
A Temporal Difference Learning Approach to
Network Revenue Management

by

Taylor Egner

A thesis submitted to the faculty of the Graduate School of the University of Colorado Boulder Leeds

School of Business, in partial fulfillment of the requirement for the degree of

Master of Science

Strategy, Entrepreneurship, and Operations Department

2022

Committee Members: Dan Zhang, Rui Zhang, Thomas Vossen
Leeds School of Business, University of Colorado Boulder

dan.zhang@colorado.edu, rui.zhang@colorado.edu, thomas.vossen@colorado.edu

This version : May 19, 2022

ii

Egner, Taylor (M.S., Strategy, Entrepreneurship, and Operations)

A Temporal Difference Learning Approach to Network Revenue Management

Thesis directed by Professor Dan Zhang

Abstract The network revenue management (NRM) problem has been well-studied in

the literature, with the large majority of research focusing on the approximate linear pro-

gramming (ALP) approach. The ALP approach has been shown to work quite well for

many problem instances. The performance of the ALP approach depends critically on the

approximation architecture. However, even separable piecewise linear (SPL) approxima-

tion, widely considered the strongest approximation, cannot fully account for the strong

network effects that can exist in the NRM problem. This limitation is mainly due to the

nature of the ALP approach. In this research, we explore simulation-based reinforcement

learning methods that are more flexible and can utilize a broader class of approximation

architectures beyond those viable for the ALP approach. Our primary focus is the widely

used temporal difference (TD) learning algorithm. We develop two distinct adaptations of

the TD learning algorithm that are tailored to fit the structure of the NRM problem and

test the algorithms using various approximation architectures and initial policies. We intro-

duce a novel eligibility trace which we call the salience trace that significantly increases

TD learning performance for approximations that use binary features. We demonstrate

via experiments that the TD learning algorithms do not rely on commercial mathematical

programming solvers and can lift the policy performance to near optimal even when the

initial policy is a naive one, which accepts a request whenever feasible. Furthermore, we

show that the TD learning algorithms can adopt a recently proposed novel approximation

architecture (Zhang et al. 2021b), which can better capture the network effects and pro-

vide smaller approximation errors than the SPL approximation, but is intractable for the

ALP approach. Over a set of 40 problem instances, heuristic policies based on the learned

value function approximations generate expected revenues that are competitive with the

bid-price policy derived from the ALP approach in 60% of instances.

iii

Contents

1 Introduction 1

2 Preliminaries: The ALP Approach for Network Revenue Management 5

3 Temporal Difference (TD) Learning for Policy Evaluation 9

3.1 The Tabular TD Algorithms . 9

3.2 TD Learning for Approximate Policy Evaluation 11

3.3 Iterative Policy Improvement . 17

4 Computational Study 18

4.1 Test Instances . 18

4.2 Performance of the Tabular TD Algorithms 19

4.3 Policy Improvement with the TD Algorithms with Value Function Approx-

imations . 21

4.4 Performance of the TD Algorithms with Value Function Approximations . . 22

5 Conclusion 29

iv

List of Tables

1 Problem Data for Example 1. 7

2 Performance of TD Learning on Example 1 10

3 Tabular TD Problem Instance, Capacity = 2 19

4 Expected Revenue Results on Test Instance with ϵ= 0.03 20

5 Policy Improvement Results with Tabular TD 20

6 Policy Improvement Results with Naive initialization and SPL approxima-

tion architecture . 21

7 Experimental Results for TD(λ) with the SPL Bid Price Initialization . . . 24

8 Experimental Results for TD(λ) with Naive Initialization 25

9 Experimental Results for TD-ρ with the SPL Bid Price Initialization 26

10 Experimental Results for TD-ρ with Naive Initialization 27

11 Median Performance Gap of TD-ρ and TD(λ) Algorithm 28

v

List of Figures

1 Convergence of Value Function Approximations under Tabular TD Learning 19

2 Policy Performance across Improvement iterations, TD-ρ with Naive initial-

ization and SPL architecture . 22

1

1. Introduction

Network revenue management (NRM) involves the management of a network of resources

with limited capacity which are consumed in various combinations by different products.

Product requests are assumed to arrive over a finite time horizon according to a stochastic

process and the decision maker must decide whether to accept or reject each request upon

arrival with the objective of maximizing the expected total revenue over the selling horizon.

This sequential decision making problem naturally lends itself well to a dynamic program-

ming (DP) formulation, with the state being the remaining capacity of each resource and

the action set in each period being the feasible accept/reject decisions given the state

(Talluri and van Ryzin (2004)). In practice, the exact solution of the DP formulation is

difficult to achieve using standard algorithms (such as value iteration and policy iteration)

as it suffers from the well-known “curse of dimensionality”. For this reason, researchers

have developed a number of solution methods based on approximations and heuristics.

A widely studied approach to solve the NRM problem is approximate linear program-

ming (ALP) (de Farias and Van Roy 2003). In the ALP approach, the search for the

optimal value function is restricted to the space generated by the span of a set of basis

functions. The problem is then solved by computing the optimal set of weights for each

basis function. In this way, the problem is reformulated such that there is a relatively small

number of variables which allows for better computational tractability. However, ALP for-

mulations still contain an exponential number of constraints. Traditionally, these problems

have then been solved using approaches such as constraint sampling or column generation.

The solution to the ALP approach yields a set of weights which can be interpreted as

marginal values that inform a heuristic “bid-price” policy whereby a request is accepted

if the fare is greater than the sum of the marginal values of the units of each resource

to be consumed (Talluri and van Ryzin 1998). This “bid-price” policy heuristic is widely

recognized in the literature as one of the strongest policies for NRM problems.

One of the first applications of the ALP approach to NRM was given by Adelman (2007),

who introduced an approximation architecture for the NRM problem that was based on an

affine function of the state vector. Using this architecture, Adelman was able to produce

a tighter upper bound on the total expected revenue than was achievable using the well-

known deterministic linear programming (DLP) approach (Talluri and van Ryzin 1998).

Critically, the coefficients of the affine approximation can be interpreted as time-dependent

marginal values of each resource in each time period, thus allowing for the development of

2

a time-dependent bid-price policy which was shown to outperform the bid-price policies

given by the DLP formulation (Williamson 1992).

There has been a series of follow-up work to Adelman (2007) in the literature that consid-

ers stronger and more granular functional approximations that lead to tighter bounds and

improved bid-price policy performance. The most popular approximation is the seperable

piecewise linear (SPL) approximation (Farias and Van Roy 2007, Meissner and Strauss

2012)), which considers both the time period and the resource level when constructing the

value function approximation. Topaloglu (2009) offered a Lagrangian relaxation approach

which was subsequently shown to be equivalent to the SPL approximation (Kunnumkal

and Talluri 2016). In this paper, we make use of the SPL approximation architecture with

weights trained by a temporal difference (TD) learning approach as an alternative to the

ALP approach. While bid-price policies derived from ALPs often perform quite well, Tal-

luri and van Ryzin (1998) use a simple example to demonstrate the non-optimality of

such policies, given that they ignore the network effects when multiple products share the

same resources. We revisit the example in Talluri and van Ryzin (1998) and show that

the bid-price policy derived from the SPL approximation is suboptimal, but a TD learn-

ing approach using the same approximation architecture can achieve optimality in this

example.

ALPs are also known to pose significant computational challenges due to their size, as

they have relatively few variables but still carry an exponential number of constraints.

This fact has led researchers to make use of specialized algorithms such as column gen-

eration (Adelman 2007, Meissner and Strauss 2012) and constraint sampling (de Farias

and Van Roy 2004, Farias and Van Roy 2007) in order to solve these formulations. How-

ever, these specialized algorithms can be very computationally expensive even for small

problems. Recent research has demonstrated the possibility of constructing compact refor-

mulations for some ALPs to address the issue of tractability (Tong and Topaloglu 2014,

Vossen and Zhang 2015). Specifically, the SPL approximation for NRM has been shown

to have an equivalent, compact LP formulation that allows for solutions that are faster by

several orders of magnitude than the original formulations. These compact reformulations,

however, are heavily dependent on the specific structure of the approximation architecture

in question and are not guaranteed to exist for an arbitrary approximation architecture.

It is easy to see that this reliance on compact reformulations severely restricts the class of

approximation architectures that may be solved in a reasonable time frame using the ALP

approach.

3

A recent paper (Zhang et al. 2021b) has proposed an alternative to the SPL approxi-

mation that better addresses network effects in the NRM problem. The authors propose a

product-based approximation with a novel bid-price policy that considers the cost of “last-

unit” consumption of resources. While the product-based approximation is shown to have

smaller approximation errors than the SPL approximation, its resulting ALP formulation

does not admit a compact reformulation and therefore can be computationally challenging.

