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Abstract

This report presents a method for modeling couplings between micro-
strip components and evaluating sensitivities of MMIC perfofmance to various
layout dependent parasitic couplings. Planar analysis of microstrip circuits is
used to obtain a network characterization of each component without coupling.
This is then modified by means of the multiport network method to account
for parasitic couplings between various microstrip components. The adjoint
network method is used as a means of evaluating circuit sensitivities. Method-
ology for implementing the proposed methods has been introduced, and the

techniques are illustrated by considering examples of practical MMIC layouts.
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CHAPTER 1
INTRODUCTION

The prevailing trends in modern communications have led to further
development of devices designed to operate at microwave and millimeter wave
frequencies. Advances in the fabrication of monolithic microwave integrated
circuits (MMIC’s) have accompanied this progression to higher operating fre-
quencies. And MMIC technology has placed greater demands on the computer
aided design (CAD) tools used in the development of these devices. At these
higher operating frequencies simple models may fail to adequately describe de-
vice behavior, thus more detailed analysis is often needed to provide accurate
modeling of microwave components. Moreover, fabrication costs and time con-
straints associated with monolithic circuit design have placed a premium on
highly accurate CAD analysis tools. Whereas CAD has traditionally been per-
formed using circuit-theory based analysis, the push in recent years is toward
the use of electromagnetic models in microwave circuit CAD. Since treating a
structure in terms of voltages and currents is less difficult and computationally
faster than field analysis it is not likely that electromagnetic models will replace
circuit-theory based CAD. Instead, electromagnetic analysis should stand next
to traditional analysis stepping in only as needed. The most complete elec-
tromagnetic models have been classified as ‘full-wave’, or ‘three-dimensional’.
These methods perform the field analysis for an arbitrary three-dimensional

structure. Moment method solutions are an example from this class. In this



report a less rigorous model which may be called ‘two-dimensional’ is applied
to the analysis of microstrip planar components. Planar analysis is based on
a parallel-plate waveguide model, and analysis of this model assumes no field
variation along the height of the substrate, hence planar analysis cannot yield
results which are as accurate as full-wave methods. Yet the two-dimensional
field solutions outrank quasi-static analysis techniques because higher-order
modes in two transverse dimensions and dispersion effects are included. Pla-
nar analysis may therefore be considered an intermediate level analysis.

Because microstrip is an open structure, energy may be carried away
from microstrip components through radiation. It is also possible for external
fields to couple to other components in a MMIC layout. Most often such cou-
pling is undesireable and is therefore appropriately called ‘parasitic’ coupling.
If devices are tightly spaced to conserve MMIC real estate, these couplings
may potentially become very significant, and one of the primary limitations
of present microwave CAD is the inability to model spurious radiation and
parasitic coupling in a MMIC layout.

Different methods may be proposed to address these needs. Radiation
loss in microstrip discontinuities has been calculated by finding the Poynting
vector produced by currents on the microstrip [1] , [2], [3]. It is also possible
to include radiation loss and account for parasitic couplings by using full-wave
analysis techniques [4]. But full-wave analysis methods are computationally
intensive so their use is accompanied by this associated cost. The Multiport
Network Model was developed to account for junction and edge effects [5]
in microstrip patch antennas and, soon after, for mutual coupling between

patches [6]. The Multiport Network Model has recently been extended by
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means of the Planar Lumped Model to account for spurious couplings among
coupled-microstrip line discontinuities [7]. So we find that methods exist for
obtaining a quantitative measure of the parasitic coupling between microstrip
elements. Yet these methods are inappropriate for analyzing large circuits,
so it is necessary for the designer to know what portions of a MMIC require
a more accurate analysis which includes the effects of coupling. Thus it is
important to also have a quantitative estimate of how important couplings are
to the overall circuit performance. Sensitivity analysis can be a help to the
designer in making this determination, and, in this way sensitivity analysis
provides information other analysis techniques do not. Rather than seeking to
answer, ‘ How much? ’, sensitivity analysis for parasitic coupling helps answer
the question, ¢ How significant is this coupling? ’. Yet, to date, there has been
little work reported which provides a measure of circuit sensitivity to parasitic
couplings.

In this report the Multiport Network Model is discussed as a means
for incorporating parasitic couplings in microstrip circuit analysis. The meth-
ods described are then extended to yield circuit sensitivity analysis for changes
in parasitic coupling. The Multiport Network Model is well suited to sensitivity
analysis, and although the models used are approximate and cannot compete
with full-wave analysis techniques in terms of accuracy, planar analysis meth-
ods play their own role as one of the tools a designer may choose. Indeed,
for the purpose of identifying ‘hot spots’ in a MMIC layout for which para-
sitic couplings are most significant, planar analysis and the Multiport Network
Model may be ideal.

The format of this report is as follows. Planar analysis of microstrip



components is outlined first, and a planar model for. viahole grounds intro-
duced. Chapter 3 includes a discussi(')n of the Multiport Network Model and
how it is used to incorporate parasitic coupling effects into circuit analysis.
The following chapter derives the sensitivity equation and reports sensitivities
for selected sub-circuits. Chapter 5 is an extension of the sub-circuit sensitivity
to determine sensitivities of the external-port parameters of a complete MMIC
layout, a task illustrated by examples. The final chapter includes the closing

remarks.
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CHAPTER 2
PLANAR ANALYSIS OF MICROSTRIP CIRCUITS

Planar modelir.  of microstrip structures relies on the rremise thaf
the height of the substrazie is electrically thin and consequently underneath
the strip, there is no variation of the fields along the substrate height. In this
approach, the physical microstrip structure is replaced by a planar waveguide
model. This chapter begins with a discussion of the planar waveguide model for
a uniform microstrip line. Next, methods are described for applying the planar
waveguide model to various discontinuities, and, in turn, to a more complete
microstrip circuit structure. Finally, planar analysis is applied to the modeling

of microstrip viahole grounds.

2.1 Planar Waveguide Model for Microstrip Lines

| The planar waveguide model for microstrip line is shown in Fig-
ure 2.1. The structure consists of two parallel conductors bounded on ei-
ther side by magnetic walls. The width of the waveguide, called the effective
width, weyy, is larger than the physical width of the microstrip line in order
to account for the fringing fields of the microstrip. This equivalent waveg-
uide is filled with an effective dielectric constant, €,.s;, which is smaller than
€ of the substrate since the fields extend outside the dielectric layer. The

height is not changed in this model, but ws and €,.s are selected to ac-

count for the fringing fields such that ZJAYECUIDE — ZMICROSTRIP ,n4

\WVAVEGUIDE _ /\SHCROSTR’P . Here, Zrgp is given by the parallel plate
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Figure 2.1: Planar Wavguide Model for Microstrip Line
(a) Microstrip Line (b) Equivalent Planar Waveguide

waveguide formula Zrgm = Moh/\/Eesf wess, and Ay = c/f /Eess. Values
of w.ss and €,.¢ can be obtained from a quasi-static analysis of the microstrip
line [9], however, because the fields are more closely confined to the microstrip
at higher frequencies, the frequency dependent values Z,(f) and e,.(f) are
needed to accurately model the line. Beginning with analytical equations for
Zo(f) and €..(f) in the special case of homogeneous media and an infinitely

thin conducting strip, Hammerstad and Jensen [10] have extended their work

and that of others to account for inhomogeneous media (e, > 1) [11], finite

conductor thickness (¢t # 0), and frequency dispersion [12] to develop accurate
expressions for the dynamic characteristic impedance and effective dielectric

constant for microstrip lines. Their equations are well-suited to corhputer
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aided design and remain accurate for nearly all practical line widths and for
any substrate commonly in use. From such expressions for Z,(f) and €,.(f)

the frequency dependent effective width is obtained directly as

w =——n—°-,?——— 2.1
e(f) PN A (2.1)

where 7, is the impedance of free space and h is the substrate height. To
account for losses, the planar waveguide model uses an effective loss tangent

which may be expressed as [14]
1
hv/ur fo

By including the conductor loss in the effective loss tangent the planar waveg-

tané, = tané + (2.2)

uide can be modeled by perfectly conducting upper and lower plates filled with

a complex dielectric constant given by
€ = €,6:¢(1 — jtanéb,) (2.3)

2.2 Planar Waveguide Model for Circuit Structures

The previous section outlined the development of the planar waveg-
uide mode] for a uniform microstrip line. But the usefulness of the planar
model is not to be found in predicting the transmission properties of a line
— indeed it was developed from knowing these apriori. Rather it is because
the planar waveguide seeks to model not only the transmission properties, but
the field configuration that makes it applicable to other planar components.
Kompa and Mehran [15] have shown that the planar model characterizes the
transmission properties of the fundamental mode, but also accurately predicts
the cutoff frequencies of the next two higher order modes on the microstrip
line. From this basis, a natural extension of the model is the analysis of mi-

crostrip line discontinuities, and it has been widely used for this application



([x6] [17] [18]). Several discontinuities for which the planar model has been
used are shown in Figure 2.2. The planar model may be further extended to
other microstrip components provided the substrate is thin and that a method
exists for determining the effective dimensions needed to account for fringing
and the effective dielectric constant.

This section discusses a method for analyzing various shapes of planar
circuits using a Green’s function approach and a procedure, known as segmen-
tation, for extending the analysis to configurations with any number of these
components.

2.2.1 Analysis Using the Green’s Function Approach. The
approach taken for planar analysis is to describe the planar component in
terms of voltages and currents at desired external ports. Thus the objective is
to obtain a network model for the component which may be described by an
impedance matrix. Consider the planar circuit of Figure 2.3. The field within
the waveguide is the solution of the Helmholtz equation, (V2 + k?)E = 0. Tak-
ing the substrate height to be much less than a wavelength, we have % =
This, together with the boundary condition at the uppef and lower plates gives
E; = E, = H, = 0. Thus the field component E, satisfies, for the source-free

case,
(V24 k*)E, = 0 | (2.4)

where k = w,/p€ and V? = %4— 6%27. Since a% = 0, we may express the voltage

on the upper plate (the lower plate acting as reference) as

v(z,y) = —hE,(z,y) - (2.5)
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Figure 2.3: Planar Component of Arbitrary Shape

where % is the substrate height. For an impressed source, J, , the wave equation

becomes
(Vi + E)v(z,y) = —jwphl,. (2.6)

Thus if we define an impedance Green’s function to give the voltage at a point
(z,y) due to a point-source current at (z,,y,), the voltage can be obtained by

taking into account all such currents, or
w(2,9) = [ [ @,y | 20, 50)u(20r ) dzodye (27)
where G(z,y | z,,,) is the solution to
(Vi + k)G(z,y | 2o, 90) = —jwphd(z — 7,)8(y — 3o). (2.8)

In practice, the source current will often come from an adjacent planar feed (one

of the ports), where the current density is not directed along the z direction,
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but flows on the upper and lower plates of the feed. Also, there is a gap in the
magnetic wall boundary at such ports. To carry out the analysis, these currents
are replaced by an equivalent z-directed current source located at the gap in
the magnetic wall which is thus closed. This must be done in such a way so as

to preserve the field configuration inside the guide. Figure 2.4 illustrates this

\
/

<
[ 4
MR —-eeet
-
(%]
m 5
N
-————|
B e —
>
o
A

Jg .
J z b)
Jg Yy v

Planar Component

JURRESI

Planar Feed Line - Port i
|

Figure 2.4: Equivalent Source Current for Planar Feed
(a) Planar Feed Currents (b) Equivalent Z-directed Currents

procedure, and for simplicity the port is oriented along the y-axis. Refering

first to Figure 2.4(a), we have from Maxwell’s Equations

~1 0E., OE.,
H = W(V X E) = (—6703 - oz ay) | (29)
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SO,

1 2.
jwp " Oz

H, = ) (2.10)

The surface currents crossing the port on the upper and lower surfaces are

found to be

I PP = —a, x (8,H,) = é,H, (2.11)
and

Is'uer = 4, x (4,H,) = 4. H, (2.12)

Looking next to Figure 2.4(b), we require H, to remain unchanged inside the
planar component. This requires an equivalent surface current J, located at

the magnetic wall boundary, given by
Jz =@, x (a,Hy) = 4,H, ‘ (2.13)

Thus we find that the equivalent source, J, , is equal in magnitude to the
current Jg and is directed such that it completes the current loop of the upper
and lower plates. Taking the voltage of a port ¢ to be the average voltage across

the width of the port we have

v; = wii[l’iv(s)ds. (2.14)

If we further assume that the current in the port j flows uniformly across it’s

width, we can express the impedance coefficient between the two ports  and Jj as

1

w;w;y

Zi; = // G(zi,y: | x5, y;)dr.dF; (2.15)
wi Jwj

where d7; and dF; are the incremental distances over the port widths w; and

w; respectively. Determining such impedance terms for each port yields the
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impedance matrix characterization of the planar component. Evaluation of
the Green’s function for a given component can be car'ried out either by the
method of images or by expanding a set of orthogonal eigenfunctions. The
Green’s functions for a number of regular shapes such as rectangles, several
triangles, circular disks, and circular rings have been determined [1.9]. Still, the
Green’s function approach remains limited to a few basic component shapes.
2.2.2 The Segmentation Method.  Although the Green’s func-
tion approach for characterization of planar components is limited to regular
segments for which the Greén’s functions are known, a method known as seg-
mentation has been developed which extends the class of circuits which may
be analyzed to include circuits which are composed of two or more regular
segments. The first step is to determine the effective dimensions and dielectric
c¢. stants for the planar model. Next, the planar model must be divisible into
regular segments which are analyzed individually and characterized by their
impedance matrix. The segmentation method involves placing a number of
ports along the interface between adjacent segments and matching the voltage
and currents at these ports. By this procedure it is possible to characterize
the two-segment combination. For a multiple-segment circuit, this process can
be repeated one segment at a time until the entire circuit has been character-
ized. This is known as the subnetwork growth metﬂod [19]. As an example,
consider the chamfered bend of Figure 2.5. The planar circuit is first modeled
by the effective configuration of Figure 2.5(b) and then divided as shown in
2.5(c). Let Z4 represent segment A, Zp segment B, and Z¢ segment C. Using

the segmentation method to combine Z4 and Zg will result in another matrix,
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| A
I |
I |
| |
I I
a) I I b)
|
iz I
n ports
o~ A -—-g .
o B Zy: (n+1) X (n+1)
66888
Mports 96 000 ZB: (n+m) X (n+m)
c) C ZC: (m+1) X (m+1)
!
P, A S %
d) o 92
q

