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Executive summary 

The Institute for Catastrophic Loss Reduction creates and disseminates disaster resilience knowledge 

for Canada. Among the catastrophes ICLR addresses are hailstorms, one of Canada’s most serious 

natural hazards. Hail costs $400 million annually. A June 2020 hailstorm at the edge of Calgary 

damaged 77,000 homes and cost $1.4 billion. Much of that money paid for roof repairs. A direct hit 

on Calgary could be 5 to 10 times worse. Though the hailstorm is inevitable, the catastrophe is not. 

This document summarizes a study of one way that homeowners and insurers can prevent costly hail 

damage: by using impact-resistant asphalt shingle roofs instead of standard shingles. 

Impact-resistant roof shingles look like ordinary shingles, but have material that makes them resistant 

to hail damage. When struck by large hailstones, they resist pits and fractures that would otherwise 

allow water to pool or penetrate beneath them. And they resist cosmetic damage like the loss of 

granules: the specks that cover the shingle surface. 

Impact-resistant Non-impact-resistant 

Hail resilience has costs and benefits
 

For a 170-m2 (1,800-ft2) impact-resistant roof in Calgary:
 

Cost = $3,400
 

Benefit = $10,000
 

Benefit-cost ratio = 3:1
 

Benefit-cost ratio reaches 8:1 elsewhere
 

Impact-resistant shingles can add 50% to the cost of a roof. For a 170-m2 (1,800-ft2) roof, 


the added cost is $3,400. This study used a method called performance-based 


engineering to estimate how much loss the shingles prevent, compared with standard shingles. 


One can compare the costs and benefits on an apples-to-apples basis. 


The Institute for 

Catastrophic Loss 

Reduction performed a 

benefit-cost analysis of 

impact-resistant asphalt 

roof shingles. The analysis 

shows that the shingles 

save more than they cost 

in Hailstorm Alley and 

many other places. 

ii 



What does an 

impact-resistant 

shingle resist? 

A 55-g, 50-mm 

hailstone falling at 

terminal velocity 

from 1 km strikes 

like a 550-g, 

50-mm steel ball 

falling 6 metres. 

That is like the 

worst impact 

by the biggest 

hailstone in 99% 

of storms. 

1,000 m 6 m 

 

  

Figure ES-1. Yellow shows where impact-resistant shingles more than pay for themselves on average. 

Impact resistant shingles make financial sense across all of Hailstorm Alley 

The shingles are cost effective wherever it hails almost once a year or more, the yellow areas in 

Figure ES-1. Climate change will worsen future hailstorms, making impact-resistant shingles more 

valuable and the yellow area bigger. 

Impact resistant shingles can save 8 times what they cost 

In Calgary, impact-resistant shingles reduce the chance of damage by 15 times. If the roof is damaged, 

average repair cost drops by half. Considering how frequently hailstorms happen, that saves $3 for 

every $1 in added cost, or $10,000 over a life of a roof. The shingles pay for themselves in 5 years, on 

average. (That assumes one repairs the roof every time it gets damaged.) Figure ES-2 shows where the 

shingles are most cost effective: red means savings 8 times the cost. 

Figure ES-2. Benefit-cost ratio (BCR) for class-4 (the highest on a 1-to-4 rating scale) impact-resistant 

asphalt shingles. The shingles more than pay for themselves anywhere colored light blue or warmer, 

wherever the benefit is more than 1 times the cost. 

The costs and benefits scale up or down with roof size. Equations in the technical report show 

a mathematically-inclined reader how to scale the costs and benefits for different sized roof and 

different locations. Like all studies, this one has its assumptions, limitations, technical details, 

and suggestions for future research. See chapter 5 to learn more. 
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EAL	 Expected annualized loss 

exp	 Exponential function 

fab	 Fraction of hailstones between diameters 
a and b 

fDL	 Probability density function of DL 

FD	 Cumulative distribution function of D 

FDL	 Cumulative distribution function of DL 

fh	 Frequency of hailstorms 

f0	 A small fraction of roof damage 

FM	 Factory Mutual 

ft.	 Feet 

G	 Mean exceedance frequency 

GST	 Goods and services tax 

H Intensity measure 

hr Hours 

Hr Hitrate 

HST Harmonized sales tax 

in Inches 

kg Kilograms 

km Kilometres 

kn Spring stiffness 

kN Kilonewtons 

L Loss measure 

lb Pounds 

ln Natural logarithm 

m Metres, or slope of a line 

min Minutes 

mm Millimetres 

N Number of hailstones 

N/A Not applicable 

nObs Number of observations 

OSB Oriented strandboard 

p Probability, a particular value 

P[A|B] Probability of A given B 

PV Present value (of future loss) 

r Discount rate 

R Factor to account for repair difficulty, or 
structural response, or hailstone area 
density 

RCP	 Representative concentration pathway 

rmax	 Maximum excitation to which specimens 
are subjected 

sec	 Seconds 

sq	 Roofing square (9.29 m2, 100 ft2) 

t	 Period of time 

T	 Duration of hailstorm 

UL	 Underwriters Laboratory 

USD	 United States dollars 

V	 Value exposed to loss, or replacement 
cost new 

v0	 Hailstone velocity 

x	 X-coordinate of a line 

y	 Year, e.g., 2021 

yr	 Years 
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1. Introduction 

1.1 Motivation and audience 

Severe hailstorms have the potential to produce economic catastrophes. In the average year since 

2013, Canadian insurers have paid 26,000 claims totaling $370 million in insured loss for personal 

property damage in hailstorms. The June 13, 2020, Calgary hailstorm resulted in 70,000 insurance 

claims and cost $1.3 billion in insured losses, the fourth costliest natural disaster in Canadian history. 

An AIR study estimated that a direct-hit Calgary hailstorm could produce insured loss over $10 billion 

(Robinson 2016). Such a hailstorm may be inevitable, but the economic catastrophe is not. People 

can change buildings before the storm to reduce the damage and loss. Anecdotal evidence from 

hailstorms and laboratory experiments (discussed later) suggest that the largest contributor to hail 

damage and loss to buildings comes from roof repair. The present study offers the business case for 

installing impact-resistant asphalt shingle roofing on buildings that would otherwise have non

impact-rated asphalt shingle roofs. 

The study should interest several audiences. Hail damage matters to insurers because in an average 

year, an estimated 30-40% of shingles are, in a sense, purchased by insurers as part of an insurance 

claim (A. Cope, Insurance Institute for Business and Home Safety, verbal commun., November 22, 

2021). Builders may want to understand the business case for building beyond code minima. 

Code-writing bodies might want to understand where and why to impose requirements for impact-

resistant roofing. Governments might want to offer incentives for building owners to mitigate hail 

damage. Structural engineers may find value in the new performance-based hail engineering 

methodology developed here. 

Few members of these audiences will get much value from this technical report. Most will prefer the 

executive summary to this report and other brief summaries that this report informs. But a few 

readers will need to examine the underlying analytical method, supporting data, input and outputs, 

and assumptions, and the briefer materials rely on the details presented here. 

1.2 Objectives and scope 

Asphalt roof shingle manufacturers have enhanced the impact resistance of some shingle products 

for example by adding a rubber-like polymer to the asphalt. The present work develops part of the 

business case for impact-resistant roofing. It first develops a general performance-based engineering 

methodology to evaluate the performance of impact-resistant roofing in terms of probabilistic repair 

costs. It then addresses these questions: 

1.	 How can one estimate the costs and benefits of using impact-resistant asphalt shingle roofing for 

a new roof on a sample facility, using a performance-based approach? 

2.	 What does the methodology imply about the cost-effectiveness of impact-resistant roof shingles 

on a typical single-family dwelling in Hailstorm Alley? 

3.	 Should an insurer who covers a hail-damaged non-impact-resistant roof pay to rebuild the roof 

stronger, with impact-resistant shingles? Note that ICLR (2021) champions hail damage-reduction 

efforts following the 2020 Calgary hailstorm, including launch of ICLR’s HailSmart™. The present 

study contributes to ICLR’s efforts to strengthen hail research, partly to inform its Insurers Rebuild 

Stronger Homes program. 
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4.	 Does it make financial sense for an uninsured homeowner to pay more for an impact-resistant 

roof? ICLR (2018) advocates for homeowners to install class-4 impact-resistant roofing for all 

homes located in regions of moderate or high risk of hail. (Class 4 refers to a 0-to-4 rating system 

where 4 reflects the greatest resistance to hail. More details later.) The present study is partly 

intended to map the geographic locations where impact-resistant roofing makes the most 

financial sense under current climate conditions and for the next few decades. 

This study only applies the method to laminated asphalt shingle roofing. It only superficially addresses 


3-tab shingles and premium shingles. It does not address changing asphalt shingle roofing to 


different materials such as metal. Nor does it examine siding, vehicles, agriculture, or hail seeding. 


The performance-based method developed here can be applied to those issues at another time. 


The study does not attempt to estimate costs and benefits for buildings in other countries, although 


again its methods can be readily applied elsewhere.
 

1.3 Organization of the report 

This chapter presents motivation and scope of the study. Chapter 2 reviews much of the relevant 

literature. See chapter 3 for a proposed performance-based engineering method to estimate the 

costs and benefits of impact-resistant roofing. Chapter 4 presents findings after applying the method 

to a particular hypothetical house. See chapter 5 for general conclusions. Chapter 6 presents a listing 

of references cited. 
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2. Literature review 

A benefit-cost analysis of impact-resistant roofing for hail damage requires a review of the leading 

methods to estimate benefits and costs, as well as important references on roofing, hail hazard, hail 

damage, and repair costs. These are now presented. 

2.1 Performance-based engineering 

Performance-based engineering is a framework that engineers use to estimate the future 

performance of buildings and other assets in term that owners, tenants, and others care about most, 

namely repair costs, life-safety impacts, and loss of function (“dollars, deaths, and downtime”). 

As developed since about 2000 (e.g., Porter 2003), performance-based engineering offers some 

additional unique capabilities that are particularly important here. One can estimate how a small but 

potentially important design choice such as the impact-resistance rating of the roof affects future 

repair costs. One can quantify and propagate all important source of uncertainty through the analysis 

to calculate expected values of loss and loss with various degrees of likelihood. One need not possess 

large quantities of actuarial-quality data that directly relate all features of the asset’s design and its 

past performance. 

2.2 Prior hail benefit-cost analyses and risk studies 

Several authors have examined the engineering economics of various aspects of hail risk. Robinson 

(2016) reports on an AIR study that estimated that a direct-hit Calgary hailstorm could produce 

insured loss over $10 billion, if maximum hailstone size reached 100 mm. Pang (1999) recaps a study 

by Manitoba Public Insurance into the cost-effectiveness of gluing, versus welding, automobile roof 

panels to facilitate hail repairs: doing so saves $400 per car roof. 

Several authors estimated the economics of hail suppression. Sonka and Chagnon (1977) outline a 

method to estimate the benefits of hail suppression in terms of reduced crop losses. They estimate a 

modest benefit-cost ratio (1.2:1) for Kansas. Borland (1977) offers an interesting index of hail 

damage potential to residential buildings, in units of mean damage factor per year. Swanson et al. 

(1978) and Chagnon et al. (1978) estimate that hailstorm seeding could produce high benefit-cost 

ratios (perhaps 15:1) by reducing future US crop losses. 

None of these works offers a benefit-cost analysis of impact-resistant asphalt shingles, siding, 

glazing, or other elements of the building envelope. Notably, the Insurance Institute for Business and 

Home Safety (2013) subjected a full-scale building to a realistic hailstorm in its test chamber, finding 

(among many other things) that “The majority of hailstone impacts were on the roofing system; 

this is very typical of what IBHS researchers have seen when conducting post-hailstorm damage 

investigations in the field and in numerous claims studies.” This finding supports the choice of 

roofing for an initial benefit-cost analysis of methods to improve the hail resilience of buildings. 
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2.3 Roofing 

Most Canadian roofs are covered with asphalt shingles. A statistical sample by ICLR (Porter et al. 2021) 

found that approximately 85% of single-family dwellings in Canada’s wildland-urban interface use 

this kind of roof covering. Approximately 14% have metal roof covers. The remainder have wood 

shingles or other materials. 

Interestingly, Canada and the United States are unusual in their preference for asphalt shingles. 

Mexico mostly relies on roof membrane sheets applied by torch to concrete roof decks, both for 

residential and commercial construction (Gonzales 2007). Japan mostly uses ceramic tiles, at a cost of 

about $20,000 CAD to replace a roof on a typical house. UK homes mostly use slate, clay, or concrete 

tiles, at a cost of about $10,000 CAD for a new roof (Roof Advisor 2021). Replacing an asphalt 

shingle roof on a 200m2 roof costs about $5,000 CAD, as will be shown later. 

Absent prior studies on the efficacy of greater hail impact resistance for asphalt shingle roof 

coverings, let us first summarize the construction of roofs, describe asphalt shingles, and review 

hail-impact rating systems for asphalt shingles. 

2.3.1 Roofing systems 

This work examines the loss impact of hail on roofs with asphalt 

shingles. An asphalt shingle roof system has four or five parts, 

illustrated in Figure 1. 

(1) Roof joists spaced between 400 mm and 600 mm apart are 

part of the roof truss or other structural system, supported on 

other structural elements in the building superstructure. 

(2) Structural sheathing such as plywood or oriented strandboard 

(OSB) of 8-mm to 16-mm thickness (NBC 2015 Tables 

9.23.15.5-A and 9.23.16.7-A) is nailed to the roof joists with 

63-mm long nails spaced at 150 mm along edges and at 

300 mm in the panel zone (NBC Table 9.23.3.5-B). 

(US readers: 16-in to 24-in joist spacing, ¼-inch to ½-inch 

OSB or plywood depending on roof slope, and 8d nails 

at 6/12.) 

(3) One tacks on top of the structural sheathing an underlayment 

of asphalt-saturated paper weighing at least 0.19 kg/m2 

(US readers: 90-lb paper) or no.-15 asphalt-saturated felt (NBC article 9.26.6.1). The 

underlayment serves as a supplemental moisture barrier and prevents adhesion between the roof 

sheathing and the shingles. The underlayment is optional in some codes and standards, 

mandatory in others. 

