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Kaufman, Adam (Ph.D., Physics)

Laser-cooling atoms to indistinguishability: Atomic Hong-Ou-Mandel interference and entangle-

ment through spin-exchange

Thesis directed by Prof. Cindy Regal

In this thesis, I describe the development of and scientific results from a new platform for

creating ultracold atoms via single-atom control. We employ Raman-sideband cooling to isolated

bosonic 87Rb atoms confined within sub-micron optical tweezers, yielding single particle three-

dimensional ground-state fractions of 90%. We create multiple, independent, mobile optical tweez-

ers, which simultaneously allows multi-particle studies with single-atom microscopy and highly

tunable length-scales. We employ this toolset in both of the main experiments discussed in this

thesis. In one experiment, we observe Hong-Ou-Mandel interference of two bosonic atoms, each of

which is independently prepared in spatially separated optical tweezers. The interference we ob-

serve is a direct consequence of the purity of the single particle quantum states produced, and the

indistinguishability of the atoms. In a second experiment, we introduce a spin-degree of freedom

and exploit spin-exchange dynamics, driven by the quantum-statistics of the particles, to create a

spin-entangled pair of spatially separated atoms.
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Figures

Figure

1.1 New experiments enabled by the optical-tweezer platform. (a) We create an atomic

beam splitter to observe two-particle interference, thereby revealing for the first time

the Hong-Ou-Mandel effect [1] with independently prepared atoms. (b) Starting

with an an atom in each of two spatially separated optical tweezers, we tailor the

microscopic physics to produce entangling spin-exchange collisions. Upon producing

entanglement, we separate the particles and verify that the entanglement produced

locally persists to create non-local quantum correlations between the atomic spins.

This toolbox is crucial to using spin-exchange-based gates with neutral atoms for a

quantum-computing architecture [2]. The subscripts of the states represent the atom

locations over the course of the operation. . . . . . . . . . . . . . . . . . . . . . . . . 5

1.2 Quantum gas assembly. (a) A potential array is loaded stochastically with thermal,

single atoms via light-assisted collisions [3]. (b) After imaging the random spatial

distribution, an optical tweezer sequentially drags atoms (red arrows) into a central

region (red square) (c) The resulting uniform array can be imaged, and the detected

atoms on the edge can be removed with the optical tweezers. (d) Three-dimensional

Raman sideband cooling is applied, initializing each atom independently in its mo-

tional ground-state (e) By removing spatial and motional entropy, it is possible to

melt to a superfluid from a small Mott insulator via the quantum gas assembly

protocol outlined in the prior steps. . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
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2.1 Photograph of the experiment circa 2015. . . . . . . . . . . . . . . . . . . . . . . . . 12

2.2 Photographs taken of the cell (a) shortly after it was affixed to the rest of the vacuum

chamber (b). The cell was aligned (within 0.2o) to the plane of the optical table by

reflecting a leveled laser off of the large windows. . . . . . . . . . . . . . . . . . . . . 13

2.3 Three external-cavity diode lasers are used for the MOT and single-atom spin prepa-

ration. The optical pumping and cycling light for imaging are derived from the F = 2

laser and switched separately with AOMs. Two of the three MOT beams are gener-

ated via an injection locked amplifier with light from the F = 2 laser. The repump

light is derived from the F = 1 laser: two separate fibers (with separate AOMs)

carry repump to the experiment for the MOT and spin preparation of the atom(s),

since they require different polarizations and beam vectors. Also shown is the Raman

laser, which is derived from a DBR diode detuned red by approximately 50 GHz of

the D2 line.The details of generation of the light used for driving Raman transitions

along all three dimensions of the optical tweezer is discussed in Chapter 3. The

transition splittings here are taken from Ref. [4]. . . . . . . . . . . . . . . . . . . . . 15

2.4 Multiple beams are used for single-atom trapping and ground-state cooling. A side

and top view of the setup is provided, and a coordinate system used consistently

(for the most part) throughout this thesis. In the text we elucidate abbreviations

for beams and optical elements. Unless otherwise indicated, every cube is polarizing. 18

2.5 Imaging data through the ASE objective and a window similar (same manufacturer

and batch) to those created for our cell. (a) We show a magnified image of a dual

pinhole target for testing the objective performance and imaging magnification. The

relative dimness of the upper right pinhole image is due to the inhomogeneous rear

illumination of the target. (b) We show the azimuthal average of the imaged spots

with a fit using the model in Eq. 2.1. . . . . . . . . . . . . . . . . . . . . . . . . . . . 19



xv

2.6 In-situ ASE lens alignment. We optimize the input beam collimation (a), and angular

lens alignment in y (a) and x (c). The angles are quoted with respect to the normal

of the cell window, to which the input beam is also aligned. The alignment signal

is the axial trap frequency, which, in contrast to the radial frequency, is sensitive to

both the spot-size and z length scale of the trap. The trap frequencies are measure

with parametric excitation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.7 We designed and machined in-house a coil mount to fit around the cell and ac-

commodate the spatial constraints imposed by the large objective. We performed

numerical simulations in the Mathematica Radia package of the expected current to

field performance for these coil pairs, which are each in the Helmholtz configuration.

The created fields were consistent with the expectation at the < 5% level. . . . . . . 21

2.8 This is a schematic of the rail system used to generate the light focused by the

objective to form the optical tweezers. The light emerges from an AR-coated FC-PC

connectorized optical fiber and is collimated to 2w0 ≈ 1.4 mm by an asphere “CA”.

It then passes through AOV, an AOM which realizes vertical (y) angular deflections.

A 1:1, 4.5 cm relay images the center of AOV on to the center of AOH, an AOM

which realizes horizontal (x) defections. A second 1:1, 15 cm relay images the center

of AOH onto the center of the first lens in the telescope, “GLC”. The beam is blown

up by a factor of 20 (which commensurately demagnifies the angular deflections)

once it is collimated by a 30 cm achromat. We have observed that the AOMs can

rotate the polarization of the beam in a temperature dependent fashion: a pair of

polarizing beamsplitters and a half-wave plate fix the fraction of light that is picked

off to a photodiode for intensity stabilization. A pair of resulting spots imaged by a

1 m achromat are displayed when two RF tones of 7.5 MHz spacing are introduced

to AOV. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
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2.9 Here we illustrate a typical experimental sequence for performing a quantum dynam-

ics experiment. A MOT of up to 106 atoms is formed, and free space polarization-

gradient cooling (PGC: reduced intensity, -70 MHz cycling detuning, zeroed magnetic

fields) cools the cloud to approximately 10 µK. At this point, some number of atoms

are loaded into the tweezers and undergo light-assisted collisions [3, 5] in the pres-

ence of the red-detuned cooling light, thereby reducing the atom number in each

tweezer to 0 or 1. The atom populations in each optical tweezer is imaged, and the

trapped atoms are re-cooled with PGC (temperatures from which are discussed in

Chapter 3). We then independently initialize the spin and three-dimensional mo-

tional state of each atom with optical pumping and Raman-sideband cooling (see

Chapter 3). The optical tweezers are then adiabatically ramped to a new configu-

ration associated with a Hamiltonian of interest; dynamics ensue. The depths and

spacing of the tweezers are then varied diabatically with respect to the timescales of

the aforementioned Hamiltonian, into a configuration amenable to spatially-resolved

single atom detection. In the sequence shown above, the atom’s position switches

from the left tweezer to the right. The majority of experiments in this thesis occur

in 0.5 seconds or less. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
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2.10 Single atom loading and imaging. (a) We set the single-pass peak intensity of each of

the large MOT beams to a saturation parameter of s0 = 2.0, and each of these beams

delivers 1 mW of repump light; the MOT gradient was set to 9 G/cm. We then vary

the cycling light saturation parameter of the funky-angle beam and measure the

load probability. For each data point, the bias fields were reoptimized along all three

axes, since changing the funky-angle beam intensity moves the MOT position; the

plotted load probability corresponds to the peak-loading position. (b) Setting the

funky-angle beam to a saturation parameter of sFunky0 = 1.12, we measure the single

atom load probability. Typically we operate the experiment with a 125 ms load

time and observe 60 to 63% load probability. Other relevant parameters include the

cycling light detuning of −10 MHz and the optical tweezer depth of 1.1 mK. . . . . . 25

