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ABSTRACT

The notion of an Zterative pair introduced in [B], see also
[ABBL], formalizes pumping properties of (long enough) words in languages
as e.g., expressed by the celebrated pumping lemma for context-free
languages, see, e.g., [S]. Such an iterative pair (x,y,z,u,t)
of a language K must be such that xyzut ¢ K, yu = A and, for every
n=1, xynzun t € K. Since n 21,an iterative pair allows pumping
upwards. A strong iterative pailr is like an iterative pair except that
we allow every n = 0; thus also pumping downwards is permitted. A
(strong) iterative pair (x,y, z,u, t) is said to be very degenerate if,
for every n, m = 0, xyn zu™t e K. It is proved that if K is a
context-free language such that each of thelstrong iterative pairs of it
is very degenerate then K is regular; this result generalizes an

analogous result for iterative pairs proved in [B].



INTRODUCTION

The class of context-free languages (LCF) and the class of regular
languages (LREG), where Loco g Lops are important classes of languages
within formal language theory, see, e.g., [H] and [S]. A way to
understand the structure of context-free grammars is to impose restrictions
on them which will guarantee that the languages generated will be regular.

Several restrictions of this kind are known, see, e.q., [H] and [S].

On the other hand,‘in order to understand the combinatorial
structure of context-free languages, one can attembt'to formulate
cohditions”(combinatoriaT in'nature)‘on thevinterke1ationship of
words in a context-free 1anguage which would force such a language to
be cOnteXt-fkée; see,'e.g.,“[ABBL]. A starting point can be the
celebrated pumping Temma for context-free languages. Based on it, the
notion of an iterative pair was introduced in [B], see also [ABBL]. If
K is a language, K ¢ Z*, then p = (x,y, z,u, t) is an iterative pair
in K if, for every n 2 1, X);]Z(N}t e K where yu 1is a nonempty word.
Such a synchronized pumping of subwords (y and u) in a word (xyzut)
in K gives one a possibility (using one iterative pair only) to generate
context-free but not regular languages (e.g., {a"b" i n> 1}). However,
if one desynchronizes such a pumping, that is, one requires that, for
all r,s 20,><yrlzus t e K, then an iterative pair yields a regular
language. This observation leads one to a conjecture that if each
iterative pair p = (x,y, z, u,t) of a context-free language K is
very degenerate (that is, for all r,s;zO,><yY'zuS t e K) then K must

be regular. This conjecture was shown to be true in [B]. An iterative



pair allows only "upward pumping," expressed by the fact that n > 1

and in this sense it does not fully formalize the idea from the pumping
lemma for context-free languages where also pumping "downward"

(i.e., n=0) is allowed. If in the definition of an iterative pair

we require n = 0 rather than n 2 1, then we get a strong iterative pair.

In this paper we prove that if every strong iterative pair of a
context-free language K is very degenerate then K is a reqular language.
This result generalizes the result from [B] in the sense that we can

obtain the latter directly from our result. It provides a positive solution

of a conjecture stated in [ABBL].



0. PRELIMINARIES

We assume the reader to be familiar with the theory of context-free
and regular languages, e.g., in the scope of [H] or [S]. We will use
rather standard formal Tanguage theoretic notation and terminology.
Perhaps only the following points require an additional explanation.
For a finite set A, #A denotes its cardinality. N denotes the set of
natural numbers (including 0) while Al denotes the set of positive
integers. We consider finite alphabets only. A denotes the empty
word. For a word w, alph(w) denotes the set of all letters appearing
in w and |w| denotes the Tength of w; if a is a letter, then #a(w) denotes
the number of occurrences of a in w. If w # A then Zast(w) denotes the
last letter of w and w/Zast(w) denotes the word obtained from w
by removing the last letter of it. For a 1anguage K, Pref(K) denotes
the set of all prefixes of all words in K.
For an equivalence relation R, <ndex(R) denotes its index.
For an alphabet I, HOM(Z,Z) denotes the set of all homomorphisms

* *
from Z into T .
We recall now the basic characterization of regular languages.