(4) The top layer comprises overlapping layers of shingles. These are nailed to the roofing deck with 

four to six 10- to 12-gauge galvanized nails per shingle, and adhered to the layer below with 

factory-applied, heat-activated sealant bands. As shingles age, it is common to add a layer of new 

shingles, up to three in total on steep roofs, without removing the old layer. Placing a new layer 

on top of the old avoids the cost to remove and dispose of the old layer, but can introduce two 

problems: uneven surface and fastener strength, potentially greatly reducing the life expectancy 

Figure 1. Parts of an asphalt shingle roof. 
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of the new layer. An uneven surface can result in lateral diversion of rainwater and a leak into the 

occupied space of the building. Poor fastener penetration (fasteners that are too short to hold 

new shingles down on top of those left in situ) can result in wind failures. 

(5) In some cases, add eave protection such as felt underlayment from the roof edge to 900 mm up 

the roof slope (NBC 2015 subsection 9.26.5). 

2.3.2 Asphalt shingles 

Different sources offer different categories of asphalt shingles. CertainTeed (2022) speaks of 

three common types: three-tab shingles, dimensional shingles, and luxury or premium shingles. 

Owens-Corning (2022) also speaks of three-tab and dimensional, but distinguishes subcategories 

of luxury or premium shingles. CSA Group’s (2016) standard A123.5 uses the general terms 

“single or multi-tab” and “single or multi-layer” and the specific terms “dimensional,” “laminated,” 

and “overlay” to refer to the three principal shingle types. 

Regardless of naming and categories, asphalt shingles generally have a flexible mat 1 m wide and 

330 mm high, many with cutouts to create three tabs. Shingles are overlapped so that any spot on 

the roof has at least two layers of shingle for steeper roofs (slope at least 1 in 3, NBC article 

9.26.7.1), and three layers for shallow-sloped roof (NBC article 9.26.8.1). Each shingle is nailed or 

stapled to the structural sheathing with at least four fasteners along a horizontal line at least 12 mm 

above the tops of the cutouts (NBC article 9.26.7.4) at the mid-height of the shingle: one nail near 

each end (25 mm to 40 mm from the edge; NBC article 9.26.7.4) and the others equally spaced 

between them (NBC article 9.26.7.4). Some shingle manufacturers require six nails or staples per 

shingle for some product lines. 

Asphalt shingles have five components (Figure 2): 

(1) A fiberglass mat provides the shingle’s strength and stiffness. 

(2) An asphalt layer serves to shed water and to adhere ceramic-coated crushed rock particles called 

granules. 

(3) Finely ground fillers or mineral stabilizers in the asphalt improve the asphalt’s fire resistance, 

flexibility, durability, and resistance to weather. 

(4) The granules coat the upper surface of the shingle. They provide its color and protect the asphalt 

from ultraviolet light, which degrades the asphalt. 

(5) The lower (back) surface is coated with a fine mineral that prevents shingles from sticking to 

machinery during manufacture and each other while stored (Asphalt Roofing Manufacturers 

Association 2021). 

Figure 2. Asphalt shingle cross section. 
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Three-tab shingles are the least expensive of the three types of asphalt shingle, and have a single 

layer of mat, asphalt, and granules. Dimensional shingles (also called architectural or laminate 

shingles) are the most common of the three. They have two or more fiberglass-and-asphalt layers 

that give the roof a thicker, three-dimensional appearance, and longer life. The third type, luxury or 

premium shingles, have two or three thicker fiberglass-asphalt-granule layers and most closely 

resemble traditional slates or shakes (Groom 2010). 

2.3.3 Shingle impact rating 

Not all shingles equally resist hail. Two test standards – UL 2218 and FM 4473, discussed next – 

rate shingles for their resistance to impact (especially by hail) on a 1-to-4 scale, with higher numbers 

indicating more resistance to impact. 

The UL 2218 (Underwriters Laboratory 2020) standard, Standard for Safety Impact Resistance of 

Prepared Roof Covering Materials, examines whether shingles mounted on a 12-mm plywood deck 

with 50 x 100 mm lumber framing and impacted by steel balls suffer visible (under 5x magnification) 

tears, fractures, cracks, splits, ruptures, crazing, and other evidence of opening through the cross 

section of the roof. Neither surface cracks that do not extend through the cross section, nor cosmetic 

damage (such as dents or the loss of granules) constitutes failure. A class-1 shingle survives impact 

from 32-mm (1.25-in.) diameter balls; class 2, 38-mm (1.5 in.); class 3, 44-mm (1.75 in.); class 4, 

50-mm (2.0-in.) diameter balls. Steel balls are dropped from a height set to match the kinetic energy 

of a hailstone impacting the roof at terminal velocity. That is, it assumes that if a steel ball imparts 

the same impact energy as a falling hailstone, it will cause the same damage. The authors of UL 

2218 acknowledge that “there is no currently established direct correlation between the 

performance of roof coverings when impacted by hailstones versus steel balls.” The test specifies no 

criteria related to loss of granules. 

The FM 4473 (FM Approvals 2005) standard, Specification Test Standard for Impact Resistance 

Testing of Rigid Roofing Materials by Impacting with Freezer Ice Balls, offers a similar impact test but 

uses ice balls rather than steel, and the same 1-to-4 rating scale. That is, 1 indicates no cracking or 

breakage of the shingle when impacted by ice spheres with 32 mm (1.25 in.) diameter, 2 refers to 

38 mm (1.5 in.), etc. Like UL 2218, the test requires the velocity of the ice ball to be set so that its 

kinetic energy at impact matches a specified value, the estimated kinetic energy of a hailstone at 

terminal velocity. 

Both UL 2218 and FM 4473 tests are pass-fail. Neither tests shingles to determine the relationship 

between hailstone size and probability of damage (which one might call a fragility test) or degree of 

damage (which one might call a vulnerability test). 

The Insurance Institute for Business and Home Safety (2019) has introduced a new test protocol, the 

IBHS Impact Resistance Test Protocol for Asphalt Shingles, that more closely approaches a fragility or 

vulnerability test. The test more closely simulates real hailstones of 38 and 50-mm diameters, which 

are propelled onto shingles mounted on a realistic roofing system with prescribed kinetic energy. 

Performance is measured in terms of three damage outcomes: a subjective degree of breach severity 

(meaning tears, ruptures, or cracks), deformations (two measures of dent volume), and the area over 

which at least one granule was lost. The measures of the three outcomes are averaged and the result 

is a number between 0 and 3 called an average severity score, where 0 is least damaged and 3 is 

most damaged. The 0-to-3 range is discretized into four performance ratings from excellent (0 to 

0.3) to poor (greater than 1.8). 
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Brown-Giammanco et al. (2021) explain the new IBHS test, needed partly because of differences 

between natural hailstones and test spheres in their kinetic energy, mass, velocity, momentum, 

compressive strength, and other test parameters that cause steel and ice-ball test spheres to produce 

more damage than does hail. 

As part of ICLR’s HailSmart™ program, ICLR (2018) has advocated for the installation of Class 4 

impact resistant roofing that meets UL 2218 for all homes located in regions of moderate or high risk 

of hail, such as in southern Alberta and southern Saskatchewan. ICLR also advises that when 

re-roofing to install full roof underlayment, preferably self-adhering waterproofing underlayment 

(a.k.a. ice-and-water shield). 

While ICLR advocates for class-4 shingles, the Insurance Institute for Business and Home Safety 

(2020) considers any shingle product rated as class 3 or 4 by the UL 2218 or FM 4473 testing 

program to be impact-resistant (IR, though IBHS uses the term impact-rated), and refers to all others 

as non-IR. 

2.3.4 Some common lines of impact-resistant shingles 

Roof shingle material prices and availability vary by brand and product. Table 1 lists some leading 

brands of impact-resistant shingles and a recent (as of this writing) material price, excluding GST and 

HST. It also shows some non-impact-resistant shingles for price-comparison purposes. The table 

shows unrated shingles, three class-3 products, and 14 class-4 products. Several products are 

available through retail outlets and their prices are readily available to the public. Many products are 

only distributed to building professionals. Their prices are not public, and may vary substantially 

between markets. Prices can be difficult to compile, so no attempt has been made to include all 

shingle types, manufacturers, or product lines in Table 1. 

The least expensive impact-resistant roof costs about the same as a non-IR roof: BP Canada’s 

Mystique FM 4473 class-3 rating adds little if any material cost relative to, say, the Everest line. BP’s 

Manoir line, also class 3, costs more but BP Canada’s marketing materials emphasize Manoir’s greater 

wind and water protection to distinguish it from the other lines. 

Class-4-rated shingles appear to start at $160 per square: CertainTeed Landmark IR ($155 per square) 

and Owens Corning TruDefinition Duration ($167 per square). Prices for other class-4 shingles reach 

$340 per square (Tamko Stormfighter IR). Some offer other monetarily valuable features, such as 

algae or wind resistance or solar reflectivity. 
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Table 1. Some common lines of impact-resistant shingles. 

Manufacturer Line Rating Matl price 

(CAD/sq) 

Price source, comment 

BP Canada Dakota None $96 RONA.ca 

Everest None $99 RONA.ca 

Yukon None $93 RONA.ca 

Mystique FM class 3 $99 RONA.ca 

Manoir FM class 3 $142 RONA.ca 

Vanguard UL class 4 $188 Proline Construction, 
Edmonton 

GAF Marquis Weathermax None $85 Home Depot Calgary 

Timberline HDZ None $92 Ditto 

Timberline ArmorShield UL class 4 $267 Hanscomb Ltd (2020) 

Grand Sequoia IR UL class 4 N/A No distributor found 

IKO Nordic FM class 4 $207 Roofmart, London, ON 

Tamko Stormfighter IR UL class 4 $340 Hanscomb Ltd (2020) 

Malarkey Vista AR Class 3 $220 Hanscomb Ltd (2020) 

Legacy Class 4 $267 Hanscomb Ltd (2020) 

Owens Corning TruDefinition Duration Class 4 $167 Menards.com, Home 
Depot 

TruDefinition 
Weatherguard HP 

Class 4 $260 Hanscomb Ltd (2020) 

CertainTeed Landmark IR UL class 4 $155 Hanscomb Ltd (2020) 

Northgate IR UL class 4 $205 Hanscomb Ltd (2020) 

Landmark Solaris Gold IR UL class 4 N/A No distributor found 

Presidential Shake IR UL class 4 N/A No distributor found 

XT 30 IR UL class 4 N/A No distributor found 

Highland Slate IR UL class 4 N/A No distributor found 

2.4 Hazard 

Let us now summarize some of the most relevant literature on hail hazard. Here, hazard means the 

frequency of hailstorms at a chosen location, the number of hailstones that strike an area of a given 

size, the distribution of hailstone size, and the effect of climate change on hailstorm frequency. 

2.4.1 Hail formation, physical properties, and terminal velocity 

First, for the newcomer to hail risk, let us review the nature of hail. The American Meteorological 


Society (2012) and Raupach et al. (2021) both provide useful summaries of the formation of hail. 


Hail consists of solid ice that forms in thunderstorms in convectively unstable atmosphere. 


By convention, hail has a diameter of 5 mm or more; smaller particles are classified as ice pellets or 


snow pellets. Hailstones form when raindrops are carried upward by strong updrafts (over 15 m/sec) 


into extremely cold areas of the atmosphere and freeze. They grow by falling into warmer air and 


colliding with liquid water drops that freeze onto the hailstone’s surface. The cycle can repeat many 


times, enlarging the hailstone with each cycle. Hail also melts as it falls through warmer surface air. 


More on that point later.
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It is generally believed that hail causes damage roughly in proportion to its kinetic energy just before 

it impacts an object such as a roof. Thus, its terminal velocity matters. Bilham and Relf (1937) 

estimated a relationship between the terminal velocity of hailstones and their diameter based on the 

observed drag coefficient of spheres towed by aircraft, density of air, density of hailstones (from 

0.4 to 0.92 g/ml), and the bimodal relationship between drag coefficient and Reynolds number 

(a factor that only matters for spheres larger than about 7 cm diameter). 

Several authors (e.g., Laurie 1960, on which prior versions of UL 2218 were based) assumed Bilham 

and Relf’s derived terminal velocities. They appear to be overestimated. Heymsfield et al. (2014) 

measured the physical properties of 2,295 natural hailstones (maximum dimension, mass, and 

cross-sectional area), offering size-dependent relationships for terminal velocity and kinetic energy. 

They found the Bilham and Relf (1937) estimates of kinetic energy overestimated by about 50%. 

UL 2218 has been revised accordingly. 

NOAA’s National Severe Storms Laboratory (ND) reports that small hailstones (less than 25 mm 

diameter) fall between 15 and 40 km/hr. Hailstones between 25 mm and 50 mm diameter fall 

between 40 and 65 km/hr. Hailstones between 50 and 100 mm in diameter fall between 65 and 

115 km/hr. Very large hailstones with diameters exceeding 100 mm may fall at over 160 km/hr. 

Hailstones have been observed with diameters of 200 mm and weight approaching 900 g. 

For comparison, a strong baseball pitcher can throw a fastball at 160 km/hr; a baseball has a 75 mm 

diameter and weighs about 145 g. 

2.4.2 Hailstorm frequency 

In Canada, Hailstorm Alley refers to an area of south and central Alberta where hailstorms occur 3 or 

more times annually (Figure 3). Calgary has experienced four hailstorms since 1991 that cost over 

$250 million in damage (Mann 2021, Canada Press 2014). Cecil and Blankenship (2012) provide a 

global analysis of severe hail frequency per year per 500 km2. 

Etkin (2018) investigates Canadian hail climatology data: monthly hail days at 3,600 hail observing 

stations during the period 1977 to 2007. (After 2007, the number of hail observation stations 

dropped precipitously, so recent data are largely unavailable.) Etkin offers temporal trends of hail days 

per station per season (May to September), and a spreadsheet that estimates hail frequency for any 

geographic location within the area covered by the stations. For example, the spreadsheet estimates 

that the Sherwood neighborhood of north Calgary currently experiences 2.35 hail days per year. 