2.11 Typical imaging data observed in the experiment for a 25 ms collection. The photon

counts here are computed on the basis of the brightest pixel in the camera image

shown in the figure; the left peak corresponds to our background signal (blue), and

the right peak corresponds to the atom signal (red). The black lines correspond to

the Poissonnian expectation for the peak widths given the fitted center value of the

counts for background. We find reasonable agreement, and hence are reaching the

limit of imaging fidelity for a Poissoinian distribution of photon counts. The green

dashed line is the threshold calculated to minimize detection errors. . . . . . . . . . 26
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2.12 In-situ characterization of the atom imaging performance. (a) Fitting a Gaussian to

an ideal Airy disk imaged by a 0.6 NA system at 780 nm. (b) A cross-section of the

atom-image in the inset. For these data, the aperture of the objective was set to 26.5

mm, corresponding to a 0.62 NA. The red line is a Gaussian fit according to the fit

function in the text. (c) Plot of fitted Gaussian waist v. ideal imaged Airy-disk NA,

for creating an interpolation (dashed line) between Gaussian waist and Airy-disk NA

for analysis of single-atom imaging data. (d) We plot the fitted atom image as we

vary the objective aperture, and the corresponding NA of the imaging system. The

red circled point was extracted from the data in (b). The green-dashed line is the

interpolation from (c). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

2.13 Characterization of the optical tweezer. (a) We plot the frequency position of an

atomic loss resonance after exposure to σ+-polarized cycling light as a function of

the optical tweezer depth. The inset plots correspond to the indicated data points

in the main plot. (b) A parametric excitation resonance from which we extract the

tweezer radial trap frequency for a given input power. . . . . . . . . . . . . . . . . . 30

2.14 (a) Shown are two spots formed by focusing the light directly from the collimation

rail with different relative intensity and the associated cross-section of these spots.

The cross-section is meant to illustrate the resulting double-well potential; for red

detuned light, the peaks turn into potential minima. (b) The relative well depth

in units of Hz as a function of the DC control voltage discussed in the text. The

absolute bias plotted is determined by the measured fractional bias from images such

as those in (a) and the experimentally measured single tweezer depths for tunneling

(see Sec. 2.8.2). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

2.15 Calibrating the frequency control of the double-well spacing. Imaged atom spacing

as function of varying the frequency of one tone while keeping the other fixed at

80 MHz for AOH (a) and AOV (b) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
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2.16 The tweezer-trapped atoms are illuminated with optical pumping and repump light,

each circularly polarized. |F,mF 〉 = |2, 2〉 (encircled by a dark blob) is decoupled

from these beams because no transition exists that can be driven with these polariza-

tions from this state. The green lines indicate σ+ light tuned to the 2-2’ transition;

the gray is the σ+ repump light on the 1-2’ transition. . . . . . . . . . . . . . . . . 34

2.17 Optical pumping optimization by measuring the depumped fraction (into F = 1)

after application of the 2−2′ light. (a) Alignment of the optical pumping quantization

axis by varying the angle of an added fixed size field (0.1 G); the parameters of

the x coil pair are fixed to a 3 G field during this procedure. The pulse length

is set to near the 1/e-time for an initial set of quantization axis parameters. (b)

Varying the amplitude of this added field at fixed angle in the y − z plane for the

same depumping time parameters. (c) Measurement of the scattering rate of the

optical pumping beam when the quantization axis points approximately 45o to the

beam propagation direction; this largely compromises the dark state because the

polarization experienced by the atom is now mixed. (d) Setting the quantization

axis to the optimized parameters and measuring the depumping rate. We observe

a nearly 1000-fold suppression of the depumping of the dark state between (c) and

(d). We also note that this procedure both compensates angular mismatch between

our coil axes and the optical pumping beam, as well as any background magnetic

fields not sufficiently nulled. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
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2.18 (a) Mechanism by which tightly focused linearly light couples to circularly polarized

light. Because the electric field rotates on either side of the focus on the scale of a

wavelength, it adds helicity to the light. (c) We numerically compute the electric field

components at the focus for a 0.51 NA optical system at 852 nm, and a trap depth of

1.1 mK. Here we approximate that the tweezer beam is uniformly illuminating our

objective, even though we in fact aperture the beam at its 1/e2 waist of 30 mm. Our

calculation therefore could exceed the true gradient by 15% [6]. For the purposes

of this illustration I rotated the coordinate system here because our polarization is

in the horizontal plane and it is hard to illustrate the electric field gradient when it

points out of the page. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

2.19 We measure the depumping lifetime τDP for two trap depths as a function of the

magnitude of the quantization axis. For large quantization axis (trap depth), we

observe a suppression (increase) of depumping. For each quantization axis used here,

the field angle and tip field were optimized to minimize depumping; for each depth the

optical pumping beam was resonant with the light-shifted transition. However, we

later determined that the quarter wave plate angle could have been further optimized,

which is why neither data set reaches the τDP = 25 ms from the previous section.

The scattering rate of the optical pumping beam (∼ 100 kHz) was kept constant to

∼ 10% over the entire data set presented here, including the effect of the magnetic

field shifts of the optical transition (1.4 MHz). . . . . . . . . . . . . . . . . . . . . . . 39
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2.20 Microwave spectroscopy on single atoms (a) A square pulse is applied to a spin-

polarized atom in |2, 2〉 in a 3 G field. The Rabi rate is 50 kHz, and the fit is the

expected response for a driven two-level system on resonance with a 10 µs pulse. (b)

A temporally Gaussian pulse is applied with the profile indicated in the figure. The

red line is a fit to a spectral Gaussian, while the black line is the response expected

via numerical evolution of the Schrodinger equation for this pulse profile and the

measured Rabi rate of 36.9 kHz. (c) Typical Rabi oscillations after application of a

resonant square-pulse of varied pulse area. . . . . . . . . . . . . . . . . . . . . . . . 40

2.21 (a) Schematic of applying the light-shift beam to the left optical tweezer; the wells

are spaced by 1.57 µm and 1.1 mK deep. (b) Scan of the position of the light-shift

beam when placing resonant cycling light on the fiber. Typically we use a 4µs pulse

with less than 1nW of power in the beam. The blue (red) points correspond to the

likelihood that an atom in the left (right) well survives the pulse application. . . . . 41

2.22 Performing microwave spectra with the light-shift beam aligned to the left optical

tweezer using square (a) and Gaussian (b) pulses. The blue (red) points corresponds

to the likelihood that an atom in the left (right) well is spin-flipped into F = 1. . . . 42

3.1 Experimental setup for tweezer trap, detection, and three-dimensional motional con-

trol. (a) Orthogonal radial axes, indicated by x′ and y′, are addressed by Raman

beam 1 (RB1) (σ+-polarized) and RB2 (π-polarized), or RB1 and RB3 (π-polarized).

RB1 and RB4 (linearly polarized in y-z plane) address the axial direction. Note we

should be able to cool all three axes with a single pair of counterpropagating beams.

(b) Level diagram for 87Rb with associated beams from (a). Optical pumping con-

sists of σ+-polarized repump light on the F = 1 → 2′ transition along with optical

pumping light on F = 2→ 2′. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
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3.2 Raman transitions. In our setup, we drive transitions of ∆mF = ±1, necessitat-

ing one beam of π- polarization (beam 1) and another of circular (beam 2). The

difference in the beam frequencies is resonant with the splitting between the states

between which we hope to drive a transition, up to an amount δ (Raman detuning).

Both beams are far detuned from an excited state |i〉, and each yields dressing of

this state quantified by the single photon couplings Ω1 and Ω2, respectively. For

explanatory purposes, we simplify the picture to driving a transition between two

states, |s〉 and |f〉, through a single intermediate, excited state |i〉. In practice, the

Raman beams couple to many excited states (see text). . . . . . . . . . . . . . . . . 48

3.3 Coherent sideband and carrier oscillations, determination of n̄, for ηR = 0.22 and

ω/(2π) = 140 kHz. Top (bottom) row for thermal state of temperature 15 µK

(1.7 µK) (a,d) Coherent sideband oscillations for δ ≈ ±ω, where to hit resonance

for the sideband oscillations we correct for the slight dressing of the sideband res-

onance by the carrier (this pulls the sidebands closer to the carrier). The red and

blue-sidebands are correspondingly colored. (b,e) Computing n̄ from the sideband

oscillations using Eq. 3.20, and comparing to the dashed line whose position is the

true n̄ from Eq. 3.21. (c,f) Expected dephasing (and lack thereof) of carrier oscilla-

tions via Eq. 3.22 as a function of temperature. For (a,d,c,f) we plot the likelihood

to measure the particle in spin-up, P↑, given that it started spin-down and in the

stated motional distribution. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

3.4 Simulation of continuous sideband cooling. We show the expected dark state pop-

ulation |2, 2; 0〉 as function of time that an atom is exposed to Raman and opti-

cal pumping beams. The blue (green) is for the case of δ ≈ −ω (δ = 0). The

simulation uses parameters close to the radial continuous cooling of Section 3.4.6:

ΩR/(2π) = 20 kHz, initial T = 15 µK, ηR = 0.22, ηOP = 0.16, Γ = 30 ms−1, and

ω/(2π) = 140 kHz. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
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3.5 Simulation of pulsed and chirped pulsed cooling. For both simulations shown, we use

ΩR/(2π) = 31 kHz, ω/(2π) = 150 kHz, ηR = 0.22, ηOP = 0.16, δ ≈ ω. (a) Pulsed

sideband cooling using the same pulse length of ∆t = π/(ηRΩR) = 73 µs for the entire

cooling routine. (b) Pulsed sideband cooling using ∆t = 48 µs (∆t = π/(ηRΩR))

for the first 40 (last 10) pulsed-cooling cycles. The kink at cycle 40 in the cooling

trajectory comes from the change in the pulselength. It is clear that the shorter

pulselength by itself would actually be sufficient for 99% cooling fidelity in ∼ 0.5 ms.

