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Elsworth, Geneviève Wheeler (Ph.D., Geological Sciences)

The Impact of Internal Climate Variability on Marine Phytoplankton in a Warming Climate

Thesis directed by Prof. Nicole Lovenduski

Abstract of the Dissertation

Marine phytoplankton (algae) play a key role in the Earth system by influencing ocean

biogeochemical cycling, the flux of carbon dioxide from the atmosphere to the ocean, and the pro-

ductivity of fisheries. The growth of these microscopic, unicellular primary producers is strongly

affected by the oceanic physical and biogeochemical environment. As such, the variable and chang-

ing climate system has a large influence on phytoplankton abundance, its spatial distribution, and

its temporal variability. Internal variability naturally arises from interactions between components

of the coupled climate system, for example, between the ocean and the atmosphere. Whereas,

anthropogenic changes to the climate system are considered to be externally forced, as they arise

from greenhouse gas emissions. Phytoplankton experience both internal climate variability and

externally forced anthropogenic changes, and it can be difficult to discern the influence of internal

and external processes in the marine biosphere. Recent research suggests that it may be possible

to separate internal and external influences on the coupled Earth system using large ensembles of

Earth system models (ESMs). However, ESMs may not skillfully predict observed spatial patterns

and temporal dynamics in real-world marine phytoplankton. In this dissertation, I use observa-

tional records and ESM ensembles to investigate the role of internal climate variability in marine

phytoplankton in a warming climate. I first use a novel statistical emulation technique to place

the remotely sensed record of surface ocean chlorophyll concentrations into the large ensemble

framework. Much like a large initial condition ensemble generated with an ESM, the resulting

observationally constrained synthetic ensemble represents multiple possible spatiotemporal evolu-

tions of observed ocean chlorophyll, each with a different phasing of internal climate variability. I

use the observationally constrained synthetic ensemble to contextualize the interpretation of long-
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term trends in the presence of internal variability and identify a wider range of possible trends

in chlorophyll due to the sampling of internal variability in subpolar regions than in subtropical

regions. Next, I evaluate the statistical methodology of the observationally constrained synthetic

ensemble in the context of a large ensemble of an ESM. When applying the statistical approach

to the Community Earth System Model Large Ensemble (CESM1-LE) over the historical period,

simulated variability in surface ocean chlorophyll concentration is able to be reproduced using the

statistical method. Finally, I quantify the influence of anthropogenic climate change on variability

in phytoplankton biomass using the CESM1-LE. I find a significant decrease in the interannual

variance of phytoplankton biomass under a business-as-usual (RCP8.5) emission scenario, with

heterogeneous regional trends. Statistical analysis of regional trends reveal zooplankton grazing

(top-down control) as an important contributor to changes in phytoplankton variance. The results

of this dissertation highlight the influence of internal climate variability on marine phytoplankton

in a warming climate.
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Chapter 1

Introduction

1.1 Importance of Phytoplankton in the Earth System

Marine phytoplankton are photosynthetic algae that inhabit the surface of the global ocean.

These organisms are an important component of the global carbon cycle, strongly influencing air-

sea CO2 flux and marine carbon export. Although phytoplankton constitute a relatively small

reservoir of carbon, their ability to photosynthetically fix carbon from the atmosphere enhances

the ocean’s role as a carbon sink [Friedlingstein et al., 2019]. The efficiency and strength of carbon

sequestration by the marine biological pump strongly influences atmospheric CO2 concentrations,

with important feedbacks on the climate system [McKinley et al., 2017, Bindoff et al., 2019]. In

addition to influencing the distribution of carbon in the ocean, phytoplankton also serve as the base

of the marine food web, supporting diverse marine ecosystems by providing sustenance for higher

trophic levels [Falkowski, 2012].

Phytoplankton growth is controlled by temperature and the availability of light and nutrients

[Sigman and Hain, 2012]. Phytoplankton harvest light to convert inorganic carbon to organic

carbon through the process of photosynthesis. The rate of photosynthesis increases linearly with

increasing light levels, however, at high light levels, photosynthesis declines due to photoinhibition

(Figure 1.1a). The global distribution of phytoplankton is tightly coupled to light availability

which decreases from the equator to the poles. In nutrient-replete subpolar and polar regions,

phytoplankton growth is restricted in the winter when light is limited and enhanced in the spring,

summer, and autumn when light is more abundant, creating a strong seasonal cycle in chlorophyll.
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In contrast, subtropical oceanic regions with ample light tend to be instead limited by the supply of

nutrients due to a permanent thermocline, showing only moderate seasonality [Lalli and Parsons,

1997, Giovannoni and Vergin, 2012].

Phytoplankton require a variety of nutrients to support photosynthesis. The rate of nutrient

uptake by phytoplankton increases with nutrient concentration to a half-saturation constant (Kn),

at which growth rate is half its maximum value (Figure 1.1b). Due to a relatively larger surface

area-to-volume ratio, smaller phytoplankton more efficiently assimilate nutrients than larger phy-

toplankton. At higher nutrient concentrations, the rate of phytoplankton nutrient uptake declines

to a maximum growth rate (Figure 1.1b). Nutrients such as nitrate, phosphate, and silicate are

considered macronutrients, which are required by phytoplankton in large amounts to support cellu-

lar growth and metabolism [Sarmiento and Gruber, 2006]. In contrast, micronutrients such as iron,

zinc, and cobalt are required in small amounts for the activity of enzymes and other intracellular

functions [Sarmiento and Gruber, 2006]. In the global ocean, phytoplankton can be limited by

either macronutrients or micronutrients. In polar regions, particularly the Southern Ocean, phyto-

plankton are limited by micronutrients, such as iron, and there is an abundance of macronutrients

[Moore et al., 2002]. In contrast, in regions of the subtropical gyres, phytoplankton are limited by

low concentrations of macronutrients such as nitrate and phosphate.

Temperature influences the rate at which photosynthetic processes occur, with phytoplankton

growth rate increasing exponentially with increasing temperature (Figure 1.1c). Surface temper-

atures in the global ocean vary with latitude, with cooler temperatures towards the poles and

warmer temperatures towards the equator. Daily variability in surface temperatures is relatively

small while annual variability varies regionally between 2 and 20 ◦C [Lalli and Parsons, 1997].

Temperature also varies with depth in the water column, with higher temperatures in the mixed

layer (0 to 200 m) and lower temperatures with depth.
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Figure 1.1: Schematic of phytoplankton growth as a function of light, nutrient concentration, and
temperature. (a) Growth rate as a function of irradiance. Growth rate declines at high irradiance
due to photoinhibition. (b) Nutrient uptake rate as a function of nutrient concentration. The half
saturation constant, Kn, represents the growth rate at half the maximum value. (c) Growth rate
as a function of temperature.

1.1.1 Observing Marine Phytoplankton

The spatial distribution of phytoplankton across the global ocean can be quantified by the re-

mote measurement of ocean color, specifically the reflectance of the photosynthetic pigment chloro-

phyll a. Particles in the ocean, such as the photosynthetic pigment chlorophyll a, can absorb and

scatter sunlight, altering the ocean’s color. This color can be remotely observed by satellite imaging

radiometers which measure the wavelength and intensity of any reflected electromagnetic radiation

[Neville and Gower, 1977]. Chlorophyll reflects identifiable wavelengths and intensities, which can

be used to infer certain phytoplankton properties and activities [Meister et al., 2012, Siegel et al.,

2013]. Fluctuations in the relative intensity of the blue and green bands are driven by both changes

in phytoplankton abundance in the surface water column and physiological responses to light and

nutrient levels, allowing changes in the ocean biosphere to be observed on a variety of spatial and

temporal scales [Behrenfeld et al., 2016]. Although the reflected signal may provide incomplete

spatial coverage due to obscuring clouds and sun glint, 8-day and longer composites constructed

from daily datasets which incorporate an atmospheric correction provide a near-complete image

[Feng and Hu, 2016].
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Figure 1.2: Comparison between observed and modeled chlorophyll concentrations. (a) Annual
mean phytoplankton chlorophyll concentrations measured remotely by MODIS (2002 to 2020) (b)
Annual mean phytoplankton chlorophyll concentration simulated by CESM1-LE over the historical
period (1920 to 2005).

Algorithms which convert ocean color to phytoplankton chlorophyll a concentration (mg

m−3) have evolved from simple empirical regressions [Gordon and Morel, 1983] to complex radia-

tive transfer equation inversions [Maritorena et al., 2002]. While each approach can be applied

to a specific range of conditions, historically an algorithm based on the spectral ratio of remote

sensing reflectance has been used to produce global chlorophyll a products from measurements

made remotely by satellites. A commonly used algorithm to generate chlorophyll a products is the

ocean color index (OCI), which measures the difference between reflectance measured in the green

wavelengths and a linear reference between the blue and red wavelengths [Hu et al., 2012]. The

OCI is particularly effective in the measurement of chlorophyll concentration below 0.25 mg m−3

which constitutes approximately three quarters of the global ocean [Hu et al., 2012]. These areas of

relatively low chlorophyll concentration are concentrated in regions of the oligotrophic open ocean.

Satellite-derived chlorophyll measurements can also be used in combination with other ocean vari-

ables (e.g., mixed layer depth, sea surface temperature) to estimate depth integrated net primary

production (NPP) and biomass carbon of ocean phytoplankton [Saba et al., 2011, Bellacicco et al.,

2020].

Over the past several decades, geospatial datasets of chlorophyll concentration have been
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generated by multiple satellite instruments with varying spatial and temporal coverage. These in-

clude the Coastal Zone Color Scanner (CZCS), the Ocean Color and Temperature Sensor (OCTS),

the Sea-viewing Wide Field-of-view Sensor (SeaWiFS), the Moderate Resolution Imaging Spec-

troradiometer (MODIS), the Medium Resolution Imaging Spectrometer (MERIS), and the Visible

Infrared Imaging Radiometer Suite (VIIRS). Chlorophyll concentration varies spatially and tem-

porally by orders of magnitude across the global ocean (Figure 1.2a). Variations in chlorophyll

concentration may be attributed to changes in the physical environment, as well as phytoplank-

ton physiology [Behrenfeld et al., 2016]. Annual-mean chlorophyll concentration is elevated in the

subpolar, polar, equatorial, and eastern boundary upwelling regions; high concentrations in these

regions result from the upwelling of deep, nutrient-rich waters to the surface ocean. In contrast,

regions such as the subtropical gyres display relatively lower chlorophyll concentrations due to

restrictions in nutrient supply (Figure 1.2a).

Marine phytoplankton can also be observed in situ using a variety of techniques which range in

sampling scale. Phytoplankton can be sampled over large areas using continuous plankton recorders

(CPRs). CPRs are devices which are towed behind ships which filter phytoplankton from the surface

water column into discrete distance intervals. At smaller scales, phytoplankton can be observed at

discrete locations using Conductivity, Temperature, Density (CTD) instruments which are lowered

through the water column. These instruments simultaneously measure chlorophyll concentrations

in the water column using fluorescence sensors. Water samples can also be sampled at discrete

depth intervals in the water column using the CTD and analyzed using High Performance Liquid

Chromatography (HPLC) to determine the concentration and type of photosynthetic pigments

present. Qualitative assessments of phytoplankton concentration in the surface water column can be

made using secchi disks which are lowered through the water column to determine water turbidity.

1.1.2 Modeling Marine Phytoplankton

Earth system models (ESMs) are coupled atmosphere-ocean-land general circulation mod-

els with explicit and interactive representation of terrestrial and marine carbon cycles and other
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Figure 1.3: Biogeochemical ecosystem models range from simple to complex. (a) Simple NPZ
models capture the relationships between nutrient, phytoplankton, and zooplankton reservoirs. (b)
Complex NPZD models consider relationships between nutrients, phytoplankton, zooplankton, and
a sinking detrital pool.

biogeochemical processes relevant to the climate system. The parameterization of biogeochemi-

cal/ecosystem models in ESMs can range from simple to complex. The most basic representation

of a marine ecosystem can be modeled using a NPZ (Nutrient, Phytoplankton, Zooplankton) model-

ing framework (Figure 1.3a). NPZ models simulate relationships between nutrient, phytoplankton,

and zooplankton over time. Simple NPZ models provide representation of a single phytoplankton

functional type (PFT), a single zooplankton functional type (ZFT), and a single nutrient. In

contrast, more complex NPZD (Nutrient, Phytoplankton, Zooplankton, Detritus) models consider

relationships between nutrients, phytoplankton, zooplankton, and a sinking detrital pool (Figure

1.3b). Complex NPZD models often parameterize multiple nutrient co-limitation (e.g., ammo-

nium, nitrate, phosphate, iron), multiple PFTs (e.g., diatoms, diazotrophs, small phytoplankton),

and adaptive ZFTs. Additionally, the simulation of a sinking detrital pool allows for more realistic

representation of nutrient recycling and export.

ESMs can be used as a predictive tool to identify long-term changes in phytoplankton abun-

dance and productivity under different emission scenarios (Figure 1.2b). In simulations under
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twenty-first century global warming conditions, phytoplankton abundance is predicted to decrease

globally [Bopp et al., 2013, Steinacher et al., 2010, Henson et al., 2013]. Most models included in

the Coupled Model Intercomparison Project Phase 5 (CMIP5) show consistent declines in phyto-

plankton abundance by 2100, though the magnitude of the decrease varies substantially between

models [Bopp et al., 2013, Cabre et al., 2014] and across regions [Marinov et al., 2013, Laufkötter

et al., 2015]. In addition to changes in phytoplankton abundance, phytoplankton community struc-

ture is also projected to shift, as nutrient reductions are predicted to favor the success of small

phytoplankton relative to large phytoplankton [Marinov et al., 2010, Moore et al., 2013].

1.2 Climate Variability and Change

Understanding the impact of climate change on marine phytoplankton is challenged by our

ability to disentangle fluctuations due to internal climate variability from those imposed by exter-

nally forced anthropogenic trends. Internal variability refers to variability in the climate system

which occurs in the absence of external forcing, and includes processes related to the coupled ocean-

atmosphere system (e.g., El Niño Southern Oscillation (ENSO), Pacific Decadal Oscillation (PDO))

[Santer et al., 2011, Deser et al., 2012, Meehl et al., 2013]. External forcing, in contrast, refers to

the signal imposed by processes external to the climate system, such as solar variability, volcanic

eruptions, and rising greenhouse gas concentrations from fossil fuel combustion [Deser et al., 2012,

2010, Schneider and Deser, 2018]. While not all external forcing is anthropogenic, the long-term rise

in global temperature that leads to stratification and possible declines in chlorophyll concentration

is anthropogenic, rather than natural [Rhein et al., 2013].

Phytoplankton can be influenced by internal climate variability through the propagation

of physical climate variability to biologically relevant environmental variables. For example, a

positive phasing of ENSO may display decreased phytoplankton biomass in the Eastern Equatorial

Pacific due to relatively warmer sea surface temperatures which increase stratification and decrease

upwelling nutrient flux [Chavez et al., 1998]. In contrast, a negative phasing of ENSO may display

increased phytoplankton biomass in the Eastern Equatorial Pacific due to relatively cooler sea
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Figure 1.4: Simulated changes in net primary productivity (NPP) over the MODIS observational
period (2002 to 2020) in the CESM1-LE with the ensemble mean shown in the black curve and the
individual ensemble members shown in the gray curves (adapted from Krumhardt et al. [2017]).
The ensemble mean represents the externally forced trend and the spread across the ensemble
members approximates the range of internal variability.

surface temperatures which decrease stratification and increase upwelling nutrient flux [Chavez

et al., 1998].

Phytoplankton may also be influenced by external forcing, particularly external anthro-

pogenic forcing in the form of a warming climate. In response to a warming climate, the abundance

and distribution of phytoplankton in the global ocean will likely change. Increasing global tem-

peratures will warm the ocean surface more than the ocean interior, driving an increase in ocean

stratification [Levitus et al., 2009]. An increase in stratification will reduce the upward flux of

nutrients to the surface ocean and restrict phytoplankton growth, but may also alleviate light lim-

itation [Bopp et al., 2001, Lozier et al., 2011]. In contrast, colder, nutrient-rich regions may see an

increase in phytoplankton growth as increasing temperatures stimulate phytoplankton metabolism

[Bopp et al., 2013, Krumhardt et al., 2017]. However, assessing disruption in the ocean biosphere

in response to external forcing is challenged by the relatively short length of the observational

record, restricting our ability to disentangle fluctuations due to internal climate variability from
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those imposed by externally forced anthropogenic trends.

A relatively new approach to distinguishing externally forced anthropogenic signals from in-

ternal climate variability in modeled ocean phytoplankton is to analyze output from an ensemble

of simulations conducted with a single Earth system model. In this context, each ensemble mem-

ber has a different phasing of internal variability, but shares identical external forcing with other

ensemble members [Deser et al., 2012]. An ensemble of simulations which each differ slightly in

their initial conditions generates large internal variability in ocean biogeochemical variables (gray

curves; Figure 1.4), while the ensemble mean demonstrates externally forced trends (black curve;

Figure 1.4) [Rodgers et al., 2015, Long et al., 2016, McKinley et al., 2016, Lovenduski et al., 2016,

Frölicher et al., 2016, Brady et al., 2019, Schlunegger et al., 2019].