TD learning is one possible way of avoiding these computational issue while still leveraging

the improved value function approximation architecture of the product-based approxima-

tion. The critical reason for this is that the TD learning algorithm does not need to solve

mathematical programs, but rather uses a simulation-based approach.

The existing literature tends to focus primarily on mathematical programming tech-

niques. In contrast, we explore a simulation-based approach. The approach involves the

Monte Carlo simulation of a large number of booking horizons for fixed policies and iterative

fitting of value function approximations. Recent literature suggests that simulation-based

methods allow for a broader class of approximation architectures. Koch (2017) developed

an approach based on least-squares approximate policy iterate that uses the linear least

squares regression to mimic heuristic policies such as bid-price policies by enforcing a

series of constraints on the parameters. Of special significance to this approach is the non-

reliance on fixed models of customer choice. In general, this is one of the main advantages

of simulation methods — they are often model-free and as such are highly flexible. Fur-

thermore, simulation approaches are generally relatively simple, easy to implement, and

do not require the use of commercial solvers.

The simulations techniques we examine belong to the broad class of reinforcement learn-

ing (RL) algorithms. These learning algorithms are widely used in many fields including

engineering and robotics (Mahmud et al. (2018), Kober et al. (2013)), and are power-

ful tools for solving problems which can be cast as sequential decision making problems

under uncertainty (Littman (1994)). There are many such problems in the OR literature

to which reinforcement learning algorithms might be applicable. Mazyavkina et al. (2021)

present a survey of RL approaches to combinatorial optimization problems which indicate

the potential that these algorithms have in OR problem settings. Broadly, reinforcement

learning involves the training of an agent through interaction between the agent and an

environment with the express purpose of maximizing some reward signal. Fitting neither

the paradigms of supervised or unsupervised learning, reinforcement learning is considered

4

a separate machine learning paradigm (Sutton and Barto 2018). In this paper, we use a

classical reinforcement technique known as TD learning first proposed by Sutton (1988a).

Over a set of 40 problem instances, heuristic policies based on our TD-learning algorithms

generate expected revenues that are competitive with the bid-price policy derived from the

ALP approach in 60% of instances.

The remainder of the paper is organized as follows. Section 2 formulates the NRM prob-

lem, reviews the ALP approach, and illustrates the non-optimality of the ALP bid-price

policy using an example taken from Talluri and van Ryzin (1998). Section 3 formulates

the TD learning algorithm for the NRM problem. Section 4 details the results of a com-

putational study. Finally, we conclude in Section 5.

5

2. Preliminaries: The ALP Approach for Network Revenue Management

We consider the NRM problem as a finite-horizon dynamic program with J products

each consuming combinations of I resources, with requests arriving over T periods. The

set of resources I = {1, . . . , I} has capacity vector c = (c1, . . . , cI). The set of products

J = {1, . . . , J} has reward (fare) vector f = (f1, . . . , fJ). We denote the product/resource

co-incidence matrix A= [aij] with characteristic element

ai,j =

{
1, if resource i is used by product j,

0, otherwise.

The set of resources used by product j is the j-th column of A, which is denoted by aj.

In each period t, a request arrives for product j with probability λt,j. Without loss of

generality, we assume there always exists a product representing the “null request”, having

zero fare and consuming no resources. Thus,
∑

j λt,j = 1 for all t. The state space is given

by X = {x ∈ ZI
+|xi ≤ ci,∀i} and the feasible action set in state x is given by U(x) = {u ∈

{0,1}J : ajuj ≤ x}. The decision maker seeks to maximize the total expected revenue over

the horizon by accepting or rejecting requests when they arrive.

The NRM problem has an intuitive optimal policy whereby the firm accepts only such

requests for which the reward is greater than the opportunity cost of consuming the

resources. i.e,

uj =

{
1, if x≥ aj ∧ fj ≥ v∗t+1(x)− v∗t+1(x−aj),

0, otherwise.

Here, v∗t (x) denotes the optimal value-to-go function. The NRM is a sequential decision

making problem and consequently can be intuitively cast as a dynamic program (DP) with

optimality conditions given by:

vt(x) = max
u∈U(x)

∑
j

λt,juj[fj − (vt+1(x)− vt+1(x−aj))] + vt+1(x) ∀ t,x∈X . (1)

The boundary condition is vT+1(x) = 0 for all x∈X .
The dynamic program (1) can be equivalently written as a linear program as follows

(Adelman 2007):

(LP) min
{vt(·)}∀t

v1(c) (2)

s.t. vt(x)− vt+1(x)+
∑
j

λt,jut,j

[
vt+1(x)− vt+1(x−aj)

]
≥
∑
j

λt,jut,jfj,

∀t,x∈Xt,ut ∈ U(x). (3)

6

However, the number of variables and constraints in (LP) increases exponentially in the

number of resources I and the number of products J . Thus, solving (LP) is as hard as

solving the dynamic program (1). To achieve tractability, a key idea in the ALP approach

is to represent the value function vt(x) by the weighted basis functions:

vt(x)≈ θt+
∑
b∈B

Vt,bϕb(x), ∀t,x∈Xt, (4)

where ϕb :X →R for b∈B is a set of pre-specified basis functions and B is some index set.

The parameter Vt,b is the weight of the basis function ϕb(·) in period t, and θt is a constant

offset.

Two common approximation architectures for the NRM problem are affine and SPL

approximations. In this paper, we focus on the SPL approximation, which is known to be

stronger than the affine approximation. The SPL approximation is given by (Vossen and

Zhang 2015):

vt(x)≈ θt+
∑
i

xi∑
k=1

Wt,i,k, ∀t,x∈Xt. (5)

In (5), Wt,i,k can be interpreted as the value of the k-th unit of resource i in period t.

Substituting (5) into (LP) yields a problem with a polynomial number of variables.

However, it still has exponentially many constraints. Specialized column generation (Adel-

man 2007, Meissner and Strauss 2012) and constraint sampling (de Farias and Van Roy

2004, Farias and Van Roy 2007) methods were developed to handle these constraints. More

recently, Vossen and Zhang (2015) show that the ALP associated with the approximation

in (5) can be written compactly as the following reduced program:

(R) zR =max
p,q,z

∑
t,j

λt,jfjqt,j

s.t. pt,i,k =

1, if t= 1,

pt−1,i,k

−
∑

m∈ai

λt−1,l(zt−1,i,m,k− zt−1,i,m,k+1), if t > 1

∀t, i, k : ai,j = 1,
(6)

qt,j = zt,i,j,1, ∀t, i, j : ai,j = 1,
(7)

zt,i,j,k+1 ≤ zt,i,j,k, ∀t, i, j, k : ai,j = 1,
(8)

zt,i,j,k ≤ pt,i,k, ∀t, i, j, k : ai,j = 1.
(9)

7

The dual solution to (R) can be used to construct a bid-price control policy. We will

make use of this bid-price control policy in our computational study both as a comparison

benchmark and an initialization policy for our TD learning algorithms. According to the

definition in Talluri and van Ryzin (1998), a bid-price policy specifies a set of bid-prices

for each resource at each point in time such that the request for a product is accepted if

and only if there is available capacity and the fare exceeds the sum of the bid-prices for

all units of the resources used by the product. It is natural to use the optimal dual values

of constraint (6), {W ∗
t,i,k}∀t,i,k, to approximate the value function following (5) as

vt(x)≈ vRt (x) = θt +
∑
i

xi∑
k=1

W ∗
t,i,k, ∀t,x∈Xt. (10)

A bid-price policy can be constructed such that

ut,j =

{∏
i∈aj 1(xi ≥ 1), if fj ≥

∑
i∈aj

W ∗
t+1,i,xi

,

0, otherwise,
∀t,x, j. (11)

We refer to (11) as the SPL bid-price policy, which is one of the strongest policies in the

literature for the NRM problem.

Talluri and van Ryzin (1998) use an example to illustrate the non-optimality of a partic-

ular form of bid-price policies. Their example can also be used to show that the bid-price

policy specified in (11) is not optimal. We replicate their example below but change the

time index to match our notation.

Example 1 (Talluri and van Ryzin (1998), Section 3.1). Consider a network with

two resources and three products. There are two local products (P1 and P2), each with a

fare of $250, and one through product (P3) with a fare of $500. Each local product uses

one resource, while the through product uses both resources. Each resource has one unit

of capacity. The problem data are shown in Table 1.

Period (t) Product: aj Fare Probability
1 P1: (1, 0) $250 0.3

P2: (0, 1) $250 0.3
P3: (1, 1) $500 0.4

2 No arrival 0.2
P3: (1, 1) $500 0.8

Table 1 Problem Data for Example 1.