The insets show the motional state occupations at the end of the cooling for each

protocol on the basis of the diagonals of the final density matrix. . . . . . . . . . . 60

3.6 Effect of polarization impurity on different sideband cooling protocols. Using the

continuous-cooling parameters of Figure 3.4 except that we now use ω/(2π) =

150 kHz, and the pulsed-cooling of Figure 3.5b, and we model the effect of the po-

larization purity of the optical pumping beam. This is achieved by varying the ratio

of good to bad polarization, which is equivalent to the ratio of depumping scattering

rate to the good polarization scattering rate: ΓDP /Γ. A term is added to Eq. 3.23

of the form Γ
1/2
DPσ

+. Since we care both about the motional and spin distribution,

I plot the resulting density matrix purity on the y-axis, for the case of continuous

(black) and pulsed (purple) cooling. The continuous cooling is significantly more

robust against this experimental systematic. . . . . . . . . . . . . . . . . . . . . . . . 63
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3.7 Single atom sideband spectra and Rabi oscillations in the radial dimensions before (a,

b) and after (c, d) ground state cooling. (a) The black squares are a carrier peak in

the y′ direction using a ∆t = 15 µs (near π) pulse. The red circles (orange triangles)

are sidebands along the y′ (x′) axis for a 75 µs (near π) pulse, demonstrating an

initial thermal population of vibrational states – these axes are defined in Figure

3.1. The solid lines are fits to a Rabi sinc function for the carrier and Lorentzians

(an approximation) for the sidebands; each fit contains an offset at our measured

background (gray shaded region centered at 0.04). (b) Carrier Rabi oscillations for

the y′ direction showing dephasing of a thermal state. Here the carrier Rabi frequency

was set to 15 kHz, instead of 26 kHz. The solid line is a fit to the data using a thermal

distribution of Rabi frequencies. (c) Raman cooled radial sidebands; no Raman

cooling is applied to the axial direction for these data. The black squares are a

cooled carrier peak using a 15 µs pulse. The blue circles (green triangles) are spectra

along the y′ (x′) axis using a 75 µs pulse, displaying a significant asymmetry that

is the hallmark of a large ground state population. (d) Rabi oscillations for a radial

ground state cooled atom with a fit to a damped sine for the carrier (black squares)

and the ∆n = +1 sideband (blue circles), which demonstrates coherent control of

the spin-motional states; the carrier dephasing is suppressed due to the purity of the

vibrational distribution. Each data point is an average of 150 experimental runs,

and hence ∼ 75 atoms. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
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3.8 Axial spectra and 3D ground state pulsed-cooling of a single neutral atom. (a)

A thermal axial spectrum (red squares) using an intensity corresponding to a cold

carrier Rabi frequency of 12 kHz and a ∆t = 65 µs Raman pulse. The data are

fit to Lorentzians (solid line) to guide the eye. (b) Result of simultaneous sideband

cooling in three-dimensions, demonstrating significant sideband asymmetries and

simultaneous ground state occupations in all dimensions. The axial data (center)

illustrates our cooling parameters, and is performed with a carrier Rabi frequency of

10.6 kHz and a pulse of 236 µs (near π pulse on the ground state ∆n = +1 sideband,

a 5π pulse on the carrier). For the radial data, the blue circles (green triangles) are

spectra along the y′ (x′) axis using a 75 µs pulse. The solid lines on the ∆n = +1

sidebands are Lorentzian fits. (c) After 3D cooling, axial spectroscopy for a halved

carrier Rabi frequency of 5 kHz and a pulse of 450 µs. Better spectroscopic resolution

affirms a large axial ground state occupation. . . . . . . . . . . . . . . . . . . . . . . 72

3.9 Simulated coherent axial spectrum with a square pulse. We simulate an axial spec-

trum for the parameters: n̄ = 0.1, ΩR/2π = 10.6 kHz, ∆t = 236 µs, ηR = 0.23,

and ω/2π = 30 kHz. These parameters closely approximate those used for the axial

spectrum in Figure 3.8b. Since we are using a π-pulse for the sidebands, this nec-

essarily entails lots of oscillations from the carrier which is significantly overdriven.

This complicates applying Eq. 3.20, which assumes that carrier transitions are not

occurring at the position of the sidebands. When performing axial thermometry, we

attribute all the signal at the position of the sidebands, which makes the temperature

estimates conservative. Note that coherent cancellation of the spin-flips between the

carrier and sideband transitions (which in principle could cause underestimating the

temperature) is not possible since the states coupled in each are different: one has

a change in motional state while the other does not. Such paths, therefore, always

add incoherently. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
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3.10 Since all the Raman beams are derived from the same DBR (with frequency flaser),

their final frequency is determined by the AOs through which they pass, as well as

by the EO for the case of the EO beam. (a) We choose a particular AO frequency

(“spectroscopy frequency”) for the top beam (dashed colored lines in figure, bold

frequency labels) when doing carrier calibration, while for the EO beam (solid colored

lines in figure, unbold frequency labels) we scan the microwave frequency (fEO) that

determines the optical sideband for the Raman process (and its AO frequency is

fixed). This measurement yields a microwave frequency for which we observe the

carrier transition: we call this the “carrier frequency.” (b) Fixing fEO to the carrier

frequency, we scan the frequency of the top, bottom, or axial beam to optimize the

cooling and ascertain the associated “cooling frequency” for each beam. For the

top and bottom beam, the difference between the spectroscopy frequency and the

cooling frequency is very close to the trap frequency, as expected for cooling on the

red-sideband; the axial is offset from the spectroscopy frequency by an amount which

includes both the difference in the light shift from this beam compared to the top

beam, as well as the trap frequency of the axial direction. Ground state cooling is

performed with the microwave frequency set to the carrier location, while the top,

bottom, and axial beam are set to their cooling frequencies. By measuring the carrier

location each day, we can calibrate all of the magnetically field sensitive sideband

resonance positions on the basis of this single measurement. . . . . . . . . . . . . . . 75
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3.11 Continuous cooling cycle and axial cooling trajectory. (a) This timing diagram

illustrates the sequence of Raman beams that are turned on and the corresponding

times. The optical pumping beams are on for the entirety of the cooling time, during

which the cycle is applied usually 50 times. The goal was to slowly cool the axial

direction while repairing the heating done to the radial direction. The integrated

axial cooling time is much longer than the time it would take to ground-state cool the

axial direction according to the master equation numerics in (b), while the radial

cooling time in just one cycle (done with top/bottom beams) is closer to what it

would take to ground-state cool a radial axis since it is much faster. We therefore keep

the atom close to the radial ground-state during the entirety of the three-dimensional

cooling. (b) We show a simulated cooling trajectory for the axial direction using

typical experimental parameters: ΩR/(2π) = 7 kHz, ω/(2π) = 29 kHz, ηR = 0.36,

ηOP = 0.35, an initial temperature of n̄ = 8, and we use the axial photon heating of

1 per optical pumping recycling. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
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3.12 Varying radial cooling frequencies during sideband cooling, typical repump scattering

rate measurement. (a) Here we vary the Raman detuning of the top and bottom

beams while performing a ramp-sequence measurement after continuous (black) and

pulsed (purple) cooling. Though the Raman Rabi frequencies are the same (2π ·

20 kHz), the pulsed cooling operates over a narrower bandwidth due to the absence

of the repump broadening. The trap used here has a ωradial/(2π) = 140 kHz. The

amount of loss observed at the peak of these curves is due to non-adiabaticity in this

ramp; we have performed some tunneling experiments at similar depths of 1 µK and

observe no loss using a slower, two stage ramp. (b) Repumping to F = 2 from the

|1, 1〉 state. We prepare |1, 1〉 by performing sideband cooling then applying a π-pulse

on the carrier. The repumping rate (1/τ) is half the scattering rate Γ (photons/sec),

due to the branching coefficients of 1/2 from F=2’ to F=1 and F=2. We use such

measurements to calibrate the repump scattering rate, which is crucial to the cooling

performance. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

3.13 Ramp-sequence calibration of axial cooling frequency. We scan the Raman detuning

of the axial beam (AB1 here) and observe the positions of maximal atom survival.