He cautions that topography matters but is not reflected in the data. 
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2.4.3 Hailstorm hitrate and duration (volume or count per square metre) 

Grieser and Hill (2019) used 37,000 crowdsourced observations from the United States and Canada 

of hail diameter, duration, and number density, along with an assumed exponential distribution of 

hailstone size aloft, to model hail intensity. They observe that maximum hailstone size on the ground 

DL followed an approximately exponential distribution, as shown in Figure 4A. They also offer 

relationships between DL and a variety of other useful hazard measures. Notable here are average 

hailstone diameter (DA), the blue line in Figure 4B, hitrate (number of hailstones per square metre per 

second) and duration. The data come from the US-based Community Collaborative Rain, Hail and 

Snow Network (CoCoRaHS). The authors validated their results by comparison with hailpad 

observations of the largest hailstone diameters and hail kinetic energies in southwestern France. 

Note that their tabulated functions and parameter values for duration and hitrate do not seem to 

match their figures. 

Figure 4. (A) Number of observations exceeding minimum equivalent diameter of largest hailstone, 

(B) average (blue) and smallest (red) diameter, (C) duration, and (D) hitrate as functions of equivalent 

diameter of largest hailstone. The upper x-axis shows maximum diameter of the largest hailstone in mm 

(Grieser and Hill 2019). 
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2.4.4 Hailstone size distribution 

Hailstone size distribution matters because damage strongly relates to the hailstone’s kinetic energy 

when it impacts a damageable asset, and kinetic energy increases approximately with the fourth 

power of diameter. A hailstone 50 mm (2 inches) in diameter when it strikes the ground has 16 times 

the kinetic energy and damage potential of a hailstone 25 mm (1 inch) in diameter (because it is 

2 times the diameter, and 24 = 2 x 2 x 2 x 2 = 16). 

Wong et al. (1987) obtained hailstone samples with mobile sampling vehicles from five Alberta 

storms in 1980 and 1982. They photographed hailstones, calculated their equivalent-volume 

diameters in size intervals of 1 mm, and found that that hailstone sample size can be idealized with a 

shifted gamma distribution, the shift reflecting data truncation of the data at some minimum size 

such as the conventional 5 mm minimum diameter for a particle to be considered hail. The 

distribution has three parameters. First, the lower truncation point a, which could in principle be set 

to 0 for purposes of simplicity, and because one can ignore values of less than 5 mm. Second, a 

shape parameter a . Their samples reveal median values of a ≈ 2.0 to 1.75, with the smaller value 

corresponding to a longer sampling duration (about 5 minutes). Third, an inverse scale parameter b , 
which relates to the average hailstone diameter DA as shown in equation (1). 

DA = 
a a ≈ 1.75 – 2.0 (1)
b 

Fraile et al. (2003) offer probability distributions for the diameter of hailstones that reach the ground, 

accounting for melting while the hailstones fall. They too suggest a gamma distribution for diameter. 

They estimate that about 8% of hailstones inside a cloud actually reach the ground. They reiterate 

the cumulative distribution function of the gamma distribution, which one can use to estimate the 

fraction of hailstones on a hailpad (or other surface such as the horizontal projection of a roof) of any 

range of hailstone sizes. 

Etkin (2018, Table 1) suggests that at least in central Alberta, approximately 10% of hailstorms 

(5.2 days out of 52.4 hail days) produce hailstones larger than 33 mm in diameter. 

2.4.5 Climate change 

Cao (2008) examines the correlation between increasing frequency of hailstorms in Ontario and 

warming air temperatures. He finds a roughly linear increase in storm frequency across the province 

from about 14 events in 1979 to about 29 in 2002, during which time mean temperatures have 

increased about 0.7C in Thunder Bay (2.9C to 3.5C), Sudbury (4.2C to 5.1C), and London 

(7.7C to 8.6C). Maximum temperatures have also increased about 0.8C: Sudbury (9.5C to 10.3C), 

Thunder Bay (9.3C to 9.9C) and London (12.5C to 13.6C). 

ClimateData.ca (2021), a consortium of six public entities, nonprofits, and research institutions, offers 

authoritative projections for various climate metrics. Among these: future precipitation by geographic 

location under each of three representative concentration pathways. For example, both for Calgary, AB 

and Regina, SK, ClimateData.ca estimates a fairly constant number of wet days per year (>1 mm, 
>10 mm, and >20 mm) under RCPs 2.6, 4.5, and 8.5. Its climate estimates do not distinguish 

between rail, snow, and hail. 
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Rauchpach et al. (2021) examined the expectation that atmospheric ingredients for hail – an unstable 
atmosphere, the melting of falling hailstones, and wind shear – would change with a warming 
climate. They estimate more water vapour in the future atmosphere: 7% per 1C warming, which 
leads to greater convective instability and stronger updrafts, and can increase hail precipitation rates 
and produce larger hailstones. However, warming also increases the thickness of the warm layer near 
the ground, accelerating melting as hailstones drop through the warm layer. They conclude that in 
the Canadian Rockies, “Across the whole year, an increase in the number of hail days is predicted, 
with increases of 7%, 21% and 146% for severe [20 mm], large [35 mm], and very large hail 
[50 mm].” They estimate a decrease in convective storms and severe hail in the eastern USA (they do 
not mention eastern Canada). 

2.4.6 Hail seeding 

This analysis ignores the effect of hail seeding. However, the reader may find a brief explanation of 
seeding useful. In concept, hail seeding accelerates the formation of hailstones by providing a supply 
of nuclei (e.g., grains of silver iodide or dry ice) onto which supercooled liquid can freeze. More hail 
embryos compete for the available supercooled water in the cloud, producing more, but smaller, 
hailstones. Furthermore, smaller hailstones melt more readily as they drop through the warm air near 
the ground. That happens because smaller hailstones have a higher surface-to-volume ratio than 
larger ones. To explain: heat gain increases with surface area (related to the square of diameter) while 
the volume of ice that has to melt increases with the cube of diameter. A higher surface-to-volume 
ratio means the smaller hailstones gain heat faster per unit volume than their larger siblings. So, in a 
hailstorm with smaller hailstones, more precipitation melts and falls as rain rather than hail. 

2.5 Fragility functions and derivation methods 

It will be necessary here to derive and use fragility functions, so this short section introduces the 
newcomer to performance-based engineering. In performance-based earthquake engineering, 
a fragility function refers to a functional relationship between the occurrence probability of some 
undesirable outcome (such as the probability that a hailstone will cause visible cosmetic damage to 
a shingle or break its moisture barrier) and some measurable degree of environmental excitation 
(such as the kinetic energy imparted on the shingle by the hailstone impact). 

Several authors offer methods to derive fragility functions from empirical evidence and engineering 
first principles, e.g., US Nuclear Regulatory Commission (1975), Kennedy and Ravindra (1984), and 
Swan and Kassawara (1998). Porter et al. (2007) bring these into a single coherent framework for use 
in FEMA P-58’s (Applied Technology Council 2012) second-generation performance-based earthquake 
engineering guidelines, and add treatment of expert opinion and Bayesian updating. Porter et al. (2007) 
offer methods with which to derive parametric probability distribution functions to represent fragility, 
with an emphasis on lognormal cumulative distribution functions, because of several theoretical and 
practical advantages the lognormal offers. 

Porter et al. (2007) and FEMA P-58 (Applied Technology Council 2012) deal with an important 
fragility issue that will arise here: empirical methods can underestimate variability in the capacity of 
real specimens. That can happen when the available evidence come from a few samples, or from 
samples that are more homogenous than the population they are intended to represent, or that were 
subjected to loading conditions that do not represent the variability of loading condition in nature. 
They offer tests to judge whether to increase variability and how to do so, generally by increasing 
variability by a prescribed amount and fixing a point on the fragility function at a low probability, 

e.g., the 10th percentile, to avoid biasing the annualized failure rate. 
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2.6 Damage and loss

2.6.1 Hail impact physics

Size threshold to cause damage. The US National Weather Service (2010) issues severe 

thunderstorm warnings based in part on hail reaching 25 mm (1 inch) in diameter, with a belief  

that “significant damage does not occur until hail size reaches 1 inch in diameter.” It cites in part 

assertions from “core partners in emergency management and the media” that thunderstorm 

warnings issued for smaller hail diameters “might have desensitized the public to take protective 

action during a severe thunderstorm warning.”

Contact force. Perera (2017, 2018) argues that hail piercing damage to building roofs and cladding 

depends on the maximum instantaneous contact force (that between the hailstone and the surface  

it impacts) as opposed to the reaction force (between the surface and the surrounding structure).  

In performance-based earthquake engineering, one would use the contact force as the engineering 

demand parameter, that is, the output of structural analysis and input to a fragility function for the 

roofing, siding, glazing, or other damageable component. Note that contact force is not the same 

thing as kinetic energy. 

Transfer of kinetic energy. Hailstones have a low coefficient of restitution, COR, compared with a 

baseball – they are harder. Baseballs have a COR about 0.3 when struck with an aluminum bat. In 

experiments, Sun et al. (2015) found that a 50 mm spherical hailstone weighing about m1 = 60 g, 

impacting at relative velocity v0 between 7 and 28 m/sec (25 to 100 km/hr) normal to the flat end of 

a 2.16-kg steel cylinder target mounted on a 53 kN/m spring whose axis aligns with target cylinder 

and hailstone trajectory has a coefficient of restitution between 0.02 and 0.04 – higher for a 

lower-velocity impact. A low number means more of the hailstone’s kinetic energy is transferred to 

the target, which causes more damage. Contact forces varied between 1 kN and 7 kN depending on 

velocity, with the lower value corresponding to 8 m/sec (29 km/hr) and the higher with 32 m/sec  

(115 km/hr). The authors offer a simple analytical model of maximum contact force that depends on 

coefficient of restitution COR, hailstone velocity v0, and spring stiffness kn. 

2.6.2 Damage symptoms

Hail impact causes up to four main symptoms of damage: (1) dislodged granules at the point of 

impact, (2) discoloration because of the lost granules, (3) permanent deformation of the shingle – a 

shallow pit where the hailstone struck – and (4) tearing of the shingle. Shingle tears also allow water 

penetration, which can manifest through water damage to the roofing and ceilings. Damage can be 

hard to see from the ground for hailstones smaller than the diameter of a golf ball (about 40 mm). 

See Figure 5.
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Figure 5. (A) A hail-damaged roof, showing discoloration because of the loss of granules.   

(B) Illustration of hail damage. Source: Roofingcalc.com (2021), usage claimed under fair-dealing doctrine. (© 2009 InterNACHI).

2.6.3 Asphalt shingle hail fragility

Marshall et al. (2002) review roof hail-damage testing protocols since 1952, focusing on tests that 

propelled frozen tap water ice spheres of various diameters to perpendicular impact with various 

roofing systems at approximately free-fall terminal velocity. Table 2 recaps their test results. The 

authors define damage to include “punctures, tears, or fractures (bruises) in the shingle mats as well 

as the displacement of granules to visibly expose the underlying bitumen.” The authors assert that 

hail damage to 3-tab roofing shingles begins when simulated hailstones reach or exceed 25 mm 

(1-in.) diameter. But their data show that 5 of ten tests of 3-tab organic shingles experienced damage 

when impacted by 25-mm (1-in.) diameter spheres at terminal velocity, and 90% experience damage 

when impacted by a 32-mm (1.25-in.) sphere. None of the 10 specimens were damaged by a 20-mm 

sphere, suggesting 5% or lower failure probability with 20-mm spheres.

Type of roofing product Age (yr)
Fraction of specimens damaged by ice ball impacts

20 mm 25 mm 32 mm 38 mm 44 mm 50 mm

3-tab fiberglass shingles 11 0% 60% 90% 100% 100%

3-tab organic shingles 11 0% 50% 90% 100% 100% 100%

30 yr. laminated shingles 11 0% 0% 60% 90% 100%

Cedar shingles 11 0% 30% 80% 100% 100%

Heavy cedar shakes 0 0% 0% 50% 90% 100%

Fiber-cement tiles 0 0% 20% 80% 100% 100%

Flat concrete tiles 0 0% 20% 50% 50% 100%

S-shaped concrete tiles 0 0% 0% 0% 0% 80%

Built-up gravel roofing 8 0% 0% 0% 0% 30%

Table 2. Marshall et al. (2002) ice-ball impact tests of various roofing products.

Marshall et al. (2004) examine the definition of hail damage to asphalt shingles. They illustrate the 

differences among hail damage, manufacturing defects, construction defects, and intentional 

mechanical damage (people damaging roofs to try to mimic hail damage). Although they 

acknowledge that “As asphalt shingles age, their components break down,” they find that the way 

hailstorms only modestly reduce granules “does not shorten the life of the roof or adversely affect its 

water shedding ability as long as the impacted areas are not bruised or punctured, and remain 

covered with granules.” 
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In a short white paper on hail damage to asphalt shingles, Haag Engineering Co. (2006) equates 

“diminution in water-shedding capability” with “a fracture in the shingle” that is “always … 

detectable in the bottom side of a shingle.” The authors indirectly equate dislodged granules with 

fracture: “For shingles in relatively good condition with remaining service life, a hailstone capable of 

dislodging granules and exposing the coating bitumen necessarily fractures the reinforcement of the 

shingle and generates a detectable bruise.” Strangely, they go on to assert that “when a shingle is 

struck by a hailstone dislodging granules and exposing coating bitumen while the underlying 

reinforcement remains intact, the shingle necessarily must be defective or else is nearing or has 

exceeded its expected service life.” But they offer no evidence to demonstrate that condition with 

diminution of water-shedding capability.

