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Abstract: Super-resolution fluorescence microscopy has proven to be a useful tool in biological
studies. To achieve more than two-fold resolution improvement over the diffraction limit, existing
methods require exploitation of the physical properties of the fluorophores. Recently, it has
been demonstrated that achieving more than two-fold resolution improvement without such
exploitation is possible using only a focused illumination spot and numerical post-processing.
However, how the achievable resolution is affected by the processing step has not been thoroughly
investigated. In this paper, we focus on the processing aspect of this emerging super-resolution
microscopy technique. Based on a careful examination of the dominant noise source and the
available prior information in the image, we find that if a processing scheme is appropriate
for the dominant noise model in the image and can utilize the prior information in the form
of sparsity, improved accuracy can be expected. Based on simulation results, we identify an
improved processing scheme and apply it in a real-world experiment to super-resolve a known
calibration sample. We show an improved super-resolution of 60nm, approximately four times
beyond the conventional diffraction-limited resolution.

© 2020 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

1. Introduction

A widely used resolution metric for optical instruments like telescopes and microscopes is the
Rayleigh resolution distance, dR [1,2]. It defines the minimum separation needed between
two incoherent point sources for them to be “barely resolved,” and is usually estimated as
dR = 0.61λ/NA [2], where λ is the light wavelength and NA is the numerical aperture of the
imaging instrument. Because of this resolution limit, fluorescence microscopy images obtained
using a widefield microscope will only reveal object features that are around 200nm in size
or larger. Bypassing this limit using recent novel imaging techniques has allowed users of
fluorescence microscopes to observe finer object details, which in turn has generated significant
research interests.

To achieve more than two-fold resolution improvement over the Rayleigh resolution limit,
a super-resolution microscopy technique generally needs to exploit certain properties of the
fluorophores in addition to the absorption-emission mechanism. Among many novel techniques,
these properties are usually stimulated emission [3,4] and on-off state transitions [5–9]. For
techniques utilizing the latter, transitions can be achieved either by the photo-switchable properties
of specifically designed fluorescent markers [5,6], or by the inherent stochastic blinking behavior of
conventional fluorescent probes [7,8]. An additional commonly used super-resolution microscopy
technique is structured illumination microscopy (SIM) [10]. In SIM, a sinusoidal illumination
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pattern is produced on the object that allows the overall system to recover spatial frequencies
higher than the cutoff of the unmodified optical system, which is about 1/dR. The overall
achievable cutoff is then the sum of the unmodified optical system and the highest sinusoidal
illumination pattern frequency, which limits the achievable resolution improvement for SIM to
a maximum of two-fold. More than two-fold resolution improvement has been reported, for
example in [11], but we note that it still requires on-off state transitions of the fluorescent markers.

Achieving super-resolution is also possible using numerical post-processing, and it has shown
great promise without needing to exploit the physical properties of the fluorophores. In [12], it
is shown that object non-negativity and sparsity (termed "near-blackness" in [12]) are critical
in achieving super-resolution computationally from noisy images. Similar to [12], in [13], it is
shown that the achievable super-resolution is inversely related to the spatial extent of the object
and the noise level. In another series of works, this super-resolution phenomenon is analyzed
in coherent imaging [14], incoherent imaging [15], and incoherent imaging with non-uniform
illumination [16], using singular value decomposition (SVD). The authors of [14–16] again show
that the achievable super-resolution is inversely related to the spatial extent of the object and the
noise level. A common theme among these results is that, for a computational super-resolution
approach, the achievable super-resolution is dependent on the signal-to-noise ratio (SNR), and
the discussion of a “resolution limit” requires specifying a SNR to be meaningful.

Regrettably, these early efforts in computational super-resolution did not include extensive
examples in the biological applications of this approach. Recently, the present authors performed
a real-world, biological proof-of-concept experiment to demonstrate the potential of this super-
resolution approach [17]. Later, a comparison between this method and image scanning
microscopy (ISM) was also performed by the authors [18]. In these works, a biological sample
labeled with conventional fluorophores is imaged with a focused illumination spot that is scanned
across the sample to enhance object sparsity. At each of the scanning steps, a small raw image is
collected (Fig. 1(e)). These raw images are then numerically post-processed and reassembled
according to the scanning pattern to produce a super-resolved image. We showed that if the object
being imaged possesses some degree of sparsity, which is artificially enhanced by the focused
illumination spot, computationally achieving super-resolution is possible without needing to
exploit the on-off state transitions of the fluorophores.

Throughout these proof-of-concept works in computational super-resolution, the effect of the
processing scheme is usually given less importance than the simple fact that super-resolution is
achieved. In [12], maximum entropy inversion is used to demonstrate successful computational
super-resolution, and no alternative options are explored. In [14], a truncated SVD based
inversion scheme is used to recover the super-resolved image. This processing scheme requires
accurate knowledge of the spatial extent of the object, which means that it cannot plausibly be
used in a real-world experiment. In [17,18], non-negative least squares (NNLS) solvers were
used.