These coincide with the regions in which we expect the multiples of the trap frequency

to be (dashed lines), and we typically set the cooling frequency to the center of either

range when performing first or second sideband cooling. The increased survival

probability is likely more directly an indication of lower heating of the radial direction

during cooling by cooling the axial direction to the ground-state (which, of course,

is dark). As we approach the carrier at higher frequencies, the increased loss is

likely from radial heating due to carrier transitions inducing optical pumping. This

statement is based on the fact that the larger confinement of the radial direction

implies fewer bound-states in the trap, and hence greater susceptibility to loss for a

given n̄. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
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3.14 Continuous cooling sideband spectra for a radial dimension and the axial dimension.

(a) Top and EO beam spectroscopy of the radial dimension of the tweezer after

continuous sideband cooling. The pulselength here is near a π-pulse on the blue-

sideband from the ground state. The reduced offset in these data compared to the

pulsed section is due to improved push-out fidelity (we drop to a shallow depth to

perform the push-out) and the reduced Rabi-frequency of ΩR/(2π) = 20 kHz. (b)

AB2 and EO beam spectroscopy of the axial dimension of the tweezer. In both plots,

the black line indicates the expected position of the associated red-sideband for the

dimension probed. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

3.15 Sideband spectra after Gaussian pulsed cooling. We show spectra for the radial

(a) and axial (b) directions of the tweezer. For the axial data, we compare the

spectra with an numerically calculated spectrum (dashed line) using n̄axial = 0.05

(T = 0.45 µK, ω/(2π) = 29 kHz, and the parameters listed in Table 3.5). The

solid lines for each are fits using a sum of Gaussians. The axial spectrum exhibits

significantly higher contrast and coherence compared to other axial spectra shown

in this chapter, which necessarily used a lower Rabi frequency to retain spectral

resolution for square-pulse spectroscopy. . . . . . . . . . . . . . . . . . . . . . . . . . 84
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4.1 Original Hong-Ou-Mandel effect observation. In the experiment, two photons in the

same polarization state are incident on separate ports of a balanced beam splitter.

The position of the beam splitter is varied so that the overlap of the wave-packets

on the beam splitter is tuned. Each output port of the beam splitter is measured on

photodetectors, and the likelihood for both detectors to click within a small time-

interval, the “coincidence counts”, is measured. The data plot on the right is taken

directly from Ref. [1]: it shows that for a particular position of the beam splitter,

the coincidence counts drastically drop. Even though, classically, we might expect

an equal likelihood of the photons coming out the same or different port, there is

a coalescence effect induced by the bosonic quantum statistics of the photons. A

two particle interference effect, known as the Hong-Ou-Mandel effect, suppresses the

quantum amplitude that the photons emerge on different ports, specifically when

the photons are overlapped on the beam splitter. . . . . . . . . . . . . . . . . . . . . 88

4.2 Hong-Ou-Mandel effect with atoms and experimental setup. (a) The optical tweezers

form a coupled double-well potential. Starting from a state with a ground state spin-

up atom in each well, denoted |S〉, the tunnel-coupling causes the atoms to interfere

destructively and results in the state i√
2
(|L〉1|L〉2 + |R〉1|R〉2). (b) The apparatus for

realizing tunneling between optical tweezers utilizes the high numerical aperture op-

tics and radio frequency signal control of the tweezers’ positions and depths discussed

in Chapter 2. (c) The sideband cooling (see Chapter 3) is accomplished via lasers

driving coherent (green) and spontaneous (blue) Raman transitions that couple to

the atomic motion and spin states |F = 1,mF = 1〉 ≡ |↓〉 and |F = 2,mF = 2〉 ≡ |↑〉. 89
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4.3 Equivalence of second-quantized modes for photonic and atomic beam splitter setups.

(a) For a photonic beam splitter, there are two input modes a1 and a2, connected via

transmission and reflection to a3 and a4: the beam splitter transformations in the

text (Eq. 4.19) reflect the different phases for each process. (b) For an atomic beam

splitter formed from a double-well potential, the creation and annihilation operators

refer to the bound-state mode of each well. Since in this case a tunnel-coupling

coherently mixes the modes, the transmitted quantum amplitude correspond to the

input mode creation operator, while the reflected amplitude yields creation in the

other mode; the input and output modes are shared in this way, while preserving the

fundamental beam splitter transformations in the text. The transcription between

the operators in (a) to those in (b) are indicated in the figure. . . . . . . . . . . . . . 101
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4.4 Single photon entanglement. While a single quantum particle cannot exhibit particle

entanglement, it can create mode-entanglement through the state 1√
2

(|1, 0〉+ |0, 1〉).

To show that this corresponds to useful entanglement (and can violate a Bell’s in-

equality), we show a procedure (from Ref. [7]) by which local operations connect this

photonic state to an atomic |bell〉 state. For two atoms, each comprised of a two-level

system with splitting resonant with the input photon, via the local atom-photon in-

teractions the mode-entanglement is converted into particle entanglement. We show

the initial beam-split photonic and atomic states prior to the local atom-photon in-

teractions in the upper-left of the figure, and then the final state after interaction in

the bottom-right. To violate a Bell’s inequality it is required to measure correlated

fluctuations in multiple bases, but the fact that there are not in general unitaries

that connect the single excitation state to the zero excitation state within a single

mode (this is a so-called “super-selection rule” for the case of massive particles) poses

a challenge that is solved by using these additional spins (on which Bell’s inequality

measurements are routine). There are, however, experimental examples demonstrat-

ing the presence of entanglement in the beam-split single photon state without the

aid of atomic states [8]; similarly, proposals exist for converting mode-entanglement

of massive particles into particle entanglement through the aid of a Bose-Einstein

condensate particle reservoir or additional particles supplied to a beam splitter [9, 10].103
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4.5 A list of the possible outcomes of our imaging protocol. A 0 (1) within a box indicates

that on the pixel corresponding to either the left [L] or right [R] wells, the measured

counts fell below (exceeded) the threshold for triggering atom detection. The red,

blue, and grey regions highlight the signals used to produce the data points in, for

example, Fig. 4.14b,e. P 1
i (P 2

i ) refers to an atom that started on the left (right), i.e.

the first image indicated an atom on the left (right). In our calculation of P11 if there

is an atom in each well in the second image we count this as 1; if there are zero atoms,

we count this as 0; if there is one atom total, we also count this as 0. The latter two

cases can occur when atoms end up on the same optical tweezer, with probabilities

P20 and P02 for the left or right tweezer, respectively (see Section 4.7.3). We take

the mean over all experimental realizations to extract the single and two-particle

probabilities represented. To accurately interpret the measured P11 we must take

into account particle loss. Hence, in our analysis this loss is independently accounted

for by using the value of Ploss determined in the parallel single-particle experiments.

Specifically, in two-particle experiments the maximum value that P11 can reach is

(1− Ploss)
2. Ploss ranges in our experiments between 0.03 and 0.05; these values are

consistent with variation in vacuum lifetime and experiment length amongst different

datasets. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

4.6 Protocol for initiating tunneling. (A) The tunneling sequence as a function of time,

illustrated for the 96 kHz final trap depth. (B) For the 96 kHz depth, tunneling at

times before t = 0 for a single atom starting on the right (red), on the left (blue),

and with one atom in each well (black). The solid lines model the single particle

dynamics use the Hamiltonian of Eq. 4.33, and using the calculated depth-dependent

tunneling shown in Section 4.5.2.4; we also show the expected dynamics of an atom

starting in the left well were we to neglect gravity during the ramp down (green). . . 112
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4.7 Dynamics and bias scan including the ramp dynamics for a horizontal double-well

of 96 kHz and 808 nm spacing. (a) The dense, red circles correspond to the numer-

ically computed bias curve for the first half-oscillation. We fit these simulated data

to a Lorentzian (dashed red line) with the model from Eq. 4.34; the ramp-dependent

fractional disparity between the fitted γ and the 2J used in the model is included

as a correction when calibrating the bias control. We contrast the expected spec-

tral response of a two-level system driven with a resonant square-pulse and Rabi

frequency 2J (solid black line). (b) We show the numerically calculated temporal

response during and subsequent to the final ramp for a resonant bias. For a vertical

double-well there is a small (< 2%) reduction in the single particle contrast due to

the off-resonant tunneling prior to the final trap. . . . . . . . . . . . . . . . . . . . . 114