1.3 Synopsis of the Dissertation

This dissertation examines the impact of internal climate variability on marine phytoplank-

ton in a warming climate using both observational datasets and large ensembles of ESMs. Chapter

2 applies a novel statistical approach to construct an observationally constrained synthetic ensem-

ble. The synthetic ensemble generated using the MODIS remotely sensed record of surface ocean

chlorophyll concentration emulates observed internal variability in marine phytoplankton, providing

context for the interpretation of externally derived trends over the observational record. Chapter 3

evaluates the statistical methodology of the observationally constrained synthetic ensemble in the

context of a large ensemble of an ESM. When applying the statistical approach to the CESM1-

LE over the historical period, the statistical method reproduces the simulated internal variability

in surface ocean chlorophyll concentration. This chapter explores the interpretation of long-term

trends in the presence of internal variability and identifies a wider range of possible trends in chloro-

phyll due to the sampling of internal variability in subpolar regions than in subtropical regions.

Chapter 4 explores changes in phytoplankton internal variance with anthropogenic warming simu-

lated by a large ensemble of an ESM. This chapter reveals global decline in phytoplankton internal

variance in the CESM1-LE, which is reflected in similar declines in phytoplankton variance across
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a suite of CMIP5 models. Statistical analysis reveals zooplankton grazing (top-down control) as an

important contributor to declines in phytoplankton variance across several biogeochemically and

ecologially important regions of the global ocean. Chapter 5 summarizes the major conclusions of

this dissertation, places them into context in the marine biogeochemical observational and modeling

research communities, and provides an outlook on future directions within the field.



Chapter 2

Finding the fingerprint of anthropogenic climate change in phytoplankton

abundance

2.1 Abstract

We review how phytoplankton abundance may be responding to the increase in stratification

associated with anthropogenic climate change, providing context on the utility of remote sensing

datasets and Earth system model output to understand these perturbations. Assessing disruption

in the ocean biosphere using remote sensing datasets is challenged by the relatively short length of

the observational record, restricting our ability to disentangle fluctuations due to internal climate

variability from those imposed by externally forced anthropogenic trends. Ensembles of Earth

system models can be used to quantify past and future drivers, but may not skillfully predict

observed spatial patterns and temporal dynamics in marine phytoplankton. To better understand

the role of internal climate variability in the observational record, we construct a synthetic ensemble

of global chlorophyll concentration over the MODIS satellite mission using statistical emulation

techniques. We emphasize the use of a synthetic ensemble to illuminate the role of internal climate

variability in the evolution of the ocean biosphere over time.

2.2 Introduction

The ocean biosphere is an important component of the climate system, absorbing 30% of

anthropogenic carbon emissions and storing 45× more carbon than the atmosphere [Friedlingstein

et al., 2019]. Although phytoplankton constitute a small reservoir of carbon (3GtC), their capacity
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to photosynthetically fix carbon from the atmosphere enhances the ocean’s role as a carbon sink

[Falkowski, 2012]. The efficiency and strength of carbon sequestration by the biological pump in

the oceanic reservoir strongly influences atmospheric carbon dioxide concentrations, with important

feedbacks on the climate system [McKinley et al., 2017, Bindoff et al., 2019].

As the climate changes, the abundance and distribution of phytoplankton in the global ocean

will likely also change. Increasing global temperatures will warm the ocean surface more than

the ocean interior, driving an increase in ocean stratification [Levitus et al., 2009]. An increase

in stratification will reduce the upward flux of nutrients to the surface ocean and restrict phyto-

plankton growth, but may also alleviate light limitation [Bopp et al., 2001, Lozier et al., 2011]. In

contrast, colder, nutrient-rich regions may see an increase in phytoplankton growth as increasing

temperatures stimulate phytoplankton metabolism [Bopp et al., 2013, Krumhardt et al., 2017].

Here, we review how phytoplankton abundance may be responding to the increase in strat-

ification associated with anthropogenic climate change, providing context on the utility of remote

sensing datasets and Earth system model (ESM) output to understand these perturbations. An

ESM is a global climate or general circulation model (GCM) with explicit and interactive represen-

tation of terrestrial and marine carbon cycles and other biogeochemically important processes. Each

of these methods has advantages and disadvantages in diagnosing anthropogenic change. Assessing

disruption in the ocean biosphere using remote sensing datasets is challenged by the relatively short

length of the observational record, restricting our ability to disentangle fluctuations due to internal

climate variability from those imposed by externally forced anthropogenic trends [Henson et al.,

2010]. While ensembles of ESMs can be used to quantify past and future changes in phytoplankton

abundance and attribute these changes to internal or external drivers, models may not skillfully

predict the observed phytoplankton chlorophyll field [Krumhardt et al., 2017, Doney et al., 2009].

To overcome these limitations, we construct a synthetic ensemble of global ocean chlorophyll

concentration by applying statistical emulation techniques to the 17-year Moderate Resolution

Imaging Spectroradiometer (MODIS) chlorophyll record. Much like large initial condition ensem-

bles generated with ESMs, our synthetic ensemble represents multiple possible evolutions of ocean
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chlorophyll concentration, each with a different phasing of internal climate variability (e.g., El Niño

Southern Oscillation, Pacific Decadal Oscillation) but with shared external forcing (e.g., slow de-

clines driven by increasing stratification) [Deser et al., 2012, McKinnon et al., 2017, McKinnon and

Deser, 2018]. Our synthetic ensemble can be used for a variety of purposes, including diagnosing

patterns of internal variability in observed chlorophyll, and validating ESM representation of such

variability.

2.2.1 Importance of Phytoplankton to Ocean Biogeochemical Dynamics

The distribution and abundance of phytoplankton in the global ocean is controlled by tem-

perature and the availability of light and nutrients [Sigman and Hain, 2012]. These variables are

modulated by physical, chemical, and biological processes that vary across regional ocean ecosys-

tems. The distribution of phytoplankton at a global scale can be quantified by the remote mea-

surement of ocean color, specifically the reflectance of the photosynthetic pigment chlorophyll a.

Chlorophyll concentration varies spatially and temporally by orders of magnitude across the global

ocean (Figure 2.1a). Variations in chlorophyll concentration may be attributed to changes in the

physical environment, as well as phytoplankton physiology [Behrenfeld et al., 2016]. Annual-mean

chlorophyll concentration is elevated in the subpolar, polar, equatorial, and eastern boundary up-

welling regions; high concentrations in these regions result from the upwelling of deep, nutrient-rich

waters to the surface ocean. In contrast, regions such as the subtropical gyres display relatively

lower chlorophyll concentrations due to restrictions in nutrient supply (Figure 2.1a).

The global distribution of chlorophyll is also tightly coupled to light availability. Mean annual

light availability decreases from the equator to the poles. In nutrient-replete subpolar and polar

regions, phytoplankton growth is restricted in the winter when light is limited and enhanced in

the spring, summer, and autumn when light is more abundant, creating a strong seasonal cycle in

chlorophyll. In contrast, subtropical oceanic regions with ample light tend to be instead limited

by the supply of nutrients due to a permanent thermocline, showing only moderate seasonality

[Lalli and Parsons, 1997, Giovannoni and Vergin, 2012]. Thus, the spatiotemporal distribution of
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chlorophyll in the global ocean varies primarily as a function of both light and nutrient availability.

Further, satellite-derived chlorophyll measurements are frequently used in combination with other

ocean variables (e.g., mixed layer depth, sea surface temperature) to estimate depth integrated

net primary production (NPP) of ocean phytoplankton [Saba et al., 2011]. While various NPP

algorithm solutions differ substantially, these aim to relate ocean color observations of chlorophyll

to oceanic carbon cycling.

Phytoplankton harvest light to convert inorganic carbon to organic carbon through the pro-

cess of photosynthesis. Oxygenic photosynthesis by phytoplankton in the surface ocean (between

0 and 200 m depth) is responsible for the consumption of carbon dioxide and the biochemical pro-

duction of organic matter [Sarmiento and Gruber, 2006]. A high proportion (∼99%) of this organic

matter is respired by heterotrophic organisms in the surface ocean rather than exported to depth

[Emerson and Hedges, 2008]. The sinking of a small fraction of organic carbon through the water

column forms the basis of the biological pump, a biologically driven process which sequesters carbon

from the atmosphere to the ocean interior [McKinley et al., 2017]. The efficiency and strength of

the biological pump strongly influences the global carbon cycle by contributing to the amount of

carbon removed from the surface ocean and transported to depth [Sarmiento and Gruber, 2006].

The consumption of nutrients by phytoplankton influences the concentration and distribution

of chemical species in the global ocean. When phytoplankton photosynthetically fix carbon in the

surface ocean, they require a variety of nutrients. Nitrate, phosphate, and iron are among the

nutrients required by phytoplankton and the assimilation of these nutrients in the surface ocean

alters their vertical and lateral distribution [Sarmiento and Gruber, 2006]. Nutrients such as nitrate,

phosphate, and silicate are considered macronutrients, which are required by phytoplankton in

large amounts to support cellular growth and metabolism. In contrast, micronutrients such as iron,

zinc, and cobalt are required in small amounts for the activity of enzymes and other intracellular

functions [Sunda, 2013]. In the global ocean, phytoplankton can be limited by either macronutrients

or micronutrients. In polar regions, particularly the Southern Ocean, phytoplankton are limited

by micronutrients, such as iron, and there is an abundance of macronutrients [Moore et al., 2002].
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In contrast, in regions of the subtropical gyres, phytoplankton are limited by low concentrations of

macronutrients such as nitrate and phosphate.

In addition to influencing nutrient and carbon distributions in the ocean, phytoplankton also

serve as the base of the marine food web [Falkowski, 2012]. Heterotrophic zooplankton graze on

phytoplankton and act as primary consumers in oceanic ecosystems. Phytoplankton productivity

supports complex food webs and diverse marine ecosystems by providing sustenance for higher

trophic levels. Perturbations to phytoplankton productivity by anthropogenic climate change have

the potential to trigger trophic cascades, dramatic reorganizations of the marine food web [Cheung

et al., 2010, Pörtner et al., 2014]. However, the exact manifestations of these dramatic reorganiza-

tions in the ocean biosphere remain uncertain.
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Figure 2.1: (a) Spatial distribution of chlorophyll concentration in milligrams of carbon per
cubic meter over the MODIS satellite record (2002 to 2019). (b) Standard deviation of detrended
and deseasonalized chlorophyll concentration over the MODIS satellite record (2002 to 2019). (c)
Number of years of continuous ocean color data required to distinguish a climate change driven
trend in chlorophyll concentration from natural climate variability over the MODIS satellite record.
Calculated following the method of Tiao et al. [1990] and Weatherhead et al. [1998]
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2.2.2 Anthropogenic Stratification and Ocean Phytoplankton

Anthropogenic climate change is heating the global ocean [Levitus et al., 2009]. Due to

direct contact with a warming atmosphere, the ocean’s surface is warming more rapidly than

deeper waters, with temperatures in the upper 75 m increasing at a rate of 0.11 °per decade [Rhein

et al., 2013]. As a result, the thermal stratification (the strength of the vertical density gradient) of

the upper ocean (0 to 200 m depth) has increased by approximately 4% since the 1970s, shoaling

the depth of the mixed layer [Rhein et al., 2013].

Enhanced stratification of the upper ocean restricts the transport of nutrients to the euphotic

zone, limiting phytoplankton growth [Bopp et al., 2001]. This trend is corroborated by both remote

sensing datasets and ESM output. Remote sensing datasets suggest low-nutrient regions have

expanded at rates of 0.8 to 4.3% per year between 1998 and 2006, consistent with a reduction

in nutrient availability due to enhanced stratification [Polovina et al., 2008, Irwin and Oliver,

2009]. A variety of ESMs predict a reduction in net primary productivity (NPP) in low- to mid-

latitude regions under twenty-first century global warming simulations [Bopp et al., 2001, 2013,

Krumhardt et al., 2017, Schmittner et al., 2008, Steinacher et al., 2010, Marinov et al., 2013,

Laufkötter et al., 2015, Kwiatkowski et al., 2017]. The primary mechanism explaining this change

is enhanced stratification and the subsequent restriction in vertical nutrient supply.

2.3 Observing Changes in Ocean Phytoplankton

Particles in the ocean, such as the photosynthetic pigment chlorophyll a, can absorb and

scatter sunlight, altering the ocean’s color. This color can be remotely observed by satellite imaging

radiometers which measure the wavelength and intensity of any reflected electromagnetic radiation

[Neville and Gower, 1977]. Chlorophyll reflects identifiable wavelengths and intensities, which can

be used to infer certain phytoplankton properties and activities [Meister et al., 2012, Siegel et al.,

2013]. Fluctuations in the relative intensity of the blue and green bands are driven by both changes

in phytoplankton abundance in the surface water column and physiological responses to light and
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nutrient levels, allowing changes in the ocean biosphere to be observed on a variety of spatial and

temporal scales [Behrenfeld et al., 2016]. Although the reflected signal may provide incomplete

spatial coverage due to obscuring clouds and sun glint, 8-day and longer composites constructed

from daily datasets which incorporate an atmospheric correction provide a near-complete image

[Feng and Hu, 2016].

Algorithms which convert ocean color to phytoplankton chlorophyll a concentration (mg

m−3) have evolved from simple empirical regressions [Gordon and Morel, 1983] to complex radia-

tive transfer equation inversions [Maritorena et al., 2002]. While each approach can be applied

to a specific range of conditions, historically an algorithm based on the spectral ratio of remote

sensing reflectance has been used to produce global chlorophyll a products from measurements

made remotely by satellites. A commonly used algorithm to generate chlorophyll a products is

the ocean color index (OCI), which measures the difference between reflectance measured in the

green wavelengths and a linear reference between the blue and red wavelengths [Hu et al., 2012].

The OCI is particularly effective in the measurement of chlorophyll concentration below 0.25 mg

m−3 which constitutes approximately three quarters of the global ocean [Hu et al., 2012]. These

areas of relatively low chlorophyll concentration are concentrated in regions of the oligotrophic open

ocean. Over the past several decades geospatial datasets of chlorophyll concentration have been

generated by multiple satellite instruments with varying spatial and temporal coverage. These in-

clude the Coastal Zone Color Scanner (CZCS), the Ocean Color and Temperature Sensor (OCTS),

the Sea-viewing Wide Field-of-view Sensor (SeaWiFS), the Moderate Resolution Imaging Spec-

troradiometer (MODIS), the Medium Resolution Imaging Spectrometer (MERIS), and the Visible

Infrared Imaging Radiometer Suite (VIIRS). The MODIS satellite mission provides the longest

continuous record of global ocean chlorophyll concentration, with coverage from 2002 to present.

Figure 1a illustrates the mean of monthly averaged surface ocean chlorophyll concentrations cal-

culated using the OCI algorithm at 1° × 1° resolution over the MODIS satellite mission (2002 to

2019).

Although there is a mechanistic understanding of how anthropogenic change may affect the
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ocean biosphere over time, there is debate about whether these changes are already detectable from

remotely sensed observations [Henson et al., 2010, Beaulieu et al., 2013, Henson, 2014, Henson et al.,

2016, Hammond et al., 2017]. Assessing changes in the ocean biosphere using remote sensing data is

challenged by the relatively short length of the continuous observational record and high temporal

variability [Beaulieu et al., 2013, Henson et al., 2016]. Figure 2.1b displays the standard deviation

of monthly averaged surface ocean chlorophyll concentrations at 1° × 1° resolution from the MODIS

record, illustrating that in addition to the spatial variability in chlorophyll (Figure 2.1a), there is

also substantial temporal variability.

The short length of the observed chlorophyll record restricts our ability to disentangle fluc-

tuations due to internal climate variability from those imposed by externally forced anthropogenic

trends [Beaulieu et al., 2013, Henson et al., 2016]. In this context, internal variability refers to

variability of the climate system which occurs in the absence of external forcing, and includes pro-

cesses related to the coupled ocean-atmosphere system (e.g., El Niño Southern Oscillation (ENSO),

Pacific Decadal Oscillation (PDO)) [Santer et al., 2011, Deser et al., 2012, Meehl et al., 2013]. Ex-

ternal forcing, in contrast, refers to the signal imposed by processes external to the climate system,

such as solar variability, volcanic eruptions, and rising greenhouse gas concentrations from fossil

fuel combustion [Deser et al., 2012, 2010, Schneider and Deser, 2018]. While not all external forcing

is anthropogenic, the long-term rise in global temperature that leads to stratification and possible

declines in chlorophyll concentration is anthropogenic, rather than natural [Rhein et al., 2013].

A small number of studies suggest that the influence of anthropogenic global warming on the

ocean biosphere can be detected over an observational period as short as a decade [Behrenfeld et al.,

2007]. A decline in global chlorophyll concentration by 0.01 Tg year−1 between 1999 and 2006 was

inferred by Behrenfeld et al. [2007] to reflect a response of the ocean biosphere to global climate

change. An inverse relationship between chlorophyll concentration and sea surface temperature in

the tropics and subtropics suggested that enhanced thermal stratification was restricting surface

nutrient supply and limiting phytoplankton growth in these regions. Several recent studies using

remote-sensing datasets have identified changes in satellite-derived chlorophyll or phytoplankton
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productivity in specific oceanic regions, such as the Southern Ocean [Castillo et al., 2019], and the

Pacific and Indian Oceans [Gregg and Rousseaux, 2019].

