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Egan, H. L. (Ph.D., Astrophysical and Planetary Science)

Planetary Plasma Modeling and Ion Escape

Thesis directed by Prof. David Brain

In this thesis I use global plasma simulations to explore the star-planet interaction for Mars

and Mars-like exoplanets, with an emphasis on the relationship to ion escape.

I compare the results of five global Martian plasma models run with identical input conditions

to each other and corresponding MAVEN data, in order to assess the effect of the different physical

assumptions and numerical implementations. I show that no one model outperforms all others

in every data comparison, necessitating the careful selection of model for the type of physics one

is analyzing. There are clear morphological differences in ion behavior in the tail and southern

hemisphere, as well as in the location of various plasma boundaries.

I then apply a hybrid plasma model to the study of a generic Mars-like planet in the habitable

zone of a typical M-dwarf star. I systematically vary the stellar input conditions and examine the

changing plasma environment and ion escape. Both ion loss morphology and overall rates vary

significantly, and in cases where the stellar wind pressure was increased, the ion loss begins to be

diffusion or production limited. A quasi-parallel interplanetary magnetic field drives asymmetrically

draped field lines and correspondingly asymmetric ion escape.

I use the same hybrid model to explore the effects of intrinsic planetary magnetic field strength

on ion outflow, for both current Mars and a Mars-like exoplanet. The presence of an intrinsic

magnetic field enhances escape to a certain point before beginning to inhibit it, depending on the

polar cone angle and the magnetic standoff distance. I argue that ion escape reflects a balance

between the competing effects of magnetic shielding at the equator and enhanced escape at the

poles.
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Chapter 1

Planetary Habitability, Atmospheric Evolution and Escape

One of the most exciting scientific questions of our time is “Is there life on other planets?”.

Answering this question will likely take decades of work and draw on fields as disparate as micro-

biology, geology, and astrophysics. Here I discuss the role of planetary science and astrophysics in

understanding the processes relevant for creating an environment capable of sustaining life, both

in our own solar system and around other stars quite different than our Sun.

The presence of water has long been considered a necessary ingredient for life to begin. While

some posit the existence of subsurface ocean life on bodies such as Europa [e.g. Kargel et al., 2000];

for life to be remotely detectable this water must exist on the surface in a liquid form [e.g Rasool

and de Bergh, 1970, Kasting et al., 1988]. The presence of liquid water requires both a substantial

atmosphere, in order to prevent the rapid evaporation and loss of oceans, and a temperature between

the freezing and boiling points of water, so that the oceans can be liquid rather than steam or ice.

Understanding the atmosphere of a planet and its climate is thus very important to habitability.

Atmospheres change over time due to their interaction with the surface, oceans, space envi-

ronment, solar forcing, and global biome. These systems are all coupled and change non-linearly.

Our own solar system shows multiple examples of substantial atmospheric evolution over time;

Venus became extremely hot due to the runaway greenhouse effect and has lost most of its water

[Dayhoff et al., 1967, Kulikov et al., 2006], while Mars used to have a substantial atmosphere and

liquid surface water but is now a cold dry planet with minimal atmosphere [Anders and Owen, 1977,

Jakosky and Phillips, 2001]; Section 1.4 describes the observational evidence leading to such con-
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clusions. Both of Earth’s nearest neighbors illustrate the importance of understanding atmospheric

loss.

Habitability is also becoming a relevant question for planets outside our solar system. Exo-

planet discovery missions such as Kepler [Borucki et al., 2010] and the Transiting Exoplanet Survey

Satellite (TESS) [Ricker et al., 2015] have allowed the discovery of thousands of extra-solar planets,

including dozens of small, rocky planets. The closest star to us, Proxima Centauri, hosts a planet

with a minimum mass of 1.3 times the mass of the Earth [Anglada-Escudé et al., 2016], and the

nearby Trappist system is home to seven transiting Earth sized planets [Gillon et al., 2017, 2016].

Both Proxima Centari-b and 4 of the Trappist-1 exoplanets fall within the Habitable Zones (HZs)

of their host stars; or regions around a star where a planet’s temperature would allow liquid water

to exist [Kasting et al., 1993, Kopparapu et al., 2013]. However, as seen in our own solar sys-

tem, habitability is complex and requires the careful analysis of many inner-connected processes,

including atmospheric escape.

Atmospheric volatiles that are not sequestered in the surface may be lost through escape

to space. In order to be lost to space a given particle must have enough energy to overcome

the gravitational potential of the planet. Section 1.2 discusses various processes responsible for

energizing atmospheric particles and the subsequent escape. Because the escape processes are

intrinsically linked to the coupling of the planet and the stellar environment, we first summarize

the regions involved in this interaction (Section 1.1). I then discuss how escape can be measured

(Section 1.3) and linked to understanding of the overall atmospheric evolution (Section 1.4).

1.1 Planetary Environments

In this section we describe planetary regions that are relevant to escape. We put a specific

emphasis on the Martian environment, due to to its extreme atmospheric evolution, wealth of

observable data, and connection with the models run in Chapters 3-5. We break down the section

into a discussion of the neutral atmosphere, ionosphere, and magnetosphere. These regions are

depicted schematically in Figure 1.1; however, as described in the following subsections the three
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regions are highly coupled and also have significant spatial overlap.

1.1.1 Neutral Atmosphere

To first order the structure of the neutral atmosphere is controlled by the pressure and tem-

perature variation with altitude. The exosphere is the outermost portion of the atmosphere where

densities are so low that collisions are infrequent. Below the exosphere is the thermosphere, a region

where collisions become important and temperatures increase with altitude. The lower boundary

of this region is the mesopause where the temperature reaches a minimum. The homopause, or

region where the atmosphere begins to be well mixed rather than diffusively separated is another

important boundary in this region. These layers are shown with a typical temperature profile for

the Martian atmosphere in Figure 1.2

The Martian upper atmosphere was first sampled during the descents of Viking Lander 1 and

2 [McElroy et al., 1976, Nier et al., 1972, 1976], and followed up from direct measurements from

a variety of landers [Magalhães et al., 1999, Schofield et al., 1997] and orbiters [Bougher et al.,

1999, Tolson et al., 2005, Tolson et al., 2000, Bhardwaj et al., 2015, Stone et al., 2018, Jakosky,

2017, Mahaffy et al., 2015]. Meanwhile, stellar occultations [Krasnopolsky et al., 1991, Bertaux

et al., 2006, Forget et al., 2009, Gröller et al., 2015] and dayglow observations [Anderson, 1974,

Krasnopolskii, 1975, Stewart, 1972, Leblanc et al., 2006, Huestis et al., 2010, Evans et al., 2015]

have provided additional information on the thermal structure. The thermal structure is consistent

with heating by UV radiation and cooling through CO2 radiation at 15 µm and thermal conduction,

indicating that the Martian exosphere temperature depends linearly on solar EUV flux [Bougher

et al., 2009, González-Galindo et al., 2009, Stone et al., 2018]. Because Mars has a thin atmosphere,

atmospheric circulation and heat transfer is weak, creating strong diurnal variations [Bougher et al.,

2009, Gröller et al., 2018, Stone et al., 2018]. Seasonal heating and dust storms have strong effects

on the neutral structure and vertical transport of H [Bougher et al., 2006, Van den Acker et al.,

2002, Bhattacharyya et al., 2017, Hollingsworth et al., 1997]. There is also significant thermal

variability due to waves; this has key implications for atmospheric mixing and subsequent escape
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Ionosphere

Neutral 
Atmosphere

Magnetosphere

Figure 1.1: Schematic representation of the relationship of the magnetosphere, ionosphere, and
neutral atmosphere for an unmagnetized planet. Note that these three regions are not necessarily
spatially distinct, as described in the following subsections.

Figure 1.2: Schematic example of a temperature profile for the Martian neutral atmosphere [adapted
from González-Galindo et al., 2008].
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[Slipski et al., 2018, Stone et al., 2018, England et al., 2017].

Planetary escape typically proceeds from a point where particles experience largely ballistic

trajectories rather than collisional ones. This transition between the exosphere and the thermo-

sphere is typically called the exobase, where the mean free path (l = 1/σn(z), σ is the collisional

cross section and n(z) is the number density) is equal to the scale height (H = kBT/mg, kB is

the Boltzmann constant, T is the temperature, m is the species mass, and g is the gravitational

acceleration at the surface).

1.1.2 Ionosphere

The ionosphere is a layer of plasma formed by the photo-ionization of the upper atmosphere

via stellar radiation or energetic particle impact ionization. As the plasma is only partially ionized,

it is spatial coincident with parts of the neutral upper atmosphere. This region is important due

to its role in coupling the neutral upper atmosphere to the magnetosphere.

In the dayside of the Martian atmosphere photo-ionization dominates over particle precipi-

tation [Kallio and Janhunen, 2001]. Photo-ionization of a neutral species M can proceed via

hv +M →M+ + e− (1.1)

when the photon energy hv exceeds the ionization potential of species M . The most impor-

tant wavelengths for producing photo-ionization of species which typically make up neutral upper

atmospheres are in the Extreme Ultra-violet (EUV).

The production rate of ions for a species M at an altitude z is given by

QM (z) =

∫ λM

0
Fλ(z)nn(z)σλdλ (1.2)

where λM is the ionization threshold, Fλ(z) is the photon flux of wavelength λ at altitude

z, nn(z) is the neutral density, and σλ is the photo-ionization cross section at wavelength λ. The

photon flux at an altitude z for some incident flux Fλ0 is given by
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Figure 1.3: Ion Production, adopted from Baumjohann and Treumann [1996]

Fλ(z, χ) = Fλ0e
−τλ (1.3)

where the optical depth τλ is given by

τλ =
1

cos(χ)

∫ ∞
z

nn(z′)σλdz
′ (1.4)

where χ is the Solar Zenith Angle (SZA) or angle between the subsolar line and the vertical.

The production rate of ions is thus reflected by a balance of the neutral atmosphere available for

ionization and the radiation intensity of the EUV flux. This is shown schematically in Figure 1.3.

In the assumption of an isothermal atmosphere the optical depth can be approximated by

τλ ≈
1

cos(χ)
nn(z)Hnσλ (1.5)

where Hn is the scale height of the isothermal neutral atmosphere. The resulting production

rate can be written

Q(χ, z′) = Q0 exp[1− z′ − sec(χ) ∗ e−z′ ] (1.6)

for z′ = (z − z0)/H. This approximation is called a Chapman layer profile [Chapman and

Zirin, 1957].
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When ion production via photoionization, electron impact ionization, and chemistry is bal-

anced by loss from ion-neutral reactions and electron-ion recombination, the system is said to be

in photochemical equilibrium. Near the density peak of the Martian ionsphere photochemical equi-

librium holds because timescales for plasma transport processes (τ = H2/D, H is the scale height,

D is the plasma diffusion coefficient) are much longer than timescales for photochemical processes

(τ = 1/(αN), α is the dissociative recombination coefficent, Ne is the electron density) [Schunk

and Nagy, 2009, Martinis et al., 2003]. This peak electron density region, also known as the M2

layer, occurs at altitudes of around 100-150 km depending on SZA [Fox and Yeager, 2006]. As the

electron density decreases exponentially above this layer, diffusive processes and production of O+
2

and O+ become important [Rishbeth and Garriott, 1969].

The ionosphere of Mars has been observed via radio occultation [Hinson et al., 1999, Withers

et al., 2008], radar experiments on Mars Express and Mars Reconnaissance Orbiter [Pätzold et al.,

2005, Gurnett et al., 2005], and in situ probes on the two Viking landers and MAVEN [Nier and

McElroy, 1977, Jakosky et al., 2015c, Benna et al., 2015]. Due to the simultaneous measurements

of the neutral atmosphere and plasma properties, the in situ measurements from the MAVEN

mission are particularly important to understanding the ionosphere. Neutral atmosphere variability

[Mendillo et al., 2017, Withers et al., 2018], wave activity [Gurnett et al., 2010, Fowler et al.,

2018], solar irradiance variability [Dubinin et al., 2017, 2018], solar wind variability [Shinagawa

and Cravens, 1989, Dubinin et al., 2008, 2018], and crustal field presence [Withers et al., 2005,

Nielsen et al., 2007, Mitchell et al., 2001] are all found to produce ionospheric variability.

An important part of the coupling between the ionosphere and the larger magnetospheric

system is the conductivity of the ionosphere. In an ionosphere with large scale magnetic structure

the conductivity of the plasma becomes highly anisotropic, due to current carrying ions and elec-

trons moving along magnetic fields. This magnetic structure can come from an intrinsic magnetic

field or the draping of stellar wind magnetic field lines, further described in Section 1.1.3.
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Equations 1.7, 1.8, and 1.9 give expressions for the Pedersen, Hall, and field-aligned conduc-

tivities, where ω is the cyclotron frequency, n is the number density, ν is the collision frequency,

and the subscripts i, e, and n indicated ions, electrons, and neutrals respectively. Studies of ion-

spheric conductivities at Mars find very strong Hall and Pedersen conductivities in magnetically

undisturbed regions and more complicated behavior near crustal fields [Opgenoorth et al., 2010,

Riousset et al., 2014].

1.1.3 Magnetosphere

The magnetosphere is typically defined as the region around a magnetized planet where the

planetary magnetic field strongly affects charged particle motion. The magnetosphere is important

because any escaping particle is subject to the forces from the magnetospheric environment; this is

particularly relevant for charged particle escape from the ionosphere. An induced magnetosphere is

produced at any unmagnetized planet with a substantial conducting ionosphere, as the conducting

ionosphere creates an effective magnetic obstacle. Here we use the term magnetosphere to broadly

include both intrinsic and induced magnetospheres, referring to the whole region where the solar

wind magnetic field is affected by draping around the magnetic obstacle. Figure 1.4 shows a

comparison of an intrinsic and induced magnetosphere, and their typical magnetic topology.

Just outside the magnetosphere is the bow shock created by the interruption of the supersonic

solar wind flow by the planetary obstacle. The shape and size of this boundary is determined by

the obstacle size and the alfven Mach number of the inflowing plasma [Spreiter et al., 1966]. Bow
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Figure 1.4: Schematic examples of an intrinsic magnetosphere (left) and an induced magnetosphere
(right) of small, terrestrial planets. Adapted from Bagenal [2013].
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shocks have been observed at Earth [Fairfield, 1971], Mars [Riedler et al., 1989], and Venus [Bridge

et al., 1967].

Within the magnetosphere, magnetized planets have a magnetopause boundary that is defined

by the balance of the dynamic pressure from the solar wind and the magnetic pressure of the intrinsic

dipole. Outside the magnetopause but within the bow shock is the magnetosheath, or region of

shocked solar wind plasma. Within the magnetopause is the plasmasphere, or the region of cool

plasma trapped by the magnetic dipole.

Unmagnetized planets share a similar structure, but due to the lack of dominant magnetic

field the physics controlling various boundaries within the magnetosphere differs. The Magnetic

Pileup Boundary (MPB) is characterized by the pileup of the IMF as it drapes around the planet,

while the Induced Magnetosphere Boundary (IMB) is marked by a transition from solar wind to

planetary plasma [Nagy et al., 2004a]. Outside of the IMB/MPB but within the bow shock is the

magnetosheath, in analog to the magnetized systems.

The region in the wake of the planet is called the magnetotail. In the magnetotail, draping of

magnetic field lines around the magnetosphere create a current sheet. At unmagnetized planets the

current sheet has both twisting and flapping motions [DiBraccio et al., 2017, DiBraccio et al., 2018,

Chai et al., 2019], which may be associated with changes in response to upstream IMF or solar

wind pressure, kink-like flapping due to waves propagating along the current sheet, or reconnection

of crustal fields [Luhmann et al., 2015]. Magnetized planets also have current sheets that show

flapping motions [Speiser and Ness, 1967], this motion is strongly influenced by reconnection events

[Nakamura et al., 2006].

It is important to understand magnetospheric processes and variability in order to relate

measured plasma populations back to intrinsic escape physics. Both the stellar drivers (see Chap-

ter 4) and the intrinsic planetary magnetic field (see Chapter 5) have a critical impact on the

magnetosphere and subsequent escape.
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1.2 Escape Processes

A variety of processes are responsible for driving planetary atmospheric escape. This section

summarizes the physics responsible for each process, the relevance for solar system planets, and

observations of such escape with a specific focus on escape from Mars.

1.2.1 Thermal Escape

One common source of escape energy for a particle is its thermal motion. For this energy to

lead to escape, the velocity of the particle must exceed the escape velocity. Thus, the escape rate

for a population of particles is dependent on its thermal distribution near the exobase.

1.2.1.1 Jeans Escape

For a population in thermodynamic equilibrium, the probability density function follows a

Maxwell-Boltzmann distribution given by

f(v) = 4πv2
(

m

2πkBT

)3/2

e
−m|v|2

2kBT =
GMm

rexokTexo
(1.10)

where m is the mass of the particle, v is the velocity, kB is the Boltzmann constant, and T

is the thermodynamic temperature.

In slow-steady state escape the particle population maintains thermodynamic equilibrium

such that only the high energy tail of the distribution escapes; this process is known as Jeans

escape [Jeans, 1925, Chamberlain, 1963]. If we assume that all particles that exceed the escape

velocity above the exobase escape, this leads to a straightforward escape flux prediction

Φ =
n(z0)v0√

π

(
vesc

2

vT 2
+ 1

)
e
− vesc

2

vT
2 (1.11)

where n(z0) is the number density at the exobase, vT =
√

2kT/m is the mean thermal

velocity, and vesc =
√

2GM/r is the escape velocity. Non-thermal energy distributions will affect

this escape rate, and the applicability of this process for different species. Jeans escape occurs at all
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terrestrial planets including Earth [Hunten and Donahue, 1976, Pierrard, 2003, Romantan et al.,

1981, Lindenfield and Shizgal, 1979], Mars [Hunten and Donahue, 1976, Liu and Donahue, 1976,

Brain et al., 2016, Pierrard, 2003], and Venus [Hunten and Donahue, 1976, Brain et al., 2016].

1.2.1.2 Hydrodynamic Escape

Jeans escape can only be maintained in situations where the escape velocity is much larger

than the mean thermal velocity; if these values approach each other the thermal equilibrium assump-

tion is broken, and the atmosphere becomes weakly bound. The departure from this assumption

can be assessed using the escape parameter λ, defined as

λ =

(
vesc

2

vT 2

)2

=
Egrav
Etherm

(1.12)

where Egrav is the gravitational escape energy and Etherm is the thermal energy. Jeans

escape occurs when λ � 1, while hydrodynamic escape occurs for λ . 1. While hydrodynamic

escape is likely only currently occuring in the solar system at Pluto due to its low surface gravity

[Krasnopolsky, 1999, Tian and Toon, 2005], hydrodynamic escape may have played a role in the

evolution of young, hydrogen-rich Earth [Pepin, 1991, Tian et al., 2008], Venus [Kasting and Pollack,

1983], and Mars [Pepin, 1991].

1.2.2 Non-Thermal Escape

While lighter species commonly escape thermally, the lower velocity for a heavier species

at a fixed temperature means that heavier species need additional energy sources to escape the

gravitational potential of the planet. As secondary atmospheres are typically composed of heavier

species, studying non-thermal loss processes is very important for assessing atmospheric evolution

and habitability.

Non-thermal loss processes have been studied extensively for solar system planets including

Earth [e.g Strangeway et al., 2005], Mars [e.g Lundin et al., 1989a, Barabash et al., 2007b, Brain

et al., 2015], Venus [e.g NordströM et al., 2013, Barabash et al., 2007a], and Titan [Wahlund et al.,
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2005, Gurnett et al., 1982, e.g]. This loss takes a variety of observed forms including photochemical

escape [Jakosky et al., 1994, Fox and Hać, 2009], charge exchange [Chamberlain, 1977], sputtering

[Jakosky et al., 1994, Lammer and Bauer, 1993, Leblanc and Johnson, 2001], ion pickup [Luhmann

and Kozyra, 1991a], ion bulk escape [Brain et al., 2010], and the polar wind [Banks and Holzer,

1968, Yau et al., 2007]. These processes are summarized schematically in Figure 1.5.

1.2.2.1 Ion Pickup and Plume Escape

Because a stellar wind carries a magnetic field (Bsw) with some velocity (Usw) past a planet,

it produces a motional electic field given by

E = −Usw ×Bsw (1.13)

While the intrinsic magnetic field of magnetized planets prevents the motional electric field

from substantially affecting the planet’s atmosphere due to the slow down and deflection of the

solar wind around the magnetic obstacle, the motional electric field strongly affects planetary ions

at unmagnetized planets, accelerating particles to speeds that may exceed the escape velocity. Any

ions accelerated by this force and gyrating around interplanetary magnetic field lines are referred to

as “pickup ions”. Planetary pickup ions that are accelerated from the day side of an unmagnetized

planets can form a coherent structure known as the plume; this escape process was first identified in

numerical simulations of the Mars plasma environment [Connerney et al., 2015, Brecht and Ledvina,

2006, Jarvinen et al., 2016, Luhmann and Schwingenschuh, 1990, Fang et al., 2008b, Najib et al.,

2011b, Dong et al., 2014].

Plume escape has been found to be an important process at Mars [Dong et al., 2015b, Curry

et al., 2015, Dubinin et al., 2011], Venus [Curry et al., 2015, Luhmann et al., 2006, Dubinin et al.,

2011, McEnulty, 2012], and Titan [Ledvina et al., 2004, Michael et al., 2005]. Studies at Mars

have found that plume fluxes are affected by seasonal variability [Dong et al., 2017c], solar wind

variations [Dubinin et al., 2017], and ion production mechanism [Curry et al., 2013].
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Figure 1.5: Schematic diagrams of non-thermal escape processes.
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1.2.2.2 Photochemical Escape

Photochemical escape converts energy from absorbed X-ray photons to kinetic energy by

dissociating a molecule. The effectiveness of this mechanism depends on the energy released by

the chemical reaction. Dissociative recombination of O2
+ is an effective escape mechanism at Mars

because the reaction

O+
2 (v, J) + e→ O∗ +O∗ + ∆E (1.14)

has multiple channels with exothermicities that exceed the escape energy necessary for the

planet (∼ 1.97 eV), two of which have branching ratios large enough to lead to substantial escape

[Fox and Hać, 2009]. The larger escape energy at Earth and Venus prevents photochemical escape

from being an effective driver of O escape. Photo-chemical escape of C and N may also have been

important at Mars through the photodissociation of CO and N2 [Fox, 1993, Fox and Bakalian, 2001,

Bakalian and Hartle, 2006, Cui et al., 2019].

Photochemical escape has long been understand to be an important escape process at Mars

[McElroy, 1972, McElroy et al., 1977]. While photochemistry is important to the thermospheric

structure at Venus [Sze and McElroy, 1975, Krasnopolsky, 2011], it is not a significant source of

escape [Yatteau, 1983, Krasnopolsky, 2011]. Photochemical escape may also be important at Titan

due to photochemical production of H from hydrocarbons [Strobel, 1982].