In the first period, the probability of arrival for each of the local products is 0.3, and 0.4

for the through product. In the second period, there is no demand for local products, and

8

the probability of arrival for the through product is 0.8. An optimal policy will reject both

local products and only accept the through product in period 1. If the through product

does not arrive in period 1, the policy will accept the through product in period 2 if it

arrives. The optimal expected revenue is $440.

To enforce the optimal policy in Example 1, the bid-prices need to satisfy W ∗
2,1,1 > 250,

W ∗
2,2,1 > 250, and W ∗

2,1,1 +W ∗
2,2,1 ≤ 500, which obviously is impossible. According to the

definition in Talluri and van Ryzin (1998), the best a bid-price policy can do in this example

is to reject all demand in period 1 and accept only the through itinerary (if it arrives) in

period 2, yielding an expected revenue of $400. In the next section, we show that a TD

learning approach can overcome the pitfall in this example.

9

3. Temporal Difference (TD) Learning for Policy Evaluation

TD learning, first proposed by Sutton (1988b), is a reinforcement learning technique that

uses an iterative approach to train a prediction model in an online fashion using in part the

previous predictions of the model. This is also known as bootstrapping, which is a central

feature of DP that is accomplished via the backwards induction loop. Unlike DP, however,

TD methods do not require a formalized model of the environment, the rewards for specific

actions, or state-transition probabilities in order to converge on a solution. Rather, they

require only signals relating to rewards and state transitions and are completely agnostic

with respect to the methods used to generate these signals. This flexibility allows TD

methods to handle a broader class of approximation architectures, including the one in

Zhang et al. (2021b).

In Section 3.1, we present two tabular TD algorithms, which adopt the canonical TD

learning algorithms for the NRM problem. They are used to demonstrate the full power

of the TD methods. However, due to the explosion in the state space, the tabular TD

algorithms are only suitable for small-size problems. To work around this, we adopt TD

learning algorithms with value function approximation, such as the well-known TD(λ)

algorithm, in Section 3.2. In the literature, the TD learning algorithms are designed for

infinite horizon problems (Sutton and Barto 2018), while we apply them to the NRM

problem, which is a finite-horizon problem.

3.1 The Tabular TD Algorithms

Algorithm 1 details the canonical TD learning algorithm used for policy evaluation that

makes use of a tabular representation of the value function. This algorithm, however,

does not address a crucial consideration that arises in reinforcement learning, the trade-off

between exploration and exploitation. That is, an agent much choose whether to exploit the

information it already has by selecting the estimated optimal action or it must explore the

state-action space by selecting random, feasible actions in order to gather more information.

When using TD for policy evaluation, a given policy π may never visit certain states which

may hold important information for the value function. Therefore, it is desirable to allow

the agent to deviate from the policy, π, with some small probability in order to gain more

valuable information. Fortunately, it is very easy to adapt the canonical TD algorithm

to incorporate this ϵ-exploration. Algorithm 2 details the tabular TD algorithm with

ϵ-exploration.

10

Algorithm 1: Tabular TD learning for NRM policy evaluation

Input: a policy, π, to be evaluated

Parameter: a step size α∈ (0,1]
Initialize Vt(x) for all x∈X , t∈ {1, . . . , T} arbitrarily, incorporating boundary

conditions

Loop for each sample path, P :

Set initial state x= c

Loop for each period, t:

Set acceptance decision u∈ {0,1}J according to π(x)

Take action u, observe reward R, and let x′ = x−uja
j

Vt(x)← Vt(x)+α[R+Vt+1(x
′)−Vt(x)]

x← x′

Algorithm 2: Tabular TD learning for NRM policy evaluation with ϵ-exploration

Input: a policy, π, to be evaluated

Parameter: a step size α∈ (0,1]
Initialize Vt(x) for all x∈X , t∈ {1, . . . , T} arbitrarily, incorporating boundary

conditions

Loop for each sample path, P :

Set initial state x= c

Loop for each period, t:

Set acceptance decision u∈ {0,1}J according to π(x).

With probability ϵ, set acceptance decision uj as 0 or 1 with equal chance for

each product j. Set uj = 0 if uj = 1 is infeasible.

Take action u, observe reward R and let x′ = x−uja
j

Vt(x)← Vt(x)+α[R+Vt+1(x
′)−Vt(x)]

x← x′

Policy Expected Revenue
SPL 350

TD, ϵ= 0 350
TD, ϵ= 0.03 440

Table 2 Performance of TD Learning on Example 1

11

In order to motivate the application of TD learning to the NRM problem, we revisit

Example 1. Table 2 lists the total expected revenues for the SPL bid-price policy and

the greedy policies based on the value function approximations generated by the tabular

TD learning algorithms with and without ϵ-exploration. Notice that the TD algorithm is

able to discover the value function approximation that generates the optimal policy, with

expected revenue $440, only when the agent is allowed to deviate from the SPL bid-price

policy, thus demonstrating the importance of ϵ-exploration to this technique.

This reliance on ϵ-exploration and sampling leads to large variability in the outcome of

the TD algorithms. This variability is potentially one of the reasons that the literature

has not given as much attention to reinforcement learning methods as those based on

mathematical programming. However, the inherent randomness of reinforcement learning

methods has been widely tolerated in other fields due to the fact that these methods are

both easy to implement and, in many cases, quite effective.

3.2 TD Learning for Approximate Policy Evaluation

The initial results with the tabular TD algorithms on Example 1 demonstrate the potential

of TD learning to improve over ALP based bid-price control policies, but such algorithms

are limited by the reliance on the tabular representation of the states. For larger instances,

the well known curse of dimensionality, or state space explosion, is a practical barrier to

this methodology. However, we may adapt the method to utilize instead an approximation

of the value function based on the combination of a set of basis functions. In this way, we

may avoid the issue of state space explosion, but at the cost of the accuracy of our value

function representation. TD learning with functional approximation received significant

attention in the machine learning literature through the 1990s with early work suggesting

that applications of the algorithm to complex problems and games had the potential for

success (Tesauro 1992), but there were few guarantees of statistical performance in this

early work. The work of Tsitsiklis and Van Roy (1997) provided some of the first conver-

gence guarantees for TD algorithms with function approximation under general conditions

including the boundedness of expectations and linear independence of basis functions.

One class of TD algorithms making use of value function approximations known as

TD(λ), proposed in Sutton (1988a), has been well studied in the literature with applica-

tions in a wide number of fields including computer science, neuroscience, and psychology

(Tesauro et al. 1995, O’Doherty et al. 2003). TD(λ) is more precisely a continuum of algo-

rithms that are parameterized by λ∈ [0,1]. The λ parameter is used to define the relative

12

significance of previous feature-set observations via a vector, z, known as the eligibility

trace. This eligibility trace is a means of determining and maintaining an update direction,

making TD learning similar to gradient descent methods. Like gradient descent methods,

there are several ways to construct the eligibility trace. Van Seijen et al. (2016) provides

a detailed analysis of various eligibility trace methods. We also propose a novel eligibility

trace, which we call the salience trace that makes use of the binary structure of the set

of basis functions we examine. We call the variation of the TD algorithm that uses this

salience trace TD-ρ.

Implementing the TD(λ) algorithm in the NRM problem setting poses some unique

challenges. First, the canonical application of TD(λ) assumes an infinite horizon problem

while the NRM problem is a finite-horizon problem. It has been shown in the literature

that, in general, finite horizon TD(λ) will converge (Asis et al. 2019). However, the ALP

based approximation architectures that we use assume that the feature set, or equivalently

the set of basis functions, is independent across time periods. The independence of basis

functions across time periods motivates the decision to train a family of value function

approximations, each representing a single time period, in the implementation given in this

paper. Algorithm 3 details the TD(λ) algorithm as it is applied to the NRM problem

which follows closely with that presented in Sutton (1988a), but is adapted to train a

family of time-dependent value function approximations.

Not surprisingly, the reliance of the TD(λ) algorithm on a set of predefined parameters

suggests that strong performance of the algorithm requires careful tuning of the parameters.

In general, this is an important practical consideration. The parameters which may be

selected by the researcher include the approximation architectures, the step size (α), the

trace decay rate (λ), the initialization of the weight vector w, and the form of the eligibility

trace. What follows is a discussion of each of these parameters.

Approximation Architectures: The choice of approximation architecture is critically

important to both the ALP and reinforcement learning based methods. One of the advan-

tages of reinforcement learning based methods is the flexibility afforded the researcher when

selecting an approximation architecture. While the ALP methods are generally restricted

to linear approximations due to computational tractability, the TD-learning method we

propose is capable of operating with an arbitrary functional approximation to the value

function. This allows for a much broader range of functional approximations. For the sake

of comparison, we focus on two approximation architectures including the SPL approxi-

mation (5), as well as the product-based approximation as given in (Zhang et al. 2021b).