Studies of phytoplankton biomass or productivity over longer timescales have also attributed

changes in phytoplankton abundance to anthropogenic climate change [Boyce et al., 2010, Osman

et al., 2019]. An integrated dataset of remote sensing observations and in situ chlorophyll mea-

surements compiled since 1899 revealed a decrease in phytoplankton biomass by approximately 1%

per year, attributable to enhanced thermal stratification [Boyce et al., 2010]. However, observa-

tional datasets from the Hawaii Ocean Time Series (HOTS), Bermuda Atlantic Ocean Time Series

(BATS), and the California Cooperative Oceanic Fisheries Investigations (CalCOFI) indicated in-

creased phytoplankton biomass over the last 20 to 50 years [Saba et al., 2010]. These conflicting

findings demonstrate the sensitivity of phytoplankton trends to the methodology and length of

record.

A majority of studies which incorporate a variety of ESMs and remotely sensed datasets of

phytoplankton abundance suggest that a continuous observational record of between 20 and 60

years is required to detect a statistically significant trend in remote sensing datasets of chlorophyll

concentration [Krumhardt et al., 2017, Beaulieu et al., 2013, Henson, 2014, Henson et al., 2016,

Gregg and Rousseaux, 2014]. Long-term changes in the ocean biosphere are detectable if the trend

is appreciably larger than the noise generated by internal climate variability and a sufficient length

of continuous observations is available. However, in the majority of the global ocean the expression

of internal variability obscures identification of possible forced secular trends in the climate record.

The duration of observational time-series required varies regionally in the global ocean as a function

of the regional secular signal to noise ratio [Henson et al., 2010]. The number of years required

to distinguish a trend from variability is calculated using the method of Tiao et al. [1990] and

Weatherhead et al. [1998]. The number of years, n*, required to detect a linear trend with a

probability of 90% is
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n∗ =

[
3.3σN
|ω|

∗
√

1 + φ

1− φ

]2/3
(2.1)

where σN is the standard deviation of the noise (chlorophyll anomalies with linear trend and

seasonal cycle removed), ω is the trend (the global average trend in chlorophyll concentration over

the observational period), and φ is the autocorrelation (the lag-1 autocorrelation of chlorophyll

anomalies over the observational period). Figure 2.1c illustrates the number of years of continuous

remote sensing data required to distinguish a trend in chlorophyll concentration from variability

over the MODIS satellite mission. The length of the time series required to detect a statistically

significant trend varies regionally, with relatively short time series required in regions with low

temporal variability (subtropics) and relatively longer time series required in regions with high

temporal variability (coastal upwelling zones and polar regions).

Using Equation 2.1, with σN and φ estimated from satellite observations at 1° × 1° reso-

lution, we find approximately 40 years of continuous remote sensing observations are required to

detect a statistically meaningful trend in global chlorophyll concentrations, while detection times

are predicted to be shorter (20 to 30 years) in regions with relatively lower temporal variability

(Figure 2.1c) [Henson et al., 2010]. This is in agreement with previous modeling studies which

also used Equation 2.1 to determine detection timescales for anthropogenic changes in surface

chlorophyll concentrations but estimated the parameter values with ESMs [Henson et al., 2016].

2.4 Modeling Changes in Ocean Phytoplankton

Earth system models (ESMs) can be used as a predictive tool to identify long-term changes

in phytoplankton abundance and productivity under different emission scenarios. In simulations

under twenty-first century global warming conditions, phytoplankton abundance is predicted to

decrease globally [Bopp et al., 2013, Steinacher et al., 2010, Henson et al., 2013]. Most models

included in the Coupled Model Intercomparison Project Phase 5 (CMIP5) show consistent declines

in phytoplankton abundance by 2100, though the magnitude of the decrease varies substantially
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between models [Bopp et al., 2013, Cabre et al., 2014]. The majority of models project an increase in

phytoplankton abundance in the high latitude ocean as light limitation is alleviated from thermal

stratification, increasing temperature stimulates photosynthesis, and sea ice cover declines. In

contrast, a decrease in the low latitude oceans is projected as nutrient limitation from thermal

stratification is enhanced [Bopp et al., 2013, Steinacher et al., 2010, Kwiatkowski et al., 2017].

A warming ocean can both enhance phytoplankton growth rate as increased temperatures ac-

celerate metabolic reactions and restrict phytoplankton abundance due to enhanced thermal strat-

ification resulting in surface nutrient reductions [Marinov et al., 2013]. These conflicting controls

on phytoplankton growth may generate regional differences in simulated phytoplankton abundance

projections depending on the predominant effect [Marinov et al., 2013, Laufkötter et al., 2015]. For

example, in CMIP5 models, integrated phytoplankton abundance projections with climate change

vary latitudinally depending on whether temperature, light, micronutrients, or macronutrients are

limiting, with macronutrient and temperature controls dominant between 45◦S to 45◦N latitude

[Leung et al., 2015].

Regional biome changes under climate warming scenarios are also predicted to shift phy-

toplankton community structure. Thermal stratification and subsequent nutrient reduction are

predicted to favor the success of small phytoplankton relative to large phytoplankton [Marinov

et al., 2010, Moore et al., 2013]. Due to a relatively larger surface area-to-volume ratio, smaller

phytoplankton more efficiently assimilate nutrients than larger phytoplankton. The parameteriza-

tion of this effect in the Community Earth System Model (CESM1) generates biogeochemical regime

boundaries at 45◦N and 45◦S latitude, where a specific threshold surface nutrient concentration oc-

curs; within the lowlatitude region demarcated by these boundaries, decreases in surface nutrient

supply result in greater decreases in large phytoplankton biomass because smaller phytoplankton

are less impacted by nutrient decreases in low-nutrient conditions [Marinov et al., 2010].

A relatively new approach to distinguishing externally forced anthropogenic signals from

internal climate variability in modeled ocean phytoplankton is to analyze output from an ensemble

of simulations conducted with a single Earth system model; here, each ensemble member has a
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different phasing of internal variability, but shares identical external forcing with other ensemble

members [Deser et al., 2012]. An ensemble of simulations which each differ slightly in their initial

conditions generates large internal variability in ocean biogeochemical variables, while the ensemble

mean demonstrates externally forced trends [Rodgers et al., 2015, Long et al., 2016, McKinley et al.,

2016, Lovenduski et al., 2016, Frölicher et al., 2016, Brady et al., 2019, Schlunegger et al., 2019].

The Community Earth System Model large ensemble (CESM1-LE) is a fully coupled global climate

model that provides reconstructions of Earth’s past climate and projections of Earth’s future climate

under different forcing scenarios, simulating the temporal evolution of the climate system of multiple

ensemble members, each with slightly different initial conditions [Kay et al., 2015]. Many other

fully coupled climate models also utilize the large ensemble framework, including the GFDL Earth

System Model 2M (ESM2M [Rodgers et al., 2015, Frölicher et al., 2016, Schlunegger et al., 2019]).

In order to quantify timescales over which externally forced trends in multiple ocean biogeo-

chemical variables can emerge from internal variability, Rodgers et al. [2015] employed a perturbed

initial condition ensemble of ESM2M to simulate changes under a historical emission scenario

and representative concentration pathway 8.5 (RCP 8.5), which is considered a high emissions

or business-as-usual scenario. This analysis revealed that anthropogenic changes to global mean

marine NPP would be the last of four biogeochemical variables analyzed to emerge from internal

variability after changes in acidification, SST, and oxygen concentrations, respectively. A comple-

mentary study with the same model framework that incorporated several additional biogeochemi-

cal variables also found that global warming-induced changes in marine NPP would be slowest to

emerge [Schlunegger et al., 2019]. Taken together, these two studies suggest that significant changes

in phytoplankton biomass may take a longer time to detect compared with other biogeochemical

variables [Rodgers et al., 2015, Schlunegger et al., 2019].

In addition to diagnosing timescales of emergence for biogeochemical parameters, perturbed

initial condition ensembles can be used to constrain the contribution of internal climate variability

on uncertainty in projections of marine NPP. Simulations forced with radiative forcing scenarios

RCP 2.6 and RCP 8.5 using CMIP5 models revealed that internal climate variability in ESMs
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can contribute significant uncertainty to future projections of marine NPP, especially on regional

scales [Krumhardt et al., 2017, Frölicher et al., 2016]. Krumhardt et al. [2017] identified avoidable

impacts of anthropogenic climate change on declining phytoplankton abundance by comparing

ensemble integrations of the CESM1-LE forced with two different radiative forcing scenarios: RCP

4.5 (mitigation emission scenario) and RCP 8.5 (high emissions scenario). Their study suggests

that if we follow a mitigation emission scenario (RCP 4.5), large-scale regional declines in NPP are

only avoidable in the Atlantic sector, whereas large internal climate variability precludes statistical

separation of the externally forced NPP response elsewhere.

Although ESMs are an effective tool for projecting the response of the ocean biosphere to

anthropogenic climate change, it is essential to consider how the ESM representation of phyto-

plankton abundance compares to observed records of phytoplankton over time. Phytoplankton

concentrations have been measured continuously over multiple decades at several ocean time series

locations in the global ocean. Saba et al. [2010] compared the representation of chlorophyll concen-

tration from 36 ESMs with embedded biogeochemistry to observational datasets collected at the

ocean time series of HOTS and BATS between 1989 and 2007. At both sites, time-series observa-

tions of monthly mean chlorophyll concentration are larger than those produced by 90% of current

generation ESMs, motivating further evaluation of the ESM representation of chlorophyll on both

monthly and interannual timescales; the models also performed relatively poorly at producing an

observed increasing NPP trend, indicating that ESMs may not accurately simulate multiannual

changes in phytoplankton abundance over short time periods.

2.5 Synthetic Ensemble of Ocean Chlorophyll Concentration

A complementary approach to quantifying internal variability in phytoplankton abundance

is to construct an observationally constrained synthetic ensemble by statistically emulating the

satellite-derived chlorophyll record. Observations can provide a strong constraint on uncertainty

related to internal climate variability over time in cases where the dominant timescales of variability

are resolved within the observed record. With this constraint, the synthetic ensemble consists of
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alternate evolutions of the observed spatiotemporal field that preserve the statistical properties of

the single observational record.

In order to generate a synthetic ensemble of global chlorophyll concentration, we build upon

the statistical model developed in McKinnon et al. [2017] and McKinnon and Deser [2018] for

temperature, precipitation, and sea level pressure. In our case, we model chlorophyll concentration

as

Xi,t = βi
0 + βi,m

S + βt
F + βi,m

ENSOM
t
ENSO + βi,m

PDOM
t
PDO + ϵi,t (2.2)

where Xi,t is the chlorophyll concentration at location i and time t. We model chlorophyll as a

linear combination of the mean state (βi
0), seasonality (βi,t

S ), response to external forcing (βt
F ),

response to two dominant climate modes (β
i,m(t)
ENSOM

t
ENSO, β

i,m(t)
PDO M t

PDO), and residual internal

climate variability (ϵi,t). Importantly, the βt
F term in Equation 2.2 represents the chlorophyll

response to external forcing, while the last three terms represent internal climate variability. The

two time series M t
ENSO and M t

PDO represent the evolution of the climate modes ENSO and PDO

respectively, which have been shown to influence chlorophyll concentration [Gregg and Conkright,

2002, Yoder and Kennelly, 2003, Radenac et al., 2012]. Due to covariance between ENSO and PDO,

we have created two orthogonalized time series via principal component analysis of the original

observed temporal evolution of ENSO and PDO over 1880 to 2019. Chlorophyll anomalies are

calculated by removing the mean state (βi
0), monthly climatology (βi,t

S ), and linear trend in global

mean chlorophyll (βt
F ) from the original MODIS dataset of chlorophyll concentration at monthly,

1◦ × 1◦ resolution (Figure 2.2b). β
i,m(t)
ENSO and β

i,m(t)
PDO are estimated by calculating the ordinary

least squares regression of the MODIS chlorophyll anomalies against time series of ENSO and PDO

to determine the sensitivity of chlorophyll concentration to these modes. The spatially varying

regression coefficients are multiplied by the observed indices and subtracted from the chlorophyll

anomalies to remove the direct influence of the climate modes from the time series (Figure 2.2b),

leaving us with the residual internal climate variability, ϵi,t.
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Figure 2.2: Schematic representation of the construction of a synthetic ensemble of regional
ocean chlorophyll concentration in the Eastern Equatorial Pacific. (a) Original MODIS observed
time series. (b) Remove mean, linear trend, monthly climatology, and scaled climate modes from
original time series. (c) Block bootstrap residuals 1000 times using the moving block bootstrap
method. (d) Generate 1000 surrogate climate modes of ENSO and PDO using the iterative adjusted
amplitude Fourier transformation method. (e) Generate distinct ensemble members by combining
the mean, the trend, the seasonal cycle, the block bootstrapped anomalies, and the response to
surrogate climate modes. Synthetic ensemble member 3 is shown in the light blue line, and synthetic
ensemble 10 is shown in the orange line. Dashed red lines represent the trend of each synthetic
ensemble member over the observational period.

We take a two-step process to create the synthetic ensemble. First, the residuals, ϵi,t, are

resampled 1000 times using the nonparametric moving block bootstrap (MBB) in time, retaining

their spatial structure (Figure 2.2c) [Wilks, 1997]. The residuals are resampled using a block

length of 12 months which fully encapsulates the seasonal cycle in global chlorophyll concentration

variability. Second, the response of chlorophyll concentration to different possible evolutions of

climate modes over time is incorporated by generating 1000 surrogate climate modes of ENSO and

PDO using the iterative adjusted amplitude Fourier transformation (IAAFT) method (Figure 2.2d)

[Theiler et al., 1992, Schreiber and Schmitz, 2000]. This surrogate data approach produces an
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ensemble of time series with the same spectral characteristics as the original climate mode time

series. The surrogate climate modes are multiplied by the regression coefficients, β
i,m(t)
ENSO and β

i,m(t)
PDO ,

estimated from the observed record to create time series of chlorophyll that could have occurred

given a different temporal evolution of ENSO and PDO. We combine the block bootstrapped

anomalies and the response to the surrogate climate modes with βi
0, βi,t

S , and βt
F to produce

multiple distinct synthetic ensemble members (Figure 2.2e). Figure 2.2e illustrates the temporal

evolution of two synthetic ensemble members in the Eastern Equatorial Pacific. Each member

displays a different long-term trend at this location due to different sampling of climate variability.

Figure 2.3 displays the spatial pattern of the trend in annual-mean chlorophyll concentration

over 2002 to 2019 for two distinct synthetic ensemble members. Synthetic ensemble members 3

(Figure 2.3a) and 10 (Figure 2.3b) exhibit trends of opposite sign in many regions of the ocean. For

example, in the Eastern Equatorial Pacific, synthetic ensemble member 3 depicts a trend toward

increasing chlorophyll concentrations over time, while synthetic ensemble member 10 displays a

trend toward decreasing chlorophyll. This behavior is also apparent in the California Current

Eastern Boundary Upwelling System, the subpolar North Atlantic, the subtropical Pacific, and the

Southern Ocean. Thus, results from our synthetic ensemble suggest that internal variability plays

an important role in chlorophyll concentration in these regions, consistent with previous studies

[Henson et al., 2010, Schneider and Deser, 2018, Schlunegger et al., 2019].

Observed trends in real-world chlorophyll concentration from the MODIS record (Figure 2.3c)

show decreasing chlorophyll over time in the subtropical oceans and the California Current Eastern

Boundary Upwelling System, with increasing chlorophyll over time in the subpolar North Atlantic,

parts of the Southern Ocean, and other Eastern Boundary Upwelling Systems. The real world is

a single realization (or ensemble member) in our ensemble framework. As such, the observational

record is equally affected by the phasing of internal climate variability in the real world. That

the negative trend in observed chlorophyll in the California Current Eastern Boundary Upwelling

System is captured in synthetic ensemble member 3 but not member 10 implies that the observed

trend is driven by the phasing of internal variability, for example. Our synthetic ensemble thus
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Figure 2.3: (a) Annual trend in global chlorophyll concentration from 2002 to 2019 of synthetic
ensemble member 3. (b) Annual trend in global chlorophyll concentration from 2002 to 2019 of
synthetic ensemble member 10. (c) Annual trend in global chlorophyll concentration from 2002 to
2019 over the MODIS ocean color record.

cautions against interpreting trends as externally driven across much of the global ocean.

2.6 Conclusions

The abundance and distribution of phytoplankton in the global ocean are controlled by both

internal climate variability and external anthropogenic forcing. Our understanding of the ocean

biosphere has been informed by the analysis of remote sensing datasets and ESM output. Each of

these methods has advantages and disadvantages to diagnosing changes in marine phytoplankton

over time. Assessing disruption in the ocean biosphere using remote sensing datasets is challenged
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by the relatively short length of the observational record, restricting our ability to disentangle

fluctuations in internal climate variability from externally forced anthropogenic trends. Ensembles

of Earth system models can be used to confidently isolate the response due to internal climate

variability and external forcing, but may not skillfully represent observed spatial patterns in marine

phytoplankton.