1.2.2.3 Charge Exchange

Charge exchange occurs when a fast ion exchanges charge with a slow neutral, creating an

energetic neutral atom (ENA) and a slow ion. The ENA can then escape on a ballistic trajectory,

where the ion was subject to forces from the plasma environment and corresponding magnetic field.

Furthermore, charge exchange between an H+ solar wind ion and a heavier neutral (e.g. O) will

remove momentum and add mass to the plasma flow.

Charge exchange was first postulated as a mechanism necessary to explain some magneto-
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spheric phenomena by Cole [1966]. Chamberlain [1977] then applied the mechanism to a planetary

corona model to understand how charge exchange modifies the exosphere and can lead to increased

H+ escape. Charge exchange has been found to be an important mechanism in affecting the ex-

ospheric structure and loss of Hydrogen at Earth [Yung et al., 1989, Shizgal and Arkos, 1996,

He, 1995, Maher and Tinsley, 1977], Mars [Chen, 2003, Shizgal and Arkos, 1996, Jin et al., 2006,

Dubinin et al., 2011], and Venus [Kumar et al., 1983, Shizgal and Arkos, 1996, Dubinin et al., 2011].

1.2.2.4 Sputtering

The extreme energy input from fast ions impacting the atmosphere can knock many atoms

out of the atmosphere via elastic collisions in a process known as sputtering. While sputtering

of Io’s atmosphere by Jupiter’s plasmasphere has long been a well studied process [Smyth and

Combi, 1988], the sputtering of the Martian ionosphere by pickup ions accelerated by the solar

wind motional electric field was first suggested by [Luhmann and Kozyra, 1991b]. Sputtering has

been postulated to be an important process for removing neutral oxygen at Mars [Luhmann et al.,

1992] and Venus [Luhmann et al., 2008]. Furthermore, sputtering may be a key process for removing

heavier elements such as Argon, of which isotopic abundances provide a record of atmospheric loss

[Jakosky et al., 1994, Johnson et al., 2000, Hutchins et al., 1997]. The energy input from sputtering

may also enhance the exobase temperature [Kozyra et al., 1982, Johnson, 1989], although there are

currently no supporting observations for Mars or Venus.

1.2.2.5 Ion Bulk Escape

Ion bulk escape is defined as the coherent detachment of portions of the ionosphere en masse.

This has been proposed to be a process operating at Venus [Wolff et al., 1980] and Mars [Penz

et al., 2004] due to the Kelvin-Helmholtz instability. Initial observations suggest this process

may be happening at both planets [Brace et al., 1982, Cloutier et al., 1999], but it is difficult to

disambiguate the signature from other escape mechanisms. Additionally, the presence of crustal

fields at Mars may lead to episodic detatchment of magnetic flux ropes and the corresponding
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plasma [Brain et al., 2010].

1.2.2.6 Cusp Escape and the Polar Wind

Because ions are constrained to gyrate around magnetic field lines, ion escape proceeds more

directly along magnetic field lines that are connected directly to the stellar wind. For magnetized

planets this only occurs at poles, while for planets like Mars magnetic topology is sensitive to the

locations of remnant crustal fields. Additionally, electron pressure gradients along magnetic cusp

regions act to drag heavier ions up along the cusps as well, due to the larger scale height of lighter

electrons. When electron pressure forces act to drive increased ion outflow along magnetic cusps

the process is called the polar wind, originally coined by Axford [1968].

The polar wind was first modelled by Banks and Holzer [1968], and observed at Earth by

Hoffman [1970], Brinton et al. [1971] and Hoffman et al. [1974]. The polar wind has been found to

be an important ion supply to the Earth plasmasphere [Huddleston et al., 2005]; however, its still

a matter of debate to what extent the polar wind ions eventually leave the system or are recycled

back into the ionosphere [Seki et al., 2001, Huddleston et al., 2005, Slapak et al., 2017].

At Mars the remnant crustal fields provide a laboratory for understanding escape along very

localized magnetic cusps, independent of global morphology. Crustal magnetic fields have been

found to have a key impact on ion escape, some of which is due to crustal fields being directly open

to the solar wind [Lundin et al., 2011, Ma et al., 2014, Dong et al., 2015b, Fang et al., 2010, 2015b,

Ramstad et al., 2016a]. These results necessitate detailed studies of the local magnetic topology in

order to connect cusp processes with measured particle distributions.

1.3 Measuring Atmospheric Escape and Evolution

There are a variety of methods used to measure atmospheric escape, from in-situ measure-

ments, to transits and occultations, to isotopologue abundance measurements. Atmospheric evolu-

tion can also be measured through its relationship with geology, both in the weathering of surface

features and in the geochemical record, but we here summarize measurements that may be obtained



18

directly from the atmosphere itself.

1.3.1 In-Situ Measurements

In-situ measurements of escaping ions are a key method for understanding planetary escape.

These measurements typically involve counting ions within some mass per charge or velocity per

charge bins to assess the plasma distribution. These measurements can then be extrapolated to

ion outflow rates or combined with other plasma measurements to drive planetary plasma models

(see Chapter 2).

There are many challenges in extrapolating in-situ measurements to global escape rates.

The first is instrumental; it is extremely difficult to measure the entire plasma distribution in all

directions for a non-spinning spacecraft. Therefore it is quite possible for a given instrument to

miss a plasma population with coherent velocity structure due to a pointing issue. Second, even

with a perfectly complete plasma distribution, a single spacecraft only takes measurements at a

given point in space and time. While statistical averages can be built up over many orbits, this

then introduces another difficulty in the intrinsic variability of escape due to both stellar driving

and planetary properties.

Despite these difficulties, in situ measurements from various spacecraft have been used to

estimate global ion escape rates from Mars [Nilsson et al., 2011, Lundin et al., 1990, Lundin and

Dubinin, 1992, Jakosky, 2017], Venus [Barabash et al., 2007a, Fedorov et al., 2011, Lundin, 2011,

NordströM et al., 2013, Brain et al., 2015], Earth [Seki et al., 2001, Strangeway et al., 2005], and

Titan [Yelle et al., 2008, Coates et al., 2012]. Escape variability has also been studied to understand

the influence of the stellar wind driving [Lundin et al., 2008, Ramstad et al., 2017, 2015b, Nilsson

et al., 2010], crustal field location [Ramstad et al., 2016b], space weather [Mayyasi et al., 2018], solar

cycle variation [Lundin et al., 2013], and seasonal variability [Dong et al., 2017c, Rahmati et al.,

2018]. Figure 1.6 shows an example of plasma measurements made by the STATIC instrument on

MAVEN, looking at seasonal variability of plume escape.



19

Figure 1.6: O+
2 flux and velocity maps from MAVEN, used to estimate ion escape rates. Observed

total escape rates are of order 1025 s−1. [Adapted from Dong et al., 2017c].
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1.3.2 Emission and Absorption

While direct plasma measurements are an important tool in detecting atmospheric escape,

they are limited by taking a measurement at a single point in space and necessitating an in-situ

spacecraft. In contrast, atmospheres may also be observed in the emission and absorption of light.

Atmospheric emission can come from processes such as scattering of solar light and dayglow emission

from electronic transitions of ionized species. Absorption of light can happen from re-absorption

of scattered emission or occultation of a background source; such a source can be a distant star or

the star the planet is directly orbiting.

Radiative transition of H atoms in the thermosphere and corona have been observed in the

121.6nm Lyman alpha line at Mars with Mariner 6 and 7 [Anderson, 1974], Mars 2, 3, and 5

[Babichenko et al., 1977, Dostovalov and Chuvakhin, 1973], Mariner 9 [Anderson, 1974], Mars

Express [Chaufray et al., 2008, Chaffin et al., 2014], the Hubble Space Telescope [Bhattacharyya

et al., 2015, Clarke et al., 2014], and MAVEN [Chaffin et al., 2018]; these observations were then

used to infer the H escape rate. Similar observations have also been made at Venus [Wallace, 1969].

One example of this process is shown in Figure 1.7 for Mars using MAVEN IUVS data.

Observations of exoplanet planet atmospheres largely use the transit technique, where small

portions of a star’s light are blocked out by an occulting planet as it orbits the star. While the

planet itself cannot be resolved, different portions of the atmosphere can be observed by using

different wavelengths and considering the ingress and egress portions of the occultation separately

from the main transit. This technique has been used to identify H escape for hot Jupiters such as

HD 209458b [Vidal-Madjar et al., 2003] and HD 189733b [Lecavelier Des Etangs et al., 2010]. Other

species including Helium (via the the 1083 nm triplet) [Nortmann et al., 2018, Allart et al., 2018],

Sodium (via the 588 nm doublet) [Charbonneau et al., 2002, Redfield et al., 2008, Vidal-Madjar

et al., 2011], and Magnesium (via the 280 nm doublet) [Haswell et al., 2012, Vidal-Madjar et al.,

2013] have also been observed escaping hot gas giant exoplanets. Figure 1.8 shows an example of

how the Ly-α transit of HD 189733b can be used to infer a corresponding escape rate.
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Figure 1.7: Example of the data reduction pipeline used to measure the hydrogen corona at Mars,
moving from the native IUVS spectral image (left), to averaging the spectra along the slit and
integrating over the Ly-α line, to creating a Hydrogen altitude profile (right). These profiles can
then be used with coronal models to estimate the escape rate [adapted from Chaffin et al., 2018].

A&A 514, A72 (2010)

Fig. 2. Plot of the wavelength calibration. The squares show the position
of each identified emission feature as a function of wavelength. The
solid line shows the fit by a third-degree polynomial.

Fig. 3. Plot of one-dimensional wavelength calibrated ACS spectrum of
HD 189733. The brightest lines are identified.

removed. We measured the brightness in the line image using
aperture photometry. The error bars were calculated using the
2D image of the propagated errors provided by the instrument
pipeline; these errors are mainly dominated by the photon noise.
The resulting brightnesses were used to obtain the transit light
curves plotted and discussed in Sect. 4.

4. Transit light curves

4.1. H I Lyman-α light curve

The main objective of these observations is to obtain the tran-
sit light curve in H I Lyman-α and to search for an atmospheric
evaporation signature. For each of the three transits, we plotted
the resulting light curves (Fig. 4). We fitted each light curve as a
function of time by a transit model defined by a linear baseline
for the stellar Lyman-α flux and the occultation by an optically-
thick disk with the planetary ephemerides. The results from these
three independent fits are given in Table 3.

We see that the second transit gives noisier measurements
than the first one, and the observations were made only when
the planet was off transit or during the partial occultation phase.
In this transit #2, no measurements during the total phase of the
planetary transit were obtained because of the Earth occultation

Fig. 4. Lyman-α flux as a function of time during three transits of
HD 189733b. Different colors and symbols are for different epochs. The
measurements in black diamonds, red triangles, and blue squares are for
the 1st, 2nd, and 3rd transits, respectively. The curve shows the best fit
to the data assuming a linear baseline and an optically-thick disk tran-
siting the star. The transit depth (defined by the size of the occulting
disk) is free to vary from one transit to another.

Fig. 5. Flux of the Lyman-α line as a function of time during transits of
HD 189733b. The flux is normalized by the linear baseline as shown in
Fig. 4. The curve shows the best fit to the data by a single light curve
obtained assuming the same transit depth for all transits. Symbols are
the same as in Fig. 4.

of the target as seen by HST. In the first and third transits, the
data covered all phases of the transit light curve, and measure-
ments well before and after the transit allowed for estimates of
the light curve baseline. Measurements obtained during the to-
tal phase of the planetary transit are well-fitted by a transit light
curve of an optically-thick occulting disk (Fig. 4), providing an
estimate of the size of the H I occulting cloud.

The full set of Lyman-α measurements can be phase-folded
to provide a complete transit light curve (Figs. 5 and 6). The
dispersion of the data rebinned by four is roughly divided by
two, so there is no sign of red-noise in the data. The fit of this
light curve yields a Lyman-α transit depth of 5.05 ± 0.75%.
The error bars are estimated using the ∆χ2 method (see e.g.,
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Table 5. Results from the light curve redward of Lyman-α.

Data λ N χ2 Degree of Absorption
√
∆χ2

√
∆χ2

(Å) measurements freedom (%) from 0% abs. from 2.4% abs.

redward of Ly-α ≥1280 84 96.5 77 2.7 ± 0.6 4.6σ 0.4 σ

Fig. 10. Plot of the theoretical spectrum of the Lyman-α line of
HD 189733. The line shape takes the absorption by the interstellar
medium hydrogen and deuterium into account (black thick line). Two
different spectra, including absorption by the planetary exophere when
it passes in front of the star, are superimposed (dashed lines). The blue
short-dashed line shows the resulting spectrum when the escape rate is
3×108 g s−1 and the ionizing EUV flux is 0.1 times the solar value. With
these values, in particular the low EUV flux, the blue side of the line is
absorbed by about 25%, resulting in a decrease of about 13% in the total
Lyman-α flux. The red long-dashed line shows the theoretical spectrum
of the Lyman-α line during transit for an escape rate of 1010 g s−1 and
an ionizing EUV flux 20 times the solar value. In this last case, the to-
tal Lyman-α flux decreases by about 5% when the exosphere passes in
front of the star.

The profile of the Lyman-α stellar emission line seen from
Earth is composed of the profile of the intrinsic stellar line
combined with the absorption by the interstellar atomic hydro-
gen and deuterium. Interstellar hydrogen produced a narrow ab-
sorption at the line center. Deuterium absorption is weaker and
blueshifted by 80 km s−1. The column density of atomic hydro-
gen toward HD 189733b is not known, but a simple relation be-
tween the stars’ distance and the H I column density can be used.
Using the results of Wood et al. (2005) and a distance of 19.3 pc
for HD 189733b, we infer an H I column of density, NHI, of about
1018.3 cm−2. Our conclusions are not sensitive to this assumption
because the column density for a star at ∼20 parsecs is typically
in the flat part of the curve of growth. The core of the stellar line
is fully absorbed by the cold interstellar medium. The width of
the stellar Lyman-α emission line is obtained using the empirical
relationship between the star absolute magnitude and the chro-
mospheric Lyman-α line FWHM (Landsman & Simon 1993).
This relation can be written as WÅ = 1.9 × 10−MV/12.4, where
the width WÅ is given in Ångstroms. With an absolute V mag-
nitude of 6.1, we infer a line width of about 0.61 Å, which is
FWMH = 150 km s−1, or for a Gaussian σLyα = 64 km s−1. We
modeled the double peak chromospheric emission line with two
Gaussians of width σLyα/2 and separated by σLyα/2. Combined
with the interstellar absorption, we obtained the profile of the
HD 189733 Lyman-α shown in Fig. 10.

5.2. HD 189733b is evaporating

We measure a 5% absorption depth over the broad Lyman-α line
with a width of ∼150 km s−1, and this can be interpreted by two
extreme scenarios. In the first scenario, the hydrogen cloud oc-
cults the full line width. In this case, the 5% absorption corre-
sponds to a cloud of about 1.65 Jupiter radii in size with gas
velocities reaching over 150 km s−1. However, at 1.65 Jupiter
radii the escape velocity from HD 189733b is only 49 km s−1

(the escape velocity is 59 km s−1 at one planetary radius). In this
first scenario, the hydrogen gas detected in the Lyman-α tran-
sit light curve exceeds the escape velocity, and is therefore not
gravitationally bound to the planet, so the detected gas must be
escaping.

In a second scenario, the velocity of the occulting gas does
not exceed the escape velocity, and so the absorption only oc-
curs in the core of the Lyman-α line. Because only 1/6 of the
observed Lyman-α flux comes from the core of the line within
the 49 km s−1 radial velocity limit, in this scenario the absorption
of the core must be at least 30% to produce a final absorption of
5% in the full unresolved line. A 30% absorption corresponds to
a cloud of about 4 Jupiter radii in size, which significantly ex-
ceeds the size of the Roche lobe of the planet (3.3 Jupiter radii).
In this second scenario, the gas detected in the Lyman-α tran-
sit light curve is beyond the Roche lobe, and is therefore not
gravitationally bound to the planet, so the detected gas must be
escaping.

An intermediate case between these two extreme scenarios
can be considered. Even if the Roche lobe was full of gas but not
beyond its borders, and the gas velocity was up to the escape ve-
locity but not above it, the absorption depth would only be 3.3%.
Therefore, the measured 5% absorption depth shows that some
gas must be either beyond the Roche lobe or at a velocity above
the escape velocity. The reality is most likely in between the two
extreme scenarios with both a fraction of gas outside the Roche
lobe and a fraction of gas at high velocity. The present obser-
vations of a 5% absorption of the broad Lyman-α emission line
demonstrates that HD 189733b must be evaporating.

5.3. Numerical simulation

To interpret the H I light curve in more detail, we modeled
the atmospheric gas escaping HD 189733b with a numerical
simulation including the dynamics of the hydrogen atoms. In
this N-body simulation, hydrogen atoms are released from
HD 189733b’s upper atmosphere with a random initial veloc-
ity corresponding to a 10 000 K exobase. This temperature
corresponds to the temperature expected in the upper atmo-
sphere (e.g., Lecavelier des Etangs et al. 2004; Stone & Proga
et al. 2009) and has been actually measured for HD 209458b
(Ballester et al. 2007). In any case, our results do not depend
on this assumption because atoms are rapidly accelerated by the
radiation pressure to velocities several times higher than their
initial velocities. In this model, the gravity of both the star and
the planet are taken into account. The radiation pressure from
the stellar Lyman-α emission line is calculated as a function of
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Figure 1.8: Ly-α transit of HD189733b (left) and corresponding reconstructed spectra (right) with
colored dashed lines indicating different possible H escape rates [adapted from Lecavelier Des Etangs
et al., 2010].
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1.3.3 Isotope Abundances

Both methods discussed so far involve measuring atmospheric escape as it is currently hap-

pening. In contrast, measuring isotopic abundance ratios allows one to measure the effect that

atmospheric escape has had on an atmosphere.

Two isotopologues (e.g. Deuterium and Hydrogen) will escape using the same processes,

however, the slight mass difference will allow the lighter isotope to escape more easily. Thus,

measuring the current abundance ratio in comparison to some original reference point can be

used to estimate the amount of atmosphere that has escaped. The critical factors for connecting

the current isotopic measurements with escape magnitude are the current abundance ratio, the

outgassed abundance ratio, and the height difference between the homopause (or the point at

which the atmosphere starts being diffusively separated rather than well mixed) and the exobase.

The deuterium to hydrogen ratio, or D/H, has been measured for Venus [Bertaux and Clarke,

1989, Donahue and Hodges, 1992, de Bergh et al., 1991] and Mars [Owen et al., 1988, Krasnopolsky

et al., 1998, Villanueva et al., 2015]. Enrichment of these values with respect to Vienna Standard

Mean Ocean Water (VSMOW) values implies that both planets have lost substantial amounts of

water. Additionally, abundance measurements of heavy isotopes such as Argon have been measured

for both Mars [e.g Biemann et al., 1976, Atreya et al., 2013] and Venus [Hoffman et al., 1979] using

high precision mass spectroscopy. Due to the heavy mass and lack of signficant chemistry, sputtering

is the only loss mechanism for argon; these measurements thus have key implications in constraining

the efficiency of sputtering [Jakosky et al., 1994, Slipski and Jakosky, 2016].

1.4 Connecting Escape to Atmospheric Evolution

Although the aforementioned escape rates and isotope measurements have given us a much

better picture of the current atmospheric loss, there is still substantial uncertainty in how to

extrapolate a planet’s atmosphere back in time. The planet’s climate, atmosphere, ionosphere,

and magnetosphere, are a set of non-linear coupled systems that also co-evolve with the Sun. It
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is thus a non-trivial problem to predict a planet’s long-term atmospheric evolution. Similarly, it

is difficult to assess the capability of an observed exoplanet to retain a potential atmosphere over

long timescales.

First estimates for the integrated atmospheric loss over time for Mars were obtained by simply

multiplying the current loss rate by the system age; this lead to discrepancies with the amount of

water required to produce geomorphic features [Yung et al., 1988, Liu and Donahue, 1976, McElroy

et al., 1977]. Luhmann et al. [1992] was the first to use models of the EUV flux and solar-wind

conditions over time to estimate variable loss over time, and found that loss rates could be orders

of magnitude greater than they are today. Other models [e.g. Chassefire et al., 2013, Barabash

et al., 2007, Boesswetter et al., 2010, Lammer et al., 2003] have since been developed that use

more detailed physics to estimate total loss. Results from the MAVEN and MEX missions have

also been used to inform estimations of current loss rates and variability [Jakosky et al., 2018,

Lillis et al., 2017, Ramstad et al., 2018]; however, there are still major uncertainties related to the

changing solar conditions over time, influence of obliquity, non-linear effects related to atmospheric

composition, and early-epoch boundary conditions. Figure 1.9 shows an example of the estimated

evolution and uncertainties of the solar wind, escape rate, and surface pressure at Mars.

Understanding exoplanet atmospheric evolution typically inverts this question; rather than

starting with present day atmosphere and working backwards to understand the initial planet con-

dition, exoplanet studies typically start with a given atmosphere and evolve it forward over time to

see if the planet is capable of maintaining the atmosphere over geologic timescales. Atmospheric

escape models have been developed to understand the observed gap in exoplanets with radii be-

tween super-Earths and mini-Neptunes [Owen and Wu, 2017, Ginzburg et al., 2018, Biersteker

and Schlichting, 2018] as well as the potential habitability of observed exoplanets [Anglada-Escudé

et al., 2016, Meadows et al., 2018, Gillon et al., 2017, Dong et al., 2018] with respect to atmospheric

evolution. Some models [e.g. Barnes et al., 2018] couple atmospheric escape estimates to simple

analytic models of a variety of planetary properties. In order for such models to be useful we must

understand the variability of and build intuition from solar system models, which can be better
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Figure 1.9: Evolution of solar wind drivers, Martian escape rate, and Martian surface pressure over
time [adapted from Ramstad et al., 2018].



25

constrained with current observations.

1.5 Overview

In this thesis I explore the relationship of various planetary plasma environments and ion loss

using computer simulations. This has key implications for understanding atmospheric evolution

and overall planetary habitability.

In Chapter 2 I discuss the role of computer simulations in understanding planetary plasma

environments as well as the underlying assumptions in adopting various models. Chapter 3 describes

a comparison of some of these plasma models, with specific applications to the Martian plasma

environment. In addition to intra-model comparison I also compare the models to data from the

MAVEN spacecraft. This additional contextualization allows us to build confidence in the models

and consider what physical assumptions discussed in Chapter 2 are valid or invalid for understanding

a given process. Chapter 3 is published in its entirety as Egan et al. [2018].

Chapter 4 explores the relationship of the star with planetary ion escape, specifically the

influence of an M-dwarf as compared to a G-type star. In order to be able to generalize these

results, each input model parameter that changes as a result of the change in stellar type is var-

ied individually. Specifically we look at the role of interplanetary magnetic field, magnetic and

dynamic solar wind pressure, and EUV magnitude. We find that changing the orientation of the

IMF drastically changes the plasma environment and introduces extreme atmospheric asymmetry.