13

Algorithm 3: TD(λ) for approximate policy evaluation

Input: an initial policy, π, to be evaluated

Input: a family of basis functions v̂t :X ×Rd→R for t= 1, . . . , T , with the boundary

condition enforced.

Parameter: a step size α> 0, trace decay rate λ

Initialize weights, wt, for all t arbitrarily

Initialize zt← 0 ∀ t
Loop for each sample path:

Initialize initial state x

Loop for each period:

u∈ {0,1}J ← action given by π(x)

Take action u, observe reward R and next state x′ = x−uja
j

zt← λzt+Φt(x), where Φt(x) is the gradient of the value function approximation.

δ←R+ vt+1(x
′)− vt(x)

wt←wt+αδzt

x← x′

Zhang et al. (2021b) consider the following value function approximation:

vt(x)≈ θt+
∑
j

1
(
x≥ aj

)∑
i∈aj

xi∑
k=1

W t,i,j,k, ∀t,x∈Xt. (12)

This approximation architecture is referred to as the product-based approximation (PB).

We observe that the product-based approximation can capture some network effects of

the NRM problem. W t,i,j,k in the product-based approximation can be interpreted as the

contribution of product j to the value of the k-th unit of resource i in period t. In this

way, the product-based approximation allows the marginal value of each resource-unit to

be distributed heterogeneously across the set of products that use resource i. Furthermore,

the indicator function 1 (x≥ aj) tracks the resource availability for each product. Zhang

et al. (2021b) show that the product-based approximation yields a smaller approximation

error and a tighter upper bound on expected revenue than the SPL approximation, but

at the cost of a higher computational complexity, which can make the solution to the

resulting ALP intractable even with high performance commercial LP solvers. However,

the TD-learning algorithm is able to handle it.

We can construct a policy by using (12) as follows. Consider two products j,m∈J . Let

14

xm,j = min
i′∈am∩aj

xi′. As a convention, we take xm,j = 0 if am ∩ aj = ∅. Thus, xm,j gives the

minimum capacity of the resources shared by products j and m; it takes the value of 0

if products j and m do not share any resource. A bid-price that can be used to decide

whether to accept product j is then given by

∆vPt+1(x) =
∑

m:am∩aj ̸=∅

{
1
(
xm,j = 1

) ∑
i∈am

xi∑
k=1

W ∗
t+1,i,m,k +1

(
xm,j > 1

) ∑
i∈am∩aj

W ∗
t+1,i,m,xi

}
.

(13)

The corresponding bid-price policy is given by

ut,j =

{∏
i∈aj 1(xi ≥ 1), if fj ≥∆vPt+1(x),

0, otherwise,
∀x, j. (14)

We refer to this policy as the product based (PB) bid-price policy.

Eligibility Trace: Another important decision to make is the manner in which to make

updates to the eligibility trace, z. The eligibility trace is a vector that tracks the observa-

tions of the feature set over the course of the simulation, and can be considered to be a

vector describing the direction of updates to the weight vector similar to gradient descent

approaches. The distance of each update is determined by the size of the temporal differ-

ence, δ. In the canonical form of the TD(λ) algorithm, this vector is updated after each

state transition, and reset to 0 at the end of each episode. An episode is simply a sample

path between the initial state and the terminating state. In the case of the NRM problem,

each episode might be considered to be a sample path over the finite time horizon. As

a result of this particular structure, each episode of TD(λ) learning will encounter the

eligibility trace associated with a given time period exactly one time. Therefore, if this

vector were to be reset to 0, there would never be any accumulation of information about

previous state space observations. For this reason, our implementation of the algorithm

does not reset the traces at the beginning of each sample path. In this way, the entire

simulation can be considered to be a single episode with information being accumulated

over all simulated arrival sequences.

While there exist in the literature several different approaches to the eligibility trace,

the canonical TD(λ) algorithm defines the trace by the update rule,

z← λz+∇v̂(x,w).

We observe that when λ= 0, the algorithm operates much like a single-step backup algo-

rithm because the trace at any given step is equal to the current gradient of the value

15

function approximation. Conversely, when λ= 1, the algorithm accumulates all previous

feature set observations similar to a Monte-Carlo algorithm — though updates to the

model are performed at each iteration rather than at the end of the simulation. In this way,

the λ parameter places the algorithm in a continuum between single step backup methods

and pure Monte-Carlo methods. For a given problem instance, λ may be optimized via

some heuristic method, though in practice the choice of λ is often made arbitrarily, with a

value near 0.5 often working quite well.

Returning to the update rule, let Φ(x) denote the gradient of the value function approx-

imation. For the SPL approximation, the gradient w.r.t. the weight vector is as follows:

ϕSPL
t,i,k (x) = 1{xi ≥ k} ∀ t= 1, . . . , T.

For the product-based approximation, the gradient w.r.t. the weight vector is as follows:

ϕPB
t,i,j,k(x) = 1

(
x≥ aj

)
×1{xi ≥ k} ∀ t= 1, . . . , T.

The update rule for the canonical eligibility trace for the NRM problem is simply

z← λz+Φ(x).

This observation about the peculiarity of the eligibility trace updates lead us to propose

a modification of the canonical TD algorithm, TD-ρ, that makes use of the problem-specific

feature set architecture to maintain an eligibility trace with a probabilistic interpreta-

tion. We first observe that the basis functions we have selected for our approximation

architecture are derived from the two ALP methods discussed above, which use as their

approximation architecture a collection of binary-valued indicator functions. The binary-

valued nature of the feature set informs the development of the following update step for

the eligibility trace

z← z+
Φ(x)− z

k
.

This update step is simply computing an element-wise running average of the value of each

basis function in a given time period across all simulated arrival sequences. The binary

nature of each basis function implies a probabilistic interpretation wherein each element of

zt takes a value in [0,1] which corresponds to the observed proportion of simulated paths

in which the basis function associated with that element took a value of 1 in the given

period. This modified eligibility trace, which we call the salience trace tracks the relative

importance of each basis function to the value function approximation within a given

period, which we argue should yield a strong direction for our weight updates. Algorithm

4 details the TD-ρ algorithm as it is applied to the NRM problem which incorporates the

salience trace.

16

Algorithm 4: TD-ρ for approximate policy evaluation

Input: a policy, π, to be evaluated

Input: a family of basis functions v̂t :X ×Rd→R for t= 1, . . . , T , with the boundary

condition enforced.

Parameter: a step size α> 0

Initialize weights, wt, for all t arbitrarily

Initialize zt← 0 ∀ t
Loop for each sample path, indexed by k:

Initialize initial state, x

Loop for each period:

u∈ {0,1}J ← action given by π(x)

Take action u, observe reward R and next state x′ = x−uja
j

zt← zt+
Φt(x)−zt

k
, where Φt(x) is the gradient of the value function

approximation.

δ←R+ v̂t+1(x
′,wt+1)− v̂t(x,wt)

wt←wt+αδzt

x← x′

Step Size: Being an iterative updating method, TD-learning requires the researcher to

provide a means of determining the step size each time an update occurs. Let αk be the step

size at step k. Various methods exist to determine step size so as to guarantee convergence

under the classic conditions

∞∑
k=1

αk =∞,

∞∑
k=1

α2
k <∞.

This set of conditions is one of the critical assumptions in the convergence proof given in

Tsitsiklis and Van Roy (1997). Naturally, this implies that a step size of 1
k
would guarantee

convergence. However, in practice the performance of this step size is rather weak. It can

also be shown that the algorithm converges with a constant step size if the value function

is Lipschitz continuous and the step size is sufficiently small. Further, there exist a number

of adaptive step size strategies that seek to leverage online information to control the step

size. One such adaptive algorithm based on computing upper bounds on the allowable step

size is given in Dabney and Barto (2012). We implement a small, constant step size of 1e−3

in our experiments.

17

Initial Policy The TD-learning approach we implement is a policy evaluation algorithm

for which the performance is usually highly sensitive to the initial policy. To examine this

sensitivity, our numerical study includes two initial policies. The first one is the naive

initialization, which accepts any feasible request. The second one is the SPL bid-price

policy from the ALP approach.

3.3 Iterative Policy Improvement

We also consider an iterative policy improvement algorithm that makes use of TD-learning

to generate greedy policies with respect to the value function approximations generated at

each iteration. The procedure is as follows: starting with some initial policy, π0, a series of

value function approximations, {V π0

t : t = 1, . . . , T}, is generated using TD learning. The

algorithm then trains a new family of value function approximations by conducting the

simulation again using a heuristic policy, π1, which is simply a greedy policy with respect

to the family of value functions trained in the previous iteration.