*
Definition 0.1. Let K be a Tanguage, K ¢ £ . The Myhil-Nerode
relation induced by K, denoted by Vo is defined as follows. For
* *
Xy ¥ €L, X vy if and only if, for every u ¢ T , xueK if and only

if yueK. O

It is easily seen that “k is an equivalence relation. The following
theorem (see, e.g., [S]) provides the fundamental characterization of

regular Tanguages

*
Theorem 0.1. Let K be a Tanguage, K < £ . K is regular if and only

if vy is of finite index. 0O



In the sequel we will need a somewhat modified version of this

result.

* *
Let K be a Tanguage, K ¢ & . Let MK = {ue Z+ *utekK for some tes }.

Let (%K)M be the relation K restricted by M¢» hence
K

(%K)MK = {(x,y) : (x,y) ¢ Yo xe M and y e M3

*
Theorem 0.2. Let K be a language, K = & . If (NK)M is of finite

K
index then K is regular.

Proof,

*
Let w e Z . Then either w = A or w « M, or w ¢ Pref(K). Consequently

indem(%K) < index((%K)M ) + 2 and so e is of finite index. Thus, by
K
Theorem 0.1, K is regular. [



1. BASIC NOTIONS

In this section several notions very basic to this paper are

introduced and their rudimentary properties investigated.

We start by introducing the notion of a strong iterative pair
which directly generalizes the notion of an iterative pair as
introduced in [B], see also [ABBL]. (This generalization was suggested
by [B1]). The difference is that we allow also shortening of a word

and so we can consider the iteration starting from 0.

Definition 1.1 Let K be a language, K c Z*. A strong iterative pair,
abbreviated sip, of K is a 5-tuple p = (x,y, z,u, t) where
Xy ¥y ZyU,y t ez*, yu=zAhA and, for every n ¢ N, xynzunteK. We say
that p is a very degenerate strong iterative pair, abbreviated vdsip,

of K if, for every n, me:N,xynzumte K. 0O

For a language K, SIP(K) will denote the set of strong iterative
pairs of K and VDSIP(K) will denote the set of very degenerate strong

iterative pairs of K.

The following generalization of the notion of a strong iterative

pair will be a very useful technical tool in our investigation.

*
Definition 1.2. Let K be a language, K ¢ £ . A generalized strong
iterative pair, abbreviated gsip, of K is a (4£+1) -tuple

p = (xl,..., Xps ¥ps vewsYpsZolps vuns ul,tz. "”tl) where

+ ‘*
Lel, X1 eoes Xps Yys eaes Yps 2, Ups s Uy ?8’ ...,tl e L and,

n'gl ﬂl

. n n n n -
1 2 L £
ror all Nys oves npe N,xly1 x2y2 e XpYp TZUY ?Euz-l e Uy t1 e K.

We say that p is a very degenerate generalized strong iterative pair,



abbreviated vdgsip, of K if, for every Nys cens NpsMys vy, € N,
n n m m
1 L 4 1
X1 Y4 ...xﬁyﬁ Zu, tz...u1 tle K. 0O
For a language K, GSIP(K) will denote the set of generalized strong
jterative pairs of K and VDGSIP(K) will denote the set of very degererate
generalized strong iterative pairs of K. Also, in the above definition

we refer to £ as the length of p. Clearly SIP(K) ¢ GSIP(K).

The following result makes a useful connection between SIP(K) and

GSIP(K).

Theorem 1.1. Let K be a language. If SIP(K) < VDSIP(K) then
GSIP(K) < VDGSIP(K). O

Proof.

Let p € GSIP(K); we have to prove that, under the assumption of
the theorem, p ¢ VDGSIP(K). We will prove this by the induction on
the length of p.

If the length of p equals one then p ¢ SIP(K), hence p ¢ VDSIP(K) and
consequently p e VDGSIP(K).

Assume that the theorem holds for every gsip p of K that is of length
not exceeding £-1 where £22.

Consider now a gsip p of length £; Tet

p = (Xl’“"xﬁ’yl"“’yﬁ’z’uﬁ’""ul’tz""’t1) 

Let NisevesNp € N and Tet us consider the word

W = xlyfl...xﬁyzz ZLQ?t[...ulnltlg since p is a gsip, we K.

n n n n
- 1 £-1 _ _ _ £-1 1
Let x x1 yl "‘yﬂ—l Xps ¥ = Yp» U = Up and t = ?Zuﬂ-l cee Uy tl.