4.8 Basic characterization of single-particle tunneling in a vertical double-well formed

from optical tweezers for a 808 nm spacing and depth of 96 kHz. (a) For a 0.9 ms

tunneling time, we scan the relative well bias, ∆, and observe the single particle

tunneling resonance, symmetrically for an atom originating from either well. The

blue circles (red triangles) correspond to atoms starting in the left (right) well. The

evolution time is set for near full coherent swapping of the atomic populations in

each well. (b) At ∆ = 0, we observe oscillations at 2J in the expectation value of an

atom’s position. For (a,b), for each experimental value (bias or time) the experiment

was run 400 times, yielding ∼ 140 single particle measurements for each of the red

and the blue data points. (c) We perform a first order check on the importance

of cooling by omitting the sideband cooling stage while otherwise retaining all the

features of the experiment from Figure (a), however, with half the statistics. (d)

We theoretically calculate the expected tunneling dynamics for a 3D ground-state

fraction of n̄ = 0.2 in the full dimensionally-coupled space of the Gaussian double-

well for a spacing of 808 nm and depth of 96 kHz, mirroring the parameters of the

experiment. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117
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4.9 Sideband spectroscopy after resonant tunneling for near a full-swapping time of π/2J ,

in a horizontal double-well of depth 26 kHz and 918 nm spacing. We perform radial

(first row) and axial (second row) spectroscopy after the tunneling procedure, and

perform the standard resonant push-out to readout the spin populations. The y-

axes on these plots should be interpreted as the product of the final well probability

(indicated by the second image atom location) and the probability of being in F = 1

(i.e. surviving the resonant push-out). The sum of PL and PR for data of the same

color corresponds to the overall sideband-specotrscopy transfer at a given frequency,

and is consistent with sideband spectroscopy plots without the tunneling occurring

prior. The first column (second column) corresponds to the probability of observing

the atom on the left PL (right PR). For all of the plots, the red (blue) correspond

to runs in which the first image showed the atom on the right (left). The flipping of

the blue and red peaks between the figures in each row is because if an atom start on

the left (right), it is more likely to be on the right (left). The increased offset in the

radial data is because we were not using our improved push-out procedure in these

data, and the Rabi frequency of the radial spectroscopy Raman beams was slightly

too high. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119
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4.10 Bias spectra and Ramsey spectroscopy. In the first row, we show a bias spectrum (a)

and Ramsey dynamics (b) for a vertical double-well of 96 kHz and 808 nm spacing.

Using the measured 2J of 500 Hz (mean of a number of a measurements) and the

bias spectrum width, we compute the expected volts to energy bias calibration. For

the 9.35V (9.4V) bias and correcting for the narrowing due to the quasi-adiabaticity,

we measure 1.18(3) kHz (1.69(3) kHz) and predict 1.03 kHz (1.4 kHz) according

to the calibration. In the second row, we show a bias spectrum (c) and Ramsey

dynamics (d) for a horizontal double-well of 20(1) kHz and 808 nm spacing. Using

the measured 2J of 179(1) Hz and the bias width of (c), we expect for the Ramsey

dynamics (d) a frequency of 0.52 kHz and measure 0.55 kHz. The nearness of the

widths of the bias spectra here in units of volts is incidental: the bias calibration

scales proportionally and inversely with the tunneling and the depth, respectively,

and each change by a similar amount. . . . . . . . . . . . . . . . . . . . . . . . . . . 120
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4.11 Tunneling dependences. (a) Measured tunneling J as a function of the double-well

spacing for a vertical double-well of 96(4) kHz. The solid line is a theoretical expecta-

tion using the full 3D calculation of the potential (see text). (b) Measured tunneling

J as a function for a vertical double-well of 808 nm spacing. The solid line is the full

calculated dependence as in (a), while the green dashed line is the 1D calculation

by simply Fourier transforming the potential and solving the Schrodinger equation

in a truncated momentum basis; these differ by a very small degree, indicating the

predominantly separable nature of the potential. (c,e) Tunneling dynamics for a

depth of 71(3) kHz and 142(6) kHz, respectively, and a 808 nm spacing. (d) Mean

of the oscillation data points as a function of the tweezer depth. The mean gives

an indication of the degree to which the tunneling is off-resonant due to the bias

fluctuations. The solid-line green line is the model discussed in the text, and we find

decent agreement. At sufficiently low depth, the mean of the data approaches the

ideal value of 0.5 but corrected for loss, which is 0.48. The inset shows the fitted

amplitude, which is influenced by both the preparation and this stability of the bias,

and it shows a similar trend to the mean data. (f) Number of oscillations observed

in the tunneling dynamics, which is computed to be 2J · τ compared with the the-

oretical model from the text. We find not amazing model agreement with respect

to the dephasing, particularly at small depths; this may indicate other dephasing

mechanisms become dominant. Because we took much of the oscillation data on a

similar time scale, the error in the fitted τ for the slow J data goes up to 30%, while

for the faster J data it is around 10%. I omitted them from the figure for this reason.

The inset shows the just the fitted τ . For both (d,f), I have circled the data points

that correspond to the oscillation scans (c,e) with a solid and dashed line, respectively.122
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4.12 Comparing fixed spacing and fixed depth data. We show the variation of the mean

of the data from the data in Figure 4.11a plotted against the measured tunneling

(green), as well as the Figure 4.11d plotted against the measured tunneling as op-

posed to the depth (black). Therefore, the green (black) data corresponds to fixed

depth and varied spacing (fixed spacing and varied depth) as a function of measured

2J. Though there is scatter, the disparity between the two plots, particularly the

faster drop off in the varied depth data, corroborates the hypothesis that both the

depth and the tunneling inform the mean of the data. Furthermore, we compare

the green data to the model (solid green line) discussed in the text, where here the

depth is fixed and the fractional fluctuations are, as above, 0.17%. We find decent

agreement. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

4.13 Large-spacing, shallow trap tunneling. We have explored a large range of double-

well potentials, and, as expected given the model, we observe that the damping

drastically improves as we go to very shallow depths, even though the tunneling rate

has been reduced significantly. The fit gives a τ = 110(20) ms, while from the model

in the text we would expect a damping time of 125 ms using the measured 2J and

depth of 20 kHz. The fitted amplitude, however, is 0.75(5) while we would expect

from the model 0.99. This points to other mechanisms limiting the contrast as well,

which are discussed in the text. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126



xxxix

4.14 Single and two-particle tunneling. (a) Experimental overview. While the tweezers

are 23(1) MHz deep, the atom is imaged, cooled and optically pumped to |↑〉. For

tunneling experiments, the tweezers are swept together such that the two gaussian

functions are defined with an offset of ≈ 800 nm (resulting in double-well minima

spaced by ≈ 600 nm), and the total trap intensity is dropped by a large factor,

resulting in a single-well depth of either 96 kHz or 60 kHz. (b) Resonant tunneling

oscillations at 2J for a 808 nm gaussian function spacing and a 96 kHz depth. Blue

circles (red triangles) are the expectation value P
1(2)
L for finding an atom in the left

well given an initial single atom in the left (right) well. The gray shaded region in-

dicates the contribution from atom loss Ploss. (c) Same as [b] except with a 805 nm

gaussian function spacing and a depth of 60 kHz. (d) Idealized two-particle tunneling

dynamics. Expectation for P11(t) for dynamics initiated at t = 0 and in the symmet-

ric spatial state |S〉, the distinguishable states |ψ±〉, and the anti-symmetric state

|A〉. The dashed green lines mark the locations of tHOM. (e) Measured two-particle

dynamics during the same experimental sequence as [b]. Likelihood to measure

exactly one atom in each well (P11) for the initial condition in which an atom is pre-

pared in each well (black squares). Distinguishable expectation Pdist as determined

from the single-particle data in [b] (purple circles). The gray shaded region above

the dashed black line indicates the expected reduction from atom loss. (f) Same

as [e] except here we realize a larger value of J and smaller value of U (see text)

using the double-well parameters of [c]. tHOM for the experimental data is affected

by a phase shift due to a small amount of tunneling before the nominal final trap is

reached; this effect is larger for faster tunneling. In all plots, the shaded regions are

the 95% confidence interval for a sinusoidal fit. The error bars are the standard error

in the measurement; each black data point is the mean of ≈ 140 measurements, and

each red or blue data point is the mean of ≈ 100 measurements. . . . . . . . . . . . 129
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4.15 Two-to-one events during imaging. P11 is defined by the case in which both images

indicate one atom in each well. We can study the two-to-one events we observe and

confirm that they are a signature of two atoms on a single well, by looking at the