This procedure is quite similar to the well-known Rollout algorithm in that it trains each

value function approximation at iteration k, V πk

t , using an approximation of the optimal

value function V πk−1

t+1 . It is a well known result that Rollout algorithms which make use of

value function approximations can result in policy improvement in practice, though they

often require careful tuning (Bertsekas and Tsitsiklis 1996).

18

4. Computational Study

In order to evaluate the performance of TD-learning methods on the NRM problem, we

designed a computational study that examined the expected revenue generated by poli-

cies derived from the two TD learning algorithms described in the previous section under

various approximation architectures and initializations. The computational study was per-

formed on a machine with Intel Core i7-8700 processor, 16 GB RAM, and the Windows

10 operating system. The computer code is implemented in Python 3.0 with extensive use

of the NumPY library. The ALP approach makes use of Gurobi 9.0 solver.

4.1 Test Instances

For the initial experiments using tabular TD learning, we used a small problem instance,

given in Figure 3, which is representative of a two node airline network with two fare

classes. For the computational study on the TD learning algorithms with value function

approximation we consider a set of larger instances with a hotel structure. These instances

were selected due to their strong network effects, and are a reconstruction of the 50-period

hotel instances evaluated in Zhang et al. (2021b). In the hotel instances, each resource

represents a room-night. Each instance contains I resources. Products can be interpreted

as requests for room reservations for one or more consecutive nights. A customer request

may span a set of consecutive nights from i = 1, . . . , I to i′ = i, i + 1, . . . , I. Thus, there

are I(I+1)
2

different itineraries which are included in each instance. Each product request

has two fare classes, with the high fare class offering a reward that is a κ-multiple of the

low-fare class. The revenue for the low-fare class for each night, i, denoted as fi, is drawn

from a discrete uniform distribution between 1 and 100. Furthermore, the total revenue

generated by the low-fare class for a given request is given as the sum of the low-fare class

for each night included in the itinerary. The arrival probabilities, λt,j, for each product

in each period are generated according to the method described in Ma et al. (2020) such

that high-fare requests tend to arrive with higher probability in later periods of the selling

horizon. The initial capacity of each room-night, i, is determined according to an instance-

specific load factor, α. We consider 40 instances in total with I ∈ {2,3,4,5}, κ∈ {4,8}, and

α ∈ {1.0,1.2,1.6,2.2,3.0}. For a more detailed description of the problem instances, refer

to Zhang et al. (2021b).

19

x1 x2 Reward
p1 0 1 150
p2 1 0 250
p3 1 1 375
h1 0 1 600
h2 1 0 1000
h3 1 1 1500

(a) Products

t p1 p2 p3 h1 h2 h3 None
1 0.1 0.1 0.6 0.0 0.0 0.0 0.2
2 0.1 0.2 0.4 0.1 0.1 0.0 0.1
3 0.3 0.3 0.1 0.05 0.15 0.0 0.1
4 0.3 0.0 0.4 0.1 0.0 0.2 0.1
5 0.0 0.0 0.65 0.0 0.0 0.3 0.05

(b) Arrival Probabilities
Table 3 Tabular TD Problem Instance, Capacity = 2

Figure 1 Convergence of Value Function Approximations under Tabular TD Learning

4.2 Performance of the Tabular TD Algorithms

The first question we chose to examine is whether, and how quickly, the tabular TD

algorithm converges to a stable value approximation for each state. Figure 1 illustrates

the observed convergence behavior of the value approximations for each state over various

sample sizes. We observe that the value approximations for each state do converge to a

stable value over time, and we used this information to set an appropriate sample size for

other experiments.

Table 4 shows the results of our experiments with multiple policies. The table details

the mean revenue over a sample of 100,000 paths for the initial policies, πSPL, and for

20

Initial Policy πSPL V π

Naive 892 1327
SPL 1209 1334
Naive (ϵ) 894 1328
SPL (ϵ) 1209 1328

Table 4 Expected Revenue Results on Test Instance with ϵ= 0.03

the policies given by the value function approximation trained on V π. We use both naive

policy and SPL bid-price policy to initialize. The rows marked with an ϵ in parenthesis

were trained using an “exploration” technique, where with some small probability, ϵ, the

agent is allowed to take a random action at a given time step instead of the action given

by π. This is called Epsilon Exploration, which is discussed below.

Any reinforcement learning algorithm must concern itself with the precise nature of the

agent’s interaction with the environment, as it is the actions of the agent that determines

the region of the state space examined by the algorithm. In the case of deterministic policies

like the bid-price policies we have used, there is a possibility that the agent will never

reach certain important states. For this reason, it is often considered a good practice in

the reinforcement learning literature to include some element of randomness in the agent’s

behavior. This is the principle behind the ϵ-exploration we have used in our experiments.

The algorithm is designed to allow the agent, with small probability ϵ, to take a random,

feasible action at a given time step. Looking at Table 4, we observe that this exploration

step may potentially yield some policy improvement for the Tabular TD algorithm, but

the impact is unclear.

In addition to the policy evaluation via TD that we have studied, we are also interested

in determining the potential for policy improvement using the TD algorithm. The value

function associated with a given policy can be used to construct a new greedy policy. If

we replace the original policy with this new value-function informed policy and use our

TD algorithm to discover the value function associated with this new policy, we could

potentially improve the policy over time.

0 1 2 3 4 5 6 7 8 9
Naive 1336 1336 1336 1337 1337 1337 1337 1337 1337 1338
SPL 1339 1398 1339 1339 1339 1339 1339 1339 1339 1339
Naive (ϵ) 1328 1330 1332 1333 1334 1335 1335 1336 1336 1337
SPL (ϵ) 1339 1339 1339 1339 1339 1339 1339 1339 1339 1339

Table 5 Policy Improvement Results with Tabular TD

21

0 1 2 3 4 5 6 7 8 9
TD(λ) 991 1048 1205 1200 1217 1258 1291 1215 1205 1273
TD-ρ 923 966 984 1050 1038 1073 1104 1108 1143 1239

Table 6 Policy Improvement Results with Naive initialization and SPL approximation architecture

Table 5 details the results of an experiment that performed 10 iterations of the procedure

outlined in Section 3.3 using the tabular representation. Some slight policy improvement

was observed for the Naive initialized trials. However it appears that in all cases the

algorithm discovers a near-optimal policy with a single pass. Thus, it might have little room

to improve. On the other hand, Table 6 details the results of the experiment performed

using TD learning with the SPL approximations. The initial policy is the Naive policy.

There are two noteworthy observations. First, there is a significant decrease in performance

for TD learning with the SPL approximations relative to tabular TD. Second, there is

evidence of policy improvement across successive iterations, though policy improvement is

not guaranteed between iterations.

4.3 Policy Improvement with the TD Algorithms with Value Function

Approximations

We incorporate a policy improvement method in our computational study. Algorithm 5

details the policy improvement with TD-learning procedure. It is a relatively simple pro-

cedure that replaces the policy π with a greedy policy w.r.t. the family of value function

approximations trained by the TD-learning algorithm in each iteration. The process con-

tinues until some stopping condition is met. A stopping condition can be a cap on the

number of iterations, or something else.

Figure 2 shows the performance of the TD-ρ algorithm with a naive initialization policy

and the SPL architecture across 15 policy improvement iterations. Each line represents

the performance trajectory of one instance, normalized by the maximum value. The figure

shows two general patterns in the policy improvement performance. The first pattern,

occurring in 37.5% of instances, involves the algorithm achieving the best performance

in the first iteration and then declining in each subsequent iteration. The instances that

showed this pattern ended the trial with an average performance decay of 6.9% relative

to the maximum performance. The second pattern, occurring in the remaining instances,

shows the expected behavior involving the algorithm starting at a low level of performance

and then improving over subsequent iterations. These instances ended the trial with an

average performance decay of 0.9% relative to the maximum performance. 35% of the

22

Figure 2 Policy Performance across Improvement iterations, TD-ρ with Naive initialization and SPL architecture

instances ended the trial at their maximum performance level, indicating that additional

improvement might have been observed if the trial had been extended past 15 iterations.

The average min-max gap in policy performance across the instances with the expected

policy improvement pattern was 39.8%.

Our results indicate that there is a significant practical benefit to include the policy

improvement procedure, though perhaps with some simple heuristics or early stopping

conditions to prevent performance decay. In the computational study discussed in section

4.4, we set a stopping condition that enforced a limit of 20 iterations with an early stopping

condition that would terminate the procedure if 3 consecutive iterations passed without any

improvement in the performance of the policy. Additionally, we enforced a rule ensuring

that the policy π would only be updated if the performance had improved in the current

iteration.

