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Abstract 

This paper quantifies the effect that local daily average temperatures have on the daily 

average locational marginal price (LMP) in California’s wholesale electricity market. The LMP 

data is obtained from the California Independent System Operator (CAISO) for a period from 

October 2020 to October 2023. Weather station data is obtained from the National Oceanic and 

Atmospheric Administration (NOAA) for the same period. The LMP nodes are assigned weather 

station data using the Haversine Distance formula. The temperature effect is then estimated using 

a linear, quadratic, and binned two-way fixed effects regression controlling for both node and 

time fixed effects. The linear model indicates that a one degree increase in the local daily average 

temperature results in an increase of $0.85/MWh in the daily average locational marginal price. 

The quadratic model shows a decreasing marginal effect of temperature on price until 

approximately 68 degrees Fahrenheit, after which the marginal effect increases. The binned 

regression model was the most flexible showing that temperatures below 45 degrees Fahrenheit 

and above 80 degrees Fahrenheit had significantly greater locational marginal prices compared to 

when temperatures are between 65- and 75-degrees Fahrenheit. These results will have 

implications on the decision making within both the public and private sectors and influence the 

debate between nodal and zonal market structures. 
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Introduction 

With global temperatures rising, largely due to human activity, it’s important to 

understand the effects it will have on our lives. These rising temperatures will influence nearly 

every aspect of electricity from the method used to generate it, to how it flows through the grids 

and the way in which its consumed. When it comes the generation of electricity, for thermal 

power plants, when there is a rise in ambient air temperature, it can cause generation to be less 

efficient. This same degradation in efficiency can be seen within solar panels as well. Increases 

in temperature will also impact demand seen by the grid. This is because when it is hotter 

outside, more people are using air conditioning units to cool their homes causing the grid to see a 

higher level of load. With temperature also causing inefficiencies in power generation, there is a 

mismatch between supply and demand causing power outages. This is exactly what has been 

observed in the real world. These can lead to price effects that are seen by the consumer down 

the line.  

Quantifying the effect local temperature has on the whole sale electricity market carries 

value in both the public and private sectors. Within the private sector, it’ll allow for ISOs, and 

the smaller ancillary markets they serve, to better inform their policy making decisions. For the 

public sector it can inform their decision making in the short and long-term. It will also impact 

the system used for managing electricity markets around the world. Currently there are two 

systems used around the world for managing wholesale electricity markets, zonal and nodal 

pricing. The California ISO, and many other parts of the United States, utilize nodal pricing to 

manage their wholesale electricity markets while the entirety of the European Union and many of 

its neighboring countries, like the UK and Norway, utilize a zonal pricing structure to manage 

their markets.  

This paper aims to quantify the effect of local daily average temperatures on the daily 

average locational marginal price (LMP) of electricity within the wholesale market of California. 

This is achieved through a linear, quadratic, and binned two-way fixed effects regression model. 

Both nodal and time fixed effects are included as both are believed to have effects on the LMP 

that are not captured within the regression equation. The model is estimated using weather 

station data from the National Oceanic and Atmospheric Administration (NOAA) and LMP data 

from the California Independent System Operator (CAISO). The nodes from CAISO are then 

assigned weather station data using the haversine distance equation. Due to there being 
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significantly fewer stations than nodes, there are multiple nodes assigned the same weather 

station data. The shortest distance between a node and station is 0.17 kilometers and the furthest 

distance is 116.8 kilometers.  

Prior literature has not quantified the exact effect of local temperatures on local electricity 

prices. Rather, they have sought to understand the effect of climate change on electricity 

expenditures (Véliza et al., 2017) or the impact of temperature forecasts on the day-ahead 

electricity market in Italy (Bigerna, 2018). This study is most related to the Bigerna (2018) study, 

however, where it differs is that it quantifies the effect of local temperatures on local electricity 

prices in a nodal market structure rather than the zonal market structure used in Italy.  

 The study finds that there is an economically and statistically significant quadratic 

relationship between local daily average temperatures and daily average locational marginal 

prices. When the local daily average temperature is at 80 degrees Fahrenheit, a one degree 

increase in temperature results in an increase of $1.34/MWh in daily average locational marginal 

price. This effect increases when local daily average temperature is 100 degrees Fahrenheit 

where a one degree increase in temperature results in an increase of $3.41/MWh in the daily 

average locational marginal price. The binned regression model additionally finds that when 

local daily average temperatures are lower than 45 degrees Fahrenheit, the daily average 

locational marginal price is $45.32/MWh greater than when temperatures are between 65- and 

70-degrees Fahrenheit. When temperatures are above 80 degrees Fahrenheit, daily average 

locational marginal prices are $21.54/MWh greater than when temperatures are between 65- and 

70-degrees Fahrenheit.  

