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Synchronization and Sensing with Steady State Superradiance and Spin Squeezing

Thesis directed by Prof. James K. Thompson

Utilizing controllable collective light-atom interactions, I explore the properties of large en-

sembles of cold 87Rb atoms interacting with an optical cavity. The interactions are used to produce

collective light emission and to generate entangled atomic states.

In one set of experiments, I demonstrate a unique atomic magnetometer based on superradiant

Raman lasing transitions between hyperfine ground states. This sensor can operate in a continuous

broadband mode or a discrete narrowband mode based on the evolution of the atomic coherence

in the dark. I also discuss the fundamental sensitivity of this type of detector.

In a second set of experiments, I present studies of the synchronization mechanism between

two ensembles undergoing steady state superradiance within the same optical cavity. I explore the

behavior of the two oscillators in response to the introduction of controllable phase errors between

them in both transient and steady state experiments. This work may stimulate future studies of

quantum phase transitions in open quantum systems.

Finally, I discuss progress in another related experimental direction: cavity-aided non-demo-

lition measurements of the collective atomic spin state of an ensemble of atoms. The coherence-pre-

serving collective measurements presented may one day have the capacity to reduce the impact of

quantum noise in state-of-the-art precision measurements like clocks and acceleration sensors based

on atoms. By upgrading our apparatus, we expect to significantly improve on our previous factor

of 10 improvement over the standard quantum limit on quantum phase estimation for unentangled

atoms.
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Chapter 1

Introduction

1.1 A Quantum Playground

The trend of quantum physics in the past century has been ever-better control of quantum

systems. In atomic and molecular systems, techniques of spectroscopy and laser cooling have en-

abled experimental realizations of the Gedanken experiments conceived by the pioneers of quantum

theory [57]. Applications of quantum systems are numerous and varied, including quantum com-

puting [66], precision measurements of fundamental constants [9, 102, 103], a standard definition

of the second [59], and atomic clocks in the GPS network [81].

The experimental system consisting of atoms inside an optical cavity used during the course

of my doctoral work represents a kind of quantum playground in which many phenomena can be

studied. Atoms have been used in conjunction with optical cavities to create clocks enhanced by

entanglement [79], generate single on-demand photon pairs [13], and create a single-atom laser [90].

But the quantum frontier is still expanding with fundamentally quantum effects like entanglement

finally entering into a useful regime for improving precision measurements [16] and using correlated

atoms to improve spectroscopy [87] or optical frequency references [94, 30, 65].

In this dissertation, I describe experiments that explore part of this quantum frontier. In

order to do this, I examine the properties of an atomic ensemble of 87Rb atoms interacting with

an optical cavity for producing collective light emission and for generating entangled atomic states.

Light in the cavity facilitates interactions between the atoms, allowing the formation of collective

optical dipoles in the process of steady state superradiance. First, I demonstrate a proof-of-principle
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sensor of magnetic fields based on superradiant light emission. Next, I characterize the interactions

between two distinct ensembles of atoms undergoing steady state superradiance. The interactions

can cause synchronization between the phase of the light emitted from each ensemble even when

the natural frequencies of the ensembles differ.

I conclude by discussing a next generation of spin squeezing experiments based on coherence-

preserving measurements of collective atomic spin states. Through improvements to the apparatus,

I show an increased capacity for measurement-induced entanglement to improve atomic phase

measurements. The common thread in these experiments is the use of light to generate controllable

interactions between atoms and to create useful collective states.

Before describing the experiments in more detail, I begin by discussing the two key features

of our playground: atoms and an optical cavity.

1.1.1 Atoms for Precision Measurements

Atomic systems are an attractive platform for creating sensors because of atoms’ identical

nature, small size, well-characterized spectral properties, and well-understood response to pertur-

bations. Laser cooling and trapping techniques afford control over the external states of atoms and

optical pumping techniques can create low-entropy distributions of internal states of atoms. The

controlling light fields can propagate long distances in free space, so atoms can be trapped and

controlled far from laboratory elements that may introduce perturbing fields. Coherence times of

the resulting atomic states can be on the order of seconds even in a room-temperature environment.

This is unlike quantum systems in solid state including superconducting qubits [143, 139], or opto-

mechanical oscillators [5], which can differ in essential properties depending on the details of their

local environments or the precise parameters of their fabrication. Solid state spin systems such

as nitrogen-vacancy centers in diamond [124] are subject to highly variable local environmental

conditions.

The identical nature of atoms is exploited to create extremely precise sensors. Using many

atoms allows a measurement to be effectively massively parallel in nature. The combination of
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stable atomic states and a quiet, well-characterized laboratory environment results in the most

accurate clocks in existence [99, 61, 107] and a standard definition of the second [59, 138]. Clocks

based on atomic ions are capable of sensing the Earth’s gravitational redshift on the meter scale,

corresponding to a fractional change in frequency ∆ν/ν = 4×10−17 [36]. Conversely, atomic states

that are sensitive to external fields can be used as highly sensitive sensors of those same fields. For

instance, atomic magnetometers are capable of sensing magnetic fields a factor of 108 smaller than

the Earth’s magnetic field [69, 113, 131].

1.1.2 Generating Correlations between Atoms

Properly controlled interactions can be used to generate useful correlations between atoms.

Collisional interactions [56, 26, 97, 84], coulombic forces [118, 52], and light-mediated interactions [3,

112, 110, 32] can be used to induce quantum correlations between atoms to reduce readout noise

or produce highly entangled quantum states with a large number of atoms. However, collisional

interactions between atoms can introduce systematic errors in precision measurements [145], a

challenge that remains to be solved in these systems. Light-mediated interactions are experimentally

desirable for a few reasons. They have the capacity to be turned off, e.g., by extinguishing laser

light applied to the atoms. Also, light-mediated interactions can be effectively infinite range (and

thus “all-to-all”) as long as the atoms are well-localized with respect to the applied coherent field,

which is experimentally feasible in both optical cavities and free space [8].

1.1.3 Atom-Optical Cavity Systems

Optical cavities are versatile platforms for creating light-mediated atomic interactions. Essen-

tially infinite-range, all-to-all atomic coupling can be created straightforwardly with a well-defined

bus (a single transverse and longitudinal cavity mode). The lifetime of light in the cavity mode

can also be made to be shorter than the effective lifetime of the atomic state. This can be ex-

pressed in terms of the cavity power decay rate κ being much greater than the atomic decay

lifetime γ [94, 93, 30, 65]. Also, the coupling strength can be large even when the atoms are
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separated by many wavelengths of light. This allows one to avoid density dependent effects like

collisional shifts.

A high collective optical depth is important for creating indistinguishability between the

atoms and strengthening the interaction between the atoms and the cavity mode. A convenient

parametrization of the atom-cavity coupling strength is the unitless single-particle cooperativ-

ity, C = 4g2

κγ ≈ 10−2 in our system. For a single atom in an optical excited state, C represents the

fraction of all decay events in which the atom emits a photon into the cavity mode compared to all

modes of decay. The simple geometric interpretation of C is the fractional solid angle subtended

by the cavity mode in the far-field, multiplied by the cavity finesse [123]. Here, 2g is the frequency

at which a single atom would cyclically absorb and re-emit light into the cavity mode. The sponta-

neous emission process, loss of photons from the cavity, and coherent coupling of atoms and cavity

photons is illustrated in Figure 1.1.

Figure 1.1: Representation of coupled atom-cavity system showing the various decay processes.
Coupling to the outside environment is provided by free space scattering at single-particle rate γ
and power decay rates from the cavity κ1 + κ2 = κ. Collective coupling at rate 2g

√
N creates

coherent oscillations of the excitations between the atoms and the cavity.

When N atoms are placed inside an optical cavity, the rate of emission into the cavity mode

is enhanced by a factor of NC above the spontaneous emission rate γ, resulting in an enhanced

single-particle rate NCγ. The parameter NC represents the cavity-enhanced collective optical

depth [123]. Correspondingly, there is a collectively enhanced rate of absorption and re-emission

into the cavity at rate Ω = 2g
√
N , termed the vacuum Rabi splitting. Optical cavities can create
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a high collective optical depth NC � 1 with the use of many atoms even when the single-particle

cooperativity C is low. Our system is well into the high collective coupling regime with NC ∼ 103.

In general, engineering systems with even C ' 1 may be difficult, yet increasing the number of

participating atoms can increase the optical depth enough for collective physics to arise. A classical

analogue for this increased emission rate is a set of phased array dipole antennas, which have time

phase of radiation of each emitter set to constructively interfere with the phase of radiation of

neighboring dipoles. The result is an intensity of light ∝ N2 rather than N as occurs in the case

of incoherently added electric fields.

1.2 Steady State Superradiance for Magnetometry and Synchronization

Superradiance is a fundamentally interesting process that has promise for improving metrol-

ogy. Steady state superradiance based on long-lived atomic states in an optical cavity is expected

to have spectral properties that exceed state-of-the-art lasers [94, 30, 93]. We demonstrate that the

light emitted by an ensemble of atoms can be used to sense phase shifts of the atomic coherence

caused by an externally applied magnetic field. External magnetic fields affect the phase of the

atomic dipole and therefore the phase of the output light. A unique feature of this magnetometer

is that controllable interactions allow operation in a broadband “active” mode or a narrowband

“passive” mode, each with complementary trade-offs between bandwidth and sensitivity. I also

discuss the fundamental limitations to the sensitivity of the magnetometer.

A second set of experiments explores the behavior of two superradiant ensembles when the

perturbing fields are the intracavity electric fields emitted from the other ensemble. We introduce

differences in frequencies or phases of the light emitted from each ensemble by applying a combina-

tion of magnetic fields and laser light. I discuss the behavior of the two ensembles as they interact

in various regimes of their relative frequency detuning and in response to relative phase errors.
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1.2.1 Bad Cavity Lasers

Steady state superradiance operates in the “bad cavity” regime of laser physics, where the

atomic transverse broadening γ⊥ is much smaller than the cavity power decay rate κ. Here, γ⊥ =

γ/2 + 1/T2 is the decay rate of atomic coherence due to spontaneous decay at rate γ and other

dephasing mechanisms at rate 1/T2. In contrast, the “good cavity” regime where most lasers

operate has a narrow optical cavity and a broad atomic gain medium. There is also a crossover

regime where far-infrared gas lasers can operate with γ⊥/κ ≈ 0.1 to 10 [71, 72]. In the work

discussed here, γ⊥/κ ranges from 10−4 to 10−2. This is akin to the regime in which microwave

masers operate, but with optical frequencies (1014 Hz) instead of microwaves (109 Hz) [68, 132].

Since the atomic coherence is longer-lived than the photonic coherence, the atoms are the

primary reservoir for phase information. This means that the phase of the collective atomic dipole

sets the phase of the emitted light. A simple schematic of how a candidate atomic system might

be used in conjunction with an optical cavity to create steady state superradiance is shown in Fig-

ure 1.2(a). Non-resonant, non-collective repumping light with single-particle repumping rate W is

applied to maintain inversion while collective emission into the cavity sustains a collective radiating

dipole with enhanced emission rate.

During the process of superradiance, the cavity photons act as a communication bus through

which the atoms correlate their optical dipole phases. The optical dipole phases are correlated in

such a way that there is constructive interference between the light emitted by individual atoms.

This can happen even when the average intracavity photon number Mc < 1 [24], emphasizing the

role of the atoms in storing the phase coherence.

In the work presented in this thesis, we use a model Raman system to access the bad cavity

regime. In our 87Rb system, the decay rates Γ of the excited optical states are comparable to the

cavity linewidth κ while the hyperfine ground states are metastable. However, we can create an

effective two-photon Raman decay with a much smaller effective decay rate γ � Γ (on the order

of 100 to 103) by applying a dressing laser, as depicted in Figure 1.2(b). This gives experimental
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control of the decay rate, which can even be changed abruptly or essentially extinguished. The

presence of more energy levels also leads to dynamics not present in the model system based on

atoms with highly forbidden transitions, as discussed in Chapter 2. In Chapters 2, 4, and 5, I

describe how this control can be used to create a magnetometer with variable bandwidth and how

it can introduce relative phase errors between superradiant lasers so that the resulting dynamics

can be observed.

Sr, Yb, Mg, etc. 87Rb Raman System(a) (b)

Figure 1.2: Energy level diagrams for (a) an ideal superradiant system based on alkaline-earth-like
atoms and (b) for our Raman system in rubidium. Collective emission into the cavity between |↑〉
and |↓〉 is sustained by repumping through an intermediate state |3〉 at rate W . (b) The addition
of an intermediate state |i〉 and application of a dressing laser with strength parametrized by Rabi
frequency Ω causes decay from |↑〉 to |↓〉.

1.2.2 Synchronization

While steady state superradiance is a quantum mechanical phenomenon, it has deep con-

nections to the field of nonlinear dynamics and synchronization physics. For superradiance to

occur, the atoms must synchronize their optical dipole phases with one another. Synchronization

of classical oscillators is observed in a wide variety of systems, including biological, chemical, and

social systems [120]. Synchronization dynamics are critical for understanding and controlling tech-

nologically relevant systems like frequency combs [47, 134], opto-mechanical oscillators [144, 6],

and electro-mechanical systems [88]. The “bottom-up” emergent phenomenon of synchronization
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can generate highly ordered collective states of classical oscillators even with an inhomogeneous

distribution of frequencies [121], and similar useful collective states of systems that intrinsically

have quantum noise should be possible [141, 73, 75]. Synchronized open quantum systems will

be important for understanding synchronization models in open quantum systems [141, 48], cre-

ating associative memories [53], and using the dissipation mechanism to engineer states useful for

quantum computing [129].

The phase synchronization process studied here could inform future applications of superra-

diant lasers for exploring fundamental physics or improving technology. Two superradiant lasers

operating within the same cavity are a candidate system for exploring synchronization models

in open quantum systems [141]. Also, a better understanding the superradiant synchronization

process could allow the creation of Ramsey interferometers that use superradiance to maintain

coherence [140] or transfer coherence between atomic clock-like ensembles.

1.3 Spin Squeezing with Cavity-Aided Measurements

I also describe a system for cavity-enhanced collective quantum non-demolition (QND) mea-

surements of the population of 87Rb atoms. These collective measurements can generate a high

degree of entanglement between atoms, leading to partial cancellation of quantum noise of a quan-

tity of interest. This effect, known as spin squeezing, is a way of exploiting quantum entanglement

between the atoms to enhance precision measurements with atoms. Prior QND measurement exper-

iments that generated spin squeezing showed that near-resonant light could still have a high enough

degree of non-destructiveness to create entanglement [32, 110], and that eliminating back-action

from noise in state-changing Raman transitions could generate an order-of-magnitude improvement

(a factor of 10.5) in phase enhancement compared to an unentangled ensemble [16]. By improving

the quality of the QND measurement, it may be possible to achieve another order of magnitude in

phase enhancement. To this point, we have observed up to 25 times enhancement in variance of

the phase, and it may be possible soon to achieve a factor of 50 or greater [42].
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1.3.1 Measuring Atomic Spins

Precision measurements with atoms generally rely on measuring the relative quantum phase φ

between two atomic states |↑〉 and |↓〉 in a superposition state |ψ〉 = a |↓〉+ beiφ |↑〉. The quantum

phase φ is not directly measurable, but can be mapped onto observable quantities. In steady state

superradiance, the atomic phase φ is directly related to the phase of emitted light ψ and measuring

ψ serves as a continuous non-destructive measurement of the atomic coherence. For collective non-

demolition population state measurements, as in spin squeezing, the phase φ can be mapped onto

the population of atoms in the spin states, N↑ and N↓.

A convenient representation for both kinds of measurements is the Bloch vector. The

Bloch vector is a classical three-dimensional vector that represents the quantum state of one

or many spin-1/2 systems. For a pure quantum spin state |ψ〉 = cos( θ2) |↑〉 + eiφ sin( θ2) |↓〉, it

is represented as a vector with length 1/2, polar angle θ ∈ [0, π), and azimuthal angle φ ∈

[0, 2π). In Cartesian coordinates, the Bloch vector 〈ŝ〉 = 1
2(〈σ̂x〉 , 〈σ̂y〉 , 〈σ̂z〉) = (sx, sy, sz) =

1
2(sin(θ) cos(φ), sin(θ) sin(φ), cos(θ)), where σ̂k label the Pauli spin matrices. For N atoms, a col-

lective Bloch vector 〈Ĵ〉 can be defined as the vector sum

〈Ĵ〉 =

N∑
i=1

〈ŝ(i)〉, (1.1)

where i is an index over individual atoms. The relative quantum phase φ is the quantity of

interest for atomic sensors, as it can change in response to external fields, or in the case of

atomic clocks, is set purely by the energy level difference between |↑〉 and |↓〉, which can be

made very stable. Coherent spin states (CSS) are the idealization of the states used in many

quantum measurements. A CSS is composed of N atoms in the same pure quantum state such

that |ψCSS〉 =
⊗N

j=1 cos(θ/2) |↑〉j + sin(θ/2)eiφ |↓〉j , as shown in Figure 1.3.

1.3.2 Quantum Noise in Measurements of Atomic Spins

The other key component in this description is quantum noise. A fuzzy blob at the tip of the

Bloch vector represents the width of the probability distribution of measurement outcomes resulting
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from quantum noise, shown in Figure 1.3. The signal-to-noise or angular uncertainty comes from

comparing the noise in a given spin component to the length of the Bloch vector. For a CSS

on the equator of the Bloch sphere, the root-mean-square (RMS) size of the angular uncertainty

distribution is ∆θ = ∆Jz/| ~J |. This noise scales in the large N limit as ∆θ = ∆φ = 1/
√
N . This

scaling is known as the Standard Quantum Limit (SQL) and arises from the binomial statistics of

“flipping quantum coins” or collapse into |↑〉 and |↓〉 due to measurement. Note that the relative size

of the uncertainty distribution in Figure 1.3 is not to scale with our experiment, as with N = 106

atoms the SQL 1 milliradian.

Figure 1.3: Depiction of a coherent spin state (CSS) on the Bloch sphere. The length of the Bloch
vector is N and the RMS noise in its pointing angle is

√
N , leading to a fractional quantum noise

of 1/
√
N . The Bloch vector has polar angle θ from the z-axis and has azimuthal angle φ.

The atomic phase φ needs to be mapped onto an observable quantity for it to be measured.

In our Raman superradiant laser system, φ can be inferred from the phase ψ of the light emitted

in superradiance. Perturbations to atomic energy levels from fluctuating magnetic fields cause

fluctuating precession of φ and therefore ψ with respect to a stable frequency reference. Application

of coherent microwave transitions and a controllable dark evolution period during which time the
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dressing lasers are turned off can translate the narrow detection band of the scheme to higher

frequencies while minimizing the effect of dephasing on contrast loss.

In the context of interferometers based on atoms, a standard method for mapping the quan-

tum phase φ onto spin state population is Ramsey interferometry [104]. Optical pumping removes

entropy before a sensing sequence and puts the atoms into a well-defined state (such as |↓〉). Co-

herent radiation (e.g., microwaves or a laser) is applied to create a π/2 pulse to bring the atoms

to the equator of the Bloch sphere so that φ may precess relative to the local oscillator (LO) that

performed the initial π/2 pulse. Finally, another π/2 pulse about a rotation axis close to the Bloch

vector takes the Bloch vector off of the equator and gives it a non-zero Jz. The z-component of

the resultant Bloch vector indicates the phase deviation between the LO and the Bloch vector

having precessed. The expectation value 〈Ĵz〉 = (N↑−N↓)/2 (using the definition of the Pauli spin

matrix σ̂z). The result is that in the Ramsey mathod, the problem of measuring a quantum phase

is translated into a problem of measuring atomic populations.

Population measurements can be performed with fluorescence measurements, as in ion

traps [127, 98], or optical lattice clocks [15, 61]. However, these projective measurements destroy

the coherence of the sample, to taking the atoms out of a superposition state by projecting the

atoms into either a bright state (e.g., |↑〉) or a dark state (|↓〉). Fluorescence measurements also

usually require scattering many photons for good signal-to-noise in the detection process, and the

resulting photon recoils can cause loss of atoms from a trap due to heating. Repeated measure-

ments then require another round of state preparation. One way to circumvent this is to perform

collective measurements that do not provide which-atom information. These kinds of quantum

non-demolition measurements are how we generate entanglement between our 87Rb atoms. By

only getting information about how many atoms are in |↑〉, we do not cause single-atom collapse

and still have a signal (| ~J | � 1/
√
N) that can be used for a precision measurement.

Our QND measurement takes the form of measurements of cavity frequency. Atoms within

the cavity mode cause a phase shift of light that effectively changes the optical path length of

the cavity. This leads to an atom-number dependent change in the resonance frequency of the
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cavity compared to the bare cavity containing no atoms. This frequency shift alone contains no

which-atom information.

1.3.3 Squeezing Quantum Noise

A key challenge in the context of precision measurements is to improve upon the quantum shot

noise level. Squeezing of quantum noise was first demonstrated in light [117], yet there have been

few practical demonstrations of measurements enhanced with squeezed light. Laser gravitational

wave interferometers (GEO600 and LIGO) have used squeezed light to improve sensitivity to strain

induced by gravitational waves at acoustic frequencies by about 3 dB [128, 1]. Enhancement in

biological imaging of about 14% in spatial resolution was also recently achieved using squeezed

light [125].

In atomic systems, spin squeezing can reduce the quantum noise level in one spin quadrature

at the expense of increased noise in an orthogonal quadrature [67]. Techniques for generating inter-

atom correlations necessary for spin squeezing include atomic collisions [26, 56, 100, 97], qubit

entangling gates [76, 77, 96, 95], and collective measurements in free space [3, 112] or optical

cavities [110, 16, 32]. Twisting-type interactions can also be applied in optical cavities through a

feedback mechanism between the collective atomic spins and the light shift inside the cavity [78]. A

useful metric for expressing the degree of phase enhancement is to compare the improvement relative

to the SQL. Figure 1.4 shows a partial summary of the field of quantum phase enhancement, where

the results are presented without subtraction of technical background noise. That is, it presents

not the inferred degree of entanglement but the degree of entanglement that will actually enhance

a precision measurement in the presence of actual experimental imperfections.

Our method for measuring atomic spin populations is effective because it reduces back-action

associated with state-changing transitions [33, 16] that limited prior work [32, 110]. We utilize an

optical cycling transition to probe the atoms to prevent state-changing transitions. The major

source of back-action is then loss of coherence due to free-space Rayleigh scattering, as free space

scattered photons reveal the spin state of individual atoms to the environment. The work presented
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in this thesis focuses on technical improvements to the probing scheme that eliminates a large degree

of relative laser frequency-cavity frequency noise and improves the effective quantum efficiency q

of the probing. High q is important for a QND measurement as it means, for fixed incident photon

number Mi interacting with the atoms, there is less of a contribution of photon shot noise to the

noise in the measurement.

1.4 Organization of Thesis

The structure of this thesis is as follows. First, in Chapter 2, I describe in more detail

the physics of steady state superradiance, including linewidth predictions and theoretical models.

These concepts were developed in experiments performed during the early years of my doctoral

studies. I proceed in Chapter 3 by describing the essential features of our experimental apparatus.

The material presented in Chapters 2 and 3 is useful for understanding the details of later chapters.

Next, in Chapter 4, I describe the operation of and characterize the performance of a proof-of-

principle sensor of magnetic fields based on a superradiant ensemble of atoms. Since the frequency

of emitted light is set by both the energy difference between |↑〉 and |↓〉 and the dressing laser

frequency, changes in the ground state splitting can be detected as changes in the frequency of

the output light. We utilize magnetic-field-sensitive ground states and observe the output light

to infer the change in magnetic field at the location of the atoms. A key feature of this sensor

is its capability of operating in two regimes: steady state, high bandwidth sensing and a dark,

narrowband lock-in mode.

Chapter 5 describes experiments that characterize the manner of synchronization between

two spatially separate atomic ensembles undergoing steady state superradiance in the same optical

cavity. By breaking the phase or frequency degeneracy of the lasers, we can observe the output light

to once again infer the changes in the collective atomic dipoles’ phases. This system is also explored

in two regimes: in real time as the phase degeneracy between the two ensembles is abruptly broken,

and the steady state configuration as the frequency difference between the lasers is changed.

Chapter 6 describes some initial experiments to generate large amounts of entanglement—
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the next generation of cavity-aided spin squeezing. Setup for these experiments involved important

modifications of the experimental system and breaking vacuum for the first time in several years

as part of moving the entire experiment to a new wing of JILA. In the scheme presented here,

we expect that an enhancement in phase resolution of 14 dB is possible, with more enhancement

of up to 17 dB possible with straightforward technical improvements. I conclude in Chapter 7

with prospects for future squeezing experiments, and briefly describe a scheme for entanglement-

enhanced atom interferometry in our optical cavity.



Chapter 2

Steady State Superradiance Overview

To date, there have been several experimental [24, 19, 20, 18, 133] and theoretical [93, 21, 65]

investigations of steady state superradiance. This chapter, by reviewing some previous work on

superradiance, establishes some shared concepts that are useful for understanding the material in

Chapters 4 and 5.

2.1 Technology Promise: Toward MilliHertz Linewidths

One of the most compelling reasons to study steady state superradiance is the superior spec-

tral properties that are predicted. State-of-the-art lasers built for interrogating optical transitions

with high coherence times for optical lattice clocks have linewidths of tens of mHz compared to

their resonant frequencies of several hundred THz. These lasers then have Q factors in excess

of 1017 [99]. Impressive progress along these lines continues, but the technical challenges are sig-

nificant, with the state of the art now requiring cooled mono-crystalline cavities and the ultimate

linewidth limitation being thermal fluctuations of the mirror coating [39].

