to be added to the metaphor list and added to MIDAS, and one new computer use that also
needs to be added.

5.4 Knowledge—Base Construction

The first phase of construction involves integrating all of the metaphors from the Berkeley
list into the current MIDAS knowledge—base. This involves representing the following kinds
of knowledge.

¢ Knowledge about the source concepts of the metaphor. Particular care will be taken
with the representation of the source concepts since it is assumed that they will occur
across domains.

¢ Knowledge of the target concepts.

e Knowledge about the metaphors themselves. This information will largely come from
the analyses of the metaphors from the Berkeley list.

The representation of this knowledge will entail significant effort since the Berkeley list
does not give detailed information about the source and target domains. In this phase we
intend to make extensive use of existing formalizations of physical and spatial domains.
(8, 11].

This knowledge will be represented using the KODIAK [21] representation language. Ko-
DIAK is an extended semantic network language in the tradition of KL-OoNE [1] and its

17

variants. Briefly, MIDAS currently uses a hierarchical knowledge-base of structured asso-
ciations linking source and target concepts that are conventionally related metaphorically.
The details of KODIAK and the representation of metaphoric knowledge can be found in [16].
It should be noted that the KODIAK representation is sufficiently similar to other extended
semantic network systems to ensure the transportability of MetaBank to other systems.

As noted above the Berkeley list currently contains approximately 50 high level meta-
phors. The current MIDAS knowledge-base contains 22 domain independent metaphors (11
of which are contained in the Berkeley list) and an additional 18 UNIX specific specializa-
tions. We believe that a stable MetaBank for English will contain no more than 200 high
level generic metaphors.

The second phase of construction consists of feeding the results of the text analysis
work back into the knowledge—-base. This involves refining, or altering completely, the
representation of known metaphors to reflect the results of the analysis. Preliminary results
indicate that three kinds of alterations to the representation are usually required.

¢ Semantic refinement of the source or target representations.
o Change in level of abstraction of the metaphor in either the source or target concepts.
¢ Inclusion of newly uncovered metaphors.

¢ Change in scope or range of the metaphor. More concepts from the target domain may
be expressed by concepts from the source domain than had originally been predicted.
A more subtle, and difficult to verify, change in scope involves narrowing the metaphor.
It may be that the metaphor as represented is too broad, predicting uses that are not
appearing in the data. The obvious problem, of course, is that the failure of a use to
appear in a given corpus does not in any way indicate that it will never appear.

6 Knowledge—Base Use

This paper has focused on the construction of MetaBank, without saying much about how
it will be used. We currently envision three plans for using, and thereby evaluating, the
coverage and correctness of MetaBank. The first involves its use in continuing development
of natural consultant systems in the operating system domain.

The second involves a new project in the area of natural language generation of instruc-
tional texts. The generation of appropriate metaphors is an area in which the knowledge—
base paradigm has only been briefly studied. [9] It promises to provide a rigorous test for
the approach. The representation in MetaBank must not only allow correct interpretation,
but rule out the generation of incorrect or unconventional metaphors.

The final plan for evaluating the usefulness of MetaBank is to make it freely available
for use in other natural language processing projects. As noted above, the representation
chosen for the knowledge-base will be sufficiently general to allow ease of porting.

18

7 Related Areas

There are two on-going areas of research that are of significant relevance to the work we
are engaged in here. These are the construction of large machine usable lexicons, and the
construction of large common-sense knowledge-bases.

7.1 Large Lexicons

In recent years, the lexicon has taken on a more central role, both in linguistic theories, and
in computational efforts. Paralleling this trend, there has been increasing interest in the
construction of large, robust, on-line lexicons. The advent of machine readable dictionaries
and large text corpora has made much of this work possible. The notion of a word-sense,
however, remains problematic [20] in much of this work. Many of the fine grained sense-
distinctions made by lexicographers often seem unmotivated and arbitrary. On the other
hand, many of the senses needed in the specialized domains in which these lexicons will be
used are missing altogether.

In order to make this problem more concrete, consider again the belief metaphors dis-
cussed at the beginning of this report.