Additionally, ion escape can become limited by the supply of ions to the ionosphere in cases of

extreme energetic input. This chapter is published in its entirety as Egan et al. [2019].

In Chapter 5 I explore the relationship between planetary magnetic field and habitability

by answering the question ”Do magnetic fields shield planets from ion escape?”. I find that weak

magnetic fields can enhance ion escape rather than shielding it due to southern hemisphere shielding,

up until the point where the intrinsic magnetosphere boundary reaches the induced magnetosphere

boundary. I also fit scaling relations for ion escape rates and power loss with planetary magnetic

field, and discussed the ranges over which these scaling laws are appropriate.
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Finally, Chapter 6 summarizes the conclusions of the previous three chapters and discusses

future extensions of this work. Together, these chapters explore a variety of ideas related to

atmospheric evolution through ion escape.



Chapter 2

Planetary Plasma Modeling

Many of the aforementioned atmospheric escape processes critically depend on the plasma

environment of the planet. The dynamic interaction of a stellar wind and planetary obstacle leads

to a wide variety of physical phenomena and plays an important role in the energization of planetary

particles and atmospheric escape.

Computer models can greatly assist our understanding of these physical processes when used

in conjunction with data. These models are useful as they allow one to probe the state of the

whole system and its drivers at once, rather than a single point at space and time from in situ

spacecraft measurements. Plasma models such as magnetohydrodynamic (MHD) [e.g Kallio et al.,

1998, Ma et al., 2002, 2013b, Terada et al., 2009], hybrid [e.g Brecht and Ferrante, 1991, Kallio and

Janhunen, 2002, Terada et al., 2002, Modolo et al., 2005a, Simon and Motschmann, 2009, Jarvinen

et al., 2009], and test particle/direct simulation Monte-Carlo (DSMC) methods [e.g Cravens et al.,

2002, Fang et al., 2008, Luhmann et al., 2006], have all been used to understand ion escape in the

context of the terrestrial planets. Using plasma simulations that have been validated in the solar

system planetary context can also add to understanding of ion loss in exoplanetary systems as well

as young solar system planets [e.g Johansson et al., 2011, Terada et al., 2009b, Boesswetter et al.,

2010].

These models have been used to understand an extensive array of plasma processes and

interactions, including plasma boundaries [Najib et al., 2011a, Bertucci et al., 2005, Bößwetter

et al., 2004], spatial ion distribution [Kallio and Barabash, 2012b, Najib et al., 2011a], ion escape
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[Brecht et al., 2016, Brecht and Ledvina, 2014, Dong et al., 2015c, Kallio et al., 2006b, 2010, Fang

et al., 2010], magnetic topology [Liemohn et al., 2006] energetic neutral atoms (ENAs) [Kallio

et al., 2006a, Gunell et al., 2006, Wang et al., 2016, 2014], and X-ray emission [Gunell et al., 2004].

Transient processes including CMEs [Ma et al., 2017, Dong et al., 2015a], changes in dynamic

pressure [Ma et al., 2014], changes in solar EUV flux [Modolo et al., 2006, Modolo et al., 2005b],

seasonal variation [Dong et al., 2015], and crustal field rotation [Ma et al., 2014, Fang et al., 2015a]

have also been topics of study.

2.1 Model Paradigms

A plasma is made up of ionized gas where electrodynamic forces dominate the statistical

properties of the medium. The motion of an individual ion or electron is determined by the

Lorentz force:

m
d~v

dt
= q

(
~E + ~v × ~B

)
(2.1)

while the fields themselves are determined via Maxwell’s equations:

∇ · ~B = 0 (2.2)

∇ · ~E =
ρ

ε0
(2.3)

∇× ~E =
∂ ~B

∂t
(2.4)

∇× ~B = µ0 ~J + µ0ε0
∂ ~E

∂t
(2.5)

Solving the equations of motion self-consistently with the evolution of the fields for every

ion and electron in a plasma is infeasible; therefore, the study of plasmas necessitates assumptions

and simplifications to understand real systems. Here we present some of the models through which

plasmas are understood and the corresponding underlying assumptions.
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2.1.1 Magnetohydrodynamics

For a magnetohydrodynamic (MHD) model, the fundamental assumption is that the plasma

may be treated as a quasi-neutral fluid, and that the fields and fluid fluctuate on the same time

and length scales. Therefore we can justify the introduction of the Navier-Stokes fluid equations

for continuity, momentum and energy. Furthermore, in a non-relativistic plasma the displacement

current ε0µ0∂ ~E/∂t can be neglected.

The conservative form of the ideal MHD equations are therefore

∂ρ

∂t
+∇ · ρ~u = 0 (2.6)

∂ρ~u

∂t
+∇ · (ρ~u~u) = ~J × ~B −∇P (2.7)

d

dt

(
P

ργ

)
= 0 (2.8)

∂ ~B

∂t
= ∇× (~u× ~B) (2.9)

here ρ is the density, ~u is the fluid velocity, ~B is the magnetic field, J is the current, and P

is the isotropic pressure. To arrive at this set of equations, Ohm’s law has been adopted as the

closure equation of ~E. Generalized Ohm’s law is given by

~E + ~u× ~B − η ~J =
1

en
~J × ~B − 1

en
∇ · Pe +

me

ne2

[
∂ ~J

∂t
+∇ · ( ~J~u+ ~u ~J)

]
(2.10)

The inclusion of various terms in the more generalized form of Ohm’s law leads to variants

from ideal MHD including Hall MHD (inclusion of the J × B term) and electron-pressure MHD

(inclusion of the ∇ · Pe term).

In the interaction of planetary plasma with solar wind plasma, there are multiple ion species

which must be taken into account. A first approximation is to use a multi-species MHD model

where a different continuity equation is solved for each species and the electron fluid assumes charge

neutrality from the sum of all the species. This allows the number densities of the species to vary

with respect to one another, but not relative motions. A multi-fluid MHD model solves a different
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momentum equation for each species rather than just a different continuity equation. Thus, effects

associated with finite ion gyroradii can be included. In the study of space plasmas one must take

care to select a model with appropriate approximations for the region or process of study.

A variety of MHD models have been used in the study of Mars [e.g Kallio et al., 1998, Ma

et al., 2002, 2013b, Terada et al., 2009, Dong et al., 2014], Venus [e.g Benna et al., 2009, Terada

et al., 2009, Shinagawa et al., 1991, Ma et al., 2013b, Biernat et al., 2000], Titan [e.g Ma et al.,

2007, Ledvina and Cravens, 1998, Cravens et al., 1998, Ma et al., 2004], Earth [e.g. Spreiter et al.,

1966, Ogino, 1986, Tanaka, 1995], Mercury [e.g. Kabin et al., 2000, Ip and Kopp, 2002], comets

[e.g. Sagdeev et al., 1986, Schmidt-Voigt, 1989, Gombosi, 1988, Cravens, 1989], and exoplanets [e.g

Dong et al., 2018, 2017b,a, Cohen et al., 2014].

2.1.2 Hybrid

While the MHD paradigm treats all charged particle populations as fluid, in a hybrid model

the ions are treated as macroparticles representing a group of ions with the same velocity, mass,

and location. The electrons are then treated as a charge neutralizing fluid. This formulation

allows the simulation of kinetic effects associated with finite ion gyroadii and non-thermal velocity

distributions.

Each ion macroparticle obeys the Lorentz force such that

mi
d~vi
dt

= qi( ~E + ~vi × ~B) , (2.11)

where ~E and ~B are the electric and magnetic fields respectively.

The current density is calculated from the magnetic field via Ampere’s Law

~J = ∇× ~B/µ0 , (2.12)

and the electric field can then be found using Ohm’s law (Equation 2.10). Finally, the magnetic

field is then propagated using Faraday’s Law (Equation 2.4).

Because ions are treated as particles, this approach automatically includes Hall effects, finite

ion gyroradii effects, and counter-streaming as the ions are not frozen into the magnetic field. It
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can also be easily expanded to include multiple ion species. The ion velocity distribution may also

be fully three-dimensional, rather than strictly Maxwellian.

Hybrid models have been used to study ion escape from Mars [e.g. Kallio and Janhunen, 2002,

Kallio et al., 2010, Dival et al., 2012, Brecht and Ledvina, 2010, Brecht and Ferrante, 1991, Brecht

et al., 2016, Ledvina et al., 2017, Modolo et al., 2016, 2006], Venus [e.g. Brecht and Ferrante, 1991,

Jarvinen et al., 2009, 2013], Mecury [e.g. Kallio and Janhunen, 2003, Trávńıček et al., 2007, Müller

et al., 2011], Titan [e.g. Kallio et al., 2007, Ledvina et al., 2005, Modolo and Chanteur, 2008], Earth

[e.g. Swift, 1996, Lin, 2002], and comets [e.g. Bagdonat and Motschmann, 2002, Motschmann and

Kührt, 2006, Koenders et al., 2015, Delamere, 2006].

2.1.3 Test-Particle

Test-particle schemes are used to examine kinetic effects associated with ion or electron mo-

tion, without the computational expense of a fully hybrid or kinetic model. Particles are integrated

via the Lorentz force (Equation 2.11) through a background of fields, such that the particle motion

does not feed back on the fields or the other particles. The background fields may be calculated

analytically or solved for via an MHD or Hybrid simulation. This approach is not self-consistent,

nor does it treat wave-particle interactions; however, it is a useful tool for understanding the be-

haviour of a particular population of particles in situations where kinetic effects are important but

time variations in the background fields are not.

Test particle models have been used to study ion loss from Mars [Curry et al., 2014, Liemohn

et al., 2013, Leblanc and Johnson, 2002, Curry et al., 2013, Cravens et al., 2002], Venus [Luhmann

et al., 2006, Phillips et al., 1987, Curry et al., 2015, Kulikov et al., 2006], and Titan [Ledvina et al.,

2005, Regoli et al., 2016].

2.2 Planetary Properties

In each paradigm care must be taken in the choices related to the inner boundary, or plan-

etary properties. In reality, the planetary properties are dynamic, three-dimensional, and cannot
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be strictly separated from the plasma environment and coupling between each region (neutral at-

mosphere, ionosphere, magnetosphere) is bilateral. However, computational constraints prohibit

a fully self-consistent treatment of the entire planetary atmosphere and solar-wind interaction;

therefore, approximations must be made.

2.2.1 Neutral Atmosphere

As discussed in Sections 1.1.1 and 1.1.2, the neutral atmosphere plays a key role in the

development and variability of the ionosphere; however, neutral species are not explicitly included

in any of the model paradigms described above.

To first approximation the neutral atmosphere can be described as a 1-D spherically symmet-

ric background; where the only coupling to the plasma model is in the production rate of various

species. Such models have been successfully used to model the Martian plasma environment far

from the inner boundary [e.g. Ma et al., 2004b, Brecht and Ledvina, 2012, Harnett and Winglee,

2006, Najib et al., 2011, Riousset et al., 2013, Modolo et al., 2006]. One-dimensional models can

also be motivated via neutral model simulations [e.g. Bougher et al., 2000] or observations [e.g.

Mahaffy et al., 2015], and can also include the effects of chemistry, both hot and cold components,

and a sputtered exosphere/corona. Figure 2.1 depicts the altitude profiles for a typical 1-D neutral

background at Mars.

Due to the spatial and temporal variability of the neutral atmosphere, many global plasma

models have begun to include a one-way coupling from a three dimensional neutral model. Three-

dimensional neutral atmosphere models [e.g. Bougher et al., 2000, 2009] self-consistently solve for

time-dependent neutral-ion densities, neutral temperatures, and neutral winds. These values can

then be interpolated onto the overlapping portion of the plasma model and then analytically ex-

tended over the rest of the domain [see e.g. Dong et al., 2014]. Including a bi-directional coupling

where the plasma model feeds back onto the neutral model is beyond current computational feasi-

bility [Kallio et al., 2011].

In addition to the production of ions, the neutral background can affect the ionosphere
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Figure 2.1: 1-D neutral atmosphere for solar minimum conditions at Mars [Ma et al., 2004b]
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through ion-neutral drag. This can be implemented in multi-species MHD or Hybrid models by

combining the ion-neutral collisional cross section with the velocity difference between the ions and

neutrals; the exact formulation of this term is model dependent.

2.2.2 Ionosphere

Accurate simulation of the ionosphere within a global magnetosphere model has many of the

same challenges as the neutral atmosphere. The typical scale size of the ionosphere is the scale

height of the heaviest species; this is much smaller than the simulation domain required to simulate

the entire magnetosphere. Chemistry also plays an important role in the production and loss of

ionospheric species. Finally, any variability in the neutral atmosphere as driven by winds or waves

also impacts the ionospheric variability.

The simplest method of treating the ionosphere is to introduce a hard lower boundary around

the exobase and define a background density (for MHD models) or ion production rate (for hybrid

models). While these models can be used to model the greater magnetosphere region and compare

favorably with in-situ data [Kallio et al., 2006, Jarvinen et al., 2018], they are not self-consistent

and rely on tunable parameters that influence resulting escape rates [Jarvinen et al., 2009]. This

method can be extended by defining a region over which to produce ions or define a background

density, rather than a simple spherical boundary.

A second option is to use a secondary model to define the conditions at the lower boundary.

Here the complexity comes from treating the coupling of the models; each model will have different

relevant time and spatial scales and there is a substantial region where their influences overlap.

Many implementations simplify the coupling by treating it as uni-directional.

Finally, some models treat the ionosphere by varying grid-spacing and time-stepping and

solving a limited selection of chemical reactions on a subset of the overall grid. This method is

used by both MHD [Ma et al., 2014] and Hybrid [Brecht et al., 2016] models; however, even such

sophisticated methods do not fully treat the ionosphere in all its complexity.
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2.2.3 Magnetic Field

For both magnetized and unmagnetized planets, a choice must be made at the lower boundary

for the behavior of the magnetic field. For unmagnetized planets, there is a distinction between

the interaction of the IMF and a planet with or without a substantial ionosphere, as described

in Chapter 1.1.3. For a planet like Mars or Venus the IMF drapes around the planet due to

the conducting ionosphere, which is numerically implemented as a superconducting shell at some

altitude. This shell enforces a zero magnetic field normal to the shell, and thus infinite conductivity

of the shell itself. Actual ionospheres have finite conductivity; however, it is high enough such that

diffusion of the magnetic field on the time-scale of the simulations is negligible [Opgenoorth et al.,

2010, Riousset et al., 2014]. For magnetized planets a minimum magnetic field value is enforced

at the boundary. This is also the approach for planets like Mars where remnant crustal fields are

present; spherical harmonic models of the distribution of crustal fields [Arkani-Hamed, 2004, Cain

et al., 2003] are used to set the magnetic field of the boundary.

2.3 Stellar Driving

Stellar driving can be broken into two main components: the radiation energy from the stellar

spectrum and the mechanical energy from the stellar wind. The impact of the radiative energy is

to ionize and heat the neutral background, producing the ionosphere. Meanwhile the mechanical

energy creates the dynamic interaction of the planet and the stellar wind. Both the stellar wind and

stellar spectrum change on both short and long time scale due to stellar variability. Furthermore,

the properties of the star (e.g. age, stellar type) critically affect the resulting spectra and winds.

To first order the stellar wind can be described by the Parker model of the solar wind and

magnetic spiral. A Parker wind is one-dimensional solution for the radial expansion of a corona

driven wind with pressure going to zero at infinity. A solution for this system is given by

(
u2

u2c
− 1

)
− ln

u2

u2c
= 4 ln

r

rc
+ 4

(rc
r
− 1
)

(2.13)
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where rc is the critical radius where the wind becomes super-sonic, u is the radial velocity,

and uc is the coronal sound speed, or uc = 2Tc/mp. From conservation of mass, the density of

the stellar wind decreases as r2 at large distances. The interplanetary magnetic field (IMF) can

be approximated by assuming a steady-state configuration where the stellar gravitation and the

acceleration of the solar wind flux can be neglected beyond some distance b, the tangential velocity

is given by the rate of stellar rotation Ω, and the magnetic field lines are frozen into the plasma.

Then the magnetic field streamlines in the ecliptic plane can be given by

r

b
− 1− ln

r

b
=
usw
Ωb

(φ− φ0) (2.14)

where usw is the velocity of the stellar wind.

Despite these simple approximations, the actual solar wind is highly variably on many scales

in both space and time. These variations can be small rotations in the IMF, density, or speed,

or large events due to coronal mass ejections (CMEs) or stellar flares. Stellar outflows can be

modelled using stellar wind reconstruction models [e.g. van der Holst et al., 2014]; however, these

become increasingly uncertain at large distances from the star or long times from a measurement

and require careful observation of the solar corona.

Despite the near constant variability in the solar wind, planetary plasma models are typically

run using constant upstream stellar wind conditions. Typically the velocity, density, temperature,

and IMF are all specified at one end of the simulation domain. This produces good agreement with

in-situ observations at times where the solar wind is relatively steady [Kallio et al., 2006, Jarvinen

et al., 2018, Egan et al., 2018, Ma et al., 2015]. Time-dependent studies of CMEs have also been

performed to understand the impact of these events on the planetary plasma environment [Dong

et al., 2015a, Ma et al., 2017, Romanelli et al., 2018].



Chapter 3

Model Challenge

This chapter has been published in its entirety as ”Egan, H., Ma, Y., Dong, C., Modolo,

R., Jarvinen, R., Bougher, S., et al. ( 2018). Comparison of global Martian plasma models in

the context of MAVEN observations. Journal of Geophysical Research: Space Physics, 123, 3714

3726.”

Abstract: Global models of the interaction of the solar wind with the Martian upper atmo-

sphere have proved to be valuable tools for investigating both the escape to space of the Martian

atmosphere and the physical processes controlling this complex interaction. The many models cur-

rently in use employ different physical assumptions, but it can be difficult to directly compare the

effectiveness of the models since they are rarely run for the same input conditions. Here we present

the results of a model comparison activity, where five global models (singlefluid MHD, multifluid

MHD, multifluid electron pressure MHD, and two hybrid models) were run for identical conditions

corresponding to a single orbit of observations from the Mars Atmosphere and Volatile EvolutioN

(MAVEN) spacecraft. We find that lowaltitude ion densities are very similar across all models and

are comparable to MAVEN ion density measurements from periapsis. Plasma boundaries appear

generally symmetric in all models and vary only slightly in extent. Despite these similarities there

are clear morphological differences in ion behavior in other regions such as the tail and southern

hemisphere. These differences are observable in ion escape loss maps and are necessary to un-

derstand in order to accurately use models in aiding our understanding of the Martian plasma

environment.
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3.1 Introduction

Mars presents a richly complicated and time variable obstacle to the solar wind, consisting

of both a conducting ionosphere and localized crustal magnetic fields, but no global dipole field.

The interaction region between the undisturbed solar wind and the lower ionosphere hosts a wide

variety of physical processes and plays an important role in the energization of planetary particles,

atmospheric escape, and upper atmospheric phenomena such as aurora.

Computer models can greatly assist our understanding of these physical processes when used

in conjunction with data. The first models of Martian gas dynamics were Spreiter et al. [1970] and

Dryer and Heckman [1967]. Since then the number of models capable of simulating the Martian

magnetosphere has proliferated greatly, and now includes a variety of MHD [Ma et al., 2015, Dong

et al., 2015, Najib et al., 2011a, Terada et al., 2009a, Harnett and Winglee, 2007], Hybrid [Brecht

et al., 2016, Kallio and Janhunen, 2002, Boesswetter et al., 2010, Modolo et al., 2016], and test

particle [Cravens et al., 2002, Fang et al., 2008a, Liemohn et al., 2013] models.

These models have been used to understand an extensive array of Martian plasma processes

and interactions. Plasma boundaries [Najib et al., 2011a, Bertucci et al., 2005, Bößwetter et al.,

2004], spatial ion distribution [Kallio and Barabash, 2012b, Najib et al., 2011a], ion escape [Brecht

et al., 2016, Brecht and Ledvina, 2014, Dong et al., 2015c, Kallio et al., 2006b, 2010, Fang et al.,

2010], magnetic topology [Liemohn et al., 2006] energetic neutral atoms (ENAs) [Kallio et al.,

2006a, Gunell et al., 2006, Wang et al., 2016, 2014], and X-ray emission [Gunell et al., 2004] have

all been studied using Martian plasma models. Transient processes including CMEs [Ma et al.,

2017, Dong et al., 2015a], changes in dynamic pressure [Ma et al., 2014], changes in solar EUV flux

[Modolo et al., 2006, Modolo et al., 2005b], seasonal variation [Dong et al., 2015], and crustal field

rotation [Ma et al., 2014, Fang et al., 2015a] have also been topics of study. Long term Martian

evolution has also been examined through estimation of early conditions and the corresponding

escape rates [Terada et al., 2009a].

The wide variety of models presents a unique challenge in cross-validation of results. In
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addition to different implementations and numerical methods, each model type makes different

implicit physical assumptions. This means that the study of a particular plasma process may be

more or less valid with the use of a particular model. The strengths and weaknesses of various

models have been discussed previously in the literature [Ledvina et al., 2008]. Directly comparing

model results provides a complementary approach to the aforementioned discussion, to determine

how the fundamental differences affect the interpretation of simulations.

Here we perform a model comparison challenge where we run a variety of models with the

same input conditions to understand the strengths and weaknesses of each one. Running a model

challenge allows the comparison across a variety of model types in a one-to-one manner and isolates

the effects of different physics from the effects of the input conditions.

Model challenges are a commonly used tool across a variety of disciplines (e.g. Kim et al.

[2016], Hurrell [1995]). Within the Martian modelling community, one such model challenge has

previously been performed [Brain et al., 2010]; however, substantial model development has oc-

curred in the interim, and it is useful to provide an updated effort and expand the types of analysis

performed. Here we evaluate different quantities, beyond boundaries and global escape rates. Addi-

tionally we compare to Mars Atmospheric Volatile EvolutioN (Maven) [Jakosky et al., 2015a] data

from a single orbit with upstream conditions that correspond to our model inputs. This provides a

baseline measurement for comparison in the region of the spacecraft orbit. In particular, Maven

adds critical information due to its simultaneous measurements of particles and fields.

In this paper we report the results from such a model comparison challenge. We identified

a suitable Maven orbit, extracted the upstream solar wind drivers, and ran a variety of models

using nearly identical input conditions. In Section 3.2 we describe the input conditions and codes.

Our results are shown in Section 3.3, where we focus on the plasma boundaries (3.3.1), low altitude

ion behaviour (3.3.2), southern hemisphere (3.3.3), and global escape (3.3.4). We conclude with a

discussion and summary in Section 3.4, as well as brief projection of our future work.
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3.2 Methods

3.2.1 Orbit

This model challenge was designed such that the results can be compared to data from a

specific MAVEN orbit. The trajectory of the chosen orbit (#2349, 2015/12/14) is depicted in Fig.