While these previous works demonstrate successful computational super-resolution, we find
it unlikely that the processing schemes they employ are optimal in terms of maximizing the
achievable resolution. In this paper, we attempt to improve the super-resolution accuracy of
NNLS, used in [17,18]. The reason for the skepticism is that NNLS does not take advantage of
two factors in biological fluorescence microscopy. The first factor is that, for high-sensitivity
fluorescence microscope systems, the photonic shot noise is usually the dominant noise source.
However, NNLS is derived from maximum likelihood estimation (MLE) for additive, uniform,
and zero-mean Gaussian noise and therefore is not in agreement with the shot noise model. The
other factor is that most fluorescently labeled biological samples can be regarded as highly sparse
objects, because they typically consist of sub-micron structures labeled with fluorescent markers
against a non-labeled, dark background. It is widely known that a suitable regularization term
can take advantage of this sparsity [19,20].
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Fig. 1. Design of the numerical experiment and experimental setup. (a) The test object and
the point spread function (PSF). The test object consists of two incoherent point sources
separated by a small distance d, which is around 1/3 of Rayleigh resolution distance, dR.
PSFs are normalized such that the sum of all pixel values is 1. (b) Acquired noisy images
under various signal levels. Images shown here are representative examples out of 500 runs
for each signal level. (c) Criterion for determining if a processed image is ”resolved” or
”not resolved”. By comparing the relative intensities between the three regions shown, a
binary ”resolved”/”not resolved” determination can be made. (d) Examples of successful and
unsuccessful reconstructions and resolving ratio for three levels of the signal strength for 500
runs. NNLS was used as the processing scheme in this figure. All other processing schemes
considered in this paper use the same procedures. (e) An experimental implementation to
achieve super-resolution. This setup is used in the experiment in section 5.

To account for these two factors, we develop three processing schemes based on the MLE for
shot noise, and include a sparsity-inducing ℓ1 regularization term in these processing schemes.
In addition to the standard MLE for shot noise, we formulate the two other processing schemes
utilizing different approximations that allow us to recast the optimization problem in the form of
least squares. We apply these processing schemes in simulation to super-resolve an incoherent
two-dot test object and compare the accuracy of the results.

As expected, we find that the three processing schemes achieve more accurate estimations of
the object than the previous NNLS approach at the same photon levels, and especially so at low
photon levels. Furthermore, we show that the three processing schemes, although formulated with
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different approximations, perform similarly in terms of super-resolution accuracy. Based on the
simulation results and computation requirements, we identify an improved processing scheme and
apply it in a real-world experiment to super-resolve a commercially available calibration sample.
A resolution of 60nm is achieved, which is approximately four times finer than conventional
diffraction-limited resolution.

2. Simulation methodology

The development and evaluation of the processing schemes is done using numerical simulation,
since this allows us access to a ground truth object so that fair and accurate comparisons among
the processing schemes can be made. To do this, we design a numerical experiment where
we: 1) define an incoherent two-dot test object with a distance between the two dots smaller
than the Rayleigh resolution distance, 2) simulate the noisy images it produces when corrupted
by photon shot noise and Gaussian readout noise that results from a scientific complementary
metal-oxide-semiconductor (sCMOS) camera, 3) apply the processing schemes to recover the
super-resolved image of the test object, and 4) evaluate their performance by calculating the
probability for a processing scheme to successfully resolve the two dots in a single trial. These
steps are graphically illustrated in Fig. 1. In this section, we 1) describe the image formation
and noise model used in our simulation, 2) provide a general example of how the super-resolved
object is recovered, and 3) describe the metric used for evaluating the performance of the various
processing schemes considered.

2.1. Image formation and noise model

Our imaging system is a standard widefield fluorescence microscope, except for a modified
illumination setup that enables point illumination scanning for the purpose of enhancing object
sparsity [17] (Fig. 1(e)). For each scanning step, a small raw image is recorded on a sCMOS
camera. Then each raw image is independently processed before being recombined with all of
the others to form a super-resolved image across the entire field of view. Because our two-dot
test object is smaller than the size of the illumination spot, this scanning process is not modeled
in the simulations shown here.

Assuming the microscope system has a 1:1 magnification (without the loss of generality), the
noiseless image can be formulated as

Inoiseless = IPSF ⊗
[︁
Iill · Iobj

]︁
, (1)

where IPSF is the point spread function (PSF) of the microscope system, ⊗ the convolution
operator, Iill the illumination profile (here a diffraction-limited focused spot), · the element-wise
multiplication operation, and Iobj the object being imaged. To implement Eq. (1) numerically, we
formulate it as

Inoiseless = HPSF ×
[︁
Iill · Iobj

]︁
. (2)

Here and for the rest of this paper, Inoiseless, HPSF, Iill, and Iobj are discretized and vectorized
versions of Inoiseless, IPSF, Iill, and Iobj in Eq. (1) respectively. In this formulation, HPSF is a
matrix whose j-th column stores the (discretized and vectorized) PSF centered at location sj
(here, sj indicates a point (xj, yj) on the two-dimensional image plane), and × represents a matrix
multiplication. We refer to HPSF as the dictionary throughout this paper.