To reconcile these differences between the satellite-derived observational record and ESM

output, we implement the novel approach of constructing a synthetic ensemble of global chlorophyll

concentration using data from the MODIS satellite mission. Our synthetic ensemble reveals an

important role for internal variability in surface ocean chlorophyll across the global ocean. It further

cautions against interpreting long-term trends from the observed record as driven by externally

forced anthropogenic climate change.



Chapter 3

Alternate history: A synthetic ensemble of ocean chlorophyll concentrations

3.1 Abstract

Internal climate variability plays an important role in the abundance and distribution of

phytoplankton in the global ocean. Previous studies using large ensembles of Earth system models

(ESMs) have demonstrated their utility in the study of marine phytoplankton variability. These

ESM large ensembles simulate the evolution of multiple alternate realities, each with a different

phasing of internal climate variability. However, ESMs may not accurately represent real world

variability as recorded via satellite and in situ observations of ocean chlorophyll over the past few

decades. Observational records of surface ocean chlorophyll equate to a single ensemble member

in the large ensemble framework, and this can cloud the interpretation of long-term trends: are

they externally forced, caused by the phasing of internal variability, or both? Here, we use a novel

statistical emulation technique to place the observational record of surface ocean chlorophyll into

the large ensemble framework. Much like a large initial condition ensemble generated with an

ESM, the resulting synthetic ensemble represents multiple possible evolutions of ocean chlorophyll

concentration, each with a different sampling of internal climate variability. We further demonstrate

the validity of our statistical approach by recreating an ESM ensemble of chlorophyll using only

a single ESM ensemble member. We use the synthetic ensemble to explore the interpretation of

long-term trends in the presence of internal variability and find a wider range of possible trends

in chlorophyll due to the sampling of internal variability in subpolar regions than in subtropical

regions.
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3.2 Introduction

The ocean biosphere strongly influences biogeochemical cycling, carbon export, and air-sea

carbon flux. Although phytoplankton constitute a relatively small reservoir of carbon, their ability

to photosynthetically fix carbon from the atmosphere enhances the ocean’s role as a carbon sink,

allowing the ocean to store 45 times more carbon than the atmosphere [Friedlingstein et al., 2019].

The efficiency and strength of the ocean biological pump can influence atmospheric carbon dioxide

concentrations; in the absence of the ocean biosphere, atmospheric carbon dioxide concentrations

would increase by approximately 50% of preindustrial values [McKinley et al., 2017].

Internal climate variability plays an important role in the abundance and distribution of phy-

toplankton in the global ocean. Modes of internal climate variability, such as the El Niño South-

ern Oscillation (ENSO), the Southern Annular Mode (SAM), and the North Atlantic Oscillation

(NAO), alter the physical and chemical environment for, and thus the abundance of, phytoplankton

on timescales ranging from interannual to multi-decadal [Chavez et al., 1998, Lovenduski and Gru-

ber, 2005, Thomas et al., 2009, Zhai et al., 2013]. Correlations between these climate indices and

marine phytoplankton have been demonstrated on regional and local scales using several decades of

remotely sensed and in situ observations [Chavez et al., 1998, Behrenfeld et al., 2001, Lovenduski

and Gruber, 2005, Thomas et al., 2009, Zhai et al., 2013]. For example, bio-optical data from

moorings in the Central Equatorial Pacific revealed a reduction in phytoplankton biomass coinci-

dent with the 1997-98 El Niño event, driven by the reduced upwelling of nutrients and subsequent

declines in phytoplankton productivity [Chavez et al., 1998]. Modes of internal climate variability

have also been shown to affect regional upwelling, and thus phytoplankton productivity, in Eastern

Boundary Upwelling Systems such as the California and Humbolt Current Systems [Thomas et al.,

2009]. These studies demonstrate that the phasing and magnitude of internal climate variability

has a measurable imprint on the ocean chlorophyll record.

Multiple studies have used coupled Earth System Models (ESMs) or stand-alone ocean bio-

geochemical models to illustrate the influence of internal climate variability on biological processes,
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often through the lens of air-sea carbon flux [Le Quéré et al., 2000, Lenton and Matear, 2007, Wang

and Moore, 2012, Hauck et al., 2013, Bopp et al., 2013, McKinley et al., 2018]. For example, several

modeling studies suggest that SAM has a marked influence on phytoplankton productivity in the

Southern Ocean [Lenton and Matear, 2007, Wang and Moore, 2012, Hauck et al., 2013] while ENSO

has been demonstrated to impact net primary production (NPP) in tropical regions [Kwiatkowski

et al., 2017]. Globally, an analysis of upper ocean dissolved inorganic carbon (DIC) revealed corre-

lations between modelled phytoplankton abundance and ENSO, SAM, and NAO [Long et al., 2013].

Mechanisms of the connection between modes of variability and phytoplankton biomass have been

explored using biogeochemical models to attribute regional changes in biomass to internal variabil-

ity driven fluctuations in nutrient supply and light availability [McKinley et al., 2018]. Thus, ESMs

are an important tool for developing an understanding of the impact of internal variability on the

abundance and distribution of marine phytoplankton.

Large initial condition ensembles of ESMs are a recently developed research tool for the

representation and analysis of internal variability in the climate system [Kumar and Ganguly, 2018,

Bengtsson and Hodges, 2019, Dai and Bloecker, 2019, Deser et al., 2020]. In this approach, each

ESM simulation or ensemble member is initialized slightly differently and thus produces a phasing

of internal climate variability that is not identical to the other ensemble members. Analyses of

variability in global air temperature and precipitation using a subset of initial condition large

ensembles conducted with the Coupled Model Intercomparison Project Version 5 (CMIP5) models

reveal that internal variability accounts for approximately half of the spread in projected climate

trends across North America and Europe over the next half century [Hawkins and Sutton, 2009,

2011, Deser et al., 2020]. Additionally, regional differences in the range of internal variability have

also been reported from large ensembles, with subtropical regions experiencing a relatively lower

range of coupled ocean-atmosphere variability [Deser et al., 2010, 2020].

Several recent studies have demonstrated the utility of large ensembles of ESMs for the study

of marine phytoplankton [Rodgers et al., 2015, Frölicher et al., 2016, Krumhardt et al., 2017].

Krumhardt et al. [2017] used the Community Earth System Model 1 Large Ensemble (CESM1-LE)
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to quantify the contribution of internal climate variability to uncertainty in projections of NPP.

Their analysis revealed that internal climate variability challenges our ability to quantify the role

of emissions mitigation for end-of-century NPP changes, especially at regional scales. Other studies

have identified NPP as a biogeochemical quantity whose anthropogenic signal is slow to emerge

from internal variability using the GFDL Earth System Model 2M (ESM2M) [Rodgers et al., 2015,

Frölicher et al., 2016, Schlunegger et al., 2019]. The important role of internal variability in NPP

contributes to improved predictability of NPP relative to other biogeochemical variables [Séférian

et al., 2014]. Thus, large initial condition ensembles of ESMs demonstrate the important role of

internal variability in the long-term changes in marine phytoplankton abundance and productivity.

Observational records of surface ocean chlorophyll concentration from satellite and in situ

datasets equate to a single ensemble member in the large ensemble framework. As such, the

observational record captures only one of the many possible trajectories through climate space

that could have occurred, even given the same physical constraints and boundary conditions. For

example, the multi-decade record of remotely sensed ocean color from the Moderate Resolution

Imaging Spectroradiometer (MODIS) recorded the reduction in chlorophyll concentration in the

Eastern Equatorial Pacific associated with the dramatic 2015-2016 El Niño event [Coria-Monter

et al., 2018]. Due to this event occurring towards the end of our observational record, it will have an

outsized impact on our estimation of a linear trend. However, had a La Niña event occurred, rather

than an El Niño event, the linear trend estimated over the same period may have been positive.

With a single observational record it can thus be challenging to interpret changes in chlorophyll

concentration or phytoplankton productivity even over long-term (multi-decadal) timescales due

to sampling of internal variability. A complementary approach to quantifying internal variability

in phytoplankton abundance is to construct an observationally constrained synthetic ensemble by

statistically emulating the observational record. This ”observational large ensemble” allows us

to simulate how phytoplankton would respond given a different phasing of internal variability,

illustrating a range of possible long-term chlorophyll trends.

In this paper, we place the observational record of surface ocean chlorophyll concentration into



33

the large ensemble framework by constructing a synthetic ensemble of observed chlorophyll. Much

like a large initial condition ensemble generated with an ESM, the synthetic ensemble represents

multiple possible evolutions of ocean chlorophyll concentration, each with a different phasing of

internal climate variability (ENSO, PDO, and other climate noise). We use statistical emulation

techniques to illustrate the importance of internal climate variability for the interpretation of trends

in the observational record. We further evaluate our synthetic ensemble methodology in the context

of a large initial condition ensemble generated with an ESM to demonstrate that our approach is

valid.

3.3 Data and Model Output

In our analysis, we construct a synthetic ensemble of surface ocean chlorophyll concentration

using both remotely sensed and in situ observations. We then evaluate our statistical method using

a large initial condition ensemble of an ESM as a testbed. Here, we describe the observational data

and the model testbed. We describe the generation of the synthetic ensemble in Section 3.4.

3.3.1 Observations

3.3.1.1 Ocean color datasets

Marine phytoplankton have been observed over the past several decades by multiple satellite

instruments with varying spatial and temporal coverage. Here, we utilize the global ocean chloro-

phyll concentration estimated by the Moderate Resolution Imaging Spectroradiometer (MODIS)

ocean color dataset, as it provides the longest continuous record of global ocean chlorophyll concen-

tration, with coverage from 2002 to present. Analyses of the MODIS ocean color dataset were con-

ducted using Level 3 composites of 8 day mean output at 9 kilometer resolution of chlorophyll a con-

centration (mg m−3) obtained from the NASA Ocean Color Archive (http://oceancolor.gsfc.nasa.gov/).

The OCI algorithm was used to convert ocean color measurements to total chlorophyll concentration

in mg m−3. The dataset was averaged to monthly and coarsened to 1° resolution for comparison
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with output from the CESM-LE.

3.3.1.2 Ocean time-series measurements

We additionally use in situ surface ocean chlorophyll measurements from the Hawaii Ocean

Time Series (HOT). Photosynthetic pigment concentrations are measured both in situ using a

fluoresence sensor attached to a CTD instrument which is lowered through the water column and

through High Performance Liquid Chromatography (HPLC) analysis of water samples which are

collected at discrete depth intervals in the water column [Tupas et al., 1997]. This observational

dataset provides the longest continuous record of surface ocean chlorophyll, with coverage from 1989

to 2018 [Karl and Lukas, 1996]. In contrast to the MODIS ocean color dataset which provides a

shorter record and global coverage, the HOT dataset provides a longer record at a discrete location.

Analyses of the HOT dataset were conducted using chlorophyll a concentration (mg m−3) obtained

from the HOT Data Organization and Graphical System (https://hahana.soest.hawaii.edu/hot/).

Chlorophyll a concentration is measured using HPLC analysis. The dataset has been resampled at

monthly intervals using linear interpolation between measurements and averaged over the upper 10

meters for comparison with output from our modeling tool, described next.

3.3.2 Community Earth System Model Large Ensemble

We evaluate our statistical methodology using output from the Community Earth System

Model 1 Large Ensemble (CESM1-LE) [Kay et al., 2015]. CESM1 is a fully-coupled climate model

that provides simulations of Earth’s past climate and projections of Earth’s future climate under

historical and Representative Concentration Pathway 8.5 external forcing by simulating the evo-

lution of the atmosphere, ocean, land, and sea ice component models [Hurrell et al., 2013]. The

ocean physical model is the ocean component of the Community Climate System Model version

4 [Danabasoglu et al., 2012]. The model has a nominal 1° resolution and 60 vertical levels. The

biogeochemical-ecosystem ocean model consists of an upper-ocean ecological module which incorpo-

rates multi-nutrient co-limitation on phytoplankton growth and specific phytoplankton functional
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groups [Moore et al., 2004], and a full-depth ocean biogeochemistry module which incorporates

full carbonate system thermodynamics and a dynamic iron cycle [Doney et al., 2006, Moore and

Braucher, 2008].

The CESM1-LE models the spatiotemporal evolution of the climate system by simulating

multiple ensemble members, each with slightly different initial conditions. Each member is branched

from a multi-century 1850 control simulation with constant pre-industrial forcing [Lamarque et al.,

2010]. The ocean model in the control simulation was initialized from observations (January mean

climatological potential density and salinity data from the Polar Science Center Hydrographic Cli-

matology), while the other component models were initialized from previous CESM1 simulations

[Danabasoglu et al., 2012]. Once the control simulation climate achieved quasi-equilibrium with the

1850 forcing, the first ensemble member was initialized from a January 1, year 402 in the control run.

Ensemble member 1 was integrated forward from 1850 to 2100. The remaining ensemble members

were integrated from 1920 to 2100 using slightly different initial conditions generated by round-off

level differences in their initial air temperature fields from January 1920 of ensemble member 1

[Kay et al., 2015]. Due to the chaotic nature of the atmosphere, the small differences in initial con-

ditions quickly propagate through the atmosphere and lead to each ensemble member experiencing

a different evolution of internal variability. A total of 40 ensemble members were generated in this

fashion for the CESM1-LE experiment. Six CESM1-LE members had corrupted ocean biogeochem-

istry, therefore, we use the 34 CESM1-LE members with valid ocean biogeochemistry. Analyses

of model output were conducted using monthly mean output at 1° resolution over the historical

period (1920 to 2005) due to its realistic volcanic forcing. We consider chlorophyll concentration

in the uppermost model layer (10 meters) by summing each of the three phytoplankton functional

types (diatoms, diazotrophs, and small phytoplankton).

3.4 Creating a synthetic ensemble of the observational record

We create a synthetic ensemble to highlight the role of internal variability in historical, ob-

served surface ocean chlorophyll. To generate the synthetic ensemble, we build upon the statistical



36

model developed in McKinnon et al. [2017] and McKinnon and Deser [2018] and additionally de-

scribed in Elsworth et al. [2020], with slight modifications to the approach. We model chlorophyll

concentration as:

Xi,t = βi
0 + β

i,m(t)
S + βt

F + β
i,m(t)
ENSOM

t
ENSO + β

i,m(t)
PDO M t

PDO + ϵi,t, (3.1)

where X is the chlorophyll concentration at location i and time t, and m(t) indicates the month

associated with time t. In this model, chlorophyll is described as a linear combination of the mean

state βi
0, seasonality β

i,m(t)
S , the assumed spatially-uniform response to external forcing βt

F , re-

sponse to climate modes β
i,m(t)
ENSOM

t
ENSO and β

i,m(t)
PDO M t

PDO, and residual internal climate variability

ϵi,t. Importantly, the βt
F term in Equation 3.1 represents the response to external forcing, while

β
i,m(t)
ENSOM

t
ENSO, β

i,m(t)
PDO M t

PDO, and ϵi,t capture the role of internal climate variability in chlorophyll

concentration. The time series M t
ENSO and M t

PDO represents the evolution of the climate modes

ENSO and PDO respectively, which have been shown to influence chlorophyll concentration [Gregg

and Conkright, 2002, Yoder and Kennelly, 2003, Radenac et al., 2012]. The Niño 3.4 and PDO

indices were obtained from the National Oceanographic and Atmospheric Administration Climate

Prediction Center. As in McKinnon and Deser [2018], we address the covariance between ENSO

and PDO by creating two orthogonal time series via principal component analysis of the original

observed temporal evolution of ENSO and PDO from 1880 to 2020.

3.4.1 HOT

To illustrate our approach, we create a synthetic ensemble of chlorophyll concentration aver-

aged over the upper 10 meters of the water column at HOT, a discrete location in the Subtropical

North Pacific. The synthetic ensemble is created in a two-step process (Figure 3.1). First, we esti-

mate the parameters (β’s in Equation 3.1) (top panel, Figure 3.1). Second, we simulate alternate

evolutions of chlorophyll over time given different phasings in the climate modes (ENSO, PDO)

and by resampling the residuals (ϵ in Equation 3.1) (bottom panel, Figure 3.1).
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Figure 3.1: Schematic illustrating the creation of a synthetic ensemble using the HOT dataset
of chlorophyll concentration averaged over the upper 10 meters. The statistical model is displayed
above with specific terms corresponding to a graphic representation below. In our statistical ap-

proach, we model and remove (a) the mean state, βi
0, (b) the monthly climatology, β

i,m(t)
S , and (c)

the dependence on climate modes such as ENSO, β
i,m(t)
ENSOM

t
ENSO, before arriving at (d) the chloro-

phyll residuals, ϵi,t. The βt
F term represents external forcing, while β

i,m(t)
ENSOM

t
ENSO, β

i,m(t)
PDO M t

PDO,
and ϵi,t capture the role of internal climate variability in chlorophyll concentration. The synthetic
ensemble is then generated by (e) block bootstrapping the residuals, (f) generating surrogate cli-
mate modes, and (g) generating distinct synthetic ensemble members by incorporating the the
mean, the seasonal cycle, the block bootstrapped anomalies, and the response to surrogate climate
modes.