Since the superradiant laser will use natural high-Q oscillators (atoms) as the phase flywheel,

rather than the optical cavity, it provides a way of sidestepping the engineering challenges associated

with stable optical cavities. The ultimate Schawlow-Townes linewidth of the superradiant laser

(in Hz) is Cγ/π, with the quantity γ in units of rad/s. This expression has a simple physical

interpretation: the cooperativity C is the fraction of solid angle subtended by the cavity mirrors

times the cavity finesse [123], so the linewidth is set by the rate Cγ of spontaneously emitted
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photons ending up in the cavity mode. The cooperativity C can be less than one, so that the

ultimate linewidth of the laser is less than the natural linewidth of the atoms—which for Sr is

about 1 mHz and Yb is ∼ 10 mHz. The first demonstration of a Raman superradiant laser showed

that the linewidth of the light emitted by the atoms was below that of any known source of

broadening, but the predicted linewidth was not observed [24].

2.1.1 Insensitivity to Cavity Frequency

Although the ideal superradiant laser linewidth is limited by the atomic decay rate, in any

real application there will be a contribution from cavity instabilities. In some sense, the primary

purpose of the cavity field is to serve as an infinite-range communication bus between atoms to

allow synchronization of the atomic dipoles. But emitted photons still interact with the cavity

mirrors so any motion of the cavity mirrors (or a deviation of the cavity resonance frequency) can

disrupt the phase stability of the emitted light.

There is a pulling coefficient P = 2γ⊥/κ = W/κ that sets the sensitivity of the emitted photon

frequency ω′γ to that of the cavity center frequency ωc and unperturbed emission frequency ωγ

through ω′γ = ωγ + P (ωc − ωγ). Here, W is the repumping rate from the ground to excited lasing

state. In the bad cavity regime of the experiments presented in this thesis, P ∼ 10−4 to 10−2. In

a good cavity laser, P = 1 as the cavity frequency sets the lasing frequency. This means that the

technical requirements on engineering a stable cavity are much less stringent than in state-of-the-art

lasers.

2.1.2 Atomic Coherence and Emitted Light

A key feature of superradiance is the mapping of atomic coherence onto the coherence of the

emitted light. There is a direct relationship between the relative atomic coherence φ(t) between

lasing states |↑〉 and |↓〉 and the phase of emitted light ψ(t) such that φ(t) = ψ(t) up to an overall

constant phase offset. The light phase then serves as a non-destructive measure of the non-directly-

observable atomic phase φ and the equatorial quadrature J⊥, which otherwise would have to be
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rotated to the z-axis to be observable in our system.

2.1.3 Collective Bloch Sphere

This section introduces explicitly the Bloch vector picture for the collective atomic state and

its relationship to the coherently emitted light. The relationship between atomic coherence and the

emitted light is crucial for understanding the later Chapters 4 and 5. A convenient picture is the

collective Bloch sphere, a classical vector composed of a weighted average of the atomic dipoles

~J =

∑N
j=1 g

2
j
~Sj∑N

j=1 g
2
j

, (2.1)

where 2gj is the single-photon Rabi frequency from the Jaynes-Cummings Hamiltonian for the

jth atom and ~Sj is a three-vector representing an atomic spin with components (〈Ŝx〉, 〈Ŝy〉, 〈Ŝz〉)

defined by the expectation values of operators

Ŝx =
1

2
(|↑〉 〈↓|+ |↓〉 〈↑|)

Ŝy =
i

2
(|↓〉 〈↑| − |↑〉 〈↓|)

Ŝz =
1

2
(|↑〉 〈↑| − |↓〉 〈↓|) . (2.2)

The expression for ~J in Equation 2.1 includes inhomogeneous coupling, allowing for the gj to vary.

A convenient parametrization of the Bloch sphere is to define it by length and polar and azimuthal

angles ~J = |J | (sin(θ/2) cos(φ), sin(θ/2) sin(φ), cos(θ/2)). In the Raman superradiant laser, the

phase of the optical dipoles α = φ+ β, so that the relative phase φ between atomic ground states

is mapped onto the light, as shown in Figure 2.1. Another useful picture for superradiance is

splitting it up into z-component Jz = (N↑−N↓)/2 and equatorial plane component J⊥ = Jx + iJy.

Then, Jz indicates the level of inversion and the electric field phasor emitted by the superradiant

ensemble A(t)eiψ(t) is directly proportional to the complex transverse component J⊥e
iφ(t).

In the Raman system, it is possible to turn off the dressing laser to effectively stop the

lasing process from continuing. This allows the atomic coherence to be “frozen” and potentially

manipulated with microwaves to create sensors (as in Chapter 4) or explore the effect of repumping

modulation on Jz and J⊥ [19].
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Figure 2.1: Mapping of the Bloch vector equatorial projection onto the emitted light phasor. (a)
Atomic Bloch vector with phase φ and equatorial projection J⊥ directly setting the light phase ψ
and amplitude A. (b) Light phase ψ versus time when the Raman dressing laser and repumping
beams are turned on (black line) or off (gray boxes). Exponential weighting of the phase data
for optimal phase noise is represented by the blue and red curves. (c) Amplitude A(t) (red trace)
versus time with a longer dark time between periods of bright evolution.
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As discussed in Ref. [20], the limitations to the capability of light measurements for estimat-

ing J⊥ at a given point in time are phase diffusion and photon shot noise. In order to estimate the

phase φ(t), it is necessary to average the time record of the light phase ψ(t) over some time Tm.

Increasing the averaging time Tm reduces photon shot noise at the cost of increasing the noise from

phase diffusion of J⊥(t). However, it was shown that an optimal Kalman filter can be constructed

to measure φ(t) to the equivalent standard quantum limit given a certain level of inversion (i.e.,

the projection of a fractional ∆θ = 1/
√
N noise distribution onto the equatorial plane, given a

certain level of inversion Jz that tilts the Bloch vector up out of the plane). This filter is simply

an exponential weighting with time constant τw = 1/
√
qNCγ, where q is the quantum efficiency of

the detection system.

2.2 Models for Superradiance

Depending on the level of detail required, there are a few different useful models for steady

state superradiance. A full quantum master equation analysis can provide useful information about

the effects of quantum noise. The more computationally tractable optical Bloch equations, where

expectation values of operators are considered and higher-order quantum correlations are ignored,

can give useful insights into the behavior of the system and capture most of the crucial qualitative

detail.

2.2.1 Hamiltonian for Atom-Cavity System

The Jaynes-Cummings Hamiltonian [83] describes the coupling of an ensemble of two-level

spins to a single harmonic oscillator, the light field of the cavity mode.

Ĥ = ~ωcĉ†ĉ+ ~g(ĉ†Ĵ− + ĉĴ+). (2.3)

Here, ωc is the resonance frequency of the cavity mode. The operators ĉ and ĉ† are the anni-

hilation and creation operators, respectively, for photons in the cavity mode. The single photon

Rabi frequency is 2g and is determined by the atomic dipole matrix element and the cavity mode
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volume [83]. The collective atomic raising and lowering operators are Ĵ±.

We define a density matrix ρ̂ =
∑

kl

∑∞
m,n=0 |k, n〉 〈l,m|, where k, l label atomic basis states

and (m,n) label the photon Fock states. The time evolution of ρ̂ is determined by the master

equation

˙̂ρ =
1

i~
[Ĥ, ρ̂] + L[ρ̂]. (2.4)

The Lindlbad super-operator L[ρ̂] [25] includes the effects of dissipation from a few different sources:

cavity photons escape through the mirrors at rate κ, incoherent repumping from |↓〉 to |↑〉 happens

at rate W , and spontaneous emission still occurs at rate γ. The full expressions are contained in

Appendix A. Since a laser must have more than just two energy levels, the repumping process

actually takes atoms from |↓〉 to |↑〉 through at least one other optically excited state |3〉.

For an operator Ô, the expectation value O ≡ 〈Ô〉 is given by O = Tr[Ôρ̂]. The time

variation of O is given by Ȯ = Tr[Ô ˙̂ρ], where ˙̂ρ comes from the master equation. The frequency of

the emitted photon is ωγ , and the frequency difference between |↑〉 and |↓〉 is ω↑↓. Here, Ė = Tr[ĉ ˙̂ρ] is

the expectation value of the cavity annihilation operator (“E” as a mnemonic for “electric field”).

Finally, the symbol ˜ indicates that the quantity is in a frame rotating at the frequency of the

emitted light ωγ as, e.g., E = Ẽe−iωγt. The coupled atom-field equations are then

˙̃
E = −(

κ

2
+ i(ωc − ωγ))Ẽ − igJ̃− (2.5)

˙̃
J− = −(γ⊥ + i(ω↑↓ − ωγ))J̃− + i2gẼJz (2.6)

J̇z = −(W + γ)
Jz
2

+ (2Γ3e −W + γ)
N3

4
+
N

4
(W − γ) + ig(J̃−Ẽ

∗ + J̃+Ẽ) (2.7)

Ṅ3 = −(Γ3e +
W

2
)N3 +W (

N

2
− Jz) (2.8)

The quantity γ⊥ = γ/2 +W/2 + ΓR/2 represents all the broadening terms from spontaneous decay,

repumping, and background decoherence. For our experiments, γ⊥ is dominated by the repumping

rate W . The corresponding energy levels and frequencies are illustrated in Figure 2.2 and Figure 2.3.
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Figure 2.2: Energy level diagram for the three-level system presented in Equations 2.5 to 2.8.
Spontaneous decay is at rate γ, decay from |3〉 to |e〉 is at Γ3e, and W is the repumping rate out
of |g〉. A decoherence rate ΓR affects |g〉.
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2.2.2 Raman Laser Equations

The model introduced in the previous section is an adequate description of a 3-level laser,

but in our experiments, we use a Raman system. A dressing laser detuned from an excited optical

intermediate state |i〉 causes decay between the metastable hyperfine ground states of 87Rb. The

Hamiltonian for the Raman system depicted in Figure 2.3 is

Ĥ = ~ωcĉ†ĉ+ ~ωiN̂i + ~ω↑N̂↑ + ~ω↓N̂↓ + ~
Ωd(t)

2
(Ĵ↑i + Ĵi↑) + ~g(ĉ†Ĵ↓i + ĉĴi↓). (2.9)

Here, Ωd(t) = Ωd(e
−iωdt+eiωdt), where ωd is the frequency of the dressing laser. The frequencies ωc

and ωi are the frequencies of the cavity mode and the excited optical state, respectively. The

frequencies of |↑〉 and |↓〉 are ω↑ and ω↓. The operators Ĵmn are collective raising and lowering

operators, exchanging an excitation in state |n〉 for one in |m〉. In this model, the dressing field is

unaffected by the atoms. With this Hamiltonian, the master equation (Equation 2.4) can be used

to derive the equations of motion for expectation values of operators again. Since the detuning ∆

is large, the optically excited state population is eliminated to generate the coupled equations

Ė =

(
−κ

2
− i
(
g2

∆
N↓ + ωc

))
E − igΩd

2∆
J↓↑e

−iωdt (2.10)

J̇↓↑ =

(
−γ⊥ − i

(
Ω2
d

4∆
− g2 |E|2

∆
+ ω↑↓

))
J↓↑ + i2

gΩd

2∆
JzEe

iωdt (2.11)

J̇z = W (N/2− Jz) + i
gΩd

2∆
(E∗J↓↑e

−iωdt − EJ↑↓eiωdt). (2.12)

In these equations for the Raman system, the term gΩd
2∆ appears as the effective two-photon cou-

pling g2. Correspondingly, the effective decay rate from |↑〉 to |↓〉 is approximately

γ =
Γ

4

(
Ωd

∆

)2

(2.13)

when the detuning ∆ is large compared to Γ. Also, the term g2

∆N↓ + ωc corresponds to a shifted

or dressed cavity mode due to atoms in the ground state |↓〉. Finally, an AC Stark shift from the

dressing laser and intracavity electric field cause a perturbation ωac =
Ω2
d

4∆ −
g2|E|2

∆ to the splitting

between the two lasing states |↑〉 and |↓〉. The equations can be rewritten more simply by writing



24

them in the frame of the effective atomic frequency ωa = ω↑↓ + ωac + ωd with detuning of the

cavity δc = ωc − ωa as

Ė = −
(κ

2
+ iδc

)
E − ig2J− (2.14)

J̇− = −γ⊥J− + i2g2JzE (2.15)

J̇z = −WJz +
N

2
W + ig2

(
J−E

∗ − J∗−E
)
. (2.16)

ωd, Ωd

ΔdΔc

δ
0

ωc, 2g
i

W

Γ

Figure 2.3: Energy level diagram for the Raman laser scheme. A drive laser with Rabi frequency Ωd

and detuning ∆d from the excited state allows decay from |↑〉 to |↓〉. The cavity is detuned ∆c

away from |i〉 leading to a detuning δ0 = ∆c −∆d between the cavity mode and ωd + ω↑↓.

A simple dynamical picture, based on the geometric interpretation of the Schrödinger equa-

tion [51], for the operation of the superradiant laser at the single-atom level is the following:

(1) In steady state, the collective Bloch vector is pointing somewhere in the northern hemi-

sphere.

(2) Atom k, upon undergoing a repump event, is taken from the global superposition state

into |↑〉. Because N is large, the collective Bloch vector is perturbed very little.

(3) The persistent intracavity field torques the Bloch vector of atom j to be in line with the

steady state Bloch vector.
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In this picture, the effect of quantum noise is to cause diffusion of the azimuthal phase φ in time as

fluctuations in the light field cause fluctuations in the time evolution of the atomic Bloch vectors.

2.3 Power Output and Quenching

Since the superradiant laser relies on atomic coherence, and repumping destroys coherence,

steady state light emission is a balance between putting energy back into the system from repumping

and allowing the synchronization mechanism to happen.

The total transverse broadening γ⊥ = ΓD/2+W/2+γ/2, where ΓD = 1/T2 is the background

decoherence rate. This sets the lower threshold for lasing—when W exceeds ΓD, the atoms are

being repumped faster than coherence is re-established through the electric field radiated by all the

other atoms. The intracavity field becomes strong enough to build up phase alignment between

optical dipoles faster than it can be destroyed.

The Bloch vector picture qualitatively explains the upper quenching behavior of steady state

superradiance in response to a changing repump rate W . Unlike in a conventional laser, where a

highly broad gain medium has Jz ≈ 0 in steady state, a superradiant laser’s output ceases with too

much inversion. This is because the atomic coherence, or equivalently, J⊥, is driven to zero as the

Bloch vector aligns to the z-axis. Before a persistent intracavity field can be established, a repump

event takes atoms back to |↑〉. Figure 2.4 shows the output power in units of intracavity photon

number as a function of repumping rate W in units of the collective emission rate NCγ.

2.4 Stability and Relaxation Oscillations

An interesting feature of the Raman system is the interaction between dispersive shifts of

the cavity mode and stability. Stability constraints restrict the regime of cavity detunings that

are experimentally feasible. Our Raman superradiant laser acts in a regime where the detuning is

still small enough for collective dispersive shifts of the cavity mode, given by ω′c = ωc +Ng2/∆, to

shift the dressed cavity mode by a large fraction of κ. Since the dressing laser does not necessarily

have the same detuning relative to the dressed cavity mode plus the hyperfine splitting, the cavity
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Figure 2.4: Theoretical plot of output power vs. repump rate for a superradiant ensemble. There is
a quadratic scaling with W and maximum 1

8N
2Cγ occurs at W/(NCγ) = 1/2. The upper quench

threshold corresponds to the repump rate overtaking the stimulated decay, leaving the system fully
inverted and with no projection J⊥.
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frequency changes relative to the emitted photon frequency. This changes the effective cooperativ-

ity C ′ = C/(1+ (δc/(κ/2))2) such that the collective emission rate NC ′γ can change, which in turn

changes the inversion (or tipping angle θ of the Bloch sphere) and may shift the cavity frequency

yet again. It is clear that this feedback mechanism could lead to instability in the emitted light

from the laser.

However, the relative sign of the feedback mechanism can change based on which side of

cavity resonance the ensemble starts off in. If initially the emitted photon frequency were blue

of the cavity, emission would cause the cavity to shift to the blue. This would bring the cavity

even more blue (since atoms in |↓〉 create a larger shift) and increase C ′, increasing the emission

rate further: a runaway process that prevents stable operation with the emitted photon blue of the

cavity. In the opposite case, when the emitted photon frequency is red of the dressed cavity mode,

the sign of the feedback can be negative and stable operation can be reached.

There is also a fundamental time delay in the system, owing to the repumping process. In

the real Rb system there are multiple paths for the atoms to take until their internal state reaches

the dark state |↑〉. The response of the inversions and the output light phasor to repumping

modulation was studied in Refs. [24, 22]. The modulation is expressed in the model of Equation 2.16

by substituting W → W̄ (1 + εRe[eiωt]) and introducing another level |3〉 with population N3.

By analyzing the effect of first-order perturbations, a set of damped, driven harmonic oscillator

equations can be derived for jz,⊥ which indicate a W̄ -dependent resonance frequency and damping

rate.



Chapter 3

Experimental Apparatus

This Chapter briefly describes the apparatus that was used to perform the experiments

described in later chapters. Many details of the apparatus have been described previously in the

theses of Chen [31] and Bohnet [17]. As is typical of a modern atomic physics experiment, we rely

heavily on ultra-high vacuum (UHV) systems, multiple laser systems, data acquisition and analysis

software, and JILA-built control electronics, as well as circuits developed in the lab for very specific

purposes.

At the heart of the experiment, however, are our quantum spins (87Rb atoms) confined within

an optical cavity. The atoms must be cold enough to have well-defined motional properties on the

timescale of our experiments and reside in the cavity with long enough coherence times that we can

prepare the atoms, probe them, and perform other experiments with them. A great deal of work

collectively by our lab members has gone into opto-electronic systems that can probe features of

the light-atom interactions, usually geared towards detecting the phase shift of light applied to or

emitted by the atoms, with a noise floor well below that of fundamental quantum noise.

In the summer and fall of 2014 (the fifth year of my Ph.D.), the Rb experiment moved from

the second floor of JILA to the basement of the new JILA X Wing. Just prior to and during the

move and re-assembly, some crucial pieces of the experiment were modified. The second half of this

section details the changes and additions to the apparatus that will be used in a next generation

of spin squeezing experiments.
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3.1 Vacuum System

The vacuum system has two major pieces, separated by a bellows that extends through the

optics table. Above the table surface, there is a spherical cube (Kimball Physics MCF450-SS20400)

to which two AR-coated windows, vacuum feedthrough for electronics, and a glass rubidium reser-

voir are attached. The reservoir, heated to 70–90 ◦C, creates a thermal vapor inside the science cell.

The science cell, a 2” (outer dimension)×2” (o.d.)×10” Borofloat glass rectangular prism attached

to a glass-to-metal seal, is also attached to the top of the spherical cube. A bellows extends below

the table and connects to a 5-way cross to which the Ti-sub pump, ion pump, ion gauge, and

turbo/roughing pump are attached.

A good vacuum system is crucial for long lifetimes of the atoms in the optical trap, so that

the limiting atom loss process is not due to collisions with background gas. We performed initial

pump-down with a dry scroll pump (Varian IDP-3 Dry Scroll Pump1 , pumping speed 60 L/min)

backing a turbo-molecular pump (Varian Turbo V 81-M, 75 L/s). After the bake, an ion pump

(Varian VacIon Starcell 50 L/s, PN 9191340) maintains the pressure at around 2× 10−10 Torr.

3.2 Science Cavity

A high-finesse optical cavity is crucial for creating a high effective optical depth to create

a stronger link between the atoms and the cavity mode than to free space modes. The following

description of the science cavity corresponds to the apparatus used prior to August 2014. Chapters 4

and 5 use this cavity mirror configuration. The science cavity with finesse2 F ≈ 700 is formed

by two mirrors (Advanced Thin Films coating runs v2-1128 through v2-1130) mounted to a low-

thermal-expansion Zerodur cavity spacer, residing in the science cell and mounted on a vibration

isolation stage. The mirrors are highly reflective at 780 nm (power transmission T = 2011 ppm),

795 nm (T = 2122 ppm) and 823 nm (T = 3400 ppm). The cavity length, and therefore optical

1 This model of vacuum pump seems prone to a failure mode in which its ultimate pressure (and likely, pumping
speed) can degrade suddenly.

2 The finesse decreased over a number of years, from 710 in 2009 to 660 in 2014, due to Rb and sputtered wire
coating sticking to the mirror surfaces, causing round-trip losses.
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resonance frequency, is controlled by applying voltage to two piezo-electric cylinders (Piezomechanik

PZT-5H) to which the mirrors are attached with TorrSeal epoxy. The cavity is shown in Fig. 3.1.

For the spin squeezing experiments of Chapter 6, the cavity mirrors were replaced to create

a near “closed” cavity. In this configuration, the top mirror has T2 = 131 ppm at 780 nm while

the bottom mirror has T1 = 2011 ppm. A summary of the frequency-dependent cavity param-

eters is given in Table 3.2. Also, the PZT’s were exchanged for flatter cylindrical stack piezos

(Piezomechanik HPCh150/12-6/2) with higher bandwidth and more throw per applied volt. A

closed cavity configuration allows the cavity phase response to be detected in reflection from only

the open side of the cavity, reducing the number of places that technical noise floors can affect the

measurement and allowing higher quantum efficiency (because of an anti-reflection coated vacuum

window on the bottom side). Instead of having to use multiple detectors with potentially different

noise floors and quantum efficiencies and path length stabilization schemes, we can use just one

detector. The mirrors were wrapped in thin wire (Kurt J. Lesker PN: FTAK01410, 0.14 mm OD)

to heat the mirrors to prevent Rb from sticking to them [116]. In order to mitigate mechanical

forces resulting from changing flux through the heater wire coils, 8 counter-winding coils were used

on each mirror, secured with epoxy (Epo-Tek H70E thermally conductive). Due to the number of

different epoxies used and their curing schedules requiring heat, we originally found during assem-

bly that small flecks of epoxy got onto the mirror surfaces and broadened the linewidth by around

1 MHz. Successive cleaning stages in the plasma cleaner in the Keck Lab seemed to remove almost

all of this extra loss, although small defects were still visible on the mirror surface.

Table 3.1: Summary of the new cavity parameters used in experiments after August 2014.

Parameter Value

Free spectral range νFSR 8090(1) MHz
Transverse mode spacing 2295(1) MHz
Cavity length L 1.8578(2) cm
Mirror radius of curvature 5.00(1) cm
Rayleigh range zR 1.9425(2) cm
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Table 3.2: Summary of the new cavity transmission coefficients used in experiments after August
2014.

Parameter 780 nm 795 nm 823 nm

Measured Linewidth (with Rb vapor) (MHz) 3.01 – –
Design linewidth (MHz) 2.76 2.88 4.61
Mode Waist (µm) 69.5 70.2 71.4
Mode Volume (cm3) 7.02× 10−5 7.16× 10−5 7.41× 10−5

Open mirror transmission T1 (ppm) 2010.9 2122.3 3400
Closed mirror transmission T2 (ppm) 131.2 116.7 180
Fractional loss through T2 (empty cavity) 5.6× 10−2 – –

Figure 3.1: Photographs of the first (“old”) optical cavity (left) and the new optical cavity (right).
The new cavity has shorter piezos on top of spacers that kept the cavity spacing approximately
constant. The top mirror is only 6% as transmissive as the bottom mirror, which has the same
transmission coefficient as before (see Table 3.2). Also, thin heater wires are wrapped around each
mirror and attached with thermal epoxy.
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3.3 Cooling and Trapping the Atoms

The first step in the experiments is the formation of a magneto-optical trap (MOT). Applying

red-detuned light from the optical cycling transition in 87Rb in three dimensions cools the atoms

through repeated photon absorption and emission. Application of a spherical quadrupole magnetic

field that increases in magnitude with distance from the center of the trap causes the atomic energy

levels to shift closer to resonance with the cooling beams, resulting in more scattering with distance

from the trap center. These two effects lead to a spatially and velocity dependent damping force

that traps atoms and cools them approximately to the Doppler temperature TD of 140 µK, limited

by the linewidth of the optically excited 52P3/2 state by

TD =
~Γ

2kB
, (3.1)

where Γ = 2π × 6.06 MHz is the decay rate of the excited optical state and kB is Boltzmann’s

constant [80].

To generate our MOT, we use a tapered amplifier (TA) chip (Eagleyard EYP-TPA-0780-

00500-3006-CMT03-0000) to amplify an input beam of 18 mW derived from an external cavity

diode laser (ECDL) or distributed Bragg reflector laser (DBR) to about 150 mW of optical power

to the atoms. The beam is then split into six free-space paths (three pairs of counter-propagating

paths) with approximately equal power of 25 mW to balance radiation pressure in the MOT and

optical molasses. The waist of each beam is about 0.8 cm.

The shape of the MOT is very sensitive to beam alignment because of mm-scale fringes

of 50% peak-to-peak intensity variation. These fringes cause radiation pressure imbalances that

result in spatially inhomogeneous density, especially at the edge of the MOT cloud. In principle,

the fringing effects could be mitigated by changing out spherical lenses for large aspheric lenses,

but the fractional peak-to-peak trapped atom number fluctuations are still around a couple percent

even with the fringes. Likely, the fluctuations are due to fluctuations on the laser wavelength scale

of the relative path lengths along each beam path that cause fluctuating interference fringes at the

location of the atoms.
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Once the atoms have been loaded into the MOT, they are further cooled with polarization

gradient cooling (PGC), a kind of “Sisyphus cooling” that allows for sub-Doppler temperatures [45].

In this step, the spherical quadrupole magnetic fields are turned off and Helmholtz bias coils

shim out background magnetic fields (including Earth’s magnetic field), creating zero field at the

location of the atoms. Applying counter-propagating laser fields in each direction with σ+ and σ−

polarizations creates a spatially varying polarization. As an atom moves through the polarization

gradient, it sees a spatially varying AC Stark shift on its ground state energy levels—essentially, a

level repulsion coming from second-order perturbation theory. As the atom reaches a maximum in

the spatially varying potential, its probability to scatter increases and it is optically pumped into a

different state that has a minimum in energy in its light shift. This optical pumping effect happens

many times to the atoms—rolling “up the hill”, getting pumped into a dark state at the bottom of

a “hill,” and then rolling “up the hill” again (this is the “Sisyphus” part). In principle, this cooling

is at the limit of the recoil energy of the photons at 780 nm of 0.4 µK, but we see temperatures

of 20–40 µK.