We note that the dictionary HPSF needs not be a square matrix, and is, in general, not a square
matrix. This is because, for the same microscope system, different discretization schemes are
possible. If sj has a finer discretization (smaller than the pixel size of the camera), it allows us to
model and later process for a finer resolution [17]. For example, if dcamera represents the camera
pixel size, and ddict represents the distance between two adjacent PSFs contained in the columns
of HPSF, then by allowing ddict to be smaller than dcamera, we can model the images of objects
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containing details that are smaller than the size of the camera pixel, and later attempt to recover
these details. To achieve this, we first calculate a series of sub-camera-pixel PSFs, one for each
particular sub-camera-pixel position of the point source. Then we shift these PSFs to form the
entire HPSF matrix. For example, if ddict = dcamera/4, we first calculate a series of PSFs, each
representing one of a total of 42 = 16 sub-camera-pixel positions. Using these sub-camera-pixel
PSFs, we can shift them by some integer number of pixels to form the complete dictionary HPSF.
This method is used throughout to generate HPSF.

We also model an sCMOS camera in our simulation. The camera has a quantum efficiency
(QE) between 0 and 1, and the collected images are corrupted by photon shot noise and additive
Gaussian readout noise. Accounting for these sources of noise, the detected noisy images are
modeled as

Inoisy = Poiss (Inoiseless · QE) +N(0,σ2). (3)

In Eq. (3), Inoisy is the vector containing the intensity values of the noisy pixels collected from
the simulated camera, Poiss an operation that generates Poisson random numbers with the mean
set to its input, and QE is the camera’s quantum efficiency. N(0,σ2) returns a vector of the same
size as Inoisy, and its elements are Gaussian random numbers with zero mean and variance of σ2.
The photon shot noise is modeled by Poiss, and readout noise is modeled by N(0,σ2). In our
simulation, we set QE to 0.6, and σ2 = 1 unless otherwise specified. We initially investigated
the effect of quantization (performed by the analog-to-digital converter of the sCMOS camera)
and observed no significant difference from when quantization was not modeled. Therefore, the
imaging model used here does not include quantization.

2.2. Recovery of a super-resolved object

The recovery of the super-resolved object is achieved by solving a series of inverse problems, one
for each raw image. As an example, an NNLS optimization problem can be used to recover the
super-resolved object. The optimization problem is

xNNLS,m = argmin ∥HPSF × x − Inoisy,m∥
2
2 , subject to x ≥ 0, (4)

where xNNLS,m is the super-resolved object indexed by m, and m refers to the m-th raw image in
the scanning sequence. Since scanning is not modeled in our simulation, the index m is left out
for simplicity. The inequality is element-wise, i.e., the solution vector xNNLS should contain only
non-negative elements.

As we examine different properties (e.g., the dominant noise source) of the overall imaging
system, we develop alternative processing schemes that take on different forms than Eq. (4). We
present these alternative processing schemes in the main text, and leave implementation details
for Supplement 1.

2.3. Test object and evaluation of processing scheme performance

Our simulated test object is comprised of two fluorescent dots that are separated by a distance
roughly 1/3 of the Rayleigh resolution distance dR. dcamera is selected such that dR spans
approximately 3 pixels (as shown in Fig. 1). The images are generated with a HPSF having
ddict = dcamera/16 and processed with HPSF having ddict = dcamera/4, respectively. These ddict
values are chosen such that: 1) the small separation distance of dR/3 is accurately represented,
and 2) the dots are not positioned exactly on the center of a pixel in the processed image, which
is the most common case in a real-world experiment.

We first specify a signal level in the form of number of photons per dot, and simulate the
acquired noisy image. Next, the processing scheme under consideration is applied to recover
the super-resolved object. Finally, a binary resolved/not resolved metric (Fig. 1(c)) is applied to
each processing run. This metric is based on the relative intensities of the pixels in the processed
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image, and is similar to the metric adopted in our prior work [17]. We then repeat this process
for 500 times, and generate a “resolving ratio” performance measure, which is defined as

resolving ratio =
number of "resolved" runs

500
. (5)

After we generate the resolving ratio for a given signal level, we then repeat this process for a
range of signal levels and plot the resolving ratio versus signal level. In our super-resolution
technique, the sample is scanned with the focused illumination spot once. Therefore, evaluating
the probability for a processing scheme to recover the correct object in one trial is the suitable
metric in assessing its performance. An optimal processing scheme should give the highest
resolving ratio using the lowest signal level.

3. Simulation results

Next, we examine the imaging system focusing on two aspects: the noise model, and prior
information.

3.1. Noise model and dominant noise source

As a baseline for our discussion, in Fig. 2(a), we plot the performance of NNLS, the processing
scheme used in our prior works [17,18], to recover a two-dot object under various signal levels.
It is clear from Fig. 2(a) that the resolving ratio is improved with increasing signal strength, and
eventually approaches 1. This is expected because, as the signal level increases, the detected
image will have an SNR that eventually approaches noiseless, which has been shown to enable
exact recovery [13].