4.4 Performance of the TD Algorithms with Value Function Approximations

We consider two initialization policies and two approximation architectures for TD(λ)

and TD-ρ. Tables 7 and 8 detail the results of the TD(λ) algorithm initialized with the

bid-price policy derived from the SPL and with a naive initialization, respectively. Tables

23

Algorithm 5: TD-Learning with Policy Evaluation

Input: a policy, π, to be evaluated

Input: A TD-learning algorithm, AlgTD

Input: Stopping Condition for the policy improvement algorithm

Loop until Stopping Condition is met:

Let {vt|t= 1, . . . , T}←AlgTD(π)

Let π←Greedy({vt|t= 1, . . . , T})

9 and 10 detail the results of the TD-ρ algorithms initialized again with the bid-price

policy and the naive policy, respectively. The first column lists the instance parameters

including the number of periods, τ , the number of unique resources, m, the fare scaling

factor, κ, and the load parameter, α. The “Benchmarks” column contains the upper bound

(“UB”) computed from the ALP with SPL approximation and the expected revenue of the

SPL bid-price policy (“πSPL”). The “TD-ER” column lists the expected revenue obtained

by TD-learning algorithm with the two approximation architectures, product-based (PB)

approximation detailed in Zhang et al. (2021a) and the SPL approximation, respectively.

Each test instance was trained on a sample of 200,000 arrival sequences and tested against

an independent sample of 20,000 arrival sequences. The last two columns in each table

report the percentage gain (loss) over the SPL bid-price policy.

Table 7 details the results of the TD(λ) algorithm under the SPL bid-price initialization.

The average loss with respect to the SPL bid-price policy is 9.06% for the PB approxi-

mation, and 6.75% for the SPL approximation, with a median loss of 4.44% and 5.87%,

respectively. Across both approximation architectures, there was only one problem instance

in which the TD(λ) algorithm outperformed the SPL bid-price policy. The naive initial-

ization of the TD(λ) algorithm performed markedly worse in the computational study.

With a mean loss of 16.5% and 38.4% for the PB and SPL approximation architectures,

respectively.

The TD-ρ algorithm showed significant improvement over TD(λ) on the hotel instances.

Table 9 details the results of the study under the SPL bid-price initialization. In this study,

the average loss with respect to the SPL bid-price policy was 2.42% for the PB approxima-

tion and only 0.14% for the SPL approximation. The median loss for PB approximation

was 1.61%, and the SPL approximation showed a median gain over the bid-price policy of

0.29%. In total, the algorithm with the PB approximation outperformed the SPL bid-price

policy on a single instance, while the SPL approximation outperformed the SPL bid-price

24

Benchmarks TD-ER % Off πSPL

(τ , m, κ, α) UB πSPL PB SPL PB SPL
(50, 2, 4, 1.0) 7251 7230 7090 7050 -1.936 -2.490
(50, 2, 4, 1.2) 5749 5698 5512 5645 -3.264 -0.930
(50, 2, 4, 1.6) 3638 3632 3394 3482 -6.553 -4.130
(50, 2, 4, 2.2) 6091 6014 5860 5966 -2.561 -0.798
(50, 2, 4, 3.0) 5159 5075 4993 4838 -1.616 -4.670
(50, 3, 4, 1.0) 6894 6768 6591 6605 -2.615 -2.408
(50, 3, 4, 1.2) 5175 5067 4822 4730 -4.835 -6.651
(50, 3, 4, 1.6) 3270 3208 3059 3039 -4.645 -5.268
(50, 3, 4, 2.2) 9484 9282 8841 8895 -4.751 -4.169
(50, 3, 4, 3.0) 2398 2324 2228 2143 -4.131 -7.788
(50, 4, 4, 1.0) 9747 9455 9080 9183 -3.966 -2.877
(50, 4, 4, 1.2) 8884 8599 8175 7681 -4.931 -10.676
(50, 4, 4, 1.6) 5524 5383 4850 4914 -9.902 -8.713
(50, 4, 4, 2.2) 7520 7211 6692 6589 -7.197 -8.626
(50, 4, 4, 3.0) 4694 4507 3948 3880 -12.403 -13.912
(50, 5, 4, 1.0) 15790 15136 11611 14246 -23.289 -5.880
(50, 5, 4, 1.2) 9406 8975 8319 8293 -7.309 -7.599
(50, 5, 4, 1.6) 8626 8274 7022 7405 -15.132 -10.503
(50, 5, 4, 2.2) 9090 8681 5461 7803 -37.093 -10.114
(50, 5, 4, 3.0) 3605 3433 2907 3050 -15.322 -11.156
(50, 2, 8, 1.0) 5505 5475 5496 5373 0.384 -1.863
(50, 2, 8, 1.2) 12224 12145 11974 12049 -1.408 -0.790
(50, 2, 8, 1.6) 3210 3194 3113 3165 -2.536 -0.908
(50, 2, 8, 2.2) 16838 16687 16587 15931 -0.599 -4.530
(50, 2, 8, 3.0) 8691 8590 8319 6977 -3.155 -18.778
(50, 3, 8, 1.0) 4288 4232 4118 4087 -2.694 -3.426
(50, 3, 8, 1.2) 8807 8673 8162 8307 -5.892 -4.220
(50, 3, 8, 1.6) 15815 15656 15248 15049 -2.606 -3.877
(50, 3, 8, 2.2) 12073 11883 11579 11792 -2.558 -0.766
(50, 3, 8, 3.0) 9376 9170 8234 7894 -10.207 -13.915
(50, 4, 8, 1.0) 16082 15783 15114 14887 -4.239 -5.677
(50, 4, 8, 1.2) 17284 16899 16597 15783 -1.787 -6.604
(50, 4, 8, 1.6) 18312 17935 17352 16781 -3.251 -6.434
(50, 4, 8, 2.2) 8771 8518 8184 8032 -3.921 -5.706
(50, 4, 8, 3.0) 16232 15628 14112 12850 -9.701 -17.776
(50, 5, 8, 1.0) 33103 32018 26323 30137 -17.787 -5.875
(50, 5, 8, 1.2) 7855 7605 7382 7104 -2.932 -6.588
(50, 5, 8, 1.6) 14099 13697 12414 12503 -9.367 -8.717
(50, 5, 8, 2.2) 9657 9399 4892 8762 -47.952 -6.777
(50, 5, 8, 3.0) 19878 19090 8196 15759 -57.067 -17.449

Table 7 Experimental Results for TD(λ) with the SPL Bid Price Initialization

policy on a total of 24 out of 40 test instances with the average increase in expected rev-

enue across these instances being 0.67%. The naive initialization, as reported in Table 10,

performed slightly worse than the bid-price initialization with an average loss with respect

to the SPL bid-price policy of 7.47% for the PB and 1.85% for the SPL approximation.