(4) It came to me that I had to prepare a talk for the conference.
(5) It hit me that I didn’t have anything to say.
(6) It struck me that this wasn’t a good situation.

(7) I arrived at the conclusion...
(8) I reached the conclusion...
(9) I stumbled across this idea when...

In each of these examples, a physical motion or locative word is being used to refer to
either a belief state or a change in belief. Current lexical approaches are forced to simply
attempt to list a meaning having to do with belief as a separate sense for each of the
italicized words in these examples. The problem with this approach becomes obvious when
one considers the productivity of the conceptualization underlying these senses. Consider
the following examples.

(10) I was led to the conclusion that...
(11) I was dragged kicking and screaming to the conclusion...

(12) John was being pulled to the center of the debate.
(18) John’s position on the debate was unchanged.
(14) John would not budge from his position.

(15) Mike’s position on this issue has not shifted.

19

In these examples, a relatively straightforward conventional metaphor representing four
core mappings could account for all the surface lexical items: beliefs are objects with lo-
cations, believers are objects with locations, shared location entails active belief by the
believer, and finally changes in location indicate changes in belief.

It is clear that a static lexical approach to this kind of phenomena is not appropriate. It
places the impossible burden on the lexicon builder of capturing in a finite list a phenomena
that is inherently generative. The existence of a robust MetaBank would largely relieve this
burden from the lexicon builder. If a word sense can safely be predicted from the spatial
or physical meaning of the word combined with a known metaphor then the sense need not
be listed in the lexicon.

7.2 Common—Sense Knowledge—Bases

CYC [11] and Tacitus [8] are two major recent efforts to construct large common-sense
knowledge—bases. The MetaBank project relates to these projects in a number of ways. It
obviously requires a common-sense conceptual representation for the various source and tar-
get domains that play roles in conventional metaphors. The first point of contact, therefore,
is that we would like to avoid having to produce detailed representations of these domains
ourselves. We plan to take advantage of the detailed analyses of various common-sense
domains that have been done already.

The second point of contact with these efforts is a more subtle one. Builders of common—
sense knowledge-bases often find themselves in one of two problematic situations when
representing various domains. The first situation occurs when the designer has produced
a logically consistent ontology for a domain based on non-language criteria, that bears no
obvious relationship to the way that the domain is actually expressed in natural language.

Consider, as a concrete example, the various temporal logics that have been developed
to reason about time. It is quite clear that none of these logics can predict the following
conventional language uses.

(16) I had a lot of time to kill.
(17) I can’t waste my time on things like this.
(18) Y ou shouldn’t spend any time on that.

The ontology of time in any system based on these logics clearly must be augmented
if they are to be able to deal with how we talk about time. In the case of English, the
metaphor structuring time as a resource is necessary.

The second situation occurs when the knowledge-base designer is forced to rely heavily
on linguistic evidence from a single language for the representation of a particular common-—
sense domain. In this case, the resulting representation may simply be a representation of a
conventional metaphor for the domain for a given language. (Indeed for many applications
this may be sufficient). This problem is most apparent when one considers the problem of
translation.

The MetaBank project provides a partial solution to both of these problems. In the first
situation, MetaBank provides the connection between the representations of domains and

20

how the domains are expressed in language by augmenting domain representations with
representations of conventional metaphors. In the second situation, MetaBank provides a
motivated role for linguistic data that does not force an entirely linguistic representation.

8

Results

Following are the major results we expect of the MetaBank project:

¢ A knowledge-base of English metaphorical conventions that will be plausibly useful
to many natural language processing applications.

e Corpora-based empirical information about the nature and distribution of metaphor
usage in English.

¢ A methodology that will extend to the study of other forms of non-literal language
conventions.

References

[1]

[2]

[3]

[4]

[7]

[8]

Ronald J. Brachman and James Schmolze. An overview of the kl-one knowledge rep-
resentation system. Cognitive Science, 9:346-370, 1985.

Jaime Carbonell. Invariance hierarchies in metaphor interpretation. In Proceedings of
the Third Meeting of the Cognitive Science Society., pages 292-295. Cognitive Science
Society, August 1981.