Fig. 2. Performance of NNLS and WNNLS under different levels of Gaussian readout noise.
(a) shows the performance with a QE of 0.6, and σ2 of 1. (b) shows the performance with a
QE of 0.6, and σ2 of 100. (a) and (b) show similar trends: WNNLS performs roughly the
same as NNLS before yielding better performance at some higher signal level. Note that in
(b), with higher noise power (i.e., lower SNR), WNNLS gives a better resolving ratio than
NNLS at a higher signal level.

Intuitively, NNLS (Eq. (4)) recovers the super-resolved objects by minimizing the total
discrepancy energy between the acquired image (Inoisy) and the reconstructed image (HPSF × x).
We show here that this straightforward method may not be appropriate for the dominant noise
source present in the acquired images. From the perspective of maximum likelihood estimations,
NNLS can be derived from the log-likelihood function for noise modeled by additive, zero-mean,
and independent and identically distributed (i.i.d.) Gaussian random variables. While this is a
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noise process present in modern sCMOS cameras in the form of readout noise [21], the photon
shot noise inherent to fluorescence detection is decidedly Poissonian. A Poisson random variable
has a variance equal to its mean, such that, as the optical signal level (mean) increases, the noise
power (variance) increases as well. Thus, for a fixed level of Gaussian readout noise, as the signal
level increases, at some point the shot noise starts to dominate. For realistic values of readout
noise and photon counts, the shot noise almost always dominates. In this case, NNLS is no
longer appropriate for maximizing the likelihood function because of the mismatch between the
the Gaussian noise assumed by the processing scheme and the Poisson noise that dominates the
images.

To demonstrate this, we present an alternative that is appropriate for the shot noise model:
weighted non-negative least squares (WNNLS). For a Poisson random variable with sufficiently
large mean/variance, a Gaussian random variable with the same mean and variance as that of the
Poisson random variable can be used to approximate the original Poisson random variable. In
other words, we approximate an acquired noisy image as a series of Gaussian random variables,
one for each pixel, with individual means and variances. For such a random process, weighted
least squares (with weights set to the true variance) can be used to obtain a maximum likelihood
estimator [22]. In this case, the true variances are represented by the noiseless image plus the
variance of the Gaussian readout noise, both available in simulation. We present a more typical
implementation of maximum likelihood estimation in section 4.1. The optimization problem we
solve for WNNLS is

xWNNLS = argmin
∥︁∥︁W ×

(︁
HPSF × x − Inoisy

)︁∥︁∥︁2
2 , subject to x ≥ 0, (6)

where W is a diagonal matrix that contains the weights for each pixels. The diagonal elements of
W are calculated by

Wdiag = (Inoiseless + σ
2)

−1
2 , (7)

where σ2 is the variance for the Gaussian readout noise of the simulated sCMOS camera. More
information for WNNLS can be found in Supplement 1, and section 4 will discuss the case when
Inoiseless is unknown.

We plot the performance of NNLS and WNNLS, as measured by the resolving ratio metric, in
Fig. 2(a). From the figure, we observe the following: 1) both processing schemes show improved
performance with increasing signal level; 2) more interestingly, WNNLS and NNLS perform
similarly at extremely low signal levels, but WWNLS shows a clear improvement in resolving
ratios over NNLS as the signal level increases. This is expected since, when the signal level is
sufficiently low, shot noise has a low variance, and therefore does not contribute much to the
noise power. In this case, Gaussian readout noise is the main source of noise in the image, for
which NNLS is appropriate. We also observe that in this regime, WNNLS does not yield worse
performance than NNLS. This is also expected since, in this signal range, Wdiag ≈ σ−1I (where I
is an identity matrix), and so Eq. (6) is nearly the same as Eq. (4). As the signal level increases,
shot noise variance increases and becomes the dominant noise source in the image. In this case,
WNNLS is the more appropriate processing scheme, which leads to its superior performance in
this signal regime.To further illustrate this effect, in Fig. 2(b), we repeat the same simulation as
in Fig. 2(a), but with an increased (100-fold) Gaussian readout noise variance. From the plot, we
observe that: 1) for the same optical signal level, the increased noise level causes both NNLS
and WNNLS to yield worse performance; 2) the performance of WNNLS stays roughly the
same with NNLS for a longer interval as the optical signal level increases, before yielding better
performance over NNLS at a higher optical signal level than that in Fig. 2(a). In this case, the
increase in Gaussian readout noise means that shot noise needs to have an even higher variance
(i.e., higher signal level) to become the dominant noise source in the image, making WNNLS
outperform NNLS at a higher signal level.

https://doi.org/10.6084/m9.figshare.13335911
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From these results, we conclude that performance improvement can be achieved if a processing
scheme more appropriate for the dominant noise source in the acquired image is chosen.

3.2. Prior information and sparsity

It is well-known that inverse problems such as Eqs. (4) and (6), which are widely used in image
deconvolution and super-resolution, are very ill-conditioned [12,14,23]. An effect of this is that,
even when the underlying object stays the same (as is the case in our two-dot object example), the
processed image will be different for successive trials. This gives rise to the non-unity resolving
ratio for the majority of the signal levels considered (Fig. 2).