During the cooling stages, there is a far off-resonant red-detuned optical lattice beam resonant

in the cavity. The optical cavity still has a finesse of about 600 at the optical lattice wavelength of

823 nm, so the intra-cavity intensity at the peak of the standing wave is on the order of 1.3× 104

Watts/cm2. The light shift from the lattice creates a negative shift in the ground state energy

levels of the atoms, leading to potential energy minima at antinodes of the standing wave. The

atoms collect in these pancake-shaped trap regions. In the axial direction, the trapping potential

from the lattice varies on the wavelength scale, and in the transverse direction it varies on the

scale of the waist (70 µm) of the beam. Because the atoms are colder (tens of µK) than the trap

depth (≈ 300 µK) of the lattice potential, they are confined within a few tens of nm in the axial

direction and 10-20 µm in the transverse or radial directions. The lattice has a similar waist to

the lasers at the 780 nm and 795 nm transitions, so the atoms have near-maximal coupling to the

probe and dressing beams with respect to the transverse direction. Importantly, there is residual

harmonic motion (ωaxial ≈ 2π×250 kHz, ωradial ≈ 2π×800 Hz for 1 Watt circulating) of the atoms in
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both the axial and radial directions. These mechanical oscillations are important for understanding

opto-mechanical effects and setting an equivalent noise floor for very precise measurements of the

resonant frequency of a coupled atom-cavity system, as in spin squeezing.

3.4 Probing Schemes

Measuring the phase shift of light is a task we encounter frequently in the lab. This comes

up in, e.g., measuring the properties of light emitted by superradiance or measuring the number

of atoms in a given spin state through the phase shift imposed on light shone through the atoms.

Since the frequency of our optical signals is a few hundred THz, there isn’t a detector fast enough

to detect every single oscillation of the electromagnetic field. However, by using a superposition

of the light field of interest and a stronger local oscillator (LO) beam offset by 200 MHz or less,

we can translate the problem of detecting a phase at optical frequencies to one of detecting an RF

electronic signal phase–a technique known as heterodyne measurement. Homodyne measurement,

in which the LO frequency is degenerate with the probe frequency, is briefly discussed in the context

of a spin squeezing experiment in Chapter 7. Once the light phase signal is encoded in an oscillating

RF current at the photodetection step, we can demodulate the full phasor response in both the I

and Q quadrature and construct a phasor E(t) = I(t)+iQ(t) = A(t)eiψ(t), creating a representation

of the electric field phasor E(t).

For the superradiance experiments presented in Chapters 4 and 5, there is a dressing laser field

at a frequency lower than the emitted light by about the hyperfine splitting, ∆hf = 2π×6.834 GHz.

To account for the frequency difference, we use electro-optic modulators (EOSPACE PN: PM-0S5-

10-PFAPFA-780-UL) to put a LO frequency component near the emitted light’s frequency or an

applied cavity probe’s frequency. Figure 3.2 shows a representative probing scheme corresponding

to the experiments of Chapter 4, which is modified for the experiments of Chapters 5 and 6.
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Figure 3.2: General schematic of frequency components relative to the heterodyne LO. The dressing
beam is red of the emitted photon by about 6.8 GHz due to the hyperfine frequency between |↑〉
and |↓〉. Microwave sidebands slightly above 6.8 GHz provide a sideband within 150 MHz of the
emitted photon frequency, so an RF beatnote can be generated. A probe sideband is swept over
the cavity for cavity frequency shift measurements.
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3.5 Heterodyne Detector

We build the heterodyne detectors with a reverse-biased photodiode (typically, Hamamatsu

S5973) and a wideband, low-noise transimpedance amplifier (Analog Devices AD8015). The reverse-

biased photodiodes have a smaller capacitance (1.5 pF) and larger response bandwidth (500 MHz)

than an unbiased diode. With low input capacitance, the AD8015 has a smaller noise floor (which

rises at larger frequencies due to the smaller impedance of the photodiode capacitance). A typical

current noise density is 2.5 pA/
√

Hz at 50 MHz with the S5973 photodiode. At this current, the

signal would become photon shot noise-limited at a LO beam power of about 40 µW (from the

relation Ĩ =
√

2qeI0 (units of A/
√

Hz), where qe is the electron charge and I0 is the photocurrent

of the LO beam).

3.6 MOT and Repumper DBR Lasers

Crucial to the experiments described in later chapters are the lasers used for cooling the

atoms into the lattice. We use two Photodigm PD780DBR080T8-S distributed Bragg reflector

(DBR) diode lasers at 780 nm for loading the magneto-optical trap and performing polarization

gradient cooling (PGC) when the atoms are loaded into the optical lattice. Although our DBR

lasers tend to operate with linewidths of ≈ 1 MHz, higher than the ECDLs, we find their stability

and robustness to be more important than their linewidth properties in their capacity as cooling

lasers. The DBR lasers tend to be very susceptible to frequency pulling from optical feedback,

so we use two opto-isolators for each laser to obtain a high degree (> 60 dB) of isolation. We

use aspheric collimating lenses (ThorLabs PN: C230TMD-B) in aluminum mounts that are glued

(Loctite 495) directly onto the diode’s TO-8 can to eliminate long-term drift that we saw in cage-

mounted collimating lenses. The lasers are housed in the manufacturer-supplied test mount setups

(Photodigm TO8-1000-A). Standard JILA-built laser controllers (#TJ002-09 for MOT, #TJ002-10

for Repumper) are used for both current and temperature controllers.

The lasers are overlapped with the modulation transfer spectroscopy (MTS) 780 nm reference
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laser to form beatnotes for offset locks. Since these lasers are used in multiple cooling stages and

sometimes in state preparation, agile control of the lasers’ frequencies is necessary. With the

beatnote locks, we can scan the laser frequencies across the entire excited hyperfine manifold for

both the MOT (F = 2) and Repumper (F = 1) lasers.

MOT DBR
Laser

HWP

to beatnote lock
with 780nm Ref TA

to atomsA
O
M

A
O
M

Repumper
DBR Laser

Ref 780
MTS Laser

to beatnote lock
with 780nm Ref

to atomsA
O
M

A
O
M

80 MHz 80 MHz

80 MHz 80 MHz

EOM

Rb cellto beatnote lock
with MOT and Repumper heterodyne

detector

from Ref

from MOT
from

Repumper
to MOT

laser
lock

to Rep
laser
lock

Figure 3.3: Diagram of MOT DBR laser, Repumper DBR laser, and Modulation Spectroscopy
Reference and beatnote locks. The MOT laser is sent through two isolators to prevent optical
feedback and has a small amount of light picked off and sent to a beatnote lock with the 780nm
modulation spectroscopy laser. The MOT light is sent through a tapered amplifier to provide an
optical molasses for the MOT. The Repumper laser also has two isolators and a pickoff for frequency
stabilization. The modulation transfer spectroscopy reference is stabilized to the cycling transition
in 85Rb and overlapped with some MOT light and Repumper light to provide feedback to the MOT
and Repumper lasers for stabilization.
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3.7 Microwave Source

To perform coherent manipulations of the atoms between the |↑〉 and |↓〉 states, we use a

stub-tuned dipole antenna (resonant frequency 6.76 GHz, Q = 24) placed close to the vacuum cell.

In general, we would like the classical phase noise imposed by rotations to be much less than the

fundamental quantum noise of 1/
√
N in radians. We therefore drive the dipole antenna with a

custom microwave source with low noise (−130 dBc/Hz at 10 kHz offset [35]). The microwaves are

generated by phase-locking a low-noise crystal oscillator (Wenzel Sprinter 501-04517) at 100 MHz

to a 10 MHz Rb clock (PN: Stanford Research Systems FS725/3).

3.8 Direct Digital Synthesis (DDS)

Part of the convenience of working with RF signals is the mature technologies that allow

manipulation and detection of RF fields. We utilize nearly a dozen direct digital synthesis (DDS)

boards, which rely on digital chips and digital-to-analog converters to produce amplitude, phase,

and frequency-agile RF tones from < 1 MHz to 230 MHz. The Analog Devices AD9959 chip

provides 4 phase-synchronous channels with very good phase noise properties for a relatively small

cost compared to a full-featured signal generator. These DDS boards can be programmed using

LabView to drive serial communication to change their output signals during an experimental

sequence and therefore are convenient to provide most of the modulation (AOMs, EOMs, mixing

stages, etc.) in the experiment where the phase noise requirements are strict.

The boards can be programmed both through a serial port (SPI) or through a USB port,

which actually drives a micro-controller (Cypress CY7C68013A-56PVC) on the evaluation board

that translates the USB commands to SPI commands. When the AD9959 evaluation board is

plugged into a Windows computer, some firmware is automatically uploaded to the Cypress micro-

controller and it is capable of USB communication with the Analog Devices evaluation software.

Matt Grau of the Cornell eEDM group was able to package that firmware into a driver for Windows

7 64-bit, which allows communication with the AD9959 evaluation boards over USB through a
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LabView interface. This is useful since we were never able to get frequency sweeps working with

the boards under serial control. Frequency sweeps are crucial for running the experiment, but

with only the Analog Devices evaluation software it is not possible to update the frequency sweep

settings synchronously with each iteration of the experiment.

3.9 Data Acquisition System

Most aspects of the experiment are controlled and monitored by a National Instruments

(NI) LabView program, “Master.vi,” built for our lab. LabView provides convenient software for

performing run-by-run analysis at the 1 Hz repetition rate of the experiment. Analog and digital

outputs and inputs are handled with NI acquisition cards, whose properties are summarized in

Table 3.3. The fast multi-channel analog input card (PN: NI PCI-6133) is used for sampling in

heterodyne photodiode signals for superradiance and squeezing. Since each quadrature I and Q

requires a separate channel each, the 8 fast inputs allow for 4 demodulated quadrature heterodyne

signals total. The digital output card (PN: NI PCIe-6259) ought to be able to run at 10 MHz update

rate but in practice, setting the clock to 4 MHz creates more reliability. The timing resolution of

our microwave pulses is set by the 250 ns step size for the 4 MHz update rate of the card.

Table 3.3: Summary of the data acquisition cards used for the experiment.

Card Type No. of Inputs/Outputs Bandwidth

NI PCI-6133 Analog Input (AI) 8 2.5 MSamples/s

NI PCI-6733 (×2) Analog Output (AO) 8 1 MS/s

NI PCIe-6259 Digital Output/AO/AI 32/4/16 4 MHz/700 kS/s

3.9.1 Imaging Systems

Cameras are very useful for being able to take pictures of our atoms, even though we don’t

rely critically on imaging systems for most of our data. We have used fluorescence imaging, for

instance, to measure the spatial distribution of the atoms once they have been loaded into the
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lattice. Having a picture of a transverse Gaussian laser mode, too, is incredibly convenient for

laser beam characterization, mode matching, and statements about optical cavity properties. Our

lab has two gigabit ethernet (GigE) cameras, one CCD sensor (Basler Scout scA640-70gm) and

a CMOS sensor (Basler Scout scA750-60gm). The cameras have similar capabilities and their

sensors have similar spectral responses, but the CMOS sensor has more noise. Another LabView

program, similar to Master.vi, allows for trial-by-trial fitting and analysis, with typical capture

rates of 20 frames per second over the network. While the cameras are smaller and more expensive

than commercially available CCDs (i.e., from DSLRs), they have programmable exposure times

from 24 µs to several ms and image acquisition can be triggered with TTL pulses, allowing easy

synchronization within experimental sequences.

3.10 Frequency Stabilization

Both our superradiance and spin squeezing experiments depend crucially on frequency sta-

bilization of lasers and cavities. Laser stabilization is necessary to control the relative detuning

of probe light or dressing light and dressed cavity or atomic resonance, and is useful for reducing

acoustic and electrical noise on lasers. This section describes the overall frequency lock chain after

the lab was disassembled and moved to X1B21 in the JILA X Wing in Summer and Fall 2014.

Figure 3.4 is a diagram describing the chain of frequency stability, with approximate band-

widths for each lock. The low-frequency stability is derived from locking to an atomic transition

(2 − 3′ in 87Rb for the modulation transfer spectroscopy and the 3 − 4′ crossover feature in 85Rb

for the 795 nm FM Spectroscopy), and translated to other frequencies via offset beatnote locks

between lasers or Pound-Drever-Hall locks between lasers and cavities and vice versa.

3.10.1 Beatnote Locks

The idea behind a beatnote lock is to generate a heterodyne RF signal through the direct

overlap of two lasers onto a photodiode. Because the photodiode current I ∝ P ∝ |E|2, a cross-term

at the difference frequency can be within the detection bandwidth of the photodiode. Stabilizing
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Figure 3.4: A schematic of the frequency stabilization chain for superradiance and future spin
squeezing experiments. (Top) The stabilization schemes corresponding to the experiments in Chap-
ters 4 and 5. (Bottom) Stabilization scheme for the next generation of spin squeezing experiments.
Note that the chain ultimately locked to the 795 nm FM spectroscopy laser is an artifact of iterating
from the first squeezing experiment by Chen et al. [31], and could be replaced by a lock to the MTS
laser.
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the phase of this beatnote frequency to a quiet reference (provided by DDS) stabilizes the phase

of a laser to a reference laser to within a bandwidth of ≈ 1 MHz. Practically, this is quite a

useful technique that allows for high-bandwidth, highly tunable locks over a broad frequency range

of ∼ 20 MHz to 2.5 GHz offsets.

A representative beatnote lock of two ECDL lasers with free-running linewidth 200 kHz is

shown in Figure 3.5. The corner frequencies and gain settings for the corresponding loop filter

(JILA TJ011) are given in Table 3.4.
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Figure 3.5: Power spectrum of a beatnote lock between two ECDL lasers with span 2 MHz. This
power spectrum was generated via a single sweep on a spectrum analyzer with no averaging. Vertical
axis is in dBm and horizontal axis is the frequency in MHz. For this trace, the spectrum analyzer
video bandwidth (VBW) = resolution bandwidth (RBW) = 10 kHz and the full span is 2 MHz.
Lock settings are given in Table 3.4.

3.10.2 Modulation Transfer Spectroscopy

Atomic spectroscopy is a valuable tool for establishing frequency stability of a laser at acoustic

frequencies and below. Locking diode lasers to Doppler-free spectroscopy features in vapor cells is

how we derive DC stability for our frequency chains. This section describes a robust method for

locking one of the spectroscopy setups.
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Table 3.4: Lock settings for TJ011 loop filter for the ECDL beatnote lock with spectrum shown in
Figure 3.5.

Setting Value

Gain 1 0 dB

Gain 2 -10 dB

1st PI 70 kHz

2nd PI 50 kHz

D 0.5 MHz

The essential concept of MTS is the transferring of the sidebands that carry information

about the optical phase shift imposed on the probe light by the atoms to the pump beam, through

a Bragg scattering-like process [89]. This spectroscopy technique is much less sensitive to power

level drifts than the previous polarization spectroscopy setup that was used from 2008 - 2014,

which was highly sensitive to DC drifts of optical power, alignment, and polarization. MTS ends

up being most sensitive to the cycling transitions in both isotopes of Rb:
∣∣52S1/2, F = 2,mF = 2

〉
→∣∣52P3/2, F

′ = 3,mF = 3
〉

at 780 nm in 87Rb and
∣∣52S1/2, F = 3,mF = 3

〉
→
∣∣52P3/2, F

′ = 4,mF = 4
〉

in 85Rb. The 85Rb transition has higher signal-to-noise than the 87Rb transition because of its

higher natural abundance (75% compared to 25%), and is convenient for forming beatnote locks

for other lasers that address 87Rb because it is 1126 MHz blue of
∣∣52S1/2, F = 2,mF = 2

〉
→∣∣52P3/2, F

′ = 3,mF = 3
〉

in 87Rb. This avoids having beatnotes near DC where our PFDs function

less reliably and results in a broad tuning range that allows the locked lasers to span the excited

hyperfine manifold. Fig. 3.6 is an example error trace when the laser is swept across both cycling

transitions.

During the lab move, the biggest change from an initial setup was the addition of more

compact telescopes, which allows the probe beam to sample more atomic vapor to increase the

signal-to-noise of the error signal. The pump contains about 1 mW and the probe has 1 mW

with a 1/e2 waist of ≈ 2.35 mm for both beams. The modulation frequency is 5.2 MHz, chosen

empirically to maximize the error signal size.
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Figure 3.6: An oscilloscope trace showing a representative 780 nm MTS reference error signal and
accompanying sweep, with the transitions labeled. Optical frequency increases from left to right.
The sweep rate is 114 MHz/ms and the error signal has a lowpass filter with bandwidth 100 kHz.

3.10.3 Transfer Cavity Lock

A high-finesse Transfer Cavity is stabilized using the Pound-Drever-Hall (PDH) technique [14]

to feed back on the resonant frequency of the cavity so that it is resonant with the 795 nm FM Spec-

troscopy reference laser. The same 27 MHz sidebands that are used to create the FM spectroscopy

error signal allow PDH locking of the Transfer Cavity to the 795nm reference laser. A high-voltage

amplifier provides feedback to a PZT (Pizeomechanik PZT-5H) that controls the length of the cavity

to keep the cavity on resonance with the FM Spectroscopy laser. Figure 3.7 shows a representative

error signal for the transfer cavity lock.

3.10.4 Lattice to Transfer Cavity Lock

In order to stabilize the frequency of the 823 nm lattice laser, the Pound-Drever-Hall technique

is used to lock the Lattice laser to the Transfer Cavity. The supplied current to the 823 nm is

modulated at 10 MHz to generate sidebands on the laser for both PDH locking to the Transfer
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Figure 3.7: Example Pound-Drever-Hall error signal for the transfer cavity-to-FM spectroscopy
laser lock. Error signal is black, sweep is red. The optical sweep rate for the transfer cavity is 2.1
MHz/ms and the error signal had a lowpass filter with bandwidth 100 kHz.
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Cavity and for the UHV Cavity to lock to the lattice. Before being sent to the Transfer Cavity,

the 823nm laser is also sent through an EOSPACE EOM that is modulated at 5.5 - 9.2 GHz by a

wideband microwave VCO (described in Section 3.11). Then, either the red or blue sideband of the

lattice laser is locked to the Transfer Cavity. As the microwave sideband frequency changes, the

absolute optical frequency of the Lattice laser changes. Figure 3.8 shows a diagram of the lattice

laser microwave sideband lock.

Lattice
Laser

A
O
M

A
O
M

EOM

QWP

Transfer
Cavity

fm= 5.8 to 9.2 GHz

Pound-Drever-Hall
Detector

to UHV Cavity

f

fm

Figure 3.8: Diagram of the lattice laser-to-transfer cavity Pound-Drever-Hall lock. After passing
through an isolator (and an AOM for more isolation), a fiber-coupled EOM puts sidebands on the
lattice. One of these sidebands, tunable in frequency, is locked to the cavity. A 10 MHz signal puts
sidebands on the 823nm lattice laser carrier, which persist on the high-frequency sidebands and are
used for locking.

The power into the EOM is set so that the fraction of optical power in the microwave sidebands

is near a local maximum (the fractional sideband strength is given by the square of the first Bessel

function J2
1 (β)), and the modulation index is held constant with the use of a variable attenuator

(Hittite #HMC346MS8G) because both the response of the EOM and the output power of the VCO

vary with frequency. The constant power prevents the magnitude of the error signal slope, and

therefore the open-loop gain of the feedback loop, from changing. Figure 3.9 shows a representative

Pound-Drever-Hall error signal trace for one of the lattice sidebands.

3.11 Microwave Voltage Controlled Oscillators

Several microwave voltage controlled oscillators (VCOs) are employed in the experiment for

many uses, including phase modulating laser beams with EOMs and providing local oscillators for

high-frequency mixing stages. Since the 87Rb hyperfine splitting is ≈ 6.8 GHz, wideband VCOs
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Figure 3.9: Example Pound-Drever-Hall error signal for the lattice sideband-to-transfer cavity lock.
The error signal (black) and the ramp (red) are shown. The optical sweep rate for the lattice laser
center frequency is 1.1 MHz/ms into a filter of bandwidth 100 kHz.

with frequency ranges centered around 6 GHz tend to be useful for, e.g., compensating for the

frequency difference of a dressing laser and emitted photon in superradiance.

Generally, the microwave VCOs utilize frequency scalers and phase-frequency detectors (PFDs)

combined with loop filters to lock to RF reference signals provided by DDS. VCOs with a variety

of output frequency ranges, loop filters, PFDs, frequency scaling ratios, and mixing stages exist in

the lab. Table 3.5 summarizes these parameters and labels the VCOs.

Table 3.5: Summary of the VCOs used in the lab, showing frequency range, prescale, and loop
filter type.

Label VCO Model Freq.
Range
(GHz)

PFD Prescale Loop Filter

VCO C HMC732 6 - 12 GHz
@ -3 dBm

HMC440 128 = 16 (PFD) × 8
(prescaler)

Custom AD825

VCO D RFVC1801 5 - 10 GHz
@ -3 dBm

HMC440 16 (PFD) + mix freq.
(6 GHz, nom.)

Custom AD825

Box VCO HMC358 5.8 - 7 GHz
@ 11 dBm

HMC699 64 (PFD) Custom AD825

In order to stabilize the frequency and phase of the VCOs, feedback must be supplied to the

oscillators. The output of the VCO is divided down either with a combination of a prescaler and
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the internal PFD prescaler, or just the internal PFD prescaler (depending on the PFD model). The

resulting differential outputs drive the inputs to the loop filter, which for the “Custom AD825” is a

single op-amp stage with an integrator. The loop filter drives the Vtune port on the VCO, which is

a single-sided input generally 3 dB modulation bandwidth of at least 10 MHz (based on the . The

result is a simple phase-locked loop (PLL) with 1 to 3 MHz of bandwidth, which provides good

enough phase noise properties for most purposes.



Chapter 4

Superradiant Magnetometer

The magnetic field is a fundamental physical observable that is produced by essentially all

electromagnetic phenomena. Magnetometers, devices that are capable of sensing the magnetic

field, are therefore useful in a broad range of applications, including nuclear magnetic resonance

(NMR) [54, 38], precision measurements of fundamental constants [58, 7], sensing biological pro-

cesses [50], and atmospheric physics [108]. Generally, the two most important figures-of-merit for

magnetometers are their sensing volume (i.e., characteristic size) and sensitivity. Sensing bandwidth

is another important quality that distinguishes magnetic sensing technologies, since phenomena

producing magnetic fields can occur at a wide range of frequencies.

Examples of magnetometer technologies are magneto-resistive materials [101], Hall probes [29],

superconducting quantum interference devices (SQUIDs) [37], and nitrogen-vacancy centers in dia-

mond [124]. SQUIDs have long been among the most sensitive magnetometers (∼ 1 pT/
√

Hz), but

they operate at cryogenic temperatures. Recent progress in nitrogen-vacancy centers–solid-state

systems with atom-like electronic structures–has shown the capability to sense single spins [122]

and sensitivities of 2− 20nT/
√

Hz [63, 119].

Atomic sensors are attractive due to their advantages: intrinsically high sensitivity to mag-

netic fields, well-determined absolute calibration and scale factors, no need for a cryogenic en-

vironment, and the capacity for optical probing enabling remote sensing [27, 28, 60]. Atomic

magnetometers have been demonstrated in both cold atom systems [70, 100, 97] and thermal vapor

cells [69, 114, 82, 111, 60, 131, 62]. Atomic sensors hold the record for magnetic field sensitivity
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of 0.54 fT/
√

Hz in a sensing volume of 0.3 cm3 [69]. The capability of quantum entanglement to

improve magnetometers is promising–a squeezing-enhanced atomic magnetometer has been demon-

strated in Bose-Einstein condensate (BEC) systems [97, 100].

Generally, atomic magnetometers operate by preparing through optical pumping a spin im-

balance that leads to single-atom magnetic dipoles. The effect of a magnetic field on the atomic

dipoles is to cause Larmor precession of the spin, which in turn changes the complex polarizability

(or, absorption and phase-shifting properties) of the atoms in response to an applied light field [27].

Detecting the phase shift of a laser passing through an optically pumped atomic vapor, then,

indicates the strength of a magnetic field.

This chapter describes an atomic magnetometer based on a Raman superradiant system. The

magnetometer operates by detecting the varying frequency shift between hyperfine ground states

of 87Rb atoms in a high-finesse optical cavity. While the effect of a magnetic field still occurs on a

single-atom level, the readout of this sensor relies on the mapping of a collective atomic phase onto

the light emitted from the sensor. The ultimate sensitivity is then set by the amount of atomic

phase diffusion noise that results from the lasing process and noise associated with detecting the

phase of the emitted light.

4.1 Experimental Details

To create the atomic gain medium needed for superradiant lasing, we begin by cooling the

atoms. We create a magneto-optical trap (MOT) through a combination of a spherical quadrupole

magnetic field and a MOT DBR laser red-detuned ≈ 15 MHz from the
∣∣52S1/2, F = 2

〉
to∣∣52P3/2, F = 3

〉
optical cycling transition with a Repumper DBR laser detuned slightly red from

the
∣∣52S1/2, F = 1

〉
to
∣∣52P3/2, F = 2

〉
transition. The MOT coils are then turned off while optical

molasses beams are left on to load into the 1D optical lattice at 823 nm. A second polarization

gradient cooling (PGC) stage then cools the atoms trapped in the lattice to ≈ 40 µK in a trap

depth of ≈ 400 µK. The end result is a cold atom cloud with root-mean-square (rms) extent of

≈ 1.5 mm along the cavity axis and ≈ 15 µK in the transverse direction. The total effective sensing
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volume is then 2.1× 10−3 mm3.