Figure 2.5: Segmentation for Chamfered Bend;
(a) physical structure; (b) planar model; (c) segmented circuit with intercon-
nection ports; (d) numbering for segmentation procedure
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Z4p , which has m + 1 ports characterizing the AB combination. Segmenta-
tion is applied again to combine Z, g with Z¢ to obtain the desired two-port
impedance matrix characterization of the overall network. To make sure the
interconnected ports are joined properly each time the segmentation procedure
is employed, a consistent béok-keeping system is needed. As & starting point,
the external ports (which do not appear on the inte;face of ti.e two segments
being combined) are numbered first. These external ports appear in the top
portion of their respective matrices. The remaining ports known as intercon-
nection ports are numbered as shown in Figure 2.5(d) with ¢; connected to ry,
and g, to ra, ... etc. This system results in the following matrix relations for

the individual segments

Voa Zye Zyp, I,
P — 2 Paq P (2,16)
Ve | i Zope  Zoq 11 1,
and,
Vi Zpy Ly I
Pb = Py Pb Py (2.17)
v, Zewy Zew || I
If these are written together in a single matrix as,
Ve Zop Zpy Zpr I,
Vol = | %0 2y O 1, (2.18)
V;' er 0 er Ir

then the resulting expressions can be written more compactly. The conditions

imposed by connecting each of the ports ¢; to r; are
V,=V, (2.19)
and,

I =—I, (2.20)
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Matching the currents and voltages in this way corresponds to matching the
tangential E and H fields at a discrete number of points along the common
boundary of the two segments. If these conditions are substituted back into
the matrix equation 2.18 and V, and I, eliminated, then we obtain the desired

result
ZAB = pr + (qu - pr)(qu + er)_l(Zrz;" qp) ' (2-21)

The segmentation method may also be formulated in terms of admittance ma-
trices or scattering matrices as described in Appendix A. Another method
which is complementary to the segmentation procedure is the desegmentation
method. Rather than taking the network characterization of two known com-
ponents and combining them to yield a third network which characterizes the
composite shape, desegmentation begins with the network of the composite
shape and removes (or de-embeds) another regular component which has been
characterized separately. This yields the characterization of the remaining por-

tion of the original component. Some examples of desegmentation are shown

in Figure 2.6 [20].

Figure 2.6: Examples of Desegmentation

7~



17

2.3 Planar Modeling of Microstrip Viahole Grounds

Viaholes are used in Microwave Integrated Circuits to form a connec-
tion between different layers in a circuit layout aﬁd most commonly from the
top surface of a microstrip circuit to the ground plane. The conductor of the
upper and lower layers needs to be properly aligned so that a vertical post will
connect the two. Most often, a viahole pad is used to ensure that a sound
connection will be obtained even if the alignment is imperfect (see Figure 2.7).
The viahole may be simply modelled by an inductance whose value is a func-
tion of the viahole diameter, the substrate height, and the width of the viahole
pad. This section describes an analysis procedure for modeling viaholes by
using a planar model for the pad and shorting ports to ground to model the
viahole post itself. |

2.3.1 Analysis. The'structure of Figure 2.8 is described in terms
of three planar segments. Two of these represent the microstrip line feeds, and
the third segment is the viahole pad. Each is a rectangular planar segment
which may be analyzed by the Green’s function approach. The viahole post,
typically treated as a circular cylinder, is approximated by a polygon. This is
done in order to minimize the computational effort. The post could be analyzed
as a cylinder by using the desegmentation method, but this procedure requires
the characterization of the circular disk in addition to the computations needed
for applying desegmentation. The difference in computational efficiency is
compounded because the impedance matrix for the rectangular segment is
computed using a single—series (SS) form of the Green’s function, whereas only
a double-series (DS) form is available for the circular disk in the software used

in this project.  For a rectangular segment the SS form is obtained from the DS
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Figure 2.8: Planar Model for Viahole
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equation by carrying out one of the summations analytically. The procedure
for obtaining the SS expression for the impedance co.efﬁcients between two
ports has been available only for vertical and horizontal port orientations [21].
Because the polygon has edges which are oriented at various angles an extension
of the SS formulation was needed. This derivation has been carried out and
SS expressions for the impedance coefficient for two ports with any arbitrary
orientation are reported in Appendix B. From these expressions it is possible
to obtain an impedance matrix characterization for the viahole structure with
ports positioned along the periphery of the viahole. At this point, the interior
ports representing the post are shorted to ground, and the resulting network
is combined with the feed lines using segmentation thus giving a two-port
z-matrix representation for the complete structure. The length of the feed
lines was chosen long enough to ensure that the wave propagation along the
lines near the external ports could be described by the dominant mode. This
impedance matrix is then converted to scattering parameters, the reference
planes shifted to the junctions of the viahole pad, and then converted back to
an impedance matrix. This impedance matrix characterization is then used
to derive the equivalent T-network of Figuire 2.9. In this network the series
elements (Z;; — Z;,) and (Z;'_)g — Zy;) repr =nt the effects of the pad, while the
shunt impedance, Z,,, characterizes the v ‘iole post.

2.3.2 Results and Conclusic. - Analyzing the viahole for dif-
ferent frequencies gives positive reactances for Z;; and Z;, which vary linearly
with frequency as shown in Figure 2.10. Thus the viahole inductance may be
obtained directly as

%m{Zm} .
Lvia =7 2.
on T (2.22)



Figure 2.9: Equivalent T-Network Model for Viahole

In a recent publication, Goldfarb and Pucel [22] present a simple equation
for calculating viahole inductance as a function of substrate height and post
diameter. This expression was shown to give good agreement both with exper-

imental results and numerical simulations. The equation is reproduced here

[22],
Ly = £2 [h ‘In (h+——— “:2“‘2) + g—(r _VEER (2.23)

where A is the substrate height and 2r is the post diameter. Table 2.1 gives the
results of the planar analysis for a fixed substrate height, but different viahole
diameters and pad widths. Values for L,;, as obtained from equation 2.23 are
also included for comparison. What is immediately clear is that the viahole
inductance obtained by planar analysis is quite dependent upon the effective
width of the via pad. By contrast, Goldfarb and Pucel report that the depen-
dence of L, on the physical width of the pad is small, giving less than four
percent variation in L,,,-a‘ for a wide variation in the width to height ratio. This
discrepancy can be attributed to difficulties in finding the effective width of
the pad. The effective width was chosen by treating the pad as a microstrip

line, but the presence of the post disturbs the fields beneath the pad so that
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the effective width, as chosen, may not accurately model the field configura-
tion. In particular, for large post diameters, the fringing fields may extend
further beyond the edge of the pad than predicted when treating the pad as a
uniform line. This places limitations on the use of the planar model for ana-
lyzing this type of structure unless a method for obtaining the proper effective
dimensions and dielectric constant is found. In certain-cases, however, the pla-
nar waveguide model as implemented may yield acceptable results. Finch and
Alexopoulos [23] have used the planar waveguide model to analyze shunt posts
in microstrip lines, and so doing, they have been able to design a bandpass fil-
ter consisting of four shunt posts in a microstrip line and predict it’s measured
characteristic with reasonable accuracy. From the limited data of Table 2.1, it
appears that the planar model as implemented gives realistic inductance values
when the viahole post diameter is close to one third of the pad width, which

is not uncommeon in practice.

Table 2.1: Viahole Inductance for Various d/h and d/w.s; Values

Diameter Ww: 100 200 220 300 400 Goldfarb
in (micron) Wett: 306.6  428.7 451.9 542.3 652.9 & Pucel

Exff: 834 9.06 9.17 9.55 9.92 Lvia
20 32.986 42919 45093 55337 74122 32.315
40 18.695 26278 27.831 34.693 46.085 21.655
60 11209 17419 18.656 23.980 32264 16.057
80 6.671 11.785 12.805 17.138 23.649 12.634
100 7.949 8.795 12381 17.664 10.332
120 5271 5.962 8.930 13298 38.690
140 3.399 3.951 6.382 10.011 7.470

Inductance Values (pH) for €=129, and substrate height equal to 100 micron
(the data for Planar Model was obtained at a frequency of 20 GHz.)



CHAPTER 3
PARASITIC COUPLING EFFECTS IN MICROSTRIP CIRCUITS

The planar model summarized in Chapter 2 has been used to describe
the fields beneath a planar component and account for fringing field effects by
an extension of the side walls. Because the equivalent waveguide in this model
is enclosed by the magnetic walls, spurious external fields which extend outside
the model are not accounted for. To incorporate effects such as radiation loss
'and couplings between planar components modeling of these external fields is
needed. In this chapter a method for incorporating external effects into the
planar model is summarized, and a network model for external fields based
on equivalent magnetic current elements at the edges of the planar model is
discussed. Some examples applying this technique are included,.and finally a

procedure for implementation for the case of large circuits is introduced.

3.1 Multiport Network Model

For the planar model discussed thus far, the ports which have been
specified for each planar segment have been positioned to act either as external
pc;rts, where the terminal characteristics are desired, or interconnection ports
serving to connect adjacent segments. A technique known as the Multiport
Network Model (MNM), first developed to model edge fields and radiation
loss in microstrip antennas [5], introduces additional ports along the periphery

of the planar circuit. The external fields are accounted for by attaching a
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multiport network to these added ports. If we consider the case of the right-
angle bend of Figure 3.1, radiation loss may be represented by a radiation
conductance network attached to each of these ports, as shown. To handle
the task of representing coupling between two discontinuities as in Figure 3.2,

a similar approach is taken. Ports are again added along.the edges of each

ne o
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Figure 3.1: Edge Conductance Network for Radiation Loss

structure, and a multiport network attached to these ports to account for
the interaction between the two structures. If the first network is used to

characterize the radiation loss, the edge conductances, G,,, chosen must satisfy
1
Po= 3 > Val*G,., ' (3.1)

where P,,q4 is the total radiated power, and V, the voltage at each port. For
the second example, the elements in the network become complex admittances
which represent the current induced at one port per unit voltage appearing

at another port location. Thus we note that the Multiport Network Method
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Muitiport Network for
Including Coupiing )

Figure 3.2: Multiport Network for Coupling Effects

is a possible way to moc . external field effects. For implementation of this
concept, we need to determine the appropriate multiport network, for it must

correctly model the external fields. This is the topic of the next section.

3.2 Modeling Field Effects Exterior to Planar Model

In the MNM approach, external fields are evaluated by means of
equivalent magnetic current sources pléced along the edges of the planar com-
ponent. From such sources the fields in the upper half space may be evaluated
and the elements of the desired multiport network determined.

3.2.1 External Fields Found From Equivalent Magnetic Cur-
rent Sources. Magnetic current and charge density are fictitious quantities,
whose introduction into Maxwell’s equations results in completely dual prop-
erties with the electric current and electric charge density. In some sense their

inclusion is nothing more than a mathematical convenience, yet in certain
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applications magnetic sources have a practical advantage over their physical
counterpart. Consider the microstrip line of Figure 3.3(a). Rather than ap-

proaching the task of determining the fields in the upper half space in terms

Electric Currents \\s U .
)l - )}

Schelkunoff Surface

L "
b)

Magnetic Currents n

ANNUN

MS
QL s Ping Z=0

S

Figure 3.3: Modéling Fields by Equivalent Magnetic Current Sources;
(a) Microstrip Line with Electric Current Shown; (b) Application of Equiva-
lence Principle; (c) Microstrip Line with Equivalent Magnetic Current

of the electric currents existing on the microstrip line and ground plane, the
problem will be posed in terms of equivalent magnetic currents. According to
Schelkunoff’s equivalence theorem, we imagine a surface existing along the air-
dielectric interface which extends laterally outward to infinity (see Fig. 3.3(b)).

The half space above this surface is both source-free and homogeneous, and the
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fields in this region may be completely described by equivalent sources existing
on this surface. By choosing a perfectly conducting surface, only magnetic
current sources are needed. The magnetic surface current at an interface is

obtained from,
M, =-nx (E, - E,) (3.2)
which for E,, =0, is
M,=-nxE, - (3.3)

Therefore, to find the equivalent sources of Figure 3.3(c) we need to evaluate
the tangential electric field at the air-dielectric interface, or Ei(z,y,2z = 0).
For small values of h, E, decays rapidly moving out from the microstrip edge,
thus the magnetic current will be confined to a region close to the microstrip
edge. The simplest model fqr the magnetic currents is, then, just a line source
located at the edge of the microstrip. The source must represent the total

magnetic current,

M= ‘/;_0 Eﬂ -dx (3.4)

But this integral is nothing more than the voltage at the edge of the microstrip,

a value more easily determined for thin substrates as,

h
M=V=[ -Edz=-Eh (3.5)

2=0

Thus we conclude that by placing magnetic current line sources along the edges
of the planar components in accord with Schelkunoff’s equivalence principle
and by relating these sources to the edge voltages determined from the planar
analysis, it becomes possible to evaluate the external fields of the upper half
space. Such equivalent magnetic current sources for a bend are illustrated in

Figure 3.4.
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Figure 3.4: Magnetic Current Sources Along Edges of a Bend

3.2.2 The Mutual Admittance Matrix. As mentioned in Sec-
tion 3.1, the elements of the multiport network shown in Figure 3.2 must ac-
count for the current induced at one port per unit voltage appearing at another
port location. Consider two arbitrarily positioned ports. Without loss of gen-
erality, we may consider the first of these, port ¢, to be centered at the origin

of the coordinate system as shown in Figure 3.5. Now, if port  is part of an

Figure 3.5. Coordinates for Calculating Coupling Between Two Magnetic Cur-
rent Elements '



Figure 3.6. Coordinates for Finding Radiation Fields of a Magnetic Current
Source M

excited circuit, a voltage, V; , will appear at this location. From the voltage
V; we obtain an equivalent magnetic current which is placed at the edge of the
port. From this source we must find the resulting current flowing into port j.
To do so we first find the radiation fields of the magnetic current element at

port ¢. This is done by using the electric vector potential , F, which is given

by,

¢E=-VxF (3.6)

and can be found from using the retarded potential, & or , to be

—Jkor
_/ € Me™7%r 37)

where k, is the free-space wave number. Thus for the j-directed magnetic

current element of Figure 3.6, we have

le—ikor ,
afy = (47r) M;Je—— (38)

r
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In spherical coordinates this gives