 

Electricity and Temperature Pricing 

As previously mentioned, nodal market structures are predominantly utilized in many 

parts of the United States, including California. It works by placing thousands of nodes 

throughout a managed region. The wholesale electricity prices, the locational marginal price, 

seen at each of these nodes then varies depending on factors like the system wide marginal cost 

of energy, the marginal cost of congestion, and the marginal cost of losses. This means that the 

locational marginal price can vary across different regions of a managed area. For example, the 

price seen in San Francisco will be different from prices seen in Los Angeles. The prices may 
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also vary between closer cities like San Francisco and San Jose. Zonal pricing on the other hand 

splits a managed area into different “zones” with the number of zones varying between country 

or region. For example, Italy is split into six different zones while Germany is split into 4. An 

overall electricity price is then set for each of these zones.  

Quantifying how temperature increases electricity prices may influence countries 

currently using a zonal pricing structure to make the switch to a nodal structure as it allows for 

the price of electricity to differ for different areas. Additionally, it can allow for the public sector 

to understand where infrastructure is needed most and make informed planning decisions for 

generation and transmission needs. Within in the private sector, it would allow for companies 

and other entities to make better informed decisions when planning in the short and long-terms. 

In the short-term, they will be able to make better operational decisions for when they should 

operate their equipment and at which facilities. In the long-term, it’ll allow for them to make 

informed investment decisions about where they should site new facilities to incur lower energy 

costs. The same applies for investments in generation facilities through which they may be able 

to capture greater profits through increased energy prices.  

Temperature affects nearly all aspects of electrical grids. It not only affects the power 

generation sources used, but also the way in which electricity is transmitted across the grid. This 

is due to how electrons behave. The speed at which they can travel is tied directly to temperature. 

When temperatures rise, there will be a greater resistance in the circuit causing electrons to move 

slower. The same effect is seen when temperatures are lower causing a lower resistance making 

it easier for the electrons to move through a circuit.  

Temperature will also affect how electricity is consumed. When temperatures are higher, 

more people are likely to be using air conditioning units to cool themselves down. When they are 

lower, people are more likely to be using their heating systems. This in turn will impact the other 

aspects of the grid mentioned. If temperatures are higher, it means more people will be using air 

conditioning systems which in turn leads to a greater load on the grid. This demand will lead to 

more power needing to be generated, which becomes less efficient with higher temperatures. 

This means more power needs to be transmitted through the grids, leading to greater congestion 

due to the impact temperature has on the resistance of transmission lines.   

These will all influence the locational marginal price of electricity. Currently there are 

regions in the United States that are managed by Independent System Operators (ISO). 
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California is one such a region. Their electricity market is set by the California Independent 

System Operator (CAISO). CAISO uses LMP as a way of pricing electricity in their managed 

wholesale markets. The reason temperature will influence these prices is due to the locational 

marginal price being made up of three components: the marginal energy cost (MEC), the 

marginal cost of congestion (MCC), and the marginal cost of loss (MCL). The MEC is first set 

by the ISO for the entire region. MCC and MCL both change depending on demand in the 

market. Higher temperatures will have some effect on all three aspects of the LMP: the MCE can 

be set higher if more costly generation methods need to be employed to meet the demand and 

offset the inefficacies; The MCC will be greater due to higher demand and the increased 

temperature lowering the efficiency of the transmission lines; Finally, the MCL will be higher 

due to greater losses from the lowered efficiency of transmission lines. 

 

Literature Review 

The research conducted in this paper relates to broader literature on the impacts of 

climate change and electricity markets, both on the demand and supply sides (Bigerna, 2018; Hill 

et al., 2021; Véliza et al., 2017). Much of the research done in this field has related to using 

models to project future demand and prices and understanding the impacts of climate change on 

interregional power systems. This literature has found that future temperature increases, and 

more frequent extreme weather events will have far reaching impacts on not only the demand 

and supply side of regional electricity markets but will also have an interregional impact. 

A related study by Véliza et al. (2017) sought to quantify and understand what the effects 

of climate change were on electricity expenditures in the state of Massachusetts. Like this study, 

they choose that state due to the independent system operators use of locational marginal prices 

within its market. They first found that the load duration curve indicates that warmer summer 

temperatures raise summer-time consumption by about 15% and winter-time consumption 

declines by about 6%. This is consistent with the results described by Auffhammer et al. (2017). 

Their statistical results additionally indicated that electricity prices increase non-linearly with 

consumption. They then created a model to predict the effect a 2-degree Celsius increase in 

global mean temperatures will have on the price of and consumption of electricity. They found 

that the average households’ annual expenditures on electricity will increase by about 12% and 

commercial customers will increase by 9%. These increases are largely caused by higher prices 
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for electricity. This paper will differ from Véliza et al. (2017) by quantifying the effect of local 

temperatures on local prices.  