Prior experiments that first demonstrated steady state superradiance in a Raman system

operated on the
∣∣5S1/2F = 2,mF = 0

〉
to
∣∣5S1/2F = 1,mF = 0

〉
clock transition in 87Rb, which

only has second-order sensitivity to magnetic fields [23]. To realize the magnetometer, we used the

maximally magnetic-field-sensitive hyperfine ground states of 87Rb, |↑〉 ≡
∣∣5S1/2F = 2,mF = 2

〉
and |↓〉 ≡

∣∣5S1/2F = 1,mF = 1
〉
. These states have the added benefit of straightforward state

preparation through optical pumping with σ+ polarizations, as well as a high absolute sensitivity

to magnetic fields. This level scheme is shown in Figure 4.1(b).

To induce an effective optical decay from |↑〉 to |↓〉 at a controllable single-particle rate γ,

we apply a π-polarized Raman dressing laser beam that is injected along the cavity axis and non-

resonant with the optical cavity and detuned ∆/2π = 1.1 GHz from the |↑〉 to optically excited

state |i〉 ≡
∣∣52P1/2, F

′ = 2,m′F = 2
〉

transition at 795 nm. The cooperativity parameter of cavity

QED, or Purcell factor [123], is C = 7.7× 10−3 for the |↑〉 to |↓〉 Raman transition.

A set of Helmholtz coils apply a DC bias magnetic field B0 = 2.4× 10−4 T in the x̂-direction

perpendicular to the cavity axis (ẑ-direction). This establishes the quantization axis and shifts the

transition frequency by ωdc/2π = 5.1 MHz relative to the zero-field ground state hyperfine splitting.

The DC field also breaks the degeneracy of the mF levels so that microwave rotations can be

performed exclusively on the |↑〉 and |↓〉 states with characteristic Rabi frequency Ω/2π ≈ 35 kHz

for the spin echo studies. This field also sets the x̂-direction as the direction in which the fields can

be sensed, since small perpendicular components in the ŷ- or ẑ-directions would only change the

splitting between states at second order. In this sense, the superradiant magnetometer is a vector

magnetometer rather than a scalar magnetometer. The experimental configuration of the magnetic

fields and light is shown in Figure 4.1(a).

The dressing, probe, and heterodyne local oscillator (LO) laser beams are all split off from a

single master ECDL “Probe” laser at 795 nm. This allows for common-mode cancellation of most

of the laser frequency noise of the 60 kHz FWHM laser. The heterodyne beam is 84 MHz blue of

the dressing beam, and microwaves at 6.800 GHz (from a lab-developed low-noise source [35]) are
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Figure 4.1: Experimental and level diagrams of magnetometer configuration. (a) The dressing laser
is applied along the cavity axis and detected in heterodyne with the emitted light, with optical
pumping beams applied from the side. Helmholtz coils provide a DC bias magnetic field and
applied modulations in the x̂-direction. A microwave antenna placed close to the atoms allows
rotations between ground states. (b) Atomic levels used for superradiance. A dressing beam (red)
induces decay from |↑〉 to |↓〉. A TEM00 mode of the cavity is tuned to resonance with detuning
∆ = 1.2 GHz from an excited intermediate optical state |i〉. Optical pumping beams at 780 nm
prepare the ensemble and maintain inversion.
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applied to a fiber-copuled EOM to make up the frequency difference between the applied dressing

beam and the emitted photon, which puts the relative LO-dressing frequency 50 MHz blue of the

hyperfine frequency difference ∆hf = 6.834 GHz. A probe beam is generated from the master

laser, with a 100 MHz red AOM and a second fiber-coupled EOM driven by a signal created by

a high-frequency function generator (Stanford Research Systems SG384) mixed with an AD9959

DDS channel. This allows the frequency of the blue probe sideband to be swept across the cavity

resonance to measure dispersive cavity shifts for counting the number of atoms in |↑〉. A summary

diagram is given in Figure 4.2.

frequency

Het
Het SB

Probe
Probe SB

Dressing
Emitted

100 MHz

84 MHz ~50 MHz

6.8 GHz cavity

Figure 4.2: Schematic of the laser frequencies for dressing, probing cavity resonance, and detect-
ing the emitted light. AOMs provide frequency shifts for dressing and probe lasers. EOMs put
sidebands near the hyperfine frequency for detecting emitted light and probing the cavity.

Heterodyne detection allows reconstruction of the full light phasor E(t) = A(t)eiψ(t). Once

the heterodyne RF beatnote signal is generated on the photodiode, we filter to select the fre-

quency component of interest and quadrature demodulate using IQ demodulators . Corrections

for small offsets and nonlinearities in the detection electronics are applied to the resulting phasor

quadratures I(t) and Q(t) in software. The amplitude A(t) and phase ψ(t) are then computed

from I(t) + iQ(t) = A(t)eiψ(t).

A typical experimental sequence involves loading from a MOT into the lattice, optical pump-

ing to initialize the system, then turning on both dressing and repumping lasers. Since the dressing

laser is applied along the cavity axis, the direction in which the atoms are trapped in the Lamb-

Dicke regime [136], the Doppler decoherence rate can be made very small. The emission rate can
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then be low enough that light-assisted collisions from repumping beams that cause loss from the

trap occur at a rate low enough to allow the superradiant emission to persist for 20 to 100 ms [23].

During the time when superradiance is on, the magnetic field might be modulated or the dressing

beam turned on and off to toggle the superradiant emission.

4.1.1 Wideband Sensing

When operating continuously, the sensor can provide a continuous time record of frequency–

and therefore, B-field–fluctuations. We investigate the system’s response to small magnetic fields

by applying small modulations B(t) to the current through the x̂-oriented coils (that also provide

B0) and have control over the phase, frequency, and amplitude of the modulation. Upon application

of an oscillating magnetic field, the energy E(t) of the transition may be written as

E(t)/~ =
dφ(t)

dt
= ∆hf + 2πα (B0 +B(t)) , (4.1)

where ~ is the reduced Planck constant and the sensitivity factor α = 2.1 × 1010 Hz/T or α =

2.1 MHz/G between |F = 1,mF = 1〉 and |F = 2,mF = 2〉. It is worth noting that the sensitivity

of this magnetometer is absolute and not set by fractional sensitivity to the change in the ground-

state frequency ∆hf—that is, an atomic magnetometer of this kind with a higher-Q atom (such

as strontium) utilizing an optical transition would not gain sensitivity in terms of the raw Hz/G

conversion factor α. In the low-field limit, the energy shift for Rb due to the Zeeman effect for a

state with F,mF is given by [40]

∆E(t)/~ = αBtot = µBgFmF (B0 +B(t)), (4.2)

where the Bohr magneton µB = 9.274 × 10−24 J/T, gF ≈ ±2, and mF = 1 or 2 for the ground

states used here. Consequently, the fundamental sensitivity is set by the Bohr magneton µB and

numerical factors of order unity.

It is convenient to ignore the DC frequency shift to the transition frequency ∆21 from the

hyperfine splitting and the static magnetic field B0, so the following analysis is in the rotating frame
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at frequency ∆hf + 2παB0. With the superradiance on, we apply a small sinusoidal modulation

of the field B(t) = Bm cos(2πfmt + θm) to create a modulation of the atomic phase as φ(t) =

β sin(2πfmt + θm), where the modulation index is β = αBm/fm. This relationship comes from

simply integrating the frequency shift over time to back out the total phase shift.

The data were obtained by detecting E(t) and converting to I(t), Q(t) during a time window

of 3 ms. The atoms are reloaded and the experiment is repeated at a 1 Hz rate. Atom loss causes

chirping of the carrier frequency from the combined effect of cavity frequency pulling (suppressed

as γ/κ) and an atom-dependent shift of the dressed cavity mode frequency into which the atoms

emit their light. This kind of cavity-related chirping effect appears as a quadratic ramp of ψ(t) in

time, and can fluctuate in magnitude from shot to shot. On a single-shot basis, we mitigate the

effect of the cavity chirping by applying a third-order digital Bessel high-pass filter to ψ(t) with

cutoff frequency of 300 Hz to produce a filtered phase ψ′(t). Spectral leakage of the carrier due to a

rectangular sampling time window is mitigated by applying a Blackman-Harris time window weight

factor w(t) = 0.423−0.498 cos(t/Tm)+0.0792 cos(2t/Tm), where Tm is the total measurement time,

such that E ′′(t) = w(t)E ′(t).

We remove any possible amplitude modulation (AM) sideband noise by setting the amplitude

of E(t) to A(t) = 1 in the data analysis. Because the intensity of the output light depends crucially

on the level of inversion and the Bloch vector polar angle θ, such AM could arise from, e.g., the

applied frequency modulation changing the effective cooperativity C ′ for the atomic emission mode

and therefore modifying the collective emission rate NC ′γ. This stripping off of amplitude noise is

justified, since the same effect could be accomplished in real time by phase locking a low amplitude

noise oscillator to the emitted light phase.

Figure 4.3(a) demonstrates the simultaneous detection during continuous superradiance of

two applied discrete modulations at frequencies 6.9 and 10.2 kHz. These frequencies were chosen so

that, if there were harmonics at, e.g., 2×6.9 kHz, they wouldn’t interfere with the 10.2 kHz tone. We

do not observe any modulation at the difference or sum frequency of the two modulation frequencies,

confirming the linearity of the detection scheme to our achievable level of sensitivity. Near DC,
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residual bleed-through of the carrier limits the sensitivity, causing the steep rise around 1 kHz.
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Figure 4.3: (a) Power spectral density of instantaneous phase fluctuations, Sφ, showing two discrete
modulation peaks. (inset) Portion of the time trace of the light phasor ψ(t) used to generate the
power spectral density. (b) Sensitivity η(f) in T/

√
Hz without any applied modulation. The

predicted limit from Schawlow-Townes quantum phase diffusion (green) and the predicted photon
shot noise limit for N = 1.1×106, and W = 4.5×104 s−1 and finite quantum efficiency q = 7×10−2

(black) and for ideal quantum efficiency q = 1 (blue) are shown.
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4.2 Sensitivity in Continuous Operation

A convenient measure of the performance of the magnetometer is the frequency-dependent

sensitivity, η(f) (units of Tesla/
√

Hz). The sensitivity describes, in a 1 Hz bandwidth, the rms

strength of the field that would be equal to the noise floor of the detector. A power spectrum of

the instantaneous phase fluctuations of the superradiant laser, with the applied B(t) = 0, is used

to generate the power spectral density of phase fluctuations Sφ(f) and in turn, the sensitivity η.

This section describes how we calculate the sensitivity η.

We define the frequency-dependent sensitivity η(f) (in spectral density units T/
√

Hz) to be

related to the total variance in B-field by the sum

(∆B)2 =

∫ ∞
0

η2(f)df (4.3)

=
(∆ν)2

α2
=

1

α2

∫ ∞
0

Sν(f)df (4.4)

=
1

α2

∫ ∞
0

f2Sφ(f)df. (4.5)

For a single-tone noise source, we substitute the general expression for Sφ(f) to obtain

(∆B)2 =
1

α2

∫ ∞
0

f2

〈
β2
〉

2
δ(f − fm)df (4.6)

=
f2
m

α2

〈
β2
〉

2
(4.7)

⇒ η(fm) =
f

α

√
Sφ(fm) (4.8)

Equation 4.8 is the key relationship for obtaining the sensitivity from the measured power

spectrum. The double-sideband power spectral density (PSD) of phase fluctuations Sφ(f) is calcu-

lated from the Fourier transform of E ′′(t) and averaged over many trials [106].

Figure 4.3(b) shows the calculated ideal detection sensitivity and the measured field sensi-

tivity for γ = 37 s−1, quantum efficiency q = 7.2 × 10−3, N = 1.1 × 106, and W = 4.5 × 104 s−1.

Since NCγ/2 = 1.6× 105, this represents operation somewhat below the optimum repumping rate.

Our apparatus does not have any magnetic shielding, so that ambient magnetic field noise, noise

in the coil driver electronics, and remaining emission frequency chirping contribute noise far above
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the fundamental Schawlow-Townes diffusion limit at frequencies < 11 kHz. At high frequencies,

we see good agreement between the expected PSN limit and our measured η. The ultimate limit

is ∼ 140 pT/
√

Hz at an offset of 1 kHz.

Ideally, the noise floor in the light emitted by the superradiant laser comes from two sources:

(1) Diffusion of the atomic Bloch vector coming from quantum mechanical randomness that enters

through spontaneous emission into the cavity and is mapped onto the output light, and (2) the

photon statistics of the emitted light (photon shot noise). The Schawlow-Townes term (1) dominates

at low offset frequencies from the carrier. In Sφ, it looks like a 1/f rise near DC. However, at higher

frequencies the flat noise floor in Sφ contributed by photon shot noise dominates. When converting

to Sν and then η, the Schawlow-Townes becomes a flat noise floor in sensitivity and the PSN

limit grows with frequency. The frequency dependence of the PSN noise floor, Schawlow-Townes

phase diffusion noise floor, and their sum are represented in Figure 4.4(a) and (b) for Sφ and Sν ,

respectively.

PSN
Total

Schawlow-Townes

Figure 4.4: Sketch of the ideal contributions to the spectral densities Sφ versus frequency. Log-log
plot of Sφ in units of rad2/

√
Hz versus frequency. The black line is the photon shot noise limit with

scaling 1/(2ṁd, green is the ideal phase diffusion limit, scaling as γ/f2, and red is the sum. The
corner frequency where the PSN and S-T contributions cross is f0 =

√
qRNCγ/(2π).
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Summarizing from above, in the absence of technical noise, the ideal phase noise density

Siφ(f) = SST
φ + SPSN

φ =
SST
ν

f2
+

1

2ṁd
(4.9)

=
Cγ

(πf)2
+

1

2ṁd
(4.10)

represents the Schawlow-Townes limit (first term) and the PSN limit (second term). Here, I have

used the diffusion coefficient D2 = 2Cγ for a FWHM linewidth of Cγ/π [20]. To find ṁd, we

use the expression for the output power from the superradiant laser P = W
2Cγ (NCγ −W ). For

photon quantum detection efficiency q and optimum repumping rate Wpk = NCγ/2, the rate of

detected photons emitted from the laser is then ṁd = qRN2Cγ/8. Here, R is a reduction factor

for our multi-level 87Rb scheme with value R ≤ 3/5, coming from time delays in the repumping

process [19, 22]. The ideal field sensitivity is then expressed as

(
ηi(f)

)2
=
f2

α2
2Sφ =

2f2

α2

(
Cγ

π2f2
+

4

qRN2Cγ

)
(4.11)

=
2Cγ

π2α2

(
1 +

f2

qR(NCγ/(2π))2

)
=

2Cγ

π2α2

(
1 +

f2

f2
0

)
, (4.12)

where the corner frequency f0 =
√
qRNCγ/(2π). We see that the equivalent field noise density

scales with the single-particle decay rate into the cavity Cγ, while the corner frequency scales

with the collectively enhanced scattering rate NCγ. In principle, the tunable decay rate γ can be

reduced until the single-particle transition broadening described by a transverse coherence decay

rate γ⊥ is no longer negligible compared to W/2, setting a minimum Cγ ∼ γ⊥/N for which(
ηi(f)

)2 ∼ (γ⊥/N)(1 + f2/f2
0 ) with corner frequency f0 ∼ γ⊥. These ideal scalings are equivalent

to the scaling of the standard quantum limit for unentangled atoms in the presence of transition

broadening.

4.3 Narrowband Detection

The sensitivity of the continuous readout can be surpassed if the system operates in a nar-

rowband detection mode based on passive evolution, analogous to Ramsey spectroscopy. As first

demonstrated by Bohnet et al. [20], an equivalent passive Ramsey measurement technique can be
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realized using steady state superradiance. The superradiant emission is interrupted for some period

of dark time Td by setting the decay rate γ and repumping rate W to zero before turning both back

on. The atomic phase precesses during this dark period with no Schawlow-Townes phase diffusion

and possibly lower systematic errors before γ and W are restored to their previous non-zero values.

Measurement of the light phase just before and after the shut-off allows the accumulated quantum

phase to be estimated as φ(Td) − φ(0) ≈ ψ(Td) − ψ(0) ≡ ∆ψ The measurement record needed

to estimate the final phase ψ(Td) also serves to estimate the phase for the next iteration of the

experiment, potentially allowing high repetition rate, non-destructive Ramsey-like measurements.

Ramsey spectroscopy operates with a detection band centered at zero frequency. The fa-

vorable sensitivity of DC detection can be translated to an in-principle arbitrary frequency using

spin echo sequences to essentially serve the role of a mixer in a lock-in amplifier [70]. This Carr-

Purcell-Meiboom-Gill sequence [92] is an essential concept in solid-state magnetometry, such as in

NV centers, and NMR, where a very high degree of transition broadening necessitates the use of

spin echo to extend the coherence time [124]. If the π pulses are aligned to the applied modulation

such that the π pulse is centered in time on the zero crossing of the sinusoidal phase modulation,

the net accumulated phase will not be zero–instead, after each π-pulse, the phase difference ∆φB

between applying the B-field and absence of the B-field always increases. This idea for a single

cycle of the B-field and two π-pulses is illustrated in Fig. 4.5.

To maintain steady state superradiance, we need to maintain the atomic inversion to keep the

laser above threshold. This means that, since the collective Bloch vector is in the upper hemisphere

of the Bloch sphere with positive Jz, only an even number nπ of π pulses during the dark evolution

time will re-establish inversion so that superradiance can begin once the pumps and dressing beams

are turned on again.

Figure 4.6 shows a sequence in which the phase accumulation is coherently enhanced through

a spin echo pulse sequence with the π-pulses aligned in time to the nodes of the applied modula-

tion B(t). The phase difference ∆ψ is approximately 2βnπ, where β = 0.71 rad and nπ = 2, with

only small corrections due to the finite π-pulse times of 15 µs.
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(i) (ii) (iii)

Figure 4.5: Cartoon picture of Bloch vector of superradiant ensemble accumulating phase in the
presence of B-field modulation as a function of time. (above) Red arrows show the Bloch vector at
the end of each time step, with ghosted red arrows showing the orientation of the Bloch vector at the
beginning of the time step. Green arrows show phase accumulation due to B-field in each time step.
(below) Plot of the applied modulation B(t) (green) and the accumulated relative phase (red) vs.
time. (i) Atoms begin accumulating phase and a π-pulse is applied before the phase accumulation
reverses. (ii) After the π-pulse, atoms continue evolving phase, in the opposite direction (clockwise
from above) from the first evolution period. Since the coherence is flipped by the π-pulse, the total
phase deviation will add in the end. (iii) After the final π-pulse, the phase evolution continues
while the sample has once again achieved inversion. Even though B(t) goes positive and negative,
there is a net atomic phase shift.
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Figure 4.6: Experimental sequence showing narrowband sensitivity of magnetometer. (a) (Top)
Timing diagram for the Ramsey sequence, showing on and off states for lasers (solid) and microwaves
(dashed), (middle) time traces of the measured (points) and fitted (solid line) B(t), and (bottom)
the measured (solid line) light phase ψ(t) and expected atomic phase φ(t) (dashed black line) in the
presence of magnetic field modulation. During the dark period in which all optical pumping and
dressing lasers are shut off (light blue region), spin echo π-pulses cause the unobserved atomic phase
φ(t) to coherently increase in response to the applied magnetic field modulation. This manifests
as a discontinuous advance in the phase of the light when the optical pumping and dressing lasers
are turned back on. (c) The magnitude of the phase advance ∆ψ = ψ(Td)−ψ(0) (points) increases
witht he number of π-pulses nπ. The total dark time is Td = nπτ . Also shown is the expected slope
of 2β (line).
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4.4 Sensitivity in Narrowband Configuration

In this section, I derive an expression for the fundamental sensitivity of the magnetometer.

For a single dark time, the total phase advance (or signal size) for the aligned phase modulation

that constructively adds is

∆ψ = 2βnπ = 4βnc (4.13)

= 4

(
αB0

fm

)
Tdfm = 4αB0Td, (4.14)

where nc = 2nπ because there needs to be an even number of π-pulses per complete cycle to

maintain inversion. The sensitivity is set by the fractional noise in the B-field measurement

∆B/B0 = σψ/∆ψ. Rearranging gives ∆B = σψ/(4αTd). In principle, the experiment can be

repeated to average down the noise (as in standard Ramsey spectroscopy) so that the number of

measurements in a fixed time Tmeas is nmeas = Tmeas/Td, giving 1/
√
nmeas =

√
Td/Tmeas. Then,

assuming that the noise between trials is uncorrelated, the noise for nmeas trials will

be ∆Bnmeas = σψ/(4α
√
TdTmeas). To get the equivalent sensitivity in Tesla/

√
Hz, we can

set Tmeas = 1 sec, so that

η =
σψ

4α
√
Td
, (4.15)

where σψ is the rms measurement noise of the light phase difference ∆ψ. Figure 4.6 shows the

phase advance ∆ψ versus the number of π-pulses applied with a 10 kHz modulation with β = 0.13

rad and modulation phase for which nodes of B(t) are aligned to the pulse times. The fitted slope

is 0.28 rad/π-pulse, close to the expected slope of magnitude 2β = 0.26 rad/pulse, showing that we

have a good understanding of the phase shift imposed by the B-field and spin echo sequence.

Figure 4.7 illustrates both that the sensitivity can be translated in frequency, and that the

sensitivity increases with the number of π-pulses, while the bandwidth is decreased. We construct

the phase-insensitive transfer function

G(fm) ≡ β−1

√〈
(∆ψ)2

〉
θm
, (4.16)
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by measuring ∆ψ and averaging over the modulation phase θm at each modulation frequency

fm. For this data, the spacing between the π-pulses was fixed to τ = Td/nπ = 50 µs, setting the

maximum sensitivity to modulations near 10 kHz. Two different numbers of pulses are used: nπ = 2

and 10 for the red and blue curves, respectively.

4.5 Numerical Simulation of Phase Accumulation

For comparison, we numerically integrate the time-dependent Schrödinger equation for a two-

level system in the presence of a modulated classical driving field with finite Rabi frequency Ω/2π =

33 kHz. This numerical simulation is necessary because the frequency scales of the modulation fre-

quency and microwave Rabi frequency are the same order of magnitude (due to technical constraints

on the B-field modulation frequency and the microwave power), so that in the frame of the atoms,

the effective rotation axis ~Ω has a modulating azimuthal phase φΩ.

Figure 4.7 shows that this technique allows sensitivity below the limit imposed by PSN in the

active mode. We compare the field sensitivity at frequency f = 36 kHz using an increasing number

of spin echo pulses to the PSN-limited active sensing mode at the same frequency. The phase

measurement noise σψ is roughly constant as Td increases since the continuous spin echo sequence

prevents a great deal of dephasing, allowing the collective dipole to persist even for long dark

times. The win in sensitivity then comes from the 1/
√
Td scaling with the dark time. Eventually,

the sensitivity drops below that of the active mode and reaches 10 pT/
√

Hz.

4.6 Additional Details

4.6.1 Phase Noise Definitions

Here I describe in detail the phase noise conventions that are used to calculate the sensitivity

of Section 4.2. I use the phase noise conventions of Ref. [34] for the following discussion. For a phase

modulation of the form φ(t) = φ0 +β cos(2πfmt+ θm), where the modulation index β = f0/fm, we
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can define the single sideband (SSB) phase noise as

Lφ(f) =

〈
β2
〉

4
δ(f − fm), (4.17)

where δ(f) is the Dirac delta functional. To relate the RMS phase variance (∆φ)2 (in units of

radian2) to the SSB phase noise spectral density Lφ(f) (units of rad2/Hz), we use the convention

(∆φ)2 =

∫ ∞
−∞

T (f)Lφ(f)df (4.18)

= 2

∫ ∞
0

T (f)Lφ(f)df (4.19)

=

∫ ∞
0

T (f)Sφ(f)df. (4.20)

From the definition above, we see that the PSD Sφ(f) and SSB spectral density Lφ only differ by

a factor of two: Sφ(fm) =
〈β2〉

2 δ(f − fm). The PSD Sφ(f) is also formally defined from a two-time

correlation of phase as

Sφ(f) = 2

∫ ∞
−∞
〈φ(t)φ(t+ τ)〉t e

−i2πfτdτ. (4.21)

Since the instantaneous frequency is f(t) = 1
2π

dφ(t)
dt , the PSD of frequency fluctuations

is Sν(f) = f2Sφ(f).

4.6.2 Conversion from Measured Power Spectrum to Power Spectral Density

Since the FFT of the light phasor E(t) = A(t)eiψ(t) is taken with A(t) = 1, and the phase

modulation φ(t) � 1, we expand the corrected light phasor as E ′′(t) ' 1 + iφ(t). We obtain a

two-sided power spectrum P (fi) ∝ L(fi) at discrete frequencies fi separated by bandwidth ∆f . To

convert to the PSD of phase fluctuations,

Sφ(fi) =
2P (fi)

∆f
(∑

j P (fj)
) , (4.22)

where the normalization factor accounts for the lack of power conservation of the Blackman-Harris

window.
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4.6.3 Atom Counting

Measuring the number of atoms participating in superradiance is important for initial tuning

of the system, reproducibility in power output from day-to-day, and understanding the quality of

our optical pumping sequence. To measure the number of participating atoms, we measured the

cavity resonance frequency using a probe laser. In contrast to the spin squeezing measurements

discussed later in Chapter 6, projection-noise-limited sensitivity is not required here. By sweeping

the probe laser over the cavity resonance frequency, we were able to measure the frequency shift of

the dressed cavity compared to the bare cavity. The RMS atom number Nrms was then determined

from an exact diagonalization of the atom-cavity Hamiltonian including the basis states (written

as |atom;mc〉) |1, 1; 1〉, |2′, 1; 0〉, and |1′, 1; 0〉 written in the rotating frame of the frequency corre-

sponding to the |F = 2〉 to |F = 2′〉 atomic transition energy, yielded an expression for the number

of atoms in |1, 1〉 as a function of the cavity frequency shift ∆ω.