anti-correlated nature of these events with respect to P11(t). As shown (note, this is

the data from Figure 4.14e), we find that in our experiments we see an increase in

two-to-one events (green) when P11(t) (black) is minimal, i.e. when the likelihood of

finding two atoms on the same tweezer is maximal. Using the calibrated single atom

loss, we conclude from these data that 29(4)% of the time a two-to-one event occurs

when the data is analyzed at tHOM (minimum of P11) and a consistent value of 22(5)%

when the data is analyzed at the maximum of P11. We also can directly measure two-

to-one events by carrying out a separate experiment in which we combine two traps

each with a single atom to deterministically start with two atoms in a single trap. In

this experiment we find 26(2)% of the time a two-to-one event occurs. While these

findings are in contrast to many optical lattice experiments in which pure parity

imaging is observed [11, 2], other optical tweezers experiments have observed similar

phenomena [12]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132
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4.16 The HOM effect observed by varying atom distinguishability. In all plots the black

squares are P11(tHOM)=PHOM, the purple circles are the expectation for distinguish-

able particles calculated directly from the single-atom tunneling (Pdist(tHOM)), and

the dashed black line marks (1−Ploss)
2/2. (a) Before tunneling we apply a microwave

drive that couples |↑〉 and |↓〉 for one of the atoms in a two-particle experiment. In

the trap where J/2π = 348 Hz the tunneling time is fixed at t = 0.99 ms (second

realization of tHOM). (b) Before tunneling we apply a global coherent drive of varied

pulse area to couple |↑〉 and |↓〉 and then allow for decoherence. In the trap where

J/2π = 262 Hz the tunneling time is fixed at t = 0.45 ms. In (a) and (b) the solid

line and shaded band are sinusoidal fits and the associated 95% confidence interval.

(c) HOM dip dependence on cooling. We vary the detuning (δCool) of the cooling

beams of motion along the z-axis. In the trap where J = 262 Hz the tunneling time

is fixed at t = 0.45 ms. The two shaded regions correspond to frequency ranges of

efficient (1st sideband) and less efficient (2nd sideband) cooling. For all plots, each

black data point is the average of ≈ 360 measurements, and each set of measure-

ments corresponding to a purple point is the average of ≈ 240 measurements. All

error bars are the standard error in the measurement. . . . . . . . . . . . . . . . . . 136



xlii

5.1 Forms of spin-exchange. (a) Picture from Ref. [13]. Electrons trapped in double

quantum-dots exhibit a tunable spin-spin coupling. The spin-1/2 electrons exhibit

a strong-Coulomb repulsion that, in conjunction with their fermionic statistics, cre-

ates an exchange interaction. This platform has been considered theoretically as a

strong candidate for a universal quantum computer [14]. (b) Picture from Ref. [15].

Neutral atoms trapped in an optical lattice can exhibit a nearest-neighbor exchange

interaction that is contingent on virtual wave-function overlap. Here strong on-site

interactions lead to a second-order effect where anti-aligned spins on neighboring

sites can coherently swap sites, which can be formally cast as a Heisenberg exchange

interaction. Here too the underlying physics is dependent on strong interactions and

the quantum statistics of the particles. (c) Picture from Ref. [16]. When two neu-

tral atoms are prepared in opposing spin-states and in different motional states, the

interactions realize a first-order exchange interaction. The spatial symmetry of the

two-particle wave functions depends on the spin-states, which in turn causes a split-

ting between the triplet and singlet two-particle spin states. This splitting causes

dynamics at a multiple of the contact interaction energy. This chapter is concerned

with this kind of exchange interaction. . . . . . . . . . . . . . . . . . . . . . . . . . 143
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5.2 Initial two-particle state from which exchange occurs. (a) Through a sequence of

ground-state cooling, single-spin addressing, tweezer transport, and biased tunnel-

ing we are able to prepare a single spin in the first motional excited state of the y-axis

of motion, and spin-down particle in the 3D-ground state, all in the same optical

tweezer. (b) In this configuration we expect spin-exchange dynamics between the

atoms occupying different motional states. Enforced by the quantum-statistics, this

arises due to the difference in the contact interaction energy for the spatially sym-

metric (ψT (y1, y2)) and anti-symmetric (ψS(y1, y2)) wave functions associated with

the states |+〉y and |−〉y, respectively. The anti-symmetric wave-function ψS(y1, y2)

is non-interacting since the particles (defined to be at y1 and y2 along one-dimension,

in units of the oscillator length r0) are never found in the same place (red-dashed

line in bottom wave-function plot, which corresponds to the spatial wave-function

for the spin singlet). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145

5.3 Adiabatic passage through the ground-excited tunneling resonance. In order to con-

sistently prepare the configuration for exchange, |ψin〉, we use adiabatic passage.

The ground-state of the left well is adiabatically swept across the tunneling reso-

nance with the excited state, shown in the figure with actual data from a typical

bias scan. This procedure relaxes constraints on the absolute bias stability. Ex-

perimentally, the ARP occurs in a trap spacing of 854 nm and 91(4) kHz, with a

ramp range of 4.4 kHz in a time of 12 ms symmetrically about the position of the

resonance (which is calibrated daily). . . . . . . . . . . . . . . . . . . . . . . . . . . . 149
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5.4 Experimental data of bias scans and ARPs across the excited-ground tunneling res-

onance. For all plots, blue (red) corresponds to data in which the atomic origin well

is the left (right) well; the black data is P11, which is slightly inconsistent with the

y-axis labels. (a,b) For a fixed tunneling time of 1.6 ms, we scan the bias across the

ground-excited tunneling resonance, which is 9.0(1.5) kHz from the ground-ground

resonance. To emphasize the asymmetry of the resonance, we plot both P iL (a) and

P iR (b), indicating the presence (absence) of population transfer from the left-well

(right-well). The statistics for these data is fairly low (25 single particle runs per

well), and causes some scatter. (c,d) We show show ARP data using the parameters

indicated in Figure 5.3. Here we also plot both P iL (c) and P iR (d), showing the

same asymmetry in the tunneling. These data are used to extract the ARP fidelities

quoted in the text. In the ARP data, we observe a small amount of transfer from

the right well to the left well, which we observe increases when we deliberately com-

promise our radial cooling. This is consistent with an increase in excited fraction in

the right well tunneling to the left well. For optimal cooling, this on average is about

3%, which is consistent with the ground-state temperature extract from spectroscopy.151
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5.5 Sideband spectroscopy after ground-excited tunneling. (a,b) We perform sideband

spectroscopy after allowing for 1.6 ms of tunneling, correspond to a near full transfer

of the left-well ground-state population to the right tweezer excited-state. We apply

push-out light after applying radial Raman beams (top plus EO). As with the analo-

gous data from the previous chapter, the y-axis should be interpreted as the product

of the spin-flip probability and the transfer probability (PL in (a) and PR in (b)) to

the indicated well.(c,d) We apply sideband-spectroscopy after performing the ARPs

in both directions with a 15 ms delay in between. As expected, the left-well popula-

tion (blue) that ends up back in the left-well implies a large ground-state fraction.

The fraction (∼ 10%) with which right-to-left tunneling occurs is anomalously higher

than indicated in other data we have, which suggests that perhaps for this data the

radial cooling was worse. Note for these data we do not spin-flip the right atom or

rotate the quantization axis to along z, but the light-shift beam does come on in

order to retain as much of the experiment as possible in performing the thermometry.153

5.6 Experimental protocol for spin-exchange dynamics. We perform the illustrated se-

quence in order to observe spin-exchange dynamics. Panel (d) is where exchange

occurs, and we vary the time in this configuration by varying the time between the

end of the first ARP and the beginning of the second ARP. . . . . . . . . . . . . . . 154
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5.7 Observation of spin-exchange dynamics. (a) After applying the protocol of Fig-

ure 5.6, we analyze the data according to the rubric indicated, keeping only those

two-atom experiments in which we end up with a single atom after the resonant

push-out (this is the post-selection routine discussed in the text). The location of

the atom in the second image indicates the final spin-configuration prior to the push-

out. (b) According to the coloring in (a), we plot the probabilities to measure each of

the associated outcomes. We observe anti-correlated oscillations of equal amplitude,

at a frequency consistent with twice the onsite interactions Ueg. (c) We observe

the variation of the exchange frequency with the tweezer depth: as expected, the

interaction energy increases with the two-particle density. The center dashed line

corresponds to a no-free-parameter theory line from 3D calculations of the potential

by Michael Wall and the experimental characterizations of the double-well parame-

ters. The blue swath comes from our uncertainty in the bias, because this influences

the depth of the tweezer in which exchange occurs, as well as the tweezer depth. . . 156