The two most closely related papers to research conduct this one come from Hill et al. 

(2021) and Bigerna (2018). Hill et al. (2021) examines the impacts of long-term shifts in water 

availability and higher average temperatures on the both the supply and demand sides of the 

electricity market on the west coast of the US. It also examines how the interactions between the 

regions of California and the Pacific Northwest could be impacted. Unlike this study, their study 

is focused more on examining the impact hydroclimate changes will have on electricity markets 

in both regions and on their interregional interactions. To do this, they first simulated power 

system operations across the West Coast using the CAPOW model from Su et. al, 2020. To 

isolate any potential effects of climate change on the power system outcomes, they held 

generation capacity constant at the 2016 level and only consider changes to long-term demand 

caused by climate change. For the metrological and streamflow data, they collected observed air 

temperature and wind speed data for 17 weather stations in the Global Historical Climatological 

Network and collected solar irradiance data for six sites from the National Renewable Energy 

Laboratory’s National Solar Radiation Database. Simulated data for all three variables were then 

acquired for both a hindcast period from 1970 to 2000 and a forecast period from 2030 to 2060 

from a downscaled global climate model output that consisted of two representative 

concentration pathways (RCP) by ten global climate models (GCM). The simulated temperature 

and wind speed were bias corrected to match statistical properties of the observed weather station 

data over their observational period. A similar process was utilized for streamflow data. This 

resulted in 80 GCM-RCP-hydrologic model configurations. Due to the time it took to simulate a 

single year, they decided to select a subset of 11 model configurations. Prior to selection of the 

subset, they calculated daily adjusted demand in the Mid-Columbia and CAISO markets for their 

forecast period by subtracting any available hydropower, solar, and/or wind power generation 

from the simulated daily electricity demand. The two key performance metrics used to evaluate 

grid performance was reliability and wholesale electricity prices. Their study found that future 

excessive heat in California could exert a strong effect on prices and reliability in the Pacific 

Northwest. I extend their study by looking deeper at the local effects of temperature on the local 

wholesale electricity prices only in California.  



 7 

A study done by Bigerna (2018) relates much closer to this paper’s as it also provides 

empirical evidence for weather effects on the electricity markets in Italy. Similar to this paper, 

they conduct their analysis at a more granular level than previous studies by looking at the hourly 

effects of temperature on electricity price. Where the study in this paper differs is that they 

attempt to assess the impact of the temperature forecasts on the electricity day-ahead market 

prices rather than assessing the affect local daily average temperature has on local daily average 

locational marginal prices. Additionally, the nature of the Italian electricity market differs 

fundamentally from the California market. Italy uses a zonal pricing market splitting the country 

into six regions as opposed to the Californian nodal pricing market. The general model 

specification Bigerna utilizes is a simple supply equation that relates price as a function of 

quantity, a possible market structure, and temperature with an error term. They then create three, 

both parametric and non-parametric, specifications of the model to assess the impact temperature 

has on day-ahead electricity prices in the six regions of the Italian market. The first is a non-

parametric regression to compute a kernel estimator of the relation price-quantity and price. The 

second is a simple ARMA(p,q) used for each regions price. The third model is a VAR(p) model 

specified for the six regional prices with exogenous variables X. Bigerna also considers three 

different temperature forecasting behaviors in the electricity market: short-term memory; long-

term memory with perfect foresight; and long-term memory with a specific alert mechanism for 

extreme weather conditions. Bigerna utilized hourly temperature data from the Italian Military 

Airforce General Office for Meteorology collected at six airports located in the center of the six 

regions. They find that temperature does have a significant explanatory power for prices along 

with the traditional load and structural variables. They also find the marginal effect is on average 

in the order of one percentage point with it being higher for cooling-degree hours and lower for 

heating-degree hours. Additionally, they find the out of sample forecasting performance of their 

model to be satisfactory. 

 

Data 

The daily average weather data comes from the National Oceanic and Atmospheric 

Agency’s (NOAA) Global Surface Summary of the Day (GSOD) dataset. The data includes 

variables such as mean daily temperature, dew point, and precipitation among others. This 

information is collected at the weather station level across the United States. For the purposes of 
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this study, weather station data for the state of California will be used from October 2020 to 

October 2023. 

The daily average LMP data comes from the California Independent System Operator 

(CAISO) and covers a period from October 1, 2020 to October 31, 2023. This is due to the 

limitation of CAISO data only being available up to past three years. The original format of the 

data is hourly LMP for each node split into fifteen-minute intervals. That data is then collapsed 

into a daily average. This was mainly done as it became clear early on that using the fifteen-

minute interval data would’ve been too large to work with. For the purposes of this study, it will 

be sufficient to instead use daily average LMP. While there may be other interesting effects from 

using an hourly-level analysis, its likely hourly temperatures and prices are highly correlated and 

using a daily analysis captures the bulk of the story about the local temperature-price 

relationship. Additionally, the weather station data from NOAA comes in the form of daily data 

and acquiring hourly data would be challenging. A single observation in the data is a single node 

for one day with its average LMP in price per megawatt hour (MWh) and local day temperature 

at the node. There are 1,581 nodes included in the study. 