The exact calculation actually agrees within 5% of a simple calculation that does not include

any interference terms between excited states

∆ω ≈ Napprox
rms

1

4

(
c1g

2
rms

δp
+

c2g
2
rms

δp + 2π × 814.5 MHz

)
, (4.23)

where c1 = 1/4 and c2 = 3/4 account for differences in Clebsch-Gordan coefficients between excited

states.

4.7 Conclusion

In this chapter, I described a superradiant laser that acts as a vector magnetometer through

detection of the emitted light. The fundamental sensitivity scalings for the active mode and passive

mode were described. In the wideband mode, a sensitivity of 140 pT/
√

Hz at offset frequencies

of 1–2 kHz was observed. Narrowband operation was also demonstrated, with ideal sensitivity

about a factor of 3 better at 36 kHz.

There are already plenty of sensitive magnetometers. Why is this one special? One unique

quality is its ability to run both in steady state and in a pulsed mode with higher sensitivity.
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In principle, wideband operation could give a lot of information about the B-field spectrum, and

narrowband operation could zoom in on a particular frequency component with potentially lower

noise. If the laser gain medium were long-lived (e.g., a solid state system) then optical addressability

would be the major requirement for operating such a device.



Chapter 5

Phase Synchronization Between Superradiant Lasers

5.1 Introduction

Coupled oscillators appear in a very wide array of contexts. Under certain conditions, cou-

pled oscillators can be seen to undergo a transition to synchronized behavior, where the oscillators’

relative phase difference can be constant in time even when their uncoupled natural frequencies

differ. Huygens first described the phase synchronization of coupled pendulum clocks in 1665 [11],

and since then phase synchronization of oscillators has been descibed in physical, chemical, biolog-

ical, and social systems [120]. The behavior of coupled oscillators continues to be a field of active

study.

Recent experimental progress includes the development of nano-scale mechanical [115], opto-

mechanical [144, 6], optical frequency comb[88], spintronic [64, 109], and electro-mechanical [88]

systems. Synchronization in large arrays of nonlinear oscillators could provide suppression of phase

noise for improving local frequency references [44].

Extensive theoretical studies of large ensembles of coupled oscillators exist in the litera-

ture, most notably the nonlinear Kuramoto model [121, 2, 137]. Until recently, theoretical explo-

rations focused on classical oscillators that were not subject to quantum fluctuations. Examples in

which few coupled oscillators could exhibit effects of quantum noise have been proposed in opto-

mechanical [130, 86, 85, 142], optical [74], and cold atom [141, 73, 75] systems. In the context

of continuous quantum phase transitions, synchronized quantum oscillators would represent a dy-

namical quantum phase transition [48, 126] in the two-time correlation function of the oscillator
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phases [141]. Relatedly, a quantum phase transition in an open system to a spontaneously ordered

state has been demonstrated in a BEC coupled to light fields [10].

5.2 Two Superradiant Lasers

This section describes experiments in which two superradiant lasers are operated within

the same longitudinal and transverse cavity mode, the experimental implementation of the system

theoretically studied by Xu et al. [141]. As in Chapters 2 and 4, we create superradiant ensembles by

applying dressing light to generate spontaneous two-photon Raman transitions between metastable

ground hyperfine states. Both lasers operate in the bad cavity regime where the atomic broadening

is much smaller than the cavity decay rate, γ⊥ � κ.

The two superradiant ensembles are spatially separate, with experimentally controllable nat-

ural frequencies. To distinguish between the two ensembles, I use a and b as labels. The lasing

excited states |↑a〉 and |↑b〉 are separated by frequency δ ≤ ±2 MHz < κ/2. The average of the two

natural frequencies is at detuning δc ∈ (−κ, 0) from the cavity line center. Both lasing transitions

are within κ of the cavity resonance frequency, ωc. The unperturbed emission frequencies are ω0
a

and ω0
b , and the emission frequencies in the presence of interactions ωa and ωb.

Two experimental schemes are presented in this chapter: the first in which the frequency

degeneracy is broken by changing the frequency degeneracy of the lasing states by changing a

magnetic field (I), and a second in which the phase difference between the two lasers is set by the

relative phase of Raman dressing lasers (II). This latter scheme has the advantage of greater phase

agility, at the cost of having to increase the decay rate and repumping rates so the atomic sample

is destroyed more quickly.

Figure 5.2 shows the dressing laser and repumper polarizations, as well as atomic energy level

diagrams, for the two schemes. In the magnetic field scheme (I), separate repumping beams applied

with σ+ and σ− polarizations split the atoms into ensembles a and b with ground states |↓a〉 =∣∣52S1/2, F = 2,mF = 2
〉

and |↓b〉 =
∣∣52S1/2, F = 2,mF = −2

〉
. The 795 nm dressing laser is applied

with π-polarized light detuned blue of the
∣∣52S1/2, F = 2

〉
to
∣∣52P1/2, F = 2

〉
transition. The scheme
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a b

W
repump

W

a

Figure 5.1: Diagram showing two ensembles within the cavity and simplified energy level diagram
for the lasing process. (a) Two spatially separate ensembles a and b emit light within the same
optical cavity. Incoherent repumping laser beams are applied from the side. The spatial selectivity
of the ensembles results from applying different sets of dressing or repumping lasers to the atoms.
(b) Simplified energy level diagram. The lasing excited states |↑a〉 and |↑b〉 are separated by
frequency δ. The average of the two frequencies is at detuning δc from the cavity line center. Both
lasing transitions are within κ of the cavity resonance frequency, ωc.
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with separated dressing lasers (II) uses π-polarized repumping to create a dark state∣∣52S1/2, F = 2,mF = 0
〉
. Dressing light with linear polarization is applied from the side. Two

spatially separate dressing lasers a and b with independent intensities and optical phases define the

atomic ensembles a and b.

5.3 Modeling Two Ensemble Superradiance

This section extends the model of Eqns. 2.16 from Chapter 2 to the two-ensemble model.

Although the full quantum nature of the scheme was analyzed in Ref. [141], here we extend the

optical Bloch equations to two superradiant lasers with potentially different repump rates W a,b,

emission rates γa,b and dressing laser couplings Ωa,b, Bloch vectors Ja,b, and total populations Na,b.

The models of Ref. [141] described a dynamical phase transition in the relative detuning

between the light emitted by the two ensembles, with scaling behavior versus δ reminiscent of a

second-order phase transition, with square root scaling of an order parameter (δ2 +W 2)1/2 near the

critical point δ → W showing a critical exponent of 1/2. The linewidth was predicted to diverge

as δ approached the transition point. In contrast, we use the equations of Chapter 2 to model the

qualitative behavior of the systems in the presence of asymmetry, and ignore the noise properties

of the system. As this section explains, asymmetries are crucial for understanding the behavior of

the coupled system. The asymmetries in our system take the form of atom number imbalances,

differential emission rates, and differential detuning relative to the cavity mode (which causes a

change in coupling to the cavity mode between the ensembles). The models show that differences

in these parameters between the two ensembles can produce qualitatively very different behavior

(e.g., one emission peak versus two) than for completely identical ensembles.

The model is essentially the same as the single ensemble model of Eqns. (2.16) except with
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a b

Magnetic field-sensitive Dressing laser-tuned

a
b

a b

Repumper

Repumper

Dressing
laser

Dressing

Dressing
Repumper

Figure 5.2: Lasing transitions for the two experimental configurations. (a) Magnetic-field control
scheme (I). A single dressing beam at 795 nm is applied along the cavity axis with π-polarization.
An applied magnetic field shifts the transition frequencies of the 52S1/2 ground states for ensembles
a and b, which are separated by σ+ and σ− polarizations of two repumper beams to create two dif-
ferent dark states. The lasing transitions are between the stretched states

∣∣52S1/2, F = 2,mF = ±2
〉

and
∣∣52S1/2, F = 1,mF = ±1

〉
. (b) Dressing laser control (II) scheme. Two dressing beams at 780

nm with linear-polarization are applied transverse to the cavity, and an incoherent repumping beam
is applied transverse to the cavity with π-polarization. The lasing transition is between the clock
states

∣∣52S1/2, F = 2,mF = 0
〉

and
∣∣52S1/2, F = 1,mF = 0

〉
.
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two independent ensembles a and b coupled to the same cavity mode with electric field E(t)

Ė =
(
−κ

2
+ iδc

)
E − i(ga2Ja− + gb2J

b
−) (5.1)

J̇a− = i2ga2EJ
a
z −

(
W a

2
+ i

δ

2

)
Ja− (5.2)

J̇b− = i2gb2EJ
b
z −

(
W b

2
− i δ

2

)
Jb− (5.3)

J̇νz = −W νJνz +
Nν

2
W ν + igν2 (Jν−E

∗ − Jν+E). (5.4)

These equations are written in the frame of the average of the unperturbed emission frequencies,

(ω0
a + ω0

b )/2. Here, the superscripts a, b and ν ∈ a, b refer to the parameters corresponding to the

ensembles a and b, respectively. The collective Bloch vectors are similar to those defined previ-

ously, 〈Ĵa,b〉 = (〈Ĵa,bx 〉, 〈Ĵa,bx 〉, 〈Ĵa,bx 〉), with the substitution of separate operators for the projection

operators |↑〉 〈↑| → |↑a,b〉 〈↑a,b| (and similarly for |↓〉). For instance, Ja,bz = (Na,b
↑ −N

a,b
↓ )/2.

The two-photon Rabi frequency ga,b2 = gΩa,b/(2∆) can differ between ensembles a and b

because of unequal intensity in the a and b dressing beams in scheme (II). The repump rates W a,b

may differ experimentally due to a mismatch between the center of the Gaussian profile of the

beam and the atom cloud, but in our simulations we set W a = W b. Also, the cavity detuning

δc can be set to be constant or the effect of cavity dispersive tuning can be included with the

substitution δc → δc + 2β(Jaz + Jbz), where β is the differential cavity shift per atom for the states

|↑〉 and |↓〉 that are differentially detuned from the cavity mode.

5.3.1 Expected Behavior

This section describes the expected behavior of the system given the model above, in two

regimes: continuous phase error introduction and abrupt phase error introduction. Coupled phase

oscillators with non-degenerate frequencies can exhibit a wide variety of behaviors. In the thermo-

dynamic limit, where the number of classical oscillators N →∞, an array of phase oscillators with

disordered frequencies (given by a Gaussian distribution, for instance) can undergo a phase tran-

sition to a frequency or phase-locked state. The Kuramoto model, a paradigmatic and extensively

studied model in non-linear dynamics, exhibits this behavior [121, 2].
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For the purposes of this calculation, we consider the mesoscopic collective dipoles formed by

the ensembles of atoms within each ensemble a and b. This simulates the mean-field behavior of

the ensembles.

In a similar configuration, the effect of an external driving field on a single superradiant

laser was studied [43]. The model for this system was essentially the same as the one presented

above in Equation 5.4, and was shown to be equivalent to a damped, driven van der Pol oscillator

in the limit of small drive detuning and small drive strength. Importantly, the three-dimensional

nature of the dynamical variables shows an AC Stark shift can cause frequency repulsion instead

of attraction, which is not observed in a conventional two-dimensional phasor (i.e., the difference

between a Bloch sphere and a phasor in a plane).

In the two-ensemble case, the coupling between population inversion and coupling strength

to the cavity mode adds another feedback path into the system. The modified cooperativity C ′ =

C/
(

1 +
(
δc±δ/2
κ/2

))
for ensembles a and b, respectively, so that the collective emission rates (NC ′γ)a,b

are not necessarily equal. Because of nonlinear scaling of the population inversion Jz with W com-

pared to NCγ, the tuning of the dressed cavity mode in response to a change in NCγ for one of

the ensembles can depend crucially on the degree of asymmetry in the ensembles’ parameters.

Synchronization in this system manifests as a locking of the two frequencies, ωa = ωb even

when the unperturbed frequencies are not equal, ω0
a 6= ω0

b or δ 6= 0. In steady state, the time rate

of change of the relative phases d
dt(ωb − ωa) = 0. There can be a constant phase offset φ0 between

the emitted fields that decreases to 0 when δ = 0. In a power spectrum of the emitted light, the

synchronization region of δ can be identified by the presence of a single frequency component.

For the symmetric case, Na = N b, Ωa = Ωb, and W a = W b. As the two ensembles’ relative

detuning δ is varied, synchronization occurs for |δ| ≤ W . Within the synchronization region,

we expect a finite (but constant) opening angle φ0 between the ensembles that decreases to 0

when δ = 0. This should cause an increase in the collectively emitted power in the synchronization

region, with the power highest at δ = 0, since the atomic coherences Ja,b⊥ are maximally aligned

to each other (φ0 = 0). A finite phase offset that varies with δ within the locking range where
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oscillator frequencies are equal is commonly seen in injection-locked systems [105].

The same qualitative behavior is predicted by the full quantum mechanical model of Ref. [140].

However, the phase noise properties of the system (i.e., quantum-limited linewidth scaling) is not

captured in our mean-field model. As δ decreases, the emitted photon frequencies ωa and ωb are

attracted towards each other in a hyperbolic-like fashion and then meet to synchronize at the

average frequency. In the case of the full model, the phase correlation or linewidth blows up at the

transition point, marking the second-order phase transition to a synchronized state.

Qualitatively, this is easy to understand by considering the difference in rates in the system:

the rate of relative phase precession of the two ensembles, with no coupling, is exactly the detuning δ.

If the rate of relative phase precession (or, effectively, the rate of relative phase error) δ becomes

less than the phase resetting rate, newly repumped atoms will align to the average faster than

their phases can be pushed away from the average. The phase resetting rate (or rate of transfer to

re-initialization in |↑〉) is exactly the repumping rate W .

When asymmetries are introduced, the output spectrum of light changes significantly. There

are a few different types of asymmetry that are crucial: differences in coupling to the cavity

mode (from C ′a 6= C ′b when δc 6= 0), differences in emission rate from asymmetric dressing laser

intensity (ga2 6= gb2), and differences in population (Na 6= Nb).

First is the differential coupling to the cavity mode coming from the detunings δc ± δ/2.

Because a detuning δc from the dressed cavity resonance is necessary for stable operation (due

to the feedback effect discussed in Chapter 2), as δc varies the two ensembles acquire different

effective cooperativities C ′ leading to differential NC ′γ. We see empirically that δc ≈ κ/2 for

stable operation, which is close to side-of-fringe for the Lorentzian response C ′ = C/(1 +
(

δ
κ/2

)2
)

This effect could in principle be mitigated by detuning the dressing beam further from atomic

resonance to reduce β, the dispersive shift per atom.

Next, in the configuration where the dressing beam is applied transverse to the cavity mode,

there can be differences in the intensity of the dressing beam hitting the two ensembles so Ωa 6= Ωb,

which causes a difference in γa,b = Γ
4

(
Ωa,b/∆

)2
. This does not exist in the magnetic field-sensitive
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configuration of Section 5.5 where the RMS Ωa
rms = Ωb

rms when the dressing laser is applied along

the cavity axis. This arises both from the Gaussian beam profile and the diffraction pattern that

results from the split waveplate used to create two beams. The waist of the dressing laser intensity

in the axial direction of the cavity is comparable to the RMS atom distribution of about 1.5 mm.

In order to change the relative populations Na/Nb, we changed the fraction of the dressing laser

that spatially addresses ensembles a and b. The populations in each ensemble are therefore coupled

to the intensity of the dressing beams. We can partially compensate for the difference in Ωa,b by

scaling the relative intensities with AOMs, but could only control the relative scattering rates γa,b

at the 10% level.

Finally, an important asymmetry is the atom number imbalance between the two ensembles.

Our method of measuring the relative atom numbers is uncertain on about the few percent level as

the atom number measurement must be performed separately on each ensemble on successive runs

of the experiment, and atom number fluctuations are at the few percent level. The ultimate limit to

the relative atom numbers is the capability of driving the ensemble above the lower threshold. This

comes from the atom number being coupled to the intensity of dressing beam, since the dressing

beam size is somewhat comparable to the atom distribution. As the number of atoms decreases, so

does the relative scattering rate, since it tends to be on the wing of the Gaussian beam profile in the

z-direction. In principle, this could be mitigated by increasing the intensity in the dressing beam

that addresses fewer atoms–however, there is a finite amount of power in our system. So when

the scattering rate for ensemble a is less, it is not always possible to turn it up to the same level

as ensemble b. Also, the thresholds for optimum power output change as a function of Na,b, i.e.,

if NaCγa/2 � NbCγb/2 then the two ensembles cannot both simultaneously operate at optimum

repumping, where stability is highest.

Figure 5.4 shows a particular simulation where the population Na = Nb. A single emission

peak is clearly visible in the spectrogram. Notably, as the detuning δ changes sign, the ensemble that

actually lases changes. Also visible is a deviation from an X-cross with constant slope, meaning

there is some synchronization happening near δ = 0. For comparison, a completely balanced
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prediction is in Figure 5.4.

a b

Figure 5.3: Comparison of theoretical lockup curves with population asymmetry with and without
cavity tuning. Each horizontal trace in the spectrograms is a single power spectrum generated from
an FFT after steady state is reached. (a) Balanced populations, Na = Nb with the cavity mode
centered at zero frequency. Within the lock-in range, at ±W , there is a single frequency component
that increases in power close to δ = 0. (b) The populations are balanced with Na = Nb. Both
ensembles are present, yet only one frequency component is visible for all δ.

5.3.1.1 Phase Response

In a separate set of experiments (with two dressing lasers, scheme (II)) δ = 0 and the

relative optical dipole phase of ensemble b is abruptly changed on a timescale faster than W . This

experiment is only possible in the configuration where two dressing beams are applied transverse

to the cavity, since the phase degeneracy needs to be broken on a timescale faster than W−1 and

our control of the magnetic fields is not fast enough to introduce a phase difference. Also, in

the magnetic field-sensitive configuration, the frequencies must be non-degenerate for the optical

pumping to work correctly.

We simulate this experiment with the following sequence. First, both ensembles are initialized

with nearly full inversion (but a small component J− to allow superradiant emission to start).

The system is allowed to evolve to steady state, where the magnitude of the combined optical

dipole |Ja− + Jb−| is constant in time. After steady state has been reached, we introduce a phase
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a b
50/50 70/30

Figure 5.4: Comparison of theoretical lockup curves with population asymmetry in the presence
of cavity tuning. Each row is a power spectrum of the light phasor after steady state is reached.
The vertical axis is the detuning δ between the natural frequencies of the ensembles. Lighter color
corresponds to higher power. The finite resolution is an aliasing artifact due to the finite amount
of time sampled. For this simulation N = 1.4 × 106, γ = 104 sec−1 and W = 105 sec−1. (a)
The populations are balanced with Na = Nb. Both ensembles are present, yet only one frequency
component is visible. (b) The populations are imbalanced, with 70% in a and 30% in b. The
frequency scaling near δ = 0 is much different than the balanced case, and at large negative δ there
is still power emitted from b visible. Here, as opposed to in (a), a single same ensemble lases at
all sδ.
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deviation of ∆α to ensemble b and calculate the response of the phase ψ+(t) of the cavity field E(t).

To eliminate the effect of cavity tuning, we also calculate the response ψ−(t) when the phase

deviation is −∆α and construct the quantity (ψ+ − ψ−)/2.

5.4 Description of the Synchronization Process

Synchronization necessarily implies moving from a state of higher entropy to one of lower

entropy, requiring dissipation into a bath of states that absorb the entropy. In the case of pendula

coupled through a beam (as in the Huygens example), the beam that connects the pendula also

provides coupling to the ambient environment, thereby providing dissipation. In our atom-cavity

system, the dominant dissipation mechanism is the spontaneously scattered light involved in re-

exciting atoms from |↓〉 to |↑〉 at rate W . Because our atomic ensemble is optically thin in the

direction transverse to the laser cavity, the scattering process for the jth atom is not collective and

causes single-atom collapse, erasing the relative quantum phase ηj in the single-atom superposition

state: cos(θj/2) |↑〉j+eıηj sin(θj/2) |↓〉j → |↑〉j . It is this relative phase φj that encodes the phase of

the single-atom dipole and thus the phase of the light ψj = φj+const. that is radiated by the single

oscillator. It is helpful to visualize φj as the azimuthal phase of the single-dipole Bloch sphere and

the angle θj as a polar angle. Most importantly, the quantum collapse serves to erase any relative

phase error ∆φj = φj − φavg that had accumulated between the individual atom’s optical dipole

and an appropriately defined average of the phases of all of the optical dipoles of participating

atoms, φavg.

The total cavity field is the sum of the optical fields radiated by each atom, with a resulting

phase ψavg = φavg. This cavity field aligns the optical dipole phase of a newly repumped atom

to φavg. The combination of realignment to the average, accrual of phase errors, and erasure of

phase errors is the physical origin of the quantum synchronization process.

Another dissipation channel in the atom-cavity system is the emission of photons from the

cavity mode through the mirrors. However, this channel only provides collective information to

the environment and should not erase single-atom phase errors. Detection of a photon exiting the
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cavity indicates that one atom has made a transition from |↑〉 to |↓〉, but does not indicate which

atom made the transition. Still, the fast dissipation relative to the decoherence rate (the system is

deep in the bad cavity regime with κ� γ⊥) ensures that the cavity field adiabatically follows the

total optical dipole of the atoms such that the phase of the optical dipoles φavg can be determined

directly from the phase of the emitted light ψavg.

5.5 First Experimental Configuration: Magnetic-field-sensitive

In this configuration, the lasing is between the ground states |↑a〉 ≡
∣∣52S1/2F = 2,mF = 2

〉
to |↓a〉 ≡

∣∣52S1/2F = 1,mF = 1
〉

and |↑b〉 ≡
∣∣52S1/2F = 2,mF = −2

〉
to lower

state |↓b〉 ≡
∣∣52S1/2F = 1,mF = −1

〉
. The frequencies of these two transitions have opposite sensi-

tivity to magnetic fields, so their relative frequencies could be changed by changing the magnitude

of the magnetic field By applied along the ŷ direction transverse to the cavity. The dressing laser

had π-polarization and was injected along the cavity axis.

To prepare two distinct populations a and b, optical pumping beams with opposite σ+ and σ−

polarizations were applied transverse to the cavity with the wave-vector of light ~k|| ~B. This allows

repumping to the stretch states |↑a〉 and |↑b〉. This configuration is shown in Figure 5.2(a). The

polarization of the beam was set spatially through the use of a split quarter-wave plate (QWP)

with fast and slow axes offset by 90◦. The vertical position of the boundary between waveplates

with respect to the waist of the beam set the fraction of the atomic population in a or b. Since

the distribution of atoms in the ẑ direction (direction of the cavity axis) is approximately Gaussian

with width ∼ 2 mm, a translation stage could easily position the waveplate boundary with enough

precision for repeated trials.

To observe the steady state behavior of the lasers, the full light phasor from the emitted fields

was detected in heterodyne and an FFT was constructed from the time record of amplitude and

phase. On each successive trial of the experiment, the magnitude of the magnetic field is changed

to change the relative detuning δ.

Figure 5.5(a) shows a spectrogram for which all the atoms are put into one magnetic sublevel.
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The frequency essentially follows the predicted straight line except for a small deviation in the

center, where there is no longer a dark state for repumping so that atoms spread out among all the

|F = 2,mF 〉 levels. However, this effect appears not to be large in the case of a single ensemble.

Figure 5.5(b) shows a spectrogram of the light emitted from the atomic ensemble as the

B-field is changed. In the absence of any coupling between the two groups of atoms, there would

be a simple X-cross, where the two ensembles emit at frequencies following straight lines. In the

presence of coupling, we expect the emission peaks will be attracted to a common frequency.
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Figure 5.5: Response of one ensemble and synchronization of two ensembles in the magnetic field-
sensitive configuration. The x-axis is the Fourier frequency for each power spectrum and the y-axis
is the detuning of the atomic energy level given by changing the B-field. Color represents intensity
in arbitrary units (lighter color is a higher intensity). (a) Spectrogram of the response of a single
ensemble to changing detuning. For reference, a line with slope 1 (expected for no interaction) is
plotted as an orange dashed line. From the maximal deviation of 6 kHz, the residual magnetic field
is approximately 3 mG. (b) Spectrogram of the response of two ensembles to changing detuning.
Two lines are plotted showing the expectation for non-interacting ensembles (orange dashed lines).
When δ is below a critical value, the ensembles begin lasing at the same frequency and with a
higher overall intensity.

This approach to the experiment has a couple of advantages. First, applying the dressing laser

along the cavity axis allows operation in the Doppler-free regime because of the tight confinement

from the optical lattice along the ẑ direction. Having a low background decoherence rate ΓD by

operating in this parameter space means that the repump rate W need not be large to overcome

the decoherence at rate ΓD, so that the cavity pulling coefficient P = W/κ . 10−4. This allowed

for an investigation of cavity pulling and demonstrations of very low linewidth [24].
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However, since the dressing laser is applied off-resonantly to the cavity and we have finite

laser power, the scattering rate γ cannot be made higher than a few 100 s−1. This in turn limits

the absolute scale of the upper quench threshold for W ∝ NCγ, which means that the range of

synchronized δ is also limited since the synchronization range is set by W .

A key competing mechanism in this scheme is the breakdown of the atomic polarization as By

approaches zero. Residual fields Bx or Bz can couple the near-degenerate |F = 2,mF 〉 levels, which

causes a competition between optical pumping and the Rabi frequency between adjacent mF levels.

The second configuration of the following Section 5.6 eliminates this issue while introducing other

features.

5.6 Second Configuration: Phase Controlled by Dressing Lasers

The second experimental configuration relies on changing dressing laser frequencies or phases

to control the effective atomic transition frequency. To create two spatially separate ensembles with

independently controlled optical dipoles, we apply two Raman dressing lasers that address either

the upper or lower portions of the total trapped atomic ensemble (see Figure 5.13). This provides

independent control of the dressing laser phases αa,b, angular frequencies ωa,b, and intensities are

parametrized by a resonant-Rabi flopping angular frequency Ωa,b for the |↑〉 to |i〉 transition. We

can independently set the single-atom Raman decay rates γa,b (≈ 2π × 250 Hz) by controlling

each laser’s intensity. The relative number of atoms Na,b in each ensembles can be controlled by

translating the spatial boundary between the dressing lasers along the cavity axis.