5.8 Single particle data from exchange dynamics. We show the single particle data

from data displayed in Figure 5.7b. We do not observe the same oscillations in the

spin probabilities for either the left (blue) or right (left) origin well: the left well

is primarily spin-up, while the right well is primarily spin-down (in F=1). We use

these data to calibrate the spin-preparation for the two-particle experiments. . . . . 157

5.9 Temperature effects on spin-exchange. Here we show calculations indicating the

expected dynamics in the presence of a thermal distribution of varying temperature,

indicated by the legend on the right. We show just the probability to measure the

state | ↓〉L| ↑〉R, which corresponds to the purple data in Figure 5.7. The effect of

this systematic, frequency beating, does not correlate well with what we see in the

experiment. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160
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5.10 Simulation of exchange dynamics including the ARP preparation and detection pro-

tocol. We plot the expected measurement probabilities for the states in the Hilbert

space, indicated on the right, at the end of the experimental protocol indicated in

Figure 5.6. The dynamics are simulated by numerically evolving the Schrodinger

equation for the Hamiltonian in Eq. 5.19, including the bias ramps from both of

the ARPs. The ARP parameters are indicated in the text and Figure 5.3. For

the simulation, we use the parameters Ueg/(2π) = 50 Hz, δω/(2π) = 22 Hz, and

δg/(2π) = 50 Hz; the x-axis is the time between the ARPs, as in the experimental

data of Figure 5.7b. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163

5.11 Measuring entanglement: Bloch-sphere picture and experimental tools. (a) Bloch

sphere in the effective spin-1/2 Hilbert space of | ↑〉L| ↓〉R and | ↓〉L| ↑〉R. By mea-

suring the coherence between these states in a two-particle Ramsey experiment, it

is possible to detect the presence of entanglement. The initial two-particle prepa-

ration (prior to the ARPs and exchange) yields a state along positive z. After the

first ARP, entangling exchange, and then the detection ARP, we ideally have a state

pointing along the Bloch-sphere y-axis. The parity measurements discussed in this

section are sensitive to states pointing along x, hence necessitating rotating the state

off the y axis. (b) We rotate the state in the equatorial plane of the Bloch-sphere by

applying a magnetic field gradient, which changes the energy splitting between the

spin-states in each tweezer by an amount δ. This relative difference in the splitting

leads to rotation of the two-particle state in the Bloch-sphere equatorial plane. . . . 165

5.12 Experimental protocol for verifying the two-particle entanglement. The read-out

stage of panel (f) corresponds to the push-out spin-sensitive detection. . . . . . . . . 171
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5.13 Entanglement verification data. (a) Applying the protocol outlined in the text and

Figure 5.12, we observe the displayed parity oscillations. From the detected parity,

we illustrate the implied direction of the Bloch vector (for the coherent part of the

density matrix) prior to applying the π/2 analysis pulse. The horizontal lines and

gray region correspond to the bounds on the parity below which the density matrix

could be separable (see Table 5.2). The parity oscillations we observe significantly

exceed these bounds. (b) We show the frequency of the observed parity oscillations

as a function of the gradient applied. The x-axis indicates the size of the gradient

along z, which is the coil axis of symmetry but also transverse to the displacement

of the optical tweezers. The solid line corresponds to a fit from the magnetic field

model discussed in the text, Eq. 5.30. . . . . . . . . . . . . . . . . . . . . . . . . . . 173

5.14 Parity dependence on exchange dynamics. Here we vary the exchange time prior to

the parity detection. We set the gradient time such that the parity is peaked when

we create the |ψ+〉 via the exchange dynamics prior. We then vary the exchange

time to observe its influence on the measured parity. We can compare the parity

to spin-exchange oscillation data, which indicates near the expected π/2 phase shift

in the oscillations. When the spin-exchange dynamics are in a peak or a trough,

corresponding to full exchange or no exchange, the resulting state is unentangled.

Conversely, where the exchange dynamics are linear, the state is entangled and we

see maximizing/minimizing of the parity. The dashed orange (blue) line indicate an

example time where the entangling (unentangling) behavior is manifest in both data

sets. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 176
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6.1 Deterministic loading of a square array using blue-detuned light on the D1 line [17].

(a) We create a square array of optical tweezer via the AOMs in our optical rail. We

apply blue-detuned loading in conjunction with relevant depumping beams during

the MOT loading stage of the experiment. (b) We measure the single atom load

probability as a function of the detuning of the 795 nm light on the D1 line from the

tweezer-light-shifted trap. The blue swath is the range over which we find consistent

optimal loading, and the green line is the location where the detuning equals the

tweezer trap depth. (c) Parking the D1 laser in the blue swath, we vary the MOT

load time and observe the single atom load fidelity. We observe saturation in the

loading probability on short time-scales. In (a,b), the blue triangles are the top-left

tweezer; the red diamonds are the top-right tweezer; orange squares are the bottom-

left tweezer; the purple circles are the bottom-right tweezer. The black error bar is

an example of the typical error bar in each measurement. . . . . . . . . . . . . . . . 178

6.2 Hong-Ou-Mandel to many-particle interference. (a) Realization of the HOM effect

with two atoms in a double well. By preparing indistinguishable bosons and inter-

fering them in a tunnel-coupled double well, the mode-entangled state of
1
√

2
(|2, 0〉+

|0, 2〉) is created after allowing tunneling. (b) Extension to many particles for a pair

of copies (1 and 2) of a Bose-Hubbard chain. After applying tunneling between the

copies, the odd or even particle number within the copies encodes the many-body

purity of the quantum states as well as the mode entanglement contained. (c) Using

the setup in (b), comparison of the bipartite entanglement entropy S2 as a function

system size for a quench (green) versus the ground-state (black) in an interacting

Bose-Hubbard chain near the phase transition. The dashed lines are a linear (log-

arithmic) fit for quenched (ground state) calculations, indicating the presence of

“volume” and “area” law-like physics in finite-sized systems. . . . . . . . . . . . . . . 182
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A.1 (a) Bloch sphere used to describe the single-atom density matrices. (b) Two tables:

The top one summarizes the connection between Cartesian coordinates of the Bloch

vector and populations/coherences in the |L〉,|R〉 basis, while the bottom one con-

nects the Cartesian coordinates to experimentally measured phase and contrast. (c)

Schematic of the single-particle dynamics and the meaning of φ1(2) and A1(2). . . . . 197

A.2 Bounds on Pdist(tHOM) (a,b) and APdist
(c,d): The two left panels (a,c) are for

experiments with U/J = 0.44(4), while the two right panels (b,d) are for experiments

with U/J = 0.22(2). In all plots, the figure in the main text to which the presented

data corresponds is given in the plot label. In panels a and b, the black curve is

P(x = 0), which is a lower bound on the HOM dip for distinguishable particles

assuming no initial coherences along the x-direction of the Bloch sphere. The dark

shaded uncertainty region of the curve is obtained by propagating uncertainties in

the experimentally measured single-particle amplitudes (A1,A2) and phases (φ1,φ2)

through Eq. (A.19). The light shaded region below the black curve is therefore

classically forbidden, i.e. inaccessible to distinguishable particles. The red dashed

curve is P(x0), which is the evil and unlikely case scenario that could, in principle,

be saturated by distinguishable particles (the red shaded region is obtained in the

same way). The measured minimum of the HOM dip (Pmin
HOM, blue point) sits in the

classically forbidden region. Panels c and d are similar to the top panels, except now

we plot the contrast bound (A) and the blue points are measured values of AP11 .

The numbers used to create this plot are tabulated in Table A.1. . . . . . . . . . . . 205



li

A.3 Expected HOM oscillation behavior. Using the calculated values from Table A.2, we

put lines at the expected HOM dip value including just the effect of axial temper-

ature (brown), and the effect of both the temperature and finite tunneling contrast

(orange). The density matrix impurity due to temperature gives rise to probability

that the atoms are distinguishable in their motional degree of freedom, while the

single-particle oscillation contrasts effects the coherence of the two-particle beam

splitter. We find decent agreement for these data of Fig. 4.14c,f as well as that of

Fig. 4.14b,e (not shown, but tabulated in Table A.2). . . . . . . . . . . . . . . . . . . 210



Chapter 1

Introduction

1.1 Historical perspective

For nearly a century, the pursuit of ultralow temperatures in physical systems has helped

reveal a variety of intriguing quantum mechanical phenomena. In the early 1900s, novel refrig-

eration techniques ushered in the single Kelvin regime, and along with it superfluid helium and

superconductivity, both of which were understood in the context of quantum mechanics decades

later [18, 19, 20, 21]. In the 1980s, similar temperatures also revealed the integer [22, 23, 24, 25]

and fractional quantum hall effects [26], along with other exotic phenomena such as heavy fermion

physics [27], which demand a more detailed picture of the single-particle physics [23] and underlying

many-body entanglement [28]. Typically, the study of such phenomena entails putting a sample of

interest in a refrigerator, and observing physics with energy scales commensurate with the thermal-

ization temperatures. Macroscopic observables, such as conductivity and specific heat, provide a

window into complex quantum mechanical many-body phenomena ascribed to the quantum states

created.