Since the purpose of this study is to quantify the effect that local daily average 

temperature has on daily average locational marginal price, weather station data from each of the 

NOAA stations must be assigned to each of the CAISO nodes. This will be done by using the 

haversine distance between the node and the weather station. The haversine, also known as the 

great circle, distance is a formula used to calculate the angular distance between two points on 

the surface of a sphere, in this case the Earth. The mathematical equation is shown below:   

 

𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 = 2𝑟 𝑎𝑟𝑐𝑠𝑖𝑛𝑒(√sin2 (
𝜑2 − 𝜑1

2
) + cos 𝜑1 ∙ cos 𝜑2 ∙ sin2 (

𝜔2 − 𝜔1

2
) 

 

Where 𝜑1,𝜑2 are the latitude of the node and the station in radian form and 𝜔1,𝜔2 are the 

longitude of the node and the station in radian form. Using the formula, the distance between the 

first node is calculated with each of the weather stations. The station with the shortest calculated 

distance is then assigned to that node. This process is then repeated for each of the nodes. Figure 

1 shows a map of California with the locations of LMP nodes plotted in blue and the locations of 

NOAA weather stations plotted in red.  
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Figure 1: Map of LMP nodes (Blue) and NOAA weather stations (Red) in California 

 

Since there are significantly more nodes than there are weather stations, it means that a single 

station’s data will be assigned to multiple nodes.  

 

Table 1 – Summary Statistics of Key Variables 

 Min Mean Max Std Dev. 

LMP 

($/MWh) 
-370.085 65.40495 916.2955 54.96334 

Temperature 

(Fahrenheit) 
8.4 62.10568 109.2 12.86393 

Distance 

(Kilometers)  
0.1709343 27.15102 116.8269 21.17728 

Dew Point 

(Fahrenheit) 
-9.3 44.06842 76.1 10.29159 

Precipitation 

(Inches) 
0 0.0389791 5.64 0.1983256 
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Table 1 shows the summary statistics for locational marginal price, temperature, node distance 

from NOAA station, dew point, and precipitation over the study’s three-year timespan. The 

average LMP seen across all nodes in the study was $65.40/MWh. The minimum price seen was 

-$370.09/MWh and the maximum price seen was $916.30/MWh. Both the minimum and 

maximum prices are unsurprising. When supply is high and demand is low, there is more 

electricity demand than load. The resulting negative prices is a market signal that electricity 

generation needs to be reduced to match load. The maximum price is also unsurprising as it 

represents other market shocks to the wholesale market that are not necessarily limited to 

California. According to Federal Reserve Economic Data (FRED), February 2021 saw a spike in 

the Henry Hub natural gas spot price due to Texas’ historical winter storm. Natural gas prices 

spiked again in the Summer of 2022. The average temperature over the three-year timespan was 

62.11 degrees Fahrenheit with a minimum of 8.4 degrees Fahrenheit and a maximum of 109.2 

degrees Fahrenheit. The average distance a node was located from a NOAA weather station was 

27.15 kilometers with a minimum distance of 0.17 kilometers and a maximum of 116.83 

kilometers. This maximum was expected as there are areas with only a single weather station as 

seen in Figure 1. The average dew point seen across the three years was 44.07 degrees 

Fahrenheit with a minimum of -9.3 degrees Fahrenheit and a maximum of 76.1 degrees 

Fahrenheit. The average precipitation across the three years was 0.039 inches with a minimum of 

0 inches and a maximum of 5.64 inches.  
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Figure 2 – Average LMP over Study Timespan 

Figure 2 shows the average LMP across all nodes in California over the course of the study. As 

discussed above, there were numerous spikes to the price due to different factors, including 

record high temperatures in the summer of 2023 and natural gas price spikes.  
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Figure 3 – Average Temperature over Study Timespan 

Figure 3 shows the average temperature across all nodes during the study’s three-year timespan. 

The figure shows what was generally expected, temperatures rising during the spring and 

summer months and falling during the fall and winter months. However, something that is 

especially interesting is the sudden jump in average temperature during the 2023 summer. This 

was due to California seeing extreme heat. According to the California Governor’s Office of 

Emergency Services, between July 1 and July 28, 2023, 117 highest max temperature records 

were tied, and 241 records were broken. This also coincides with Death Valley, California 

recording the sixth hottest measured temperature in world history on July 16, 2023.  