25

Benchmarks TD-ER % Off πSPL

(τ , m, κ, α) UB πSPL PB SPL PB SPL
(50, 2, 4, 1.0) 7251 7230 6999 7096 -3.195 -1.853
(50, 2, 4, 1.2) 5749 5698 5600 5641 -1.720 -1.000
(50, 2, 4, 1.6) 3638 3632 3492 3327 -3.855 -8.398
(50, 2, 4, 2.2) 6091 6014 4643 4698 -22.797 -21.882
(50, 2, 4, 3.0) 5159 5075 3269 1771 -35.586 -65.103
(50, 3, 4, 1.0) 6894 6768 6689 6426 -1.167 -5.053
(50, 3, 4, 1.2) 5175 5067 4930 3971 -2.704 -21.630
(50, 3, 4, 1.6) 3270 3208 2681 2018 -16.428 -37.095
(50, 3, 4, 2.2) 9484 9282 7771 5217 -16.279 -43.794
(50, 3, 4, 3.0) 2398 2324 1699 972 -26.893 -58.176
(50, 4, 4, 1.0) 9747 9455 9059 9003 -4.188 -4.781
(50, 4, 4, 1.2) 8884 8599 8364 6465 -2.733 -24.817
(50, 4, 4, 1.6) 5524 5383 3925 3052 -27.085 -43.303
(50, 4, 4, 2.2) 7520 7211 5335 3162 -26.016 -56.150
(50, 4, 4, 3.0) 4694 4507 2730 1580 -39.428 -64.943
(50, 5, 4, 1.0) 15790 15136 11873 14040 -21.558 -7.241
(50, 5, 4, 1.2) 9406 8975 8368 7134 -6.763 -20.513
(50, 5, 4, 1.6) 8626 8274 7756 4600 -6.261 -44.404
(50, 5, 4, 2.2) 9090 8681 5471 3789 -36.977 -56.353
(50, 5, 4, 3.0) 3605 3433 2757 1359 -19.691 -60.414
(50, 2, 8, 1.0) 5505 5475 5379 5097 -1.753 -6.904
(50, 2, 8, 1.2) 12224 12145 12068 12001 -0.634 -1.186
(50, 2, 8, 1.6) 3210 3194 3067 3057 -3.976 -4.289
(50, 2, 8, 2.2) 16838 16687 9168 3639 -45.059 -78.193
(50, 2, 8, 3.0) 8691 8590 3990 1310 -53.551 -84.750
(50, 3, 8, 1.0) 4288 4232 4178 3830 -1.276 -9.499
(50, 3, 8, 1.2) 8807 8673 8519 7395 -1.776 -14.735
(50, 3, 8, 1.6) 15815 15656 14999 5309 -4.196 -66.090
(50, 3, 8, 2.2) 12073 11883 10376 10358 -12.682 -12.833
(50, 3, 8, 3.0) 9376 9170 5953 1851 -35.082 -79.815
(50, 4, 8, 1.0) 16082 15783 15010 14166 -4.898 -10.245
(50, 4, 8, 1.2) 17284 16899 16497 10607 -2.379 -37.233
(50, 4, 8, 1.6) 18312 17935 16823 6271 -6.200 -65.035
(50, 4, 8, 2.2) 8771 8518 6106 2136 -28.317 -74.924
(50, 4, 8, 3.0) 16232 15628 7968 2875 -49.015 -81.604
(50, 5, 8, 1.0) 33103 32018 27404 28455 -14.411 -11.128
(50, 5, 8, 1.2) 7855 7605 7416 4989 -2.485 -34.398
(50, 5, 8, 1.6) 14099 13697 11912 5192 -13.032 -62.094
(50, 5, 8, 2.2) 9657 9399 6555 2383 -30.259 -74.646
(50, 5, 8, 3.0) 19878 19090 13936 3664 -26.998 -80.807

Table 8 Experimental Results for TD(λ) with Naive Initialization

The PB approximation did not yield any instances which outperformed the SPL bid-price

policy, but the SPL approximation outperformed the SPL bid-price policy on 13 of the 40

test instances with an average gain over those instances of 0.43%.

Table 11 shows the median performance of the two TD-learning algorithms with two

26

Benchmarks TD-ER % Off πSPL

(τ , m, κ, α) UB πSPL PB SPL PB SPL
(50, 2, 4, 1.0) 7251 7230 7089 7108 -1.950 -1.687
(50, 2, 4, 1.2) 5749 5698 5639 5690 -1.035 -0.140
(50, 2, 4, 1.6) 3638 3632 3551 3605 -2.230 -0.743
(50, 2, 4, 2.2) 6091 6014 5984 6022 -0.499 0.133
(50, 2, 4, 3.0) 5159 5075 5092 5104 0.335 0.571
(50, 3, 4, 1.0) 6894 6768 6695 6770 -1.079 0.030
(50, 3, 4, 1.2) 5175 5067 4935 5077 -2.605 0.197
(50, 3, 4, 1.6) 3270 3208 3169 3224 -1.216 0.499
(50, 3, 4, 2.2) 9484 9282 9216 9310 -0.711 0.302
(50, 3, 4, 3.0) 2398 2324 2287 2342 -1.592 0.775
(50, 4, 4, 1.0) 9747 9455 9276 9521 -1.893 0.698
(50, 4, 4, 1.2) 8884 8599 8421 8470 -2.070 -1.500
(50, 4, 4, 1.6) 5524 5383 5166 5329 -4.031 -1.003
(50, 4, 4, 2.2) 7520 7211 7077 7269 -1.858 0.804
(50, 4, 4, 3.0) 4694 4507 4499 4522 -0.178 0.333
(50, 5, 4, 1.0) 15790 15136 14391 15199 -4.922 0.416
(50, 5, 4, 1.2) 9406 8975 7275 9108 -18.942 1.482
(50, 5, 4, 1.6) 8626 8274 7273 8243 -12.098 -0.375
(50, 5, 4, 2.2) 9090 8681 8540 8754 -1.624 0.841
(50, 5, 4, 3.0) 3605 3433 3125 3453 -8.972 0.583
(50, 2, 8, 1.0) 5505 5475 5463 5451 -0.219 -0.438
(50, 2, 8, 1.2) 12224 12145 12098 12102 -0.387 -0.354
(50, 2, 8, 1.6) 3210 3194 3160 3181 -1.064 -0.407
(50, 2, 8, 2.2) 16838 16687 16641 16645 -0.276 -0.252
(50, 2, 8, 3.0) 8691 8590 8475 7437 -1.339 -13.423
(50, 3, 8, 1.0) 4288 4232 4161 4222 -1.678 -0.236
(50, 3, 8, 1.2) 8807 8673 8559 8730 -1.314 0.657
(50, 3, 8, 1.6) 15815 15656 15627 15630 -0.185 -0.166
(50, 3, 8, 2.2) 12073 11883 11858 11879 -0.210 -0.034
(50, 3, 8, 3.0) 9376 9170 8899 9133 -2.955 -0.403
(50, 4, 8, 1.0) 16082 15783 15527 15691 -1.622 -0.583
(50, 4, 8, 1.2) 17284 16899 16841 17062 -0.343 0.965
(50, 4, 8, 1.6) 18312 17935 17929 18075 -0.033 0.781
(50, 4, 8, 2.2) 8771 8518 8510 8542 -0.094 0.282
(50, 4, 8, 3.0) 16232 15628 15212 15709 -2.662 0.518
(50, 5, 8, 1.0) 33103 32018 31609 32444 -1.277 1.331
(50, 5, 8, 1.2) 7855 7605 7472 7707 -1.749 1.341
(50, 5, 8, 1.6) 14099 13697 13362 13842 -2.446 1.059
(50, 5, 8, 2.2) 9657 9399 9204 9471 -2.075 0.766
(50, 5, 8, 3.0) 19878 19090 17946 19241 -5.993 0.791

Table 9 Experimental Results for TD-ρ with the SPL Bid Price Initialization

initial policies and two approximation architecture. It is clear that TD-ρ with the SPL

bid-price policy and the SPL approximation has the best performance and is able to out-

performan the SPL bid-price policy for most of the 40 instances.

27

Benchmarks TD-ER % Off πSPL

(τ , m, κ, α) UB πSPL PB SPL PB SPL
(50, 2, 4, 1.0) 7251 7230 7075 7084 -2.144 -2.019
(50, 2, 4, 1.2) 5749 5698 5668 5690 -0.527 -0.140
(50, 2, 4, 1.6) 3638 3632 3044 3332 -16.189 -8.260
(50, 2, 4, 2.2) 6091 6014 5978 6011 -0.599 -0.050
(50, 2, 4, 3.0) 5159 5075 3105 5061 -38.818 -0.276
(50, 3, 4, 1.0) 6894 6768 6633 6760 -1.995 -0.118
(50, 3, 4, 1.2) 5175 5067 4950 5069 -2.309 0.039
(50, 3, 4, 1.6) 3270 3208 2781 2513 -13.310 -21.665
(50, 3, 4, 2.2) 9484 9282 7381 9212 -20.480 -0.754
(50, 3, 4, 3.0) 2398 2324 1708 2332 -26.506 0.344
(50, 4, 4, 1.0) 9747 9455 9262 9494 -2.041 0.412
(50, 4, 4, 1.2) 8884 8599 8400 8585 -2.314 -0.163
(50, 4, 4, 1.6) 5524 5383 4742 4531 -11.908 -15.828
(50, 4, 4, 2.2) 7520 7211 6251 7173 -13.313 -0.527
(50, 4, 4, 3.0) 4694 4507 3434 4521 -23.807 0.311
(50, 5, 4, 1.0) 15790 15136 14257 15100 -5.814 -0.238
(50, 5, 4, 1.2) 9406 8975 7872 8935 -12.287 -0.446
(50, 5, 4, 1.6) 8626 8274 7291 8254 -11.883 -0.242
(50, 5, 4, 2.2) 9090 8681 8482 8727 -2.291 0.530
(50, 5, 4, 3.0) 3605 3433 2805 3447 -18.293 0.408
(50, 2, 8, 1.0) 5505 5475 5463 5370 -0.219 -1.918
(50, 2, 8, 1.2) 12224 12145 12092 12068 -0.436 -0.634
(50, 2, 8, 1.6) 3210 3194 3166 3184 -0.877 -0.313
(50, 2, 8, 2.2) 16838 16687 16632 16525 -0.330 -0.971
(50, 2, 8, 3.0) 8691 8590 8517 7208 -0.850 -16.088
(50, 3, 8, 1.0) 4288 4232 4136 4225 -2.268 -0.165
(50, 3, 8, 1.2) 8807 8673 8544 8657 -1.487 -0.184
(50, 3, 8, 1.6) 15815 15656 15280 15200 -2.402 -2.913
(50, 3, 8, 2.2) 12073 11883 9913 11752 -16.578 -1.102
(50, 3, 8, 3.0) 9376 9170 8794 9063 -4.100 -1.167
(50, 4, 8, 1.0) 16082 15783 15473 15560 -1.964 -1.413
(50, 4, 8, 1.2) 17284 16899 16837 16958 -0.367 0.349
(50, 4, 8, 1.6) 18312 17935 17739 17920 -1.093 -0.084
(50, 4, 8, 2.2) 8771 8518 8334 8362 -2.157 -1.831
(50, 4, 8, 3.0) 16232 15628 15176 15704 -2.891 0.486
(50, 5, 8, 1.0) 33103 32018 31011 32348 -3.152 1.031
(50, 5, 8, 1.2) 7855 7605 7303 7645 -3.968 0.526
(50, 5, 8, 1.6) 14099 13697 12988 13701 -5.184 0.029
(50, 5, 8, 2.2) 9657 9399 9221 9430 -1.890 0.330
(50, 5, 8, 3.0) 19878 19090 14801 19244 -22.473 0.807