To develop the synthetic ensemble of chlorophyll at HOT, we first remove the mean state, β0,

from the time-varying chlorophyll, such that the resulting anomaly time series centers around zero

(Figure 3.1a). We then remove the monthly climatology, βm
S , by removing the monthly average in

chlorophyll concentration from the anomaly time series (Figure 3.1b). Note that for this illustration,

we assume that the externally forced trend, βt
F , is zero. Finally, we estimate the dependence of

chlorophyll on the climate modes ENSO and PDO, βENSO,PDO, by assuming a linear relationship

and calculating the ordinary least squares regression of the deseasonalized anomalies with the ENSO

and PDO indices (Figure 3.1c). The regression coefficients, βENSO,PDO, are then multiplied by the

observed indices, M t
ENSO,PDO, and subtracted from the deseasoned anomalies, leaving us with

chlorophyll residuals, ϵi,t (Figure 3.1d).

We apply two techniques to simulate alternate evolutions of chlorophyll concentration over
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time at HOT. First, the residuals, ϵi,t, are resampled 1000 times using the nonparametric moving

block bootstrap (MBB) in time (Figure 3.1e). The MBB captures high frequency temporal vari-

ability by resampling the dataset with a block length sufficiently large compared to the temporal

autocorrelation scale but sufficiently small to generate variability between bootstrapped samples. In

this context, the residuals are resampled using a block length of 12 months which encapsulates the

seasonal cycle in global chlorophyll concentration variability. Although block bootstrapping tends

to underestimate trend variability when the data are positively correlated and the data record is

short, the validation of the statistical method using a large ensemble of an Earth system model

suggests that the methodology does not generally underestimate trend variability [McKinnon et al.,

2017]. Second, the response of chlorophyll concentration to different possible evolutions of the cli-

mate modes over time is incorporated by generating 1000 surrogate climate modes of ENSO and

PDO using the iterative adjusted amplitude Fourier transformation (IAAFT) method (Figure 3.1f)

[Schreiber and Schmitz, 1996]. This surrogate data approach produces an ensemble of time series

with the same amplitude distribution and spectra as the original climate mode time series. The

surrogate climate modes are multiplied by the regression coefficients, β
i,m(t)
ENSO and β

i,m(t)
PDO , estimated

from the observed record to create time series of chlorophyll that could have occurred given a

different temporal evolution of ENSO and PDO. We combine the block bootstrapped anomalies

and the response to the surrogate climate modes with β0 and β
i,m(t)
S to produce multiple distinct

synthetic ensemble members at HOT (Figure 3.1g).

Figure 3.2 illustrates the temporal evolution of 10 synthetic ensemble members for the surface

ocean chlorophyll concentration at HOT. Each ensemble member has a unique phasing of internal

climate variability that results in a distinct temporal evolution for surface ocean chlorophyll at this

location. Yet, our method ensures that each ensemble member has similar statistical properties as

the original observed time-series. This synthetic ensemble can thus inform our interpretation of

the chlorophyll record at HOT by simulating how phytoplankton would respond given a different

phasing of internal variability. The phasing of such variability will influence trend estimates of

chlorophyll, potentially moderating conclusions regarding the observed trend over the observational
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record. However, a limitation of the statistical methodology remains that the variability in the

observational record will be emulated in the synthetic ensemble by the statistical model. It is

appropriate for us to expand the method to a broader spatial scale, and we explore this using

satellite chlorophyll observations in the next section.
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Figure 3.2: Temporal evolution of chlorophyll a concentration in mg m−3 averaged over the upper
10 m at the Hawaii Ocean Time-Series (HOT). The original time series is shown in the black line
and ten synthetic ensemble members generated from the record are shown in the gray dashed
lines. The range of possible evolutions displayed by the synthetic ensemble members illustrates
the importance of internal climate variability on observational records, even over relatively short
timescales.

3.4.2 MODIS

We demonstrate the role of internal variability on chlorophyll across the global ocean by

generating a synthetic ensemble at every 1◦ x 1◦ grid cell. We begin with monthly chlorophyll

concentration collected over the MODIS mission from 2002 to 2020. In regions with high cloud

coverage such as the high latitudes, chlorophyll concentration is linearly interpolated to prevent a

sparsity of observations. Although the method of modeling internal variability over the full spatial

grid is similar to modeling internal variability at a discrete location, there are two key differences.
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First, we approximate the externally forced signal, βt
F , as the linear trend in global mean chlorophyll

concentration (2.75 × 10−5 mg m−3 yr−1 from 2002-2020), assuming that the global mean trend

is most representative of the externally forced component. Second, our method produces spatially

varying regression coefficients, β
i,m(t)
ENSO,PDO (Figure S1), that can then be multiplied by the observed

indices, M t
ENSO,PDO, to model the direct influence of climate modes. Due to the sparsity of the

ocean color record at high latitudes, the estimation of β
i,m(t)
ENSO and β

i,m(t)
PDO may be less reliable

in these regions. The coefficients are combined with the synthetic climate mode time series to

produce a spatially coherent pattern in the synthetically generated chlorophyll for a given time in a

given ensemble member. The synthetic ensemble of the MODIS ocean color record thus represents

multiple possible alternative evolutions of ocean chlorophyll over time at every 1◦ x 1◦ grid cell.

(c)

(a)

(b)

-0.09 -0.03 0.03 0.09
Anomaly in Chlorophyll Concentration (mg / m3) 

0.15-0.15

MODIS Ocean Color Dataset

Synthetic Ensemble Member 427

Synthetic Ensemble Member 73

Figure 3.3: Anomalous, monthly mean chlorophyll concentration in December 2015 (mg m−3):
(a) derived from synthetic ensemble member 73 (La Niña-like event), (b) derived from synthetic
ensemble member 427 (ENSO neutral conditions), and (c) derived from the the MODIS satellite
observations (El Niño event).



41

We showcase the synthetic ensemble by mapping the anomalous chlorophyll concentration

in the Equatorial Pacific Ocean in December 2015, during the observed 2015-16 El Niño event

(Figure 3.3). Anomalous chlorophyll concentrations are calculated as the difference between the

December chlorophyll concentration in 2015 and the average December chlorophyll concentration

over the period 2002 to 2020. Observed anomalies in chlorophyll concentration from the MODIS

ocean color record show anomalously low chlorophyll concentrations in the Eastern Equatorial Pa-

cific due to regional changes in the distribution of nutrients (Figure 3.3c). In contrast, synthetic

ensemble member 73 displays anomalously high chlorophyll concentrations in this region, as this

ensemble member experiences a La Niña-like event during December 2015, promoting an influx of

nutrients to the surface and enhanced phytoplankton productivity (Figure 3.3a). Synthetic ensem-

ble member 427 displays an intermediate magnitude of anomalous concentration, reflective of its

ENSO neutral conditions (Figure 3.3b). Differences between the synthetic ensemble members and

the observational record illustrate how internal variability can play an important role in chlorophyll

concentration in this region. We also observe large differences between the synthetic ensemble and

the observational record outside of this region, where other components of internal variability such

as the PDO or other climate noise dominate (not shown).

3.5 Evaluating the synthetic ensemble methodology using CESM1-LE

Supplied with chlorophyll concentration from only a single ensemble member of an ESM

large ensemble, can we reproduce the variability in the other ESM large ensemble members us-

ing our statistical methodology? In other words, can we produce a valid ensemble from a single

record, analogous to producing an ensemble from our single observational record? To answer this

question, we apply the statistical approach outlined above (Figure 3.1) to the surface ocean chloro-

phyll concentration from individual ensemble members of the CESM1-LE over the historical period

(1920-2005). We generate 1000 synthetic ensemble members for each of the 34 members of the

model ensemble by removing the global mean ensemble mean linear trend (-4.88 × 10−6 mg m−3

from 1920-2005) (βt
F ), the monthly climatology (β

i,m(t)
S ) of each individual ensemble member, and
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the contribution linearly related to the climate modes ENSO and PDO (β
i,m(t)
ENSO,PDOM

t
ENSO,PDO).

Climate modes are sourced for each individual ensemble member using the Climate Variability

Diagnostics Package (CVDP), an analysis tool that calculates major modes of climate variability

in the CESM1-LE [Phillips et al., 2014]. Synthetic ensemble members are generated by combining

the block bootstrapped residuals and the surrogate climate modes with the terms previously re-

moved. The synthetically generated ensembles are then evaluated against the full model ensemble

to determine the robustness of the statistical method.
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Figure 3.4: (a) The evolution of global-mean surface ocean chlorophyll concentration in mg m−3

in the Community Earth System Model Large Ensemble (CESM-LE) and a synthetic ensemble
generated from model large ensemble member 14 over the historical period from 1920 to 2005. 34
members of the CESM-LE are shown in the solid dark blue lines while 30 members of the synthetic
ensemble are shown in the dashed light blue lines. (b) A probability density function comparing
the range of interannual standard deviation in global-mean surface ocean chlorophyll concentration
between the CESM-LE (dark blue curve) and synthetic ensembles created from ensemble member
3 (light blue curve), ensemble member 14 (purple curve), and ensemble member 22 (orange curve).
Vertical dashed lines in the corresponding colors show the interannual standard deviation from each
original CESM1 member.

The interannual standard deviation in global-mean surface ocean chlorophyll concentration

from the model-based, synthetically generated ensemble members exhibits a close correspondence

to that of the full CESM1-LE. This is illustrated by similarities in the temporal evolution of global-

mean chlorophyll concentration of the synthetic ensemble generated from ensemble member 14

(solid purple line and dashed light blue lines) and the original CESM1-LE ensemble (solid dark blue

lines) over the historical period (Figure 3.4a). However, the statistical model mimics the internal
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variability in the CESM1-LE ensemble member used to create the synthetic ensemble, highlighting a

limitation of applying our approach to a limited record. As such, ensemble members with relatively

narrower ranges of internal variability, such as CESM1-LE ensemble member 3, produce synthetic

ensembles with relatively narrower ranges of internal variability (light blue curve) compared to the

full CESM1-LE model ensemble (dark blue curve) (Figure 3.4b). In contrast, CESM1-LE ensemble

members with relatively wider ranges of internal variability, such as ensemble member 22, produce

synthetic ensembles with relatively wider ranges of internal variability (orange curve) compared to

the full CESM1-LE model ensemble (dark blue curve; Figure 3.4b). This mismatch in interannual

standard deviation is 0.002 mg m−3 at its largest (Figure 3.4b), which is small (4.1%) compared to

the mean interannual standard deviation.

The interannual standard deviation in the surface ocean chlorophyll produced synthetically

from the CESM1-LE compares favorably to that of the original CESM1-LE across a large fraction

of the global ocean (Figure 3.5a). To illustrate this point, we estimate the fractional error in inter-

annual standard deviation between the CESM1-LE and the synthetic ensemble generated from a

randomly selected ensemble member (number 10) as (σCESM1−LE - σSE) / σSE . Although regional

differences exist in the relative underestimation (blue regions) or overestimation (red regions) of

the standard deviation in our synthetic ensemble when compared to the original CESM1-LE, the

fractional error of the synthetic ensemble is relatively low over the historical period (Figure 3.5a).

Similarly low fractional errors are found for synthetic ensembles generated from other CESM1-LE

members (not shown).

We repeat our approach for a period of 20 years near the end of the historical period (1987-

2005) of the CESM1-LE, which is comparable to the length of the MODIS ocean color dataset

and the HOT record. When compared to the model ensemble, the synthetic ensemble generated

from ensemble member 10 exhibits a relatively higher fractional error over shorter time scales than

longer time scales (Figure 3.5b). This result illustrates the limitations in applying this statistical

method over shorter periods of time. Observations can provide a strong constraint on uncertainty

related to internal climate variability over time, but only in cases where the dominant timescales
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of variability are resolved within the observed record.

(a) 1920 — 2005 (b)

0 0.2
Fractional Error

1987 — 2005

0.4 1.00.6 0.8-1.0 -0.8 -0.2-0.6 -0.4

Figure 3.5: Fractional error of the interannual standard deviation in the synthetic ensemble gener-
ated from ensemble member 10 as compared to the original CESM1-LE, estimated as (σCESM1−LE

- σSE) / σSE for (a) the period 1920 to 2005 and (b) the period 1987 to 2005. Regions of blue
indicate the synthetic ensemble methodology is underestimating the variance when compared to
the full model ensemble while regions of red indicate the synthetic ensemble methodology is over-
estimating the variance when compared to the full model ensemble.

3.6 Implications for the interpretation of observational records

The synthetic ensemble can be used to illustrate how variable phasing in climate modes can

produce different trends over the observational period, both at a discrete location and across the full

spatial grid as in Elsworth et al. [2020]. For example, Figure 3.6 illustrates the temporal evolution of

two synthetic ensemble members generated from the HOT dataset. Each member displays a trend

of opposite sign over the observational period due to a different sampling of climate variability.

Synthetic ensemble member 4 displays a trend of 4.01 × 10−5 mg m−3 yr−1 while member 8

displays a trend of -3.00 × 10−5 mg m−3 yr−1. The range of trends for 1000 synthetic ensemble

members is between 6.40 × 10−5 mg m−3 yr−1 to -5.43 × 10−5 mg m−3 yr−1. Differing linear

trends across the various synthetic ensemble members demonstrate an important role for internal

variability in HOT chlorophyll trends.

Figure 3.7 displays the spatial pattern of the linear trend in annual-mean chlorophyll concen-

tration for two distinct synthetic ensemble members generated from the MODIS record. Observed
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Figure 3.6: A comparison between the temporal evolution of chlorophyll a concentration in mg
m−3 between the HOT record and synthetic ensemble members created from the original dataset.
Synthetic ensemble member 4 is shown in the blue line and synthetic ensemble member 8 is shown
in the orange line. Dashed red lines represent the trend of each synthetic ensemble member and
illustrate trends of opposite sign over the observational period.

trends in real-world chlorophyll concentration (Figure 3.7c) show decreasing chlorophyll over time

in the subtropical oceans and the California Current Eastern Boundary Upwelling System, increas-

ing chlorophyll over time in parts of the subpolar North Atlantic and Southern Oceans, and a

statistically significant (hatched; determined by a t-test with a p value less than 0.05) negative

trend in the Equatorial Pacific. In contrast, synthetic ensemble members 16 (Figure 3.7a) and 45

(Figure 3.7b) exhibit trends of opposite sign from the observations across much of the ocean. For

example, in the Eastern Equatorial Pacific, synthetic ensemble member 16 displays a trend toward

increasing chlorophyll concentrations over time, while synthetic ensemble member 45 displays a

statistically significant trend toward decreasing chlorophyll. This mismatch of trends is also ap-

parent in the California Current Eastern Boundary Upwelling System, and parts of the subpolar

North Atlantic, Indian, and Southern Oceans. Thus, results from our synthetic ensemble suggest

that internal variability can cloud the interpretation of chlorophyll trends across much of the ocean,
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consistent with Elsworth et al. [2020], even when the trends are deemed statistically significant (as

in the Equatorial Pacific), although we note that our MODIS results rely on a short record, which

affects the performance of our method (Fig. 5b).

(a) (b)

(c)

Synthetic Ensemble Member 45Synthetic Ensemble Member 16

0.000
Trend in Chlorophyll Concentration (mg / m3 / yr)

0.001-0.001

MODIS Ocean Color Dataset

Figure 3.7: (a) Annual trend in global chlorophyll concentration from 2002 to 2020 in mg m−3

yr−1 of synthetic ensemble member 16. (b) Annual trend in global chlorophyll concentration from
2002 to 2020 of synthetic ensemble member 45. (c) Annual trend in global chlorophyll concentration
from 2002 to 2020 over the MODIS ocean color record. Hatched areas indicate regions of trend
significance determined by a t-test with a p value less than 0.05. Adapted from Elsworth et al.
[2020], with a newly generated synthetic ensemble.

Across much of the global ocean, different synthetic ensemble members produce dramatically

different long-term trends (Figure 3.7). From this, we can infer that processes external to the

climate system are challenging to detect in the observational record of chlorophyll in the majority

of the ocean. Our findings thus complement those of several other studies that use a range of

statistical methods to comment on detectability of the effects of anthropogenic climate change in

the ocean biosphere [Beaulieu et al., 2013, Henson et al., 2010, Henson, 2014, Gregg and Rousseaux,
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2014, Henson et al., 2016, Hammond et al., 2020].
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Figure 3.8: Probability density functions of linear trends over 2002-2020 in 1,000 synthetic ensem-
ble members generated from observed chlorophyll concentrations averaged over (blue) the subpolar
biomes, and (orange) the subtropical permanently stratified biomes [biomes defined as in Fay and
Mckinley, 2014].

Internal variability creates a wider range of possible chlorophyll trends in subpolar regions

than in subtropical regions (Figure 3.8). A synthetic ensemble generated from the observed chloro-

phyll concentration averaged over the subpolar biomes generates a broader distribution of linear

trends than a synthetic ensemble generated from observed chlorophyll concentration averaged over

the subtropical permanently stratified biomes [cf. blue and orange curves in Figure 3.8; biomes

defined as in Fay and Mckinley, 2014], due to higher ϵi,t at high latitudes in our statistical model.

This means that if we observe large absolute magnitude trends in chlorophyll in subpolar regions,

they are much more likely to be driven by internal processes than in subtropical regions. This re-

gional variation in internal trends can help to decode the likely causes of trends in chlorophyll from

the observational record [e.g., Behrenfeld et al., 2007], especially between regions of relatively high
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productivity (subpolar regions) and regions of relatively low productivity (subtropical regions).