 

Empirical Methodology: 

 This study employs both a linear fixed effects model, equation (1), and a quadratic fixed 

effects model, equation (2). For both models, daily average locational marginal price is regressed 

on local daily average temperature with both year-by-month and node fixed effects. The 

quadratic model is estimated as it’s believed that the extremes in temperature on both ends will 

likely have a significant impact on the locational marginal price of electricity. 
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𝐿𝑀𝑃𝑖𝑡 = 𝛼 + 𝛽1𝑇𝑖𝑡 + 𝛾𝑖 + 𝛿𝑡 + 𝜀𝑖𝑡         (1) 

 

𝐿𝑀𝑃𝑖𝑡 = 𝛼 + 𝛽1𝑥𝑖𝑡 + 𝛽2𝑇𝑖𝑡
2 + 𝛾𝑖 + 𝛿𝑡 + 𝜀𝑖𝑡    (2) 

 

𝐿𝑀𝑃𝑖𝑡 is the locational marginal price on day t for node i, 𝑇𝑖𝑡 is the temperature on day t for node 

i, 𝛾𝑖  and  𝛿𝑡 are the nodal and year-by-month time fixed effects respectively, and finally 𝜀𝑖𝑡 is the 

error term. Equation (3) below represents the binned regression model.  

 

𝐿𝑀𝑃𝑖𝑡 = ∑ 𝜃𝑘𝐷𝑘𝑖𝑡𝑘 + 𝛾𝑖 + 𝛿𝑡 + 𝜀𝑖𝑡     (3) 

 

𝐷𝑘𝑖𝑡 is an indicator variable equaling 1 if 𝑇𝑖𝑡 is in the kth bin of temperatures. 𝜃𝑘 is the 

coefficient of interest for the kth bin of temperatures. While a quadratic regression may more 

accurately represent the data by accounting for the extremes in temperature on both ends, the 

data may not be a perfect parabola. The binned regression allows for the model to fit the data 

more flexibly than forcing it to take a perfect shape. Again, 𝛾𝑖  and  𝛿𝑡 represent the nodal and 

year-by-month time fixed effects. Standard errors for all three equations are clustered at the 

nodal level to account for serial correlation within nodes.  

The nodal and time-fixed effects allow for the model to account for any unobservable 

effects that cannot be directly included. Including nodal fixed effects into the model allow for the 

variation in node prices to be compared to only themselves rather than being compared to other 

nodes, allowing for a better quantification of the local effect of temperature on price. Nodes 

located in different areas may see different demand at different times. Take for example a node 

located in Los Angeles or San Francisco compared to a node located in Barstow. The demand 

seen in a major population center will be fundamentally different from the demand seen in a 

smaller town. Additionally, a node located in northern California near the border with Oregon 

will see different demand during different months than a node located in the Mojave Desert 

during the same times. Including the fixed effects allows for the nodes to essentially be 

compared on equal footing and account for those effects not included in the model. Time-fixed 

effects are included for similar reasons. It allows for the variations in price to be compared 

within each month. This is due to the fact there may be other variables affecting price in each 

month than just the temperatures seen during that month. Take for example February of 2021 
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where there was a significant increase in the LMP. During the same time, Texas experienced a 

historical winter storm that caused natural gas prices to increase significantly. The effects of 

those increased prices were not contained to just Texas, but also seen across the country. 

Additionally, since both prices and temperatures have been rising over time, due to factors like 

inflation and climate change, that rise between both may be falsely correlated. The inclusion of 

nodal and time fixed effects will allow for those fundamental differences to be accounted for. 

Since the focus of this study is to quantify the local effect of temperature on local prices and not 

on finding the difference in price effects by region or time, the fixed effects allow the study to 

reach its objective.  

 

Results 

 
Table 2 below displays results from equation (1) and (2) with clustering of standard errors 

at the nodal level.  

 

Table 2: Results of Linear and Quadratic Regressions on LMP 

  Locational 

Marginal Price 

($/MWh) 

Locational 

Marginal Price 

($/MWh) 

Locational 

Marginal Price 

($/MWh) 

Locational 

Marginal Price 

($/MWh) 

Locational 

Marginal Price 

($/MWh) 

Temperature 
 -0.068*** 

(0.0054152) 

0.8451365*** 

(0.0118044) 

-8.577463*** 

(0.2695006) 

-5.303363*** 

(0.1982965) 

-6.932126*** 

(0.2337574) 

Temperature 

Squared 

 

  
0.0656447*** 

(0.0020519) 

0.0462501*** 

(0.0015058) 

0.0516992*** 

(0.0017612) 

Average 

Temperature 

 
    

2.351879*** 

(0.0301102) 

Dew Point 

 

    
-0.4668581*** 

(0.0089399) 

Precipitation 

 

    

-5.2536*** 

(0.3977377) 

 

      

Node FEs  N Y N Y Y 

       

Time FEs  N Y N Y Y 
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R-Squared  0.0003 0.5461 0.0646 0.5580 0.5738 

       

Observations  1,753,484 1,753,484 1,753,484 1,753,484 1,753,484 

Notes: Columns 1 and 2 estimate equation (1). Columns 3 and 4 estimate equation (2). Column 5 estimates equation 

(2) with the addition of controls for daily average temperature across California, dew point, and precipitation. 