F, = F,cos® (3.9)
Fy = —F,sind (3.10)
and F; = 0 (3.11)
By symmetry, % =0, so
_ Gy (O(rFy) _ OF,
VxF= . (—8r 5% (3.12)

From comparison with equation 3.6 we get

’ —Mdl ik, 1 :
Ey = Z sin 4 (Jf + ——) g ket (3.13)

r2

Applying Maxwell’s equation,
V xE=—jwuH (3.14)

we obtain for a magnetic current element in free space,

H, = JkoMdlsin 8 (1 4 1 1 )e—jkor (3.15)

47n,r jkor B (kor)?
and
Mdlcos @ 1 .
— —Jkor
H, = S (1 + jkor) e (3.16)

where 7, is the intrinsic impedance of ’free space. For the purpose of finding
the fields at port j, as in Figure 3.5, howevér, we must accouﬂt for the image
effect produced by the conducting surface. The image source for a horizontal
magnetic current element over a conducting sheet is directed with the same
orientation, hence the fields due to the source M; are given by equatiogs 3.15

and 3.16 except that the field intensities of the upper half-space are twice those
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given for the element of Figure 3.6. Thus the element of magnetic current, M;
of length dl;, located at (0,0) in the z = 0 plane produces magnetic component

Hy and H, at location (z;,y;) in the z = 0 plane given by

_ jkoM{dl{ sin 8 1 1 —jkor
Hy =2 x - 1 ]_'—_kor o) e (3.17)
and '
M;dl; cos 8 1 .
— L —Jjkor
H,.=2x G (1 + jkor) e (3.18)

where r = \/z_;":y_? and 6 is as shown in Figure 3.5. The surface current
density at (z;,y;) is
J=a,xH . (3.19)
but we desire only the portion directed into the port j, or
J; = (6, x H) -] )
Taking this value to be uniform over the port width we have [6]
I, = J;dl; (3.21)
and
Yi=Z="24 (3.22)

For coupling between circuit components, a mutual admittance matrix may
be formed which includes the interactions between various ports of the pla-

nar components. Taking only interactions between different components we

have [6] _
i -

0 [Y]IJ e [Y]IN } Component 1

Y, © : } Component J

Y] (3.23)

Yy o+ -+ O } Component N
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where O represents a null matrix and [Y]7; represents a matrix filled with
mutual admittances for the coupling ports of components I and J with each
term calculated by equation 3.22.

3.2.% Generalized Self~-Conductance Network. - While the mu-
tual admittance matrix of equation 3.23 accounts for interactions between the
ports of various planar components, the power lost to radiation needs to be
evaluated as well. If the radiation fields for a collection of magnetic sources are
deduced from superposition and integrated over a surface in the far-field, the
radiated power, P,qq, is obfained. From F,,4, the edge conductances needed
for the network of Figure 3.1 can be found using equation 3.1. To find P,.; and
G., by this method requires prior knowledge of the edge voltage distribution.
Rather than obtaining the radiated power by this method, an approach based
on interaction among various elementary sources is used which provides a-con-
ductance network without previous knowledge of the edge voltages. It relies
on comparison of the radiation field for a collection of sources to the power
dissipated in an equivalent network. Consider only two sources, M; and M,,
which give rise to the fields E;, H;, and E, H; as shown in Figure 3.7. From

Poyntings theorem, we write [24]
1 .
Pros = 5 Re }g (E x H*) - ds (3.24)

where S is an arbitrary surface enclosing the sources and P,y represents the
power flow out of the surface. Dissipation in the enclosed volume is assumed
to be zero. For an equivalent two-port network as shown in Figure 3.8, the

power dissipated within the network may be expressed as

1 .
Py = ERC{Vl I; + V, I;} (325)
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Figure 3.7: Two Magnetic Elements Producing Interacting Fields

Let the network be characterized by its admittance matrix [Y]. Then Pg,,

becomes

Piiss = Re{Vi(Yu Vi + Y12 V2)" + Vo(Ya i + Y22 V2)"}/2 (3.26)

= R{UYAV + MY+ WY+ B Ya V)2 (3.21)

Now, the four terms of equation 3.27 will be related to four corresponding
terms obtained by expanding equation 3.24 for E = E; +E; and H = H; + H,.
The details of expanding equation 3.24 for the sources of Figure 3.7 are given

in Appendix C, with the result
1 1
Prad = Prad1 + P,.ad2 - ERC{H; . Ml dll} - ERC{H; . M2 dlz} (3.28)

where P,.q4, is the radiated power of the source M; acting independent of M,
P, .4, is similarly the radiated power of M, , H, is the H-field produced by the

source M; at the location of port 2, and H; is the H-field produced by the
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Figure 3.8. Two-Port Network Representing Radiation from Two Magnetic

Current Sources M; and M,

source M, at the location of port 1. Relating like terms, we have

Prad; —
-Pradz Ranun

—Re{H: -M,dl}/2 —

Re{ViY;1V1'}/2
Re{V2 Yy, V7'}/2
Re{Vi Y13 V7'}/2

Re{V, Y3 V'}/2

(3.29)
(3.30)
(3.31)

(3.32)

The task is now determining the Y-values in order to obtain the desired network

model. Letting Re(Y1;) = G11 in equation 3.29 we have

1
Prad; = §G11I.V1|2

or
_ 2P rad
Gll - I%Iz
Similarly,
G22 _ 2 Pradg

AR

(3.33)

(3.34)

(3.35)

Py
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Since P,.q4, is proportional to [V;|%, the value of Gy; is independent of
“the edge voltage. The power radiated by M; can be found by the following

expression,
szlRe}{(E x H?) - ds (3.36)
rady 9 s 1 1 .
and for S taken to be a large hemisphere we have
ds = d, r’sin0 dfd¢ (3.37)

and therefore,

4

1 . .
Pros, = 4 X 5 Re /9 _ —E4H;r*sind dod¢ (3.38)

=0

where E4 and Hy are the far-field expressions obtained by taking the dominant

term in equations 3.15 and 3.16. The result is [25]

_ 1 (M dl}
P = 5 ( 9032 (3.39)
So,
di}
Gn = (90/\3) (3.40)
and,

di?
Gop = (90/\2) (3.41)

since My = V; and M, = V, from equation 3.5. To relate the expressions in
equation 3.31, the voltages at the ports and mutual admittance on the right-
hand side must be compared to the field quantities on the left side. But the

relationship between the circuit-parameters and field quantities was already
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established when the mutual admittance was derived in section 3.2.2. Recall

that,
- _ L Jidl
where
Ji=(a, xH)-j (3.43)

Now, for comparison, H in this expression is the H-field present at the port j

due to the magnetic current source M;. Thus,

_ (& xH)-jd; _ —H;-(d, x j)d; (3.44)

but, M; = (d, x 7)V; so,
oo My M;
and
—H. -M*d!
= : J 3
Therefore,
—H;  M:dl;
VYV =V (Tt ) v = —H; - My d (3.47)
Az

so equations 3.31 and 3.32 may be satisfied by letting Re(Y12) = Giz and
Re(Y31) = Gy where G;; = Re(Y;;) and Y;; is determined from equation 3.22.
These values, once again, are independent of the edge voltages. For the two-
port just given, the network may be shown as in Figure 3.9. The procedure

just outlined for the two-port network may be extended for N ports, in which
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Figure 3.9: Circuit Representation for Generalized Self-Conductance Network

case the matrix, [G], for a given component would appear as

[G] =

G

Re{Yy}

i RE{YNl}

Re{le} .es

G22

Re{Yin} ]

(3.48)

GNN

For more than one component, this may be combined with the mutual admit-

tance matrix of equation 3.23 to give

[Ym] =

[G]:
[Y]JI

[Yn:

(Y]
[Gls

[Y]in

(G~

} Component I

Component J
} Comp (3.49)

} Component N

From now on, the matrix [};,] of equation 3.49 will be referred to as the mutual

admittance matrix.

For comparison. consider the right-angle bend of Figure 3.10. This

structure was analyzed previously using the Poynting Vector (PV) [1] method
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and the (MNM) [8] approach with edge voltages obtained from planar analysis
and edge conductances determined from the radiated power. Figure 3.11 shows
these results with the results of the Generalized Conductance Network (GCN)
overlaid for the fifty ohm iine with €, = 2.2. The radiation power plotted is
normalized to one Watt of incident power at port 1 and plotted in dB. It can
be seen that the different approaches yield nearly the same radiated power.

This serves as a check for the dependability and implementation of the GCN.
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Figure 3.10: Right-Angled Bend for Radiation Loss Comparison
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3.2.4 Modeling of Edge Fields by Distributed Magnetic Cur-
rents.  In section 3.2.1, representation of the fields external to a planar com-
ponent was discussed. Thig was_accomplished by using equivalent magnetic
currents. It was mentioned that for small substrate heights the electric field
decays rapidly away from the edge and therefore the current will be confined to
a region close to the edge and may be approximated by a magnetic current line
source as described. To obtain a more accurate model for the current distribu-
tion, an expression for the electric field at the air-dielectric interface is needed.
A solution for the potential distribution has been reported, and asymptotic

expressions for the fringing field obtained [26] as

1
14+6.\2 1
+Y A ¢ —_
E (z—=0") =V, ( 5, ) 7 (3.50)
hfl1-6\1 )
on(:z: — oo) ~ V; ; (1 +5e) ;2- (351)

where 6, = fr_%i and V, is the voltage at the edge. From equation 3.50 we may

write an expression for the magnetic current distribution near the edge as

M(z) =V, (l;;—}‘f) % (3.52)

Taking this current to be distributed over the region z € [0, L], we get the total

current, which must equal the edge voltage, to be

1
L (148,
Vo= | M(z)dz =V, (——%h ) 2vVL (3.53)

The value, L, represents the limit of the region over which the current is con-
fined, as shown in Figure 3.12. This gives a normalization for V,,, which depends

on the size of the region the current will be distributed over

v,
Vp= | ——o (3.54)

(48)P2vI
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Figure 3.13: Regional Areas of Strips of Magnetic Current

and consequently M(x) reduces to

M) = (2%) ;}Tz (3.55)

From this expression for M(z), we can derive a discrete line current represen-
tation for the current sheet. This is done by cutting the sheet into N strips
and replacing the current of each strip by a line source. To obtain the ampli-
tudes of the various current elements, the amount of current in each of the N
strips is obtained by integrating M(x) for the regions 1, 2, 3, ...N, as shown"

in Figure 3.13. The current of region 1 may be found as

% v, L v |
A =/0 M(z) de = (2\/3) 2§ =% (3.56)
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Similarly,

Ay =/;N£M(m)dm = (21/&) 2 (\/%—\/%) =(&\//_—2—Ni—1—)) (3.57)

By carrying out the integration for each strip, we find

A= () (V= V=) 6w

and that

N vV N
X_:l Am = (\/ﬁ) X_:l(\/n_%—\/m -1)=Y, (3.59)

as it should. Thus it is possible to replace the current sheet of Figure 3.12 with

discrete elements given by -

N
M(z)= > Amé(z —zn) (3.60)

m=1

where the amplitudes, A,,, are defined by equation 3.58 and the locations z,,

are chosen to place each linear current element at the middle of its correspond-
ing strip. |

Now consider the task of evaluating the mutual admittance between

two ports of a planar circuit as discussed in section 3.2.1. Extending the model

to account for a continuous magnetic current distribution requires integration

of the magnetic field over the regibns of each magnetic sheet, or [7]

1
Vi'vs

Yi;=— / M;(TI)’H(TJ—TI)’MJ(TJ)dSJdSI (361)
SiJS;

Since the fields are assumed constant over the port widths di; and dI; , this
yields a double integral which maybe carried out numerically. For discrete
sources, this translates to a double summation given by

, N N
Yo =3 3 AiA Y (3.62)

i=1j=1
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where Y;; is calculated for each element as defined previously in equation 3.22.
The values obtained for Y7, have been shown to converge very quickly with N,
such that values obtained for N;G or 10 agree very well with those c;bta.ined for
N=100 or more. 'Thé accuracﬁof the approximation depends on how closely
the N elements are spaced, a ya.lue clearly dependent updn the value chosen
for L. Hence, for large values of L, a l&ger choice of N would Be necessary
for convergence. It must be pointed ouf, however, that M(x) was chosei. from
the asymptotic expression for x small. Since the function M(x) kdecays very
slowly as x increases, (as evident from the A,, in eq. 3.58), large values of L
must be avoided, and consequently a typical choice might be several times the
substrate height. Clearly, other choices for determining the amplitudes may be
investigated. For example, a trial might be to follow the 1 //z determination
for onl& the first few elements and then select a functioﬁ which decays more
quickly thereafter. The primary constraint for any such choice is that the total
current must sum to the edge voltage, or

N - Sl
3 A =V, (3.63)

m=1

It is found when fnodeling two parallel coupled lines that the cou-
pling given by the MNM approach (using a line-source magnetic current) de-
cays more rapidly with separation distance than the coupling obtained from
quasi-static computations. Thus it becomes necessary to use a magnetic cur-
rent distribution transverse to the microstrip edge. A continuous magnetic
current distribution was used previously in accordance with equation 3.49 for
this problem [7]. For comparison, the discrete current distribution presented
here was also applied to the case of two parallel coupled lines, and the re-

sults of both methods are shown in Table 3.1. The results from a quasi-static
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analysis are shown in the table together with values obtained by the MNM
approach for line-sources. Using a distributed current results in much greater
coupling for larger separation distances, yet there is little difference between

results obtained for the discrete and continuous source distributions.

Table 3.1: Comparison of Coupling: |S14| in dB

Comparison of Coupling: | S14 | in dB given for Quasi-siadc Computadon and MNM
{ Different MNM current models are shown )

Multiport Nerwork Methods
Spacing Relanve Quasi-staic  Line  Condnuous Discrete Dist. Number
d(mm) toheight Computations Source Dismibuton Distibution Limit of Sources

1.2 4.72h -33.2 -33.70 -33.45 -32.77 0.2h 5
2.1 8.27h -40.18 -44.67 -30.50 -39.87 1.2h

3.0 11.81h -45.14 -52.99 ~44.15 -45.19 2.2h 8
5.0 19.65h -52.66 -68.34 -51.48 -54.69 45h 12

3.3 Incorporation of Parasitic Coupling Effects in Circuits Analysis

Incorporation of parasitic cou_plipg effects in MMIC circuit analysis
starts with identifying sub-circuits (or regions) wherein the parasitic coupling
effects are expected to be significant. Methodology discussed in this section
makes use of conventional microwave circuit analysis for the rest of the circuit
and magnetic current modeling of parasitic coupling in these selected sub-

circuits. The procedure is illustrated by considering an example of an actual
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MMIC layout.