Haag Research & Testing (2020) studied the effectiveness of roof-shingle impact tests: UL 2218 and 

ANSI/FM 4473, in which one impacts shingles with steel balls and ice spheres, respectively, and then 

visually examines them for damage. The authors performed the standard tests and then examined 

the tested shingles more closely, by “dissolving the asphalt or modified asphalt bitumen from the 

shingles. This allowed the shingle reinforcements to be examined for fractures or strains caused by 

the impacts without hand manipulation which can initiate damage.” They found that most shingles 

that appeared to pass the requirements of visual examinations after standard tests had hidden 

damage to the shingle reinforcement, the fiberglass mat, even under class-1 testing. The authors did 

not test the shingles for whether impacted shingles continue to shed water. 

2.6.4 Asphalt shingle repair cost

Marshall and Herzog (1999) offer a hail damage assessment protocol, in which one examines at least 

one roofing square – that is, a 3.05 m by 3.05 m (10 ft. by 10 ft.) square – on each slope of a roof. 

They define hail-caused damage to an asphalt shingle in roofing as “[1] rupture of the reinforcing 

mat or [2] displacement of granules sufficient to expose underlying bitumen.” (In later work they 

found that loss of granules does not reduce the life or effectiveness of the shingle.) Rupture of the 

reinforcing mat “involves either bruising, which can be felt as a soft spot on the shingle (much like an 

apple bruise), or puncturing where there is a hole in the mat. Bruises are soft areas large enough to 

be detected by finger pressure and generally are accompanied by a sufficient loss of granules within 

the impact area to expose the underlying bitumen. 

Marshall and Herzog (1999) also offer an equation for C, the cost to repair hail damaged roofing,  

as the product of D (the number of damaged shingles per roofing square), U (the unit cost to repair  

a shingle), R (a factor to account for repair difficulty), and A (area of the roof in roofing squares). 

They suggest including a factor of 1.1 to 1.2 in U to account for waste. 

The Insurance Institute for Business and Home Safety (2020) reports on a cost survey across US markets 

of the material cost of asphalt shingles per roofing square. The authors found that impact-resistant 

shingles cost between 2% and 9% more than non-impact-resistant shingles, with the smaller cost 

differences in places with more availability of impact-resistant shingles (Oklahoma City and Dallas-Fort 

Worth), where hail is more common. 

Several sources provide information about roof repair costs. One of the more accessible sources is 

RSMeans (e.g., 2020, p. 73). For example, that source estimates the labour cost (including 

approximately 76% overhead and profit, p. 321) to demolish and install 30-year architectural laminated 

shingles at $146 per square for material cost plus $117.50 per square for labour, to which one would 
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add goods and service tax or harmonized sales tax (e.g., 5% in Alberta). RSMeans (2020, p. 299) also 

offers a factor to account for geographic location, e.g., in Calgary, 1.07 times the North American 

average, including the USD-CAD exchange rate. Thus, using RSMeans’ costs, Calgary roof repair 

could cost about $296 per roofing square, or $31.87 per m2, or $9.00 per shingle. This figure omits 

any required costs to repair the roof deck. It can fluctuate over time with material and labour prices. 

2.6.5 Depreciation

At least some insurers depreciate claim payments as the roof ages. One insurer depreciates claim 

payments by 45% if the damage occurs 15 years after the roof is installed, and another 3% per year 

thereafter up to a maximum of 75% (written commun., V. Lavigne, Directrice principale, Desjardins, 

February 10, 2022).

2.6.6 Incentives to promote mitigation

Who gains and who loses when a developer or homeowner installs an impact-resistant roof on a 

house, or undertakes any other remediation measure that adds cost? Who pays for the remediation, 

is the initial cost transferred to later buyers through higher resale value, and to what extent does each 

stakeholder benefit from avoided losses? 

Multi-Hazard Mitigation Council (2020) identifies several stakeholders: the developer, owner, tenant, 

and insurer. A sequence of owners, tenants, and insurers are probably involved. That work points out 

the costs and benefits are unequally shared among stakeholders. The owner at the time of the work 

bears the cost. Possibly the owner recoups the cost through higher resale value, as suggested by 

several authors: Simmons et al. (2002), Simmons and Sutter (2007), Awondo et al. (2016, 2019), and 

Porter et al. (in press). The insurer enjoys avoided property repair costs if the house is insured. The 

sequence of owners might enjoy lower insurance premiums if the insurer reduces the premium to 

reflect the lower risk. The series of owners enjoy lower nuisance costs when hail damage occurs: less 

time lost dealing with the claim and with contractors. 

The authors of Multi-Hazard Mitigation Council (2020) argue that the various stakeholders’ often-

misaligned interests hinder the uptake of mitigation measures that make sense from a societal 

viewpoint. They suggest a set of financial incentives that would reallocate mitigation cost among the 

stakeholders, better aligning their interests with those of society as a whole, which (they speculate) 

would increase uptake of mitigation measures like impact-resistant roofing. The incentive options 

that are most relevant here include:

• Insurance premium reductions to reflect the insurer’s lower risk. For example, the California 

Earthquake Authority (2021) offers a premium discount on earthquake insurance of up to 25% 

for retrofitting older houses and manufactured homes, which can amount to $400 per year for 

an older, single-family dwelling.

• Government grants, loans, and regulatory advantages. For example, the City of Calgary offers a 

$3,000 rebate for installing impact-resistant roofing (City of Calgary 2022). The State of California 

has offered various grants and low-interest loans to encourage retrofit as well (California Residential 

Mitigation Program 2020; Federal Emergency Management Agency 1994, p. 88).

• Real estate marketing material that highlights the value of a resilience measure. Such material 

could draw on the aforementioned work by Simmons, Awondo, and others. 
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3. Proposed methods

With the foregoing literature as a foundation, let us now consider a performance-based 

methodology to estimate the costs and benefits of impact-resistant asphalt shingle roof cover.

3.1 Performance-based engineering

This work adapts second-generation performance-based earthquake engineering (PBEE-2, e.g.,  

Porter 2003) for hail risk analysis. In PBEE-2, one estimates the future probabilistic performance of a 

building, bridge, or other single, clearly defined asset subjected to some uncertain environmental 

excitation such as earthquake ground shaking. One can measure performance in terms of repair 

costs, life-safety impacts, or loss of function (“dollars, deaths, and downtime”), propagating all major 

sources of uncertainty through the four analytical stages illustrated in Figure 6. These are briefly 

summarized here, and detailed in later sections.

The asset is defined by its location, geometry, engineering attributes, and exposed values such as 

replacement cost new and number of occupants. For example, one could define the asset as an 

average-sized new single-family dwelling in northern Calgary. 

Given its location, one performs a hazard analysis, whose product is an estimate of the frequency 

with which various levels of some environmental intensity measure (H) occurs. That frequency is 

denoted here by G(H), where G denotes mean exceedance frequency in events per unit time. In 

earthquakes, H might measure the level of peak ground acceleration. Here, the H will simply denote 

the occurrence of a hailstorm, a binary variable. 

In PBEE-2, one commonly uses nonlinear dynamic structural analysis to estimate a vector measure  

of structural response R, (e.g., peak floor accelerations and drift ratios) conditioned on various levels 

of the seismic intensity measure. Here, R will denote a vector of the probabilistic attributes of the hail 

field. By “probabilistic attributes of the hail field,” we mean the area density of hailstones reaching 

the ground (that is, the number per square metre during the storm duration) and their size 

distribution (that is, the probability density function of the equivalent diameter). In concept, the 

analysis looks like equation (2), where G(H) denotes the frequency with which hailstorms occur, 

P [R|H] denotes the probability of exceeding some level of R given the occurrence of a hailstorm, and 

G(R) denotes the frequency with which R is exceeded. In practice, we will use Monte Carlo simulation 

to estimate the frequency of many vector values of R.

G ( R )  =  P [ R | H ] G ( H )  (2)

G ( D )  =  ∫  P [ D | R ]   
d G ( R )

 (3)

In the damage analysis, one estimates the rate at which various degrees of physical damage of  

asset components occur, G(D), where D denotes a vector damage measure. For the present analysis, 

D denotes a scalar damage measure: the number of roof shingles damaged to the extent that they 

must be replaced. One applies the theorem of total probability to estimate G(D) for various levels of D 

by integrating over all levels of R, using a fragility function P [D|R] that denotes the probability of 

exceeding D given a specific level of R. In concept, the integral looks like equation (3), though in 

practice, because R is a complex vector rather than a scalar, one might apply numerical integration in 

the form of Monte Carlo simulation to estimate G(D).

0

r

∞

R=0 d R
d R
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In the last analytical stage, the loss analysis, one estimates the frequency with which various levels of 

loss occur, G(L), where L denotes a scalar or vector decision variable. In the present analysis, L will 

measure repair cost in 2021 CAD. Then G(L) is the frequency with which the asset suffers various 

levels of roof repair costs. Again applying the theorem of total probability, one estimates G(L) for 

various levels of L. Conceptually that looks like equation (4), but one might use Monte Carlo 

simulation to evaluate G(L).

G ( L )  =  ∫  P [ L | D ]   
d G ( D )

 (4)

E A L  =  ∫  L   
d G ( L )

 (5)

B  =  ( E A L  –  E A L’ )   
( 1 – e    )

 (6)

∞

∞

D=0

L=0

–r t

d D

d L

r

d D

d L

One can repeat the analysis under two or more conditions to quantify the effect of some change in 

design. Here, we will analyze a house with unrated shingles or impact-resistant shingles. Let us 

denote by G(L) the mean frequency with which the house with unrated shingles experiences various 

repair costs and G’(L) denotes the same thing but with impact-resistant shingles.

Figure 6. Second-generation performance-based earthquake engineering framework.

We estimate the expected annualized loss (denoted by EAL) for each case by equation (5). Let EAL 

and EAL’ denote expected annualized repair costs with unrated and impact-resistant roofs, 

respectively. Then the benefit B of choosing impact-resistant rather than unrated shingles is given by 

the present value of the reduced future losses, as in equation (6). In the equation, r denotes the 

discount rate, and t  denotes a planning period during which one recognizes the benefit.
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Finally, the benefit-cost ratio is given by equation (7), in which C denotes the incremental cost of 

installing class-4 rather than unrated roof shingles.

B C R  =  
B

 (7)
C

This covers the general concept. Let us now consider the details.

3.2 Asset definition

We are interested in hail mitigation for the roofs of single-family dwellings. We define our asset using 

the average roof area of a statistical sample of 102 single-family dwellings in Canada (Porter et al. 2021). 

Let us place the sample house in a large city in Hailstorm Alley.

3.3 Hazard analysis

Let us quantify hazard with five parameters:

1. Geographic location, selected during the asset definition

2. Time t, meaning the duration in years over which we recognize the benefit. 

3. Frequency of hailstorms, fh(y), the mean number of events per year in year y. Frequency is 

implicitly conditioned on location and a set of deterministic, fixed assumptions about climate 

change. Let us take fh(2022) from Etkin (2018), as illustrated in Figure 7.

4. Hailstone area density R, an uncertain (i.e., random) number of hailstones per square metre 

conditioned only on the occurrence of a hailstorm at the selected geographic location. Let us 

assume that R is a stationary random variable and will not change over time. This variable might 

depend on hailstone seeding, which we ignore here.

5. Hailstone diameter D, an uncertain (i.e., random) variable, assumed to be independent and 

identically distributed between hailstones, conditioned on the occurrence of a storm. This variable 

might depend on hailstone seeding, which we ignore here.

Figure 7. Hailstorm frequency in 2021, denoted by fh(2021), after Etkin (2018).
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Conditioned on the occurrence of a hailstorm, one can apply Grieser and Hill’s (2019) observations of 

maximum hailstone diameter (Figure 4A) to estimate cumulative distribution function of equivalent 

diameter of the largest hailstone DL, in mm. The line in Figure 4A takes the form of Equation (8).  

The cumulative distribution function of DL can then be estimated as shown in equation (9) and 

illustrated in Figure 8. In the equation, mDL is the slope of the line in Figure 4A, and bDL is its 

y-intercept, both in natural-log space. Equation (10) gives the probability density function. One can 

rearrange equation (9) to provide an estimate of the value of DL associated with non-exceedance 

probability p as shown in equation (11).

nObs (x )  = exp (mDL
 • x  + bDL

)

F D L
( d L ) = 1 –

f D L
( d L ) = –

d L ( p ) = – 0  <  p  < 1

( e x p ( m D L
 • x  +  b D L

) )

= 1 –

b D L
 =  6.55

m D L
 = 0.111mm– 1 (8)

  (9)

  (10)

  (11)

n O b s   ( 0 )

e x p  ( b D L
)

m D L

e x p  ( b D L
)

n O b s  ( d L )

m D L

l n ( 1 – p )

e x p  ( m D L
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Figure 8. Cumulative distribution function of equivalent diameter of largest hailstone DL implied by 

Grieser and Hill (2019)
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 (14)

 (15)

Let us estimate DA, the equivalent diameter of the average hailstone in mm, as a function of DL, 

equation (12), as suggested by Grieser and Hill (2019).

DA = aDA
 DL    mm  âDA

= 1.449  bDA
= 0.649 (12)  

bDA

Using Wong et al. (1987)’s estimate of a  = 1.75 and rearranging equation (1), one can estimate the 

b  term for gamma-distributed hailstone diameter as shown in equation (13), and estimate the 

cumulative distribution function of the hailstone diameter d, as shown in equation (14). The fraction 

of hailstones between diameters a and b is then given by equation (15).

b  =  
a     a ≈ 1.75 (13)
D A

F D ( d ) =  ∫

F a b  =  ∫ d x

d x
 ( a )

 ( a )

b a x a – 1 e x p  ( – b x )

b a x a – 1 e x p  ( – b x )

ˆ

0

x=a

d

b

For example, given DL = 50 mm, DA ≈ 18 mm, and the cumulative distribution function for equivalent 

hailstone diameter is illustrated in Figure 9. Note the gamma distribution is unbounded above, not at 

DL = 50 mm, but the distribution it is merely intended as an approximation, not as a mathematical 

rule.
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Figure 9. Cumulative distribution function of hailstone diameter with average = 18 mm and alpha = 1.75



22

 (16)  

 (17)  

 (18)  

 (19)  

To estimate number of hailstones per square metre, let us use the product of Grieser and Hill’s (2019) 

estimates of hit rate and duration, shown in equations (16) and (17), multiplied to get number of 

hailstones per square metre over the duration of the storm equation (18). Note that Grieser and Hill’s 

(2019) tabulated functions and parameter values for duration and hitrate do not seem to match  

their figures for duration. In Table 4, duration is linear with DL, but their figure for shows a power 

function. When one inputs their parameters for a linear function in the power function of equation (17), 

the result almost matches their figure. The present author rederived the duration from their chart, 

producing the parameter values shown here. The number of hailstones with diameters between  

a and b striking an area A is given by equation (19).