Utilizing prior information has proven to be a powerful solution to this problem [9,12,13,19,20].
It is typically achieved by first acquiring prior knowledge about the solution vector of the inverse
problem, and then imposing appropriate constraints (or adding regularization) when solving it.
Prior information can often be derived from physical properties of the imaging system, and takes
on many forms, such as the non-negativity (derived from the contrast mechanism of incoherent
imaging) we have been including in our processing schemes.

Another example of prior information that is critical for the success of our computational
super-resolution microscopy approach is the presence of some degree of photo-emitter sparsity
within the sample. This sparsity condition frequently occurs in biological fluorescence imaging
because the sample consists of structures that are much smaller than the size of the illumination
spot, and they are labeled with fluorescent markers against a non-labeled, dark background.
When these small labeled structures are excited with a focused illumination spot, the illuminated
region will be made up of a mixture of photo-emitters and non-emitting background. Because of
this, one expects the solution vector will contain many zero elements. It has been shown that ℓ1
regularization can induce sparsity in the computed solution vector and improve the accuracy [24].
Therefore applying a sparsity-inducing ℓ1 regularization term should improve the super-resolution
performance further.

To demonstrate this, we modify NNLS and WNNLS by simply adding an ℓ1 regularization
term. We formulate the modified processing schemes, r-NNLS and r-WNNLS as:

xr-NNLS = argmin ∥HPSF × x − Inoisy∥
2
2 + λ∥x∥1, subject to x ≥ 0, (8)

xr-WNNLS = argmin
∥︁∥︁W ×

(︁
HPSF × x − Inoisy

)︁∥︁∥︁2
2 + λ∥x∥1, subject to x ≥ 0. (9)

In Eqs. (8) and (9), ∥x∥1 calculates the 1-norm of vector x. λ is the regularization parameter,
and specifies the “strength” of the applied regularization. Unlike in other sparsity-based super-
resolution microscopy techniques [5,8], the degree of sparsity can vary between different raw
images as the focused illumination spot is moved onto different portions of the fluorescently
labeled sample. As a result, proper selection of a regularization parameter λ is crucial in
achieving good super-resolution performance using processing schemes that include an ℓ1 term.
The selection of λ, especially the automatic selection of λ using the acquired noisy data only, is
not a trivial issue, and is outside the scope of this paper. For our simulation results, we adopt
existing selection methods (L-Curve [25] and generalized cross validation [26]) for λ. For our
experimental results, we solve an alternative, but equivalent formulation of the optimization
problem. This allows us to process the experimental data within an acceptable time frame. We
manually tune the regularization parameter until we observe satisfactory results. We describe
this in greater detail in Supplement 1.

In Fig. 3, we plot the performance of all four processing schemes (Eqs. (4), (6), (8), and (9))
when utilized to super-resolve the two-dot test object. We observe that because sparsity is the
prior information present in the inverse problem, the addition of a sparsity-inducing ℓ1 term
improves the performance of both NNLS and WNNLS. We also observe that r-WNNLS shows
the best performance across all signal levels considered in the simulation. From these results, we

https://doi.org/10.6084/m9.figshare.13335911
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can conclude that a processing scheme appropriate for the noise model and utilizing the prior
sparsity information achieves the highest amount of performance improvement.

Fig. 3. Performance of NNLS and WNNLS, as well as their regularized counterparts,
with a QE of 0.6 and σ2 of 1. WNNLS and NNLS curves are replicated from Fig. 2. We
make the following observations: 1) for non-regularized processing schemes (NNLS and
WNNLS), if the processing scheme under consideration is appropriate for the noise model
(WNNLS), improved performance can be expected; 2) for regularized and non-regularized
processing schemes (NNLS vs. r-NNLS, or WNNLS vs. r-WNNLS), the inclusion of the
regularization term improves the performance of the processing scheme drastically; and 3)
the best performance is achieved when the processing scheme is appropriate for the noise
model, and includes a regularization term.

4. Applying processing schemes to real-world data

Although r-WNNLS produced the best performance in simulation, its implementation requires
the noiseless image (i.e., Inoiseless), which is not accessible in a real-world experiment. Therefore,
it is desirable to develop a processing scheme that can account for shot noise and ℓ1 regularization
without requiring the noiseless image.

4.1. Poisson maximum likelihood estimation

A processing scheme that is appropriate for shot noise without needing the noiseless image
is readily available based on the maximum likelihood estimation applied to Poisson random
variables. We refer to this processing scheme as Poisson-MLE that is described by:

xPoisson-MLE = argmin
n∑︂

i=1
[(HPSF × x)i − Inoisy,i · log(HPSF × x)i], subject to x ≥ 0. (10)

Here, i is the index referring to the i-th pixel in the acquired (Inoisy) or reconstructed (HPSF × x)
image, and n is the total number of pixels in the acquired or reconstructed image. The cost
function in Eq. (10) is derived from the log-likelihood function of Poisson random variables,
which is the theoretical model for shot noise.