Clearly (X, Yy, z,u, t) e SIP(K).

Thus, by the assumption of the theorem, for all mys My € N and for all

Nys wees Ny g€ N we have
n n m m n n
1 £-1 1 2 £-1 1
Xp¥q Teee Yol Xp¥p  Zup Uyl t e K
Consequently for all mysm, e N

m m
_ 1 2
q(ml,mz) = (Xl’yl’ cees Xp_1aYpo1s Xp¥p ZUp ?e’“£f1’ tﬁwl,..., ul’tl)

is an element of GSIP(K) and the length of q(ml,mz) equals £-1.

Thus, by the inductive assumption, q(ml,mz) e VDGSIP(K). Hence for

all my,m, e N, for all nj,...om, ;e Nand for all ry, ..o,y e N
we have
" "1 M Mo Tear M

XpYq o eee Xp g ¥Ypoq Xp¥p ZUp tpUpiteiug Tty € K

and consequently p e VDGSIP(K).

Hence the theorem holds. (O

Another important notion of this paper is that of a type of a
word. It is defined as follows.

Definition 1.3. Let I be an alphabet and let u, w ¢ Z*. We say
that w s of type u or that u is a type of w (denoted t(u,w)) if
(i). for every a ¢ I, #a(u) <1, and
(ii1). there exists a homomorphism h e HOM(Z,Z) such that
(ii.1). for every a € £, h(a) ¢ {a} u {a} E* {a}, and
(i1.2). h(u) = w.

*
If u satisfies the above, we also say that u is a type in T . [
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Example 1.1,
(1). Let £ ={a,b,c,d}, u=abcdandw =abcabccd. Then t{u,w)
where we use the homomorphism h is defined by h(a) = abca, h(b) =b,
h(c) = cc and h(d) = d. It is instructive to notice that also the
homomorphism h defined by h(a) = a, h(b) = bcab, h(c) = cc and
h(d) = d will yield t(u,w).
(2). LetZ={a,b,c},u1=acb, u2=ab and w = acbabcb. Then

T(ul,w) if we use the homomorphism h, defined by hl(a) = a, hl(c),= cbabc

1

and hl(b) = b. Also T(UZ,W) if we use the homomorphism h, defined by

2
hz(a) =acbha, hz(b) =bcb and h2(c) =c¢. 0O
Lemma 1.1. Let I be an alphabet. Then

* *
(i). for every w ¢ T there exists a u e £ such that t(u,w), and

*
(i1). the number of types in £ 1is finite.

Proof.

*
(). Letwe I . Wewill prove part (i) of the Temma by

induction on #alph(w).

i

If #alph(w) = 0 then clearly t(A,w).

If #alph(w) = 1 then, for some a ¢ L and n ¢ 7" w=a". Hence t(a,w).

Assume that the Temma holds whenever #alph(w) < m where m e N, m > 2.
Let now #alph(w) = m,

If no letter from L occurs twice in w then t(w,w).

*

Otherwise write w in the formw = w, aw aw, where w e,

1772 1’ 3
ael,ad ath(wl), a ¢ alph(w3) and if Wy = A then every letter from

Woo W

ath(wl) occurs exactly once in w.

*
By the inductive assumption, there exists a Us € L such that r(u3,w3L

let h3 be a homomorphism involved. Now we define the homomorphism
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hof 3" as follows: for b e I, h(b) = b if b e alph(u,), h(b) = aw,a

if b = a and h(b) = h,(b) if b ¢ alph(w3). Clearly h satisfies condition

5
(i) of Definition 1.3 and so it is easily seen that T(wla u3,w).
This completes the inductive step and consequently part (i)
of the Temma holds.
(i1). Obviously the number of types in Z* equals
n
Yy vl where n=#3. O
r=0
In the sequel of this paper we will comsider an arbitrary but fized
context-free grammar G in Chomsky Noymal Form, G = (L, A, P,S) seuch that
L(G) s infinite (here ¢ is the total alphabet of G, A its terminal
alphabet, P its set of productions and S its axiom). We will use DG to

denote the set of all derivation trees in G. The following construction

is very essential for our paper.