Hr = aHr DL    min–1 m–2

âHr =  11980

T = aTDL    min  â T =  5.9264  b T = 0.2652

N = Hr • T   m–2

Nab =  N • A • f ab

= aHr DL   •  (aTDL )  • A • f ab  

= aHr DL   •  (aTDL )  

bHr = 1.237

bHr

bHr

bHr

bT

bT

bT

ˆ

ˆ

If we only know a building’s geographic location and the projected area A of the surface, we can use 

Etkin (2018) to estimate frequency of hailstorms and equations (9) through (19) to estimate the 

number and size distribution of hailstones conditioned on the occurrence of a hailstorm and a 

non-exceedance probability p for the largest hailstone from equation (11). 

If we know that a hailstorm has occurred at a location, the maximum hailstone size DL at that 

location, and the vertical projection of area of some surface such as a roof, we can use equations (12) 

through (19) to estimate the number and size distribution of hailstones striking the surface. That is, 

the hitrate, duration, and distribution of hailstone diameters are all modeled here as deterministic 

functions a single random variable DL. For a shingle of 0.16 m2, one can estimate the number and 

size distributions of hailstones as a function of DL.



23

3.4 Damage analysis

3.4.1 Limit states of interest

Recall that in performance-based engineering, one inputs a demand parameter to a fragility function 

to estimate the probability that damage to some component reaches or exceeds a prescribed limit 

state. In the present case, we want to estimate the probability that a hailstone of diameter D will 

cause a shingle to exceed a limit state of interest, that is, causing an undesirable physical change in 

the shingle, discussed next. 

What constitutes an undesirable physical change to the shingle? From a homeowner’s perspective – 

which is the one that matters most in a performance-based framework – shingle failure seems to 

constitute either cosmetic failure or functional failure. Cosmetic failure seems to occur either if 

enough granules are dislodged at the point of impact to be visible to a roof inspector standing on the 

roof and clearly identifiable as a hailstone hit, or the shingle suffers a permanent deformation –  

a shallow pit where the hailstone struck – that is visible to the roof inspector. Functional failure means 

tearing of the shingle, that is, a crack or tear that would breach its moisture barrier and allow water 

damage to roofing. Deformation of the shingle so that water sheds laterally rather than down-slope 

would constitute both a cosmetic and a functional failure.

Several authors reviewed earlier suggest that diminution of the life of the shingle also constitutes 

failure, but none seem actually to quantifiably define the life of a shingle. Some suggest that 

dislodged granules reduce shingle life by exposing the asphalt to ultraviolet light, but Marshall et al. 

(2004) found otherwise. So let us continue to define failure solely by cosmetic damage or breach of 

the moisture barrier.

Neither of the standard impact rating tests have the user measure or otherwise characterize cosmetic 

damage. However, Haag Engineering (2006) equates damage that dislodges granules, exposes the 

coating bitumen, and generates a detectable bruise. For that reason, let us equate the capacity of a 

shingle to resist cosmetic damage with the capacity of the shingle to resist breaching of the moisture 

barrier. That is, the two limit states are taken to be coincident: a hailstone that breaches the moisture 

barrier also causes cosmetic failure and vice versa.

Note that the Haag et al. (2020) tests are interesting, but seem uninformative about either limit state. 

They are silent about whether the shingles continue to provide a moisture barrier or whether they 

suffer cosmetic damage. It is unclear how damage to the fiberglass constitutes a limit state that 

matters. 

3.4.2 Fragility of non-impact-resistant shingles

Can one use the Marshall et al. (2002) tests to create a fragility function for impact-resistant shingles? 

While the tests tell us about the damageability of the shingles they tested, they are silent on the 

effect of impact resistance class (in the sense of UL 2218 or FM 4473) on fragility. For present 

purposes, let us assume therefore that none of the shingles the authors tested had a UL or FM impact 

rating. Recall that the limit state included “punctures, tears, or fractures (bruises) in the shingle mats 

as well as the displacement of granules to visibly expose the underlying bitumen,” which seems 

consistent with our limit state. Let us use method B of Porter et al. (2007) to estimate the parameter 

values of a cumulative distribution function to approximate the fragility of non-rated shingles. 
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In method B, one knows the fraction of specimens that failed when exposed to some bounding (B) 

level of demand. The circles in Figure 10 represent the failure data for laminated shingles, the most 

common type. One fits a curve to the data (the dashed line), such as in the form of equation (20),  

in which x is the demand parameter (here, hailstone diameter), q and b  are parameters of the 

distribution, F denotes the standard normal cumulative distribution function evaluated at the term in 

parentheses, and Pf(x) denotes the probability that a specimen of the component type of interest will 

reach or exceed the limit state observed in the test. The parameter q denotes the median capacity of 

the component to resist the limit state of interest (i.e., the level of demand x that will cause 50% of 

specimens to fail) and b  measures variability in capacity, referred to here as the logarithmic standard 

deviation of capacity.

 (20)P f  ( x ) =  F 
b

l n ( x | q )
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Figure 10. Fragility of non-impact-resistant laminated shingles as implied by Marshall et al. (2002) tests.

The shingle tests show low variability in capacity: the fragility function is very steep. Here, capacity 

refers to the maximum diameter of ice ball that the shingle can resist without reaching or exceeding 

the limit state. When one fits a lognormal cumulative distribution function to the first three rows of 

Table 2, the best-fit standard deviation of the natural logarithm of capacity tends to be small: 0.07 for 

fiberglass shingles, 0.22 for organic, and 0.09 for 30-year laminated shingles. The low variability 

seems to reflect the highly uniform manufacture of the shingles and particularly of the highly uniform 

testing regimen. Nature would add greatly to this variability through highly variable hailstone material 

properties, shape, attack angle, and terminal velocity. Greater variability in these attributes would 

tend to make the fragility function more uncertain, which would make it appear wider or flatter.
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Method B offers a test of uncertainty and a standard remedy when it appears to be too low. Both the 

test regimen (only frozen tap water ice balls and only normal impact), and the very low uncertainty  

in the dashed curve (b  = 0.07), suggest that the dashed line in Figure 10 is too steep, that the 

uncertainty is too low. Appendix H.1.1 of FEMA P-58 (Applied Technology Council 2012) offers a 

method to increase the logarithmic standard deviation of capacity to account for real-world variability. 

One calculates a larger b  by means that will not be detailed here, selects a point on the original 

fragility function to preserve on the revised fragility function to reduce the chance of biasing the 

annualized failure rate, finds the value of demand xp associated with that failure probability, and 

rotates the fragility function about that point (xp, p) to find a new median capacity that passes 

through the original curve at that point but has the larger, more realistic value of b. The solid line in 

Figure 10 represents the revised fragility function following the FEMA P-58 procedures: it has   

q = 46 mm and b  = 0.25. 

3.4.3 Fragility of impact-resistant shingles

The studies discussed here generally agree that loss of the moisture barrier constitutes a failure. 

Failure under UL 2218, FM 4473, or the IBHS (2019) breach severity 1, 2, or 3 all seem to equate with 

functional failure. To construct a fragility function for this limit state, I propose to use method C of 

Porter et al. (2007). Method C refers to the case where one has observational data about specimens 

that were subjected to known levels of excitation, and none of the specimens failed. The component 

is said to be capable (the C in method C) of resisting this level of demand without failing. Porter et al. 

(2007) consider several method-C situations, in one of which none of the specimens experienced any 

apparent distress. In that situation, one chooses a logarithmic standard deviation of capacity (Porter 

et al. 2007 suggest b  = 0.4). One then assigns the highest value of demand in the data set (denoted 

by rmax) to a low failure probability denoted by F (0.01 for a large number of specimens). These two 

values provide enough information to drive a lognormal cumulative distribution function through the 

point (rmax, F) and calculate the median capacity q, by equation (21), with results shown in Table 3. 

The table also includes the fragility of non-impact-resistant shingles, for convenience. In the equation, 

F-1 denotes the inverse of the standard normal cumulative distribution function evaluated at the 

value in parentheses.

 (21)q  =  r m a x  e x p  (–F–1 (F ) •b )

UL 2218 or FM 4473 class rmax , mm exp (–F–1 
(F) •b ) q, mm b

None 39 0.25

1 32 2.54 81 0.4

2 38 2.54 97 0.4

3 44 2.54 112 0.4

4 51 2.54 137 0.4

Table 3. Shingle fragility for breaching moisture barrier.
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Then equation (20) gives the shingle’s fragility function, where x denotes the equivalent diameter of a 

single hailstone striking the shingle. Figure 11 illustrates the fragility functions for impact-resistant 

laminated shingles, and repeats the fragility function for unrated shingles for comparison.
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Figure 11. Fragility of asphalt shingles to the strike of a single hailstone.

Are the fragility functions for impact-resistant shingles too low? That is, do these fragility functions 

overestimate the capacity of impact-resistant shingles to resist hailstone strikes? Maybe not, for three 

reasons: angle of attack, hailstone density, and crushing energy.

1. First UL 2218 and FM 4473 both have the projectile impact the shingle at a 90-degree angle, 

which is rare. Hailstones that impact at more common, lower angles of attack will tend to 

transfer less kinetic energy to the shingle and cause less damage. The April 28, 2021, hailstorm in 

Norman, Oklahoma produced as heavy damage to the vertical sides of vehicles as it did their 

roofs, suggesting angles of attack near 45 degrees, which would transfer at most about 70% of 

their kinetic energy to out-of-plane deformation of the impacted surface. 

2. Second, as IBHS (2019) and Brown-Giammanco et al. (2021) point out, perfectly spherical steel 

balls and maximum-density ice spheres tend to represent a worst-case approximation of real 

hailstones, which can have much lower densities and thus lower terminal velocities.

3. Third, real hailstones are more likely to fracture on impact than are ice spheres. Steel balls never 

fracture on impact. The fracture transfers kinetic energy to the mechanical energy required to 

break bonds between water molecules, leaving less transferred to the shingle. Crushing ice 

requires about 3000 J/kg (Kim and Gagnon 2016), so to crush a 51-mm sphere of ice can absorb 

up to 187J, many times its kinetic energy in freefall (32J according to UL 2218). Of course, 

hailstones fracture on impact rather than being completely crushed, but the point remains that 

much of the kinetic energy of real hailstones can be absorbed by crushing rather than transferring 

to the roofing tile, and that is less likely to occur in ice spheres and impossible in steel. 
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3.4.4 Have we ignored important fragility data?

Why not use the breach-severity part of the IBHS (2019) test protocol to inform a fragility function 
about breaching the moisture barrier? It is unclear on what basis the experts judge breach severity. 
“Expert judgment” seems to mean that an expert estimates a clearly defined quantity without the aid 
of measurement or calculation. But the IBHS breach severity has no measurement or calculation that 
the expert is estimating. It is unclear what a breach of severity 0 means: the absence of a breach or a 
breach that is in some sense small? It seems clear that any breach of severity 1, 2, or 3 would indicate 
a nonzero (and presumably detectable and measurable) breach of the moisture barrier, but how 
much is too much? Our criterion is binary: no breach or a breach. Should the threshold be 1, 2, or 3, 
and why? Answering that question could make the IBHS test relevant to the present purpose.

Why not use the IBHS (2019) test’s granule-loss and dent-volume tests to measure cosmetic damage? 
The measures seem too hard to apply here. One cannot expect to see the loss of a single granule 
from the street or even standing on the roof. The loss of many granules over a small area would 
matter at some point, but the test is silent about the degree at which one can reliably see the loss of 
granules. Measures of dent volume also seem relevant, but IBHS relies on instruments rather than 
visual appearance to measure dent volume, and does not explicitly relate dent volume to its impact 
on appearance. Can one reliably see a dent with 11 mm3 volume? The authors make no statement 
on the point. Answering these questions could make the IBHS test more relevant for present purposes.

Have we accounted for the effect of age on shingle fragility? The fragility function for unrated 
shingles account for aging because it is based on testing of 11-year-old shingles. The author was 
unable to find the necessary data to determine how and the degree to which shingle age affects the 
fragility of impact-resistant shingles, and in any case the nature of method-C fragility functions for 
impact-resistant shingles may already cause an overestimate of damageability.

3.4.5 Simplifying the damage analysis with DL as the demand parameter

To use the fragility functions shown in Table 3 and Figure 11, one would have to estimate the number 
and size of every hailstone striking every shingle. That is probably practical, but unnecessary. Recall 
that hitrate, storm duration, and the distribution of hailstone diameters are all given as deterministic 
functions of the equivalent diameter of the storm’s largest hailstone, DL. Which suggests that given 
the exposed area of a shingle, one can calculate shingle fragility as a function of DL, accounting for all 
the hailstones that strike the shingle, even if none of them approach DL in size. 

Equation (19) tells us how many hailstones of diameters a to b strike an area as a function of DL.  
The exposed area of a shingle As = 0.165 m2. One can use equation (20) with the theorem of total 
probability to integrate over hailstone diameter. See equation (22). In the equation, DL is the 
uncertain equivalent diameter of the largest hailstone, dL is a particular value of it, and PfL(dL)  
denotes the failure probability of a shingle in a storm whose maximum hailstone diameter is dL.  
PfL also expresses the expected fraction of shingles on a roof that would have to be replaced if one 
only replaced damaged shingles.