Standard errors in parenthesis are clustered at the nodal level. *p-value<0.1 **p-value<0.05 ***p-value<0.01 

 

Equation (1) is first estimated in column 1 without node and time fixed effects. The 

results indicate there is a negative relationship between temperature and price, showing that a 

one-degree Fahrenheit increase in local daily average temperature results in a decrease of 

$0.068/MWh in daily average locational marginal price. This goes against what intuition would 

say about the relationship between temperatures and price and what prior literature has found. 

The model has an r-squared value of 0.0003 indicating it does explain much of the variation in 

prices.  

Column 2 estimates equation (1) with node and time fixed effects. The result is more in 

line with intuition and prior literature showing that a one-degree Fahrenheit increase in local 

daily average temperature increases the daily average locational marginal price by $0.85/MWh. 

The estimation has an r-squared value of 0.5461 indicating that the inclusion of node and time 

fixed effects substantially increases the share of price variation explained by the model. Both 

estimates from columns 1 and 2 are statistically significant at the 1% level.  

Column 3 estimates equation (2) not controlling for node and time fixed effects. The 

coefficients on temperature and temperature-squared are both statistically significant at the 1% 

level. The marginal effect of local daily average temperature indicates that at approximately 65 

degrees Fahrenheit, a one-degree increase in temperature has no effect on the locational marginal 

price. The marginal effect of local daily average temperature at 80 degrees Fahrenheit shows that 

a one degree increase in temperature results in an increase of $1.93/MWh in the daily average 

locational marginal price by. At 100 degrees Fahrenheit, a one degree increase in the local daily 

average temperature results in an increase of $4.55/MWh in the daily average locational 

marginal price. The estimated equation has an r-squared value of 0.0646, indicating a larger share 

of the variation in price is explained by this model compared to the linear regression model with 
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no fixed effects. However, the linear model with the inclusion of fixed effects still explains a 

significantly larger share of the price variation.  

Column 4 estimates equation (2) with the node and time fixed effects. Both coefficients 

are again statistically significant at the 1% level but with an increase in the magnitude on the 

temperature coefficient and a decrease in the magnitude on the temperature squared coefficient. 

At approximately 58 degrees Fahrenheit, there is little to no effect on the daily average locational 

marginal price when local daily average temperature increases by one degree. This is lower than 

what was seen in the quadratic model with no fixed effects. The marginal effect shows that at 80 

degrees Fahrenheit, a one degree increase in the local daily average temperature increases the 

daily average locational marginal price by $2.10/MWh. At 100 degrees Fahrenheit, for an 

additional one degree increase in in local daily average temperature, there is an increase of 

$3.95/MWh in the daily average locational marginal price. While the quadratic model with fixed 

effects saw a slightly larger marginal effect at 80 degrees Fahrenheit, the effect at 100 degrees 

Fahrenheit was significantly smaller with the difference being $0.60/MWh. This model has an r-

squared value of 0.5580, indicating it explains a larger share of the variation in price compared to 

the other three models. Intuitively this makes sense as a quadratic model would be able to better 

account for the extremes in temperature. Additionally, the inclusion of the node and time fixed 

effects lead to better estimates as they allow for any unobservables not included in the model to 

be controlled for. The marginal effect in the quadratic model is only equal to the effect in the 

linear model at approximately 65 degrees Fahrenheit. Below and above 65 degrees Fahrenheit, 

the effects are substantially different as indicated earlier. 

Figure 4 shows a graphical representation of the marginal effect of local daily average 

temperature on the locational marginal price estimated in Column 5. This model adds controls 

for the daily average temperature across California, dew point, and precipitation.  
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Figure 4 – Marginal Effect of Temperature on LMP 

 

When controlling for those variables, the magnitude on the Temperature coefficient decreases 

while the magnitude on the temperature squared coefficient increases. All included variables 

were statistically significant at the 1% level. At approximately 68 degrees Fahrenheit, there is no 

marginal effect of local daily average temperature on the daily average locational marginal price. 