3.7 Conclusions

We place the observational record of surface ocean chlorophyll into the large ensemble frame-

work by constructing a synthetic ensemble of observed chlorophyll using the HOT and MODIS

datasets. The synthetic ensembles represent multiple possible evolutions of ocean chlorophyll con-

centration, each with a different phasing of internal climate variability. Our approach illustrates

the importance of internal climate variability for the interpretation of trends in the observational

record, and our findings can help to decode the causes of observed changes in chlorophyll across

various oceanic regions. When applied to the CESM1-LE from 1920-2005, we are able to repro-

duce the variability in surface ocean chlorophyll concentration of the full model ensemble using

our statistical methodology. However, our assumption that ENSO and PDO are linearly related to

chlorophyll may not be a robust assumption. Additional assumptions underpinning our statistical

model, such as the approximation of the global mean being representative of the externally forced

trend and the residual variability being encapsulated by a block length of 12 months, may affect

the interpretation of our results.

Limitations exist when applying this statistical method over shorter timescales, especially

those comparable to the length of existing continuous observational datasets for surface ocean

chlorophyll. Additionally, the approach assumes internal variability does not change with time,

which may not be a valid expectation as the climate continues to change due to anthropogenic

influence [Resplandy et al., 2015, Thompson et al., 2015]. However, the synthetic ensemble can be

used as an effective tool to illustrate the important role of internal variability in the evolution of a

variety of ocean biogeochemical parameters provided a sufficient length of continuous observations

are available. Future work can utilize this statistical methodology to compare the range of internal

variability observed over the observational record with the range of internal variability generated

in large ensemble modeling studies.



Chapter 4

Anthropogenic climate change drives non-stationary phytoplankton variance

4.1 Abstract

Multiple studies conducted with Earth system models suggest that anthropogenic climate

change will influence marine phytoplankton over the coming century. Light limited regions are

projected to become more productive and nutrient limited regions less productive. Anthropogenic

climate change can influence not only the mean state, but also the variance around the mean state,

yet little is known about how variance in marine phytoplankton will change with time. Here, we

quantify the influence of anthropogenic climate change on internal variability in marine phyto-

plankton biomass from 1920 to 2100 using the Community Earth System Model 1 Large Ensemble

(CESM1-LE). We find a significant decrease in the internal variance of global phytoplankton car-

bon biomass under a business-as-usual (RCP8.5) emission scenario, with heterogeneous regional

trends. Decreasing variance in biomass is most apparent in the subpolar North Atlantic and North

Pacific. In these high-latitude regions, zooplankton grazing acts as a top-down control in reducing

internal variance in phytoplankton biomass, with bottom-up controls (light, nutrients) having only

a small effect on biomass variance. Grazing-driven declines in phytoplankton variance are also

apparent in the biogeochemically critical regions of the Southern Ocean and the Equatorial Pacific.

Our results suggest that climate mitigation and adaptation efforts that account for marine phyto-

plankton changes (e.g., fisheries) should also consider changes in phytoplankton variance driven by

anthropogenic warming, particularly on regional scales.
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4.2 Introduction

Anthropogenic climate change has significantly impacted marine ecosystems, particularly

fisheries. Research suggests that the most prominent biological responses to warming include

changes in species composition [Wernberg et al., 2016, Flanagan et al., 2018], species phenology

[Mills et al., 2013, Staudinger et al., 2019], geographic distribution [Perry et al., 2005, Cheung

et al., 2009], and regional productivity [Cheung et al., 2010]. As the base of the marine food

web, phytoplankton support diverse marine ecosystems by providing food for higher trophic levels

[Falkowski, 2012]. Constraining future changes in phytoplankton with anthropogenic warming is

important at regional scales for fisheries adaptation [Pauly and Christensen, 1995, Chassot et al.,

2010, Link and Marshak, 2019, Marshak and Link, 2021], particularly as phytoplankton biomass

is incorporated into offline fisheries models to predict changing catch potential [Christensen and

Walters, 2004, Travers-Trolet et al., 2009, Lehodey et al., 2010, Maury, 2010, Blanchard et al., 2012,

Christensen et al., 2015, Jennings and Collingridge, 2015, Tittensor et al., 2018]. In this context,

understanding changes in both phytoplankton biomass and its variance is essential in reducing

uncertainty in marine ecosystem projections.

The abundance and distribution of phytoplankton will likely change with anthropogenic

warming. Future projections of climate change impacts reveal a global loss of marine net primary

production (NPP) and phytoplankton biomass, particularly at middle and low latitudes [Steinacher

et al., 2010, Bopp et al., 2013, Lotze et al., 2019, Tittensor et al., 2021]. A majority of Earth Sys-

tem Models (ESMs) project an increase in phytoplankton abundance in the high latitude ocean

as light limitation is alleviated from stratification, increasing temperature stimulates photosynthe-

sis, and sea ice cover declines. In contrast, a decrease in the low latitude oceans is projected as

nutrient limitation from thermal stratification is enhanced [Steinacher et al., 2010, Kwiatkowski

et al., 2020]. While bottom-up controls (e.g. nutrient flux, light availability) have been shown to

affect phytoplankton growth in a changing climate, top-down controls (e.g. zooplankton grazing)

also play a role. For example, analysis across a suite of Earth system models (ESMs) forced under
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climate change scenarios revealed grazing pressure as a driver of biomass decline in low to interme-

diate latitude regions [Laufkötter et al., 2015]. Additionally, top-down controls have been shown

to affect regional changes in NPP and export production [Bopp et al., 2001]. Regional redistri-

butions of phytoplankton biomass have consequences for fisheries management and conservation

[Blanchard et al., 2017, Stock et al., 2017], and may have implications for economics and policy

making decisions [Moore et al., 2021].

While climate change is known to impact the mean state of phytoplankton biomass or NPP

[Bopp et al., 2013, Kwiatkowski et al., 2020], little is known about how climate change will affect

variability in these quantities. Several recent studies have demonstrated how other aspects of the

coupled atmosphere-ocean climate system are projected to experience changes in variance in a

changing climate [Resplandy et al., 2015, Landschützer et al., 2018, Kwiatkowski and Orr, 2018,

Rodgers et al., 2021]. For example, Resplandy et al. [2015] examined the contribution of internal

variability to air-sea pCO2 and pO2 fluxes with climate change using a suite of ESMs. Their

analyses revealed distinct regional differences in variability of air-sea pCO2 and pO2 fluxes. Other

studies have revealed increases in the frequency of modes of internal variability such as El Niño and

La Niña events in response to greenhouse warming [Timmermann et al., 1999, Cai et al., 2014, 2015,

2022]. Clarifying how variance in phytoplankton biomass may be changing over long time scales

with climate change is important for fisheries management, especially at regional scales. Near-term

predictions of phytoplankton biomass may also benefit from knowledge of the projected magnitude

of internal variability, as the chaotic nature of internal variability hampers near-term predictions

[Meehl et al., 2009, 2014].

Here, we quantify changes in the interannual variability of phytoplankton biomass over the

next century using a large ensemble of an ESM, in which each ensemble member experiences a

different phasing of internal climate variability but is forced with a common emissions scenario.

We illustrate the drivers of these changes in variance via statistical analysis of physical and biogeo-

chemical model output and demonstrate their relative importance in key fisheries regions.
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4.3 Methods

4.3.1 Community Earth System Model 1 Large Ensemble

4.3.1.1 Model Description

We evaluate changes in phytoplankton biomass variance using output from the Community

Earth System Model 1 Large Ensemble (CESM1-LE) [Kay et al., 2015]. CESM1 is a fully-coupled

climate model that simulates Earth’s climate under historical and Representative Concentration

Pathway (RCP) 8.5 external forcing by simulating the evolution of coupled atmosphere, ocean,

land, and sea ice component models [Hurrell et al., 2013]. The ocean physical model is the ocean

component of the Community Climate System Model version 4 [Danabasoglu et al., 2012] and has

a nominal 1° resolution and 60 vertical levels. The biogeochemical-ecosystem ocean model consists

of an upper-ocean ecological module which incorporates multi-nutrient co-limitation of nitrate, am-

monium, phosphate, dissolved iron, and silicate on phytoplankton growth and dynamic iron cycling

[Moore et al., 2004, Doney et al., 2006, Moore and Braucher, 2008]. The ocean biogeochemistry

component simulates three phytoplankton functional types (PFTs): diatoms, diazotrophs, and

small phytoplankton. Each PFT plays a unique role in the marine ecosystem and occupies a dis-

tinct ecological niche. For example, diatoms grow faster in cool, high-nutrient environments while

small phytoplankton thrive in warmer, low-nutrient environments. In contrast, diazotrophs are not

limited by nitrogen availability due to their ability to biologically fix nitrogen from the atmosphere.

Each PFT has a maximum growth rate, which is dictated by temperature (scaled by a temperature

function with a Q10 of 2.0), and limited by nutrient and light availability [Moore et al., 2004, 2013].

Anthropogenic warming can alter these environmental variables and in turn affect phytoplankton

abundance and productivity. Phytoplankton are subject to a linear mortality rate which is scaled

by temperature. Photoadaptation (variable chlorophyll to carbon ratios) occurs in response to

variations in irradiance and nutrient availability [Geider et al., 1998, Moore et al., 2004]. In addi-

tion to these bottom-up controls, top-down controls, such as zooplankton grazing, can also affect

phytoplankton biomass. The ecosystem model simulates a single generic zooplankton functional
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type (ZFT) with different grazing rates and half saturation constants prescribed for different PFTs

(e.g., slower zooplankton grazing rates for larger phytoplankton). Grazing rate is computed using

a Holling Type III (sigmoidal) relationship and is a function of both prey density and temperature

(Figure B.1). Zooplankton loss scales with temperature (scaled by a Q10 function) and a linear

mortality term which represents zooplankton losses from predation. While zooplankton growth and

loss terms both scale with temperature, a quadratic parameterization of the loss term results in a

relatively larger increase in loss than increase in production.

Large ensembles of ESMs are a recently developed research tool which allow us to disentangle

fluctuations due to internal climate variability from those imposed by externally forced anthro-

pogenic trends. Internal variability refers to variability in the climate system which occurs in the

absence of external forcing, and includes processes related to the coupled ocean-atmosphere system

(e.g. El Niño Southern Oscillation, Pacific Decadal Oscillation) [Santer et al., 2011, Deser et al.,

2010, Meehl et al., 2013]. In contrast, external forcing refers to the signal imposed by processes

external to the climate system, such as solar variability, volcanic eruptions, and rising greenhouse

gases from fossil fuel combustion [Deser et al., 2012, 2010, Schneider and Deser, 2018]. The CESM1-

LE simulates the evolution of the climate system with multiple ensemble members, each initiated

with slightly different atmospheric temperature fields and branched from a multi-century 1850 con-

trol simulation with constant pre-industrial forcing [Lamarque et al., 2010, Danabasoglu et al.,

2012]. Once the control simulation achieved equilibrium with the 1850 forcing, ensemble members

were integrated from 1920 to 2100 using round-off level differences in the initial air temperature

field [Kay et al., 2015], resulting in each ensemble member experiencing a different evolution of in-

ternal climate variability (e.g., each member has different phasing of climate modes such as El Niño

Southern Oscillation). Variable phasing of internal climate variability across ensemble members

can influence phytoplankton biomass variability through the propagation of physical climate vari-

ability to biologically relevant environmental variables. For example, an ensemble member with a

positive phasing of ENSO may display decreased phytoplankton biomass in the Eastern Equatorial

Pacific due to relatively warmer sea surface temperatures which increase stratification and decrease
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upwelling nutrient flux. RCP8.5 forcing was applied from 2006 to 2100 [Meinshausen et al., 2011]

with well-mixed greenhouse gases and short-lived aerosols [Lamarque et al., 2010] projected by four

different Integrated Assessment Models. A total of 40 ensemble members were generated for the

CESM1-LE experiment. Six CESM1-LE members had corrupted ocean biogeochemistry, therefore,

we use the 34 CESM1-LE members with valid ocean biogeochemistry.

4.3.1.2 Statistical Analysis of Model Output

Analyses were conducted using annual mean output at 1° resolution from 1920 to 2100.

Changes in CESM1 phytoplankton variance can be assessed via statistical analysis of chlorophyll

concentration, net primary productivity (NPP), or phytoplankton carbon concentration (an indi-

cator of total biomass). In our analysis we focus on biomass (phytoplankton carbon concentration)

because it is conserved in CESM1 and is an important predictor variable in offline fisheries models

[Christensen and Walters, 2004, Travers-Trolet et al., 2009, Lehodey et al., 2010, Maury, 2010,

Blanchard et al., 2012, Christensen et al., 2015, Jennings and Collingridge, 2015, Tittensor et al.,

2018]. Additionally, under climate change scenarios, phytoplankton biomass may be a more reliable

indicator than NPP of climate change impacts [Bopp et al., 2021]. Vertical integrals (top 150m) of

biomass carbon concentration from each PFT were calculated and then summed to create maps of

total phytoplankton biomass.

We classified the marine environment into 11 ecologically cohesive biomes as in Tagliabue

et al. [2021], which are a consolidation of the 38 ecological regions defined in Longhurst [2007]

using multivariate statistical analysis [Vichi et al., 2011]. Although we consider all 11 biomes in

our analysis, we analyze drivers in four biomes that are particularly relevant for fisheries production

and/or of high biogeochemical interest: the subpolar Atlantic (ASP), the subpolar Pacific (SAP),

the Equatorial Pacific (EQP), and the Southern Ocean (SOC). ASP is a consolidation of aggregated

biogeochemical provinces 4, 11, and 15, SAP a consolidation of 50 and 51, EQP a consolidation of

61, 62, and 63, and SOC a consolidation of 21, 81, 82, and 83 [Longhurst, 2007, Vichi et al., 2011].

Internal variability at each location (x, y) is approximated as the standard deviation (σ)
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Figure 4.1: Comparison between observed and modeled phytoplankton biomass interannual vari-
ability. (a) Temporal standard deviation in annual mean phytoplankton carbon concentration
reconstructed from remotely sensed chlorophyll concentrations, backscattering coefficients, and
phytoplankton absorption (1998 to 2019) [Bellacicco et al., 2020] (b) Temporal standard devia-
tion in annual mean phytoplankton carbon concentration simulated by ensemble member 1 of the
CESM1-LE over the same observational period (1998 to 2019).

across ensemble members (EMs) at a given time (t),

σ(x, y, t) = σ(EM(x, y, t)). (4.1)

The forced response of the large ensemble is calculated as the mean of ensemble members at a given

location and time,

LE(x, y, t) =

∑n
1 EM(x, y, t)

n
, (4.2)

where n is the number of ensemble members.

4.3.2 Model Evaluation

We used remotely sensed estimates of phytoplankton carbon to evaluate the representation of

phytoplankton variance in the CESM1-LE. Although phytoplankton carbon concentrations cannot

be measured directly by satellites, they can be reconstructed using algorithms that incorporate

remotely sensed chlorophyll concentrations, detrital backscattering coefficients, and phytoplankton



56

absorption [Kostadinov et al., 2016, Martinez-Vicente et al., 2017, Roy et al., 2017, Sathyendranath

et al., 2020, Brewin et al., 2021]. We use the observational phytoplankton carbon dataset of Bellaci-

cco et al. [2020], annually averaged and interpolated onto a 1° grid, to evaluate temporal variability

in phytoplankton biomass in a single model ensemble member. Figure 4.1a shows satellite de-

rived estimates of interannual variability in phytoplankton carbon with regions of relatively low

phytoplankton variability shown in light green and regions of relatively high variability in dark

blue. Remotely sensed observations capture areas of high interannual variability in the subpolar

North Atlantic, North Pacific, and Southern Ocean and areas of low interannual variability in the

subtropical gyre regions. Similar spatial patterns are apparent when compared to the range of phy-

toplankton interannual variability in ensemble member 1 of the CESM1-LE over the observational

period (1998 to 2019) (Figure 4.1b). However, while the model ensemble captures regional patterns

of observed variability, the CESM1-LE overestimates the magnitude of observed interannual vari-

ability. As such, estimates of interannual variability derived from the model ensemble will tend to

overestimate that observed in the real world.

We compare the internal variance in chlorophyll simulated in the CESM1-LE to a synthetic en-

semble generated from observed chlorophyll concentrations over the MODIS remote sensing record

[Elsworth et al., 2020, 2021] (Figure B.2; chlorophyll was readily available in the CESM1-LE and

can be directly compared with our synthetic ensemble of observed chlorophyll). A synthetic ensem-

ble is a novel technique that allows the observational record to be statistically emulated to create

multiple possible evolutions of the observed record, each with a unique sampling of internal climate

variability [McKinnon et al., 2017, McKinnon and Deser, 2018]. Compared to the internal variabil-

ity over the observational period (2002 to 2020) (purple circle, (Figure B.2), the model ensemble

underestimates the magnitude of internal variability in chlorophyll observed in the real world.