Table 10 Experimental Results for TD-ρ with Naive Initialization

28

Approx. Initial TD-ρ to πSPL TD(λ) to πSPL

PB SPL Bid Price -1.61 -4.44
SPL SPL Bid Price 0.29 -5.88
PB Naive -2.36 -12.86
SPL Naive -0.21 -37.16

Table 11 Median Performance Gap of TD-ρ and TD(λ) Algorithm

29

5. Conclusion

Reinforcement learning offers an alternative solution approach to sequential decision mak-

ing problems that do not require the rigid assumptions and commercial solvers that are

necessary for linear programming based approximate dynamic programming. For small

problem instances, there is evidence that the TD learning method can improve over poli-

cies generated by ALP techniques which are demonstrably non-optimal in certain scenarios

due to their inability to fully capture the impact of strong network effects which may exist

in NRM problem instances. Our results show that while the traditional TD(λ) algorithm

may struggle to yield high performing policies on the hotel test instances in our study, the

TD-ρ algorithm that leverages the novel salience trace shows the potential to improve over

ALP-based policies when initialized with a strong bid-price policy. The TD-ρ algorithm

was able to outperform the bid-price policy derived from the SPL approximation on 24

out of the 40 test instances considered, demonstrating the potential for the application of

reinforcement learning techniques for policy improvement.

Furthermore, the flexibility of reinforcement methods allows for the consideration of a

broader class of approximation architectures as well as applications in problems which

may violate the critical assumptions of ALPs. With a recent emphasis in the literature on

the use of machine learning techniques for demand forecasting (Lee et al. (2020), Wang

and Duggasani (2020)) and choice modeling (Chen et al. (2021)), we believe there is an

opportunity for further research into model-free solution methodologies which are agnostic

to the manner in which signals about rewards, state transitions, and customer arrivals are

generated.

30

References

Adelman, D. (2007). Dynamic bid-prices in revenue management. Operations Research, 55(4):647–661.

Asis, K. D., Chan, A., Pitis, S., Sutton, R. S., and Graves, D. (2019). Fixed-horizon temporal difference

methods for stable reinforcement learning. CoRR, abs/1909.03906.

Bertsekas, D. P. and Tsitsiklis, J. N. (1996). Neuro-Dynamic Programming. Athena Scientific, Belmont,

MA.

Chen, S.-S., Choubey, B., and Singh, V. (2021). A neural network based price sensitive recommender model to

predict customer choices based on price effect. Journal of Retailing and Consumer Services, 61:102573.

Dabney, W. and Barto, A. (2012). Adaptive step-size for online temporal difference learning.

de Farias, D. and Van Roy, B. (2004). On constraint sampling in the linear programming approach to

approximate dynamic programming. Mathematics of Operations Research, 29(3):462–478.

de Farias, D. P. and Van Roy, B. (2003). The linear programming approach to approximate dynamic

programming. Operations Research, 51(6):850–865.

Farias, V. F. and Van Roy, B. (2007). An approximate dynamic programming approach to network revenue

mangement. Working paper, MIT Sloan School of Management.

Kober, J., Bagnell, J. A., and Peters, J. (2013). Reinforcement learning in robotics: A survey. The Interna-

tional Journal of Robotics Research, 32(11):1238–1274.

Koch, S. (2017). Least squares approximate policy iteration for learning bid prices in choice-based revenue

management. Computers & Operations Research, 77:240–253.

Kunnumkal, S. and Talluri, K. (2016). On a piecewise-linear approximation for network revenue management.

Mathematics of Operations Research, 41(1):72–91.

Lee, M., Mu, X., and Zhang, Y. (2020). A machine learning approach to improving forecasting accuracy of

hotel demand: A comparative analysis of neural networks and traditional models. Issues in Information

Systems, 21(1):12–21.

Littman, M. L. (1994). Markov games as a framework for multi-agent reinforcement learning. In Machine

learning proceedings 1994, pages 157–163. Elsevier.

Ma, Y., Rusmevichientong, P., Sumida, M., and Topaloglu, H. (2020). An approximation algorithm for

network revenue management under nonstationary arrivals. Operations Research, 68(3):834–855.

Mahmud, M., Kaiser, M. S., Hussain, A., and Vassanelli, S. (2018). Applications of deep learning and

reinforcement learning to biological data. IEEE transactions on neural networks and learning systems,

29(6):2063–2079.

Mazyavkina, N., Sviridov, S., Ivanov, S., and Burnaev, E. (2021). Reinforcement learning for combinatorial

optimization: A survey. Computers & Operations Research, page 105400.

31

Meissner, J. and Strauss, A. K. (2012). Network revenue management with inventory-sensitive bid prices

and customer choice. European Journal of Operational Research, 216(2):459–468.

O’Doherty, J. P., Dayan, P., Friston, K., Critchley, H., and Dolan, R. J. (2003). Temporal difference models

and reward-related learning in the human brain. Neuron, 38(2):329–337.

Sutton, R. (1988a). Learning to predict by the methods of temporal differences. Machine Learning, (3.1):9–

44. TD Learning.

Sutton, R. S. (1988b). Learning to predict by the methods of temporal differences. Machine learning,

3(1):9–44.

Sutton, R. S. and Barto, A. G. (2018). Reinforcement Learning: An Introduction. The MIT Press Cambridge,

MA.

Talluri, K. and van Ryzin, G. J. (1998). An analysis of bid-price controls for network revenue management.

Management Science, 44(11):1577–1593.

Talluri, K. and van Ryzin, G. J. (2004). Revenue management under a general discrete choice model of

consumer behavior. Management Science, 50(1):15–33.

Tesauro, G. (1992). Practical issues in temporal difference learning. Machine Learning, 8:257–277.

Tesauro, G. et al. (1995). Temporal difference learning and td-gammon. Communications of the ACM,

38(3):58–68.

Tong, C. and Topaloglu, H. (2014). On the approximate linear programming approach for network revenue

management problems. INFORMS Journal on Computing, 26(1):121–134.

Tsitsiklis, J. and Van Roy, B. (1997). An analysis of temporal-difference learning with function approxima-

tion. IEEE Transactions on Automatic Control, 42(5):674–690.

Van Seijen, H., Mahmood, A. R., Pilarski, P. M., Machado, M. C., and Sutton, R. S. (2016). True online

temporal-difference learning. The Journal of Machine Learning Research, 17(1):5057–5096.

Vossen, T. and Zhang, D. (2015). Reductions of approximate linear programs for network revenue manage-

ment. Operations Research, 63(6):1352–1371.

Wang, J. and Duggasani, A. (2020). Forecasting hotel reservations with long short-term memory-based

recurrent neural networks. International Journal of Data Science and Analytics, 9.

Williamson, E. (1992). Airline Network Seat Control. PhD thesis, Massachusetts Institute of Technology.

Zhang, D., Samiedaluie, S., and Zhang, R. (2021a). Product-based approximate linear programs for network

revenue management. Working paper, University of Colorado Boulder.

Zhang, R., Samiedaluie, S., and Zhang, D. (2021b). Product-based approximate linear programs for network

revenue management. Working paper, Leeds of Business, University of Colorado Boulder.