3.1. The coordinates are labeled in the Mars Solar Orbital (MSO) coordinate system; +~x is the

direction from Mars to the sun, +~z is perpendicular to the orbital plane of Mars, and +~y is the

completion of a right-handed coordinate system. This orbit is almost entirely in the terminator

plane, with periapsis near dawn at the equator. The sub-solar longitude is 170◦, indicating that the

dominant crustal fields are on the dayside of the planet as the dominant crustal fields are centered

around a geographic longitude of 180◦.

Fig. 3.1 also shows data from the Solar Wind Electron Analyzer (SWEA) [Mitchell et al.,

2016], Solar Wind Ion Analyzer (SWIA) [Halekas et al., 2015], Suprathermal and Thermal Ion

Composition (STATIC) [McFadden et al., 2015], and the Magnetometer (MAG) [Connerney et al.,

2015] rotated into MSO coordinates. Maven exits and enters the upstream solar wind at times

17:12 and 20:24 respectively. At times 17:30-18:30 both STATIC and SWIA show a group of highly

energetic ions whose energy increases with altitude in the northern hemisphere, commonly refered

to as the ion plume. Periapsis occurs around 18:43 where many heavy ions are measured. The

outbound portion of the orbit shows another section of heavy ions from times 19:05-19:25. The

model results for these regions will be explored in Section 3.3.

3.2.2 Upstream Boundary

The upstream boundary conditions (Table 3.1) were calculated from period of orbit #2349

Maven is in the upstream solar wind, and are listed in Table 3.1. These conditions are relatively

moderate, not representing an extreme event, and are consistent between the inbound and outbound

portion of the orbit. The interplanetary magnetic field (IMF) is almost entirely in the +~y direction,

perpendicular to the solar wind velocity.
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Figure 3.1: Trajectory and data from the Maven orbit (2349, 12/14/2015) that the upstream
conditions are drawn from. Left: Panels show a) electron flux per energy as measured by SWEA,
b) ion flux per energy as measured by SWIA, c) ion flux per energy as measured by STATIC, d)
ion flux per mass as measured by STATIC, e) and magnetic field as measured by MAG. The x-axis
is labeled by time, altitude, and Solar Zenith Angle (SZA). Right: Trajectory of Maven orbit in
MSO coordinates. Empirical boundaries [Trotignon et al., 2006b] are plotted as dashed lines, and
the color corresponds to the time bar on the left.

Table 3.1: Upstream conditions and derived parameters extracted from Maven data, used to drive
the models. Here Pdyn is the dynamical pressure and vA is the Alfven speed.

v [−350, 0, 0] km/s
np 4.9 cm−3

nα 0.14 cm−3

Tp 59200 K
B [−0.74, 5.46,−0.97] nT
Pdyn 0.5 nPa
vA 55 km/s
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3.2.3 Models

As shown in Table 3.2, a wide variety of models were run for this model challenge, with

different codes and underlying physical assumptions. Each model will be referred to by the tag

given in the first column to minimize confusion between similar models. In this section we describe

the models, some of the relevant implementation details, and any differences in the parameters

used to run the simulations. Although multiple crustal field models were used, this will not cause

a significant difference in the results.
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3.2.3.1 MHD Models

The three magnetohydrodynamics (MHD) models were all run within the BATS-R-US (Block

Adaptive-Tree Solar wind Roe-type Upwind Scheme) code [Ma et al., 2004a, Glocer et al., 2009b,

Najib et al., 2011a]. The BATS-R-US platform has a non-uniform spherical grid to maximize

resolution near the planet while minimizing computation time. The radial resolution varies from

10 to 600 km, and the angular resolution varies between 1.875 and 3.75. The simulated domain

extends from -24 to +8 RM (where RM is the radius of Mars) in the x-direction, and -16 to +16 in

the y and z directions. Local time stepping is utilized such that the time step can vary dynamically

between cells while satisfying the Courant condition.

Within this platform, 3 separate simulations were performed with increasing complexity. The

first, BATSRUS-MS [Ma et al., 2004a], is a multi-species run where ions H+, O+,O+
2 , and CO+

2 were

included and treated as a single fluid. This model solves a single momentum and energy equation

but separate continuity equations for each species. BATSRUS-MF, the second model [Najib et al.,

2011a], includes the same ion species but each each species is treated as a separate fluid with its

own continuity and momentum equations. BATSRUS-MF+Pe [Ma et al., 2013a] includes the same

ion species as independent fluids, and also solves an equation for the electron pressure analogous to

the energy equation that dictates ion pressure (see details in Ma et al. [2011]), allowing the electron

temperature to differ from the ion temperature.

For all three simulations the lower boundary of the code is set at 100 km above the planet, and

the O+, O+
2 , and CO+

2 densities are set by the photo-equilibrium values. The velocity condition at

the lower boundary is reflexive, leading to an approximately zero value. Crustal fields were included

as modeled by Cain et al. [2003].

3.2.3.2 Hybrid Models

The two hybrid simulations were run using two different codes: HELIOSARES [Modolo

et al., 2016], and RHybrid [Jarvinen and Sandroos, 2013]. As hybrid codes they both treat ions
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as macroparticles that evolve kinetically according to the Lorentz force, while the electrons are

implemented as a charge neutralizing fluid. A macroparticle does not represent a single physical

particle, rather a group of particles with a given density and the same properties. Fields are

advanced by accumulating particle moments according to macroparticle shape functions onto a

grid using a cloud-in-cell technique and then solving the magnetic and electric field equations

accordingly. In order to improve particle statistics, multiple independent time steps were averaged

together to create the datasets that were analysed here. Both models include planetary H+, O+,

and O+
2 , He++, and H+. Although CO2+ is included in the HELIOSARES simulation, due to

the limited resolution compared to the ion scale height it is not included in further analysis. The

RHybrid model does not include CO2+.

This HELIOSARES run uses a cartesian grid with a resolution of 60 km, and a lower boundary

at 110 km, and bounds X = [−2.7RM , 2.1RM ], Y,Z = ±4.7RM . Crustal fields are included via

the Cain et al. [2003] model. HELIOSARES also implements a particle splitting technique to limit

numerical noise that results from having large particles; when a macroparticle with a statisical

weight ≥ 3 times the solar wind density exceeds 700 km in altitude, it is split into two child particles

with the same velocity and half the statistical weight. Solar wind and ionospheric electrons are

modelled as two separate fluids, with densities set by the solar wind ion density and ionospheric ion

density respectively. The solar wind electron population is assumed to be adiabatic with polytropic

index γsw = 5/3, while the ionospheric population follows a polytropic equation varying smoothly

between isobaric and adiabatic as γion = a(1 + (a/γsw)4)−1/4 where a = (log(ne))
−1 and ne is the

ionospheric electron density.

To initialize the simulation, ion macroparticles are loaded to match ionspheric profiles com-

puted assuming photo-equilibrium. For the first 2500 timesteps, planetary ion motion is inhibited

to allow a bow shock to develop before direct interaction of the solar wind with the ionosphere.

Additionally, this HELIOSARES run was simulated using a different thermosphere, exoshere, and

photoionization rates than are discussed in Section 3.2.4. Full 3D models for the exosphere and

thermosphere generated for solar median, LS=90 using LMD-MGCM (Laboratoire de Méteorologie
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Dynamique Martian General Circulation Model) [González-Galindo et al., 2007] were utilized. Al-

though they are not identical to the models used for the rest of the simulations, they are similar

when averaged radially and should not greatly affect the presented results. The photoproduction

is based on the EUVAC (EUV model for Aeronomic Calculations) model [Richards et al., 1994],

which takes into account 27 wavelength groups, combine with the ionization and absorption cross

sections for each species from Schunk and Nagy [2000]. The computed photoionization frequencies

are similar, with less than 20% difference from the other models.

This RHybrid run uses a cartesian grid with a resolution of 113 km, bounds X,Y, Z = ±4RM ,

and does not include crustal fields. Resistivity and electron velocity are set as zero at the altitude

of 300 km and below. All ions are absorbed and removed from the simulation at the altitude of

200 km and below. Ionospheric O+ and O+
2 ions are emitted upwards from a spherical shell at 400

km with the temperature of 2 × 104 K. The emission has a maximum flux at noon and cos(SZA)

(Solar Zenith Angle) dependence towards terminator where the flux reaches 10% of the noon value

and is constant for the nightside. Total ionospheric emission rates are 1.4 × 1025s−1 for O+ and

2 × 1025s−1 for O+
2 . Photoionization of the exospheric monatomic oxygen and hydrogen neutral

coronas are included at the altitude of 400 km and above in the dayside. The total photoionization

rate in the simulation domain is 2.15 × 1024s−1 for hydrogen and 2.67 × 1023s−1 for monatomic

oxygen. The exospheric neutral profiles and ionospheric emission rates are the same as in earlier

studies such as Brain et al. [2010], Kallio et al. [2010], Jarvinen et al. [2016b].

Details of the numerical algorithm used by RHybrid are described by Kallio and Janhunen

[2003] with the following exceptions. In RHybrid the electron velocity is determined directly at

grid cell nodes, which means no cell volume average to node interpolation is needed. The electric

current density is evaluated at the edges of the grid cell faces instead of the grid cell nodes [Pohjola

and Kallio, 2010]. Further, no ion macroparticle cloud splitting and joining nor adaptive mesh

refinements are used in RHybrid.
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3.2.4 Inner Boundary

For all models except HELIOSARES, a 3D neutral atmosphere and 1D exosphere were used.

The 3D neutral atmosphere was computed using the Mars Global Ionosphere-Thermosphere Model

(MGITM) [Bougher et al., 2015] for subsolar latitude of 90 at moderate EUV (F10.7=130). MGITM

uses Martian physical parameters, ion-neutral chemistry, and radiative processes in order to sim-

ulate the dynamical structure of the Mars from the surface to the exosphere. The exosphere is

implemented via 1D profiles for hydrogen and oxygen, with oxygen containing both a hot and cold

component. Photoionization rates were also calculated using MGITM, and the additional rate

coefficients were set from Schunk and Nagy [2000].

3.3 Results

3.3.1 Boundaries

The interaction of the solar wind with the Martian plasma environment produces several

boundaries and transitions within the plasma, including the bow shock, the Magnetic Pileup Bound-

ary (MPB) due to the pileup of the IMF as it drapes around the planet, and the Induced Mag-

netosphere Boundary (IMB) marked by a transition from solar wind to planetary plasma [Nagy

et al., 2004b]. here has been some discussion that has found to the MPB and IMB to be coincident;

however, here we just consider the MPB.

Fig. 3.2 shows slices of H+, O+, and magnetic field magnitude in the Y=0 and Z=0 planes for

each model. Overplotted in white are the locations of the empirical bow shock and MPB boundaries

[Trotignon et al., 2006b].

Each model well predicts the magnetic standoff distance and the position of the bow shock

along the Mars-Sun line. Along the wings of the bow shock the H+ and magnetic field magnitude

slices show that all the BATSRUS models show a more extended shock region than the conic fits,

while both hybrid models show a more compressed shock region. The shock boundary in all of

the models is symmetric with respect to Y and Z except in HELIOSARES, which shows some
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Figure 3.2: Slices in the XZ (top) and XY (bottom) planes. From top to bottom the rows show
H+ number density, O+ number density, and magnetic field magnitude. The columns indicate
the model, from left to right: BATSRUS-MS, BATSRUS-MF, BATSRUS-MF+Pe, RHybrid, HE-
LIOSARES. The empty space in the HELIOSARES data occurs because a slightly smaller domain
is simulated while the plotting limits are kept constant. Each column uses identical color space
limits.
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Figure 3.3: Flythrough of model results of the inbound and outbound portion of the orbit (#2349,
12/14/15) excluding periapsis with corresponding Maven data. Panels show H+ number density
and magnetic field magnitude. The location at which the orbit passes through the analytic boundary
locations [Trotignon et al., 2006b] for the bow shock and MPB/IMB are plotted as vertical dashed
lines.
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asymmetry with respect to Z, opposite the direction of the convection electric field. This general

lack of asymmetry is driven by an almost entirely +y oriented IMF.

The asymmetry in HELIOSARES with respect to Z is likely driven by the motional electric

field, which points inward in the −~z hemisphere and outward in +~z hemisphere, and electron

pressure gradient. As described in Simon et al. [2007]

The transition to planetary plasma (depicted by O+) along the subsolar line occurs simultane-

ously with the empirical boundary location for all models. In the X-Z plane (3.2a), the BATSRUS-

MS and BATSRUS-Pe models show little asymmetry in O+ number density and well reproduce

the empirical boundary location, while BATSRUS-MF and HELIOSARES show strong Z asym-

metry, and RHybrid only shows planetary plasma along the plume and current sheet outside the

ionosphere. All models show very little asymmetry in the X-Y plane (3.2b).

Fig. 3.3 confirms the intuition gained with slices, but by flying through the models we are also

able to compare with Maven data from this orbit. On the inbound portion of the orbit the Maven

data show a bow shock at roughly the same location as the empirical boundary, but the outbound

crossing happens lower in altitude than the empirical crossing. This indicates the presence of some

some combination of asymmetry and time variability. As the shocked region is relatively extended

in the MHD models, none of them show a bow shock crossing in this flythrough, instead Maven’s

orbit encounters only modeled magnetosheath and lower. Thus, both the H+ number density

and the magnetic field magnitude appear to be larger than both the data and hybrid models the

RHybrid and HELIOSARES models both show a clear shock crossing that is lower in altitude than

the inbound Maven crossing, but very similar on the outbound crossing.

3.3.2 Low Altitude

Maven enters the ionosphere on Mars’ northern hemisphere along the the terminator plane.

Measurements in this region from the Neutral Gas and Ion Mass Spectrometer (NGIMS) [Mahaffy

et al., 2015] are shown along with model results in Fig. 3.4. RHybrid is not shown here due to the

absence of ionosphere in the run.
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Figure 3.4: Flythrough of model results at low altitudes with corresponding Maven data from orbit
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because it was not included in the model.
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At the lowest altitudes there is strong agreement across all models and data for O+, O+
2 ,

and CO+
2 , indicating that the ion production physics is well represented in each model. Previous

studies, including Ma et al. [2015] also found good agreement in ionospheric densities between data

and models. The difference in shapes of the heavy ion profiles are indictative of different dominant

heights. The relative steepness in decline with altitude between ions is and shape of the distributions

are consistent with predicted scale heights. The jaggedness of the HELIOSARES profiles is due to

the limited resolution of the grid that the ion macroparticles are deposited onto. The shallow drop

off of the HELIOSARES densities on the outbound segment relative to the inbound segment is due

to contributions from the southern hemisphere slow escaping ions (see Section 3.3.3).

For each ion, the inbound portion of the Maven data shows some excess number density

relative to the to steep drop off shown by the models, likely due to time and spatial variability not

captured by the models.

3.3.3 Southern Hemisphere

Cold ion escape likely plays an important role in heavy ion loss on Mars [Fränz et al., 2015,

Dong et al., 2015c]. Here we discuss differences betwen the models in the southern (-z) hemisphere

where an extended population of cold ions connects to the tail. This region of the tail is not affected

by the northern pickup ions, which we will discuss in a future paper.

As shown in Fig. 3.5, all models show a region of planetary ions that extends from the

southern hemisphere towards the tail. These ions are cold and have near zero bulk velocity. HE-

LIOSARES shows slightly higher number densities than the BATSRUS and RHybrid models and

the region extends farther in the -z direction.

Fig. 3.5 also shows vectors of the magnetic field. From this figure it is clear that the

topology varies substantially in this region across the models. The top panel shows a draped

field configuration in the BATSRUS and RHybrid models, while the field in the HELIOSARES

model appears toroidal where the ion densities are highest. In the YZ plane (middle panels)

the HELIOSARES model again appears toroidal in the tail, while the BATSRUS models all show
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Figure 3.5: Slices of O+ number density with magnetic field vectors overlaid. Panels show (top
to bottom) planes Z = −1.3RM , Y = 0, X = 0, and (left to right) simulations BATSRUS-MS,
BATSRUS-MF, BATSRUS-MF+Pe, RHybrid, and HELIOSARES. All colorbars are consistent and
labeled to the right.
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magnetic field vectors predominately in the ±x direction.

From examining the field line topology in three dimensions the magnetic field in HELIOSARES

appears coiled in the southern hemisphere, forming a channel for slow ion escape. This differs from

the magnetic topology in BATSRUS which appears more like a basic current sheet model created

by a draped IMF. These differences are likely related to differences in the obstacle boundary and

conductivity.

3.3.4 Global Escape

One of the foremost areas of interest to the Martian community is the rate at which ions are

lost to space, and the channels this escape proceeds through. Global ion escape has been measured

[Lundin et al., 1989b, Barabash et al., 2007c], as has variance in escape with solar wind and EUV

[Ramstad et al., 2015a], and variance with crustal fields [Ramstad et al., 2016a]; for full review

of global ion escape at Mars see Dubinin et al. [2011]. Brain et al. [2015] has mapped the spatial

distribution of inflowing and outflowing ion fluxes by averaging data across many orbits. Here we

present similar maps to Brain et al. [2015] but of the entire system at a single instance in time as

simulated by the models.

Fig. 3.6 shows maps of the modelled ion fluxes at 1.8RM across latitude and longitude in the

Mars-Solar-Electric field (MSE) coordinate system; +~x is the direction from Mars to the sun, +~z is

along the upstream solar wind motional electric field, and +~y is the completion of a right-handed

coordinate system. The maps are created by defining a set of points in a spherical shell, equally

spaced in five degree increments in latitude and longitude, and probing the net ion flux at each

point in each model without averaging or interpolation.

On the dayside (centered on longitude = 0), all models have inbound heavy ion flux. In

BATSRUS-MS this is symmetrical around latitude = 0 and longitude = 0. In the BATSRUS-MF,

BATSRUS-MF+Pe, RHybrid, and HELIOSARES models the dayside inbound ion flux is confined

to the southern hemisphere.

This symmetry breaking is related to the plume presence in the BATSRUS-MF, BATSRUS-
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MF+Pe, RHybrid, and HELIOSARES models. The plume feature is seen as a dark blue (outbound

flux) feature at high latitudes (> 45◦ directly above the northern pole) centered around longitude

−30◦, and as a channel connecting to the tailward outbound flux centered at longitude 180◦.

Furthermore, due to the limited number of heavy ions at large radii on the dayside, the H+

dynamics dictate the ion flux for BATSRUS-MS.

All models except HELIOSARES show predominately outbound flux in the tail. RHybrid

shows only outbound flux, while all the BATSRUS models have regions where ions are inflowing.

These inflow regions are present in the same locations at lower altitudes (down to 1.1RM ) but

shrink at higher altitudes (out to ∼ 3.0RM ). They are also correlated to the magnetic field vector

at this point. This indicates that they are likely related to the dynamics of the current sheet and the

presence of crustal fields, as only RHybrid does not include crustal fields. As the the dynamics of

these regions are sensitive to tail plasma proccesses, crustal field implementation, and low altitude

nightside ions, and our orbit does not probe this region, we leave further study to future work.

We find that the modelled maps are qualitatively similar to maps created from Maven data

[Brain et al., 2015]. The dayside shows predominately inward flux, while the tail shows outward

flux. Northern MSE latitude shows relatively more outward flux than the southern MSE latitude

region. However, coverage of this space is still relatively incomplete due to the limited amount of

Maven orbits there have been, so further conclusions and more detailed model-data comparison

are not yet possible.

By summing across all latitude/longitude bins and weighting by area, global ion fluxes can

be calculated for a given radius for each model. The rates for R = 1.8RM are shown in Table

3.3, along with observed rates calculated by Brain et al. [2015] and [Ramstad et al., 2015a]. A full

comparison with all observed rates is beyond the scope of this paper, we just show Brain et al. [2015]

for comparison with the escape maps and [Ramstad et al., 2015a] for a recent result calculated for

comparable solar wind conditions. For a full comparison of ion escape rates at Mars, see Dubinin

et al. [2011].

These results are very constant with radius for all models and are very similar for such a large
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Figure 3.6: Total heavy ion flux maps for (Left to right, top to bottom) BATSRUS-MS, RHybrid,
BATSRUS-MF+Pe, BATSRUS-MF+Pe, HELIOSARES, Maven data. Axes limits and colorbar
are identical for each panel (except the Maven panel which is labeled separately), with blue
indicating outward flux and red indicating inward flux. The map created from Maven data is
adopted from [Brain et al., 2015].
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Table 3.3: Calculated model escape rates in comparison with observed escape rates

Model/Survey O+ Flux O+
2 Flux Total Flux

BATSRUS-MS 1.0 1.1 2.1
BATSRUS-MF 0.6 1.8 2.4
BATSRUS-MF+Pe 1.3 2.1 3.4
RHybrid 1.1 1.1 2.2
HELIOSARES 2.3 0.9 3.2
Brain et al. [2015] - - 1.6
Ramstad et al. [2015a] - - 2.1± 1.1

variation in escape maps. There is greater agreement between these rates than those calculated by

Brain et al. [2010], indicating some level of convergence over time across models. These rates are

also within a factor of three of those calculated by Brain et al. [2015], though those rates are for

a wide variety of solar wind conditions and planetary orientation, and also include all heavy ion

species. When compared to rates calculated by Ramstad et al. [2015a] for similar solar wind and

EUV conditions our calculated rates are all within the appropriate range (2.1± 1.1× 1024s−1).

3.4 Conclusion

Five models of the Martian magnetosphere have been run for nearly identical input conditions

(aside from the small variations discussed in section 3.2); these models were then compared to each

other and to Maven data. The input conditions were chosen to reflect the upstream drivers of

Maven orbit #2349, an orbit chosen because the solar wind data is steady and typical, while the

rest of the orbit probes other interesting regions. Model flythroughs along the orbit trajectory,

slices through different regions, spherical ion flux maps, and global escape rates were obtained for

each dataset.

Most models showed little boundary asymmetry due to the IMF being nearly completely in

the +~y direction. The overall extent of the shocked region was larger in the fluid models than both

the empirical boundaries and the Maven results, while the hybrid models matched the outbound

crossing very well.
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From comparing NGIMS ion data to model flythroughs at low altitude it is clear that all

models that have an inner boundary lower than ∼ 200 km do a good job modelling the low altitude

day-side ions. Both overall normalization and scale heights are well recreated by all the BATSRUS

models as well as HELIOSARES.

The outflow of cold ions in the southern hemisphere varied substantially across models. More

study of the effects of lower boundary conditions and the impact they have on the magnetic topology

and ion outflow in tail could impact ion escape estimates. However, although this outflow was much

denser and more localized in the HELIOSARES model than the BATSRUS models, overall global

escape rates were relatively constant.

Future efforts on this front are still necessary. This model challenge focused specifically on

one orbit with a moderate solar wind and +y directed IMF. Changing input conditions will vary

how the solar wind interacts with the ionosphere and likely how variations in model physics appear.