4.4 Results

Annually averaged, global mean, upper-ocean (top 150m) integrated phytoplankton biomass

across the model ensemble decreases from 76.1 mmol C m−2 to 66.2 mmol C m−2 from the historical
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Figure 4.2: (a) Global change in annual mean total phytoplankton carbon concentration simulated
by the CESM1-LE in mmol C m−2 from the historical period through the RCP8.5 forcing scenario
(1920 to 2100). The ensemble mean is shown in the black curve and the 34 individual ensemble
members are shown in the gray curves. (b) Global change in the coefficient of variance in annual
mean total phytoplankton carbon concentration over the same period, smoothed using a 5 year
window. Trend in the coefficient of variance over the RCP8.5 forcing scenario is shown in the black
dashed line.

period through the RCP8.5 forcing scenario (1920 to 2100), a decline of 13% (black curve; Fig-

ure 4.2a). Despite a global decline in phytoplankton biomass with anthropogenic warming, changes

are regionally heterogeneous (Figure 4.3a). Regional changes in mean phytoplankton biomass across

the RCP8.5 forcing scenario (2006 to 2100) display increasing biomass in portions of the Arctic

and the Southern Ocean that gradually become ice-free over the century (on the order of 20-40%

of the mean biomass) and decreasing biomass across the subtropical gyres (on the order of 15-30%

of the mean biomass; Figures 4.3a, B.3a). In the North Atlantic subpolar gyre, the phytoplankton

biomass declines by 40-50% of its mean (Figures 4.3a, B.3a), likely due to weakening of the At-
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lantic Meridional Overturning Circulation (AMOC) [Brander, 2010]. This result is consistent with

previous modelling studies which identified a 50% reduction in North Atlantic primary production

associated with AMOC weakening during the last glacial period [Schmittner, 2005]. A weakening

of the AMOC is also projected with anthropogenic warming [Manabe and Ronald, 1993, Stocker

and Schmittner, 1997].

Regional changes in phtyoplankton biomass are dominated by changes in diatom and small

phytoplankton (Table 4.1). We aggregate biomass across 11 ecological provinces [Vichi et al., 2011,

Tagliabue et al., 2021], and present changes in total and PFT biomass over the RCP8.5 scenario

in Table 4.1. We observe the largest decline in total phytoplankton carbon concentration in the

subpolar Atlantic (ASP) region, where diatom biomass declines by ∼80 mmol C m−2, and small

phytoplankton biomass increases slightly (∼8 mmol C m−2). We observe moderate decreases in the

subpolar Pacific (SAP) region that are again driven by declines in diatom carbon concentration,

with opposing trends in small phytoplankton carbon concentration (Table 4.1). We observe a

smaller decline in total carbon concentration in the Southern Ocean (SOC) region, where diatom

biomass declines ∼3 mmol C m−2 and small phytoplankton biomass declines ∼7 mmol C m−2. In

the Equatorial Pacific (EQP) region we observe the smallest decline in total phytoplankton carbon

concentration, where diatom biomass declines ∼7 mmol C m−2 and small phytoplankton biomass

declines ∼5 mmol C m−2.

Internal variability in global phytoplankton biomass, which is indicated by the spread across

the individual ensemble members (gray curves; Figure 4.2a), declines over the RCP8.5 forcing

period from 2006 to 2100. To quantify how the range of internal variability in phytoplankton

biomass is changing with anthropogenic warming, we calculated the coefficient of variance as the

standard deviation across the ensemble members for a given year (ensemble spread) divided by the

ensemble mean. Figure 4.2b illustrates the change in the coefficient of variance from the historical

period through the RCP8.5 forcing scenario (1920 to 2100). The coefficient of variance is relatively

constant across the historical period (1920 to 2005), and then significantly declines by ∼20% from

2006-2100.
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Figure 4.3: (a) Percentage change in annual total phytoplankton carbon concentration in mmol C
m−2 over the RCP8.5 forcing scenario (2006 to 2100) simulated by the CESM1-LE. (b) Percentage
change in annual total phytoplankton variablity over the same period. Hatched areas indicate
regions of trend insignificance determined by a t-test with a p value greater than 0.05.

A decrease in global phytoplankton internal variability with anthropogenic warming is not

unique to the CESM1-LE. We illustrate this by analyzing phytoplankton chlorophyll (rather than

biomass; chlorophyll was readily available in the CMIP5 archive) from three other CMIP5 ESM

large ensembles which include representation of ocean biogeochemistry: the GFDL-ESM2M from

the Geophysical Fluid Dynamics Laboratory [GFDL; Dunne et al., 2012, 2013], the CanESM2 from

the Canadian Centre for Climate Modelling and Analysis [Christian et al., 2010, Arora et al., 2011],

and the MPI-ESM-LR from the Max Planck Institute [MPI; Giorgetta et al., 2013, Ilyina et al.,

2013], consisting of 30, 50, and 100 ensemble members, respectively. Similarly to the CESM1-LE,

historical forcing was applied through 2005, followed by RCP8.5 forcing through 2100. While there

is substantial spread in the mean coefficient of variance across the four models, a similar decline

in the coefficient of variance can be observed across each of the four ESM ensembles, (Figure B.2).

From 2006 to 2100, the coefficient of variance decreases by 0.0026 in the CESM1-LE, 0.064 in

the MPI-ESM-LR1, 0.0064 in the CanESM2, and 0.018 in the GFDL-ESM2M. These declines are

statistically significant in all model ensembles with the exception of the MPI-ESM-LR1 (Figure B.2).

In contrast to the mean change in phytoplankton biomass, changes in phytoplankton internal

variability with time are spatially heterogeneous across the global ocean (Figure 4.3b). The largest
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decreases in variance are apparent in the North Atlantic and North Pacific subpolar regions, with

smaller declines in the Equatorial Pacific and Southern Oceans (Figure 4.3b). Changes in variance

in the subtropical regions are characterized by mixed trends. We observe the largest magnitude

decline in total phytoplankton carbon variance in the subpolar Atlantic (ASP) region, where di-

atom variance declines by ∼2.8 and small phytoplankton variance declines by ∼0.3. We observe the

smallest magnitude decline in total phytoplankton variance in the subpolar Pacific (SAP) region,

driven by a decrease in small phytoplankton variance with a minor decrease in diatom variance

(Table 4.1). In both the Southern Ocean (SOC) and the Equatorial Pacific (EQP) regions we ob-

serve moderate declines in phytoplankton variance, with a decrease in small phytoplankton variance

dominating the change.

Table 4.1: Changes in phytoplankton biomass and its variability in the CESM1-LE from 2006 to
2100 for the 11 ecological provinces defined in Vichi et al. [2011] and Tagliabue et al. [2021]. Units
are mmol C m−2.

Region Change in Mean Change in Variance

Biome Name Total Diatom Small Total Diatom Small

ARC Arctic –21 –58 +37 –1.4 –2.8 –0.3
ASP Arctic subpolar –71 –79 +8.2 –5.6 –9.9 –2.2
NAS North Atlantic subtropical gyre –18 –15 –2.9 –1.8 –2.8 –0.3
EQA Equatorial Atlantic –12 –6.6 –5.9 –0.1 –0.4 +0.2
SAS South Atlantic subtropical gyre –10 –7.2 –3.1 –0.5 –0.6 –0.1
IND Indian Ocean –11 –6.1 –4.7 +0.1 0 +0.1
SAP subarctic Pacific –21 –15 –5.4 –0.1 –1.4 –2.4
NPS North Pacific subtropical gyre –11 –5.6 –4.9 –0.2 –0.4 +0.1
EQP Equatorial Pacific –12 –6.6 –5.0 –2.0 –2.0 –0.2
SPS South Pacific subtropical gyre –8.9 –4.3 –4.6 –0.1 0 –0.1
SOC Southern Ocean –9.3 –2.8 –6.6 –1.0 0 –1.3

To guide our attribution analysis of changing phytoplankton variability, we considered the

dominant ecological assemblage across different regions of the global ocean. The CESM1-LE sim-

ulates three phytoplankton functional types, each of which thrive in distinct regions of the global

ocean. Diatoms dominate in the subpolar Atlantic and Pacific, the Eastern Equatorial upwelling

zone, and portions of the Southern Ocean, while small phytoplankton dominate across the sub-

tropical gyres and portions of the Southern Ocean (Figure 4.4). In contrast, diazotrophs, a minor
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contributor to total carbon biomass, are present at such low concentrations that they do not dom-

inate anywhere in the global ocean (Figure 4.4). Using the ecologically cohesive regions defined

by Tagliabue et al. [2021] and Vichi et al. [2011], we selected areas that align with the most pro-

ductive fisheries regions by catch in the Atlantic and Pacific basins [FAO, 2020], as well as regions

of global biogeochemical importance for further analysis. In each ecological region we identified

the dominant phytoplankton functional type to include in our driver analysis. In regions where

multiple phytoplankton functional types dominated, we used total carbon concentrations to reflect

the mixed ecological assemblage.

Diatoms Small 
Phytoplankton 

Diazotrophs 

Figure 4.4: Distribution of the dominant phytoplankton functional type in biomass carbon aver-
aged over 2006 to 2100. The CESM1-LE simulates three phytoplankton functional types: diatoms,
diazotrophs, and small phytoplankton. Regions where diatoms dominate are shown in yellow,
regions where diazotrophs dominate are shown in pink, and regions where small phytoplankton
dominate are shown in purple.

We quantified the relationship between phytoplankton carbon and the variables which con-

tribute to changing phytoplankton internal variance by performing a multiple linear regression

(MLR) analysis. The MLR analysis was performed on linearly detrended annual anomalies using

the ordinary least squares function of the Python package statsmodels.api. We then reconstructed

the contribution of each driver variable to phytoplankton variance between the beginning of the

century (2006 to 2016) and the end of the century (2090 to 2100) by multiplying the MLR regres-
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sion coefficients by the 10-year averaged standard deviation across the model ensemble (ensemble

spread) for each variable. We reconstruct phytoplankton variance as a function of light (Solar),

temperature (SST ), phosphate advection (Nutrient), mixed layer depth (MLD), and zooplankton

grazing (Grazing):

σCphyto
=

∂Cphyto

∂Solar
σSolar+

∂Cphyto

∂SST
σSST +

∂Cphyto

∂Nutrient
σNutrient+

∂Cphyto

∂MLD
σMLD+

∂Cphyto

∂Grazing
σGrazing

(4.3)

where σX represents the standard deviation across all ensemble members for a particular vari-

able and
∂Cphyto

∂X represents the MLR regression coefficient describing the relationship between a

particular variable and phytoplankton biomass.

We identify the drivers of changing phytoplankton internal variance in four distinct ecological

regions using our statistical approach. In the subpolar Atlantic (ASP) and subpolar pacific (SAP)

ecological provinces, where diatoms dominate total biomass (Figure 4.4), diatom variance declines

between the beginning and end of the century (Figure 4.5a, Table 4.1). In both provinces, the

largest contributions to this decline in diatom variability derive from a decline in diatom grazing

variability, while more minor contributions derive from bottom-up controls such as solar flux, sea

surface temperature, nutrient advection, and mixed layer depth (Figure 4.5a).

As the Southern Ocean (SOC) and Equatorial Pacific (EQP) provinces are characterized

by mixed phytoplankton assemblages where both diatoms and small phytoplankton dominate, we

identify the drivers of the change in total phytoplankton variance here. In contrast to the ASP

and SAP provinces, we observe a relatively smaller decline in internal phytoplankton variance

between the beginning and end of the century in the Southern ocean (Figure 4.5c). Similarly to

ASP and SAP provinces, the largest contributions to the change in internal variability derive from

a decline in grazing variability, with bottom-up controls playing only a small role (Figure 4.5c).

In the Equatorial Pacific, total phytoplankton variance declines between the beginning and end of

the century, with the largest contributions to this decline deriving from zooplankton carbon and
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diatom grazing, with increasing variance in small phytoplankton grazing (Figure 4.5d).

The parameterization of zooplankton grazing in the biogeochemical ecosystem model of the

CESM1 defines a single zooplankton functional type with different maximum grazing rates and half

saturation constants prescribed for the three PFTs. Zooplankton grazing rate is defined as a Holling

Type III (sigmoidal) function of maximum grazing rate, temperature (Q10 function), zooplankton

concentration, and phytoplankton concentration (Figure B.1) [Evjemo et al., 2000, Morozov, 2010,

Bemal and Anil, 2019]. To approximate the effects of climatic warming, we plot the relationship

between grazing rate and diatom concentration across a series of increasing temperatures. With

increasing temperature, maximum grazing rate increases across a range of diatom concentrations

(Figure B.1). Changes in diatom concentration in mmol m−3 between the beginning and end of the

century are denoted by dark and light orange circles, respectively for the ASP region (top) and the

SAP region (bottom). A decline in diatom concentration across the century results in a reduction

in maximum grazing rate in these regions (Figure B.1).

4.5 Conclusions and Discussion

We quantify both global and regional changes in phytoplankton internal variance across the

RCP8.5, or business-as-usual forcing scenario in the CESM1-LE. We observe a global decline in

phytoplankton variance in the model ensemble, which is reflected in similar declines in phytoplank-

ton variance across a suite of CMIP5 models. Regional changes in phytoplankton variability with

anthropogenic climate change in the model ensemble are spatially heterogeneous, with highly pro-

ductive fisheries regions and important global biogeochemical regions experiencing large changes in

variance. Statistical analysis of these specific regions reveal zooplankton grazing (top-down control)

as an important contributor to changes in phytoplankton variance, consistent with previous studies

[Bopp et al., 2001, Laufkötter et al., 2015].

While the CESM1-LE represents regional patterns of observed variability, the model ensemble

tends to underestimate the magnitude of observed internal variance in phytoplankton carbon. As

such, the magnitude of changes in phytoplankton internal variance derived from the model ensem-
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Figure 4.5: Reconstructed changes in the contribution of each driver variable to phytoplankton
variance across the RCP8.5 forcing scenario (2006 to 2100) with the beginning of the century shown
in light blue and the end of the century shown in dark blue. Marine ecological regions are defined
in Tagliabue et al. [2021]. Regions were selected which aligned with the highest fisheries catch in
the (a) Atlantic and (b) Pacific basins and the biogeochemically important (c) Southern Ocean and
(d) Equatorial Pacific regions. The dominant phytoplankton functional type is considered in each
region. In regions with a mixed ecological assemblage, total phytoplankton carbon is considered.

ble should be interpreted as an underestimate when considering changes in phytoplankton internal

variance driven by anthropogenic warming. This caveat is particularly important to consider when

interpreting projections from offline fisheries models in the context of fisheries adaptation and plan-

ning. Additionally, our statistical approach has inherent limitations, especially in the context of

a attributing drivers in an inherently coupled system such as an ESM (e.g. reconstructing rela-

tionships between terms with nonlinear, dependent relationships). However, the statistical method

can be used as an effective tool to provide a first-order approximation of drivers of phytoplankton

variance across the century.

While many studies attribute bottom-up controls to changing phytoplankton with anthro-
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pogenic warming [Steinacher et al., 2010, Bopp et al., 2013, Lotze et al., 2019, Tittensor et al.,

2021], top-down controls may also play an important role, particularly in our understanding of

changing phytoplankton variance. Studies of phytoplankton change with climatic warming have

demonstrated that grazing pressure is a driver of biomass decline in low to intermediate latitude

regions across a suite of model simulations with different marine ecosystem models [Laufkötter

et al., 2015] and that top-down controls can affect regional changes in NPP and export production

[Bopp et al., 2001]. While grazing pressure has been shown to increase in response to climate

change, several ecosystem models have also identified zooplankton grazing as a dominant driver of

phytoplankton assemblage succession during blooms [Hashioka et al., 2012, Prowe et al., 2012a].

Additionally, top-down controls have also been observed to affect the onset of the spring bloom

[Behrenfeld, 2010, Behrenfeld et al., 2013] and to influence primary production in a trait-based

ecosystem model [Prowe et al., 2012b].

The relative simplicity of the ocean biogeochemical ecosystem model in CESM1 (BEC) (e.g.

representation of a single zooplankton functional type with multiple grazing rates) may limit a more

detailed evaluation of changing grazing pressures with climate change. While the recent parameteri-

zation of the biogeochemical ecosystem model in CESM2 (MARBL) includes similar representation

of three PFTs and a single adaptive ZFT [Long et al., 2021], more complex configurations of

MARBL include explicit representation of additional PFTs such as coccolithophores [Krumhardt

et al., 2019] and ZFTs. Using more complex ecosystem models, additional insights into drivers

of variability may be gained using our statistical approach. Additionally, the use of an ecosystem

model of higher complexity may provide more realistic projections of the marine ecosystem with

climate change considering change in phytoplankton and zooplankton species diversity with anthro-

pogenic warming [Benedetti et al., 2021]. However, our regional analyses suggest that zooplankton

grazing pressure should be considered as an important driver of changes in phytoplankton biomass

and its variance with anthropogenic warming.

The magnitude and direction of regional changes in phytoplankton internal variance are an es-

sential constraint for near-term (subseasonal to decadal) predictions of the local marine ecosystem,
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particularly in important fisheries regions such as the subpolar Atlantic (ASP) and the subpolar

Pacific (SAP) ecological provinces which align with the most productive fisheries region by catch in

the Atlantic and Pacific Basins, respectively [FAO, 2020]. Accurate near-term predictions require

foreknowledge of both internal climate variability and external climate change signals. On sub-

seasonal to decadal timescales, the magnitude of internal climate variability is often stronger than

forced climate change signals [Meehl et al., 2009, 2014]. In this context, a decline in phytoplank-

ton internal variance with anthropogenic climate change may improve the accuracy of near-term

predictions of phytoplankton biomass, producing more reliable forecasts of fisheries productivity.