Because we utilize Raman transitions for the lasing process, the relevant total optical dipole

phases that synchronize are given by φa,b = ηa,b + αa,b. Here, ηa,b is the phase associated with the

coherence that develops between ground states |↑〉 and |↓〉 in each ensemble. Since the dressing

phases are externally controlled parameters, the cavity-mediated interactions drive changes in the

ground state coherences ηa,b to synchronize the optical dipole phases φa,b.
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5.7 Time Dynamics

We study the dynamics of phase synchronization in the time domain for two ensembles with

degenerate frequencies δ ≡ ωb − ωa = 0. The dressing and repumping lasers are all turned on

for 0.1 ms, during which time the two ensembles reach a steady state in which they emit at the

same frequency and act as a single synchronized superradiant ensemble with φa = φb. An EOM

(ThorLabs EO-PM-NR-C1) is used to quickly jump the phase αb of the b dressing laser by an

amount ∆αb in 30 ns. The timescale of the jump is much faster than the time dynamics of the

resynchronization process and effectively creates an instantaneous error in the alignment of the

optical phases φb = φa + ∆αb.

To observe how this phase error heals in time, we allow the system to dynamically evolve for

a variable amount of time Tevol = 0 to 1.5 µs before we rapidly extinguish the other dressing laser,

setting Ωa → 0. Subsequently, only ensemble b radiates into the cavity mode. We infer the change

in φb from the difference in the phases ∆ψ of the emitted light just before the phase jump and just

after Tevol.

5.7.1 Technical Details of Phase Measurement

In order to verify the amount of phase deviation ∆αb that is applied, we calibrated the

applied phase difference with and without atoms. Without atoms, we overlapped the dressing

beam b with a heterodyne LO beam onto a heterodyne photodetector and looked at the light

phase of the dressing beam after ∆αb was applied versus the applied voltage. The same kind of

measurement was performed with a single ensemble of atoms undergoing steady state superradiance,

which produced a very linear relationship between the applied voltage and the observed phase shift,

as shown in Figure 5.6.

The way we actually measure the phase is by performing linear fits to the time record of

phase and interpolating to the point in time where the phase is changed. In the case where the

time Tevol is scanned, the differential quantity ψ(0) − ψ(Tevol) is computed. Generally, averaging
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Figure 5.6: Measured phase shift of light ∆ψ with one ensemble versus EOM b voltage. Black
points represent measured ∆ψ from interpolating to the time at which the phase deviation was
applied. Red line is a linear fit to the data with slope m = 1.00(1).
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a DC measurement for longer reduces the phase variance due to photon shot noise. However, in

the case of a linear fit in the presence of frequency chirping (which happens in the superradiant

laser) and white noise, increasing the amount of data to which a line is fit can increase the noise in

the value of an extrapolated point outside of the fit range. We empirically looked for an optimum

amount of time to fit to, which occurred at around 15 data points (or around 6 µs). These linear

fits can also be thought of in the frequency domain as a kind of band-pass filter centered on the

instantaneous emission frequency of the laser. Figure 5.7 shows the noise in the phase difference ∆ψ̄

as a function of duration of the second fit window, which indicates a minimum standard deviation

of about 19◦ at 7 µs.
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Figure 5.7: Noise in the phase measurement ∆ψ̄ versus duration of the second fit window. Blue
line is a fit to a model σ̂∆ψ̄(t) = (a2 + (b2/t) + c2t2)1/2. This corresponds to a constant technical
noise background set by a and photon shot noise term b and diffusion term c. The error bars reflect
the statistical uncertainty of ≈ 30 measurements for each point.

There are a couple of major sources of systematic error in this phase measurement. First,

when the dressing light for a is extinguished, the repumping will tend to increase the a ensemble

inversion and will cause the dressed cavity frequency to move. However, this cavity chirping effect



87

is in the same direction no matter what the direction of the phase deviation of the laser. And, the

physics is expected to be the same whether the dressing laser b phase is jumped +90◦ or −90◦—only

the opening angle between the two dipoles should matter, not the sign. So, by averaging the result

of two successive trials in which ∆αb = ±90◦, we cancel out the cavity chirping effect.

Another systematic error is slow drift of the relative path length which would cause fluctua-

tions in the optical phase of the dressing lasers at the atoms, αb−αa. To account for a slowly varying

relative optical phase, we measure ∆ψ at positive and negative ±∆αb while scanning the phase of

the AOM b from 0◦ to 360◦, stepping by 180◦ between points. For example, two experimental trials

for ∆αb = +90◦,−90◦ are performed at φAOM = 0◦, then at φAOM = 180◦, followed by 12◦, 192◦,

etc., until all φAOM have been sampled. Then, averages are constructed for ψ+ and ψ− and they

are combined into ∆ψ̄ = 1
2(ψ+ − ψ−).

The measured quantity ∆ψ̄ as a function of the evolution time Tevol is shown in Figure 5.8(b).

Here the phase jump is ∆αb = 90◦, and we see that ∆ψ̄ is also 90◦ near Tevol = 0. The phase ∆ψ̄

then relaxes back toward 0◦, settling at an intermediate value such that φa = φb. The timescale for

relaxation is close to the repumping rate W−1, i.e., the characteristic rate at which phase errors

are erased.

The equilibrium phase at large Tevol is mostly determined by the ratio of the relative magni-

tudes of the optical dipoles of the two ensembles just before the evolution period. The magnitude

of each collective dipole is proportional to the number of participating synchronized atoms (Na,b)

and the emitted electric field per atom (∝ √γa,b). The relative dipole magnitude can be roughly

characterized by Rd ≡ (Nb
√
γb)/(Na

√
γa) = 1.5 and 4.0 for the solid and open data sets in Fig-

ure 5.8.

A simple model for the phase prediction is vector addition of the optical dipoles whose size

is proportional to Ja,b⊥ . The long-time behavior with Tevol � W−1 and ∆αb = 90◦ is that ∆ψ̄

will relax to ∆ψ̄e = tan−1(Rd). For comparison, we label the steady state phase given by the full

numerical simulation as ∆ψ̄n. For the data with more balanced populations (solid), the ensembles

equally pull each other’s optical phases φa,b and the light phase relaxes to ∆ψ̄ = 51(3)◦, close to
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(∆ψ̄e,∆ψ̄n) = (56◦, 55◦). In contrast, in the more imbalanced (open) data, the unobserved φa is

pulled more rapidly toward the phase of φb, and the phase relaxes toward ∆ψ̄ = 71(2)◦, while

(∆ψ̄e,∆ψ̄n) = (79◦, 73◦), i.e., closer to the phase of ensemble b at Tevol = 0.

The experimental steady state value of ∆ψ̄ versus dipole ratio Rd is plotted in Figure 5.9.

The experimental measurement comes from taking the average of the last several data points. For

reference, the simple two-level theory of Equation 5.4 is shown as the solid black line. The range

over which Rd can be scaled is limited by the decreasing upper lasing threshold for W as Rd is

decreased. That is, as one of the ensembles is made smaller, it eventually requires a very low W

to emit light at all. The data is basically in agreement with the simple prediction line and obtains

reasonable agreement with the two-level model theory.

5.8 Frequency Response

We next consider the case in which a continuous source of phase error is introduced between

the two ensembles by detuning the dressing laser frequencies. As δ deviates from zero, the total

power emitted by the two ensembles decreases as shown in Figure 5.10. For |δ| > W the total

output power is roughly constant. At the transition point, the two ensembles largely behave

independently, emitting at their respective natural lasing frequencies. The characteristic frequency

scale is set by W since any relative phase accumulated between the ensembles is reset through

repumping, as discussed in Section 5.4. The observed maximum synchronized power output is a

factor of 2.2(1) greater than the unsynchronized power output, while we predict a factor of 1.8(2).

This estimate is based on the quenching behavior of the output power with repumping rate that

accounts for changes in population inversion of each ensemble [22, 93]. The asymmetry of the total

power for positive and negative δ is also reflected in the asymmetric behavior in the spectra of

Figure 5.11 as discussed below.

We can observe the transition from synchronized to unsynchronized behavior in the frequency

domain by looking at the spectral properties of the light emitted from the cavity. In the spectro-

grams of Figure 5.11, each row is a frequency spectrum of emitted light from the cavity, with
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Figure 5.8: Healing of an instantaneous phase error between optical dipoles. (a) Timing diagram
and visualization of atomic Bloch vectors. Before time t = 0 the two dipoles interact and synchro-
nize. At t = 0, dressing laser phase αb is jumped by 90◦. The ensembles’ interaction begins to
heal the relative phase error. At t = Tevol, dressing laser a is turned off (Ωa → 0) so that only
ensemble b radiates into the cavity. The difference ∆ψ̄ in the phases of the radiated light in the
gray windows before t = 0 and after t = Tevol indicates the change in the optical dipole phase
∆φb = ∆ψ̄. The upper panels provide cartoon visualizations of phasors representing the radiated
fields (red for a, blue for b, purple for the sum) and Bloch vectors. (b) Light phase change ∆ψ̄
vs. evolution time Tevol. The solid and open points correspond to experiments with dipole ratios
Rd = (1.5, 4.0), respectively. Vertical solid and dashed lines show the characteristic time scale of the
respective single-atom repumping rates for the two data sets W−1 = (0.77, 1.6) µs corresponding
to (solid, open) data. The solid and dashed curves are simulations for the respective data (red for
the unobserved ensemble a, blue for b).
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Figure 5.9: Light phase deviation ∆ψ̄ versus dipole fraction Rd. Data (blue circles) and prediction
from the two-level model (red squares) are shown with the simple prediction of tan−1(Rd) (solid
line). The two-level model was averaged over several values for W , while the data was averaged
over the last several points near the maximum Tevol = 1500 ns.
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Figure 5.10: (a) Total output power versus detuning for the spectrograms of Figure 5.11. Verti-
cal dashed lines are at the repumping rate ±W/2π. The horizontal dashed line is the predicted
maximum synchronized output power. (b) Theoretical plot of the expected output power versus
W/(NtotC(γa + γb)/2) for the unsynchronized case (dashed) and synchronized case (solid). For a
given W , the coherent power emitted from the synchronized ensembles is higher at W > 0. The
black line on the left corresponds to the expectation from the measured W , γa,b and Na,b, while
the black line to the right corresponds to the ratio of the maximum power to the averaged |δ| > W
from (a).
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brighter colors indicating higher power. Each power spectrum is calculated from 80 µs of the time

record. The two-dimensional power spectrum is created by repeating the measurement at a series

of different detunings δ, with values shown along the vertical axis.

For |δ| � W , the two ensembles of atoms emit at frequencies very close to the unperturbed

Raman transition frequencies. As |δ| decreases, the emission frequencies ωa and ωb are pulled

toward each other as the rate of relative phase error δ nears the error erasure rate W . We note that

we do not observe nor expect a region of repulsive synchronization that appears when injection

locking a single superradiant ensemble to an externally applied drive [43]. For |δ| .W , the erasure

of phase errors dominates and the two ensembles radiate at a single frequency.

The observed spectrum qualitatively agrees with the results of the mean-field model intro-

duced in Equation 5.4, exhibiting a hyperbolic-like approach (Region I) to the synchronized state

(Region II). However, there is significant asymmetry in the power spectrum. Part of this asymme-

try arises from a finite detuning of the average Raman transition frequency from resonance with

the cavity resonance frequency by amount δc = − = 2π × 4 MHz ≈ κ/3, an operating condition

favorable for suppressing relaxation oscillations [19], yet one that introduces an imbalance in the

coupling to the cavity between ensembles. Other causes of asymmetry are imbalances in the optical

dipole magnitudes (both N and γ) for the data in Figure 5.11. Numerical modeling indicates that

the effects of these small asymmetries are magnified by the interaction between the ensembles.

We also show in Figure 5.11(b) that many different behaviors can be observed depending

on the operating parameters. This data shows a significant asymmetry in the emitted power (iii)

from each ensemble for δ > 0 and δ < 0. Many of these behaviors are observed in the numerical

mean-field models of our system (reference earlier discussions here), but other features, indicated

in Figure 5.11(b) are not: (i) the parallel-running frequency component in the lower right-hand

quadrant, (ii) the extra frequency components at ±δ/2π, and the asymmetry in the observed

linewidth of the two emission peaks of both Figure 5.11(a) and (b). Note the fractional power in

each sideband (ii) is small, < 8% of the total power in each frequency spectrum.
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Figure 5.11: Symmetric and asymmetric spectrograms in the two-dressing-laser configuration of
Section 5.8. The vertical axis is the detuning of the dressing lasers, δ, and the horizontal axis is the
Fourier frequency of each power spectrum. The power (color scale) is normalized to the maximum
power across the entire spectrogram. (a) Each power spectrum represents the average of 5 power
spectra for each δ. Collective dipoles are roughly balanced with Na/Nb = 0.6 and γa/γb = 0.8. (b)
Asymmetric operating conditions, Na/Nb = 1.1 and γa/γb = 1.6.
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5.8.1 Reasons for Asymmetry

Here I briefly discuss some mechanisms that could be responsible for the broad lineshapes seen

in the spectrograms of Figure 5.11. In prior studies, linewidth broadening was seen to arise from an

inversion-dependent frequency pulling mechanism. Here, this effect would broaden both peaks [24,

22], and is therefore not the source of the difference in linewidths. Attempts to identify other

classical mechanisms for the asymmetric broadening have been unsuccessful and the broadening

remains an interesting topic for future theoretical and experimental study, with the intriguing

possibility that this is a fundamental quantum noise effect [141].

Two representative single power spectra from Figure 5.11 are shown in Figure 5.12 for de-

tunings δ = 55 kHz and 1.4 MHz. A clear difference in the lineshapes for the positive and negative

frequency ensembles can be seen–one is much broader and has less total power. At synchroniza-

tion, there is still some broadening but more output power, corresponding to the central feature in

Figure 5.10.
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Figure 5.12: Averaged power spectra for two detunings. Data corresponds to Fig. 5.11 (a), with
small detuning δ = 55 kHz (blue) showing synchronized behavior and larger detuning δ = 1.4 MHz
showing two unsynchronized ensembles.

Classical Heterodyne Noise—Classical noise in the relative phase (e.g., due to fluctuating

path length differences) between the dressing laser and the LO beam, or the LO beam and the light

emitted by the atoms, ought to cause a common-mode shift of both frequency components. This

noise ought to be common mode for both frequency components, and would also appear solely in

an FFT of only the phase rather than the full phasor. We don’t see the same lineshape for both

frequency components, and the differential linewidth is present in both phase-only and amplitude-
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only FFTs.

Differential Cavity Pulling—We do not expect to have an effect that would cause sig-

nificant differential cavity pulling for both ensembles, as the amount of cavity pulling does not

depend on the detuning from cavity resonance [21]. This would have to mean that the transverse

broadening rates γa,b⊥ for each ensemble significantly differ and even might fluctuate (to explain

very different lineshapes). To estimate the size of this effect, given a 30 MHz dressed cavity shift

for 106 atoms total, and pulling coefficient P = γ⊥/κ = 0.02, a loss of 5% of the atoms over an

FFT window of 100 µs would cause a 30 kHz shift in the emission frequency. To explain a typical

differential linewidth, there would have to be a factor of 5 difference in Pa,b, a very high value that

is inconsistent with measurements of the repumping beam profile.

Quantum Noise in Linewidth Near Threshold—The expected fundamental linewidth

is on the order of 5 Hz for a typical experiment. We know that Na/Nb = 1.6 and γa/γb = 1.2. Then,

W/NCγ ≈ 0.6. This is very close to NCγ/2, the approximate location of the optimum repumping

rate. To explain an increase in linewidth from 5 Hz to 30 kHz, a factor of 6×103 increase, the laser

would have to be operated very near an upper quench threshold [94].

Fluctuating AC Stark Shifts from Intracavity Light—For this effect, we assume the

following model: the larger ensemble’s frequency is unperturbed, but it undergoes relaxation os-

cillations that modulate the AC Stark shift that the smaller ensemble experiences. This would

correspond to the “repulsive” regime of injection locking [43], since the detuning δ ∼ 1 MHz and

W ∼ 1.4×106 sec−1 = 220 kHz. In the repulsive regime of injection locking or synchronization, the

laser emission frequency is AC Stark shifted as the power at the laser emission frequency decreases

and the power at the drive increases. For the representative data set of Figure 5.12, the RMS AC

Stark shift would have to be ≈ 80 kHz.

For the operating parameters of Figure 5.12, the ideal Rabi frequency of the stronger ensemble

would be Ω = 2g
√
Mc = 1

2
√

2

(NCγ)2

δ at Wopt = NCγ/2. Then the peak AC Stark shift would be

Ω2

4δ ≈
1
8
W 2

δ = 6 kHz. The absolute size of the frequency modulation in the data seems too large to

be described by AC Stark shifts, even if relaxation oscillations of the large ensemble causes a large
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amount of amplitude modulation of its output light.

Modulation of Scattering Rate γ—There is electric field interference from the overlap of

the leakage field of dressing laser a and dressing laser b, and vice versa. This provides a perturba-

tion to the scattering rate γa which is proportional to ΩaΩb
leak cos(δt), where Ωb

leak is the dressing

beam leakage field from diffraction at the location of ensemble a. This leads to amplitude modu-

lation sidebands on the light emitted from a , so that one of the modulation sidebands on ωa are

approximately at the frequency ωb (as |ωa − ωb| ≈ δ when δ � W ). However, the fractional size

of the modulation sidebands in power is < 1% of the carrier power from a when |δ| = 500 kHz, so

this effect is likely too small to explain the large linewidth.

5.9 Additional Experimental Details

Here I provide some additional details about the optical setup, including the split waveplate

and the optical setup used for the two dressing beam configuration of Section 5.6.

5.9.1 Split Waveplate

In both the magnetic field-sensitive and dressing laser configuration, a “split” waveplate was

put in the beam path to address different sub-ensembles of the atoms to create ensembles a and b.

This involved a CVI single-order quarter wave-plate being sliced in half along a diameter of the

circular glass piece aligned 45◦ from the fast axis, and then reassembled with one half of the wave

plate flipped by 180◦. The respective fast and slow axes of the two halves are then rotated by a

relative angle of 90◦ between the halves, leading to an opposite circular polarization rotation for

linearly polarized light offset by 45◦ from the original fast axis for the top and bottom waveplates.

In other words, if a given input state produced σ+ polarization initially, it now produces σ+ through

the half of the waveplate in the original orientation and σ− on the half of the waveplate that has

been flipped.

In the dressing laser setup, we actually use an intensity filter to split up the dressing beam.

We start by injecting dressing beam a and b with orthogonal polarizations along orthogonal fast
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and slow axes of a polarization-maintaining (PM) fiber (with extinction ratio > 20 dB). The beams

exit the fiber and go through a half-wave plate and quarter-wave plate to correct for any static

birefringence in the fiber owing to input misalignment and end up as σ+ and σ− beams heading

toward the split waveplate. The split waveplate turns both σ+ and σ− components into the same

linear polarization–with the B-field along the z-direction setting the quantization axis, this is

linearly polarized light (a combination of σ+ and σ− in the atomic basis). A final PBS cube rejects

the portions of the light that are not in the same linearly polarized basis. Figure 5.13 depicts this

polarization selection setup.
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Figure 5.13: Schematic of the dressing laser “switchyard” of Section 5.6. The dressing laser gets
split between two paths, which each feature an AOM (for controlling the beam power level and
frequency difference δ) and an EOM for controlling either the amplitude of the a laser, Ωa, or the
phase of the b laser, ∆αb. The overlap is then sent to the atoms, with a split waveplate and a PBS
allowing the b to hit one sub-ensemble and a to hit another sub-ensemble.

However, due to the small gap between waveplates, there is some degree of diffraction that

occurs. This produces an intensity pattern close to the standard Airy function that is normally seen

at sharp transitions in apertures. Diffraction is especially important when the dressing lasers have

opposite polarization, since small leakage fields from a into the volume addressed by b can, through
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interference with the strong b or a fields, result in a large intensity fluctuation at the difference

frequency of the dressing lasers. The amount of diffraction we see is shown in Figure 5.14.
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Figure 5.14: Intensity pattern of light diffracted from waveplate. Vertical axis has a log scale. This
trace represents a single vertical slice along the 2D image of the beam after 3.75 in of propagation
past the QWP and PBS cube. The leakage field is at least a factor of 100 less than the peak
intensity of the beam (since there is no background subtraction in this plot).



Chapter 6

Enhancing Quantum Phase Resolution with Spin Squeezing: Beyond 10 dB

In this chapter, I describe efforts to generate a high degree (> 10 dB) of spin squeezing in our

cavity QED system. First, I provide an overview of non-demolition measurements and squeezing

generation in our atom-cavity system. I discuss the limitations to previous approaches, and de-

scribe improvements to the experimental system that will allow further squeezing and entanglement

generation. I present measurements showing that our system is capable of the two key ingredients

for performing phase measurements beyond the standard quantum limit: a detection noise floor

well below the initial quantum level of noise, and the capability to preserve coherence. Finally, I

outline the promising prospects for future improvements to our scheme.

6.1 Conditional Spin Squeezing

Our approach for generating spin squeezing is to use measurement-induced entanglement,

representing a “top-down” approach to creating quantum correlations rather than a “bottom-up”

paradigm that relies on precisely controlling interactions between two atoms at a time. By making

collective quantum non-demolition (QND) measurements of populations of atomic spin states to first

measure the quantum noise of an ensemble of atoms, we can subsequently subtract the correlated

quantum noise from a second measurement. This is termed “conditional” spin squeezing since it

is only the difference between successive measurements that has noise below that of unentangled

atoms, i.e., the second measurement has less noise when conditioned on the outcome of the first

measurement. Each measurement taken alone has the full quantum noise level, but the quantum
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noise is common to both measurements and cancels in the difference of the two. Conditionally

spin squeezed states can be injected into standard Ramsey measurement sequences and achieve

improved performance [110, 3].

Quantum non-demolition measurements also have advantages from their non-destructive na-

ture. Cavity-aided QND measurements can impart very few photon recoils (< 0.1 photon recoils

per atom), so unlike fluorescence measurements that necessarily produce many photon recoil events,

the atomic sample is not significantly heated [31]. This could allow for a fast cycle time since if a

measurement is fast enough, there could be minimal atom loss from the optical trap due to heating

and atoms could potentially be re-cooled before being probed again. Our measurements are also

fast, between 20 to 100 µs, so do not add significant delays that could preclude their usefulness in

a real sensor.

6.1.1 Standard Quantum Limit

Coherent spin states (CSS) are classically correlated states commonly used in precision mea-

surements using atoms. A CSS is composed of N atoms whose atomic Bloch vectors are oriented

in the same direction on average. For a CSS on the equator of the Bloch sphere oriented along the

x-axis, the CSS would be described by the product wavefunction |CSS〉 =
⊗N

i=1
1√
2
(|↑〉+ |↓〉). This

non-entangled or classically correlated state ideally has noise in each spin projection given by the

Heisenberg uncertainty relations for non-commuting observables, e.g., for a Bloch vector ~J ,

∆Jz∆Jy ≥ |Jx| /2. (6.1)

Here, ∆Jk =
√〈

J2
k

〉
− 〈Jk〉2 for k ∈ x, y, z is the standard deviation of the measurement out-

come [67, 135]. For the CSS oriented along the x-axis of the Bloch sphere mentioned above, the

mean polar angle of the Bloch vector θ = 0 and mean azimuthal phase φ = 0. In the limit of

large N , the noise ∆θ ≈ ∆Jz/|〈Ĵ〉| and ∆φ ≈ ∆Jy/|〈Ĵ〉|. The noise distribution is isotropic in θ

and φ so that ∆θSQL = ∆φSQL = 1/
√
N , a scaling termed the Standard Quantum Limit (SQL).

The quantum noise is enhanced when the noise ∆Jz is small while the signal |〈Ĵ〉| remains large.
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Equivalently, the fundamental uncertainty relationship for the angular variables is

∆θ∆φ ≥ 1

N
. (6.2)

These angular quantities θ and φ corresponding to the spin projections ∆Jz and ∆Jy perpendicular

to the average Bloch vector 〈Ĵ〉 oriented along x̂ are the two relevant quadratures for the following

discussion of spin squeezing.

6.1.2 Spin Squeezed States

Spin squeezed states can have angular resolution below the SQL, at the expense of increased

noise in an orthogonal quadrature. In a similar system to the one discussed in this chapter, we have

prepared states enhanced by an order of magnitude with (∆θSQL/∆θ)
2 ≥ 10 [16]. For this to be

possible, the noise in ∆Jz is reduced while the signal |〈Ĵ〉| still persists. To satisfy the uncertainty

relation of Eqn. 6.2, the noise in ∆Jy is increased due to both fundamental quantum back-action

and back-action from the method used to probe the atoms (discussed later in Section 6.2).

In the absence of any extra probe-added noise, the he fundamental limit to the quantum-

enhanced reduced uncertainty in ∆θ is the Heisenberg limit, which scales as ∆θHL = 1/N . The fully

symmetric Dicke state on the equator has this lowest possible level of uncertainty at the expense

of complete uncertainty in φ, represented as a narrow ring on the Bloch sphere equator [4]. The

scaling of 1/N essentially means that there is “rounding error” on the order of the spin of a single

atom. For the number of atoms in our experiment, N ≈ 106, the Heisenberg limit corresponds

to a 60 dB decrease in phase variance (∆θSQL/∆θ)
2 over the SQL. For N = 106 87Rb atoms in

our cavity with finesse F = 2700, upwards of 30 dB of squeezing is theoretically possible assuming

perfect detection efficiency of the light applied to the atoms [33].