In Fig. 4, we plot the performance of Poisson-MLE and WNNLS when used to super-resolve
the same two-dot object from the previous section. We see that WNNLS and Poisson-MLE
achieve nearly identical performance, suggesting that Poisson-MLE is a suitable processing
scheme (in terms of the noise model) that can be used without requiring the noiseless image.

4.2. Variance stabilizing transforms

A different method of accommodating the shot noise model is via variance stabilizing transforms.
These transforms operate on random variables whose variance is dependent on their mean (e.g.,
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Fig. 4. Plot of resolving ratios versus the signal level for WNNLS, Poisson-MLE, and
VST. While Poisson-MLE and VST do not require the noiseless image, all three processing
schemes yield roughly the same performance, and are hence all appropriate for the shot
noise model.

Poisson random variables), and generate “stabilized” random variables, with their new variance
now independent or nearly independent of their mean. As a result, an NNLS-like processing
scheme that assumes a uniform variance may be appropriate to operate on this newly transformed
random variable.

A common variance stabilizing transform for Poisson random variables is the Anscombe
transform [27], which is defined by:

z = 2
√︁

p + 3/8. (11)

Here, p is the original Poisson random variable, which has a variance dependent on its mean, z is
the transformed random variable, and has a uniform variance of 1 for p with a sufficiently large
mean.

Utilizing the power of the Anscombe transform, we can formulate a new processing scheme that
is appropriate for Poisson noise. We name this processing scheme VST for variance stabilizing
transform, defined by:

z = 2
√︂

Inoisy + 3/8

xVST = argmin
n∑︂

i=1
[zi − 2

√︁
(HPSF × x + 3/8)i]2, subject to x ≥ 0.

(12)

We see that VST and NNLS take on a similar form: both are minimizing total squared differences
between two terms, though VST is a non-linear least-squares problem. In NNLS, the original
images are used. In VST, the Anscombe transformed images are used. In Fig. 4, in addition to
WNNLS and Poisson-MLE, we plot the performance of VST as well. From the plot, we see that
all three of these processing schemes achieve effectively the same performance, showing that
both Poisson-MLE and VST are appropriate for the noise model without needing the noiseless
image as is the case for WNNLS. This now means that both Poisson-MLE and VST are suitable
for the dominant noise in the image (shot noise), and can be used in a real-world experiment.

4.3. Incorporating sparsity in Poisson-MLE and VST

Having identified two potential processing schemes that are appropriate for the noise model, we
can further improve the performance of Poisson-MLE and VST by adding an ℓ1 term to form
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their regularized counterparts, r-Poisson-MLE and r-VST as:

xr-Poisson-MLE = argminx

n∑︂
i=1

[(HPSF×x)i− Inoisy, i · log(HPSF×x)i]+λ∥x∥1, subject to x ≥ 0. (13)

z = 2
√︂

Inoisy + 3/8; xr-VST = argminx

n∑︂
i=1

[zi−2
√︁
(HPSF × x + 3/8)i]2+λ∥x∥1, subject to x ≥ 0.

(14)
In Fig. 5, we plot the performance of Poisson-MLE, r-Poisson-MLE, r-VST, and compare them
with that of r-WNNLS. We see that regularized processing schemes (r-Poisson-MLE and r-VST)
achieve improved performance over their non-regularized counterparts. Based on these simulation
results, we find that as long as a processing scheme is appropriate for the dominant noise source
in the acquired image and utilizes the prior information of sparsity, improved performance can
be expected. Interestingly, properly accounting for noise (e.g., NNLS vs WNNLS) and adding
regularization (e.g., WNNLS vs r-WNNLS) have a strong effect on the resolving ratio, while
the exact formulation (r-Poisson-MLE vs r-VST vs r-WNNLS) has less effect. We discuss this
phenomenon in greater detail in section 6.

Fig. 5. Plot of resolving ratios versus the signal level for Poisson-MLE, r-Poisson-MLE,
r-VST, and r-WNNLS. Note that Poisson-MLE also represents the performance of VST and
WNNLS (Fig. 4). It can be seen that the addition of a regularization term can further improve
the performance of Poisson-MLE and VST. Also note that r-VST and r-Poisson-MLE yield
roughly the same performance, showing that these two processing schemes can potentially
achieve the highest performance in a real-world experiment.

A summary of these processing schemes is presented in Table 1. For the only two processing
schemes that fulfill all three of these criteria (noise model, sparsity, and not requiring the
noiseless image), r-Poisson-MLE and r-VST achieve similar performance. We also see that,
while r-Poisson-MLE and r-VST both achieve improved performance over their non-regularized
counterparts, r-VST performs slightly better than r-Poisson-MLE for some signal levels. Although
the performance difference is small and the reason for the disparity is not the topic of this paper,
we point out that it has been reported that Poisson-MLE, and by extension, r-Poisson-MLE, can
be biased towards a certain class of sparse objects [28], and therefore may not be suitable for all
types of objects.
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Table 1. A summary of the properties for the processing schemes considered in this paper. For a
processing scheme to achieve the highest resolution, it needs to be appropriate for the shot noise
model, takes advantage of object sparsity, and is applicable in a real experiment. We see that only

two processing schemes satisfy all three criteria: r-Poisson-MLE and r-VST.