Future work can utilize these constraints on phytoplankton variance, particularly on regional scales,

to inform climate mitigation and adaptation efforts.



Chapter 5

Summary and Conclusions

The abundance and distribution of phytoplankton in the global ocean is controlled by both

internal climate variability and external anthropogenic forcing. While the ocean biosphere may

be responding to anthropogenic climate change, the relatively short length of the observational

record challenges our ability to disentangle fluctuations in internal climate variability from exter-

nally forced anthropogenic trends. In contrast, large ensembles of ESMs can be used to confidently

isolate the response due to internal climate variability and external forcing, but may not skillfully

represent observed spatial patterns in marine phytoplankton. In Chapter 2, the construction of an

observationally constrained synthetic ensemble of surface ocean chlorophyll concentrations reveals

the important role of internal variability in remotely sensed records of the ocean biosphere across

the global ocean. This result cautions against interpreting long-term trends across the observa-

tional record as externally forced signals of anthropogenic climate change. The validation of this

statistical methodology in the context of an ESM ensemble is presented in Chapter 3. The sta-

tistical methodology successfully reproduces variability in surface ocean chlorophyll concentrations

simulated by the CESM1-LE. A wider range of possible trends in chlorophyll due to the sampling of

internal variability are identified in subpolar regions than in subtropical regions, providing context

for the regional interpretation of trends in the ocean biosphere. In Chapter 4, internal variability in

global phytoplankton biomass is observed to decline with anthropogenic warming across a suite of

ESM ensembles, with regional heterogeneity. Statistical analysis of a single model ensemble reveals

zooplankton grazing as an important contributor to changes in phytoplankton variance in biogeo-
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chemically and ecologically relevant regions, highlighting the importance of top-down controls in a

warming climate. The results of this dissertation are timely in the contemporary scientific literature

for several reasons.

While there is a mechanistic understanding of how anthropogenic climate change may affect

the ocean biosphere over time, there is debate about whether these changes are already detectable

from remotely sensed observations. Some studies suggest that the influence of anthropogenic warm-

ing on the ocean biosphere can be detected over an observational period as short as a decade

[Behrenfeld et al., 2007, Castillo et al., 2019, Gregg and Rousseaux, 2019]. However, other studies

suggest that a continuous observational record of between 20 and 60 years is required to detect

a statistically significant trend in remote sensing datasets of chlorophyll concentration [Beaulieu

et al., 2013, Henson, 2014, Gregg and Rousseaux, 2014, Henson et al., 2016, Krumhardt et al., 2017].

The research in this dissertation contributes to this debate by contextualizing trends in the ocean

biosphere over the observational record in the presence of internal climate variability. While there

are limitations in applying the statistical methodology of the observationally constrained synthetic

ensemble over short time periods, it cautions against the interpretation of trends as externally forced

across the majority of the global ocean. Additionally, the synthetic ensemble provides context for

the likelihood of trends being externally forced across different regions of the global ocean, with a

wider range of possible chlorophyll trends in subpolar regions than in subtropical regions. The re-

sults of the synthetic ensemble emphasize the importance of continued collection of ocean biosphere

observations to provide more robust assessments of externally forced climate change impacts on

marine phytoplankon.

The recent development of large ensembles of ESMs allow us to distinguish internal climate

variability from external anthropogenic forcing among a variety of ocean biogeochemical variables

[Rodgers et al., 2015, Long et al., 2016, McKinley et al., 2016, Lovenduski et al., 2016, Frölicher

et al., 2016, Brady et al., 2019, Schlunegger et al., 2019]. While observational records of the

ocean biosphere have historically been used to initialize, validate, and compare ESMs, a synthetic

ensemble can be used to evaluate simulated phytoplankton variance. In Chapter 4, we compare the
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range of phytoplankton variance in observed surface ocean chlorophyll to the range of phytoplankton

variance simulated by the CESM1-LE. While the CESM1-LE underestimates the observed range of

phytoplankton variance, the statistical method allows for the integration of observations and ESM

ensembles in the context of internal variability. This is an important addition to the literature,

as future work can utilize this statistical methodology to compare ranges of observed internal

variability with ranges of simulated internal variability across a variety of Earth system variables.

Indeed, new papers are emerging in the literature that aim to use this statistical approach for

other important variables [Deser et al., 2020]. Additionally, the synthetic ensemble methodology

can complement the use of observations in comparing the ability of multiple ESMs ensembles to

simulate observed ranges internal variability, as is done in Chapter 4.

While internal variability in the coupled atmosphere-ocean climate system is often assumed

to be constant with anthropogenic warming, there is growing recognition in the literature that

internal variability may change as the climate warms [Resplandy et al., 2015, Thompson et al., 2015,

Landschützer et al., 2018, Kwiatkowski and Orr, 2018, Rodgers et al., 2021]. This development

is of particular importance in refining future projections under climate change scenarios. As the

base of the marine food web, constraining change in phytoplankton variance is essential in reducing

uncertainty in marine ecosystem projections. The research in this dissertation contributes to this

gap of knowledge by quantifying how simulated variance in phytoplankton biomass changes with

anthropogenic warming. Globally, we identify a decline in phytoplankton biomass with climate

change in the CESM1-LE and across a suite of CMIP5 models, with heterogeneous regional trends.

We observe large declines in phytoplankton variance with climate change in important fisheries

regions in the CESM1-LE. Clarifying how variance in phytoplankton biomass may be changing over

long time scales with climate change is important for fisheries management, especially at regional

scales. Near-term predictions of phytoplankton biomass may also benefit from knowledge of the

projected magnitude of internal variability, as the chaotic nature of internal variability hampers

near-term predictions [Meehl et al., 2009, 2014].

Many studies attribute bottom-up controls, such as changes in nutrient flux, temperature,
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and light availability, to changing phytoplankton growth in a warming climate [Steinacher et al.,

2010, Bopp et al., 2013, Lotze et al., 2019, Tittensor et al., 2021]. However, top-down controls, such

as zooplankton grazing, have also been shown to play a role [Bopp et al., 2001, Laufkötter et al.,

2015, Prowe et al., 2012a,b, Hashioka et al., 2012]. In Chapter 4, we demonstrate through statistical

analysis the importance of grazing (top-down) controls on phytoplankton variance with climatic

warming. In contrast, bottom-up controls exert a minor influence on phytoplankton variance. This

is an important contribution to the literature, as existing analyses have focused on attributing

drivers to changes in the bottom-up controls such as nutrient flux and light availability. These

results contribute additional information in the context of this ongoing debate of dominant drivers of

marine phytoplankton in a warming climate. Additionally, future improvements in the complexity of

biogeochemical ecosystem models may allow more detailed evaluation of changing grazing pressures

with climate change. For example, more complex configurations of the ecosystem model MARBL

[Long et al., 2021] include explicit representation of additional PFTs such as coccolithophores

[Krumhardt et al., 2019] and multiple ZFTs. Potentially, these more complex ecosystem models

will provide a more realistic representation of complex marine ecosystems.

Phytoplankton and zooplankton biodiversity is projected to change with anthropogenic warm-

ing, with a global increase in phytoplankton species richness and a slight decline in zooplankton

species richness [Benedetti et al., 2021]. As species migrate poleward due to warming ocean tem-

peratures, it will be essential to monitor changes in both ecosystem composition and location. The

upcoming NASA’s Plankton Aerosol Cloud ocean Ecosystem (PACE) mission is positioned to pro-

vide this information with the first global measurements of phytoplankton functional type. The

ability to identify phytoplankton community composition remotely will improve our understanding

of Earth’s changing marine ecosystems and assist in the management of fisheries resources.
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T. Frölicher, K. Rodgers, C. Stock, and W. Cheung. Sources of uncertainties in 21st century
projections of potential ocean ecosystem stressors. Global Biogeochemical Cycles, 30:1224–1243,
2016. doi: 10.1002/2015GB005338.

R. Geider, H. Macintyre, and T. Kana. A dynamic regulatory model of phytoplanktonic acclimation
to light, nutrients, and temperature. Limnology and Oceanography, 43:679–694, 06 1998. doi:
10.4319/lo.1998.43.4.0679.

M. Giorgetta, J. Jungclaus, C. Reick, S. Legutke, J. Bader, M. Böttinger, V. Brovkin, T. Crueger,
M. Esch, K. Fieg, K. Gorges, V. Gayler, H. Haak, H.-D. Hollweg, T. Ilyina, S. Kinne, L. Korn-
blueh, D. Matei, T. Mauritsen, and B. Stevens. Climate and carbon cycle changes from 1850 to
2100 in mpi-esm simulations for the coupled model intercomparison project phase 5. Journal of
Advances in Modeling Earth Systems, 5, 09 2013. doi: 10.1002/jame.20038.

S. Giovannoni and K. Vergin. Giovannoni sj, vergin kl.. seasonality in ocean microbial communities.
science 335: 671-676. Science, 335:671–6, 02 2012. doi: 10.1126/science.1198078.

H. Gordon and A. Morel. Remote Assessment of Ocean Color for Interpretation of Satellite Visible
Imagery, volume 4. 01 1983. doi: 10.1007/978-1-4684-6280-7.

W. Gregg and M. E. Conkright. Decadal changes in global ocean chlorophyll. Geophysical Research
Letters, 29:20–1–20–4, 2002. doi: 10.1029/2002GL014689.

W. Gregg and C. Rousseaux. Decadal trends in global pelagic ocean chlorophyll: A new assessment
integrating multiple satellites, in situ data, and models. Journal of Geophysical Research: Oceans,
119:5921–5933, 2014. doi: 10.1002/2014JC010158.



76

W. Gregg and C. Rousseaux. Global ocean primary production trends in the modern ocean color
satellite record (1998–2015). Environmental Research Letters, 14:124011, 11 2019. doi: 10.1088/
1748-9326/ab4667.

M. Hammond, C. Beaulieu, S. Sahu, and S. Henson. Assessing trends and uncertainties in satellite-
era ocean chlorophyll using space-time modeling: Ocean chlorophyll trends and uncertainty.
Global Biogeochemical Cycles, 06 2017. doi: 10.1002/2016GB005600.

M. Hammond, C. Beaulieu, S. Henson, and S. Sahu. Regional surface chlorophyll trends and
uncertainties in the global ocean. Nature Scientific Reports, 10:15273, 2020. doi: 10.1038/
s41598-020-72073-9.

T. Hashioka, M. Vogt, Y. Yamanaka, C. Le Quéré, E. Buitenhuis, M. Aita, S. Alvain, L. Bopp,
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R. Séférian, I. Totterdell, M. Vichi, and C. Voelker. Drivers and uncertainties of future global ma-
rine primary production in marine ecosystem models. Biogeosciences Discussions, 12:3731–3824,
02 2015. doi: 10.5194/bgd-12-3731-2015.
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Appendix A

Supplementary Material for Chapter 3

This supplemental information contains regression coefficients between the climate modes

ENSO and PDO and global chlorophyll concentrations from the MODIS ocean color dataset. Figure

S1 displays the spatially varying regression coefficients of the two climate modes and chlorophyll

concentration estimated via linear regression.

(a)

(b)

Regression Coefficient
0.06750.0450

0.8

0.02250.000-0.0225-0.0450-0.0675

Figure A.1: The sensitivity of chlorophyll concentration derived from the MODIS ocean color
record to (a) ENSO and (b) PDO. Regression coefficients are estimated using linear regression.



Appendix B

Supplementary Material for Chapter 4

In our discussion of zooplankton grazing as a driver of changing phytoplankton variance with

anthropogenic warming, we consider the parameterization of zooplankton grazing in the CESM1-

LE. The biogeochemical ecosystem model simulates a single generic zooplankton functional type

(ZFT) with different grazing rates and half saturation constants prescribed for different PFTs (e.g.

slower zooplankton grazing rates for larger phytoplankton). Grazing rate for the single ZFT is

computed using a Holling Type III (sigmoidal) relationship:

G = gmax · Tlim · Z · P 2

P 2 +K2
(B.1)

where gmax is the maximum grazing rate, Tlim is the temperature limitation (Q10) function, Z is

the zooplankton concentration, P is the phytoplankton concentration, and K is the half-saturation

constant for grazing. Zooplankton loss scales with temperature and a linear mortality term which

represents zooplankton losses from predation.

Figure B.1 illustrates changes in grazing rate as a function of diatom concentration using

this parameterization. To approximate the effects of climatic warming, we plot the relationship

for across a series of increasing temperatures: (blue) 5◦C, (orange) 10◦C, and (green) 15◦C. The

maximum grazing rate increases with warming temperatures. Changes in diatom concentration in

mmol m−3 between the beginning and end of the century are denoted by dark and light orange

circles, respectively.
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Figure B.1: Holling Type III (sigmoidal) functional parameterization of zooplankton grazing rate
in the biogeochemical ecosystem model of the CESM1-LE across a range of temperatures. Changes
in diatom concentration between the beginning and end of the century are shown in the dark and
light orange circles, respectively, with the changes in the ASP region shown above and changes in
the SAP region shown below.

To provide context for the CESM1-LE results, we examine changes in chlorophyll variance from

a subset of the Coupled Model Intercomparison Project 5 (CMIP5) models [Taylor et al., 2011]:

the GFDL-ESM2M from the Geophysical Fluid Dynamics Laboratory (GFDL; [Dunne et al., 2012,

2013], the CanESM2 from the Canadian Centre for Climate Modelling and Analysis [Christian et al.,

2010, Arora et al., 2011], and the MPI-ESM-LR from the Max Planck Institute (MPI; [Giorgetta

et al., 2013, Ilyina et al., 2013], consisting of 30, 50, and 100 ensemble members, respectively.

Similarly to the CESM1-LE, historical forcing was applied through 2005, followed by RCP8.5

forcing through 2100.

We compare the variance in chlorophyll observed among the large ensembles to a synthetic

ensemble generated from observational chlorophyll concentrations over the MODIS remote sensing

record [Elsworth et al., 2020, 2021]. A synthetic ensemble is a novel technique that allows the ob-

servational record to be statistically emulated to create multiple possible evolutions of the observed
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record, each with a unique sampling of internal climate variability [McKinnon et al., 2017, McKin-

non and Deser, 2018]. We use the synthetic ensemble of chlorophyll concentration to compare the

variability observed in the real world to the variability simulated across a suite of ESM ensembles.
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Figure B.2: Coefficient of variance (internal standard deviation divided by ensemble mean) in
annual mean global surface ocean chlorophyll concentration from 2006 to 2100 across a suite of
CMIP5 model ensembles: (blue) CESM1-LE (orange) MPI-ESM-LR1, (green) CanESM2, and
(pink) GFDL-ESM2M. The average coefficient of variance of the synthetic ensemble created using
the MODIS surface ocean chlorophyll record is shown in the purple dot on the vertical axis [Elsworth
et al., 2020, 2021].

To provide context for Figure 4.3, we include the spatial distribution of total phytoplankton

carbon concentration (Figure B.3a) and standard deviation in phytoplankton carbon concentration

(Figure B.3b) simulated by the CESM1-LE across the RCP8.5 forcing scenario (2006 to 2100).

Total phytoplankton carbon concentration is relatively high in the subpolar Atlantic and Pacific,

the Southern Ocean, and the Eastern Equatorial Upwelling Zone and relatively low in the subtrop-

ical gyre regions (Figure B.3a). Regions of relatively high phytoplankton carbon concentrations

correspond to regions of high variance (Figure B.3b).
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Figure B.3: (a) Total phytoplankton carbon concentration simulated by the CESM1-LE in mmol
C m−2 averaged across the RCP8.5 forcing scenario (2006 to 2100). (b) Standard deviation in total
phytoplankton carbon concentration averaged over the same period.


	Introduction
	Importance of Phytoplankton in the Earth System
	Observing Marine Phytoplankton
	Modeling Marine Phytoplankton

	Climate Variability and Change
	Synopsis of the Dissertation

	Finding the fingerprint of anthropogenic climate change in phytoplankton abundance
	Abstract
	Introduction
	Importance of Phytoplankton to Ocean Biogeochemical Dynamics
	Anthropogenic Stratification and Ocean Phytoplankton

	Observing Changes in Ocean Phytoplankton
	Modeling Changes in Ocean Phytoplankton
	Synthetic Ensemble of Ocean Chlorophyll Concentration
	Conclusions

	Alternate history: A synthetic ensemble of ocean chlorophyll concentrations
	Abstract
	Introduction
	Data and Model Output
	Observations
	Community Earth System Model Large Ensemble

	Creating a synthetic ensemble of the observational record
	HOT
	MODIS

	Evaluating the synthetic ensemble methodology using CESM1-LE
	Implications for the interpretation of observational records
	Conclusions

	Anthropogenic climate change drives non-stationary phytoplankton variance
	Abstract
	Introduction
	Methods
	Community Earth System Model 1 Large Ensemble
	Model Evaluation

	Results
	Conclusions and Discussion

	Summary and Conclusions
	 Bibliography
	Supplementary Material for Chapter 3 
	Supplementary Material for Chapter 4 