Bose-Einstein Condensation and degenerate Fermi gases of neutral atoms established a new

way to study low-entropy quantum systems, which rely on the ability to isolate a sample with excep-

tional vacuum and slowly cool the system in the absence of significant heating mechanisms [29, 30].

Due to the unique ability to tune the single-particle physics and the two-particle interactions [31, 32],

ultracold atoms set the stage for studying many-body phenomena with a novel set of experimental

control knobs. This toolset allowed ground-breaking observations of physical phenomena such as
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the superfluid-Mott insulator transition and BEC-BCS crossover physics [32, 33]. However, while

in the field of ultracold atoms and condensed matters physics tools were developed to more closely

examine local properties, such as the density of states or dispersion relations [34, 35], the ability

to resolve single particles was not yet developed. Recently realized in the past five years, quantum

gas microscopy [11] of ultracold atoms provides single-particle resolution of interacting quantum-

systems, yielding a unique perspective not possible in a traditional condensed-matter setting. So

far, these microscopic studies have revealed local number bunching across the superfluid to Mott

insulator quantum phase transition in the Bose-Hubbard model [36, 37], anti-ferromagnetic or-

dering in a quantum simulation [38], two-point correlation functions after a quantum quench in

both small [39] and large systems [40], and the dynamics of interacting spin chains [41, 42]. The

cooling mechanism in these experiments, historically, has been evaporative cooling [29], which is a

slow form of cooling whereby iteratively the highest energy atoms in a system are ejected and the

remaining sample thermalizes. Though indeed a high-fidelity mechanism for reaching low tempera-

tures, many such systems retain small residual entropies [36, 37], particular after loading the atoms

into the trapping potential of scientific interest [43, 44]. This uncontrolled entropy can preclude

the measurement of quantum many-body phenomena, such as large-scale anti-ferromagnetism, due

to the excessively small energy scales at play.

In a parallel frontier of atomic physics, tremendous experimental results have come out of

the trapped ion community. Here, individual ions are laser cooled to their motional ground state,

which is the starting point for high-fidelity quantum gates [45, 46], tests of entanglement [47], and

quantum simulation of physical models of interacting spin systems [48, 49]. A confluence of large in-

teraction energies and fast cycle times make this platform ideal to studying interacting many-body

systems, with length-scales amenable to single-particle resolution. The large spin interaction ener-

gies reduce constraints on temperature, which are easily satisfied via optical pumping techniques.

The experimental speed, afforded by the Raman sideband-cooling [50], results in expectation values

and state tomography on realistic timescales despite an exponentially growing Hilbert space. And

although the particle number in traditional ion traps has been limited, in actuality, most neutral
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atom quantum dynamics experiments with analogous capabilities have been restricted to similar

systems sizes [38, 40, 41, 39]. Even though a BEC provides typically 105 atoms, only a handful

participate in a typical quantum gas microscope experiment studying quantum dynamics on the

single-particle level: an experimental cycle time of 30 s with neutral atoms achieves the same studies

as a 10 ms ion-based experiment, representing a serious problem when you have to run your exper-

iment 1000 times to acquire statistics. And to make matters worse, the small interaction energy

scales of neutral atoms (10−100 Hz) compared to ions (10−100 kHz), places stringent requirements

on the temperatures for observing strongly correlated many-body ground-states [43, 44].

These comparisons highlight the advantages of the ion-based platform, which, from the cool-

ing to the cycle time to the accessible many-body physics, are exclusively derived from the strong

Coulomb interaction associated with the ion’s charge. The comparative weakness of the neutral

atom interactions, however, also allows for complementary physics, namely, wave-function overlap

and coherent particle mobility via quantum tunneling. These phenomena produce physics influ-

enced by particle indistinguishability and quantum statistics. Quantum statistics are integral to

many condensed matter models, such as the Fermi and Bose-Hubbard model, and underlie funda-

mental behaviors like superconductivity. Therefore, in spite of the many advantages of the trapped

ion approach, neutral atoms permit a whole class of studies precluded by the strong interactions

between ions.

1.2 A new perspective on neutral atom control

In my thesis work we wanted to consider neutral atom control from a new perspective.

We designed an experiment – rooted in ground-state laser-cooling of neutral atoms in optical

tweezers, summarized in Chapter 2 and 3 – in which we could first focus on Raman-sideband

cooling an isolated neutral atom to its three-dimensional ground state. Ground-state laser cooling

of neutral atoms has been studied for many decades, fueled by the still unrealized goal of achieving

quantum degeneracy of atomic gases via Raman-sideband cooling [51, 52, 53, 54]. While ingenious

methods combining atom-atom collisions and laser-cooling have reached degeneracy [55], the final
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phase-space density achieved by purely laser cooling a three-dimensional gas has been limited by

rescattering effects, precluding the onset of the BEC transition [56, 57]. Our viewpoint was that

by creating a lower-dimensional sample (one or two dimensional array) of individually trapped and

transportable neutral atoms, laser cooling could become a formative tool for quantum gases as it has

been for trapped ions. Previous work in a variety of physical systems – atoms in cavities or lattices

– have demonstrated one or two-dimensional ground state cooling of single neutral atoms in lower-

dimensional systems [58, 59, 60]. But three-dimensional cooling is key to the full control required to

see effects of quantum statistics [61]. In our experiments, we focus on initializing a perfectly isolated

set of sideband-cooled atoms in their three-dimensional ground-state. Importantly, combining this

with the ability to move and tailor the positions of the atoms enables the assembly of a quantum

gas to microscopic specifications [62], where the motion of the atoms is completely controlled and

highly tunable spatial distributions of the particles are accessible. In the experiments that form

the core of this thesis, we bring these ideas to fruition at the few-particle level by using optical

tweezers and three-dimensional ground state cooling via Raman-sideband cooling.

To accomplish our goals, we created, to our knowledge, the tightest optical tweezer for single

atom-trapping: it defines a mode-volume compatible with single-atom trapping [3, 5], and we

aimed to explore whether the tight confinement was amenable to Raman- sideband cooling [50].

Today, the tweezers allow us isolate, detect, and place a single neutral atom in its motional ground-

state in less than 200 ms. Furthermore, we have integrated the ability to make multiple tweezers,

allowing parallel ground-state cooling of multiple independent atoms. We have therefore created

a platform for rapid preparation of arrays of atoms in low-entropy, pure quantum-states. The

work presented in this thesis describes these capabilities and the resulting new experiments we

performed (Figure 1.1), and represents a starting point for a variety of explorations that harness

these advances. I will discuss below particular near-term and long-term examples that are enabled

by our work.

Already, optical tweezers have been used to realize Rydberg quantum-logic gates and a va-

riety of protocols coupling atoms and photons. In such applications the thermal motion of the
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Figure 1.1: New experiments enabled by the optical-tweezer platform. (a) We create an atomic
beam splitter to observe two-particle interference, thereby revealing for the first time the Hong-
Ou-Mandel effect [1] with independently prepared atoms. (b) Starting with an an atom in each of
two spatially separated optical tweezers, we tailor the microscopic physics to produce entangling
spin-exchange collisions. Upon producing entanglement, we separate the particles and verify that
the entanglement produced locally persists to create non-local quantum correlations between the
atomic spins. This toolbox is crucial to using spin-exchange-based gates with neutral atoms for
a quantum-computing architecture [2]. The subscripts of the states represent the atom locations
over the course of the operation.

atoms has caused deleterious effects, such as dynamic light shifts, mitigated atom-photon coupling,

and dephasing of high fidelity Rydberg gates [63, 64, 65, 66], all of which stand to benefit from the

cooling techniques we have developed. Neutral atoms, as opposed to ions, also offer a promising av-

enue for interfacing atoms near material surfaces and nano-photonic devices, and such applications

often require control of the atomic motion for coupling to wavelength-scale optical modes [67, 68].

Incorporating full three-dimensional motional control not only strengthens current tweezer appli-

cations [69, 70, 71], but also expands their use to experiments that are currently considered only

in the context of evaporatively cooled gases. For example, one could combine two traps and real-

ize significant wavefunction overlap for Feshbach molecule association, for the purpose of creating




































































































































































































































































































































































































