Construction 1.1. Let T ¢ DG and let p = Vo Vq ee Vg be a path
in T where s = 1, v is the root of T, Vg is a leaf of T and £(v0),

K(vl),...,ﬁ(vs) are the node labels corresponding to nodes of p.

)y ..., (v. ,v. )) be a sequence of pairs of

Let Q= ((v.
P 12 Tl Y2

111 1

nodes from p such that r > 0, 1j1 < ijz for 1 <j<r, 1j2 < 1(j+1)1

for 1 <j <vr-1ifr=2and £(v, ) =4&(v, ) forl <j<r.
1. 1.
Jjl j2

Let f be a function from {1, ...,r} into {L,R}; for 1 <

A

r, f(J)

is the label of (Vi ’Vi ).
jl 2

Let T(p,Qp, f) be a tree obtained from T as follows. Successively for
each j =1, ..., r perform the following:

- if f(j) = L delete from T every subtree U such that its root, root(U),
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is to the left of o and the direct ancestor of roo#(U) in T is among

the nodes {v. ,v. R

- if f(j) = R delete from T every subtree U such that root(U)

is to the right of p and the direct ancestor of root(U) in T is among

the nodes {Vi , Vs

j]_ 1.

L, V. .o O
il -

+1° ]jZ

Example 1.2.

A derivation tree T ¢ DG looks as follows where p is the path

consisting of nodes 1 through 10. Clearly yield(T) = a(bc)zlaa b2c b.
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Let Qp = ((2,4), (4,5), (7,9)) and f((2,4)) =L, f((4,5)) = R and

f((7,9)) = R. Then T(p,Qp,f) looks as follows. Note that

yield(T(p, 0, f)) = beblh.
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Note that, in general T(p,Qp,'f) does not have to be a derivation
tree in G. However, T(p,Qp, f) has a frontier and so its word,

yieZd(T(p,Qp, f)) is well defined. If T' is a tree such that

T = T(p, Qp, f) for some o, Qp and f then we say that the prune relation
holds between T and T  and we write prune(T,T'). Then we define

PR(D.) = {T': there exists a T ¢ D¢ such that prune(T, 77,

c)
The usefulness of "pruned versions" of derivation trees in G stems

from the following result.

Lemma 1.2. Assume that SIP(L(G)) < VDSIP(L(G)). Then yield(T') e L(G)

for every T' « PR(DG).
Proof.

Let T' e PR(D.) and let T ¢ D. be such that prune(T,T ); let

¢ G
p, Q and f be such that 7' = T(p, Q. f). Let yierd(T) = w.

Let Qp = ((vj )y oeus (Vi Vs

s V.
i i
rl

; )) where p = VgVy eeeVes S 2 1.

11 12 re

Ifr=20 thenkobvious1y T =T and the lemma holds.
Assume then that r > 1.

. +
Let w = w Z W, where the depicted occurrence of a subword z ¢ A s

1

the conty 'ibut.ion of v. to w.
1
r2

Let

X vy Vs

be the contribution to Wy of the sequence of nodes v j

1 O,.. _1

11
(if this sequence is empty then Xq 7 A) through nodes to the left of p,

yl be the contribution to Wy of the sequence of nodes

Vi s euas Vo through nodes to the left of p,

11 f12”
and, for 2 < j < v,

1
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y.be the contribution to w, of the sequence of nodes v. ,...,v. -1
' 1 51 52

through nodes to the left of p,
if 1j1 = 1(j-1)2 then xj = A,

otherwise xj is the contribution to Wy of the sequence of nodes

Vv , v seees Vi g through nodes to the left of 0.

i, . i, . + .
Y-z Y512t il

Analogously to the sequence Xp» Y12 ~-s X5 ¥, we define the sequence

tl’ ul, s tr’ ur where the only difference is that we consider the

contributions of the appropriate sequences of nodes on p to W, (through

nodes to the right of o) rather than to Wy

From the way that the sequence SENME cees X Y Zs U tr""’ ul,_t1

was constructed it immediately follows that

p = (Xl""’ Xpo Y oeea¥ps Zo s vus U, £, ...,tl) e GSIP(L(G)).
Hence by Theorem 1.1 and the assumption of the lemma it follows that
p e VDGSIP(L(G)).