Consider the single stage amplifier shown in Figure 3.14. This am-
plifier (designed and fabricated at ITT GaAs Tech. Ctr.) has been analyzed
using the commercially available linear simulator named Touchstone!. The
analysis makes use of coupled line models where appropriate, yet several re-
gions can be identified for which couplings cannot be included by conventional
microwave circuit analysis software. A procedure for implementing MNM ap-
proach for one of these regions follows. The discussion is based on the use
of Touchstone software, but the procedure is applicable for other similar mi-
crowave CAD packages also. To begin, the dimensions of the sub-circuit (A,
B, or C) are determined and its physical layout obtained. Next,_the Touch-
stone file is modified so that it treats the selected sub-circuit as an individual
component. This requires breaking the circuit along the boundary and intro-
ducing ports where they are needed. ‘At this stage, essentially two networks
are identified: the sub-circuit is one of the networks, and the remainder of
the amplifier circuit is considered a second network. To analyze the complete
amplifier, the analysis of both of these networks is needed. For sub-circuits
of four ports or less, Touchstone can treat the sub-circuit as a single compo-
nent and its S-parameters may be read from a data file. In this manner the
planar analysis of the sub-circuit is re-introduced into the amplifier analysis.
For sub-circuits having more ports, the recombination of the two networks is
accomplished externally; the S-parameters of the remainder of the amplifier
are output to a file (either as a complete circuit or in pieces) and then recom-

bined with the selected sub-circuit analysis. Since Touchstone readily provides

S-parameter data, the segmentation algorithm for S-parameters (see Appendix

1Registered Trade Mark of EEsof Inc., West Lake Village, CA
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A) is used to recombine the two networks. By using the Subnetwork Growth
Method mentioned in Chapter 2, very lafge and complex circuits may be han-
dled. The only requirement is that, once an identified sub-circuit is removed,
the remaining circuit may be broken into pieces for which the S-parameters
can be obtained. Even for sub-circuit networks of four ports or less, the sen-
sitivity analysis discussed in the following chapters requires the S-parameters
of the remaining circuit, so it is important to sub-divide the circuit such that
the S-parameters are accessible. As an example, consider removing sub-circuit
A in Figure 3.14. The line providing the gate bias (which is at rf ground
potential) has not been considered part of the microwave sub-circuit in this
analysis, so sub-circuit A is a four-port network. Removal of this four-port,
termed the Double U-bend configuration, leaves a six-port network for the re-
maining amplifier. The S-parameters for this six-port are not available from
Touchstone as a single file, but by breaking it between the input and output
stages, two four-ports are obtained and their S-parameters written out directly
in a file. These may be recombined using the segmentation method to recover
the desired six-port. The procedure just described is illustrated in Figure 3.15,

and the main steps are itemized in the following list.

¢ Identify and Remove the Sub-Circuit

Determine the Sub-Circuit Layout

Obtain S-parameters for Remaining Circuit

Analyze Sub-Circuit to Include Coupling

Recombine Resulting Sub-Circuit Analysis to Obtain Circuit Analysis

Including Coupling
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Figure 3.15: Procedure for Planar Analysis of Sub-circuit in a MMIC;
(a) Removing Sub-circuit; (b) Sub-circuit Layout; (c) Remaining Circuit; (d)
Breaking Remaining Circuit to Obtain S-parameters (two four-ports)
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The procedure outlined above has been applied to sub-circuits A and B. The
Double U-bend is a particularly interesting example because coupling between
the bends introduces feedback from the output to input stage of the amplifier.
In principle, if coupling was significant enough the amplifier might oscillate.
This amplifier was designed to operate in the 5-6 GHz range and is a medium-
gain amplifier. Hence, low levels of coupling are not expected to produce oscil-
lation. Our analysis has, then, been carried out only for this frequency band.
Figure 3.16 shows the sub-circuit layout for the Double U-bend, where the dis-

1, 2

f

11

B 10 um 4
H=75 um
T= Sum s
€r=129 d
A 4
3
— ]
—_ ] 4

Figure 3.16: Layout for Sub-Circuit A, the Double U-bend
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tance, d, gives the spacing between the bends. In the analysis of a sub-circuit
comprised of separate components, obtaining the S-parameters for different
sub-circuit layouts is accomplished very readily. Considering the two bends as
an example, the largest part of the computational effort goes into obtaining
the multiport Z-matrix representation for each of the bends individually. Fur-
ther, because planar analysis is carried out for effective dimensions which are
frequency dependent, a different model must be used for each frequency point
to obtain the full accuracy of the model. Once the bends are characterized in-
dividually, however, only the Mutual Admittance Matrix (MAM) will depend
on their relative locations. By establishing a local coordinate system for each
component, the port locations can be described in this local system and then
individual components may be easily moved around relative to each other in
a global coordinate system. Thus, the effort required to obtain an analysis for
the Double U-bend for several different distances, d,‘is just slightly more than
that needed for a single separation distance. This is a nice feature for the de-
signer who may quickly obtain a measure of the relative coupling for different
sub-circuit layouts. Table 3.2 gives the four-port S-parameters of the Double
U-bend evaluated at 5.5 GHz. The values without coupling are reported along
with those obtained with coupling for physical separation d = 160um and for a
separation of one substrate height (d = 75um). The line-source current model
was used, and the analysis repeated for each of the eleven frequency points,
5.0, 5.1, ... , 6.0 GHz, and the planar model for the sub-circuit introduced
back into the amplifier analysis. Figure 3.17 shows the resulting amplifier per-
formance. It can be seen that over this frequency band, the coupling between

the bends results in a positive feedback leading to a slightly higher gain.
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CHAPTER 4
SUB-CIRCUIT SENSITIVITY TO CHANGES IN LAYOUT

Chapter 3 described the MNM approach as a means to characterize
the couplings between planar circuit components. For larger circuits, a method
was introduced to perfnit one to analyze selected portions of a circuit for cou-
pling effects, while leaving the analysis of the remainder of the larger circuit
unchanged. This provides the circuit designer a tool for evaluating coupling
effects. Having a measure, not only of coupling, but of its effect on circuit
performance can also be a help to the circuit designer. In this chapter, a pro-
cedure for obtaining the sensitivity of a selected sub-circuit to changes in its
layout is developed. Sensitivity analysis based on the adjoint network method
is discussed first. Then the differential mutual admittance for two magnetic
line sources is found for changes in the relative position and orientation of their
respective ports. This, taken together with geometrical considerations provides

the basis for obtaining the sub-circuit sensitivity.

4.1 Sensitivity Equatioﬁ from Adjoint Network Method

The adjoint network method for carrying out sensitivity calculations
is based on Tellegen’s theorem. To provide some background for the following
discussion, consider the connected network graph shown in Figure 4.1. The
letters a, b, ...]j represent the various branches, while the numbers 1, 2, ...6

denote the nodes. For the graph to correctly describe a given network, three



Figure 4.1: A Network Graph Example

things are needed. We must know how the branches are connected, the ref-
erence directions for branch currents and voltages (denoted by the arrows in
fig. 4.1), and the branch characteristics which relate the current to voltage for
each branch. An incidence matrix, A, is used to concisely describe the node
connections and reference directions for a given graph. For a directed graph,
G4 with n nodes and b branches, the incidence matrix is defined by an n x b

matrix [27]

A = [ay]

a;; =1  if branch j is incident at node 1, and the
arrow is pointing away from node :
a;; = —1 1if branch j is incident at node ¢, and the
arrow is pointing toward node 2
a;; = 0 if branch j is not incident at node
Although the incidence matrix contains no information about the branch char-
acteristics, it completely describes the topology of a gi‘ven network, N. Kirch-

hoff’s voltage law and current law place constraints on branch voltages and
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currents independent of the branch characteristics. Using the incidence ma-

trix, A, Kirchhoff’s voltage law may be expressed as
V =AY, (4.1)

where V represents the branch voltages and V, the node voltages. Kirchhoff’s

current law may be expressed concisely as,
Al =0 | (4.2)
with I being the branch currents. From this we obtain,
VI = (AW, )] = VIAT = 0 (4.3)

For any network, say N , having the same topology as N, we have A = A, and

therefore,
Vii=RVv=vViI=IV=0 (4.4)

which is Tellegen’s theorem [28]. It should be noted that in equation 4.3 the
variables V' and I represent the branch voltages and currents of the same net-
work and hence V'] = 0 implies that the power delivered to all branches
is equal to zero, while equation 4.4 is a mixed expression with variables of
two different networks and has no such physical interpretation. Two linear
time-invariant networks, N, and N are said to be adjoint networks provided
three conditions are met. First, they must have the same topology A = A.
Secondly, if the non-independent source brances, b, can be described by an ad-
mittance matrix, then Y = Y. Finally, the corresponding independent sources
of the two networks must be of the same kind, either voltage or current. From

Tellegen’s theorem and this definition of the adjoint network, the sensitivity
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equation can be derived as follows. Tellegen’s theorem will be applied to three

different netWorks; the original network N, for which,

I=[Y][V] ' (4.5)
the adjoint network N,

I=[¥]v)] (4.6)
and a perturbed network N ., whose branch currents are given by

I=[Y)V] (4.7)

where [ =T+ Al,and V =V + AV. Applying Tellegen’s theorem to N and
N gives
v =vti=0 (4.8)
or,
MV +AV)=VI(I+A) =0 (4.9)
Next, applying equation 4.4 to N and N, we obtain
Vv =vtI=0 (4.10)
so equation 4.9 becomes
I'AV = VIAI =0 (4.11)

or equivalently,

AV —VIAT =0 O (4.12)



v, = A
10—
. Ingipuiggse nt : Non-Source Branches
Ipn Iq , V;l-
\{, + E):
n_ O
. _J

Figure 4.2: Network with Source Branches Extracted

By extracting the independent source branches as shown in Figure 4.2, branch

currents for N and N become

I, =X ]Vl L = —[Y.llV;] (4.13)
and
L=V L =-[YdlV] | (4.14)
where |
Y=Y, (4.15)
and
Y, =Y. (4.16)

For this notation, equation 4.12 becomes
AV, + [IAV,) — (VIAL + VIAL) = 0 (4.17)
or equivalently,

(ViAL, - [tAV,) = (VAL - [tAV,) (4.18)
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Now, taking the perturbations in N to be small, we write, .
Al = AY,V,) = AY,Y, + YAV, (4.19)
so the right side of equa,tion. 4.18 becomes
VHAY,Y, + Y,AV,) - 1AV, = VIAY,V, + VYAV, - [iAV,  (4.20)

but,

@ o

= Vv (4.21)

giving on the left hand side of equation 4.20,

VIAY,V, + ViY,AV, - VYAV, (4.22)

which, for
}“fq = yqt (4.23)

yields only
(ViAL - IIAV,) = ViAY,Y, (4.24)

Similarly for external currents (Figure 4.2),
AL, = —A(Y,.V,) = =AY, V, - Y, AV, (4.25)
the left-hand side of equation 4.18 reduces to the single term
—(VIAIL — [tAV,) = VIAY. Y, (4.26)
The result is the sensitivity equation

VAAY,.Y, = VIAY,Y,, (4.27)
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In this equation, V}, and Vp represent the source voltages applied at the external
ports of the original and adjoint networks, respectively. The voltages V, and
V, are for the non-source branches of N and IV under the excitations V, and
V,. The matrix AY, is the differential matrix obtained from the non-source
branches of the perturbed network, and AY,, is the desired sensitivity at the
external ports. For the sensitivity analysis of parasitic couplings from MNM,
AY,. represents the sensitivity at the external ports as found from AY,, which
we will call the differential mutual admittance matrix. The next section dis-
cusses how this differential mutual admittance matrix (DMAM) is obtained for

changes in the sub-circuit layout.

4.2 The Differential Mutual Admittance Matrix

Consider a simple circuit having two components as in Figure 4.3. By

Coupling Ports

Coupling Ports
for Group A

for Group B

Component A . Component B

Figure 4.3: Two Right-Angle Bends Example for Sensitivity Analysis

introducing a number of coupling ports at the corners of each of the right-angle
bends, the coupling between the bends is included using MNM. The sensitiv-

ity analysis seeks to determine the changes in the external port S-parameters
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resulting from a given change in the layout. As an example, consider changing
the distance, d, between the bends. In this case the seﬂsitivity analysis would
give the change in the four-port S-parameters, AS, for a given change in dis-
tance, Ad. Thus for Ad taken to be an incremental change, the sensitivity
analysis yields 0S/0d. Equation 4.27 may be used, but AY, must be found in
order to apply this equation. Finding the DMAM can be done one term at a
time by finding AY;; for each of the coupled ports. Since ports within the same
component don’t move relative to each other, the portion of the DMAM rep-
resenting ports of the same component will be null. Finding the other terms
requires two things. First, we must know how the value of Y;; for any two
ports ¢ and j varies as port j is shifted relative to port i. Second, we must
determine how every coupling port of one component gets shifted relative to
every coupling port of other components when the components themselves are
shifted relative to one another.