 (22)Pf L  ( d L ) =  1 –P  1 – F 

a   =  x – 0.5

b  =  x + 0.5

≈  F

x e  {5, 6, 7,…xu}
b

b L

l n ( x | q )

l n ( d L | q L )

xu

Nab

x = 1
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 (23)

Note that some contractors commonly recommend replacing a roof when the fraction of damaged 
shingles exceeds some threshold value E such as E = 0.5, in which case equation (22) becomes

Pf L  ( d L ) =  F F 

F 

<  E 

≥  E =  1

b L b L

b L

l n ( d L | q L ) l n ( d L | q L )

l n ( d L | q L )

Figure 12 shows the results of evaluating equation (22) up to xu = 150. Unsurprisingly, the curves are 
also approximately lognormal: the product of large numbers of random variables tends to approach 
the lognormal distribution. One can use a new set of fragility functions, these where the demand 
parameter is DL and accounts for the number and size distributions of all hailstones striking a shingle, 
rather than the demand parameter being the diameter of a single hailstone striking it.
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Figure 12. Shingle failure probability as a function of the storm’s largest hailstone.

Table 4 presents the parameters of this second set of fragility functions, denoted here by qL and b L. 
Note that failure probabilities in terms of DL are much higher than those in terms of the diameter of  
a single hailstone. That is unsurprising, even though the largest hailstone is unlikely to strike a given 
shingle. The reason is that the fragility functions shown in Figure 12 accounts for the hundreds of 
hailstones that can strike a shingle during the duration of a storm. The chance of at least one 
low-probability failure in many trials can be larger than the chance of a single high-probability failure 
in a single trial. Note also that qL and b L are revised to have a larger, more credible, uncertainty value 
b L = 0.25. The revised curve passes through the same point of (dL, 0.1) as the original curve. 
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For a sense of the storm that will leave an impact-resistant roof undamaged, the table also shows the 
value of DL associated with some very small fraction of roof damage, say f0 = 1% damage, using 
equation (24) with f0 = 0.01. It also shows the chance that any given hailstorm will produce a larger 
DL, using equation (25). The table shows that an estimated 12% of hailstorms damage unrated roofs, 
and that class-4 roofs avoid damage in all but about 0.8% of hailstorms, i.e., 1 in 125.

 (24)

 (26)

 (25)

d L ( f 0)  =  q L  •  e x p  ( b L  •  F–1 ( f 0) )

L ( d L )  =  P f L  ( d L )  •  U  •  A  •  R

P  [ D L > d L ( f 0) ]  =  1 – F D L
 ( d L ( f 0) ) 

=
 e x p  ( m D L

 •  d L  ( f 0)  +  b D L) 

e x p  ( b D L) 

UL 2218 or FM 4473 class qL , mm b L
DL with ≤ 1% 
damage, mm

Probability of over 
1% damage 

Unrated 29 0.25 19 12%

1 41 0.23 24 7%

2 52 0.24 29 4%

3 63 0.25 35 2%

4 82 0.27 44 0.8%

Table 4. Shingle fragility in terms of the equivalent diameter of the storm’s largest hailstone, DL .

3.5 Loss analysis

3.5.1 Repair cost as a function of damage

Let us model repair cost as suggested by Marshall and Herzog (1999). Equation (26) adapts their 
methodology using the quantities calculated in the damage analysis. In the equation, L(dL) denotes 
the hail-damaged roof loss to a building in a hailstorm whose largest hailstone has an equivalent 
diameter of dL. Loss is measured here solely by the cost to repair hail damaged roofing. (One might 
also try to include the inconvenience and stress involved in roof repairs, the environmental harm 
caused by the debris, and on the plus side the jobs created, spur to economic activity, and perhaps 
others.) Pf 2 is the fraction of roofing shingles requiring replacement from equation (22), U is the unit 
repair cost (material, waste, labour, overhead, profit, and tax per unit area, A is area of the roof in the 
same units (e.g., number of squares), R is a factor to account for repair difficulty, which for the 
average case is taken here as 1.0.
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Let us replace U • A • R with V, to denote the replacement cost new of the whole roof. Let us also 
acknowledge that when the fraction of shingles damaged exceeds some threshold, one replaces the 
whole roof. Then equation (26) becomes equation (27):

 (27)
L ( d L )  =  Pf L  ( d L )  •  V Pf L  ( d L )  <  E

Pf L  ( d L )  ≥  E=  V

3.5.2 Long-term average annualized loss 

Let us now estimate the average annual hail loss to an asphalt shingle roof of a given level of impact 
resistance, surface area, and geographic location. Equation (28) gives the expected annualized loss 
associated with hail damage to asphalt shingle roofs, in year y (so that we can later account for 
climate change). The integrand has these parts: loss given a hailstorm with equivalent diameter of the 
largest hailstone dL from equation (27), frequency of hailstorms in year y, e.g., from Etkin (2018), and 
probability density of storms with equivalent diameter of the largest hailstone dL from equation (10).

 (28)E A L ( y )  =  ∫ L ( d L)  •  f h( y )  •  f D L
( d L)  •  d d L

dL=5

∞

Removing constants from the integrand and assuming stationary hazard over the life of the roof, 
equation (28) becomes equation (29). In the equation, mDL = -0.111 mm-1, bDL = 6.55, qL and b L are 
given by Table 4 and FL denotes expected value of the fraction of the roof that needs to be replaced 
given that a hailstorm occurs. In equation (30), the expression for FL, the denominator normalizes the 
probability density function fDL(dL) to integrate to 1.0 for DL ≥ 5 mm, based on the assumption that 
Etkin (2018) only counts the frequency of hailstorms with DL ≥ 5 mm. The denominator is necessary 
because the expression for fDL(dL) counts 0 < DL < 5 mm, as shown in Figure 9.

 (29)

 (30)F L  =

E A L  =  f h  ( t = 0 )  •  V  •  F L 

L ( d L)  •  f D L
( d L)  •  d d L

1 – F D L
( d L  = 5 )

dL=5

∞

∫

Equation (30) only depends on parameters of hail-resistance rating and on the probability density 
function for DL, which we have taken to be independent of location, time, or other variables 
considered here, and so can be evaluated for each hail rating level. See Table 5 for results. It says for 
example that the average hailstorm causes 9.7% loss to unrated roofs, accounting for the chance  
of various hailstone sizes and hitrates, including hailstorms that cause no damage or complete loss, 
and anything in between.

Unrated 1 2 3 4

0.097 0.030 0.011 0.0047 0.0011

Table 5. Expected fraction of roof value lost given a hailstorm, by hail rating, FL.
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3.5.3 Frequency-severity formulation of loss

Insurance actuaries commonly think about disaster losses in terms of the frequency with which a 
claim occurs and the severity of the loss if it occurs. 

Equation (31) estimates the claim frequency fclaim in year y given hail rating c, as the frequency with 
which hailstorms occur, fh(y), for example from Etkin (2018), times the fraction of storms that would 
cause a class-c roof to experience more than a very small fraction of roof damage, as suggested by 
equation (25) and Table 4.

The average claim severity is given by equation (32), by the theorem of total probability.

 (32)

s c l a i m  ( y, c )  =

=

L ( d L)  •  f D L
( d L )  •  d d L

f c l a i m( y, c )

E A L ( y )

dL=dL(f0)

∞

∫

 (31)f c l a i m  ( y, c )  =  f h  ( y )  •  P [ D L> d L ( f 0 ) ] 

3.6 Benefit-cost analysis 

3.6.1 Benefit-cost ratio

The present value of future hail loss is given by equation (33), in which r is a discount rate to reflect 
the time value of money and t  is a planning period over which one recognizes the future losses for 
the roof. 

The benefit of initially installing an impact-resistant roof rather than a non-impact-resistant roof is 
given by equation (34), in which the subscript 0 denotes non-impact-resistant roofing and c denotes 
a UL 2218 or FM 4473 class. Equation (35) gives the incremental cost of initially installing a class-c 
roof rather than an unrated roof, and equation (36) gives the benefit-cost ratio. Note that the 
difference in cost in equation (35) is exclusively the difference in the material cost of the shingles, 
since the labour is the same.

 (33)

 (34)

 (35)

 (36)

P V  =  E A L

B  =  P V0– P Vc

C  =  ( U c– U 0)  •  A  •  R

B C R  =  
B

=  ( E A L 0– E A L c )

r

r

1 – e x p ( – r t )

1 – e x p ( – r t )

C

The discount rate r and planning period t  will depend on who is buying the roof and under what 
situation.
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3.6.2 Insurer’s decision situations

An insurer paying a hail claim will use investment capital, suggesting a real discount rate of the 
long-term average return on real estate (in Canada, about 8.5%, per McLean 2021), less a long-term 
average inflation rate (e.g., 2% in Canada; Figure 13, for a discount rate of r = 6.5%).

Every year, most insured homeowners renew their policies, but some do not. For example, some 
homeowners will sell their house next year to a new owner who contracts with a different insurer. 
Which means that farther into the future, all else being equal, the current insurer has a decreasing 
likelihood of enjoying benefits from an improved roof. One can model that process and estimate the 
fraction of the total avoided future losses that the first and all subsequent insurers enjoy. 

Let R denote the annual retention rate, that is, the ratio of the number of retained customers to the 
number at risk. Here, that means the chance that the present insurer will insure a given homeowner 
for the same house next year. For purposes of estimating the benefits that the present insurer will 
enjoy from an improved roof, let us conservatively ignore the chance that the present insurer will 
contract with a different policyholder for the same property. 

2000 2005 2010 2015 2020
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Figure 13. Canada inflation rate (Trading Economics 2021).
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In the following, P(t) denotes the chance that the present insurer insures the given property in year t. 
It is given by equation (37). EAL0 and EALc denote the expected annualized repair costs under as-is 
and what-if conditions, respectively. B(t) denotes the present value of the loss avoided (the benefit)  
in year t. It is given by equation (38), in which r denotes the discount rate. Let t  denote the useful  
life of the roof. B denotes the present value of all avoided future losses, again from equation (34).  
B’ denotes the expected present value of all avoided future losses enjoyed by the present insurer, 
from equation (39).

 (37)

 (38)

 (39)

P ( t )  =  R t

B ( t )  =  R t  ( E A L 0– E A L c )  •  e x p ( – r t )

=       R t  ( E A L 0– E A L c )  •  e x p ( – r t )

B ’ =       P ( t ) B ( t )S

S

t –1

t –1

t=0

t=0

It is interesting to know what fraction of the total benefits are enjoyed by the first insurer, which is 
given by equation (40). Note that the ratio is a function of just the discount rate, retention rate, and 
life of the roof.

 (40)

     R t  ( E A L 0– E A L c )  •  e x p ( – r t )
=

=
     R t  •  e x p ( – r t )

( 1 – e x p ( – r t ) )

( 1 – e x p ( – r t ) )

r
( E A L 0– E A L c )

S

S

t –1

t –1

t=0

t=0

B
B ’

It turns out that for realistic parameter values, namely R = 0.9, r = 6.5%, and t  = 20 years, equation 
(39) yields about the same results as equation (34) if the insurer received all the benefits for the  
first 8 years. Some insurers reduce claim payments for older roofs to account for depreciation.  
That wrinkle is omitted here.

3.6.3 Buyers who do not expect to recoup the higher price of the roof

Let us next consider buyers of a new home whose developer passes on the cost of the higher-price 
roof. Those buyers pay with a mortgage. For that situation, a reasonable discount rate is the real cost 
of borrowing: a long-term average 5-year fixed closed rate (about 3% in late 2021, TD Canada Trust 
2021), less a long-term average inflation rate (e.g., 2%, per Trading Economics 2021), i.e., r = 1%. 
Let us take their planning period as the average tenure of t  = 10 years. Older homeowners might 
stay in their homes longer. Some might have a planning period closer to the life of the roof,   
t  = 20 years. For a conservatively high cost and low benefit-cost ratio, let us consider the home buyer 
who does not expect to recoup the higher price of the roof at the time of resale.
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Later owners have a similar decision situation. In late 2021, several home sellers in Calgary emphasize 
impact-resistant roofing among the features of the house, which suggests that impact-resistant 
roofing is a market feature with an associated value. One could perform a hedonic price analysis to 
estimate the value like those of Simmons et al. (2002), Simmons and Sutter (2007), Awondo et al. 
(2016, 2019) or Porter et al. (in press). Absent such an analysis, one could assume that the buyer pays 
100% of the cost of the hail-resistant roof, the same cost of borrowing ( r = 1%), and can expect the 
same t  = 10 years of benefit. 

3.6.4 Societal viewpoint

From a societal viewpoint, it makes sense to consider the entire life of the roof, perhaps 20 years for 
laminated architectural shingles with other qualities similar to impact-resistant products. Regarding 
the discount rate, the Treasury Board of Canada Secretariat (2007 pg. 38) suggests using a social 
time-preference rate of 3% where consumer consumption is involved and there are no or minimal 
resources involving opportunity costs. 
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4. Findings

Let us now apply the foregoing methodology to estimate the costs and benefits of impact-resistant 

asphalt shingle roof cover for a particular house design.

4.1 Sample building and locations

Let us consider the roof of an average-size house, that is, using the average roof area of a statistical 

sample of 102 single-family dwellings in Canada (Porter et al. 2021): about 167 m2 (1,800 ft2). The 

typical newer house from this sample of 102 houses has a roof pitch of approximately 4:12 to 6:12. 

Let us place the hypothetical house in Calgary Alberta at 51.159N, -114.158E, near the Sherwood 

neighborhood in north Calgary. To install a roof with a 10% buffer for waste would require 20 roof 

squares (A = 20 squares). It will also be useful later to consider two addition locations: one where  

the hailstorms occur one time per year, and another at the location where the hail hazard is greatest. 

The table shows the number of hail days per year at each location. See Table 6.

Location Longitude degrees E Latitude degrees N Frequency

30 km east of Calgary, AB -113.300 51.110 1.00

Calgary, AB -114.158 51.159 2.35

100 km northwest of Calgary, AB -115.200 51.900 5.71

Table 6. Sample building and locations.