Furthermore, we have limited our analysis to certain regions, and delayed comparison of the plume

region for a future paper. More analysis and comparisons with data from additional Maven orbits

will be necessary to probe other regions such as the tail.



Chapter 4

Stellar Influence

This chapter has been published in its entirety as ”Hilary Egan, Riku Jarvinen, David Brain,

Stellar influence on heavy ion escape from unmagnetized exoplanets, Monthly Notices of the Royal

Astronomical Society, Volume 486, Issue 1, June 2019, Pages 12831291” and is reproduced here

with minor changes.

Abstract: Planetary habitability is in part determined by the atmospheric evolution of a

planet; one key component of such evolution is escape of heavy ions to space. Ion-loss processes are

sensitive to the plasma environment of the planet, dictated by the stellar wind and stellar radiation.

These conditions are likely to vary from what we observe in our own Solar system when considering

a planet in the habitable zone around an M-dwarf. Here, we use a hybrid global plasma model

to perform a systematic study of the changing plasma environment and ion escape as a function

of stellar input conditions, which are designed to mimic those of potentially habitable planets

orbiting M-dwarfs. We begin with a nominal case of a solar wind experienced at Mars today, and

incrementally modify the interplanetary magnetic field orientation and strength, dynamic pressure,

and Extreme Ultraviolet input. We find that both ion-loss morphology and overall rates vary

significantly, and in cases where the stellar wind pressure was increased, the ion loss began to be

diffusion or production limited with roughly half of all produced ions being lost. This limit implies

that extreme care must be taken when extrapolating loss processes observed in the Solar system to

extreme environments.
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4.1 Introduction

Recent developments in exoplanet observation techniques have allowed the discovery of thou-

sands of extra-solar planets, including dozens of small, rocky planets that are potentially habitable.

The closest star to us, Proxima Centauri, hosts a planet with a minimum mass of 1.3 ME [Anglada-

Escudé et al., 2016], and the nearby Trappist system is home to seven transiting Earth sized planets,

three or four of which are in the habitable zone (HZ) of the star [Gillon et al., 2017, 2016]. Analysis

of the Kepler data has shown that planetary systems are common around M-dwarfs [Kopparapu,

2013], and these systems also show the best promise of observing exoplanet atmospheres [Shields

et al., 2016].

As planetary atmospheres affect the surface temperature and prevent rapid water loss, atmo-

spheric evolution of terrestrial planets around M-dwarfs is a topic of key importance. Atmospheric

evolution can encompass a broad variety of processes, including volcanic out-gassing, sequestration,

and loss to space. One component of loss to space is thermal loss, where particles with a thermal

energy exceeding the escape velocity of the planet escape; however, heavier elements with higher

escape velocities will have more difficult escaping thermally. Non-thermal processes, including

those that act on ions, act to increase the energy available to a given particle and therefor provide

additional paths to escape for heavy ions.

Non-thermal loss processes have been studied extensively for solar system planets including

Earth [e.g Strangeway et al., 2005], Mars [e.g Lundin et al., 1989a, Barabash et al., 2007b, Brain

et al., 2015], Venus [e.g NordströM et al., 2013, Barabash et al., 2007a], and Titan [Wahlund et al.,

2005, Gurnett et al., 1982, e.g]. This loss takes a variety of observed forms including photo-chemical

escape [Jakosky et al., 1994, Fox and Hać, 2009], charge exchange [Chamberlain, 1977], sputtering

[Jakosky et al., 1994, Lammer and Bauer, 1993, Leblanc and Johnson, 2001], ion pickup [Luhmann

and Kozyra, 1991a], ion bulk escape [Brain et al., 2010], and the polar wind [Banks and Holzer,

1968, Yau et al., 2007].

Further understanding of ion loss from terrestrial solar system planets has been developed
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using 3D global plasma models. These models are useful as they allow one to probe the state of

the whole system and its drivers at once, rather than limited in situ observations from spacecraft.

Plasma models such as magnetohydrodynamic (MHD) [e.g Kallio et al., 1998, Ma et al., 2002,

2013b, Terada et al., 2009], hybrid [e.g Brecht and Ferrante, 1991, Kallio and Janhunen, 2002,

Terada et al., 2002, Modolo et al., 2005a, Simon and Motschmann, 2009, Jarvinen et al., 2009],

and test particle/direct simulation Monte-Carlo (DSMC) methods [e.g Cravens et al., 2002, Fang

et al., 2008, Luhmann et al., 2006], have all been used to understand ion escape in the context of

the terrestrial planets.

Due to the relative abundance of planetary systems and constraints from the signal to noise

ratio in most observing techniques, the most potentially observable planets that meet this criteria

are found in the habitable zone around M-dwarfs. These environments are likely to be extreme due

to the enhanced EUV [France et al., 2016] and the closer radius of the habitable zone relative to

solar. Each of these factors is likely to have a distinct effect on the ion loss of the planet, and it is

necessary to understand how they work in conjunction.

Using plasma simulations that have been validated in the solar system planetary context can

add to understanding of ion loss in exoplanetary systems as well as young solar system planets

[Johansson et al., 2011, Terada et al., 2009b, Boesswetter et al., 2010]. Exoplanets may differ from

solar system planets in their intrinsic properties such as size, composition, or magnetic field, as well

as the external conditions dictated by the interaction with the host star. Cohen et al. [2015] explore

the influence of an M-dwarf star on a Venus-like planet in the habitable zone, concentrating on

the impact the possible sub- and super-alfvenic stellar wind. Garcia-Sage et al. [2017] examine the

influence of a magnetic field in the protection of a planet from atmospheric escape in the habitable

zone of red dwarf Proxima Centauri using a 1D polar wind outflow model.

Here we explore the case of an unmagnetized planet orbiting in the habitable zone of a

generalized M-dwarf system. Although magnetospheres are classically considered necessary to

prevent solar wind erosion of atmospheres, this may not necessarily be the case. Estimates of ion

escape from Mars, Venus, and Earth all show similar rates [Strangeway et al., 2005, Brain et al.,
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2013], despite Earth’s strong intrinsic magnetic field and the lack thereof at Mars and Venus. Thus

it is still worth considering and very necessary to study the plasma environment and ion escape of

unmagnetized planets.

Here we present a systematic study of the changing plasma environment and planetary ion

escape as a function of stellar input conditions. The input conditions have been selected to incre-

mentally change from typical solar wind today to the stellar wind at potentially habitable planets

orbiting M-dwarfs. We begin with a base case of Mars today, and alter the interplanetary mag-

netic field (IMF) orientation, dynamic and magnetic pressure, and EUV flux. Section 4.2 describes

the choices in stellar input conditions, Section 4.3 describes the model, Section 4.4 gives our re-

sults, Section 4.5 further discusses the limitations and implications of our results, and Section 4.6

summarizes our conclusions.

4.2 Stellar Parameters

Both the intrinsic stellar parameters and the habitable zone location drive differences in the

stellar influence on terrestrial planet escaping atmospheres. Here we describe some of the general

differences and motivate our selection of parameters. Our initial base case (R0), is the same as

that studied by Egan et al. [2018], and is an example of a typical solar wind experienced by Mars.

The final case (R4), is identical to the case considered for Trappist-g by Dong et al. [2018], where

the stellar wind was reconstructed using the Alfven Wave Solar Model [van der Holst et al., 2014].

4.2.1 Quasi-Parallel IMF

For unmagnetized planets, much of the interaction with the solar wind is dictated by the

direction of the IMF. Because ions are constrained to gyrate around magnetic fields, both solar

particle inflow and planetary ion outflow will change due to the influence of the IMF. An interaction

with the solar wind and unmagnetized planets (eg. Venus and Mars) is typically sketched with

magnetic field lines roughly perpendicular to the direction of solar wind flow piling up around the

induced ionosphere and then slipping past the planet. However, configurations where the magnetic
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field is more aligned than perpendicular with the solar wind flow occur in the inner solar system

due to the Parker spiral structure of the IMF and occur at exoplanets orbiting close to their host

stars. Aligning the magnetic field with the solar wind flow will create regions where ions can

flow directly away from the planet along field lines normal to the planet surface, dramatically

changing the ionospheric interaction [Johansson et al., 2011, Liu et al., 2009, Zhang et al., 2009].

Furthermore, the radial magnetic field results in vanishing upstream convection electric field, which

is the large-scale energy source for ion pickup [e.g. Jarvinen and Kallio, 2014].

Additionally, a shock is unstable when the angle between the magnetic field and the local

shock normal < 15◦ [Treumann and Jaroschek, 2008b,a]. A quasi-parallel magnetic field will satisfy

this condition for an entire hemisphere of the bow shock, thus making the interaction quite different

than the quasi-perpendicular IMF. Because quasi-parallel shocks do not form stable well-defined

surfaces and can reflect ions in an extended foreshock region, kinetic effects associated with finite ion

gyroradii and the ion velocity distribution become important [Treumann and Jaroschek, 2008b,a].

This makes hybrid models well-suited to simulating such an interaction.

As M-dwarfs are relatively dimmer than the Sun, the habitable zone must be correspondingly

closer in. In addition to causing increased stellar fluxes, this will also likely lead to more radially

oriented IMFs as expected from a Parker spiral model. MHD simulations of M-dwarf stellar winds

such as Garraffo et al. [2017] also show radially oriented IMFs in the corresponding habitable zones.

Although it is not universally true that all exoplanets in the HZ of an M-dwarf will experience a

radial IMF, it is a significant departure from what the potentially habitable solar system planets

(Venus, Earth, and Mars) experience so it is helpful to investigate its effects.

Here we consider a quasi-parallel magnetic field, with α = 18.2 (R1), which in the context of

the solar system is similar to the nominal Parker spiral angle at Mercury. Considering a perfectly

radial field is both somewhat unlikely to the slight variability in both the solar wind and the IMF,

and more difficult computationally due to instabilities in the ionospheric interaction and vanishing

upstream convection electric field. Additionally, although the Parker spiral angle for the Trappist-

1 exoplanets would be far less than the chosen value, this value is motivated by the solar wind
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reconstruction model used by Dong et al. [2018].

This choice does, however, neglect the influence of the large orbital velocities these planets

must have, which will be comparable to the stellar wind velocity. Thus the corresponding angle

of the stellar wind as seen by the planet and the magnetic field will also change. The results we

present here neglect this effect for ease in comparison of results, however, future work could study

the influence of the planetary orbital velocities.

4.2.2 Solar Wind Strength

Solar wind momentum is key source of energy input into the planetary plasma environment.

Observations of terrestrial planets have shown that ion loss is dependent on solar wind dynamic

pressure [Ramstad et al., 2017, Brain et al., 2017].

It is not currently possible to measure the stellar wind of stars besides our Sun directly, so

investigations into these effects rely on stellar wind reconstructions using MHD solar wind models

[e.g. Vidotto et al., 2015, Garraffo et al., 2017].

The steady state stellar wind may vary extensively across a single orbit for a close in planet

[Garraffo et al., 2017, 2016]. Furthermore, space weather may also increase variability. Previous

models of exoplanet ion loss have investigated the steady state loss rates for two cases: maxi-

mum total pressure, and minimum total pressure [e.g. Dong et al., 2018], effectively varying the

magnetosonic mach number.

Here we consider the scaling of stellar wind in two parts, increasing the overall pressure, and

varying the ratio of magnetic to dynamic pressure. We first scale the overall pressure by a factor of

roughly 4× 103 (R2), and then increase the solar wind density by a factor of 100 (R3), decreasing

the ratio of magnetic to dynamic pressure. This mimics an overall increase due to the increased

flux expected for a closer habitable zone distance and then a possibly extreme dynamic pressure

dominated scenario. While an actual planet ma33y experience extreme variation in stellar wind

due to both orbital variation and the intrinsic variability of the wind, here we select two interesting

cases for study.
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4.2.3 EUV Input

Another critical component of the stellar interaction with a planetary atmosphere is the

input in the UV and Extreme UV (EUV). In addition to photoionization of planetary neutrals,

EUV photons are absorbed in the upper atmosphere leading to heating, and in some cases thermal

driven hydrodynamic escape [Hunten et al., 1987]. In cases where heavy elements like Oxygen

are gravitationally bound to the atmosphere, EUV input is still correlated with ion escape rates

[Ramstad et al., 2017].

EUV flux will also increase due to the proximity of the habitable zone, similarly to the stellar

wind flux. Furthermore, observations show that M-dwarfs have EUV fluxes of 10-1000 times that

of solar [France et al., 2016]. Here we chose to scale IEUV by a factor of 100 (R4). Although we

do not directly simulate the stellar radiation environment, our overall ion production rate scales

directly with IEUV . For further description of this implementation see Section 4.3. While stellar

activity may dominate the EUV flux experienced by the planet, we here examine a steady state

case.

4.2.4 Summary of Models

Table 4.1 summarizes the stellar parameters used for our suite of simulations. Each simulation

builds upon the changes of the last, such that R2 contains the same adjustments as R1, R3 contains

the R2 and R1 adjustments and so on. We also list a variety of relevant plasma scales that further

illustrate the differences and similarities between the models.

Stellar wind speed (u): Input speed of the incident stellar wind in the −x direction.

Temperature (T ): Temperature of the incident solar wind Hydrogen ions.

Number Density (n(H+)): number density of the incident solar wind Hydrogen ions.

IMF (B): Incident stellar wind magnetic field vector, in PSE coordinates (described in

Section 4.3).

Production Rate (Q): Total production rate for a given ion (described further in Section
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4.3).

IMF Angle (α): angle between the upstream stellar wind velocity and the IMF, smaller

angle indicates a more parallel interaction.

Alfven Speed (vA = B/
√
µ0ρ, µ0 := magnetic permitivity, ρ := density): Alfven speed in

the incident solar wind

Alfven Mach Number (MA = u/vA): Determines the nature of the bow shock.

Magnetic to dynamic pressure ratio (PB/Pdyn = (B2/2µ0)/(1/2ρu
2)): Ratio of the

incident solar wind magnetic pressure and dynamic pressure, influences how the magnetic field

lines drape around the planet.

Ion Gyroradius (r = mv⊥/qB, v⊥ := velocity component perpendicular to the magnetic

field): dictates the radius at which an ion moving with the velocity of the upstream solar wind

gyrates in the upstream magnetic field. This has an influence on the trajectory of escaping particles

when the radius is comparable to the size of the planet (3390 km).

Ideal Gyro-Averaged Pickup Energy (Ē = 2(1/2miv⊥)) ideal energy of an ion gyrating

in the solar wind averaged over a gyroperiod, see discussion in Jarvinen and Kallio [2014].

4.3 Methods

The following simulations were performed using RHybrid [Jarvinen and Sandroos, 2013], a

hybrid global plasma model for planetary magnetospheres. In a hybrid model the ions are treated

as macroparticle clouds that are evolved according to the Lorentz equation, while the electrons

are treated as a charge neutralizing fluid. This allows the simulation to include ion kinetic effects

which are important in situations where the ion gyroradius is large compared to the scale size of

the system.

Each ion macroparticle represents a group of ions that have the same velocity (vi), central

position (xi), charge (qi), and mass (mi) obeying the Lorentz force such that

mi
d~vi
dt

= qi( ~E + ~vi × ~B) , (4.1)



68

where ~E and ~B are the electric and magnetic fields respectively. The electron charge density

then follows from the quasi-neutral assumption when summed over all ion species.

The current density is calculated from the magnetic field via Ampere’s Law

~J = ∇× ~B/µ0 , (4.2)

and the electric field can then be found using Ohm’s law

~E = − ~Ue × ~B + η ~J , (4.3)

, where the η is explicit resistivity profile used to add diffusion in the propagation of the magnetic

field [Ledvina et al., 2008]. This value was chosen to be η = 0.02µ0∆x
2/∆t, such that the magnetic

diffusion time scale τD = µ0L
2
B/η = 50∆t, for the magnetic length scale LB u ∆x. This is a similar

value as used in earlier work [Egan et al., 2018, Jarvinen and Sandroos, 2013], and ensures that the

magnetic field diffuses on timescales longer than the timestep ∆t. The explicit resistivity allows

some diffusion to stabilize the numerical integration and is greater than the inherent numerical

resistivity of the code for the chosen resolution. At the same time η is kept small enough to keep

the solution from becoming smoothed out by diffusion. Note that the resistivity is not explicitly

included in the Lorentz force.

Finally, the magnetic field is then propagated using Faraday’s Law

∂ ~B

∂t
= −∇× ~E . (4.4)

See Jarvinen and Sandroos [2013] and references therein for details of the numerical scheme.

The lower boundary is located at 250 km altitude and is implemented as a super-conducting

sphere. This mimics the effect of the electromagnetic properties of the induced magnetosphere.

In the RHybrid runs analyzed in this work the emission of ionospheric ions in the induced

magnetosphere is implemented using a Chapman profile which arises naturally when considering

an isothermal atmosphere that is ionized by plane-parallel, monochromatic radiation in the EUV
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[Chapman and Zirin, 1957]. The production rate of ions is given by

q(χ, z′) = Q0 exp[1− z′ − sec(χ) ∗ e−z′ ] , (4.5)

where z′ is the normalized height parameter given by z′ = (z − z0)/H where χ is the solar

zenith angle, z0 is the reference height, and H is the scale height. In each simulation we use a

reference height of 300 km and a scale height of 16 km. We also add an additional constant ionization

source behind the planet that is continuous across the terminator to mimic other ionization sources

and prevent divergence caused by extremely low densities.

We note that this is not a self-consistent ionospheric model, merely a convenient way to inject

ions with a reasonable distribution with altitude than is dependent on solar zenith angle. While the

scale height is used to inject particles we are not modeling the ionospheric processes themselves,

justifying the comparably large resolution. We discuss the impact of this choice in Section 4.5.

Each simulation is run on a 2403 grid, with boundaries ±4 RM in X, Y, and Z leading to an

overall resolution of ∆x = 113 km. Each simulation was run for 60,000 time steps with ∆t = 0.005,

or ∼ 3 solar wind crossing times. The final results analyzed for this paper were averaged over

several timesteps once the simulation reached steady state, in order to improve statistics in low

particle density regions.

The coordinate system used to present results throughout this paper is Planet Stellar Electric

(PSE) coordinate system. This planet-centered system is used so that despite varying the direction

of the IMF, the corresponding direction of the motional electric field (ESW = −u × B) remains

constant.The PSE coordinates are then defined such that −x̂ is defined to be in the direction of

the solar wind, ẑ is the direction of the convection electric field, and ŷ is the completion of a right

handed coordinate system. The simulation runs were performed in the same coordinate system as

in our earlier study [Egan et al., 2018], which is similar to the PSO (Planet Stellar Orbital) system.

Transformation from PSO to PSE is a rotation around the X axis.

Much of the subsequent analysis was performed using the volumetric analysis package yt

[Turk et al., 2011] and visualization system Paraview [Ayachit, 2015].
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4.4 Results

4.4.1 Magnetic Field Morphology

As discussed in Section 4.2, the planetary interaction with the IMF and the resulting magnetic

field configuration has key implications for ion escape. This intuition is confirmed in Figure 4.1

which shows magnetic field lines traced through each simulation domain with slices of O2
+ number

density.

The top two simulations in Figure 4.1 show the difference between the quasi-perpendicular

(left) and quasi-parallel (right) IMF. While the magnetic field lines pile up symmetrically in the

quasi-perpendicular run, the pile-up is only significant in the +y hemisphere in the quasi-parallel

run. In the -y hemisphere the magnetic field is much more bent close to the planet, leading to an

offset s-shaped current sheet behind the planet.

The location of the quasi-parallel shock determines where the magnetic field lines slip past

the planet from their draped configuration to the current sheet. This location also corresponds to

region where there is the greatest local curvature in the magnetic field close to the planet. While

this region is symmetrically oriented over the +z pole in the R0 model, in the R1 model the region

is offset towards the unstable shock side with the s-type current sheet.

Comparing simulations R1 and R2, the s-type current sheet becomes more extreme and the

bend closer to the center of the planet gets much sharper. Additionally, some field lines that

were clearly draped around the magnetic barrier in R1 appear to connect deeper in the magnetic

barrier near the inner boundary (ionospheric obstacle) in R2. These differences are due to the

much stronger magnetic field in the latter simulation. Because the magnetic field pressure is much

stronger in the latter simulation it can more easily overcome the plasma pressure at low altitudes,

embedding further field lines into the inner boundary. These field lines are thus less able to slip

past the planet, extending the extent of the S-type current sheet. As the magnetic field lines are

pushed much deeper in the ionospheric region this may make our results sensitive to the conditions

at the lower boundary.
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Simulations R3 and R4 show similar magnetic field morphologies to R2, despite the increases

in solar wind density and ionospheric production rates, respectively.

4.4.2 Ion Morphology

While overall ion loss rates are important for atmospheric evolution, this loss occurs through

a variety of different processes, and it is important to understand the variation in each channel.

Here we examine the overall ion morphology, and draw parallels to the ion escape channels seen at

solar system objects and the different forces that govern the particle motion.

As discussed in section 4.4.1, changing the IMF orientation from quasi-perpendicular to quasi-

parallel drives asymmetry in the solar wind access near the ionosphere. In addition to creating an

S-type current sheet, this asymmetry makes one hemisphere of the bow shock unstable as shown

in Figure 4.2, where slices of H+ number density, H+ velocity magnitude, and magnetic field

magnitude are shown for each simulation. In each slice the solar wind flows from right to left, with

the solar wind motional electric field normal to the plane.

The unstable bow shock is evident in each row; the upper half of the bow shock shows sharply

delineated boundary, while the lower half is ill-defined. This allows solar wind approaches the planet

at a much higher velocity in lower hemisphere. This not only drives more energy transfer to the

ionosphere, but drives ion pickup due to the v×B force from this location. The instability always

occurs on the hemisphere where the magnetic field vector relative to the normal becomes less that

15◦.

Figure 4.3 shows slices of the O2
+ and O+ number density for each simulation in the YZ

plane. Comparing the first two panels illustrates the effect of the s-shaped configuration of the

induced magnetosphere; while R0 shows symmetric acceleration in the direction of the motional

electric field, R1 shows ions accelerated preferentially from the unstable shock hemisphere. While

the ions in simulation R0 maintain their trajectory in the +z direction along the symmetric current

sheet, the ions in simulation R1 are redirected towards the asymmetric current sheet in the −y

hemisphere by the J ×B force.
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The morphology of escaping ions looks substantially less organized in the transition from R1

to R2. While the initial acceleration locations are the same, the outflow is much less collimated

to the specific current sheet channel. This is due to much smaller gyroradii and changes in the

current sheet configuration. As seen in Table 2, the large increase in the solar wind magnetic field

with a modest increase in solar wind velocity drastically shortens the ion gyroradius to be much

smaller than the size of the planet. Thus coherent motion on the scale of the planet is unlikely and

the motion of even heavy ions like O2
+ show magnetized behaviour. Furthermore, the changes in

the current sheet discussed in section 4.4.1 have expanded the area from which ions are initially

accelerated, broadening the eventual escape distribution. There is also a population of heavy ions

that move upstream, after being quickly accelerated from low latitudes on the day side. This

is a relatively small population of particles as denoted by the low number densities, and do not

contribute much to the overall escape.