4.2.1 Differentiation of the Expression for Yj;. The first
requirement for obtaining the DMAM may be accomplished by a straight-
forward, albeit somewhat lengthy, differentiation of ¥;;. Consider Y;; to be
defined by equation 3.22. We consider one of the ports to be held fixed, but
permit the other port to move. Thus the values needed to obtain AY; for a
change in the layout are

ovy oy . 9y
8;::1-" ayj, a 3aj

Differentiation of Y;; with respect to these varaibles has been carried out, and
the results are included in Appendix D. It is worth noting that were Y7; defined
by equation 3.61, AY;; would represent the change in Y;; as surface Sy is

shifted relative to surface S;. Leaving S; fixed, this shift represents a change
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in the limits of the integral over S;. And if this integration is not carried
out analytically, obtaining an expression for AY;; becomes difficult. For Y7,
defined by equation 3.62, however, we may write directly,
N N
AV =3 5 A A; AY; (4.28)
i=1 j=1
where A; and A; are defined by equation 3.58. So, whether Y;; is given by
equation 3.22 or 3.62, expressions for AY;; have been obtained which, when
combined with the necessary geometrical information will yield the differential
mutual admittance matrix.
4.2.2 Geometrical Considerations. In the general case, the
DMAM must be determined when groups of coupling ports will be moved
relative to each other. Typically, this would correspond to a movement of
individual components, and the coupling ports of each component would form
their own groups. If sensitivity to coupling within a single component is desired,
then the ports of one component could be divided into more than one group.
However, this discussion will assume that each component has a single group of
coupling ports associated with it. For example, consider Figure 4.3. One of the
bends, component A, has coupling ports at the corner which will be treated as
a group and therefore will not move relative to each other. The same is true of
the coupling ports of bend B. To define the port movement, a local coordinate
system is assigned to each of the components, or groups of ports. Then every
port in each group is defined by its position in its local coordiﬁate system. In
this way, changes in the layout are defined in terms of the movement of the
local coordinate systems. To facilitate this, a global system is established and
each system is positioned within it. By determining the transformation from

the local to global coordinates, the movement of an individual coupling port
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may be determined from the corresponding movement of its local system. This

is shown in Figure 4.4. The local system is positioned within the global system

{
1
[
1
1

X, X X
Figure 4.4: Transformation from Local (z;,y;) to Global (X,Y’) Coordinates

by the coordinates (Xj,Y;) and oriented at an angle ©¢. The individual port
J is positioned within its local system according to (zj,y;,6;). We can obtain

the position of port j in the global system by the coordinate transformation

X; = Xo+zjcos0y (4.29)
Y; = Yo+ y; cos©g (4.30)
aj = a;+ 0, (4.31)

so, for translational movements, we obtain

0X; _ oYy
g =1 ad FF =1 (4.32)

and for a rotation of the local axis, we have

aa_] _ 8XJ _ o BY_] _ o
50, = 1, 50, = z;sinQy, and 90, = y; sinOq (4.33)
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Referring to Figure 4.5(a), we take the local system A to be shifted at an angle
Oy relative to system B. And, from Figure 4.5(b), we obtain

a)
:X OB

Local System B Local System A X

dx =ds cos (B,y)

)/§( dy =ds sin (@,,,)
)
Yo b owo-- ds MV

b) /

Figure 4.5: Translational Movement of Local Systems

oY, 8Y;; 9Yy; .
35 — 9X. cos®,,, + 5%, sin©,,, (4.34)
If both system A and B are to be shifted at the angles ©,,,, and ©,p,,, respec-

tively, then their relative motion may be determined from

sin®,,,, — sinO,,, )

cos@p,, — c0sO

O = arctan ( (4.35)
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This approach has been a,ppliéd to obtain the relative motion for any number
-of components, each moving at an angle 0,,,,. When considering the rotation
of a local axis, however, it has been assumed that only one component will be

rotated at a time. Thus we may write,

BY; _ 6Y,J . 6XJ + 61/;_, . 6YJ BY,J . 6&]
6@0 - BXJ 6@0 6YJ 6@0 BQJ 6@0

(4.36)

So from equations 4.34 and 4.36 it is possible to obtain the relative motion
between any two coupling ports of the various components. To do this, the ex-
pressions for 8Y;;/0z;, 0Y;;/0y;, and 8Y;;/0a; given in Appendix D are used.

Applying this procedure yields the diffferential mutual admittance matrix of

the form
0 [AY]1s --- [AY]in | } Component I
AY 0 : Component J
[AY,] = | _]" | . } Gomp (4.37)
i [AY ]y, o0 e 0 | } Component N

4.3 Sub-Circuit Sensitivity

From the results obtained in sections 4.1 and 4.2, all the information
needed to obtain the sensitivity of the external port parameters to a specified
change in the layout is available. The method can be illustrated by considering
the networks shown in Figure 4.6. The first network, (a), is for the uncoupled
circuit where ports p; and p, are external ports and ports ¢; — g3 are the
coupling ports to be connected to the MAM, (b). From the segmentation
procedure, the voltages at the interconnection ports, V,, may be obtained for
the excitations V, (see equation A.16). For sensitivity analysis, the voltages

A

V,

, are also needed for the'adjoint network, N, in terms of the excitations

f/}). Recall that ¥ = Y for the adjoint network, so for a reciprocal network
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P Mutltiport —o 9, o—
1 o— Y-Matrix Mutual
Representation —o0 q, o—  Admittance
Py o— for uncoupled Matrix
Circuit . qQ, ol (MAM)
a) b)

Figure 4.6: Obtaining External Port Parameters with Coupling Included

the adjoint network and original network are identical, and V, has the same
relationship to Vp as Vg to V,. If the network is not reciprocal, the segmentaton
procedure must be carried out for the adjoint network as well. In either case we
have determined V, and Vq in terms of the voltages at the external ports. For

the example shown in Fig. 4.6, the senstivity equation 4.27 may be expanded

as
Va
oA av v, | .. ] aw
Vs oa] =V Veas Vi v, | (4.38)
AYyn AYy Vi DMAM
Vas

To obtain AYj;, then, we set V;,l =V,1 = 1 and V, =Vm = 0, and from

the corresponding values of V, and f/; for these excitations together with the

DMAM evaluate the right hand side of equation 4.38. The other sensitivities.

are likewise obtained by selecting the appropriate excitations for the original
and adjoint networks. If the interconnection voltages are determined from,
V. = [T.)V, and V, = [T,] V, then evaluating the right hand side of

equation 4.38 is a matter of selecting the appropriate column of [T,] and row

N
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of [T,,]t. In this way, we get a general expression for the sensitivities. The

sensitivity AY,... in 4.38 is evaluated as

Ciz
AY,.,, = (* row of [T,]') - [DMAM]- (7% column of [T,]) (4.39)

Thus from the DMAM and the matrices [T,] and [T,,], AY,, may be found from
equation 4.39.

It is more common to express circuit characteristics in terms of S-
parameters, and it will also be necessary to have the sub-circuit described in
terms of S-parameters in order to implement this procedure for large circuits
(see Section 3.3). So it is desirable to obtain the sub-circuit sensitivity in terms
of S-parameters as well. This can be done by differentiation of the expression

for S-parameters in terms of Y-parameters, which may be written as

S =Z(Yo - Y)(%+¥) Yo (4.40)

From which we obtain,

AS = —\JZ{I - (Yo - V) (Yo + Y) JAY (Yo + V) Yo (441)
where I is the identity matrix, Zy and Y, give the reference impedances for
the external ports, and AY is the sensitivity matrix obtained from applying
equation 4.39.

This procedure has been implemented and applied to the Double U-
bend configuration discussed in section 3.3. In that section, the S-parameters
for the Double U-bend were reported without coupling and for two different
separation distances. By calculating the S-parameters for two distances which
are close together, it is possible to obtain a value for sensitivity using the finite

difference approach,

AS; ([ Sy(d+ Ad) — Si;(d — Ad)
Ad 9Ad

(4.42)
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The finite difference approach requires some discussion. In principle, it is pos-
sible to obtain sensitivities by this method by taking the difference Ad to be
very small. Indeed, as Ad approaches zero, the left hand side of equation 4.42
becomes the differential, 35;;/8d. Yet the evaluation of equation 4.42 requires
subtracting the two nearly equal function values S;;(d + Ad) and S;;(d — Ad).
These two constraints would, thei'efore, influence the choice of Ad in opposite
directions. In order to obtain a good approximation to 0S;;/0d, Ad must;Be
small enough, yet to evaluate S;;(d+ Ad)— S;;(d — Ad) meaningfully, Ad must
be large enough. Now if we consider S;; to vary slowly with the distance, d,
then this will relax the first condition somewhat. And, if we may consider

many digits in the evaluation of S;; to be significant, then we may meanif;g-
fully evaluate S;;(d + Ad) — S;(d — Ad) even for small values of Ad. But it is
this latter constraint which makes it difficult to use finite difference approach

to find sensitivity for parasitic coupling. Parasitic couplings are often a second

order effect on circuit performance, so for reasonabiy small changes, Ad, it
may be very difficult to accurately determine the resulting change in external
port parameters. In essence, this is the computational equivalent of trying to
measure a signal which is below the noise level of the measuring instrument.
Thus any evaluation of sensitivity based on a finite-difference approach must
carefully determine a proper choice for the perturbation (in this case Ad) and
may only be carried out with confidence if the resulting function evaluations
(in this case S;;(d + Ad) — S;;(d — Ad) ) differ meaningfully. For this reason,
an analytical approach to sensitivity analysis is preferred. Even so, applica-

tion of the finite difference method may serve as a check when it can be used.
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Such verification is reported in Tables 4.1 and 4.2. S-parameters for the Dou-
ble U-bend were obtained for separation distances of 160.5 ym and 159.5 um.
Comparison was then made between the sensitivity determined usir_lg the finite
difference approach and the value determined from the analytical method for
d = 160 pum. Values are reported only for the first column of the four-port
scattering matrix in Table 4.1. The sensitivities obtained by both methods are
quite close — an indica.tioﬁ that the sensitivity algorithms have been imple-
mented correctly. This same procedure was carried out for the parallel coupled
lines discussed in section 3.2.4. In this case, values are given for the discrete

magnetic current distribution, and the data of Table 4.2 serves to validate the

implementation of equation 4.28.

Table 4.1: Comparison of Sensitivities for Double U-bend Configuration

Type of Real Imaginary Magnitude Angle
Analysis d Pant Part (deg)

S11  160.5 -.3801825956E-03  .2273271223E-01
159.5 -3821649169E-03  .2272971522E-01

Finite Difference .0019823213E-03  .0000299701E-01  .35933E-05S  56.52

Adjoint Network .1982262779E-05  .2996949342E-05  .35932E-05  56.52
S21  160.5 .9987387666E+00 -.4429954068E-01
159.5 .9987368415E+00 -.4430241008E-01

Finite Difference .0000019251E+00 .0000286940E-01  .34554E-05  56.14

" Adjoint Network .1925020071E-05  .2869335456E-05  .34553E-05  56.14
S31  160.5 2331270491E-03  -.9102425556E-02
159.5 2334410332E-03  -.9205140809E-02

Finite Difference -.0003139841E-03  .0103715253E-02  .10372E-03  90.17

Adjoint Network -.3140296762E-06  .1027142303E-03  .10271E-03  90.18
S41 160.5 -.1075592871E-02  -.8903516087E-02
159.5 -.1089925755E-02  -.9003661083E-02

Finite Difference .0014332884E-02  .0100144996E-02  .10117E-03  81.86

Adjoint Network .1433269429E-04  .1001440076E-03  .10116E-03  81.86




Table 4.2: Comparison of Sensitivities for Parallel Coupled Lines

Type of Real Imaginary Magnitude Angle
Analysis d Part Part (deg)
S11  2100.5 4161081756E-04  .2534585563E-02
2099.5 .4174274870E-04  .2534624366E-02
Finite Difference -.0013193114E-04  -.0000038803E-02  .13752E-06 -163.61
Adjoint Network -.1319310875E-06  -.3880261845E-07 I3752E-06 -163.61
S21 2100.5 -4384813008E-04  -.9960353308E+00
2099.5  -.4394140347E-04 -.9960352020E+00
Finite Difference .0009327339E-04 -.0000001288E+00 .15903E-06 -54.09
Adjoint Network 9327336205E-07 -.1288000515E-06 .15903E-06 -54.09
S31 2100.5 -.1982069613E-02  .3414268831E-04
2099.5 -.1983608611E-02  .8411534615E-04 -
Finite Difference .0001538998E-02  .0002734226E-04  .15392E-05 1.02
Adjoint Network .1538997408E-05 2734215221E-07 .15392E-05 1.02
S41 2100.5 -.1013891143E-01 .1012875444E-03
2099.5 -.1015139701E-01 .1012837577E-03
Finite Difference .0001248558E-01 .0000037867E-03 .12486E-04 0.02
Adjoint Network .1248558214E-04  .3786734432E-08 .12486E-04 0.02




CHAPTER 5

SENSITIVITY OF CIRCUIT PERFORMANCE TO PARASITIC
COUPLING

In this chapter, the sub-circuit sensitivity developed in Chaper 4 is
extended for complete circuit parameters. This is accomplished by deriving the
sensitivity equation in terms of S-parameters and then implementing the same

procedure for the case of a complete circuit. A few examples are included.

5.1 Sensitivity Equation in terms of S-parameters

In Section 4.1, the -sensitivity equation was obtained in terms of volt-
ages and currents by applying Tellegen’s Theorem to three different networks.
A corresponding form of Tellegen’s Theorem may be written in terms of S-
parameters provided corresponding ports of the original and adjoint networks

are similarly normalized. Let

b=[S]a | (5.1)
and

b=1[5)a | (5.2)

for vhe networks N and N respectively. Then for any two networks, N and N ,

having the same topology and similar port normalizations [19]

bBa—ah=0 (5.3)
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This form of Tellegen’s Theorem may be used to obtain a sensitivity equation

which is analogous to equation 4.27. In terms of S-parameters, we have
&:, ASezia, = fz; A S,a, (5.4)

In this expression, a, and &, are the incident wave variables at the external
ports and AS.;; the desired external port sensitivities. The incident wave
variables at the interconnection ports, a, and &,, may be found from the ex-
citations a, and @,. This information is retained from the implementation of
the segmentation procedure for S-parameters as described in Appendix A. We

write,
a; = [T.)a, and &, = [T,]a, (5.5)

In these expressions it should again be noted that [T,] and [T,] need not be the
same, and for a non-reciprocal network such as an ampifier, the two matrices
must be obtained separately by appiying the segmentation method to form
both the original and adjoint networks. Once these are obtained, the complete
circuit sensitivity may be found from the sub-circuit sensitivity in a manner

completely analogous to equation 4.39. We get
ASezs;; = (" row of [To]) - [AS,] - (j** column of [T]) (5.6)

where AS, is the sub-circuit sensitivity given in equation 4.41

5.2 Implementation .

In equation 5.6 we have an expression for obtaining the desired circuit
sensitivity. It has been formulated to provide the sensitivity to changes in
parasitic coupling associated with a specified change in the layout of a selected

sub-circuit. The analysis procedure for carrying out the sensitivity evaluation
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is illustrated in Figure 5.1. The procedure assumes that several of the necessary
precalculations have already been carried out. They aré:

(a) the Z-matrices for individual components have been found

(b) Coupling port locations have been specified in terms of local co-

ordinates for each component

(c) the S-parameters of the remaining network have been determined.
Each of these intermediate results is stored in a file which will be read by the
sensitivity algorithm. Once these three items are in place, it is possible to per-
form the sensitivity analysis interactively. The algorithm reads in the Z-matrix
for each component and from these forms the two matrices. One of these, Y;,
is a reduced matrix which retains only the external ports. It is used to find
the S-parameters of the sub-circuit without coupling. The other matrix, Y, is
the complete matrix formed for the combination of all components. It must
be numbered such that external ports are at the top and coupling ports at
the bottom of the matrix as required by the segmentation algorithm. Next,
the coupling port positions for each component are read from a file, and the
location and orientation of each local system specified. With this information
the mutual admittance matrix is formed. From here, the segmentétion method
is used to combine matrix ¥ and the mutual admittance matrix yielding the
Y-parameters of the sub-circuit with coupling. Matrix T, giving the intercon-
nection voltages, is retained. To convert from Y-parameters to S-parameters,
the port terminations are taken to be fifty ohms (unless specified otherwise).
At this point the S-parameters for the sub-circuit both with and without cou-

pling are available and are written to a file. If sub-circuit sensitivity is desired,
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the program continues. By specifying a proposed change in the layout, the dif-
ferential mutual admittance matrix can be formed; and from 7, and DMAM
the sub-circuit sensitivity, AS,, is found. If the sub-circuit is part of a larger
network for which the S-parameters are known, then the overall circuit perfor-
mance and sensitivity can be evaluated. The program reads in the S-parameters
of the remaining circuit, Syen, and by applying the segmentation method, Syem
and the sub-circuit S-parameters, S., are combined to yield the S-parameters
of the complete circuit, S.. Matrix T}, is retained for the sensitivity evaluation.
The MMIC’s S-parameters, S;.,,, are not assumed to be reciprocal, hence the
adjoint network is also formed. This is done by using segmentation to combine

S. and the transpose matrix S¢,,.. The reason for doing this is to obtain the

rem*

matrix 7, needed for sensitivity calculations. The desired sensitivity matrix,

AS,, is then formed and written to the output file.