We notice now that

n n m m
. o 1 r r 1
yield(T ) = Xp¥p T XW Y ozoug tr. Uy t1
where, for 1 < j < r, n; = 0 and my = 1if f(j) = L, while n; = 1 and

m. =0 if f(j) = R.

J

Since p ¢ VDGSIP(L(G)), yield(T') e L(G) and so the Temma holds. [

The following construction marking a fixed path in a derivation
tree allows one to retain enough information in specially marked
(labelled) nodes of the path to be able to produce derivation trees

(with special properties) starting with such a marked path only.

Let Z = {(A,B,C,k):ke {1,2} and A >BCeP} u {(A,a) :A>aeP}uAh;
we refer to I as the marking alphabet (of G).

Construction 1.2. Let T ¢ DG and let p = v SV be a path in T

0Vl
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where s = 1, vy is the root of T, v, is a leaf of T and K(vo), K(vl),

0
ces K(vs) are the labels corresponding to nodes of p. Now for each

node Vi 0 <Jj < s, change its label toﬁZ(vj) as follows:

(1). if A > BC is the production used to rewrite the node j

(hence K(vj) = A) and vj has a direct descendant to the left of p, then

K(vj) is changed to Z(vj) = (A,B,C,1),

(2). if A > BC 1is the production used to rewrite the node j and vj

has a direct descendant to the right of p, then K(vj) is changed to

Z(vj) = (A,B,C, 2),

(3). if A > a is the production used to rewrite the node j then K(vj)

is changed to Z(vj) = (A,a), and

(4). Z(vs) = £(vs).

The resulting tree is called the marked p-version of T and denoted
by T(p). The word Z(VO) .- Z(VS) is referred to as the spine of T(p)

and denoted by spine(T(o)). 0
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Example 1.3.

Let T e Dg be as follows where p consists of nodes 1 through 7.

Then T(p) looks as follows and

Spine(:]:(p)) = (S, A, B, 1) (B, C, Ba 1) (Ba Cs B3 2) (C> Aa A; 2) (Aa A, B’ 1)(B:b) bo
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2. THE MAIN RESULT

In this section we prove the main result of this paper which states
that if every strong iterative pair of a context-free language K is

very degenerate, then K is a reqular language.

.. . + = * .
We start by defining a ternary relation u ¢ Z x32 i Z, a binary

relation § ¢ Z+ x§T+ and a function © from ML(G)’ the set of nonempty

prefixes of L(G), into the set of types in b as follows:
" *

(i). for w e Z+, zei andues , ulw, z,u) if and only if wueL(G)
and there exists a derivation tree T of wu 1in G and there exists a
path o in T ending on the last (occurrence of a) Tetter of w such that
spine(T(p)) = z,

.. + =+ . . . *
(ii). forwe I , z e, 8(w,z) if and only if there exists a u ¢ I
such that u(w, z, u),

(iii). forw ¢ ML(G)’ o(w) = {xe 5t 1(x, z) and &(w, z) for some z ef*}.

The following lemma forms the major step in proving our main
result.

Temma 2.1. Let wy w' e M gy If o(w) = o(w') then w L(a) W'

Proof.
Clearly, to prove the lemma it suffices to show that for every
ue Z*
if O(lw) = O(w') and wue L(G) then w'u € L(G) +.vvirirrnirnninnnnn.. (*).
To this aim we proceed as follows.
Let u « " be such that wu ¢ L(G). Consider a derivation tree T of

wu in G. Let p be a path in T beginning in the root of T and ending

on the last (occurrence of a) letter of w. Consider T(p) and let
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zZ= spine(f(@)).