Processing scheme Account for shot noise? Account for sparsity? Apply to real data?

NNLS (as in [17,18]) ✓

r-NNLS ✓ ✓

WNNLS ✓

r-WNNLS ✓ ✓

Poisson-MLE ✓ ✓

r-Poisson-MLE ✓ ✓ ✓

VST ✓ ✓

r-VST ✓ ✓ ✓

5. Experimental results

To verify these findings in a real-world imaging system, we performed experiments imaging
a fluorescent, resolution-test sample made by Argolight [29] (Fig. 6). This sample contains
successive fluorescently-labeled line pairs separated by different distances ranging for 0nm (no
separation) to 270nm. The microscope system was an inverted fluorescence microscope with its
illuminator removed and replaced with a custom-implemented laser scanning setup (Fig. 1(e)).
We scanned the illumination spot in a predetermined pattern, acquiring a raw image at each
scanning step. The excitation wavelength was 488nm and the images were collected through a
bandpass optical filter centered at 520nm, using a 1.4NA objective.

The results of this experiment are shown in Fig. 6. Here, we generated an equivalent widefield
diffraction-limited image by summing the acquired raw images. As expected, the 1.4NA
objective’s diffraction-limited resolution is shown to be approximately 240nm. We next used
an alternative formulation of r-VST (refer to Supplement 1 for details) to process each of the
acquired raw images and combined them to produce the final, super-resolved full field image.
Here, it can be seen that the line pair separated by 60nm is successfully resolved by r-VST. When
compared to the conventional diffraction-limited resolution, this corresponds to a resolution
improvement of approximately 4 times. The processed images obtained using NNLS and VST are
also shown. It can be seen that while NNLS and VST are able to resolve beyond the conventional
diffraction-limited resolution, they are unable to resolve the 60nm line pair. To further illustrate
this improvement, in the bottom row, we plot the average of three cross-section profiles for the
60nm and 90nm line pairs in the processed images obtained using the three processing schemes.
We see that besides the improved super-resolution performance, r-VST also produces an image
with improved visual quality showing enhanced contrast. These findings are consistent with
our simulation results, where the highest achievable resolution can be expected when utilizing a
processing scheme that is 1) appropriate for the noise model, and is 2) able to take advantage of
the object sparsity.

https://doi.org/10.6084/m9.figshare.13335911
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Fig. 6. Processed Argolight experimental data versus conventional diffraction-limited
resolution. Bottom row shows average of three cross-section profiles for the 90nm and 60nm
line pairs obtained using NNLS, VST, and r-VST respectively. White dashed lines in the
NNLS result indicate the location at which the cross-section profiles are taken (repeated for
VST and r-VST results). NNLS, VST, and r-VST all demonstrate successful super-resolution
and resolve the 90nm line pair. However, only r-VST resolves the 60nm line pair, and
provides the best visual quality. This shows that the highest achievable resolution can be
expected when the processing scheme used is 1) appropriate for the noise model, and is 2)
able to take advantage of the object sparsity.

6. Discussion

Here, we address some interesting observations in this paper that warrant further discussion.
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6.1. Equivalency between WNNLS, Poisson-MLE, and VST

From Fig. 4, we see that despite differences in their formulations, WNNLS, Poisson-MLE, and
VST all achieve approximately the same performance. A possible explanation for this similarity is
that they are all derived from the same Poisson-MLE model, and the simplifying approximations
for VST and WNNLS and differences in optimization solvers have little effect.

Poisson-MLE is derived directly from the Poisson random variable log-likelihood function,
and therefore accommodates the shot noise model natively. This is the gold-standard model,
but solving the optimization problem is more difficult. This is because while the Poisson-MLE
objective is convex and differentiable, its derivative lacks a key smoothness property that precludes
the use of standard methods like gradient descent [30]. While there exist specialized algorithms to
tackle this problem [30,31], it is slower to solve, both due to the lack of smoothness and because
it is less well studied than least-squares. Because of these reasons, we consider instead WNNLS
and VST in this paper. For WNNLS, the consideration of shot noise is done by approximating
Poisson random variables with non-zero mean, non-uniform Gaussian random variables. After
this approximation, Eq. (6), which maximizes the log-likelihood function for Gaussian random
variables with non-uniform variances, is appropriate for maximum likelihood estimation [22].
For VST, the consideration of shot noise is done by “stabilizing” Poisson random variables to
have uniform variances. With this approximation, an NNLS-like approach, which maximizes the
log-likelihood function for Gaussian random variables with uniform variances, can be used for
maximum likelihood estimation [30], and gives rise to Eq. (12).

In other words, while utilizing different approximations, the goals of WNNLS and VST are
the same: to ensure the variance of the noise model assumed by the processing scheme is in
agreement with the physical reality, where the dominant noise is the photon shot noise. We note
that, the random variable manipulations made in WNNLS and VST are only valid if Poisson
random variables act like Gaussian random variables with modified mean and variance, and this
occurs in the limit as the number of photons goes to infinity. The fact that all three formulations
give similar results in our experiment indicates the validity of these approximations for realistic
photon levels.