5.3 Full Circuit Sensitivities

The algorithm discussed in the previous section has been used to
analyze several structures. Consider again the Double U-bend configuration
discussed in sections 3.3 and 4.3. The finite difference approach has been
used to find the circuit sensitivities for a change in the separation bdista,nce
d. Table 5.1 summarizes the result. As before, this check serves to verify
the implementation of the algorithms used to obtain circuit sensitivities. The
values reported for the amplifier’s S-parameters also correspond to those ob-
tained by re-introducing the sub-circuit into the Touchstone analysis. This
gives further confirmation of the segmentation procedure developed in terms
of S-parameters. By repeating the sensitivity analysis for a number of frequen-

cies from 5 to 6 GHz, a plot of the amplifier sensitivities is obtained. The



Table 3.1: Comparison of Sensitivities Found for the Single-Stage Amplifier

Type of Real Imaginary Magnitude Angle
Analysis Pant Part (deg)
S11
Finite Difference -.6938500000E-04  .6795200000E-04  .97117E-04 135.60
Adjoint Network -.6938407623E-04  .6795102086E-04  .97116E-04 135.60
S21 .
Finite Difference -.2621900000E-03  .7970000000E-05  .26231E-03 178.26
Adjoint Network -2621874296E-03  .7973356434E-05  .26231E-03 178.26
Si2
Finite Difference 2720080000E-04  .2835230000E-04  .39290E-04  46.19
Adjoint Network 2720053459E-04  .2835198131E-04  .39290E-04° 46.19
522 '
Finite Difference -.7038700000E-05  .1263357000E-03  .12653E-03  93.19
Adjoint Network -7038799011E-05  .1263343795E-03 93.19

.12653E-03
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results are shown in Figure 5.2, where the values are reported as |AS;;| in dB.

.Plotting the results in this way provides a measure of the relative significance
of certain couplings, and, although it is not intuitive what a sensitivity of, say
=70 dB, means, it is clear from the plot that S, is more sensitive to couplings
between the two U-bends than Si;, for example. This reasoning applies to
comparison of the circuit sensitivity to couplings in different sub-circuits as
well. Consider the line-to-viahole coupling of region B in Figure 3.14. A sensi-
tivity evaluation has been carried out for this sub-circuit and results are given
in Figure 5.3. By comparison, it is evident that circuit parameters are much
less sensitive to couplings within sub-circuit B than sub-circuit A.

A second amplifier was also studied, and sensitivity analysis per-
formed for a selected sub-circuit. The distributed MESFET amplifier of this
example is shown in Figure 5.4. In this example, there are many parallel cou-
pled line sections for which couplings have been included. To get an idea how
significant these couplings might be to circuit performance, all these couplings
have been excluded and the amplifier performance analysis conducted without
these couplings. This is shown in Figure 5.5, trace number 1. The analysis
with these couplings included is given by trace number 2. To tell which of the
coupled-line sections contributes most significantly to the change in amplifier
performance, different sections could be selected for sensitivity analysis. For
closely coupled lines which may be accurately modeled using quasi-static meth-
ods, it is possible to use the finite difference method to obtain the sub-circuit
sensitivity for coupled line sections. To illustrate, the enclosed three-coupled-
line section in Figure 5.4 was chosen. The sub-circuit sensitivity for this region

was obtained using the finite difference approach with the Touchstone analysis
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for an asymmetric three-coupled-line section. By introducing this sensitivity
into the final steps of the algorithm developed in this research, sensitivity for
the complete amplifier of Figure 5.6 was obtained. This serves to show that the
adjoint network method may be employed for gircuif sensitivities even when
other methods are used to obtain sensitivities for a selectéd sub-circuit. By
repeating this type of analysis for different regions of the distributed amplifier
it would be possiblerto detérmine the relative effect the parasitic couplings of

these different regions have on amplifier performance.
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CHAPTER 6

CONCLUDING REMARKS

The planar waveguide model and MNM approach have been used to
develop an algorithm for incorporating parasitic couplings in microstrip circuit
analysis. The adjoint network method has also been used with this model to
‘provide sensitivity analysis for parasitic coupling. The methods proposed have

been generalized to make them applicable to a complete MMIC layout.

6.1 Sensitivity Equation in terms of S-parameters

Planar analysis is appropriate for microstrip structures when the sub-
strate is electrically thin. For regular segments analytical series expressions
are available which correctly describe the field configuration within the planar
waveguide. Numerical evaluation of the impedance characterization for these
segments introduces some inaccuracy because infinite series expressions are
truncated. By taking a sufficiently large number of terms, this numerical error
can be minimized. Circuit components which can be subdivided into regular
segments may be analyzed using the segmentation method. The segmentation
procedure matches the fields at a number of ports along the common edge of
two planar segments. This can cause some discretization error, but a proper _
choice for the number of interconnection ports keeps this error small. An
analogous method known as desegmentation may be applied to components
which can be formed by removing one regular segment from another. Since

the numerical and discretization error in these methods can be kept small, the
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accuracy of the planar model depends primarily on a proper determination of
the effictive dimensions. In this report, a planar model‘ for microstrip viahole
grounds is presented. Difficulty in finding the proper effective dimensions for
large viahole pads (relative to the substrate height) and for large post diam-
eters (relative to the pad width) limits the use of the present médel to cases

where the post diameter is close to one third of the pad width.

6.2 Parasitic Coupling

To account for radiation loss and parasitic couplings, the planar mod-
eling approach must be enhanced to permit power flow into and out of the
otherwise closed waveguide. A multiport network approach (MNM) was de-
veloped for this purpose. It calls for placement of a number of coupling ports
‘along the edges of a planar component. A multiport network is then added to
model the external field effects. In order to account for the fields external to
_the planar waveguide, Shelkunoff’s equivalence theorem is applied to the mi-
crostrip structure and equivalent magnetic currents found which are then used
to determine the field configuration above the microstrip structure. The mag-
netic current distribution given by the equivalence theorem is determined from
the electric field tangential to the air-dielectric interface. The total magnetic
current is determined by the edge voltage. Because the tangential electric field
for a planar component decays rapidly away from the edge, a single magnetic
current element may be used to approximate the continuous distribution. It
is also possible to truncate the magnetic current distribution, in which case
the currents should be normalized to give the same total current. This reﬁort
includes a procedure for representing a continuous current distribution by a

finite number of discrete elements. For the current distribution chosen it is
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possible to develop a network model representing the iﬁteraction between the
coupling ports of two components. Radiation loss coupling among sections of
the same component may be accounted for by the generalized self-admittance
network. From these models the mutual admittance matrix representing the

multiport network as required by the MNM approach is obtained.

6.3 Sensitivity Analysis

Because the MNM approach uses a network model, it is possible to
perform sensitivity analysis using network methods. By using the adjoint net-
work method it is possible to obtain a sensitivity equation which expresses
the sensitivity of a network’s external port parameters to changes in a con-
nected sub-network. Application of this procedure to parasitic coupling and
the MNM approach requires the determination of the differential mutual ad-
mittance matrix. This, in turn, requires knowledge of how the mutual admit-
tance of two ports is affected by changes in their relative location, as well as
how each coupling port will move relative to the other coupling ports. By
differentiation of the expression for the two-port mutual admittance and from
geometrical considerations it is possible to determine each term of the differen-
tial mutual admittance matrix. By introducing the DMAM into the sensitivity
equation, sensitivities are obtained for the selected sub-circuit. This procedure
is repeated in terms of scattering parameters to the sensitivities for a larger

network.

6.4 Analysis of MMIC’s

Most often, it is not necessary or appropriate to apply electromagnetic

simulation to a complete MMIC layout. Usually, only portions of the circuit
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require this effort. This report describes a methodology for incorporating par-
asitic coupling effects into circuit analysis and performing the corresponding
sensitivity analysis. The algorithms have been tailored to specifically address
the need for modeling of spurious radiation and parasitic coupling in MMIC’s.
In particular, sensitivity analysis may be used to determine which couplings
create problems for the designer. It is recommended that in such regions a
more careful analysis be performed. If coupling poses a significant problem
in a given sub-circuit it may be necessary to alter the design. This might be
done either by compensating for the coupling effects or changing the layout
to reduce the impact coupling has on the circuit performance. In the latter
case the analysis presented could be particularly helpful. Since it is possible
to Quickly analyze a subcircuit whose components have been reconfigured the
designer can quickly determine if certain changes in a selected sub-circuit will
significantly reduce couplings or not.

In short, algorithms have been developed using these methods and
testing of the procedures c::_xrried out for several examples. In the future, an
effort could be made to extend these methods for microstrip circuits enclosed by |
packaging, and more testing done in order to determine the coupling predicted

by these methods for a wide range of microstrip structures.
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APPENDIX A

SEGMENTATION METHODS FOR ADMITTANCE AND SCATTERING
PARAMETERS

A.1 Segmentation Procedure in terms of Admittance Matrices
Consider the components of Figure A.1 below. The segmentation

method seeks to combine the network characterizations of components A and

B to obtain the network characteriztion for the component C. In terms of the

Y-parameter characterization, we have:

Il

o p—
P o=t A q T B pb"l’,""‘ C

Figure A.1: Network Representation Used in Segmentation Method

I,=Y,V, Ig=YsVp (A.1)
where
I V. I V.
Ia=| ™|, a=| ™|, Ie=| ™|, and vz=| 7| (A2)
I, v, I v,



So,
Ipa Y;’a }/Paq ‘/Pa R Ipb Y;’b
= and - =
L| |Ye YollV L| |Ym
Taking i
Ipa ‘/Pa
I, = and Vv, =
I, Vo
we write equation A.3 as
I, Yoo Yoo Yo || Vo
L |=|Y Yy 01V
I, Y, 0 Y. ||V
where
}/Pa 0 W}/Paq
Y, = ) Y = , Y =
0 Y, 1 0
and

Y:JP = Y:q = [qua ) O] and Y, = Y;'tp = [0 ) Y"Pb]'

From equation A.5, we may write

L =Y,V + Yoo Vo + Yo Vi

I, =Y,V + Y,V

Ir = Y;pv;) + K‘r‘/r

-~

b
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(A.3)

(A4)

(A6)

(A7)

(A.8)

(A.9)

(A.10)

To obtain the external port currents, I, in terms of the excitation V,, and the

interconnection voltages V; in terms of V}, the conditions

(A.11)
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and
V=Y, (A12)

are applied to equations A.8 - A.10 as follows. Introducing equation A.11 into

equations A.9 and A.10 gives
YoV + YigVy) = =YV + Y V) (A13)
or
(Yip = i)V = =Y, Vi — ViV, (A14)
which with equation A.12 may be written as
(Yoq + Yor)Voy = (Yo — Yo)V5 (A.15)
so,
Vo= (Yo + Yer) 7 (Yo — Y)W (A.16)

which is one of the desired results. We go on to consider equation A.8 making

use of equation A.12 and A.16, giving

I = Yo Vo + (Yog + Yor) (Yo + Yor) 7 (Yep = Yip) V5 (A.17)
or,

I, = [V + (Yo + V) (Yo + Vo) (Ve = Y1V, (A18)
So, the resultant matrix for component C is given by

Yo=Y + (Yoo + Yo ) (Yo + Yor) 7 (Yep — Yip) (A.19)
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A.2 Segmentation Procedure in terms of Scattering Parameters
Consider the components of Figure A.1 once again. In this case, the

components will be characterized by their S-parameters rather than admittance

matrix and consequently the derivation will involve wave variables rather than

currents and voltages. For this characterization, we have

bA = [SA]aA and bB = [SB]aB » (A.20)
where
b a b a
by = Pa g, = Pb by = Py , and ap = b (A21)
by a, b, a,
So,
bpa — Spa Spag Qp, and by, _ Spp Spur ap, (A.22)
by Sepa Saq aq b, Srpy  Ser a,
Taking
a
b, =| | and 4, =| (A.23)
by, ap,
we write equation A.22 as
by Spp Spg Spr ap
by | = | Sep Seg O aq (A.24)
bT TD 0 STT aT
where
SPa 0 SPaq 0
SPP = ) Spq = ’ Sp,- = (A.25)

o~



and
Sep = S;t)q = [Sepa» 0, Srp= S:p = [0, Srp, ).
From equation A.24, we may write

by = Sppap + Spgaq + Sprar
by = Sgpap + Sge04

b, = Sypa, + Srra,

95

(A.26)

(A.27)

(A.28)

(A.29)

In this case, the excitation will be the incident wave at the external ports, or

a,. Thus we desire to obtain the outgoing wave variable b, in terms of a,. The

interconnection conditions in the case of S-parameters differ in form from the

previous example. It is assumed that connected ports have been referenced to

the same impedance such that
ar = b,
and
b, = a,
Introducing equations A.30 and A.28 into equation A.29 gives
b, = Srpap + Ser(Sepaq + Sgeaq)
or,

by = (Srp + SrrSep)ap + SrrSgqay

(A.30)

(A.31)

(A.32)

(A.33)



which, with equation A.31 may be written as
(I = SrrSag)ag = (Srp + SrrSep)a,
so,

ag=(I- Srquq)-l(Srp + S Sep)ap
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(A.34)

(A.35)

where [I] is the identity matrix. Infroducing equations A.31 and A.29 into

equation ;X.28 gives
by = Sgpap + Sgq(Srpap + Sera,)

or,

by = (Sgp + SgqSrp)ap + SggSrra
which with equation A.30 may be written as

(1 = S3gSr)ar = (Sgp + SpaSep)ay
s0,

ar = (I = SgqS:+) " (Sep + SeqSrp)p

Now, using equations A.35 and A.39 in equation A.27, we write

by = Sppap + Spa(1 — SrrSeq) ™ (Srp + SerSyp)ap
+8pr (I = Sq8r4) " (Sep + SagSrp)ap
So, the resultant matrix for component C is given by

Sc = Spp + Spg(1 — 5:r530) ™ (Srp + SrrSp)
+SPT(I - Squrr)_l(qu + Squrp)

(A.36)

(A.37)

(A.38)

(A.39)

(A.40)

(AAl)

.