Let x € 5F be such that t(x,2z), say x = X1 "'Xs’ s = 1, where Xj €%

for 1 < j <s. Let h be a homomorphism satisfying condition (ii.1)
of Definitionl1.3 (with £ replaced by %) such that h(x) = z. Let
2y eee Zg where z5 = h(Xj) for 1 <j < s.
*
Since O(w) = O(w'), x ¢ ©(w'). Thus there exist u' ¢ & , a derivation
tree T' of w'u' in G, a path p' inT' beginning in the root of Tl and

ending on the last (occurrence of a) letter of w' such that

spine(T (p')) = z' where t(x;z').

Let h' be a homomorphism satisfying condition (ii.1) of Definition 1.3
(with h replaced by h' and £ replaced by T) such that h'(x) = 2'.

. where z} = h'(Xj) for 1 < j < s.

let t ¢ T* be such that t = tl“' tS where, for 1 < j < s,

tj = (zj/Zast(zj))zé; each tj is referred to as the j'th block of t.

Let z' = z1 e 2

Note that such a j'th block tj must be of one of the following
four categories.

Category 1.

J — .
If Izjl > 2 and ]zji > 2 then tj =ayay,awhereac I,y;,y, ¢l ,
Zj =ay;a and zj =ay,a. We will refer to the three depicted

occurrences of a in tj as the first, the middle and the last pointer of tj
respectively; Y1 and Yy, are referred as the first and the Zast bridge
of tj respectively.

Category 2.
| o ok
If Izjl > 2 and jzjf = 1 then ty = aya where @ ¢ I, y; e L,

Zj =aya and zé = a. We will refer to the two depicted occurrences of

a in tj as the first and the last pointer of tj respectively; ¥q is
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referred as the bridge of tj‘
Category 3.
If IZj‘ =1 and Iz;l > 2 then t; = ayya where a ¢ I, Yo € fx, z5 = @
'
and z3 = ay,a. We will refer to the two depicted occurences of a in tj
as the first and the last pointer of tj respectively; Yy is referred
as the bridge of tj.
Category 4.

If |zj} = [zél = 1 then ty=a where a ¢ T and 2y =25 = a.

Claim 2.1. There exists a derivation tree U in G and a path y in U
such that t = spine(U(y)).

Proof of the claim:

This follows easily from the observation that every two consecutive
letters in t are either two consecutive letters in z or two

. . ]
consecutive Tetters inz . [

Note that, clearly, such a path y together with direct descendant
nodes attached to it is (up to node isomorphism) uniquely determined
by t. The so formed tree will be denoted by sur(t). The word t induces
the obvious division of path y in sur(t) into consecutive segments
U ERERER A corresponding to blocks tl,r...,ts respectively. In this
way we can talk about the nodes of v., 1 < j < s, which are the (first,

J
middle or last) pointers of Y; or which are nodes of the (first or last)

IN

bridge of Yj' We say that Yj’ 1 £J<s, is of Category i, 1 <1 <5,
if tj‘is of Category 1.

Also the nodes in sur(t) which are not on y are called the outside
nodes (of sur(t)); the outside nodes to the right of y are called right

outside nodes, similarly we get left outside nodes. By construction of t,
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these outside nodes correspond uniquely either to nodes of T or to nodes
of T'; to simplify terminology we will say that they are from T or from
T.

We will extend now sur(t) into a derivation tree in G as follows.

Consider one by one each segment Yj of v, 1 <3 < s.

Assume that Yj is of Category 1. From the definition of tj it
follows immediately that either for each pointer of Yj its outside
direct descendant is a right outside node (Case 1) or for each pointer
of Yj its outside direct descendant is a left outside node (Case 2).
If Case 1 holds then we replace the outside direct descendant node €
of the first pointer by the subtree of T rooted at €, (remember that,
according to our terminology, e is also a node of T). The tree isomorphic
to this one (with corresponding labels being the same) replaces also the
outside direct descendant node e of the middle pointer of Yj' The
outside direct descendant node e, of the last pointer of Y5 is replaced
by the subtree of T' rooted at €p-
If Case 2 holds then we replace the outside direct descendant node ey
of the first pointer of Y5 by the subtree of T  rooted at ey The tree
isomorphic to this one (with corresponding labels being the same) replaces
also the outside direct descendant node en of the middle pointer of Yy
The outside direct descendant node ) of the last pointer of Yj is
replaced by the subtree of T rooted at €y
In both cases each outside direct descendant e of a node on the first
bridge is replaced by the subtree of T rooted at e and each outside
direct descendant e of a node on the second bridge is replaced by the

subtree of T’ rooted at e.