4.2 Marginal cost and replacement cost

As shown in Table 1, class-4 shingles could add as little as $59 per square (CertainTeed Landmark IR, 

$155 per square, versus BP Canada Dakota, $96 per square) or as much as $244 per square (Tamko 

Stormfighter IR, $340 per square), suggesting a midrange marginal cost of about $164 per square 

(TruDefinition Weatherguard HP, $260 per square). All these figures are pre-tax, which would add 5% 

in Alberta. 

Thus, the minimum marginal cost for a 20-square roof is C = $300 (class 3) to $1,600 (class 4, both 

after-tax 2021 CAD). The mid-range marginal cost at $164 per square totals C = $3,400 after GST, 

about equal to Calgary’s $3,000 rebate. The most-expensive class-4 shingles cost $340 per square, 

adding $5,100 to the roof replacement cost after tax. 

The unrated roof replacement cost at $251/square is V = $5,300 including demolition of the old roof, 

underlayment (which contributes about 10% of the total where it is used), installation of the new 

roofing, and GST. A class-4 roof has a replacement cost of $8,700, subject to variability based on 

repair difficulty and other factors.

Costs can vary geographically and over time. They are not presented here as universal for all locations 

and over time. 
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4.3 Hazard and fragility

Etkin (2018) estimates Calgary hail frequency of fh(0) = 2.35 days per year for 2007. We lack 

sufficient information to estimate the change in hailstorm frequency or severity, so for present 

purposes we hold hazard stationary. Other hazard parameters – storm duration, hitrate, and hailstone 

size distribution – are not modeled here as geographically varying, and are taken from Grieser and 

Hill (2019) as discussed earlier. We calculate the hailstone size distribution using the simple gamma 

distribution, and shift it by normalizing its probability density function by its integral from 5 mm to 

infinity. Fragility is taken as described in section 3.4. 

4.4 Loss analysis 

Table 7 presents an estimate of roof repair costs, that is, contributors to the unit repair cost U, as of 

this writing, in Calgary. It shows that labour accounts for approximately 60% of the total unit cost for 

unrated shingles, and about 40% for class-4 impact-rated shingles.

Cost parameter Unrated Class 4 Comment

Underlayment demo + replace 
material

$6.69 $6.69 Unit cost roof underlayment, 
demolish & replace 15# felt, from 
RSMeans (2020) pg. 73

Underlayment demo + replace 
labour

$22.20 $22.20 Ditto

Shingle demo & install labour $125.73 $125.73 Labour unit cost demolish & install 
30-year comp shingles RSMeans 
(2020, pg. 73)

Shingle material low $85.00 $167.00 Marquis Weathermax (Home Depot 
Calgary); Mystique (RONA); 
TruDefinition Duration (Menards, 
Home Depot)

Shingle material moderate $96.00 $260.00 Dakota (RONA.ca); Manoir (RONA.
ca); TruDefinition Weathguard HP 
(Hanscomb Ltd 2020)

Shingle material high $99.00 $340.00 Everest (RONA.ca); Vista AR 
(Hanscomb Ltd 2020); Stormfighter 
IR (Hanscomb Ltd 2020)

Total cost/sq low $239.62 $321.62

Total cost/sq moderate $250.62 $414.62

Total cost/sq high $253.62 $494.62

Marginal cost/sq low $0.00 $82.00

Marginal cost/sq moderate $0.00 $164.00

Marginal cost/sq high $0.00 $241.00

Labour as % of total low 62% 46%

Labour as % of total moderate 59% 36%

Labour as % of total high 58% 30%

Table 7. Contributors to repair cost per roofing square.
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4.5 Frequency, severity, benefit, cost, and benefit-cost ratio

4.5.1 Results 

Table 8 presents claim frequency (labeled Freq) and claim severity (labeled Severity), expected 

annualized loss (EAL, 2021 CAD $/year), present value of loss (PV, 2021 CAD), benefit relative to 

unrated shingles (2021 CAD), and benefit-cost ratio (unitless) for a variety of decision situations.  

Note that claim frequency is different from hailstorm frequency, because only some hailstorms cause 

a claim. Figures in the table are rounded to reduce the appearance of excessive accuracy, although 

the calculations were carried out to greater precision. 

The table is organized around a base case from society’s perspective: a 20-square roof that adds 

$3,400 to its replacement cost, but saves a long-run average of $10,000 in avoided future repair 

costs over a 20-year life of the roof. The discount rate for the base case reflects the Treasury Board of 

Canada Secretariat’s (2007 p. 38) recommended social time preference value of 3%. The resulting 

benefit-cost ratio is 3:1, that is, $3 saved per added $1 of construction cost. The table shows that if 

one chooses other parameter values, the benefit-cost ratio can be as low as 1 or as high as 7, 

considering these alternative choices:

1. Insurer perspective: Let us assume the insurer’s retention rate from year to year is about R = 0.90, 

and that the insurer has a discount rate based in the current real opportunity cost of withdrawing 

capital from the real estate market (8.5%) minus inflation (2%), for a real discount rate of 6.5%.

2. Homeowner perspective: Homeowners might only consider benefits over a 5-year remaining 

tenure in their current house. Their discount rate might reasonably be taken as their real cost of 

borrowing, i.e., the mortgage interest rate minus inflation, currently 1%.

3. Different planning periods. The base case is a 20-year life of new shingles, but they could last as 

little as 10 or as many as 30 years.

4. Different discount rates. One might consider the homeowner’s real cost of borrowing (1% as 

noted above) or the Treasury Board of Canada Secretariat (2007 p. 37) recommended cost of 

extracting funds from capital markets, 8%.

5. Different hazard. The base case reflects a Calgary neighborhood that experiences 2.4 hail days 

per year. One can consider lower hazard: a place 30 km east of Calgary that experiences 1.0 hail 

days per year, or a near-worst-case location 100 km northwest of Calgary that experiences  

5.7 hail days per year.

6. Different shingle products. The base case is a class-4 shingle that adds $164 per square 

installation cost. But some impact-resistant products can add as little as $14 per square or as 

much as $241 per square.

7. Different house sizes. The base case has a 167-m2 (1,800 ft2) roof, which requires 20 roofing 

squares, but one can consider the 16th and 84th percentile houses, with roofs of  13 and   

30 square, respectively.
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Unrated shingles 

 

Unrated shingles Impact-resistant shingles

Freq Severity EAL PV Freq Severity EAL PV B BCR

Societal base case 0.27 $2,500 $690 $10,400 0.018 $1,200 $22 $340 $10,000 3

Insurer perspective 0.27 $2,500 $690 $2,900 0.018 $1,200 $22 $96 $2,800 1

Homeowner 0.27 $2,500 $690 $3,400 0.018 $1,200 $22 $110 $3,200 1

Short planning period 0.27 $2,500 $690 $5,900 0.018 $1,200 $22 $190 $5,800 2

Long planning period 0.27 $2,500 $690 $13,600 0.018 $1,200 $22 $440 $13,000 4

Low discount rate 0.27 $2,500 $690 $12,500 0.018 $1,200 $22 $410 $12,000 4

High discount rate 0.27 $2,500 $690 $6,900 0.018 $1,200 $22 $220 $6,600 2

Low hazard (30 km E) 0.12 $2,500 $290 $4,400 0.008 $1,200 $10 $140 $4,300 1

High hazard (100 km NW) 0.66 $2,500 $1,700 $25,100 0.044 $1,200 $55 $820 $24,000 7

Low-cost shingles 0.27 $2,400 $660 $9,900 0.018 $1,000 $17 $260 $9,600 6

High-cost shingles 0.27 $2,600 $700 $10,500 0.018 $1,500 $27 $400 $10,000 2

Smaller house 0.27 $1,600 $450 $6,700 0.018 $800 $15 $220 $6,500 3

Larger house 0.27 $3,800 $1,000 $15,500 0.018 $1,900 $34 $510 $15,000 3

Table 8. Benefit-cost ratio of using impact-resistant asphalt shingle roofing near Calgary, Alberta.

4.5.2 Observations and interpretation of results

Some initial observations about the results. First, the BCR column suggests that no matter what 

decision situation or perspective one takes within the suite of options considered here, the  

impact-resistant shingles are cost effective. Every situation produces a benefit-cost ratio greater than 

1.0, some as high as 7:1. 

Second, the frequency columns show that, in Calgary, one can expect a storm that causes at least a 

little damage (1%) to an unrated roof once in four years (0.27 times per year). A class-4 impact-

resistant roof has a much lower frequency: 0.018 times per year, or approximately once in 55 years, 

that is, about 15 times lower frequency. 

Third, the table shows that impact-resistant shingles suffer about half as much damage in dollar 

terms when a damaging storm occurs. Changing from unrated shingles to class-4 shingles reduces 

the expected value of repair cost from $2,500 (about 48% of the unrated roof’s $5,300 replacement 

cost) to $1,200 (about 14% of the class-4 roof’s $8,700 replacement cost). 

Fourth, planning period and discount rate both matter, as shown in Figure 14. Between the two, 

planning period matters more. Regardless of the discount rate, impact-resistant shingles save in the 

long run, paying for themselves within about 5 years in Calgary, with its 2.35 hailstorms per year.  

The benefit, benefit-cost ratio, and payback period decrease as frequency of hailstorms increases. 

More on how to scale results for other locations and other roofs sizes later.
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Figure 14. How planning period and discount rate affect benefit and benefit-cost ratio.

Fifth, the claim frequency for unrated roofs may seem high at once every four years. It is unsurprising 

that the model might overestimate claim frequency. The model uses fragility functions that rely on 

laboratory tests with 90-degree impacts by ice spheres and steel balls, in some cases two impacts by 

large projectiles in the exact same spot. This situation contrasts with what actually happens in nature: 

(a) impacts by often less-dense hailstones (b) at angles that may be more glancing and less damaging, 

and where (c) much of the kinetic energy of impact is absorbed by crushing and fracturing of the 

hailstone, rather than being transferred to the shingle. For any or all these three reasons, and possibly 

for others, the frequency and severity figures might represent something of an upper bound.

It is unclear whether that means the benefit-cost ratios are higher or lower than a more exact model 

might predict, or that actuarial-quality loss data might reveal, or by how much. Much depends on 

how far off the estimates are from the true behavior of shingles, and on benefits that are not 

calculated here. The two classes (unrated and class-4 shingles) might differ in how conservative the 

estimates are. If the severity of both were high by the same amount, whether $100 or $500, the 

benefit would be the same and the benefit-cost ratio would be unchanged. One can imagine that a 

better estimate of true behavior in frequency, severity, or both could produce benefit-cost ratios that 

are higher, lower, or unchanged. 

And the analysis omits several possible benefit sources, inclusion of which might raise the benefit-

cost ratio.

1. Lower claims-adjustment cost

2. Good will from the insured

3. The chance that subsequent owners will contract with the same insurer, and 

4. Mutual benefit from widespread adoption. That is, the insurer may subsequently insure other 

properties that other insurers repaired with impact-resistant roofing.
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4.5.3 Sensitivity tests

The analysis recognizes a variety of uncertain quantities within the model. Each uncertain model 

parameter can affect the benefit-cost ratio. This section examines how sensitive the benefit-cost 

ratios are to some of these uncertainties. 

One can plot how the different variables reflected in Table 8 affect the result, to see visually how 

sensitive the benefits are to different assumptions. Figure 15 depicts the sensitivity of benefit-cost 

ratio (on the x-axis) to each of five variables. Each bar shows the how the benefit-cost ratio varies 

depending on the value of one of the variables. The top bar shows that BCR is most sensitive to 

location and therefore the hail hazard, a choice that can cause the BCR to vary between slightly more 

than 1:1 and as high as 7:1. BCR is next most sensitive to the shingle cost, then to the planning 

period, then the discount rate. The benefit-cost ratio is insensitive to roof size because cost and 

benefit both vary linearly with roof area: double the roof area and one doubles both the cost and 

benefit, so the ratio does not change. The tornado diagram shows that class-4 impact-resistant 

shingles are cost effective regardless of these parameter choices. Of course, more than one parameter 

value could be different from the base case, making the range of possible benefit-cost ratios broader 

than shown here.

Figure 15. Societal benefit-cost ratio for impact-resistant shingles in Hailstorm Alley, and its sensitivity to 

various inputs. The vertical dotted line at x = 1:1 indicates breakeven: left is BCR < 1:1, right is BCR > 1:1. 
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4.5.4 Sensitivity to the fragility function 

One can vary the fragility functions, but with important cautions about how much meaning the 

results have. A sensitivity test requires knowledge or judgment about how uncertain the parameter 

values are. But we have limited empirical knowledge about key uncertainties. Let us at least lay out 

some of our knowledge, make reasonable assumptions about their effects, and measure the results.

Angle of attack. Both fragility functions (for unrated and class-4 shingles) use 90-degree impacts by 

similar projectiles, which would both tend to overestimate damage. The kinetic energy of the 

hailstone relative to the roof when the hailstone impacts at a 45-degree angle might be about 70% 

that of the 90-degree impact. Impact energy increases approximately with diameter raised to the  

4th power. A sphere of diameter X impacting at a 90-degree angle imparts about the same energy as 

one with 1.1X diameter impacting at a 45-degree angle. Let us therefore reflect uncertainty in 

capacity associated with angle of attack with a uniform distribution with a domain of 1.0 to 1.1 times 

the estimated diameter of the sphere causing 50% failure probability (called the median capacity). 
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Hailstone density. The kinetic energy of a hailstone whose specific density is 0.4 g/ml (the low end 

estimated by Bilham and Relf 1937) could be less than 40% that of one with 0.92 g/ml density, 

because drag on a lighter hailstone reduces its terminal velocity relative to a heavier one with the 

same diameter. That means that it might take a less-dense hailstone perhaps 20% larger in diameter 

to cause equivalent damage. Let us reflect that uncertainty with a uniform distribution over 1.0 to  

1.2 times the median capacity. 

Method-C failure probability (class-4 shingle only). The true failure probability of the class-4 

shingle when it is impacted by the 51-mm spheres might differ from 0.01; it could realistically be 

much higher or lower. Let us reflect that uncertainty with a uniform distribution of 0.8 to 1.2 times 

median capacity.