Y. Choueka. Looking for needles in a haystack. In Proceedings of the RIAO, March
1988.

Dan Fass. Collative Semantics: A Semantics for Natural Language. PhD thesis, New
Mexico State University, Las Cruces, New Mexico, 1988. CRL Report No. MCCS-88-
118.

Louise Guthrie, Paul McKevitt, and Yorick Wilks. Oscon: An operating systems con-
sultant. In Proceedings of the Fourth Annual Rocky Mountain Conference on Artificial
Intelligence, 1989.

Elizabeth Hinkelman and James Allen. Two constraints on speech act ambiguity. In
Proceedings of the 27th Annual Meeting of the Association for Computational Linguis-
tics, 1989.

Jerry Hobbs. Metaphor, metaphor schemata, and selective inferencing. Technical
Report Technical Note 204, SRI, San Mateo, CA, December 1979.

Jerry Hobbs, William Croft, Todd Davies, Douglas Edwards, and Kenneth Laws. Com-
monsense metaphysics and lexical semantics. Computational Linguistics, 13(3), 1987.

21

[9] Paul S. Jacobs. A Knowledge-Based Approach to Language Production. PhD thesis,

University of California, Berkeley, Computer Science Department, Berkeley, CA, 1985.
Report No. UCB/CSD 86/254.

[10] George Lakoff and Mark Johnson. Metaphors We Live By. University of Chicago Press,
Chicago, Illinois, 1980.

[11] Douglas B. Lenat and R.V. Guha. Building Large Knowledge Bases. Addison-Wesley,
1990.

[12] Michael Lesk. Automatic sense disambiguation using machine readable dictionaries:
How to tell a pine cone from an ice cream cone. In Proceedings of SIGDOC, 1986.

[13] James H. Martin. The acquisition of polysemy. In The Proceedings of the Fourth
International Conference on Machine Learning, Irvine, CA, 1986.

[14] James H. Martin. Understanding new metaphors. In The Proceedings of the Tenth
International Joint Conference on Artificial Intelligence, Milan, Italy, 1987.

[15] James H. Martin. A Computational Theory of Metaphor. PhD thesis, University of

California, Berkeley, Computer Science Department, Berkeley, CA, 1988. Report No.
UCB/CSD 88-465.

[16] James H. Martin. A Compututational Model of Metaphor Interpretation. Academic
Press, Cambridge, MA, 1990.

[17] Paul McKevitt and William Ogden. Wizard-of-oz dialogues in the computer operating
systems domain. Technical Report MCCS-89-167, Computing Research Laboratory,
New Mexico State University, Las Cruces, NM, 1989.

[18] Paul McKevitt and William Ogden. Ozwiz ii: Wizard-of-oz dialogues in the computer
operating systems domain. Technical Report MCCS-90-181, Computing Research Lab-
oratory, New Mexico State University, Las Cruces, NM, 1990.

[19] Peter Norvig. A Unified Theory of Inference for Text Understanding. PhD thesis,
University of California, Berkeley, Computer Science Department, Berkeley, CA, 1987.
Report No. UCB/CSD 87-339.

[20] James Pustejovsky. Towards a generative lexicon. Computational Linguistics, 17(1),
1991.

[21] Robert Wilensky. Some problems and proposals for knowledge representation. Tech-
nical Report UCB/CSD 86/294, University of California, Berkeley, Computer Science
Division, May 1986.

[22] Robert Wilensky, Yigal Arens, and David Chin. Taking to unix in english: An overview
of uc. Communications of the ACM, 27, 1984.

22

[23] Robert Wilensky, David Chin, Marc Luria, James Martin, James Mayfield, and Dekai
Wu. The berkeley unix consultant project. Computational Linguistics, 14(4), 1988.

[24] Yorick Wilks. Making preferences more active. Artificial Intelligence, 11, 1978.

[25] Uri Zernik. Strategies in Language Acquisition: Learning Phrases from FEzamples in
Context. PhD thesis, University of California, Los Angeles, Computer Science Depart-
ment, Los Angeles, CA, 1987.

23