If Y5 is either of Category 2 or of Category 3 then the process is
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quite analogous except that we do not have (outside direct descendants of)
middle pointers to process. If Yj is of Category 2 then outside direct
descendants of nodes on the bridge are replaced by appropriate subtrees
from T while if Yj is of Category 3 then outside direct descendants of

nodes on the bridge are replaced by appropriate subtrees from T'.

If Y is of Category 4 then nodes 1in Yj do not Teave direct

descendants.

In this way we have extended sur(t) into a derivation tree in G;

s

this tree will be denoted by SUR(t).

The Tast step of our construction needed to prove (*), and hence
to prove Lemma 2.1, is to construct the tree SUR'(t) such that

prune(SUR(t), SUR' (t)) holds.

Consider y. For each block Yj of vy, 1 £ <s, we do the following.
If Yj is of Category 1 then it yields two pairs of nodes: (pjl’pjm)
followed by (pjnv pjg) where Pi1> Pin and Pjp are the first, the
middle and the last pointer of Y respectively. Then (pjl’pjm) is
referred to as the first pair of Yj and (pjnﬁ pjﬁ) is referred to as
the second pair of Y5
If Y5 is of Category 2 or 3 then it yields one pair of nodes: (pjl’pjz)
where pjl is the first and pjz is the last pointer of Y-

If going from j =1 to J = s we select each b1ock'yj of v that is
of Category 1, 2 or 3 and form the sequence of pairs of nodes described

above in this order (where for yj of Category 1 the first pair comes

before the second), then we get the sequence QY of pairs of nodes from v.

Now to each pair from QY the function f assigns either L or R as
follows.
If Yj is of Category 1 then f assigns L to its first pair and R to its

second pair.
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If Yj is of Category 2 then f assigns L to its pair.

If Y5 is of Category 3 then f assigns R to its pair.

By the above construction we have obtained the tree
(SUR(t))(v,Q»F) = SUR'(t).

It follows directly from the construction of SUR(t) and SUR’(t)
that yield(SUR'(t)) = w' u. Hence by Lemma 1.2 it follows that

w'ue L(G) and consequently (*) holds. Clearly (*) implies the lemma. 0O

We are ready now to prove the main result of this paper.

Theorem 2.1. Let K be a context-free language such that

SIP(K) < VDSIP(K). Then K is regular.
Proof.

Let G = (2,A,P,S) be a A-free context-free grammar in Chomsky

Normal Form generating K. Consider two arbitrary words w, w' € MK'

By Lemma 2.1, if o(w) = O(w') then w vpw'. But by Lemma 1.1(i1) the

MLE

number of types in is finite and consequently (%K)M' is of finite

K
index. Thus by Theorem 0.2, K is regular. [J

We recall now the notion of an iterative pair as originally defined

in [B], see also [ABBL].

Definition 2.1 Let K be a language, K ¢ Z*. An iterative pair,
abbreviated ip, of K is a 5-tuple p = (x,y, z,u, t) where x,y, z, U, te Z*,
yu=A and, for every n e Z+, xyn zulte K. We éay that p is a very
degenerate iterative patr, abbreviated vdip, of K if, for every

n, m sN,xynzumteK. O

For a language K, IP(K) will denote the set of iterative pairs of



-26-

K and VDIP(K) will denote the set of very degenerate iterative pairs

of K.

Thus the difference between the strong iterative pair and an
jterative pair is that erasing of (the second and the fourth) components

of a pair is allowed if it is a sip but not allowed if it is an ip.

The following result is from [B]; we demonstrate now how it

can be easily obtained from our result.

Corollary 2.1. Let K be a context-free language such that

IP(K) < VDIP(K). Then K is regular.
Proof.

Since SIP(K) < IP(K), SIP(K) ¢ VDIP(K) and consequently

SIP(K) < VDSIP(K). Thus, by Theorem 2.1, K is regular. [J
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