™



APPENDIX B

EXTENSION OF THE SINGLE-SERIES EXPRESSION FOR
RECTANGULAR SEGMENTS

Formerly the available formulation of Z-matrices for rectangular seg-
ments in planar microstrip circuits required numerical summation of the dou-
bly infinite series in the corresponding Green’s function. Faster computation
of the Z-matrices has been made available using a formulation based on ana-
lytical treatment of one of the summations [21]. This formulation is, however,
limited to the special cases of vertical and horizontal port orientations. In the
following treatment, the same appfoach used for these special cases will be
applied to obtain expressions for arbitrary port positions.

To begin, consider the Green’s function for a rectangular planar seg-
ment. It may be written [19],

G(zi,yilzs,y5) = EZ(kukz )

n=0m=0 ' - (Bl)

. cos( kzz;) cos(kzz;) cos(kyy;) cos(kyy;)

where k? = wpe,

1 mn=0
ky = m,' k, = %75-, and op, =
a 2 mn#0
Here, a, b, h, u, and € refer to the microstrip segment shown in Figure B.1, so
a is the length, b the width, h the substrate height, u is taken as p,, and €

is the complex permitivity ¢, defined in equation 2.3. The elements of the



98

height =h

Figure B.1: Rectangular Planar Segment

Z-matrix are obtained from equation B.1 for two linear ports p and q and may
be expressed as

1
Wpw,

qu =

/ _/ G(zi, yilz;,y;) drpdry (B.2)
Wwq Y wp

where dr, and dry are the incremental distances along the port widths w, and
Wq.

The basic technique used to reduce equation B.2 to a SS form is
to carry out one of the summations in equation B.l analytically to obtain
a SS form for the Green’s function, reverse the order of the summation and
integration in equation B.2, and then carry out the integration across ports
p and g to obtain the desired expression for Z,,. The crux of the matter is
separating the variables of integration making it possible to complete this final
step. For the DS form of the Green’s function there is no difficulty in separating .
the variables and performing the integration by treating the double integral as
the product of two integrations. Transforming the Green’s function to a SS
form requires us to treat special cases differently with respect to separating the

variables of integration, however.
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It is also possible to carry out the summation over either m or n an-
-alytically which introduces additional cases which must be considered. Taking
the length a to be at least as large as the width b, convergence will be as
fast or fasﬁer if we choose to sum over m analytically rather than n. In any
case, should it be necessary to sum over n, we may do so without re-deriving
all the expressions obtained from analytical summation over m. It suffices fo
transform the variables in a manner corresponding to a re-orientation of the
rectangular segment as shown in Figure B.2. Thus we coﬁsider only those cases

necessary for complete treatment with analytical summation over m.

1} Y
B a
IR
b
port width = WP
%
o .
Yp ____pl P . Yp Xp 1__ e
H portvndth=Wp
: _ X : X
X a : b o
P
Yp A
X

Figure B.2: Re-Orientation for Summation over n

B.1 Double Series Expression for Arbitrary Port Positions
Before going on, let’s consider the DS form for any arbitrary port
position. We have for the variables defined in Figure B.3,

= s 3 (o)

n=0m=0

(B.3)

1

: [w_,, wp €08(K22;) cos(kyy:) drp] . [qu Jo, cos(kzz;5) cos(kyy;) drq]

By parameterizing the path for ports p and ¢, we may evaluate the integrals
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o
1
{
]
Iy
—
(%)
« 1P
g

Figure B.3: Variable Definitions for Location of Ports p and ¢

in equation B.3 with the result,

3 5 (ager )

n=0 m=0

. {cos[k,:z:,, + kyy,) sinc[k; =2= + kyw—;’l] + cos{k.z, — kyy,) sinc[k, 2= — kyl”-;l]}

1 {coS[kzzq + kyy,] sinc[k, == + ky%‘”‘] +-cos[k.z, — kyy,] sinck, == — kyﬁz‘!&]}
where sinc(z)=sin(z)/z , and wpz = wpc0s(0,), Wy, =1w,siN(0,), Wee = w,c0s(0,),

and wg, =w,cos(0,).

B.2 Single Series Formulation
To convert the Green’s function of equation B.1 to a SS form, we

write (separating m=0 term) [21],

G(zir yilzs ;) = G{Zaf““wzz“‘"”” + Zan cos(kyyocos(kyy,)sm)}

n=0 n=0

o0
where, C= it and, S(n)=2}) =lsjen(ies)
m=1

The summation S(n) may be carried out analytically using trigonometric Fourier
series {29] as
a* chan(r — ;) + chan (7 — z5)

. a '
Sn)= ——— =+ B4
C o 2ma, sh(a,7) (B.4)
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where,

an, = 2,/kZ — k2,

m(rs>+z<) m(z>—z<)
a ’ a ’

I =
zs = max(z;,z;), and z¢ = max(z;,z;)

Using equation B.4 we can rewrite the Green’s function as,

G(zi, vilzj, y;) = _aczan cos(kyy;) cos(k,y;)- cos[yn(z> —a)] CO;[‘Yn-‘B(] (B.5)

Y sin(yna
n=0 -

where 7, = :l:\/lrkz is complex. This form of the Green’s function is intro-
duced into equation B.2 to solve for Z,,. Because z< and z5 may be either z;
or z; depending on the relative positions of z; and z; it is not possible to im-
mediatly separate these variables and integrate across ports p and ¢ separately.
Instead, we consider several different cases. Recognizing that since Z,, = Z,,
we may swap the two ports if so desired; and this permits us to consider only
three distinctly different situations. For the case shown in Figure B.4(a), there
is no overlap of ports p and ¢ in the x-direction, and consequently =5 = z; and
z. = z; for all z; and z; on their respective ports p and ¢. It is also possible to
include in this case the situation when ports p and ¢ share a common endpoint
along z since (z,,z<) may be defined as either (z;,z;) or (z;,z;) if z; = z;.
In Figure B.4(b), port q is completely overlayed by port p. In this case, every
position z; on port ¢ also lies somewhere along port p. One admissable param-
eterization of path p (traveling left to right) has the variable z; starting at the
left end of port p, moving up to the point z;, and then continuing on to the
right endpoint of port p. By dividing this path at the position z;, the journey
is cut in two. During the first part, z; < z;, but during the second leg of the
journey z; > z;. This suggests a procedure for evaluating equation B.2 in this

case. The same concept holds for the situation shown in Figure B.4(c), only in
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Ke]
S
Y

\<

N

a) No Overlap b) CompleteOverlap ¢) Incomplete Overlap

Figure B.4: Distinct Cases for Port Positions;

this case both paths p and ¢ are divided into two ports. Now we consider each

of these cases in turn.
B.2.1 No Overlap of Ports p and ¢ Along the z-direction

Since z; > z; it is possible from equations B.2 and B.5 to write,

qu = -ac’gj(’mﬂz(‘ha))
& fu, c08(1n3:) cos(kyys) dry] - [L J,,, coslra(z; — a)] cos(kyy;) dry]

From this, we obtain

Zpg = _ac,;)('m si‘l’l(‘v"a))
"3 {COS[%“’? + kyyp] sinclyn 2= + ky g?‘]
+ cos{ynz, — kyyp) sincly, 2= — k, 22| (B.6)

-3 {cos[7,!zq + kyy,] sincly, == + k, =]

+ cos[yazg — kyy,] sinclyn = — k3]
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For large values of n, Sm{v,} becomes large, and this creates numerical prob-
lems when evaluating equation B.6. Since each of the functions (sine, cosine,
and sinc) in this expression grow exponentially, we cannot evaluate them indi-
vidually for large n. It is their combination which converges, so it is necessary
to re-write equation B.6 in a form which can be evaluated numerically for
large arguments. To do so, we begin by selecting v, in equation B.5 such that
Sm{y.} < 0, and further constrain the angles o,, o, € [FF,%] such that w,,

and wg, are positive. Under these conditions, we have v, = a—j8; 8 > 0 and

therefore these functions grow exponentially,
| sin(y,a)] grows as ePe
| cos[ynz, £ kyy,| grows as ef®r

| cos[yn(z, — @) £ k,y,]| grows as eBla=zq)

| sin[y, 28= + k,~2¢]| grows as efl75*!
| sin[vy, %= & k, =] grows as /175!
The result is that provided
a— |z, ~ |a -z, — | 5 I‘I?q'|>0

then
¢~Bla=zp—(a-7)~| 252 || 242 ]
will decay and we can evaluate these five terms collectively without numerical

problems. This corresponds to our original assumption that there is no overlap

in z, and this is illustrated in Figure B.5 below. Thus to handle the numerical
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Figure B.5: Convergence Requirements for No Overlap Along the z-direction

problems encountered when evaluating equation B.6, we define the function,

fi(v, k, a, Tpy Ypy Wpys Wy, Tgy Yqy Wy, 'wq,)
= smGe) Cos[v2Z, + kyp] cos[y(z, — a) + ky,] sinclyw,, + kw,, ] sinclyw,, + kw,, ]
and for suitably large values of n, we replace these functions with their large
argument expansions, namely,
. ~ L (va
sin(ya) =~ 2J.e-7('7 )
cos[yz, + ky,] ~ el thve)
cos[y(z, — a) + ky,) = Le~ibr(@a—a)tkyd]
i ~ 1 Hywpe +kw
sinc[yw,, + kw,,] = me:h P +hwp, )
sinclyw,, + kw,,] & st eilTWesthwg]

2j(ywee +kw 9y )

From this expression for f;, we may write

Zpg=—aC ) 0. F,

n=0
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where,
= ’ Wpr Ypy Wer Way
Fﬂ _{f1(7n’ ky’a’zp,yp, 2 2 v %L Ygy 355 3 )
Wps WPM w, . W
+fl(7m ky, a, Loy Yps —379 73 s Tgs —Ygy 3 s T3 )
Wp, wpa w Wag,
+f1(7m ky’ Ay Tpy —Ypy 35 — 2 5T Ygr 35 )
: ’ Wpo wpx‘ Weg ‘wq!!
+f1(7n, ky; Qy Tpy —Yps 59 =73 s Tgy —Yq» 2 v 2 )}
B.2.2 Complete Overlap Since r; and z; are not separable,
we write
o)
_— _ On
qu - aOX%(’ersin(‘Yna))
n=

(B.7)

s [ [, conth) costyyy) con(na) cosla(es — )] drydr,
To evaluate the expression B.7 we integrate along port p first and then integrate

the result along port ¢. To set up this approach, we write,

Zp = —acg(%—s;m) {w%[uql("zj’yj)drq}

where

Iajyp) = & [ cos(kyyi) cos(kyy;) cos(vaz<) coslya(es — o)) dr,
Wp

We next parameterize the path p according to

zi(t) = Tp + wp, —%Stﬁ %
wt) = tw,t  —3<t<G

and, by insisting that o, € [T, ], wp, is guaranteed to be positive so x;(t)
runs left to right. At some time, ¢,, z;(t,) = =, + w, t, = ;, which serves as
the crossover for 5 and . Thus

z; < T; if t<t,

T > T if t<t,

T, —
where t, = (u)
wy,
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So, we may write
to
Ies015) = osllyts) - {oostra(as = ][ coslh oy + ] cosya(e + )
b 2
o] [ conlhap + )] coslra(ay + it = )] |

This can be solved to yield a three-term expression for I(z;,y;), or
I(zj,y;)=h+L+15
Thus Z,, also has three terms. We write,

Zy =—aC) o, F,

n=0

where F, =fi+ fo+ fs

Expressions for f, fa, and fs are have been obtained by performing the nec-

essary integrations to yield,

f —( 1 ) sin{ky fyp+ ~EL Hn[zp+ 282 —a]} +sin{ky[yp+:"—§”-]—7n[zp+‘—”§1—a]}
! T sin(Tna) 4(ky =EL 4y 222 ) - 4(ky 5L —yn 252)

a {cos['yna:q + kyy] sincy, == + kyw_;y'] + cos[ vz — kyy,] sinc[y, == — kyi;l]}

fa = ( =1 ) sin{ky [yp— =2% [+vn[zp— 2221} +sﬁ1{ky[yp—m]-7n[zp—3§‘]}
27 \ansin(yna) I ) 4(ky T = 225

3 {coslm(z, — @) + kyyy] sincly 2= + k, 2o

+ cos[yn(zq — a) — kyy,] sinc[y, 2= — kyi;x.]}

1%z . . v
fs = ((kyw_;l)é_f%ggl)z)[cos{ky[mp(a:q — 2p) + Yp + y,]} sinclk, (mp2= + 2]
+ COS{ky[mp(xq - -'Ep) + yYp — yq]} Sinc[ky(mpﬂz‘h -— .w_;ﬂ.)]]

where mp = (w—‘;”-/ggl)
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Evaluating f; numerically does not cause difficulties, and the various terms of
f1 and f; may be computed making use of the functioﬁ,
f21 (77 k’ a? A’ B’ C? 'D’ E? F)

(B.8)
sin[yA + kB] cos[yC + kD]sinc[yE + kF)

'1sm('ra)
where f,, is evaluated using large argument expansions when n is suitable
large. Z,, has been shown to converge, provided the conditions for this case
are properly satisfied.