Despite roughly an order of magnitude increase in solar wind number density from R2 to R3,

the ion escape morphology remains roughly the same. This is likely a consequence of the similar

magnetic field morphology. Similarly, when increasing the ion production rate by two orders of

magnitude from R3 to R4, although the overall ion escape rates differ, the morphology of the

escape again remains constant. This is a consequence of the magnetic field morphology dominating

the spatial distribution of ion escape and of the ion supply limited escape rather than energy limited

escape. The escape limitations are further discussed in the following section.

4.4.3 Ion Escape

Table 4.2 lists a variety of metrics relating to ion escape rates for each simulation for both

O2
+ and O+. Each of the escape properties were calculated by considering integrating the normal

ion flux or power over a sphere located at 3.5RP . This radius was chosen such that it is far enough

from the planet that all ions are escaping and do not return back to the planet while not being

affected by the simulation boundary. These results are roughly constant over ±1RP . The inflow

power was calculated by integrating over the entire +x simulation face. We chose to use the entire
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simulation face because the size of the bow shock approaches the size of the simulation domain.

Here we concentrate on the relative differences between the models, rather than the absolute

magnitudes. Although this model has been validated by observations in solar system contexts

[Jarvinen et al., 2009, Jarvinen and Sandroos, 2013], the specific escape rates are heavily dependent

on the lower boundary conditions. As we are considering a generic exoplanet around an M-dwarf

and there on not observed atmospheric constraints for any terrestrial exoplanets, we focus instead

on the relative effects of the stellar wind conditions.

Each stage of stellar property changed increases the net escape flux of both O2
+ and O+,

except for R2 to R3 (increasing the stellar wind dynamic pressure). The transition from quasi-

perpendicular to quasi-parallel increases the amount of solar wind that can penetrate directly into

the ionosphere. Increasing the solar wind strength in R1 to R2 increases the amount of energy that

is put into the system, and the strength of the magnetic field used in the v × B and J × B forces

to accelerate the ions.

While the transition from R2 to R3 increases the solar wind dynamic pressure, and thus the

total amount of energy available to the system, this does not translate to increased escape flux.

Figure 4.2 shows that the increased density allows the solar wind to penetrate the ionosphere at

higher velocity in some regions, which leads to an increased v × B force. However, the increased

force does not lead to overall increased escape, because the escape is now production/diffusion

limited.

The escape fraction column of Table 4.2 lists the fraction of total planetary ions injected that

escape the planet. While R0 and R1 have escape fractions of a few percent, R2 and R3 show that

roughly 50% of all injected ions are escaping. This limits the effect of the increased ion pickup

force. The limit on ion escape is no longer the energy injected into the system, but the supply of

ions from the planet that are available to escape.

This is further illustrated in the transition to R4 when the ion production rate is increased.

While the overall escape flux increases, the fraction of injected planetary ions decreases. This

means that the escape is less limited by the available supply of planetary ions to the system due
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to diffusion through the lower atmosphere or production via photo-ionization.

The next columns in Table 4.2 list the escape power, total inflow power, and the coupling

constant k, defined as the ratio of the escape power to the inflow power. The escape power follows

roughly the same trends as the escape flux, except when comparing R0 and R1. In this case while

the escape flux increases for a quasi-parallel IMF, the escape power slightly decreases. This is

because the R1 heavy ions are not accelerated as much by the v×B force after leaving the planet,

due to the much small perpendicular velocity component.

The power coupling constant k generally decreases as the stellar wind drivers are increased.

The decrease from R0 to R1 corresponds to the decrease in escape power for the same stellar wind

as discussed earlier. The power coupling also decreases from R1 to R2 as although the escape power

increases, it does not increase as much as the solar wind power due to the limit of available ions.

This effect is exacerbated in transition from R2 to R3, when the solar wind power continues to

increase but the escape flux and power stay roughly constant. Finally, when the EUV is increased

in R4 the power coupling constant increases, however, only to a rate comparable to R2, not as high

as R0. Noting that the nominal case of R0 corresponds to the largest coupling constant is of key

importance, because it implies that current observations of ion loss cannot be scaled indefinitely to

more extreme conditions due to ion production/diffusion limitations. Thus, current observations

may represent a more extreme case in solar wind power coupling.

The final columns in Table 4.2 list the average ion escape energy, or the escape power divided

by the escape rate. For simulations R0 and R1 the energies are quite comparable to the average

ion pickup energy expected given the solar wind parameters, as listed in Table 4.1. For simulations

R2-R4, however, the ions greatly exceed the estimates. This is because convection electric field

is much stronger at lower altitudes than in the solar wind due to the increased dynamic pressure,

leading to strong acceleration. The magnetic field draping allows there to be a larger component

of the magnetic field perpendicular to the inflow velocity, plasma pressure balance ensures that the

magnetic field pileup leads to strong magnetic fields, and higher bulk velocities are present closer

to the planet as discussed in Section 4.4.2.
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4.5 Discussion

4.5.1 Model Limitations

One additional potential short-coming of the model we have applied here is that the iono-

spheric emission is driven by a predefined Chapman ion production profile. Accurately resolving

ionospheric dynamics in the same domain as the global magnetosphere is computationally very

challenging due to the large range of spatial and temporal scales; however, some simulation plat-

forms include a one-way coupling from an ionosphere implementation to the global model, [e.g.

Glocer et al., 2009a, Brecht et al., 2016, Modolo et al., 2016].

We have also chosen to use a constant resistivity value above the lower boundary and zero

resistivity at the lower boundary; however, a self-consistent model would couple the ionospheric elec-

trodynamics and modulate the effective resistivity throughout the domain. Ionospheric resistivity is

known to affect global thermosphere structure [Roble et al., 1982] and ionospheric-magnetospheric

coupling [Ridley et al., 2004] through mechanisms such as current closure, atmospheric Joule heat-

ing, and Alfven wave dissipation. Furthermore, resistivity is dependent on auroral precipitation

[Robinson et al., 1987, Fuller-Rowell and Evans, 1987] and EUV flux [Moen and Brekke, 1993],

both of which change across our simulations.

Modeling the ionospheric emission as a predefined production profile with a constant re-

sistivity and the inner boundary as a super conducting sphere allows us to analyze stellar wind

interactions of unmagnetized planets without an additional layer of uncertainty from a coupling be-

tween ionospheric photo-chemistry, ionospheric electrodynamics, and global kinetic plasma models.

These ionospheric models, while important, are poorly constrained with current upper atmospheric

profiles of exoplanets. Furthermore, as the ion escape rates listed in Table 3 are not self-consistently

resolved based on ionospheric photochemistry they should be taken as rough order of magnitude

estimates. Further study should separately assess the variations of ionospheric production and

electrodynamics with the change in stellar parameters considered here.
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4.5.2 Implications of Changing Ion Loss Morphology

In general, as the stellar input conditions are varied the morphology of the outflowing ions

changes. The nominal case R1 showed symmetric tail and plume outflow from the nightside and

mid-latitude dayside respectively. They were both collimated along the current sheet but well-

defined as two different outflow channels. The R2 showed asymmetric outflow in both the tail and

the plume due to the quasi-parallel shock and S-type current sheet. Models R3 and R4 showed

outflow where the plume and tail were no longer distinct channels and were not well collimated.

One immediate result from this is semantic; applying definitions of different ion outflow

channels from solar system planetary science to exoplanets must be carefully considered. Although

the initial acceleration mechanisms may be distinct, the outflow channels may not be.

Observable signatures may also vary as a result of different ion morphology. Although the

possibility of observing such low density escape is far off, it is worth considering the wealth of

different geometries that are possible.

Finally, different ion outflow morphologies may also have key implications for tidally locked

planets. If heavy ions are preferentially accelerated from one hemisphere due to a quasi-parallel

stellar wind interaction, rather than the day side of the planet, this may set up a diffusion limited

scenario for escaping ions, or drive asymmetries in the environment at lower altitudes.

4.5.3 Ionospheric Loss Rate Implications

Ion loss rates derived from simulations are often used to assess whether a planet is potentially

habitable [e.g. Barnes et al., 2016]. While such rates may be validated by observations in solar

system planetary contexts [Jarvinen et al., 2009, Jarvinen and Sandroos, 2013], the specific escape

rates are heavily dependent on the ionospheric emission rates near the inner boundary, as discussed

in Section 4.5.1. Thus, beyond noting that the rates we find in our simulation cases R0-R3 are

comparable to current ion loss rates derived for Earth, Venus, and Mars [Strangeway et al., 2005]

and are thus relevant for discussing atmospheric evolution, we have focused our discussion on the
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relative difference in loss rates.

Atmospheric loss rates for the stellar parameters considered here may vary by several orders

of magnitude; however, there is not a straightforward coupling between energy input and output,

due to the complex coupling between the planet and the stellar wind. These results also imply

that these systems are likely not energy limited. Instead, ion escape rates are likely limited by ion

production or diffusion of the relevant species to the exobase.

4.6 Conclusions

The plasma environment for potentially habitable planets around M-dwarfs is markedly dif-

ferent that the environment experienced by solar system planets like Venus, Earth, or Mars. Here

we have presented a systematic study of the difference in environment and implications on magnetic

field morphology and ion loss. The differences we considered were a quasi-parallel IMF orientation

(R1), overall stellar wind pressure (R2), ratio of magnetic pressure to dynamic pressure in the solar

wind (R3), and EUV input (R4).

We found that both the ion loss morphology and overall loss rates were dictated by the plasma

environment and magnetic field morphology. In cases where the stellar wind pressure was increased,

the ion loss began to be diffusion- or production-limited with roughly half of all produced ions being

lost. Because of this limit, the coupling of solar wind power to escaping ion power decreased in

these extreme cases, despite the overall increase in ion loss. It is thus important to consider under

what conditions scaling laws derived by observations of terrestrial planets begin to break down

when applied to more extreme environments.

Going forward, careful models of stellar winds for relevant systems will become increasingly

important to constrain the plasma environment for potentially habitable exoplanets. Furthermore,

it will be important to consider the dynamics of these systems, not only through an orbit of a

steady state solar wind, but the intrinsic variability of any wind.



Chapter 5

Planetary Magnetic Field Control of Ion Escape from Weakly Magnetized

Planets

5.1 Introduction

Atmospheric escape is capable of shaping a planets atmospheric composition and total mass,

and thus the planet’s long-term habitability. Loss to space of atmospheric particles is thought to

have played a key role in the atmospheric evolution of both Mars [e.g. Anders and Owen, 1977,

Jakosky and Phillips, 2001, Jakosky et al., 2018] and Venus [e.g. Dayhoff et al., 1967, Kulikov et al.,

2006]. This evolution may have prevented these planets from being currently habitable like the

Earth, despite their likely similarities in initial formation. As we begin to discover an abundance

of exoplanets, it is important to understand the processes that shape their evolution, including

atmospheric escape. This will be particularly interesting for potentially habitable terrestrial planets,

such as Proxima-b [Anglada-Escudé et al., 2016, Meadows et al., 2018] and those in the Trappist-1

system [Gillon et al., 2017, Dong et al., 2018].

Hydrogen atmospheres accreted early in a planet’s life are thought to escape due to the

thermal energy of the particles, either slowly through Jeans escape or quickly due to a thermal wind

[Hunten, 1973]. In both of these processes a significant portion of the particle velocity distribution

exceeds escape velocity due to their thermal motion. This thermal energy can be gained from

photo-heating [e.g. Yelle, 2004], giant impacts [Liu et al., 2015], or core-accretion [Ginzburg et al.,

2016]. Thermally-driven atmospheric escape is thought to lead to the gap between super-earths

and mini-neptunes [Owen and Wu, 2017, Ginzburg et al., 2018, Biersteker and Schlichting, 2018].
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Although thermal loss is an important process for dictating the evolution of the primary

atmosphere or hydrogen nebula of a planet, secondary atmospheres created by planetary out-

gassing are composed of gravitationally bound heavier species and have more difficulty escaping

thermally after the primary atmosphere has been lost. Additional energy sources such as photo-

chemical production [McElroy et al., 1977, Hunten, 1982], sputtering [Haff and Watson, 1979,

Hunten, 1982], charge exchange [Chamberlain, 1977], or ion escape are necessary to drive significant

escape of secondary atmospheres over the course of a planets lifetime [Hunten, 1982]. Ion escape

encompasses the collection of escape channels where escape occurs through loss of ionized species,

including ion pickup [e.g. Luhmann and Kozyra, 1991a], ion bulk escape [e.g. Brain et al., 2010],

and the polar wind [e.g. Banks and Holzer, 1968, Yau et al., 2007]. Both the energization of

the particles through these processes and their eventual escape trajectories (or lack thereof) are

critically affected by the dynamic plasma environment created by the interaction of the planet and

the stellar wind.

The strength of a planet’s magnetic field is a critical factor in shaping a planetary plasma

environment. In the solar system the only clearly habitable planet, Earth, has a strong intrinsic

magnetic field driven by an internal dynamo, while Venus and Mars do not. This has led many to

speculate that an intrinsic magnetic field is a critical component required to shield the planet from

atmospheric erosion due to the solar wind [Driscoll and Bercovici, 2013, Lundin et al., 2007, do

Nascimento et al., 2016, Driscoll, 2018], we call this the magnetic umbrella hypothesis. However,

present measurements of escape rates suggest that all three planets are losing their atmosphere

at similar rates [Strangeway et al., 2005], and the magnetic umbrella hypothesis has been called

into question [Kasting, 2012, Brain et al., 2013]. Understanding the complex interplay between the

planetary plasma environment, solar wind driving, and ion loss is thus of critical importance.

Some investigation into the effects of an intrinsic magnetic field on ion loss has been made

using global plasma models. Dong et al. [2017b] compared escape rates from Proxima-b using a

multi-species MHD model with a magnetized and an unmagnetized case and found larger escape

rates in the unmagnetized case, while Garcia-Sage et al. [2017] found using a polar wind outflow
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model that the higher ionizing radiation levels of EUV radiation fluxed of M dwarfs compared

to Earth may increase the effectiveness of the polar wind by orders of magnitude. Global hybrid

modeling work from Kallio and Barabash [2012a] looked at ion escape from a Mars type planet

with a global dipole of 0, 10, 30, and 60 nT, and found maximum ion escape from the 10 nT

case. Gunell, Herbert et al. [2018] combined empirical measurements at Earth, Mars, and Venus

with semi-analytic models to analyze the influence of planetary magnetic field over a large range of

magnetic field values, finding multiple peaks in escape rate over the range that varied in strength

and value by planet. Sakai et al. [2018] found an increased escape rate for a weakly magnetized

Mars (100 nT) compared to an unmagnetized Mars in a multi-species MHD model. In combination

these results suggest that there is much more to learn about about ion escape as it relates to

planetary magnetic fields.

Weakly magnetized planets are an especially interesting regime as they represent the transi-

tion from unmagnetized planets with induced magnetospheres to magnetized planets with intrinsic

magnetospheres. In the weak-field limit the scale size of the stellar wind interaction region is not

dramatically changed. However, a global planetary magnetic field is typically approximated to the

first order as a magnetic dipole centered at the planet, this introduces a new axis of symmetry. Fur-

thermore, some studies indicate that planets around M-dwarfs may be weakly magnetized [Gaidos

et al., 2010]. Analysis of the Kepler data has shown that planetary systems are common around

M-dwarfs [Kopparapu, 2013], and these systems also show the best promise of observing exoplanet

atmospheres [Shields et al., 2016]. Thus it is important to understand what effect weak magnetic

fields will have on the subsequent ion escape.

Here we study the influence of weak planetary magnetic fields on the plasma environment

of a planet and subsequent ion loss through a series of hybrid plasma simulations. Section 5.2

describes our methods, Section 5.4 details influence of the magnetic field on the planetary plasma

environment, Section 5.5 describes the corresponding influence on ion escape, Section 5.6 contains

a discussion of the results, and Section 5.7 summarizes the conclusions.
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5.2 Methods

To analyze the effects of planetary magnetic field strength on ion escape we have run seven

simulations of the solar wind interaction with increasingly magnetized planets. These simulations

were performed using the hybrid plasma model RHybrid [Jarvinen et al., 2018]. In a hybrid model

the ions are treated as macroparticle clouds while the electrons are treated as a charge-neutralizing

fluid. By treating ions as macroparticles ion kinetic effects associated with finite ion gyroradii are

included, while treating the electrons as a fluid allows simulating a much larger volume than a

corresponding fully kinetic approach.

Each ion macroparticle represents a group of ions that have the same velocity (vi), central

position (xi), charge (qi), and mass (mi). Each cloud has the same shape and size as a grid cell

and clouds move inside the grid cells obeying the Lorentz force such that

mi
d~vi
dt

= qi( ~E + ~vi × ~B) , (5.1)

where ~E and ~B are the electric and magnetic fields respectively. The electron charge density

then follows from the quasi-neutral assumption with all ion species accumulated in the grid and

total new charge density assumed to be zero in each cell.

Amperes law is used to calculate the current density from the magnetic field

~J = ∇× ~B/µ0 , (5.2)

and then the electric field is found using Ohm’s law

~E = − ~Ue × ~B + η ~J , (5.3)

where the η is the explicit resistivity profile, and Ue is the electron fluid velocity. The value

of η was chosen to be η = 0.02µ0∆x
2/∆t, such that the magnetic diffusion time scale becomes

τD = µ0L
2
B/η = 50∆t, for the magnetic length scale LB ' ∆x. This choice adds diffusion in the

propagation of the magnetic field [Ledvina et al., 2008], stabilizing the numerical integration, while
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Table 5.1: Upstream conditions used to drive the models. Here u is the stellar wind velocity,
np is the stellar wind H+ number density, Tp is the stellar wind H+ temperature, Bsw is the
interplanetary magnetic field (IMF), Psw is the dynamical pressure, and vA is the Alfven speed.

u [−350, 0, 0] km/s
np 4.9 cm−3

Tp 59200 K
Bsw [−0.74, 5.46,−0.97] nT
Psw 1.0 nPa
vA 55 km/s

ensuring that the magnetic field diffuses on timescales longer than the timestep ∆t . Note that the

resistivity is not explicitly included in the Lorentz force. Finally, the magnetic field is advanced

using Faraday’s Law

∂ ~B

∂t
= −∇× ~E . (5.4)

Jarvinen et al. [2018] and references therein contain details of the numerical scheme. Highly

parallelized RHybrid and its sequential predecessor code HYB have been used to study ion escape

from Mars [Kallio and Janhunen, 2002, Kallio et al., 2010, Dival et al., 2012], Venus [Jarvinen et al.,

2009, 2013], Mecury [Kallio and Janhunen, 2003], Titan [Kallio et al., 2007], and exoplanets around

M-dwarfs [Egan et al., 2019].

The results presented in this paper are in the Planet Stellar Orbital (PSO) coordinate system,

such that the planet is at the origin, the x direction points from the planet against the undisturbed

upstream stellar wind velocity vector, the z direction is perpendicular to the orbital plane of the

planet, and y is the completion of a right-handed coordinate system. The physical distances are

shown in planetary radii (Rp) that correspond to 3390 km (= 1 Martian radius).

The externally forced stellar wind and interplanetary magnetic field (IMF) was chosen to be

the same as in Egan et al. [2018] and is a case of a nominal solar wind interaction with Mars. The

corresponding parameters are listed in Table 5.1. Note that the magnetic field is largely in the +y

direction and thus the corresponding motional electric field is largely in the +z direction.

The ion production representative of the planetary ionosphere is implemented via Chapman

profiles such that
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q(χ, z′) = Q0 exp[1− z′ − sec(χ) ∗ e−z′ ] , (5.5)

where z′ is the normalized height parameter given by z′ = (z − z0)/H, χ is the solar zenith

angle, z0 is the reference height, and H = 16 km is the scale height. Such a profile assumes

an isothermal atmosphere that is ionized by plane-parallel, monochromatic radiation in the EUV.

This is a simplified method to inject planetary ionospheric ions in the simulation using a pre-

defined production rate and spatial emission profile near the exobase and the inner boundary of

the model; limitations arising from such a choice are discussed in Section 5.6. The peak location

of ion production occurs at an altitude of z0 = 300 km, while the ion absorption lower boundary

occurs at 150 km. The global emission rates Q0 for each ion are picked to correspond to nominal

values at Mars today (Q0(O
+
2 ) = 2 × 1025 s−1, Q0(O

+) = 1.4 × 1025 s−1) [Jarvinen et al., 2016a,

2018, Egan et al., 2018, 2019].

The planetary magnetic field is enforced at the planet surface, and in the non-magnetized

case is implemented as a super-conducting sphere. The range of planetary magnetic fields runs

from unmagnetized to an equatorial surface dipole field of Bp = 150 nT, which corresponds to

approximately 1/400th of the Earths equatorial surface magnetic field. The magnetic dipole is

aligned with the z axis such that equatorial dipole field point along +z.

Each simulation was run on a 2403 grid, with boundaries at ±5RP in the Y and Z directions

and [−6,+4] in the X direction. This leads to a corresponding resolution of ∆x = 141 km, which is

comparable to an estimate of the ion gyroradius for O+ (γ = mv⊥/qB ∼ 390 km). Each simulation

was run for 100,000 time steps with ∆t = 0.01s (satisfying the Courant condition), corresponding

to roughly 8 stellar wind crossing times through the simulation domain.

5.3 Unmagnetized and Magnetized Planetary Paradigms

For unmagnetized planets with some atmosphere, the conductivity of the ionosphere induces

a magnetosphere which acts to stand off the stellar wind in the absence of a planetary magnetic
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field. This creates a transition region that includes the Magnetic Pileup Boundary (MPB) due to

the pileup of the IMF as it drapes around the planet and the Induced Magnetosphere Boundary

(IMB) marked by a transition from stellar wind to planetary plasma [Nagy et al., 2004a]. The

dynamics of ion escape are thus dominated by the plasma environment associated with the induced

magnetosphere.

As the stellar wind directly interacts with the ionosphere at unmagnetized planet, the stellar

wind motional electric field accelerates pickup ions into a plume [Cloutier et al., 1974, Luhmann

and Kozyra, 1991a, Dong et al., 2015]. Additionally, cold ions can flow out on the night-side of the

planet in tail escape [Frnz et al., 2015, Engwall et al., 2009].

For magnetized planets the intrinsic magnetic field acts to stand off the incoming stellar

wind through a balance of the magnetic pressure and incoming stellar wind dynamic pressure. For

a planetary magnetic field given by a dipole this pressure balance can be used to define the magnetic

standoff distance Rs as follows

Rs = RP

(
PB
Psw

)1/6

= RP

(
2B2

P

µ0ρswu2sw

)1/6

(5.6)

where the additional factor of 2 in the numerator comes from the compression of the magnetic

field at the magnetopause [Cravens, 2004]. Because the stellar wind has less direct access to the

ionosphere, the dynamics of the escaping ions are dictated by the plasma environment associated

with the intrinsic magnetosphere and the topology of the field lines.