6.1.3 Probing to Generate Spin Squeezed States

Our measurements reduce the noise in the atomic pseudospin projection Jz. As discussed

in Chapter 1, we measure the collective spin operator Ĵz = (N̂↑ − N̂↓)/2 by performing successive
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measurements of the cavity resonance frequency. Here, the number operators are the projections

N̂↑ =
∑

i |↑〉i 〈↑|i and N̂↓ =
∑

i |↓〉i 〈↓|i. A typical experimental sequence to generate squeezing

involves optical pumping into |↓〉, performing a π/2-pulse, measuring the dressed cavity shift with

result labeled ωcp to infer the number of atoms in |↑〉, performing a π-pulse to swap the populations

in |↑〉 and |↓〉, then measuring the number of atoms that were originally in |↓〉 by converting a

second measurement of the cavity frequency ωcf to N↓. The difference of these measurements

of N↑ and N↓ constitute a measurement of Jz, labeled Jzp. This creates an entangled state that

has reduced ∆Jz and still maintains coherence. Once this entangled state is generated, we perform

another measurement of Jz, with measurement outcome labeled Jzf . The quantum noise cancels

in the difference of two successive measurements (Jzf − Jzp), so the noise ∆(Jzf − Jzp) is limited

by detection noise (e.g., photon shot noise or other technical backgrounds) and back-action due to

probing the atoms with a large number of photons in a measurement window.

This measurement sequence and the resulting states of the collective Bloch vector are illus-

trated in Figure 6.1. The quantities Jzp = (N↑ −N↓p)/2 and Jzf = (N↑ −N↓f )/2 are constructed

using the cavity frequency shift measurements ω↑c, ωcp, and ωcf to infer atom numbers N↑, N↓p,

and N↓f . In taking the difference (Jzf −Jzp), the noise in N↑ is common mode and we only see the

noise ∆(N↓p −N↓f ). The quantum projection noise is common mode to the two measurements so

only technical noise remains, setting the level of squeezing when signal loss is taken into account.

The collective Bloch vector goes from a CSS on the equator of the Bloch sphere to a spin squeezed

state offset from the equator due to the quantum projection noise in the initial measurement Jzp.

For the purposes of this chapter, I label the result of two successive cavity frequency measure-

ments ωcp and ωcf and the RMS noise in the difference ∆ωd = ∆(ωcf−ωcp). The fluctuation due to

projection noise in a single measurement ωcp or ωcf is ∆ωPN , which is about 100 kHz for the range

of atom number and cavity detuning presented here. The challenge for spin squeezing via QND

measurements is to make the noise ∆ωd low compared to ∆ωPN . The ratio R = (∆ωPN/∆ωd)
2 is

the spin noise reduction.
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Figure 6.1: Spin squeezing measurement sequence and Bloch vectors representing the resulting
states. Time goes from left to right. First, a CSS is prepared with optical pumping and a π/2
pulse. Then, the number of atoms N↑ in |↑〉 is measured via the cavity shift ω↑c. Next, a π-pulse
is performed to swap the populations in |↑〉 and |↓〉 and N↓p is measured. This generates a spin
squeezed state. To verify the squeezing, N↓f is measured soon after. The quantum projection noise
∆JPN cancels in the difference Jzf − Jzp.
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6.2 Sources of Back-action

Probe-induced back-action in our QND scheme can cause signal loss or induce noise in Jz

and ultimately limit the amount of spin squeezing we can generate. Here I discuss the sources of

back-action in a QND measurement arising from fundamental and technical sources. The back-

action can take the form of decreasing the signal |〈Ĵ〉| or causing extra noise in ∆Jz. I discuss the

fundamental back-action in the atomic spin projection and explain other sources of back-action

(loss of signal and added noise) that are present in our QND measurement scheme.

6.2.1 Back-action: Loss of Signal

Free space scattering can cause loss of signal via single-atom collapse. When an atom emits

into free space rather than the cavity, in principle it is possible to determine which atom emitted

the photon. The information gained by the universe collapses the atom that scattered the photon

into a definite spin state (|↑〉 in the case of a Rayleigh transition and |↓〉 in the case of a Raman spin-

flip). This is equivalent to a loss of coherence or a shortening of the mean length of the collective

Bloch vector. Because the phase resolution depends on the degree of coherence, ∆θ = ∆Jz/|〈Ĵ〉|,

a loss of coherence directly translates to a reduction in phase sensitivity. We mitigate this effect

in our system by increasing the coupling to the cavity with high optical depth or increasing NC,

where C = 4g2/(κΓ) is the single-atom cooperativity. This results in a decrease in the number of

photons scattered (per atom) at a fixed number of probe photons.

Another significant contribution to the contrast loss is uncanceled inhomogeneous AC Stark

shifts from the atomic-probe light. Because of inhomogeneous coupling gi to the cavity for the ith

atom, during the first probe window to determine ω↑p there is a significant amount of dephasing [41,

110]. However, the π-pulse in a real squeezing sequence between measurements ω↑p and ωcp can

spin-echo away the dephasing, yet not perfectly. This is because of fluctuations in the number

of in-coupled photons in the two windows due to the atomic-probe/dressed cavity detuning being

off-resonance. The result is a quadratic decrease in the contrast versus probe photon number since
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for small angular errors δφj in the azimuthal phase of individual atoms’ Bloch vectors (assuming

the average phase is aligned to φ = 0), ~J =
∑N

j=0 g
2
j cos2(δφj) ≈

∑N
j=0 g

2
j (1− δφ2

j/2).

The final contribution to signal loss is from the anti-squeezing, which can lead to an effective

shortening of the Bloch vector if ∆Jy is comparable to |〈Ĵ〉|. For large atom numbers, this effect

is small since the contribution is only second order in ∆Jy. For example, with N = 106 atoms, the

azimuthal phase uncertainty ∆φSQL = 1 mrad so that with 20 dB of squeezing in ∆θ, the RMS

size of the anti-squeezed quadrature would be ∆φAS = 10 mrad.

6.2.2 Back-action: Added Noise

There are several forms of noise that should become relevant as the probe photon number

is increased and photon shot noise is averaged down. Noise in the cavity frequency measurement

from atomic motion changing the coupling to the cavity, spin flip noise due to the optical cycling

transition not being perfect, and opto-mechanical effects from spin-dependent motion are the major

known sources of noise.

6.2.2.1 Noise from Atomic Motion

Radial atomic motion is an important contributor to the noise ∆ωd. This is the current

limitation to our spin noise reduction R at 17 dB and accounts for the apparently flat noise floor

at high Md. During the probing, the atoms are moving in the transverse radial direction with

trap frequency ωrad = 2π × 800 Hz. Also, the probe intensity is not uniform, with a 70 µm waist

compared to the 15 µm RMS extent of the atom cloud in the optical lattice. The period of the

transverse mode is much longer than the measurement time Tm, meaning the atoms can change

their coupling to the probe mode g2
i between successive measurements to create noise in the cavity

frequency measurement.

This is a very small effect compared to ∆ωPN , but is a limitation here because our technical

noise floor is a factor of 100 in variance below (∆ωPN )2. Assuming the atoms are in a thermal

state, the motional added noise in ∆ωd scales with atom number like quantum projection noise.
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Figure 6.9 shows the oscillatory behavior of this noise term. The two measurements ωcp and ωcf ,

each 40 µs long, are separated by a dark evolution time Tevol. The noise oscillates because at half

period of the radial motion, the atoms have returned to their original positions.

If we were able to make the atoms colder, we could get closer to the technical noise floor and

improve the squeezing beyond 17 dB. The noise in the cavity frequency measurement (∆ωc)
motion ∝

Tatoms/
√
Ttrap, where Tatoms is the temperature of the atoms just before the first probing step

and Ttrap is the optical lattice depth (expressed as a temperature) just before the start of probing.

Our system operates far from the fundamental recoil limit temperature of 400 nK, so there is room

for improvement (assuming that we can overcome the limitations that the optical lattice puts on

our ability to cool the atoms).

6.2.2.2 Raman Spin-Flip Noise

Raman spin-flips during the probing process can cause extra noise in the measurement of Jz.

The spin-flip process is random and creates diffusion of Jz during probing. As atoms transition

from |↑〉 to |↓〉, there is resulting randomness in the population difference N↑ − N↓. This process

is mitigated by the use of an optical cycling transition, where the probability of an atom in |↑〉 to

undergo a spin flip (per photon) can be p < 10−2 in our system [16, 33].

6.2.2.3 Opto-Mechanical Motion

Finally, another possible source of noise is opto-mechanical motion of the atoms creating a

noisy time-varying cavity frequency. This effect arises from the blue-detuned atomic probe light

causing forces on the atoms by perturbing the confining potential, since the 780 nm probe light

is incommensurate with the 823 nm trapping potential. The forces are strongest for atoms that

have half the maximum coupling to the cavity because of the sin2(kz) profile of the AC Stark

shift created by the probe. As the atoms are pushed away from the probe intensity maxima, their

effective gi also decreases. Atomic motion then continues in a periodic manner due to the harmonic

trap potential. While we do see opto-mechanics in the current iteration of the experiment, the
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noise it contributes is smaller than the radial atomic motion.

6.3 Measuring Atomic Populations with a Cavity

Now I discuss how to convert from atom number measurements to cavity frequency mea-

surements, and associated noise. Atoms coupled homogeneously to an optical cavity create dressed

cavity modes with resonance frequencies ω± [146]

ω± =
δc ±

√
δ2
c + Ω2

↑

2
. (6.3)

Here, N↑ atoms in |↑〉 with collective coupling rate Ω↑ = 2g
√
N↑ and bare cavity detuning from

atomic resonance δc = ωc − ωa, and g is the coupling frequency at an anti-node of the probe. The

classical description of this effect is the small single-particle phase shift imposed on the light by

the atoms (due to having finite polarizability) being amplified by many round-trip passes. By very

precisely measuring the dressed mode shift ω+ with known detuning δc and cavity-atom coupling

rate g, we can in principle invert this relationship to infer the atom number. The dressed mode

frequencies ω± from Equation 6.3 and bare cavity frequency ωc are plotted in Figure 6.2 versus

bare cavity detuning δc.

In our system, the atoms are inhomogeneously coupled to the cavity mode. To account for

the effect of inhomogeneities, I use an effective coupling rate geff =
√

3/4g. The effective atom

number Neff = (2/3)N0, where N0 is the total number of atoms trapped in the lattice including the

atoms not coupled to the cavity mode. These factors account for two effects in our standing-wave

cavity: (1) the observed average cavity shift and (2) its fluctuation about the average [110, 32].

In other words, these factors consistently express the notion that atoms confined in the optical

lattice do not contribute equally to the dressed cavity mode shift or quantum projection noise.

This parametrization conveniently allows the same N to be used for calculating the noise and the

mode shift in the presence of inhomogeneous coupling gi for individual atoms. So, in Eqn. 6.3 and

onward, g is understood to be geff so that Ω↑ → 2geff

√
Neff . Likewise, N is really Neff where it

appears outside of Ω↑.
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Figure 6.2: Dressed mode frequencies ω+ (blue) and ω− (red) and bare cavity frequency ωc (black
dashed line) versus bare cavity detuning δc. All the units are normalized in terms of the vacuum
Rabi splitting Ω. Vertical axis offset is chosen so that ωc = δc. Our experiment operates in the
cross-over regime at δc ∼ Ω↑.
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To form the spin-1/2 system, we use the hyperfine ground states of 87Rb defined

by |↑〉 ≡
∣∣52S1/2, F = 2,mF = 2

〉
and |↓〉 ≡

∣∣52S1/2, F = 1,mF = 1
〉
. The finesse F = 2700 optical

cavity is set within 1 GHz of resonance of the |↑〉 to |e〉 ≡
∣∣52P3/2, F

′ = 3,mf = 3
〉

optical cycling

transition at 780 nm. A magnetic field of 1 G in the z-direction breaks the degeneracy between

magnetic sublevels and sets a quantization axis for the system.

The projection noise level or cavity frequency shift noise is set by the RMS atom number

fluctuation of the CSS, ∆N↑ =
√
N/2. By linearizing the cavity shift at average atom number

〈N̂↑〉 = N/2, we can approximate the projection noise [33]

∆ωPN =
g

2
√

2

Ω↑√
Ω2
↑ + δ2

c

. (6.4)

Notably, the projection noise variance (∆ωPN )2 scales as a Lorentzian, so for detunings δc ≤ Ω↑

the noise level changes weakly with detuning δc. We can define the spin noise reduction parameter

R = (∆(ωcf − ωcp)2/(∆ωPN )2.

Rb atoms

Index of Refraction

87

a b

780 nm

6.8 GHz

loss

Figure 6.3: Schematic of the energy levels and cavity frequency and the effect of the atoms on the
intracavity light. (a) A CSS with half the population in |↑〉 and half in |↓〉 (up to the projection noise
level) forms the spin-1/2 system. The hyperfine splitting between the energy levels is approximately
6.834 GHz in 87Rb. An optical cavity with bare resonance ωc is shifted in the presence of atoms
to dressed frequency ω′c from the phase shift of the atoms. (b) The atoms confined in the optical
lattice create a phase shift of the light due to their collective index of refraction that in general is
a function of the number of atoms in |↑〉, n(N↑).

As the atom and cavity modes mix, the damping rate of excitations changes due to the

exchange between atomic and photonic excitations. This can be expressed as a modified linewidth
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of the dressed cavity mode κ→ κ′± for the ω± modes given by the weighted average

κ′± =
κ+

(
Ω↑

2ω±

)2
Γ

1 +
(

Ω↑
2ω±

)2 . (6.5)

This broadening affects the details of the cavity frequency measurement by changing the frequency-

to-phase conversion factor as a function of cavity detuning and atom number, as discussed below.

6.4 Measuring Cavity Frequency Noise: Experimental Details

This section describes the measurement of cavity frequency that provides a collective measure-

ment of spin populations. First, I outline how a measurement of the phase shift of light interacting

with the dressed cavity mode can act as a low-noise measurement of the cavity frequency and

therefore the atomic populations. Next, I discuss the details of the measurement, which allow for

quantum projection noise a factor of 23 in variance below (∆θSQL)2 [42].

6.4.1 Converting Phase Shifts to Frequency Measurements

Following the description of cavity-aided non-demolition measurements given in Refs. [33, 31],

in this section I describe how our measurement of light phase in heterodyne gives us information

about atomic populations. I try to provide some physical intuition and touch on some challenges

we faced when setting up the measurement. The primary difference between the new cavity and

the cavity used for prior experiments is the asymmetry between mirror transmission coefficients,

while the length and radius of curvature of the mirrors is about the same as before.

A convenient description of the electric field of the laser that has interacted with the cavity

is the phasor picture with quadrature amplitudes I(t) (in-phase) and Q(t) (out-of-phase) viewed

in the frame of the laser frequency. The generalized response of the reflection quadratures as a

function of laser detuning from the dressed cavity is

Ir = 1−
√
κ1

κ2

A
1 + δ∗2

(6.6)

Qr =

√
κ1

κ2

Aδ∗2

1 + δ∗2
, (6.7)
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where δ∗ = δp/(κ
′/2), κ′ is the dressed cavity linewidth, δp is the atomic probe laser detuning from

dressed cavity resonance, and the field amplitude parameter

A =
2
√
κ1κ2

κ+ Γ
(

Ω↑
2ω

)2 . (6.8)

Here, κ1 = T1 × FSR = 2π × 2.75 MHz is the loss rate through the open mirror on the bottom

of the cavity and κ2 = T2 × FSR = 2π × 160 kHz is the loss rate through the top closed mirror.

The total bare cavity linewidth is κ = κ1 + κ2 + κL, where κL = 2π × 290 kHz is the measured

excess loss rate. These expressions include the effect of the atoms on impedance matching, i.e., the

atoms cause light loss due to free space scattering. With just the bare cavity and no atoms, the

expressions simplify to κ′ → κ and A → 2
√
κ1κ2
κ .

Practically, we extract the reflected quadratures I and Q in heterodyne detection, as first

described in Chapter 3. The reflected phasors here are thus converted into time-varying voltage

signals that can be analyzed in software.

To convert from the phase response of ψ = tan−1(Qr/Ir) into a cavity frequency fc, we

measure the slope of the phase response dψ/dω. On each experimental trial, we introduce a small

frequency offset ±ωslp to the probe laser in both the red and blue directions to measure two phases

ψ+ and ψ− (corresponding to blue and red frequency offsets, respectively). We then take the

difference between the two phases divided by the optical frequency offset to estimate dψ/dω ≈

(ψ+ − ψ−)/(2ωslp). This allows us to construct frequency measurements ω′c − ωp = ψ/(dψ/dω) in

the near-resonant regime δ∗ � κ′/2 where ωp is the frequency of the atomic-probe laser.

The quadrature response of the reflected light phasor versus detuning is shown in Figure 6.4.

The range of values that the light phasor can attain is very different from the closed cavity (κ1 =

κ, κ2 = 0) cases with no loss (κL = 0). In the closed cavity case, the phasor (Ir, Qr) traces out a

circle with radius 1 centered on the origin. The interpretation is that on resonance, all the light

that gets into the cavity also ends up leaking back out the same mirror but with a π phase shift

compared to the promptly reflected far off-resonance case.

Intra-cavity loss at rate κL reduces the size of the phasor since not all of the light coupled
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in finds its way out of the cavity. Imperfect mode-matching of the probe light to the cavity mode

produces an extra in-phase offset in the I quadrature with normalized magnitude I0. This DC offset

just comes from having extra background light that did not couple into the cavity overlapping with

the LO when it hits the photodetector—a mode mismatch between cavity mode and detection

mode.

Imperfections due to loss or errors in mode-matching also modify the reflected phasor. Intra-

cavity loss at rate κL reduces the size of the phasor since not all of the light coupled in finds its

way out of the cavity. Also, imperfect coupling of the probe to the cavity mode will affect the

center-point of the phasor, assuming the heterodyne LO is mode-matched perfectly to the probe.

The extra light in the probe beam that did not interact with the cavity (because of imperfect

mode-matching) adds a DC offset in the I quadrature of normalized magnitude I0.

These modifications can provide experimental challenges by making the effective signal size on

resonance (where we want to take data) close to the noise. If the magnitude of the phasor fluctuates

through the zero, it means that the phase fluctuates from [0, 2π), essentially an ambiguity in where

the phasor is pointing. Since we use the phase ψ to establish the change in cavity frequency ωc, it

makes it very difficult to say what the frequency shift is.

For the results presented here, we avoided this ambiguity due to a DC offset in the I quadra-

ture in two ways. First, we drove the cavity mode from the closed end with a strong beam to get

a pure cavity mode coming out of hte detection mirror. We then coupled the cavity mode into a

detection fiber, in the hope that a minimal amount of light in the probe beam that was not coupled

to the cavity would make it to the detector. Also, we chose detunings δc where the loss due to free

space scattering from atoms did not put the phasor near the origin on resonance.

6.4.2 Noise in the Cavity Frequency Measurement

The background noise level for measuring the cavity frequency, without the presence of atoms,

is a function of the amount of power used to probe the cavity. Higher intensity corresponds to

a higher rate of detected photons, with the phase variance of the light measurement scaling as
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Figure 6.4: Diagram of the atomic probe phasor with measured cavity parameters and in the
presence of N↑ = 200 × 103 atoms. (a) (Green) Circle in phase space traced out by the atomic
probe cavity phasor as the detuning δ is changed from −∞ to +∞. The circle is offset from the
origin owing to losses from the cavity κL, atoms, and the fact that it is not completely closed
(κ2 6= 0). The black arrow represents the phasor of length A/2 with phase ψr measured from the
center of the circle that represents the normalized size of the light phasor. The gray blob represents
photon shot noise. The phase ψ = tan−1(Qr/Ir) is the measured quantity. (b) Power reflection
dip versus detuning of the probe δp. Note that unlike a perfect symmetric cavity, the reflection dip
does not go to zero at δp = 0. (c) Phase of reflected light ψ = tan−1(Qr/Ir), measured with respect
to the Ir axis, versus probe detuning δp. Note that the peak-to-peak size is about 2π and not π.
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1/(2Md) where Md is the number of detected photons in a single measurement time window Tm.

In terms of the number of photons Mi incident on the cavity, Md = qdMi where qd is the detection

quantum efficiency. Here, I have assumed that the cavity frequency measurement is a differential

measurement between two windows with time spacing τ and symmetric length Tm. At high photon

numbers, there is a technical noise floor set by the residual relative frequency noise between the

cavity and the atomic probe. Part of this comes from finite gain in the atomic probe-to-cavity probe

lock, but most comes from the technical noise floor of the cavity probe-to-science cavity PDH lock.

Successive measurements allow for cancellation of low-frequency noise when the difference

is constructed. Low-frequency contributions are largely canceled by the differential measurement,

with the primary contribution coming from frequencies close to 1/Tm or tens of kHz. In the

presence of a spectral density of frequency fluctuations of the cavity Sν , the resulting variance

in a bare cavity measurement is (∆fd)
2 =

∫∞
0 Sν(f)T (f)df . The transfer function is T (f) =

4 sin2(πf(Tm + τ)) sin2(πfTm)/(πfTm)2. The measured spectrum Sν(f) due to technical noise in

the heterodyne probing is shown in Figure 6.5(a), showing a reduction of a factor of 50 in the

relative laser-cavity frequency noise that one would expect for a free-running ECDL laser with 200

kHz linewidth. Figure 6.5(b) shows the integrated (∆fd) for the technical noise versus measurement

time Tm with no gaps between the measurements, τ = 0. The minimum at about 6 kHz corresponds

to a noise variance of 24 dB below (∆wPN )2.

An experimental sequence for the cavity frequency noise in the presence of atoms is the

following: the atoms are cooled and loaded into the lattice, then optically pumped into |↓〉. A π/2

pulse creates a CSS on the equator of the Bloch sphere. A “pre-centering” step with the atomic

probe turned on puts the atomic probe on the dressed cavity resonance at which time the tuning

is turned off. To mitigate the effects of optical pumping during the pre-centering step, the atoms

are then re-optically pumped into |↓〉 and another π/2-pulse is applied. Due to a small amount

of atom loss, a constant frequency shift from the initial lock point is applied to the atomic probe

(fluctuations in the atom loss are fairly small compared to κ). The atomic probe beam is once

again turned on at a fixed power with total average number of incident photons Mi for a period
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a

b

Figure 6.5: Power spectral density of frequency fluctuations Sν(f) for the reflection signal of the
atomic probe laser from the bare cavity and integrated noise as a function of measurement time Tm.
(a) The measured power spectral density of instantaneous frequency fluctuations, Sν(f), between
the atomic-probe and an empty cavity. The frequency stabilization scheme reduces the noise by a
factor of 50 compared to the expected Sν for a free-running laser with 200 kHz FWHM Lorentzian
linewidth. For this data, the atomic- and cavity-probe power was increased until the measured Sν
did not change, meaning technical noise was the dominant contribution over photon shot noise.
The rise below 2 kHz corresponds to acoustic path length noise between the LO and the atomic-
probe. (b) The integrated noise in the difference of two successive frequency measurements with
the transfer function T (f) using the spectrum for Sν in (a) as a function of the measurement time
Tm. The separation between windows was τ = 0 for this calculation.
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Figure 6.6: Timing diagram for an experimental sequence measuring the dressed cavity frequency.
Time increases to the right. The black line represents the state of the atomic-probe laser (high is
on, low is off). Green represents microwaves and red optical pumping. The atoms are initialized in
a CSS and we perform a pre-centering step to bring ωpa to ωca. The atoms are re-initialized and
we probe the cavity frequency. Lastly, a slope measurement is performed by detuning the laser.

of 20 to 100 µs, performing the first measurement of ωc. The probe beam is briefly turned off for

the amount of time a π-pulse would take, and is turned on again and left on for 200 µs. At the

end of the sequence, the atomic probe laser is shifted in frequency by ±100 kHz once again to get

a measurement of the local slope of the phase curve.

To perform a low-noise measurement of the cavity frequency, we use high-bandwidth servos

to stabilize the frequency of an atomic probe laser with frequency ωpa to another cavity probe

laser with frequency ωpc that is stabilized to another longitudinal mode of the cavity many free

spectral ranges away. The science cavity is meanwhile stabilized to an optical lattice laser at 823

nm. Even with an ECDL linewidth of 200 kHz, these ≈ 1 MHz bandwidth locks ensure that the

cavity frequency noise not related to atomic projection noise is common-mode to the atomic probe

laser and the cavity.

To stabilize the cavity probe laser, we Pound-Drever-Hall lock it to a longitudinal mode

∆n = 15 orders away (in the red direction) from the longitudinal mode close to the |↑〉 to |i〉

transition. We provide PDH sidebands by sending the cavity probe light through a free-space

lithium niobate EOM crystal driven at 9.7 MHz and embedded in a parallel LC resonator that we

drive inductively. The cavity probe signal is reflected from the cavity and detected on a reverse-

biased avalanche photodiode. With a FSR of 8.090 GHz, this creates a frequency difference of

approximately 122 GHz between ωca and ωcp.

Having stabilized the cavity-probe laser, we offset beatnote lock the atomic-probe to the
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cavity-probe. We pick off light from the cavity probe and drive a fiber modulator (EOSPACE PN:

PM-0S5-10-PFAPFA-780-UL) with low-noise 13.6 GHz microwave signal produced by frequency-

doubled tooth of an RF frequency comb [35]. The resulting 9th order PM sideband is within 2 GHz

of the dressed cavity mode frequency ωca.

The atomic probe laser is sent through an AOM at 82.5 MHz and an EOM at 137.5 MHz

before it reaches the cavity. The blue PM sideband is then put on cavity resonance by tuning a

DDS reference that sets the atomic probe-to-cavity probe beatnote lock. This puts a strong carrier

beam 137.5 MHz from the cavity, but due to the finite cavity linewidth κ ≈ 2π× 3 MHz, a fraction

of 10−4 of this carrier light leaks into the cavity off-resonantly. In practice, this does not cause much

contrast loss due to free space scattering or uncancelled AC Stark shifts compared to the probe light

that is directly on resonance with the cavity. The light in the atomic probe sideband that interacts

with the cavity is detected in reflection by overlapping it with a LO beam derived from the atomic

probe laser, at frequency offset 55 MHz. As in prior experiments, we used a custom circuit based

on a reverse-biased S5973 photodiode connected to an AD8015 wideband transimpedance amplifier

to generate a RF tone that is then sent to IQ demodulators so both quadratures of the phasor can

be detected.