B.2.3 Incomplete Overlap Here again, we write

Zpy = —aCZ(m){ L[ I(zvyﬂdﬁ}

Consider the regions identified in Figure B.6. For z; in region I, z; < z; for

all z; on port p. Thus in this region we have,

Y

Figure B.6: Port Configuration for Incomplete Overlap

In(e;,95) = = [ cos(kysi) cos(ky ) cos(1az;) coslya(as — a)] dry

p YWp
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If z; is in region 11, however, the position of z; lies somewhere along the width
of path p, so for z; in this region we must parameterize path p as we did for

the previous case, or

Iri(zj,y;) - = cos(hkyyj) : {cos['yn(a:j - a)]/_t: cos[k,,(y,, + wpyt)] COSh’n(mp + wy, t)] dt

1
o] | coly (o + ] cosln(z + wpt — o)l |

where t, = (f-'fz) as before. So, we have, I(z;,y;) = It + I1. Since we

have split the integration along port ¢ into two portions, in this case we write

1o, to
rll RRACINT) =/1q11[$j(t),yj(t)] dt + /,qfn[fvj(t),yj(t)]dt
Wq —2 —2
where t,, = (5”_—3-231_—1")

By carrying out the necessary integrations, we obtain four terms; three terms
correspond to Ij; as before, and an additional term comes from I;. Thus we
write,

Zyy = —aCianFn

n==0

where F, =fi+fi+fs+ fa

Expressions for these functions have been obtained and are given here.

fo = () | ol mates 22 —oyiley= 2551
1 ~n sin(yna) 4(k, ﬂ.i,’"’-+’1n 2‘?"')

sin{ky [yg+mq(zp— _2:_'”2 —zg)]—m[zp— _ELWQ 1} sin{ky(yq— —”-wg I+ nlze— —%2 1}
- —
(ke T o ) (e, o 555)

+

sin{ky[ —ﬂ;‘l]— nlz -3;1‘-’-]} ) N w
y4y(qkyw—§1—712§i) } 2 {COS[%(% — a) + kyyp) sinclyn, 2= + k, 2]

+ cos[yn(z, — a) — kyyy] sincfy, 2= — kyi;l]}

where mq = (w—;”- /—“3291)

o~
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f _( 1 ) sin{ky [yp+ L |+vn [zp—at+ 2E2]}
2 = \Jnsin(vma) 4(ky B 4y, 222

o sinlkylupt 2] mlzp—at 22]) } _ [_ sin{kyyg+ma(zp— 2B —zq)]+yn[zp— “EL]}

4(ky —5* —yn 25%) 4(ky =L +n 252
_ sin{kyfygtma(zp— 2B —zg)]—yn[zp— ZEL]} + sin{kylyg+ 3L 1+vnlzg+ 252 ]}

e W,
(e, T 25 (b, 55

4 sindkylyet =]-nnlegt %)
A(ky 5= 55)

fo= ( 1 ) {sin{ky[yp—i?tlmizp—ﬁsl]}

o) 06 T o 55

+ sin{ky[yp—:-ae"]-‘vn[zp—zg‘]} } . [ sin{ky[yq+m<1(-’cp-f’%‘—zq)]-i-%[zp-2‘3‘—0]}
4A(ky —5%—yn %) 4(ky —L +n %)

n sin{ky [yg+ma(zp— 282 —zg)]—vnlzp=2EE—a]}  sin{kylyg+ L +ynlze+ 282 —a])
w W,
4(ky—§1-1n3§1) 4(ky—§9-+'yn-‘-"—2‘1‘-)

_ sin{kylyg+ =] va[og+ 2 —a]}
4(ky —gL —yn =)

Evaluating function f; requires us to consider two different situations. If mp

# =+ mgq, then

—1%pz
fo = |t
: {<{Iyq+w—§"];—”[§/£-:r;i(;;]xp+%“)]}) sinc{k, [y + 25 + g, + mp(z, — 7, + 2]}
+ ({[y"#gl][}[g;t:i(;"g;]’ ”+%“)]}) sinc{ky [y, + 5 — y, — mp(z, — z, + %=)]}
— (Mtmatonme B2 ) el + ma(a, — 2, — %) + 5y — 1))
- (”yq‘f’“‘*"[*;_;q_;ﬁ;][""‘w_g”}) sine{k,[y + ma(z, = 2, — %) - 1, + 252)]}
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On the other hand, if mp = =+ mq, then

_ ~1¥py
fa = [(ky—;’l)h(vn‘—"gl)?]

z --:z:q—'—”z'L
. {(1 - ”—m_gT-z—) cos{kyly, F (mp z, — mp z,, + y,)]}

Yay mp £y—mp T . w
+ (2 . +yqi(2§lgz P p'H!p)) SlnC{ky[Q_;y' + Yq + (n’]p Zg —INP Tp + yp)]}

+ mQ(xp—xq—EE‘)+yqi(mp$q—mp Tp+yp)
27

- sinc{ky[2mq (z, — 2, — **) + y, £ (mp 2, — mpz, + yp)]}}

To evaluate f; for largé n, we make use of function f», given in equation B.8.
Function f; does not cause numerical problems but the various terms of func-
tions f; and f3 must be evaluated using the function, where f,, is evaluated
using large argument expansions when n is suitably large. Z,, has again been
shown to converge, provided the conditions for this case are properly satisfied.

Because the computations become increasingly involved for each of
these cases, an heirarchy has been established to place each port configura-
tion into on of the classifications shown in Figure B.7. An algorithm has been
written to make this determination, and consequently any arbitrary port con-

figuration may be handled by calling this single subroutine.



7

1) No Overlap in X

3) Complete Overlap in X
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5) Incomplete Overlap in X
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4) Complete Overlapin Y

5) Incomplete Overlap in X

Figure B.7: Heirarchy for Port Classifications



APPENDIX C

EXPANSION OF POYNTING’S THEOREM APPLIED TO THE
INTERACTION BETWEEN TWO MAGNETIC SOURCES

To obtain the time-average power radiated by an antenna into a loss-

less medium, the complex Poynting Theorem may be reduced to [24]
> [ Be(; Byav = > § Re(BxH) - ds (C1)
2 Jv g 2Js s '

where the left hand side represents the power driving the antenna terminals
and the right hand side is the time-average power flux leaving a closed surface,

S, enclosing the antenna, or,
1 . _
Praa =3 fs Re(E x H*) - d3 (C2)

Consider two magnetic current elements as shown in Figure (3.7). The source
M, gives rise to the fields E; and H,, while M, produces E, and H,. Thus
the total fields are give1°1 by E = E; + E; and H = H; + H,. To evaluate

equation C.2, we write,

(ExH") = (E,+E;)x (H;+H3) (©3)
= E, xH;+E, x H} + E; x H; + E, x H;

So we have,

%fRe(E x H*) - ds = %fRe(El x HY) - ds
’ ° (C.4)
+%£RB(E2 x H3)-ds+ %‘ﬁRe[El x H; + E, x HI] - d3

—~
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Now, the first two terms we recognize from equation C.2 as the power radiated

by the sources M; and M,, respectively, or

1
Proy = 5 ]ﬂ Re(E; x HY) - ds (C.5)

1
Proiy = 5 ]g Re(E, x H3) - d3 - (C.6)

Now, we make use of the divergence theorem to write the third integral on the

right hand side of equation C.4 as
%jiRe[El x H + E; x H1] - d5 = ///V 1Re{V-[E, x Hy + E; x H]}dV (C.7)
Next we expand the integrand as follows.

VB xH,+E, x H] =V (E, x H}) + V- (E, x HY) (C.8)

and
V(El XH;) = H;‘(VXEI)—El(VXHE)
(C.9)
V- (E;xH}]) = Hj - (VXxE;)—E;-(V x H})
where,
V. El = —JQJ[AHI — Ml
V- -H} = (jweEy)*+J; = —jweE;
, (C.10)
V-E;, = —jwpH; —M,
V-H] = (jweE)*+J; = —jweE]
So, we have
Vv . [El X H; + E2 X H;] = H; . [—jWﬂHl - Ml] — E1 . [—jL(JCE;]
+ H [—jwpH,; — M;] — E; - [—jweE]]
(C.11)

= jw{—p[H:-H; + H] - Hy] + €[E; - E; + E - EsJ}

— [H3-M,; + H} - M,]
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Next, recognizing that (for z complex) since 2,2} + 2}z, is real, we have,
%Re{V B x H 4+ E; x HY} = %Re[H; M, +H:-M;]  (C.12)
Thus equation C.7 becomes

///V 3 Re{V-[E; xH} + E; x H]} dV

- —%Re{//VH;-MldV + ///VH;'-Mde}

and, since the integrand of the first integral is zero whenever M; = 0,

S]] Myav = [f] Hs-Miav (C.14)

where V; is any surface enclosing M;. Similarly

JJ[E My = [[[ BpM,av (C.15)

Now, letting V; and V; shrink down in size to converge to the surface of the

(C.13)

elemental sources M; and M, we take the field quantities H} and H; to be

constant over these tiny volumes and thus
// [ H; MV =H; M, dl (C.16)
1
and,

///V?H; ‘M, dV = H; - M, dj, (C.17)

From which we write,

1 1 1
5 )é Re(E x H") - d5 = Prag, + Praa, — 5 Re[H; - Mi] — 5 Re[H; - My] (C.18)



APPENDIX D

DIFFERENTIATION OF EXPRESSION FOR Y7,

For a collection of sources it is not possible to always have one of the
sources located at the origin as in Figure 3.5, so the differentiation of ¥;; will be
carried out for the geometry of Figure D.1. To begin, the complete expressions

for Y;; are needed, and these follow in equations D.1 - D.11

Y;; = di;J; (D.1)
J;j = —H, sin(e;) + H, cos(e;) (D.2)
Hz = Hg COS(G,'J') + H,. Sin(o,‘j) (D3)
H, = —Hysin(6;;) + H, cos(0;;) (D.4)
H, = (%) cos(8) F,(r) | (D.5)
H9 = (%) Sin(a)Fg('r‘) (D6)

g~ Ikor 1
= [ (10 1) -

Falr) = [j_koer_ = (1 i jklor N (kolr)2)] 8



port j of width dlj

port i of width dI,

.

X

Figure D.1: Geometry of Two Arbitrarily Placed Magnetic Current Elements

6= 6,']' + ;-7 (Dg)
T;—z;

6;; =tan™1 '—'7—1) D.10

J ( e~ (D.10)

r=/(zi —2;)? + (4 — v;)° (D.11)

Obtaining the partial derivatives of ¥;; will be done one step at a time begining
with equation D.11 and moving backward up to equation D.1. By carrying
out the calculations this way, it will be straightforward to make use of t;he
intermediate results. Since «; does not appear in equations D.3 - D.11,
0/0a will not appear until we get to equation D.2.

For equation D.11,

Br
oz,

O [t

[(z: = 2 + (3 — y;)]7% - 2(z: — 25)(—1) = B2 = sin(6;;)
- (D.12)

ar

by;

[(zi = z;)% + (3 = yj)]-% - 2(y:i — y;)(=1) = ¥ = cos(6;;)

LR
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For equation D.10,

R -1 . = L%
0;; =tan"'(u); wu= e
88i; _ 88 Bu 1 Yi—¥i yi—vi __ cos(6i;)
17 2, ou __ Al = 22 —_ 2 .
Ba:j — bu oz; - 1 ::z‘—::;‘2 (y,-y.)’ r2 T (D'13)
+ vi—vi
80i; _ 88i;  du _ 1 . Zi=xi_ _ _ sin(6y;)
By; Gu By; T (zimm)t wi—w)? r
v5—¥i

For equation D.9,

dz; . 86y 3?,-1 =
(D.14)
26 _ 086 986 _ ﬂm
By, . 86;;  By;
For equation D.8,
agi‘jr_ - 8F;r" . % = {(ikoe:j"°') (_jk:o"'z + kogr3)
+ (1+_7k°T (kjr)?) [r(jko)(—jko)e:ikor_jkoe‘jkor]}Sin(eij)
_ (D.15)
= (257) (1 £2 - 5 + ap) sin(6y)
T = e gy = (M) (1 B - gl + ) cos(6y)
For equation D.7,
ag";gr) — aFrjr) 8% — {( —:kor) ( Jkoﬂ)
+ (1 + Jkor) [rz(—jko)e—-’:""—2re‘.1'ko']}Sin 05
(D.16)

aFr(T) —_— aFr( ) or —_ _'ko —Jkor 3
dy; a,.r b = (_.1.__:2 ') (1 + ]kor __(kor)"’) cos(ﬂij)

From this point on, the expressions will be left in terms of those already ob-

tained, thus for equation D.6,
e = (&) {sin())Z2 + Fy(r) cos(p) - =L}

Oz 27y

(D.17)
it = (2) ()52~ ) ot 22}

dy; 27
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For equation D.5,

. (v . cos(8;;
# = () OB R o=y
%—’y’; = (%) {cos(e)—wg;; + F,(r) sin(9) - _JlSi“(r"" }
For equation D.4,
%}I%'L = {_H 8sm(0 — sin(6;;) 52 % + H, 8605(0' + Oos(ou)
(D.19)
sin(6;; . dcos(8;;
% = {—Hga—ag)’ﬁ - sm(O,-j) %%I-JQ + .H,- _635_:24)- + COS(0,’j) 86—15;-}
For equation D.3,
ax, {Hgﬂ‘d + cos(8;;) 52 % + H, _§ﬂ0__,_1 + sin(8;;) & Py }
(D.20)
dcos sin(6;; .
QH"" = {H ——(0—"— + COS(G,'J') 66—];!{]2 + H.,. %J—Jl + sm(0,-j) 66_{1-/1:}
For equation D.2,
g—l {— sin(a;) %’1 + cos(a;) 52 a—H"
%‘—;-J’} = {— sin(a,) -@-HI + cos(a;) gﬁi} (D.21)
%—& = {—H, cos(a;) — H, sin(a;)}
Finally, for equation D.1 we obtain,
8Yi; aJ;
Y aJ;
= dl; 5 (D.22)

~~