At 80 degrees Fahrenheit, the marginal effect shows that for a one degree increase in the local 

daily average temperature there is an increase of $1.34/MWh in the daily average locational 

marginal price. The marginal effect at 100 degrees Fahrenheit indicates that when local daily 

average temperature increases by one degree Fahrenheit, the daily average locational marginal 

price increases by $3.41/MWh. Both effects were lower than the quadratic model with no fixed 

effects and the model with fixed effects. This is due to the inclusion of the average temperature, 

precipitation, and dew point variables. Daily average temperature across California was included 

as it allows for a better estimation of the local effect of temperature on local prices. Temperatures 

are likely to be correlated across nodes, when temperatures are higher in one area, it’s likely 

temperatures are higher in nearby areas as well. This would lead to an increase in system-wide 
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energy cost for all nodes as more expensive generators may need to be turned on. Controlling for 

the average temperature across the state allows for the isolation of the local effect of 

temperatures on local prices. The effect that column 5 shows can be thought of in the following 

way: Imagine two otherwise identical days for two similar nodes, for the same month and year, 

and for the same California average temperature, how much higher is the locational marginal 

price on the locally hotter day? This is a key difference between column 5 and columns 1-4. 

Even with the inclusion of this variable, local daily average temperatures still have a substantial 

effect on local prices. The model shows that for a one-degree Fahrenheit increase in the average 

temperature across California, daily average locational marginal price increases by $2.35/MWh. 

Precipitation was included as generally, when it is raining, temperatures feel cooler resulting in 

less load on the grid due to use of cooling units decreasing the locational marginal price. Dew 

point was included as a proxy for humidity levels. Both coefficients have a negative impact on 

the locational marginal price with the coefficient on dew point having a larger magnitude. The r-

squared value is 0.5738 indicating the largest share of variation in price is explained by the 

model. 

Table 3 displays the results of equation (3) where temperatures are placed into bins. The 

equation is estimated using node and time fixed effects as it was shown in the previous two 

equations that its inclusion has a significant impact on the estimated effect of local daily average 

temperature on the daily average locational marginal price.  

 

Table 3: Results of Binned Regression on LMP 

 

   
Locational Marginal Price 

($/MWh) 

Temperatures 

Less than 45 
  

45.32454*** 

(0.8899943) 

Temperatures 

Between 45 

and 50 

  
27.15291*** 

(0.4886347) 

Temperatures 

Between 50 

and 55 

  
17.60674*** 

(0.3453875) 

Temperatures 

Between 55 

and 60 

  
9.513126*** 

(0.2481162) 



 19 

Temperatures 

Between 60 

and 65 

  
3.585967*** 

(0.1386143) 

Temperatures 

Between 70 

and 75 

  
1.570727*** 

(0.1775529) 

Temperatures 

Between 75 

and 80 

  
6.463006*** 

(0.3348547) 

Temperatures 

Greater than 

80 

  
21.5382*** 

(0.6561302) 

Average 

Temperature 
  

2.336212*** 

(0.0189425) 

    

Node FEs   Y 

    

Time FEs   Y 

    

R-Squared   0.5811 

    

N   1,753,484 

 
Notes: The regression estimates equation (3) with a control for average temperature. Standard errors in parenthesis 

are clustered at the nodal level. *p-value<0.1 **p-value<0.05 ***p-value<0.01 

 
 Equation (3) is a way to expand on the quadratic fixed effects model from equation (2). 

While that model was able to explain a significant amount of the variation in price by accounting 

for the extremes in temperature, it was not the most flexible way to do so. In this model, 

temperatures were binned into nine categories of five-degree increments. Due to these bins 

representing indicator variables, the 65-to70 degree temperature bin was omitted to prevent 

collinearity and serve as the comparison bin. The coefficients on each of the other bins represents 

how much larger the daily average locational marginal price is for local daily average 

temperatures in that bin compared to the 65-to-70-degree bin. Figure 5 below shows a graphical 

representation of the binned regression results.  
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Figure 5 – Regression Results from Equation 3 

 

 
When temperatures are below 45 degrees Fahrenheit, the locational marginal price is 

approximately $45.32/MWh greater than the comparison bin, when temperatures are between 

65- and 75-degrees Fahrenheit. This difference in locational marginal price falls as temperatures 

rises closer to the comparison bin. At 60-to-65 degrees Fahrenheit, the difference is only 

$3.59/MWh. As temperatures increase past the comparison bin, the difference in their prices 

begins to increase. Between 70 and 75 degrees, the difference is $1.57/MWh. Between 75 and 80 

degrees, the difference is $6.46/MWh. Lastly, when temperatures are greater than 80 degrees, 

daily average locational marginal prices are $21.54/MWh greater than when local daily average 

temperatures are between 65- and 70-degrees Fahrenheit. The model has an r-squared value of 

0.5811. 