Temperature and age. Shingle failure probability could be affected by temperature and age, with 

colder and older things generally, but not always, being more damageable. Let us reflect that 

uncertainty with a uniform distribution over 0.8 to 1.0 times the median capacity. 

One could reasonably make different choices for all these measures of uncertainty – different 

distribution shapes, different bounds, etc. – but without evidence, the foregoing choices seem at 

least reasonable. 

Result: slightly high median and slightly higher uncertainty. Without showing the math, a 

numerical integration over these exogenous (not previously modeled) and uncorrelated variables 

suggests an approximately normally distributed median capacity with mean of 1.04 times the 

currently estimated value and standard deviation about 0.09 in the case of the unrated shingle and 

0.15 in the case of the class-4 shingle.

Should we increase the median and uncertainty? We have already increased both the uncertainty and 

the median capacity of the unrated shingle to account for exogenous uncertainties like these. 

Without quantifying the possible sources, we raised the uncertainty from 0.09 to 0.25, more than 

enough to account for the 0.09 addition here. We raised the median capacity by more than the 

factor of 1.04. It therefore seems safe to say that the fragility function for the unrated shingle already 

accounts for these and other exogenous uncertainties.

The fragility function for the class-4 shingle already has a logarithmic standard deviation of 0.4, much 

more than the 0.15 calculated here. Uncertainties like these do not sum directly, but add through the 

square root of the sum of their squares. Doing so here would raise the logarithmic standard deviation 

of capacity from 0.40 to 0.43. Since the value of 0.4 was arrived at by judgment (see Porter et al. 

2007 for more detail), the change would add only illusory accuracy.

The fragility function for the class-4 shingle has a median capacity that already reflects an 

extrapolation from 1% failure probability when impacted by a 51-mm sphere to 50% failure 

probability using this reasonably large uncertainty of 0.4. The median was 2.54 times the rated 

sphere diameter, so an increase by an additional 4% again seems like illusory accuracy. 

In short, one could modify the fragility functions to bring these previously exogenous variables into 

the damage model, but doing so does not seem justified, would provide illusory accuracy, and would 

effectively double-count their effect. It would be more defensible to perform better laboratory tests 

than to apply the somewhat arbitrary adjustments suggested here.
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4.5.5 Effect of geographic location on frequency and benefit-cost ratio

By the math presented here, the benefit-cost ratio varies in direct proportion to the number of hail 

days per year, differing only by a constant factor that depends on the impact rating and cost of the 

shingles. Under baseline conditions (3% social time preference and 20-year shingle life), the benefit-

cost ratio is about 1.25 times the number of hail days per year. 

Figure 16 and Figure 17 show the cost-effectiveness of impact-resistant shingles. They have a 

benefit-cost ratio greater than 1.0 (light blue colors or warmer in the map) across much of the 

Canadian west, especially on the east slope of the Canadian Rockies from Banff to Slave Lake, AB, 

and on the west slope between about Kamloops and Prince George, BC.

Figure 16. Benefit-cost ratio for class-4 impact-resistant asphalt shingles near Hailstorm Alley.

Figure 17. Benefit-cost ratio for class-4 impact-resistant asphalt shingles across much of the nation.
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Table 8 and Figure 18 show the claim frequency in Calgary is 0.27 per year for unrated shingles, 

meaning that about once every four years, at least 1% of the shingles on an unrated roof would 

suffer cosmetic damage or a breach of their moisture barrier. Table 8 and Figure 19 show that 

installing an impact-rated roof in Calgary causes the claim frequency to drop by a factor of 15, from 

0.27 to 0.018, or about one claim in 55 years. 

Severity does not change geographically: about $2,500 for the unrated roof, $1,200 for the impact-

resistant roof. Recall that the conservative nature of the fragility tests – 90-degree impacts by ice 

spheres and steel balls – may tend to over-estimate damage, so these frequency and severity 

estimates may represent something more like an upper bound.

Figure 18. Insurer claim frequency for unrated asphalt shingles near Hailstorm Alley.

Figure 19. Insurer claim frequency for class-4 impact-resistant asphalt shingles near Hailstorm Alley.
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4.6 Climate change

The foregoing calculations ignore climate change. Recall that Raupach et al. (2021) estimate 7% 

increase in 20-mm hail per 1C warming, 21% for 35-mm hail, and 146% for 50-mm hail in the 

Canadian Rockies. Etkin’s (2018) data span from 1977 to 2007, suggesting a baseline year of perhaps 

1992 against which to measure warming. 

Under representative concentration pathway (RCP) 8.5, ClimateData.ca estimates that Calgary will 

warm by about +2C in the next 30 years relative to 1992, suggesting an increase in hailstorm 

occurrence frequency (and therefore benefit-cost ratio) on the order of 14%, too small to make 

much difference in the benefit-cost ratios shown in Table 8 and the maps. 

On the other hand, also recall that Cao (2008) found that hailstorm frequency approximately doubled 

between 1979 and 2002 with an increase of 0.7C in Ontario. There does not appear to be sufficient 

consensus yet to conclude that hailstorm frequency will double in Hailstorm Alley. 
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5. Conclusions

Let us now reflect what we have learned about the questions we sought to answer. 

5.1 Successful creation of a performance-based engineering method for hail damage

This work presents a new performance-based engineering methodology to estimate the costs and 

benefits of installing impact-resistant roofing on buildings that are subject to hail. The methodology 

seems to work. It allows one to model the behavior of roofs of any arbitrary size, location, and other 

design attributes. It accounts for hail hazard including all of its variability in storm frequency, hitrate, 

duration, hailstone size distribution, and climate change. It estimates roof damage with empirically 

derived fragility functions that model the uncertain capacity of roofing shingles to survive impact by 

various size hailstones. It models the loss measure that matters most: repair cost. 

This study illustrates some of the great strengths of performance-based engineering: it measures 

performance in terms that stakeholders care about (here, repair cost), as opposed to less-relatable 

measures such as passing prescriptive code requirements. It breaks the problem of the performance 

of an element of the built environment into tractable analytical stages, each of which can be tested 

in a laboratory or otherwise handled by standard scientific methods, without waiting for vast 

quantities of actuarial data to be made available and collected after rare catastrophic events. The 

present work did not explore another feature of performance-based engineering: the ability to 

quantify and propagate uncertainty through every analytical stage, but that could be done with 

modest additional effort. 

5.2 The business case for an insurer to rebuild stronger homes

For an average-sized house in Calgary, benefit-cost analysis suggests that it can make financial sense 

for an insurer to pay to replace non-rated shingles with class-4 impact-resistant shingles. A class-4 

impact-resistant roof for an average-sized house adds about $3,400 to the cost of the roof, relative 

to an unrated roof. It reduces the claim frequency by about 15 times and the claim severity by half.  

It saves about $4,200 over the life of a policy with 90% annual retention, for a benefit-cost ratio 

(BCR) of $4,200/$2,800, or 1.2:1. 

The insurer’s BCR of 1.2:1 suggests that an insurer who pays to rebuild stronger homes in Calgary 

with a class-4 roof will more than break even. It is cost effective for insurers to replace non-rated 

shingles with class-4 shingles anywhere with at least 2 hailstorms per year. 

5.3 The societal business case for impact-resistant roofs

Society’s viewpoint differs from the perspective of an insurer. From the larger perspective, one can 

consider the life of the roof (say 20 years) and a lower discount rate (the social time-preference rate 

of 3.0%). From this perspective, an impact-resistant roof appears to be far more cost effective, with a 

BCR up 10:1 for in some places. Impact-resistant shingles pay for themselves on average within 

about 5 years in Calgary, faster in locations with more-frequent hailstorms.

However, society does not make mitigation decisions, people do, in this case the developer or owner. 

If that decision-maker’s interests do not align with society’s – if the decision-maker pays and others 

benefit– then the decision-maker is unlikely to choose an impact-resistant roof. Possibly a set of 

insurance, grant, and market incentives like those suggested by Multi-Hazard Mitigation Council 

(2020) could better align stakeholder and societal interests and increase uptake. 
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5.4 The results scale

All of the costs and benefits of installing an impact-resistant roof scale with roof size, hailstorm 

frequency, or both. To estimate the quantities in Table 8 for a different roof size A or for a different 

location, find the roof size in roofing squares (A). Find the hailstorm frequency for that location fh, 

(e.g., from Figure 7). Pick the row in Table 8 that most closely matches the decision situation you care 

about (e.g., societal base case or insurer perspective), and apply Equations (41) through (47) to the 

quantities in that row.

Cost = $3,400 x  
A

   (41)

Claim frequency = (Freq in Table 8) x 2.35    (42)

Claim severity = (Severity in Table 8) x  
A

   (43)

Expected annualized loss = (EAL in Table 8) x  
A  

x 2.35   (44)

Present value of future losses = (PV in Table 8) x  
A  

x 2.35     (45)

Benefit = (B in Table 8) x  
A  

x 2.35     (46)

Benefit-cost ratio = (BCR in Table 8) x 2.35     (47)
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5.5 Study limitations

All studies are limited in their objectives and results. Here are some particularly notable limitations 

that might be addressed in later study. 

1. No BCRs for other impact-resistance ratings, other roofing types, cladding, or vehicles. 

This study developed a performance-based engineering method to estimate the costs and 

benefits of class-4 impact-resistant asphalt-shingle roofing consistent with ICLR’s HailSmart 

advocacy of class-4 roofs. The present study focused on residences, but it applies to commercial 

or other buildings with asphalt-shingle roofing. One can use its methods to quantify the benefit-

cost ratio of class-3 or other asphalt shingles, metal roofs, or other roofing products. It could be 

used to judge changes in siding with additional fragility data on siding materials and products. 

2. Limited fragility information. The study develops method-C fragility functions for impact-

resistant shingles, based solely on pass/fail tests of the size of sphere that the shingle is capable of 

resisting (“capable” provides the c in method C). Method C uses a standard assumed value of 

uncertainty (b  = 0.4) that reflects this important data limitation. Laboratory testing that reflects 

the variability of real-world hail impacts could overcome this limitation and improve our 

confidence in a repetition of this study. 
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3. No empirical validation. The performance-based engineering method is called a forward 

analysis, meaning that the output is purely analytical, as opposed to actuarial or based on other 

observational data. It exercised its methodology for a sample house with asphalt shingle roofing 

in Calgary as an interesting proof of concept. This analysis presents no attempt to validate the 

findings, e.g., through comparison with storm experience data, although that could be done.

4. Demand surge will occur. The pilot study uses consequence functions (which relate damage to 

loss) that ignore possible demand-surge effects that very large catastrophes impose on the 

construction market, temporarily raising repair prices. A rise in labour costs would lead to higher 

estimated losses both to unrated roofs and to impact-resistant shingles. The relative losses would 

rise in proportion to labour costs, but since unrated roofs suffer more damage than impact-

resistant roofs, they would also have a greater increase in repair cost. The avoided loss of using 

impact-resistant shingles would increase, meaning that the benefit would be greater, and the 

benefit-cost ratio would also be greater. 

5. Insurer-specific depreciation policies are not reflected. As noted earlier, at least some 

insurers reduce claim payments for older roofs. The depreciation shifts some repair costs from the 

insurer to the owner. Because the benefits reflect reduction in repair costs, the reduction in repair 

costs for older roofs actually shifts benefits from the insurer to the owner. That shift is not 

reflected in the results presented here.

6. All costs change over time and differ geographically. Costs and benefits presented here are 

based on available sources. Costs vary over time as labour and material prices fluctuate. They also 

vary geographically. However, it seems more useful and practical to estimate current costs and 

benefits and explain their sources and assumptions, rather than to attempt to provide some sort 

of universal estimate that will be accurate everywhere and over all time, or to despair of the 

possibility of providing quantitative results.  

5.6 Future research

Most of the limitations listed above could be reduced or eliminated with further study. Several 

examples:

1. Improve shingle fragility functions with laboratory testing to failure. One could improve 

the fragility functions with laboratory testing of shingles using method A (actual failure 

excitation), in which one experimentally observes the actual value of hailstone size (or steel 

sphere size) that causes failure. To produce realistic fragility functions, the experiments could 

better reflect real-world variability in impact of hailstones on roofs: the angle at which spheres 

impact the roof, the kinetic energy of the sphere, its coefficient of restitution, and possibly other 

variables. The results might show greater resistance of shingles to realistic hailstone impacts than 

the method-C fragility functions based on rating tests.

2. Perform empirical validation. We attempt to validate the findings presented here through 

comparison with storm experience data. Such an effort could be undertaken in collaboration with 

claims adjusters after a hailstorm. We would observe damage after a hailstorm from a sample of 

at least several dozen roofs whose impact ratings and maximum hailstone sizes were observed. 
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3. Calculate BCRs for classes 1, 2, and 3 shingles, and for transitioning from 1 to 4, 2 to 4, etc. 
We possess most of the data required to perform these calculations. We lack knowledge of 

class-1 and class-2 roofing shingles, especially their material costs. 

4. Calculate BCRs to improve siding, protect vehicles, and for hail seeding. We could perform 

similar studies about the cost-effectiveness of impact-resistant siding, for temporary shelters that 

protect vehicles, and for hail seeding. These would require fragility functions for the siding, 

shelters, and crops. A hail-seeding benefit-cost analysis would require knowledge of the changes 

in hitrate, maximum hailstone diameter, and hailstone size distribution in a seeded storm. 

5. Incentivization. Better roofs benefit several stakeholders. The present insurer enjoys about 52% 

of the avoided future losses (assuming 90% annual retention rate, 6.5% discount rate, and a 

20-year life of the roof). Subsequent insurers also benefit: the second insurer enjoys about 17% 

of the avoided future losses, the third, about 9%, etc. Present and future homeowners also 

benefit. If their insurer offers a premium incentive for lower risk, homeowners may save 

monetarily, but they also suffer less nuisance and interruption. Only one of these stakeholders will 

pay for the roof. ICLR could work with insurers, homeowners, and perhaps others to design 

incentives that would share the cost of better roofs more fairly, more in proportion to benefits. 
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