In order for both the cavity probe and the atomic probe to be able to reach the “open” mirror

side of the cavity, they must be injected with orthogonal polarizations. To take advantage of the low

back-action associated with the optical cycling transition, the atomic probe must be σ+ polarized

when it reaches the cavity. For polarization-selective separation to not contaminate the atomic

probe and cavity probe signals with extra photon shot noise from each laser, the cavity probe is

injected with σ− polarization at the cavity. This is made possible by injecting the cavity-probe

into the rejected port of an opto-isolator and detecting it off of another rejected port of a different

opto-isolator. The breaking of time-reversal symmetry from the opto-isolator crystals makes this

possible. Figure 6.7 shows the optical layout and frequency schemes for the two lasers.

There is still a small residual effect of the cavity probe on the contrast loss. Because of the

large detuning of the cavity probe from atomic resonance, the dominant deleterious effect is an AC
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Figure 6.7: Diagram of the physical layout and laser frequencies for the atomic and cavity probe
lasers. (a) Simplified optical setup for simultaneously probing two cavity modes to suppress relative
laser-cavity frequency noise. The cavity-probe (red) is inserted and picked off through the rejected
ports of opto-isolators that are set to transmit the atomic probe (blue). A quarter-wave plate near
the cavity sets the polarization of the atomic probe to σ+ and that of the cavity probe to σ−.
(b) Frequencies of the cavity modes and the probe lasers. The cavity probe is PDH locked to a
different longitudinal TEM00 mode, which experiences a relatively small dispersive shift from the
atoms. The atomic probe laser is phase-locked to the cavity probe for common mode rejection
of cavity frequency noise not due to atoms, and is resonant with a cavity mode tuned close to
resonance with an optical cycling transition. The dressed cavity mode is therefore sensitive to N↑.
A LO beam with frequency offset 55 MHz from the atomic probe sideband that is resonant with
the dressed cavity mode allows for heterodyne detection of the reflected light.
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Stark shift (which scales as the inverse of detuning rather than off-resonant scattering scaling as the

inverse of detuning squared). The APD is necessary for workable signal-to-noise on the PDH lock

since the power in the cavity probe must be turned as low as possible to prevent extra background

contrast loss. For total cavity-probe power less than 100 nW, the background contrast loss is a few

percent.

Shot-to-shot variation in N of just a few percent causes fluctuations in fc that are larger

than κ′. Our probing scheme relies on the probe light being well within κ/2 of cavity resonance

for a maximally sensitive phase measurement. To solve this cavity frequency fluctuation problem,

we add in a “pre-centering” step at the beginning of an experimental sequence, when a CSS has

been prepared along x̂. We turn on the atomic-probe laser and square the heterodyne detector

voltage V (t) to generate a RF signal at the difference frequency of the atomic probe sideband

(near resonance) and the atomic probe carrier (137.5 MHz away). We demodulate at the sum

frequency of 137.5 MHz and low-pass filter to create a dispersive error signal, analogous to a

Pound-Drever-Hall error signal. This error signal drives a loop filter whose output tunes “Digital

VCO” made up of an ADC converter (Analog Devices AD9246) whose outputs program a real-

time parallel programmable DDS chip (Analog Devices AD9910). This setup has the advantage of

digital control, i.e., the DDS can hold its frequency depending on the value of a digital TTL input.

The DDS provides the frequency LO reference for the atomic-probe to cavity-probe beatnote lock,

closing the feedback loop.

The result is that the atomic probe can be driven quickly (within < 100 µs) to the dressed

cavity resonance while causing little atom loss. Once the atomic probe reaches resonance, the probe

is turned off and the atoms are re-prepared into a CSS. A constant frequency offset is applied

to the atomic-probe laser by shifting the digital VCO output with a mixing stage with another

DDS channel. This sets the laser close to the dressed cavity resonance after the re-preparation

step, accounting for a small amount of atom loss between the pre-centering step and the first

measurement window. Fluctuations in the final cavity frequency relative to the atomic-probe are

much less than κ, which was the desired result of the pre-centering. A full measurement sequence
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for spin noise is shown in Figure 6.6.

A full list of cavity parameters is in Tables 3.1 and 3.2 of Chapter 3. The linewidth is

κ = 2π × 3.05(5) MHz and the peak Jaynes-Cummings coupling constant for the
∣∣52S1/2, F = 2

〉
to
∣∣52P3/2, F

′ = 3
〉

cycling transition and at the anti-node of the probe is g0 = 2π × 526 kHz

or geff = 2π × 456 kHz. A typical atom number in the lattice is Neff = 2N↑ = 4 × 105. A typical

detuning is δc = +400 MHz from the |↑〉 to |e〉 transition. A simplified depiction of our cavity-

aided probing scheme is illustrated in Figure 6.3. The number of photons in the atomic-probe laser

incident on the cavity in a single measurement of ωc is Mi. What we measure is the average number

of photons detected, or Md which is related to Mi through Md = qMi.

6.5 Spin Noise Reduction

The degree to which the noise in the cavity frequency measurement is reduced is the spin

noise reduction. Figure 6.8 shows a spin noise reduction measurement sequence as well as data

corresponding to individual runs of the experiment and simulated noise from QPN for comparison.

The top shows a measurement sequence. Once a CSS on the equator of the Bloch sphere is

prepared, the cavity frequency is probed two successive times with Tm = 100 µs with results

labeled ωcp and ωcf . The difference (ωcp − ωcf ) between the two measurements is displayed in

units of the projection noise ∆ωPN . On each trial, the process is deterministic but the process

needs to be repeated many times for the statistical nature of the reduced noise to be apparent. For

comparison, the red points are a result of a simulation of noise in a CSS for the same measurement

conditions. Simulated data was used for the purposes of this illustration since excess classical noise

in the initial π/2 pulse causes classical excess noise in the observed spin noise fluctuations when

there is no differential measurement. The blue points show a partial cancellation of the quantum

noise at the level of 50 times below un-squeezed atoms in units of the quantum noise variance by

a factor of 50 relative to the quantum projection noise level.
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pre-  
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Figure 6.8: Measurement sequence for and demonstration of spin noise reduction. (a) Measurement
sequence for probing the atoms. A coherent spin state is prepared by optically pumping all of the
atoms into |↓〉. Each atom is rotated into a superposition of 1√

2
(|↑〉+ eiφ |↓〉), corresponding to the

total spin or Bloch vector oriented along the equator. Two consecutive measurements of the spin
projection Jz are then performed (100 µs each) with the pre- and final-measurement outcomes for
a single trial labeled Jzp and Jzf . The entire experimental sequence is then repeated many times.
(b) Measurement outcomes versus trial number. Classical rotation noise in the π/2 pulse causes
classical excess noise in the observed spin noise fluctuations, so here we display simulated Gaussian
noise with rms distribution equal to the predicted projection noise level fluctuations ∆ωPN (left
axis, red open circles). The measured differential quantity ωcf −ωcp (blue, right axis) shows partial
cancellation of both the quantum projection noise and the excess classical noise. The differential
quantity’s noise variance is 50 times below the projection noise level (or 17(1) dB). (c) (left) The red
data can be visualized as arising from a fundamental blurriness of the orientation of the collective
Bloch vector. (right) The measurement process projects the collective atomic state into a squeezed
state with reduced uncertainty in the polar angle, at the expense of increase uncertainty in the
azimuthal angle.
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Figure 6.9: Apparent spin noise from radial motion of atoms versus time. The vertical axis is the
spin noise variance in kHz2, and the horizontal axis is the sum of the time between the measurement
windows Tevol and the measurement window length Tm. The blue line is a fit to a sinusoidal model
including linear increase and constant offset terms. The linear term (black dashed line) is shown for
reference. The points at low time correspond to about 17 dB of spin noise reduction. The frequency
of the oscillations agrees well with the expected radial frequency of motion of about 500 Hz for the
trap depth used in the experiment.
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6.6 Measured Loss of Signal

Preserving the signal is crucial for having useful coherence left over that can be used in a

precision measurement. Without a “clock hand” of a collective Bloch vector remaining, the atomic

ensemble is incoherent and cannot be used for interferometry. There is a trade-off for probing with

a greater number of photons: a reduction in signal, as discussed in Section 6.2.1.

The fundamental source of signal or contrast loss in our system is free space scattering. The

ratio NC of forward scattering into the cavity to free space scattering can be made on the order

of 103 in our system, but there is still finite coupling to free space modes. The scattering rate into

free space in the far-detuned limit δc � Ω↑ scales as 1/δ2
c . At the same time, the cavity shift signal

decreases as δc meaning that to resolve the same frequency shift of the cavity, more photons need

to be sent through the cavity ∝ δ2
c to maintain the signal-to-noise in variance. However, there is

always a fixed technical background underlying the photon shot noise level, so there is a net loss

in signal-to-noise with ever-increasing detuning. So, detuning farther away from atomic resonance

does not enhance the non-destructive quality of the measurement.

We measure the atomic coherence by performing contrast measurements using a spin-echo

Ramsey experiment. The measurement sequence starts with a π/2 pulse followed by a measurement

window of length Tm and detected photon number Md, then a π-pulse, a second measurement

window (with same Tm and Md), and final π/2 pulse with variable LO phase. This maps out

a sinusoidal fringe of cavity frequency shift versus the phase of the final π/2-pulse. This pulse

sequence is illustrated at the top of Figure 6.10. The fringe amplitude is normalized to the no-

photon case (Md = 0), which represents the initial contrast Ci.

Figure 6.10 shows two example contrast curves for N = 250× 103 atoms and δc = 500 MHz.

The atoms are probed twice with a single-window detected photon number Md = 0 (black data

set) and Md = 17.7× 103 (red data set) in a measurement time Tm = 40 µs. The extra scatter in

the red data corresponds to a fluctuating average AC Stark shift between trials due to fluctuations

of intra-cavity photon number. These fluctuations can arise from pulse errors in both the π/2 and
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π-pulses causing the dressed cavity frequency center to be off resonance with the atomic-probe.

Pulse errors result in the dressed cavity frequency shifts differing more than projection noise and

changing the amount of in-coupled light. There is incomplete cancellation of the AC Stark shift

between windows, due to the π-pulse leading to an average uncancelled phase shift of the Bloch

vector.

We then analyze the reduction in size of the contrast fringe versus probe strength, charac-

terized by Md. A model exp(−aMd − bM2
d ) is fit to the data to account for free-space scattering

(the exponential term, coefficient a) and uncanceled inhomogeneous AC Stark shifts (the Gaussian

term, coefficient b). Figure 6.11(a) shows an example of a fit to the contrast versus number of

detected photons in one measurement window Md, with the bare cavity detuning δc = 2000 MHz.

In this data, corresponding to the far-right point in Fig. 6.11(b), the quadratic term is dominant.

Given a certain number of detected photons Md, the ratio of scattered photons to detected

photons Rs is

Rs =
1

qdηs

Γ

κ

Ω2
↑

4ω2
c

. (6.9)

The contrast Cf after probing if there are no other sources of signal loss is given by Cf = Cie−
2Rs
N
Md ,

where Ci is the initial contrast before the measurement sequence. The term ms = 2Rs
N Md repre-

sents the number of free space scattered photons per atom after two measurement windows each

with detected photon number Md. Figure 6.11 shows the no-free-parameter prediction for Rs and

our measured exponential loss factor versus detuning, given our measured quantum efficiency for

detection qd = 41%.

The fit parameters a are plotted versus δc in Figure 6.11(b), along with a prediction line for

the coefficient 2Rs/N , where the factor of 2 accounts for the two measurement windows since we

define Md to be the number of photons in a single measurement window. The prediction line was

generated by using the measured quantum efficiencies in the detection path to estimate the number

of photons that actually interacted with the atoms. Although the fractional error on the values

of a are somewhat large, we see reasonable agreement with the prediction curve, giving us some
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Figure 6.10: Measurement sequence and Ramsey spin-echo contrast fringe for δc = 500 MHz and
N = 250× 103 atoms. (Top) Measurement sequence showing microwave pulses in green and cavity
probing in black. Following an initial π/2 pulse, one measurement is performed and then a spin-
echo π pulse is applied before a second measurement sequence. Finally, a π/2 readout pulse is
performed. (bottom) Plot of contrast versus phase of the final π/2. Black points correspond to
Md = 0, red points to Md = 17.7 × 103 with measurement windows Tm = 40 µs separated by the
π-pulse time of 15 µs. The black line is a sinusoidal fit to the black points, with frequency held
fixed. Scatter in the red data at high photon number comes from fluctuations in the average AC
Stark shift between the two measurement windows due to fluctuations in the in-coupled power.
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confidence that with proper tuning of the system we ought to be able to realize the fundamental

quantum limit for contrast for low photon numbers Md < 2× 104 and low detunings δc < 1 GHz,

where the quadratic contribution is not large. The large error bars likely come from coupling to

the quadratic parameter b (not shown here) in the presence of a finite amount of data points for

each contrast versus Md curve.
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Figure 6.11: Contrast versus detected photon number Md and contrast loss from scattering versus
bare cavity detuning δc. (a) Contrast versus single-window detected photon number Md at detuning
δc = 2000 MHz. The contrast data (black points) is normalized to the amplitude of the fringe in the
dark measurement with Md = 0. The red line is a fit to a model including a product of exponential
and Gaussian terms. For the data shown here, the Gaussian term from uncanceled AC Stark shifts
is dominant. (b) Contrast loss parameter from free space scattering a versus bare cavity detuning
from the optically excited state, δc. Points correspond to the value of a from fits to contrast curves
like in (a). The black line shows a prediction based on measured quantum efficiency qd = 41%,
atom number N (varies between points), and cavity parameters.

We see that we can realize for most detunings a reduction in contrast at low probe photon

number that agrees fairly well with the prediction. The free space scattering limit represents the

minimum contrast loss for our system given the fixed cavity parameters. By increasing the quantum

efficiency of detection, we can improve the contrast by sending through fewer photons while still

realizing a fixed frequency measurement noise ∆fd.
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6.7 Prospects for Spin Squeezing

Combining our measurements of spin noise reduction R and contrast loss, we can understand

the limits to our current technique. The full spin squeezing sequence of Figure 6.1 was not used

for the lowest spin-noise data. Instead of measuring N↑ before a π-pulse and the two successive

measurements of N↓, the sequence of Figure 6.8 was used. This is suitable for characterizing the

noise, but does not represent squeezing. We expect, however, that technical challenges associated

with pulse tuning will not significantly impact our ability to generate spin squeezed states when

we take data in the squeezing configuration of Figure 6.1 including all three cavity frequency

measurements and an additional π-pulse.

Figure 6.12 shows spin noise reduction R and contrast loss C2
f , as well as the degree of

squeezing accounting for the reduction in noise versus the reduction in atomic coherence. The

black points are the spin noise reduction for a dataset with δc = 500 MHz and Neff = 400 × 103,

with 100 µs measurement windows. Notably, there appears to be a flat noise floor in the spin

noise reduction at about 17 dB below the SQL. We believe this represents decorrelation between

the two measurements due to radial motion of the atoms in the optical trap between the two

measurement windows, as shown in Figure 6.9. The black line represents a fit to the PSN scaling

plus the technical background noise offset. As Md increases, the noise decreases until it hits the

floor associated with radial motion. Here I note that we do not yet see either quantum (spin-flip)

or classical back-action, which would correspond to an increase in R at high Md.

The contrast C2
f is also shown. Metrologically relevant contrast loss is really C2

f/Ci [135],

but here we have taken Ci = 1 to estimate the worst-case scenario. An exponential multiplied

by gaussian fit and corresponding 68% confidence level is represented by the solid blue curve and

shaded region. At short times, exponential contrast loss dominates but at long times the Gaussian

decay from uncanceled AC Stark shifts dominates.

Multiplying the two curves together gives the expected amount of squeezing, or red line,

with a minimum of -13.7(1.0) dB or a factor of 23(5) enhancement in quantum phase estimation.
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Figure 6.12: Spin noise reduction, contrast loss, and expected squeezing versus Md in one 100 µs
window. Vertical axis is on a dB scale, and horizontal axis is on a log scale. Bare cavity detuning
δc = 500 MHz, and Neff = 400× 103. The black points are the measured spin noise reduction with
statistical error bars. The black solid line is a fit to a photon shot noise scaling with a constant
noise background added in quadrature. The gray fill represents the uncertainty (68% CL) in the
fit. Blue points are relative contrast data for similar parameters, but not taken at the same time as
the spin noise reduction. The solid blue line is a fit with a model including both exponential and
Gaussian terms to include the effects of both free space scattering and residual dephasing that is
not spin-echoed away. The red curve represents the expected squeezing through taking the product
of the black and blue curves. Its minimum occurs at -13.7(1.0) dB or an enhancement in variance
of a factor of 23(5).



129

I note that this would correspond to a directly observed amount of squeezing without subtraction

of technical background noise—an important point, since this is the true amount of squeezing that

would be applicable in a precision measurement. For reference, the previous result at 10 dB [16]

was already the highest absolute degree of phase enhancement reported in the literature without

subtraction of technical noise floor. The most squeezing reported to date is 12.3 dB of quadrature

squeezing in light [91].

6.8 Outlook

This work represents a third generation of spin squeezing experiments by our group. Our

preliminary results are very encouraging, since straightforward technical improvements ought to

only improve the spin noise reduction at low Md.

Chiefly, the effective quantum efficiency of the detection system has room for improvement.

This work was done using heterodyne detection, which has in principle a factor of 2 more photon

shot noise than a homodyne measurement, in which the detection LO beam is frequency degenerate

with the atomic probe. By using path length stabilization combined with a low-noise balanced

homodyne scheme, the spin noise in the PSN-limited regime ought to be improved by 3 dB. Also,

straightforward increases in real path efficiency through elimination of non-critical fiber-coupling

steps should give at least a factor of 13% in increased quantum efficiency. In the near term, then,

a phase enhancement of 17 dB is quite feasible, and steps are currently underway to achieve that

extra factor of 2 (i.e., 3 dB).



Chapter 7

Summary and Conclusion

7.1 Summary of Results

This thesis emphasized the role of coherence-preserving interactions between atoms for creat-

ing sensors and exploring synchronization, in both steady state superradiance in a Raman system

and cavity-aided spin squeezing.

In Chapter 4 I presented a proof-of-principle vector magnetometer based on steady state

superradiance in a Raman system. The best sensitivity was 190 pT/
√

Hz at 1 kHz in a broadband,

active sensing mode during continuous superradiant emission. The fundamental sensitivity of the

magnetometer was not achieved here but was theoretically estimated to be set by phase diffusion

noise at low frequencies and photon shot noise at high frequencies. A sensing scheme based on dark

evolution, analogous to a Ramsey sequence, was also experimentally demonstrated and shown to

exceed the broadband sensitivity (limited by photon shot noise) at 36 kHz. The expected scaling of

the signal due to coherent π-pulse manipulations in a Carr-Purcell-Meiboom-Gill-like sequence [92]

was also shown to agree with the measured value. This sensor represents the potential of con-

trolled steady state superradiance for creating versatile sensors in which the superradiant process

continuously re-establishes coherence while allowing non-destructive probing of the coherence.

The behavior of coupled superradiant lasers operating within the same cavity mode was

explored theoretically (building on the concepts introduced in Chapter 2) and experimentally in

Chapter 5. A discussion of the underlying synchronization mechanism was discussed and the role

of dissipation in creating synchronization, and may enable observation of quantum behavior in
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synchronization processes. The steady state response of the two lasers with natural frequencies ωa

and ωb to changing detuning δ = ωa − ωb was investigated both theoretically (using an extension

of the concepts introduced in Chapter 2) and experimentally. The coupled superradiant lasers

underwent a transition from unsynchronized behavior at high δ to synchronized below a critical

detuning |δ| < W , where both ensembles a and b emitted light at a common frequency despite

having different natural frequencies ωa and ωb. In the time domain, the capacity of the superradiant

laser to heal phase errors was experimentally shown to agree with both a simple theoretical model

and a full numerical simulation. This work points toward multiple superradiant ensembles as a

platform for exploring phase synchronization models in open quantum systems. Also, using multiple

superradiant ensembles to reduce the impact of systematic errors (e.g., operating two lasers with

opposite frequency sensitivity to magnetic fields) in future technologically relevant implementations

for narrow-linewidth phase references.

Lastly, in Chapter 6 I described a next generation of spin squeezing experiments made possible

through technical improvements to the experimental apparatus, culminating in 13.7 dB of possible

enhancement in phase resolution. Previously, due to low quantum efficiency and excess technical

noise, the squeezing was limited to 10.2(6) dB [16]. Both the effects of reduced measurement noise

and signal loss were discussed, including the dominant effects of back-action in signal loss and excess

noise from atomic motion that currently limit the expected squeezing. We expect that this is far

from the most squeezing we can achieve in the current generation of the experiment. Straightforward

extensions of this technique promise even more gain in spectroscopic enhancement, showing cavity-

aided QND measurements as a very promising route for generating a practically useful amount of

spin squeezing.

During the preparation of this thesis, more improvements to the experimental apparatus were

implemented by Kevin Cox and Graham Greve. Most importantly, the substitution of a balanced

homodyne detection scheme for the heterodyne scheme presented here increased the effective quan-

tum efficiency of detection by about 3 dB, translating to a direct 3 dB in spin noise reduction.

Preliminary explorations indicate that 17 dB of spin squeezing is feasible. To our knowledge, 17 dB
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of spin squeezing would represent a higher degree of spectroscopic enhancement via entanglement

than has been reported in any quantum system.

7.2 Future Directions

Given the current state of the apparatus, there are some promising routes for exploring

spin squeezing. The optical cavity and detection system is highly optimized for measuring cavity

frequency shifts with low technical noise, so generating a higher level of spin squeezing and showing

the feasibility of atom interferometry aided by spin squeezing are natural progressions

As discussed in Chapter 6, cavity frequency noise arising from radial atomic motion in the

optical trap is the dominant noise contribution at high probe photon number. If we were able to

make the atoms colder, we could get closer to the technical noise floor and improve the squeezing

beyond 17 dB. The noise in the cavity frequency measurement (∆ωc)
2
motion ∝ T 2

atoms, where Tatoms

is the temperature of the atoms just before the first probing step. We have as yet been unable to

identify the mechanism limiting our final temperature at high lattice depths and investigations into

better cooling are ongoing.

Another direction is preparing homogeneously coupled ensembles appropriate for use in atom

interferometers. Since the standing wave of our optical lattice (823 nm) is incommensurate with

the probe mode standing wave (780 nm), our system has inhomogeneous probe coupling with

g2(z) = g2
0 cos2(kz) where the wavenumber k = 2π/λ for a wavelength of light λ and z is the

location along the cavity axis. We could generate an effective homogeneous coupling by allowing

the atoms to move in the axial direction, so they average their coupling within a measurement

window by moving several spatial periods λ/2. At a temperature of 40 µK (where our experiment

commonly operates), the 87Rb atoms would move λ in about 1 µs. As discussed in Chapter 6,

typical measurement times Tm = 40 µs can generate > 10 dB, ensuring good averaging of the

axial coupling for individual atoms. Once the homogeneously squeezed ensemble has been created,

it could be released into a free-space atom interferometry experiment [12] or could be used in a

cavity-aided atom interferometer [55].
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We can allow the atoms to move in the axial direction by creating an effective optical dipole

trap composed of out-of-phase optical lattices. One scheme for generating an intra-cavity optical

dipole trap in the axial direction is to drive adjacent longitudinal cavity modes with sidebands of

the lattice laser. This works in the following way: If the nth cavity mode has an electric field profile

∝ cos(k1z) cos(ω1t) near the center of the cavity, the (n + 1) cavity mode has a sin(k2z) cos(ω2t)

field. Here, {k1, k2} and {ω1, ω2} are the slightly different wavenumbers and angular frequencies

separated by the free spectral range of the cavity. Near the center of the cavity, the intensity

profile has sin2(k2z) cos2(ω2t) and cos2(k1z) cos2(ω1t) terms and cross-terms cos(∆kz) cos(∆ωt)

and cos((2k1 + ∆k)z) cos((2ω1 + ∆ω)t), where ∆ω = ω2 − ω1 and ∆k = k2 − k1. The frequency

of oscillation of the cross-terms are 2ω1 + ∆ω � ∆ω = 2π × FSR, where FSR = 8 GHz. The

time-average gives DC contributions cos2(k1z) and sin2(k2z), while the cross-terms should average

to zero on the timescales of atomic motion. This ought to result in a smooth potential with no

axial confinement, allowing z-translation symmetry in time-averaged coupling.

In the long run, our “quantum playground” could explore other physics like entangled states

generated by optical pumping [46] or exploring quantum phase transitions in the Dicke model [49,

10]. Still further on the horizon are experiments in a ring cavity (with intrinsic homogeneous

coupling) that could support multiple well-separated atomic ensembles for generating entanglement

between distant and separately-addressable atoms.
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squeezing of a collective atomic spin. Phys. Rev. Lett., 104:073602, Feb 2010.

[79] Ian D. Leroux, Monika H. Schleier-Smith, and Vladan Vuletić. Orientation-dependent entan-
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Appendix A

Superradiant Laser Liouvillian

In Chapter 2, I introduced the master equation for superradiance in a 3-level system. The to-

tal Liouvillian L[ρ̂] was mentioned but not written out fully. Here I show the Liouvillians comprising

L[ρ̂] = Lc[ρ̂] + Leg[ρ̂] + L3e[ρ̂] + LR[ρ̂] + Lg3[ρ̂] for the dissipation processes.

Lc[ρ̂] = −κ
2
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