Since Gaussian noise is still present in these images, we expect the performance to improve
further if we adopt a processing scheme that correctly models the resultant compound Poisson-
Gaussian random variable. Specifically, if the processing scheme is based on maximum likelihood
estimation of the compound Poisson-Gaussian random variable’s probability density function,
such as derived in [32], improved performance should be expected. However, we expect the
performance improvement obtained in this way to be relatively minor, and would only be apparent
at very low photon counts and for low-sensitivity sCMOS cameras (i.e., high Gaussian noise
power compared with that of the shot noise). This is again because the Gaussian noise power in
our technique is significantly lower than that of the shot noise. In [32], where single molecule
localization microscopy is studied, because the optical signal is produced by a single emitter,
shot noise power is significantly lower.

6.2. Connections to single-molecule localization microscopy

Applying numerical processing to enhance the images collected from a fluorescence microscope
is a widely-adopted practice. One such enhancement, and the focus of this paper, is that of
achieving lateral resolution beyond the conventional diffraction limit. In section 1, we introduce
early examples in applying numerical processing to achieve super-resolution (without exploiting
stimulated emission and on-off state transitions) , as well as our previous work in the same area.
In addition to these attempts, another prominent group of examples of super-resolution achieved
via numerical processing can be found in single-molecule localization microscopy (SMLM)
[5–9]. Despite the fact that SMLM requires the fluorophore to undergo on-off state transitions,
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some SMLM realizations and our technique share many computational similarities, especially in
terms of the optimization problem solved in the processing step.

One such similarity, and interesting development in the processing step of SMLM is the
use of compressed sensing principles to increase the acquisition speed [9]. In this work, an ℓ1
regularized least squares problem is solved to recover a super-resolved image comprised of sparse
emitters with highly overlapping PSFs. This processing scheme is very similar to some of the
processing schemes considered in this paper, for example, Eqs. (8) and (9). However, we note
one key difference in the optimization problem solved. In [9], the imaged fluorescent molecules
are still sparsely activated at a density of around 10 µm−2. This low fluorophore density is only
achievable through manipulating on-off state transitions, as a typical labeling density of common
fluorescent samples is estimated to be much higher than 1000 µm−2 [17].

6.3. Connection to other contemporary work in super-resolution microscopy

Here we discuss how our imaging method fits within the larger super-resolution microscopy
community. As stated previously, our technique does not require stimulated emission or on-off
state transitions of the fluorophores. This allows our super-resolution approach to be implemented
with a relatively simple optical setup – by adding a focused-spot scanning mechanism to a
conventional widefield fluorescence microscope. Combined with a resolution improvement
by a factor of four times, our technique can be easily implemented for investigating small
(approximately 60nm) biological structures labeled with commonly used fluorescent proteins or
organic dyes.

The resolution enhancement provided by our technique is dependent on object sparsity, and
this is our motivation for using a focused illumination spot. In [17], we studied the effect
of illumination on the recovered image. We found that, while our method is compatible
with a widefield illumination, meaningful super-resolution only occurs with a tightly focused
illumination spot. This is in agreement with prior theoretical results, such as [14], where
meaningful super-resolution is shown to be achievable only if the spatial extent of the object is
much smaller (e.g., by fluorescently labeling the object) than dR. This sparsity condition may not
always be true in a real-world biological sample. For example, if there is significant background
fluorescence in the collected image, the sparsity condition is not valid. This is because the
object is no longer comprised of fluorescently labeled small structures against a non-labeled
dark background. However, this dependence on object sparsity could also reasonably allow us to
employ existing sparsity enhancing mechanisms (such as STED illumination [3,4], or fluorophore
blinking ) in conjunction with our computational approach to further improve the achievable
resolution.

7. Conclusion

In this paper, we investigate the processing step for computationally achieving super-resolution
imaging in fluorescence microscopy without needing fluorophore switching. Through numerical
simulation, we determined that: 1) our previously used processing scheme (NNLS) does not
always deliver optimal performance; 2) however, improved performance can be expected if the
selected processing scheme is appropriate for the dominant source of noise, and takes advantage
of the prior information of sparsity; and 3) the performance is less dependent on the exact
formulation of the processing scheme, but more dependent on whether the variance of the noise
model assumed by the processing scheme is in agreement with the physical reality.

Based on simulation results, we identified a powerful processing scheme, r-VST, and used it to
process data from a real-world experiment. r-VST achieves 60nm resolution on experimental
data, which is approximately four times beyond the conventional diffraction-limited resolution.

Since sparsity plays an important role in the formulation of these processing schemes, how the
different levels of sparsity (caused by either the object structure or background fluorescence)
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affect the performance of these processing schemes remains an open question. Another open
question is the exact mechanism for the resolution improvement observed in this paper and in
our previous work. While some early theoretical results seem to be applicable to qualitatively
explain the observed super-resolution [14–16], a thorough treatment of this problem in a more
quantitative context in the future will be beneficial for the wider adoption of this technique.
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