Magnetic topology is defined by the structure of magnetic field lines and their relationship

to the surrounding environment. Open magnetic field lines have one end connected to the planet

with the other connected directly to the stellar wind, while closed field lines have both foot-points

connected to the planet. As a planet’s magnetic field increases, the area of the ionosphere that is

magnetically connected to the stellar wind via open field lines can be expected to decrease.

The locations of closed and open field lines can be estimated analytically for magnetized

planets using the magnetic stand-off distance. Because the magnetic standoff distance is associated
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with the last closed field line, the latitude of the polar cap, or region of open field lines is thus given

by

θc = arcsin

(√
Rp
Rs

)
(5.7)

and the corresponding polar cap solid angle is then

Ωc = 4π(1− cos(θc)) = 4π(1−
√

1−Rp/Rs). (5.8)

When the standoff distance becomes less than the planet radius the polar cap angle becomes

saturated at 4π, or twice the angle of an entire hemisphere.

As ions are constrained to gyrate around magnetic field lines, magnetic topology has key

implications for determining ion escape rates. At strongly magnetized planets ions escape along

open field lines at the poles in a process known as cusp escape [Lockwood et al., 1985]. If the ions

are accelerated due to the electron pressure gradients along the poles it is called the polar wind

[Banks and Holzer, 1968, Yau et al., 2007].

The transition between magnetized and unmagnetized systems is a transition between these

two paradigms; unmagnetized planets are dominated by induced magnetosphere dynamics and di-

rect acceleration of planetary ions via the stellar wind motional electric field, while magnetized

planets are dominated by their intrinsic magnetospheres and global magnetic topology. The follow-

ing results sections explore this transition in plasma environments and the corresponding changes

ion escape.

5.4 Plasma Environment

In this section we analyze the structure of the plasma environment and magnetic topology

near the planet in our set of runs with an increasing planetary magnetic field strength. Even a

moderate change in environment and topology associated with a weakly magnetized planet can

affect the ion dynamics near the planet and thus the ion outflow.
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5.4.1 Tail Twisting

The tail magnetic morphology is critically affected by both the IMF and the dipole structure.

In an unmagnetized planet the stellar wind magnetic field drapes around the planet in a roughly

symmetric fashion, creating a central current sheet within the induced magnetosphere. Observations

at Mars have shown that the current sheet is very dynamic with local variations ascribed to both

twisting and flapping motions [DiBraccio et al., 2017, DiBraccio et al., 2018, Chai et al., 2019],

which may be associated with changes in response to upstream IMF or stellar wind pressure, kink-

like flapping due to waves propagating along the current sheet, or reconnection of crustal fields

[Luhmann et al., 2015]. For magnetized planets the intrinsic dipole field also creates a current sheet

in the tail oriented perpendicularly to the dipole axis. This current sheet also experiences flapping

motion [Speiser and Ness, 1967] and is strongly influenced by reconnection events [Nakamura et al.,

2006].

In this set of simulations the dipole axis and the IMF are roughly perpendicular, making

the topology of the current sheet sensitive to the relative strengths of these fields. Figure 5.1

shows slices through the tail at x = −2 for each simulation for both O+
2 number density and the

x-component of the magnetic field, which illustrate the location of the current sheet. As the field

strength increases the tail becomes more twisted such that the central area is dominated by the

dipole contribution while farther out is dominated by the IMF draping. This structure shows the

transition in relative influences of the induced and intrinsic magnetospheres, as well as the effect

on ion escape morphology.

5.4.2 Magnetic Topology Mapping

Figure 5.2 shows magnetic field line tracing through our models with orange lines indicating

closed field lines and blue indicating open field lines. The lines were traced in both directions from

a spherical shell at 400 km altitude. These field line tracings reflect the above intuition where

stronger magnetic fields create larger regions with more closed magnetic field lines.
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Figure 5.1: Slices through the tail at X = −2 for each simulation (0, 10, 25, 50, 75, 100, 150 nT
from left to right). Top row shows O+

2 number density while the bottom row shows the x-component
of the magnetic field. The gradual twisting of the tail represents a shift from being IMF draping
dominated (symmetric about Y) to dipole dominated (symmetric about Z).
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B = 10 nT B = 50 nT
z

y

z

x

B = 100 nT

Figure 5.2: Magnetic field line traces for three representative simulations with planetary magnetic
fields of 10 nT (left), 50 nT (center), and 100 nT (right). Top row shows the planet as viewed
from the star and middle row shows planet as viewed within the orbital plane; in both cases the
motional electric field points upwards. Bottom row is a latitude-longitude map of the field line
tracings, with white dashed lines indicating the analytic critical latitude. Closed magnetic field
lines are indicated in orange while open magnetic field lines are illustrated in blue. The planet is
colored by stellar-zenith angle.
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Because the magnetization of the planet is weak, the interplanetary magnetic field (IMF)

carried by the stellar wind has a large impact on the structure of the magnetosphere. This is

similar to what has been found at Mercury [Slavin, 2004, Luhmann et al., 1998, Kabin et al., 2000]

and Ganymede [Kivelson et al., 1997] where the external magnetic field induces polar alignment.

Figure 5.2 shows this influence where the +y oriented IMF causes the open field lines at the poles

to twist towards the dawn (+y) and dusk (−y) sides in the northern and southern hemispheres

respectively, such that at larger distances the field lines align with the IMF.

The closed field lines attached to the planet on both sides also show twisting to align with the

IMF. This causes the closed field lines to attach asymmetrically in longitude; a field line attached

at a dawnward longitude in the northern hemisphere will close on the duskward longitude in the

southern hemisphere. As the magnetic field strength increases, this effect decreases due to the

larger strength of the planetary field in comparison to the IMF.

The lower portion of Figure 5.2 shows a latitude-longitude map of the field line topology

at the same altitude where the field line tracings began, with dashed lines indicating the critical

latitude θc given by Equation 5.7. While field lines outside ±θc are indicated as open within the

analytic formulation described earlier, the field line mapping shows significant area of closed field

lines outside this region, particularly for the lowest magnetic field strength (10 nT) and on the

night side (longitude ∼ 180). This occurs because of the aforementioned asymmetries, as well as

the neglect of the induced magnetospheric pressure in the analytic formulation.

5.4.3 Magnetic Standoff

In the upper panel of Figure 5.3 the magnetic topology is compared across magnetic field

strength by assessing the area of the polar cap open to the stellar wind, an estimate of the region

from which ions may escape. The “full field line trace” is calculated by summing the solid angle of

all open field lines identified in the tracing associated with Figure 5.2. The “axially symmetric field

trace” is calculated finding the region of closed field lines along the noon longitude and assuming

a polar axis symmetry. The “analytic cap area” is calculated assuming a polar axially symmetric
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system with a critical latitude given by Equation 5.7. The discrepancy between the two calculated

values is due to the lack of symmetry in the system because of day-night variation, and symmetry

breaking induced by the IMF as discussed in the following subsection. Both values are useful to

show due the physical accuracy (topology area) and directness of the comparison with the analytic

value (symmetric area).

In general the analytic formulation overestimates the polar cap solid angle, especially at small

magnetic field values. This occurs because the analytic estimate must be completely open for all

field values where the magnetic field pressure is less than the stellar wind pressure. However, this

once again neglects the influence of the induced magnetosphere.

We also show a best fit scaling relationship between the polar cap angle and magnetic field

for the full field line trace, where Ωc ∝ Bp
−0.34. A scaling law exponent of −1/3 can be recovered

by expanding Equation 5.8 around small values of Rp/Rs, and then substituting Equation 5.6 for

Rs. This scaling matches well even to small magnetic field values (BP ∼ 10 nT).

The bottom panel of Figure 5.3 shows the transition from induced to intrinsic magnetospheres

through a variety of metrics designed to assess standoff of the stellar wind by the planet. The

analytic stand-off altitude (Equation 5.6) is calculated assuming pressure balance between the

incoming stellar wind and the intrinsic magnetosphere of the planet. This is most clearly related

to the pressure equilibrium point (the altitude along the sub-stellar line at which the magnetic

pressure is equivalent to the stellar wind pressure); however, the pressure equilibrium point occurs

at much higher altitude in the magnetosheath due to the expected thickness of the transition region,

corresponding to a few proton gyroradii (γH+ ∼ 730 km) [Cravens, 2004].

The analytic stand-off altitude is also closely related to the magnetic topology, as shown in

Equation 5.7. Here, rather than calculating the latitude associated with the last closed field line,

we show the altitude along the sub-stellar line of the last closed field line. This matches fairly well

with the analytic stand-off distance but occurs slightly higher due to the the same asymmetry and

induced field pressure support as described in Section 5.4.2.

Finally, we show a measure of the magnetospheric boundary through identification of the



95

0

2

3

4
Po

la
r C

ap
 S

ol
id

 A
ng

le

B
m

ax

Full Field Line Trace
Axially Symmetric Field Trace
Analytic

B 0.34

0 20 40 60 80 100 120 140 160
Planetary Magnetic Field Strength [nT]

0

2000

4000

6000

Al
tit

ud
e 

(k
m

)

Unmagnetized IMB Subsolar
Peak Ionosphere Production

Pressure Equilibrium
Last Closed Field Line
Electron Density Gradient
Analytic Standoff Distance
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in the simulations and the vertical line indicates magnetic field associated with peak ion outflow
(see Section 5.5).



96

steepest gradient in electron number density, a method used to identify the induced magnetospheric

boundary at unmagnetized planets [Vogt et al., 2015]. At unmagnetized planets this can be thought

of as the “top” of the ionosphere, where there is a transition from planetary to stellar wind plasma.

At magnetized planets this becomes the outer region of the plasmasphere (see Section 5.5.3), where

closed magnetic field lines can confine plasma. This measurement thus has a clear relationship to

the closed field line boundary, while also having a well defined meaning for unmagnetized planets.

In Figure 5.3 we see that the last closed field line and electron density gradient altitudes agree

fairly well with each other and the analytic standoff distance at higher magnetic field strengths. At

lower magnetic field strengths, the electron density gradient flattens out due to the intrinsic gradient

associated with the ionosphere. This transition occurs where the magnetic stand-off crosses the

unmagnetized induced magnetosphere boundary (847 km) [Trotignon et al., 2006a]. Critically, this

point is also identical to the magnetic field associated with maximum ion outflow as shown in

Section 5.5.

This transition between induced and intrinsic magnetospheres is shown schematically in Fig-

ure 5.4. The induced magnetosphere boundary remains constant with magnetic field as it is de-

termined by the ionospheric conductivity and pressure support against the stellar wind. For the

weakest magnetic fields (BP < 50 nT) the induced magnetosphere is the dominant source of pres-

sure support against the stellar wind, the last closed field lines occur below the boundary, and the

electron density gradient is then associated with the induced boundary. At stronger magnetic fields

(BP > 50 nT) the intrinsic magnetosphere is the dominant source of pressure support against the

stellar wind, the last closed field lines occur above the induced magnetosphere boundary, and the

electron pressure gradient is associated with trapped plasma within the closed magnetic field line

region. The transition point occurs when the intrinsic magnetosphere standoff distance reaches

the induced magnetosphere models; for this set of simulations this occurs at BP = 50 nT. In the

following section we will discuss the implications this pattern has for ion escape.
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Figure 5.4: Schematic depiction of the relationship of the induced (pink dashed) and intrin-
sic (blue solid) magnetospheric boundaries. The different regimes are responsible for different
patterns of ion escape, as discussed in Section 5.5.



98

5.5 Ion Escape

As discussed in Section 5.4, the transition between unmagnetized and magnetized planets

affects the stand-off of the stellar wind and the opening angle of the polar cap, which in turn affect

the pickup ion and cusp escape processes. Here we analyze the trends in ion escape rates and

energy and connect them to the influence of the surrounding plasma environment.

5.5.1 Escape Rates and Energies

Figure 5.5 shows the escape rate, escape power, and average ion escape energy (escape rate

divided by escape power) for each simulation run. These parameters are calculated as

Φ =

∫
ni(~ui · ~̂r)r2dΩ (5.9)

Pesc =

∫
miniui

2(~ui · ~̂r)r2dΩ (5.10)

Ē = Pesc/(µΦ) (5.11)

respectively, where ni is the ion number density, ui is the ion velocity, mi is the ion mass,

and µ is the ion mass expressed in units of the proton mass. We calculate these rates by integrating

over a sphere far from the planet such that the sphere is large enough (r = 4.0RP ) that the flux

value is insensitive to changes in radius, and all outbound flux escapes and does not return to the

planet, even for our most strongly magnetized simulation cases.

We find that the escape rate increases for magnetic fields up to BP = 50 nT and then begins

to decrease again, with a maximum variation of a factor of ∼ 3. The magnetic field associated with

peak escape rate (Bmax) is equivalent to the magnetic field where the induced magnetosphere alti-

tude equals the intrinsic magnetosphere altitude. This divides the ion escape trends into different

regimes illustrated in Figure 5.6; weaker escape associated with predominately induced magneto-

spheres, stronger escape associated with magnetic shielding and equivalent induced and intrinsic
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magnetospheres, and weaker escape associated with strong magnetospheres and plasmasphere trap-

ping. Each of these regimes will be explored more fully in the following subsections. Additionally,

we show a power law fit for simulations BP ≥ 50 nT where we find that the escape rate scales as

BP
−0.67.

Escape power shows a steady decrease with magnetic field, and a power law scaling of BP
−0.60

for BP ≥ 50 nT. Average escape energy is calculated by dividing integrated escape power over the

spherical shell by integrated escape flux. For both O+
2 and O+ Figure 5.5 shows the reduced escape

energy is highest for small magnetic field values before reaching an asymptote at around 50 nT.

Both power laws calculated for escape rate and escape power have clear lower limits at

Bp = 50 nT , a point we define as Bmax. These power laws also likely have upper limits that may

prevent their extension to very strongly magnetized systems like Earth, as indicated by the various

shaded regions in Figure 5.5. This is discussed further in Section 5.6.4.

Figure 5.7 shows a histogram of the full velocity distribution of escaping particles through

the R = 4.0 RP sphere, weighted by area× ni × vi and normalized such that the integral over the

distribution is 1. Dashed lines indicate the average escape energies. This figure shows that the

decrease in escape energy with increasing magnetic field is caused by a corresponding decrease in

high energy particles in the tail of the velocity distributions. As the magnetic field begins to stand

off the stellar wind, fewer ions are exposed to the strong motional electric field, and thus fewer ions

are accelerated to high velocities.

5.5.2 Southern Hemisphere Shielding

The increase in escape rate with increasing magnetic field is caused by stellar wind standoff

in the southern hemisphere decreasing the flux of pickup ions accelerated towards the planet and

preciptating in the inner boundary. While the motional electric field in the northern hemisphere

causes ion pickup and the plume feature, in the southern hemisphere the motional electric field

accelerates the ions into the planet, preventing their escape. This effect is illustrated in Figure

5.6, with the direction of the motional electric field indicated by the green arrow. While particles
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Figure 5.6: Three example particle trajectory tracings for 10, 50, and 100 nT simulations. Particle
tracings are shown in red (trapped) or dark blue (escaping), and magnetic field lines are shown in
light blue (open) and orange (closed). While this location was picked primarily as an illustrative
example for these three simulations, it is representative of overall ion escape trends discussed in
Sections 5.5.2 and 5.5.3.
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injected in the southern hemisphere of the 10 nT simulation are accelerated towards the planet and

do not escape, particles injected in the same location in the 50 nT simulation do escape due to the

increased stand-off of the stellar wind.

Figure 5.8 shows slices of the total motional electric field, total electron velocity, and ratio

of the fluid velocity and the ion velocity for the 10, 50, and 100 nT simulations. In the 10 nT case

strong electric fields due to high electron velocities permeate the region of planetary ions. In the 50

and 100 nT cases the increasing magnetic pressure slows the stellar wind down much more before

reaching the planet, decreasing the magnitude of the motional electric field. The ions in these more

strongly magnetized cases can then flow farther from the planet along open field lines before being

exposed to the strong electric field, and are thus accelerated down-tail rather than into the planet.

This effect will saturate roughly when the standoff distance reaches the altitude of the IMB at the

terminator, which is illustrated occurring at 50 nT in Figure 5.3.

5.5.3 Plasmasphere Trapping

The decrease in escape rate at higher magnetic field strengths is due to plasmasphere trapping,

where ions become trapped within the closed field line regions. This is depicted in Figure 5.6 where

particles escape in the 50 nT simulation, but are confined within the closed magnetic field line in

the 100 nT simulation. This effect is related to the decrease in polar cap solid angle illustrated in

the lower panel of Figure 5.3. As more area of the planet is wrapped in stronger closed magnetic

field lines, ions will have greater difficulty escaping these closed field regions.

As the magnetic field of the planet increases creating a region of closed magnetic field lines,

the planet develops a region of plasma protected from stellar wind. This toroidal region of dense

cold plasma connects to the top of the ionosphere and is known at Earth as the plasmasphere. The

development of the plasmasphere is shown in Figure 5.9, where higher densities of planetary ions

occur within the planetary dipole field where the motional electric field becomes small. Because

the magnetic field stands off the stellar wind, the motional electric field becomes very small within

the the plasmasphere. The ion motions are then dominated by gyromotion along the magnetic field
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lines, and thus the ions are trapped within the plasmasphere.

Figure 5.5 shows a best fit scaling relation for the escape rate of the plasmasphere trapping

dominated simulations (≥ 50 nT), where Φ ∝ BP
−2/3 or Φ ∝ Ω2

c . This is a steeper relationship

than typically expected where Φ ∝ Ωc [e.g. Gunell, Herbert et al., 2018]. This is likely due to

the production rate variation with stellar zenith angle. Because more ions are produced in the

equatorial region, the relationship of escape rate with polar cap angle will be steeper than Φ ∝ Ωc.

Thus, the escape rate relationship with magnetic field will be sensitive to the ion production in

relation to the magnetic field topology. This is further discussed in Section 5.6.

5.5.4 Mass Flux and Power Coupling

Though intrinsic magnetic fields were long thought to shield atmospheres from being stripped

by interaction with a stellar wind, it has also been pointed out recently that intrinsic fields increase

the cross-sectional area through which a planet interacts with the wind, and therefore the amount of

energy or momentum it could collect from the wind to drive escape [Brain et al., 2013]. A common

technique used to discuss the relationship between input and output from a given reservoir is

through the idea of a coupling efficiency. This idea has also been used in the context of planetary

atmospheres where the mass loss rate (Ṁout) or the escaping power (Pout) are coupled to the mass

flux (Ṁin) or power input (Pin) from the stellar wind with some efficiency ε [e.g. Strangeway et al.,

2005, Dubinin et al., 2006, Ramstad et al., 2017, Egan et al., 2019]. The key questions then become

how to define and parameterize the inflow flux/power and identifying the typical efficiency of various

processes.

We put this framework in a more general form by including a correlation constant k such

that Ṁout = ε(Ṁin)k (or Pout = ε(Pin)k), where k = 1 indicates a traditional linear coupling with

a constant efficiency.

We define the inflow properties by scaling the stellar wind parameters with an interaction

area defined by the cross-sectional area of the bow shock at the terminator (x = 0) as

Ṁin = A(ρswusw) (5.12)
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and

Ṗin = A(ρswu
3
sw) (5.13)

where ρsw and usw are the density and velocity of the undisturbed stellar wind. The area A

is calculated by identifying the shock boundary in the x = 0 plane and summing the corresponding

area in the x = 0 plane within the boundary. We identify the boundary in this way rather than

an area calculated using a symmetric shock radius Rshock such that A = πR2
shock to account for

bow shock asymmetry. As the magnetic field increases the effective obstacle size presented by the

planet also increases; this then increases the cross sectional area of the bow shock. The outflow

properties are determined in the same method described in earlier in Section 5.5.1.

The resulting inflow and outflow fluxes and power for each simulation are shown in Figure

5.10, as well as the cross sectional areas calculated for each simulation. We find that the cross

sectional area increases with magnetic field as roughly A ∝ BP 0.41 or A ∝ R1.23
S (by Equation 5.6).

Neither the mass flux nor the power are coupled with a linear efficiency, nor does either

relationship show a constant power law correlation over the entire range. This is indicative of the

same change in ion escape processes as described in the preceding sections on escape trends, despite

a constant scaling in cross-sectional area. For the higher magnetic field values where plasmasphere

trapping is the dominant process affecting escape, the mass flux and power correlations have indexes

of k = −1.60 (ε = −0.48) and k = −1.43 (ε = 25.8) respectively. As the inflow mass (power) scales

with area (A ∝ BP
0.41) and the outflow mass (power) scales as ∝ BP

−0.66 (∝ BP
−0.6), both

correlation constants follow straightforwardly.

5.6 Discussion

5.6.1 Stellar Driving Dependence

All the simulations shown in this paper were run with the same nominal Martian solar wind

driving; however, stellar winds are dynamic and can dramatically change ion loss [Ramstad et al.,

2017, Brain et al., 2017]. Here we discuss the impact of our choice in stellar wind on our results.
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Figure 5.10: Coupling of the inflow and outflow mass fluxes (center) and power (right). Outflow
properties are calculated over a spherical shell far from the planet, while inflow properties are
calculated assuming a constant inflow from the stellar wind over an interaction region determined
by the cross-sectional area at the terminator (left). Dashed lines indicate a coupling of the form
Ṁout = ε(Ṁin)k (or Pout = ε(Pin)k).
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As shown in Equation 5.6, the stellar wind pressure controls the standoff distance associated

with an intrinsic magnetosphere. The induced magnetosphere boundary has also been shown to

depend weakly on dynamic pressure and extreme ultra-violet input, but much less so than the

intrinsic magnetosphere [Ramstad et al., 2017]. As the magnetic field associated with the peak

escape rate, Bmax, occurs when the intrinsic magnetosphere reaches the induced magnetosphere, it

will also scale with stellar wind pressure as Bmax ∝ P 1/2
sw . Therefore a planet experiencing a stellar

wind pressure increase by orders of magnitude, as may be likely for a planet in the habitable zone

around an M-dwarf [Vidotto et al., 2015, Garraffo et al., 2017], will have a much larger Bmax.

As shown in Section 5.4, due to the relative strengths of the planetary dipole and the IMF,

the IMF critically affects the magnetic topology of the system. The IMF can be described by a

magnitude, the clock angle φ (angle in the YZ plane, perpendicular to the sub-stellar line), and

the cone angle θ (angle between the IMF and the sub-stellar line). Our study has assumed an IMF

that is perpendicular to the dipole axis, thus a motional electric field that is aligned with the dipole

axis. In the opposite case where the IMF is aligned with the dipole axis, the southern hemisphere

shielding effect would be mitigated as the motional electric field will stand-off or accelerate into the

plasmasphere rather than the poles. Thus, there is a critical dependence on the IMF clock angle

relative to the dipole axis, necessitating further study for different configurations.