 

Discussion 

 These results show a clear quadratic relationship between the local temperatures and local 

electricity prices in California. This relationship will have implications within both the private 

and public sectors. The private sector will be able use this understanding of the relationship to 
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drive better decision making in the short- and long-terms. In the short-term, it allows for 

companies to better plan the day-to-day operations of their facilities, such as manufacturing 

plants. This will be driven by understanding that the lowest average locational marginal price is 

achieved when temperatures are between 65- and 70-degrees Fahrenheit. By using weather 

forecasts, they can understand when they will incur the greatest energy costs for their facilities, 

allowing for greater operational and financial planning. In the long-term, it can allow for them to 

make better siting decisions for new facilities. Understanding that local daily average 

temperatures between 65- and 70-degrees Fahrenheit incur lower daily average locational 

marginal prices compared to when temperatures are higher and lower will lead to the decision 

being made to site new facilities in areas of California with daily average temperatures between 

65- and 70-degrees Fahrenheit. This will allow for facilities to incur the lowest energy costs 

allowing for the firm to extract greater profits. For firms building generation facilities, they may 

choose instead to site new facilities in areas with greater or lower average temperatures to gain 

from the increased energy costs associated with those temperatures increasing their profits. 

 Within the public-sector, knowing this relationship between local temperatures and local 

prices will allow for more informed decision making for policymakers and regulators. 

Understanding that temperatures between 65- and 70-degrees Fahrenheit see the lowest energy 

costs will allow them to gain a better understanding of the electricity market and why some areas 

are seeing greater costs than others. An example of policies lawmakers may choose to pursue are 

those that enable efforts to decrease daily average temperatures observed in areas with higher 

energy costs to get closer to that 65-to-70-degree range to decrease the energy costs of 

consumers and producers. It also carries impacts in the debate between nodal and zonal market 

structures. For markets operating under a zonal structure, if there are areas within that zone that 

see average temperatures between 65 and 70 degrees Fahrenheit while other areas see higher or 

lower average temperatures, it can be a signal that a uniform price for the whole zone is not 

adequate. There will be consumers paying higher prices than they otherwise would be while 

other consumers are paying lower prices than they otherwise would be. In this case, regulators 

may choose to switch to the nodal market structure to better reflect the prices that consumers 

should be seeing within these areas.  
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 Extensions 

 This study acts a baseline for research into local temperature effects on local prices with 

multiple avenues for additional research. One such extension would be to examine the 

heterogenous effects of temperature on price. This study only quantifies the average effect of 

local temperatures on local prices across all nodes. However, one could imagine that the local 

effect may vary depending on the individual aspects and characteristics of the nodes. These 

aspects include the generator type and capacity at the node, transmission capacities at the node, 

and congestion seen at the node. Examining these drivers of heterogeneity on the responsiveness 

of price to temperature would be a worthwhile endeavor and lead to a better understanding of the 

local temperature-price relationship. An additional avenue is the extension of the model to other 

independent system operators in the United States such as the Energy Reliability Council of 

Texas (ERCOT) and the Midcontinent Independent System Operator (MISO). These regions may 

see a different relationship between local temperatures and local prices for a variety of reasons 

such as geography, climate, generator capacities by type, and grid transmission capacities. 

Additionally, both ERCOT and MISO observe their own extreme weather events that have 

previously impacted their energy prices such as Texas’ historic winter storm in February 2021. 

Lastly, combining the results of this study with climate project models to generate forecasts for 

future effects of local temperatures on local prices may lead to a better understanding of the 

future relationship between local temperatures and local prices and how it might change. 

 

Conclusion 

This study aimed to quantify the effect local daily average temperatures have on daily 

average locational marginal prices within the wholesale electricity market in California. Using 

pricing data from CAISO from October 2020 to October 2023 and weather station data from 

NOAA for the same period, we conclude there is a significant effect of local daily average 

temperatures on the daily average locational marginal price in the form of a quadratic 

relationship. When local daily average temperature is 80 degrees Fahrenheit, the marginal effect 

of a one degree increase in temperature is an increase of $1.34/MWh in the daily average 

locational marginal price. This effect rises when local daily average temperature is 100 degrees 
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Fahrenheit, where for a one degree increase in temperature, daily average locational marginal 

price increases by $3.41/MWh. The binned regression model showed that when local daily 

average temperatures are below 45 degrees Fahrenheit, the daily average locational marginal 

price is $45.32/MWh greater than when temperatures are between 65- and 70-degrees 

Fahrenheit. When local daily average temperatures are greater than 80 degrees Fahrenheit, the 

daily average locational marginal price is $21.54/MWh greater than when temperatures are 

between 65- and 70-degrees Fahrenheit. These results continued to be both economically and 

statistically significant when controlling for daily average California temperature, node fixed 

effects, and year-by-month fixed effects.  

 While it has been intuitively understood that higher temperatures lead to higher electricity 

prices, this study quantifies that effect at the local level within a nodal market structure. These 

results will have impacts for both the private and public sectors in their decision making and 

policy considerations. Further extensions to this study discussed above will lead to a better 

understanding of this local temperature-price relationship in California and other regions of the 

US and how the relationship may change in the future.  
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