Similarly, the angle between the dipole magnetic field axis and the sub-stellar line also impacts

the escape rate relations we have shown here. The ion production method we have chosen is

dependent on the stellar zenith angle, such that the highest production occurs at the sub-stellar

point. A dramatically different configuration would occur for a planetary pole aligned with this

peak in ion production; however, this is a less likely scenario due to spin-orbit alignment. Further,

planets orbiting close to their stars have fast orbital velocities. In the case when the orbital velocity

is the same as the stellar wind speed, the upstream stellar wind vector and the sub-stellar line have

an angle of 45◦.
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5.6.2 Model Limitations

In a global hybrid model like RHybrid, specific escape rates depend on the inner boundary

ionospheric emission rates. The emission rate of inospheric ions is a free parameter, which is

fixed by comparing a model to in situ observations from solar system planets [e.g. Jarvinen et al.,

2009, 2018]. While we show escape rates here that are comparable to current escape rates at Mars

[Lundin et al., 1990, Jakosky, 2017, Brain et al., 2015], we caution against the over-interpretation of

these rates due to their dependence on the lower boundary, and instead concentrate on the relative

differences.

Furthermore, our implementation of ionospheric emission is driven by a predefined Chapman

ion production profile. Currently, accurately resolving ionospheric dynamics on the same domain as

the global magnetosphere is computationally infeasible. Although some simulations suites include

a one way coupling of an ionosphere implementation to a global magnetosphere [e.g. Glocer et al.,

2009a, Brecht et al., 2016, Modolo et al., 2016], we chose to restrict our ionospheric production to

a simple approximation. This allows us to focus on the magnetospheric physics associated with an

increasing magnetic field, without introducing an additional layer of uncertainty from coupling an

additional model.

We have also neglected to include an ionospheric electrodynamics model, and instead use

a constant resistivity value above the lower boundary and zero resistivity at the lower boundary.

Global thermospheric structure [Roble et al., 1982] and ionospheric-magnetospheric coupling [Ridley

et al., 2004] are both affected by ionospheric electrodynamics through mechanisms such as current

closure, atmospheric Joule heating, and Alfven wave dissipation.

Impact ionization, neutral structure, and resistivity are all affected by auroral precipitation

[Cravens et al., 1995, Deehr et al., 1980, Tinsley, 1979, Robinson et al., 1987, Fuller-Rowell and

Evans, 1987], which will change with magnetic field strength. In the weakly magnetized cases we

have chosen here the polar cap solid angle (and the corresponding precipitation per area) varies by

a factor of a few across the simulations. While this is likely to become important at large magnetic
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field strengths (see Section 5.6.2), it is likely a secondary effect behind the basic ion production

method we use here.

5.6.3 Comparison With Existing Results

In general our conclusions agree with similar results from previous analytic and numerical

studies, but add a deeper understanding of the physics controlling the transition from unmagnetized

to weakly magnetized planets.

An analytic study by Gunell, Herbert et al. [2018] showed a similar peak in ion escape rates

at the point where the standoff radius reaches the IMB; however, their model enforces a sharp

transition in escape processes at this point rather than a gradual build up. This study also uses the

typical assumption of linear dependence of ion escape with the polar cap angle, whereas we find a

stronger dependence.

Kallio and Barabash [2012a] used a hybrid model to study weakly magnetized planets and

found a peak ion escape rate for a Mars-like planet with a 10 nT magnetic field. Our peak escape

rate occurs at a higher point due to the stronger stellar wind conditions. Furthermore, the same

group studied the magnetic morphology of the same system and found similar trends in tail twisting

and IMF control; however, the effects were weaker due to the relative weakness of the IMF in

comparison with the dipole strengths for a similar stellar wind pressure [Kallio et al., 2008].

Blackman and Tarduno [2018] studied the impact of magnetic fields on stellar wind erosion

of planetary atmospheres using an analytic estimation of the maximum escape rate for a given

system. This model assumes there is a direct relationship between the inbound and outbound mass

flux, an assumption our results contradict in the weakly magnetized regime; however, they largely

concentrate on magnetic fields estimated for ancient Earth, which are larger than those studied

here.

Other studies examining the escape rates of exoplanets with and without magnetic fields have

been performed [e.g. Dong et al., 2017b]; however, these results are not directly comparable as the

magnetic fields studied are much stronger than the range considered here.
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5.6.4 Limits of Derived Scaling Laws

In Table 5.2 we summarize the scaling laws we have fit for various parameters from the

simulations with BP ≥ 50 nT, along with estimations for the lower and upper limits of the power law

applicability. Although we can calculate error bars on the scaling relations from the model results,

these errors do not reflect the sensitivity of the calculated power law to the model assumptions.

Instead, here we discuss some of the main parameters and assumptions these laws are most sensitive

to.

As shown in Section 5.4.3, the polar cap solid angle should scale as BP
−1/3 for large magnetic

field values. This matches our calculated scaling law very well, even to small magnetic field values

leading us to place an approximate lower limit of RS ∼ RP . While magnetic topology is a fairly

straightforward feature to interpret from our models, it is also sensitive to the magnetic dipole

orientation with respect to the IMF and sub-stellar line. This relationship does not have a clear

upper limit for reasonable values of planetary magnetic field; however, as the polar cap region

becomes smaller care must be taken to understand the asymetries and dependence on IMF [e.g.

Kabin et al., 2004, Merkin and Goodrich, 2007]

We find a mass loss rate that scales more strongly with magnetic field than predicted, likely

due to the variation in ion production with SZA. This result is quite sensitive to the ion production

mechanism, as well as the magnetic topology. From the simulations here we have shown the lower

limit will be RS ' RIMB or equivalently BP ' Bmax.

The upper limit is more difficult to estimate. First, the power law will become more shallow

with decreasing polar cap angle, likely approaching the predicted Ṁ ∝ Ω ∝ B−1/3 relationship.

Additionally, as the polar cap angle becomes small, cusp dynamics associated with ionospheric

electrodynamics and energization from particle precipitation will become more dominant. Strange-

way et al. [2005] showed that cusp ionospheric outflow at the Earth is associated with polar cap

Poynting flux and electron precipitation leading to Joule dissipation and electron heating, causing

increased ion upwelling and subsequent outflow. Both of these effects are associated with a large
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power input to a small polar cap area coupling to the ionosphere.

A polar cap solid angle an order of magnitude smaller than our base case will occur at

Ωc ∼ 0.1 × 4π, or PB ∼ (5.26)6PSW . For this set of simulations this would occur for magnetic

fields of BP ∼ 3500 nT, which is still much smaller than the Earth’s surface field, where cusp

escape processes are known to be relevant [Li et al., 2012]. While the escaping ion flux may in

fact continue to decrease past this point, the dominant physical mechanisms are likely to be quite

different due to the intensity of precipitating particle flux in the small auroral region and the scale

of the electrodynamic systems.

As shown in Figure 5.5, the average escape energy per particle becomes constant with increas-

ing magnetic field and the corresponding total power of ion outflow decreases as Pesc ∝ B0.6. Thus,

if the average energy of escaping particles remains constant, the Pesc relationship is determined by

the escape flux relationship, and will have the same upper and lower limits. As the escape energy

is determined by the stellar wind velocity and corresponding motional electric field, this is likely

to be true as long as the wind maintains its momentum through an encounter with the planetary

obstacle. This will be true in the absence of significant mass-loading.

The interaction area is found to scale as A ∝ B0.41, which is shallower than one might expect

for an interaction area that scales with a length scale (RS) squared, or A ∝ B2/3. While we recover

the standoff radius relationship as expected (see Figure 5.3), the interaction area is more sensitive

to the stellar wind parameters and corresponding shock properties. Furthermore, the shape of the

shock will be affected by the shape of the obstacle; the assumption of a spherically symmetric

obstacle is particularly poor for small magnetic field values (as shown in Section 5.4).

5.7 Conclusions

Understanding the influence of planetary magnetic field on ion escape is a critical area for

assessing the potential habitability of exoplanets. Here we have presented a systematic study of

the influence of a weak magnetic dipole on the plasma environment and corresponding ion escape

from a Mars-like exoplanet using a hybrid plasma model.
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Parameter Scaling Lower Limit Upper Limit

Ω ∝ B−0.33 Rs < RP N/A

Ṁ ∝ B−0.67 Rs ∼ RIMB, B ∼ Bmax a) may flatten beyond PB ∼ 35Psw
b) cusp dynamics past PB ∼ (5.26)6Psw

P ∝ B−0.60 Rs ∼ RIMB, B ∼ Bmax a), b)
A ∝ B0.41 Rs ∼ RIMB, B ∼ Bmax Bow shock models needed

Table 5.2: Summary of derived scaling relationships for polar cap solid angle (Ω), mass outflow
(Ṁ), escape power (Pesc), and bow shock interaction area (A) with magnetic field along with upper
and lower limits of the scaling law. Lower limits are calculated empirically from the simulations
while upper limits are postulated as in the text.

We have found that an intrinsic magnetic field does not always act to decrease the ion escape

rate, and instead leads to an increase in escape rate up until the point where the magnetic standoff

reaches the terminator IMB before then beginning to decrease again. This reflects a balance between

southern hemisphere shielding of ions from the motional electric field and increased plasmasphere

trapping due to smaller polar cap area. The value of the magnetic field associated with maximum

ion escape is therefore dependent on the stellar wind pressure.

Where possible we have calculated scaling laws for the relationship of various fundamental

quantities and magnetic field. The scaling laws are interpreted in the global context of planetary

atmospheric escape theory. Lower limits for these scaling laws have been derived from the simulation

results, while upper limits are postulated via predicted limits on the observed processes.

Going forward, more study is needed to assess effects associated with the dynamics of the

stellar wind for planets with weak magnetospheres due to the extreme influence of the stellar wind

on these systems, as well as a larger array of IMF configurations relative to the planetary dipole.

Furthermore, the effects of stronger planetary magnetic fields must be assessed using a simulation

platform that fully couples a polar wind model.



Chapter 6

Conclusions

In this thesis I have summarized the state of terrestrial planetary atmospheric escape modeling

for solar system planets and exoplanets, compared a variety of Martian plasma models to each other

and to MAVEN data to understand how the choice in model affects the interpretation of results,

used a global hybrid plasma model to examine the influence of the stellar drivers on the plasma

environment and ion escape, and used the same model to analyze the effect of an intrinsic planetary

magnetic field on the plasma environment and ion escape. These studies have key implications for

both planetary and exoplanetary science. Here I discuss these conclusions and opportunities for

future work.

6.1 Exoplanetary Science

6.1.1 Stellar Influence

Chapter 4 describes a study where a global hybrid plasma model was used to analyze the

influence of stellar drivers on the plasma environment and ion escape from a Mars-like terrestrial

exoplanet. The stellar drivers were selected such that they changed from the well understood

case of the nominal Martian solar wind today, to stellar conditions experienced by a planet in

the habitable zone of an M-dwarf. First the IMF was rotated to be quasi-parallel to the subsolar

line, then the stellar dynamic and magnetic pressure were increased by a factor of ∼ 700, then the

dynamic pressure increased another order of magnitude, and finally the EUV was increased by a

factor of 100. Our conclusions were:
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• Changing the IMF cone angle has critical effects on ion loss rates and morphology

• Quasi-parallel IMFs drive East-West loss asymmetry. This asymmetry may have observable

consequences for the atmospheres of tidally locked planets

• With increased stellar wind dynamic pressure by two orders of magnitude ion loss began

to be limited by the available supply of of ions to the ionosphere with roughly half of all

produced ions being lost

• Increasing EUV from the star minimizes the effect of ion production limitations by driving

more ion production and allowing increased escape

While other studies have been performed looking at ion loss for exoplanets around M-dwarfs

[e.g. Dong et al., 2017b, Cohen et al., 2015, Garcia-Sage et al., 2017], this is the first study to

systematically examine the individual effects of each physical parameter associated with the stel-

lar driving. This approach has the advantage of allowing us to understand the scaling and the

limitations, rather than computing a single predicted escape rate. This allows our results to be

generalized beyond a single system.

6.1.2 Magnetic Field Influence

In Chapter 5 I discuss a study of the influence of a weak intrinsic planetary magnetic field

on the planetary plasma environment and ion escape for an equatorial IMF. We have found that:

• An intrinsic magnetic field does not always act to decrease the ion escape rate, and instead

leads to an increase in escape rate up until the point where the magnetic standoff reaches

the terminator IMB before then beginning to decrease again

• The escape rate increase at lower magnetic field strengths is driven by southern (− ~ESW )

hemisphere shielding of ions from the motional electric field

• The escape rate decrease at larger magnetic field strengths is caused by increased plasma-

sphere trapping due to smaller polar cap area
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• Due to the relationship between escape and the magnetic standoff distance and the IMB,

the value of the magnetic field associated with maximum ion escape is dependent on the

solar wind pressure as RS ∝ P−1/6SW .

• Scaling laws for ion escape rate, escape power, effective interaction area, and polar cap

area with magnetic field were calculated and interpreted in the global context of planetary

atmospheric escape theory.

• The polar cap area follows a power law distribution that follows from expectations for a

standoff distance large compared to the planet, even for small magnetic fields

• After the magnetic standoff distance reaches the IMB the escape rates and escape power

show slightly steeper decreases with magnetic field than expected from theory due to the

variation in ion production with SZA

• Lower limits for these scaling laws have been derived from the simulation results, while

upper limits are postulated via predicted limits on the observed processes

Finding an increase in escape rate for small magnetic fields contradicts conventional wis-

dom that a planetary magnetic field always acts to shield a planet from atmospheric erosion (the

“planetary umbrella hypothesis”). They also do not agree with a more recent idea that ion escape

will scale with energy input from the the stellar wind, and therefore with effective collecting area.

While these patterns of ion increase or decrease with magnetic field are seen in certain regimes,

understanding the overall behavior requires a deeper understanding of the physics that is driving

the acceleration of ions.

This is important for understanding the connection of a planetary magnetic field (or lack

thereof) with habitability of exoplanets. While there have been previous studies using both global

plasma models [e.g. Dong et al., 2017b, Kallio and Barabash, 2012a, Sakai et al., 2018] and analytic

methods [e.g. Gunell, Herbert et al., 2018, Blackman and Tarduno, 2018] on the influence of plane-

tary magnetic fields on ion escape, this is the most systematic modeling study over a range of weak



118

magnetic fields and the first determination of scaling laws with magnetic field from simulations.

6.2 Planetary Science

6.2.1 Model Comparison

Chapter 3 describes the model comparison study where a variety of plasma models were

run with identical input conditions and compared to each other and corresponding MAVEN data.

This study includes models that have been substantially updated since the last model comparison

challenge [Brain et al., 2010], compares a wider variety of models than Regoli et al. [2018], and is

the first study to also compare a variety of models to in-situ MAVEN data. We summarize our

conclusions as follows:

• Most models showed little boundary asymmetry due to the IMF being nearly completely

in the +y direction

• The overall extent of the shocked region was larger in the fluid models than both the em-

pirical boundaries and the MAVEN results, while the hybrid models matched the outbound

crossing very well

• Low altitude ion data on the dayside from NGIMS is well produced (both in overall nor-

malization and scale height) by all models have an inner boundary lower than ∼200 km,

including all BATSRUS models and HELIOSARES

• Outflow of cold ions in the southern hemisphere varied substantially across models; this out-

flow was much denser and more localized in the HELIOSARES model than the BATSRUS

model

• All models that allow for finite ion gyroradii effects show a plume feature; this feature

varies substantially accross the models

• Despite these differences overall global escape rates were relatively constant
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Together these conclusions imply that while there is remarkable consistency across models in

some well-studied regimes where simple physics dominates (e.g. low altitude dayside ions), there

is still substantial variability in other features (e.g. southern hemisphere or tail escape). These

differences arise from both lower boundary implementations and model physics. It is imperative

that the choice of model must be carefully considered for the region and relevant physics one is

interested in.

6.2.2 Early Solar System

The conclusions listed in Sections 6.1.1 and 6.1.2 are also relevant to understanding planetary

atmospheric evolution in the early solar system. Solar drivers have evolved substantially over system

timescales, as discussed in Section 1.4. While the stellar wind discussed in Chapter 4 was selected

to be appropriate for a planet in the habitable zone of an M-dwarf, many of the parameters (such

as increase in EUV and dynamic pressure) may also be relevant for Mars in the early solar system.

Therefore, all arguments about understanding the limitations of scaling ion loss with stellar drivers

are also important to consider when tracing Mars’ atmospheric evolution back in time.

Similarly, remnant crustal fields on Mars may imply that Mars may have had an intrinsic

global magnetic field in the past [Acuna et al., 1998, Connerney et al., 2001]. Thus, determining

the influence of a weak global magnetic field on ion escape is important to understanding Martian

atmospheric evolution. Chapter 5 describes the effects of varying the magnetic field of a Mars-like

planet encountering a nominal solar wind, and is therefore applicable to the study of ancient Mars.

6.3 Future Work

6.3.1 Model Comparison

The model challenge described in Chapter 3 focused specifically on one orbit with a moderate

solar wind and +y directed IMF. Changing input conditions will vary how the solar wind interacts

with the ionosphere and likely how variations in model physics appear. Furthermore, we have
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limited our analysis to certain regions; more analysis and comparisons with data from additional

MAVEN orbits will be necessary to probe other regions such as the tail. Extending our analysis to

other regions will allow a more complete understanding of how variations in global morphology are

dependent on model choice, and what impact these variations have on global escape rates.

6.3.2 Stellar Influence

Chapter 4 concentrated specifically on understanding the change in stellar parameters from a

nominal Martian solar wind to a reconstructed stellar wind experienced by a Trappist-1 exoplanet

in the habitable zone. This analysis is inherently limited by considering only a single stellar wind

end state. Further study could involve varying the stellar wind parameters in the extreme limit, as

well as the planetary parameters. Furthermore, stellar variability is especially important for active

M-dwarfs [France et al., 2016]. Future work should focus on modeling the planetary atmospheric

response to stellar activity related to flares, coronal mass ejections, and orbital variation. Finally,

our model is limited by the simple ionospheric production method; future work should employ a

more complete ionospheric coupling to more completely examine the stellar driving effects.

6.3.3 Planetary Magnetic Field

Similar steps are necessary to extend the study of intrinsic planetary magnetic fields. Addi-

tional IMF orientations should be studied, including both changes in clock angle and cone angle

relative to the planetary dipole. Clock angle, particularly the direction of the motional electric

field in comparison with the dipole magnetic field, will change the size of the magnetosphere and

the efficiency of mis-aligned ion pickup resulting in an increase in ion escape with magnetic field.

Dynamics of the solar wind should be considered due to the extreme influence of the solar wind on

these systems. A more detailed ionospheric coupling model should be used to assess the influence

of the magnetic field on the ionosphere, and the subsequent connection to ion escape. Furthermore,

the effects of stronger planetary magnetic fields must be assessed using a simulation platform that

fully couples a polar wind model [Garcia-Sage et al., 2017, e.g].
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6.3.4 Planetary Properties

In addition to follow-up studies varying external influences, additional planetary properties

should be considered. All chapters presented here consider a base case of Mars today, as it is a

comparatively well-understood and well-observed system; however, to truly understand ion escape a

larger variety of planetary systems should be studied. The planetary mass and radius as well as the

atmospheric composition and pressure are important parameters to understand. Using Earth and

Venus as additional data points in the magnetic field/planetary radius/atmospheric composition

parameter space will allow constraints of such models.

6.3.5 Understanding Evolution through Time

Thus far we have discussed the straightforward follow up studies necessary to extend the

work we have discussed here; however, to truly understand planetary atmospheric evolution these

models of ion escape must be connected to the larger picture. As described in Section 1.4, the

current state of solar system atmospheric loss estimates involve scaling current loss rates with

predicted variations in stellar drivers. Here we quantify some of the scaling expected with stellar

drivers and magnetic field. Additionally, this work points out various limitations in those scaling

estimates due to ion production or diffusion. Future models of atmospheric evolution should take

these relationships and limitations into account.

Furthermore, our models primarily consider ion pickup and bulk escape processes, similar

models specifically studying the variation of other escape processes with stellar conditions and

planetary properties and the limitations therein must also be created. More broadly, integrated

models coupling various escape processes, planetary evolution, and stellar evolution will be neces-

sary to fully understand atmospheric evolution and planetary habitability. In the application of

such models to exoplanets, the full range of variability must be taken into account such that the

discussion of atmospheric sustainability can be more nuanced and include error estimates, rather

than a simple binary determinations of whether an atmosphere is stable or not.
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b. I. Irradiation, rotation and volatile inventory from formation to the present. A&A, 596:A111,
December 2016. doi: 10.1051/0004-6361/201629576.

P. G. Richards, J. A. Fennelly, and D. G. Torr. Euvac: A solar euv flux model for aeronomic
calculations. Journal of Geophysical Research: Space Physics, 99(A5):8981–8992, 1994. ISSN
2156-2202. doi: 10.1029/94JA00518. URL http://dx.doi.org/10.1029/94JA00518.

George R. Ricker, Joshua N. Winn, Roland Vanderspek, David W. Latham, Gáspár Á. Bakos,
Jacob L. Bean, Zachory K. Berta-Thompson, Timothy M. Brown, Lars Buchhave, Nathaniel R.
Butler, R. Paul Butler, William J. Chaplin, David Charbonneau, Jørgen Christensen-Dalsgaard,
Mark Clampin, Drake Deming, John Doty, Nathan De Lee, Courtney Dressing, Edward W.
Dunham, Michael Endl, Francois Fressin, Jian Ge, Thomas Henning, Matthew J. Holman, An-
drew W. Howard, Shigeru Ida, Jon M. Jenkins, Garrett Jernigan, John Asher Johnson, Lisa
Kaltenegger, Nobuyuki Kawai, Hans Kjeldsen, Gregory Laughlin, Alan M. Levine, Douglas Lin,
Jack J. Lissauer, Phillip MacQueen, Geoffrey Marcy, Peter R. McCullough, Timothy D. Morton,
Norio Narita, Martin Paegert, Enric Palle, Francesco Pepe, Joshua Pepper, Andreas Quirrenbach,
Stephen A. Rinehart, Dimitar Sasselov, Bun’ei Sato, Sara Seager, Alessandro Sozzetti, Keivan G.
Stassun, Peter Sullivan, Andrew Szentgyorgyi, Guillermo Torres, Stephane Udry, and Joel Vil-
lasenor. Transiting Exoplanet Survey Satellite (TESS). Journal of Astronomical Telescopes,
Instruments, and Systems, 1:014003, Jan 2015. doi: 10.1117/1.JATIS.1.1.014003.

A. Ridley, T. Gombosi, and D. Dezeeuw. Ionospheric control of the magnetosphere: conductance.
Annales Geophysicae, 22:567–584, February 2004. doi: 10.5194/angeo-22-567-2004.
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