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Consider the random, complex polynomial pn(z) =
∏n
j=1(z−Xj), whose roots X1, . . . , Xn are

complex-valued random variables. It is known that for large n, when the roots are independently

and identically distributed (iid), the critical points and roots of pn are stochastically similar. In

particular, Pemantle and Rivin, Kabluchko, Reddy, and others showed that when X1, X2, . . . are iid

with distribution µ, then the empirical measure constructed from the critical points of pn converges

to µ in probability as the degree n tends to infinity.

Simulations show that, in fact, the roots and critical points of pn “pair-up” with one another

in a nearly one-to-one fashion, a phenomenon which has been initially investigated by Hanin,

O’Rourke, Kabluchko and Seidel, the author, and others. This thesis seeks to quantify root-and-

critical-point pairing on several scales, including macroscopic comparisons between entire collections

of roots and critical points, microscopic examinations of individual critical points that lie near fixed

roots, and a “mesoscopic” local law to explain the situation at scales in between.

In Chapter 2, we show that for a deterministic point ξ lying outside the support of µ, almost

surely the polynomial qn(z) := pn(z)(z − ξ) has a critical point at distance O(1/n) from ξ. In

other words, conditioning the random polynomials pn to have a root at ξ almost surely forces

a critical point near ξ. More generally, we prove an analogous result for the critical points of

qn(z) := pn(z)(z − ξ1) · · · (z − ξk), where ξ1, . . . , ξk are deterministic. In addition, when k = o(n),

we show that the empirical distribution constructed from the critical points of qn converges to µ in

probability as the degree tends to infinity, extending a result of Kabluchko.

In Chapter 3, under a regularity assumption, we show that if the roots of pn are iid, the

Wasserstein distance between the empirical distributions of roots and critical points of pn is on the

order of 1/n, up to logarithmic corrections. The proof relies on a careful construction of disjoint
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random Jordan curves in the complex plane, which allow us to naturally pair roots and nearby

critical points. In addition, we establish asymptotic expansions to order 1/n2 for the locations

of the nearest critical points to several fixed roots. This allows us to describe the joint limiting

fluctuations of the critical points as n tends to infinity, extending a recent result of Kabluchko and

Seidel. Finally, we present a local law that describes the behavior of the critical points when the

roots are neither independent nor identically distributed.
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Chapter 1

Introduction

Consider Figure 1.1, which depicts the zeros (red dots) and critical points (zeros of the deriva-

tive, blue crosses) of a random, degree-100 polynomial whose roots have been chosen independently

and uniformly from the unit disk in the complex plane. At a glance, one perceives that dots and

-1 -0.5 0.5 1

-1

-0.5

0.5

1

Figure 1.1: The roots (red dots) and critical points (blue crosses) of a random degree-100 polyno-
mial, where all 100 roots have been chosen independently and uniformly from the unit disk.

crosses “pair-up,” and upon re-creating the picture with n roots instead of 100, one discovers that

the strength of the pairing increases with n (see Figure 1.2). Further investigations reveal that the

pairing phenomenon is not unique to the unit disk but occurs when the roots are chosen from a

wide range of distributions (see e.g. Figures 1.3, 1.4, and 1.5).

In the following thesis, we seek to quantitatively describe this behavior at several scales for

random polynomials of the form

pn(z) :=

n∏
j=1

(z −Xj), (1.1)
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n=5 n=10 n=25 n=50

Figure 1.2: The roots (red dots) and critical points (blue crosses) of pn(z) =
∏n
j=1(z −Xj), where

the roots, X1, . . . , X50 have been chosen independently and uniformly from the unit disk.
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Figure 1.3: The roots (red dots) and critical points (blue crosses) of a random, degree 150 poly-
nomial, where all 150 roots are chosen independently according to a standard complex normal
distribution. See Example 3.7.
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Figure 1.4: The roots (red dots) and critical points (blue crosses) of a random, degree 150 poly-
nomial, where all 150 roots are chosen independently and uniformly from two disks. See Example
3.8.
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Figure 1.5: The roots (red circles) and critical points (blue crosses) of a random, degree 200
polynomial, where all 200 roots are chosen independently and uniformly from the union of the two
unit circles (black curves) centered at −5/2 and 5/2, respectively.
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where X1, . . . , Xn are complex-valued random variables (not necessarily independent or identically

distributed). Our results include macroscopic comparisons between entire collections of roots and

critical points, microscopic examinations of individual critical points that lie near fixed roots, and

a “mesoscopic” local law to explain the situation at scales in between. The content throughout is

joint work with Sean O’Rourke and has been adapted from the recent papers [40] and [39].

1.1 History

Understanding the critical points of polynomials with known roots has long been of interest,

and there are many results that pertain to the situation where the roots are deterministic (see

for example Marden’s book [34], which discusses the Gauss–Lucas theorem and Walsh’s two circle

theorem among other things). One of the most famous examples is the Gauss–Lucas theorem, which

offers a geometric connection between the roots of a polynomial and the roots of its derivative.

Theorem 1.1 (Gauss–Lucas; Theorem 6.1 from [34]). If p is a non-constant polynomial with

complex coefficients, then all zeros of p′ belong to the convex hull of the set of zeros of p.

An electrostatic interpretation of roots and critical points of complex polynomials illuminates

Theorem 1.1 and its proof. Consider placing fixed electrical charges at the zeros of the polynomial

p that repel a movable test charge according to a force that is inversely proportional to distance.

The equilibrium points of the resulting electrical field (i.e. the places where a test charge would

experience a net force of zero) are the critical points of p. Intuitively, any test charge placed outside

the convex hull of the set of fixed charges is propelled to infinity, a heuristic that motivates the

proof of Theorem 1.1. There are many refinements of Theorem 1.1, and we refer the reader to

[2, 6, 11, 13, 14, 19, 27, 32, 33, 35, 42, 45, 46, 48, 49, 51, 59] and references therein. See also

Steinerberger’s recent work [50] that discusses a stability version of the Gauss–Lucas Theorem and

pairing between roots and critical points of deterministic polynomials.

Motivated by discussions with Oded Schramm, Pemantle and Rivin initiated the probabilistic

study of such relationships between critical points and roots [43]. They posed the following question:
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for the random polynomial pn defined in (1.1), when are the zeros of p′n stochastically similar to

the roots of pn? In order to compare these two collections of points in their answer, Pemantle and

Rivin used the language of weak convergence of random empirical measures. We introduce their

notation now.

For a degree-n polynomial p, define the empirical measure constructed from the roots of p to

be

µp :=
1

n

∑
z∈C:p(z)=0

δz,

where each root in the sum is counted with multiplicity and δz is the unit point mass at z. For the

critical points of p, we introduce the notation

µ′p := µp′ .

In other words, µ′p is the empirical measure constructed from the critical points of p. Note that

when p is a random polynomial, µp becomes a random probability measure. One can asymptotically

compare random probability measures using the following probabilistic notion of weak convergence.

Definition 1.2 (Weak convergence of random probability measures). Let T be a topological space

(such as R or C), and let B be its Borel σ-field. Let (µn)n≥1 be a sequence of random probability

measures on (T,B), and let µ be a probability measure on (T,B). We say µn converges weakly

to µ in probability as n → ∞ (and write µn → µ in probability) if for all bounded continuous

ϕ : T → R and any ε > 0,

lim
n→∞

P
(∣∣∣∣∫ ϕdµn −

∫
ϕdµ

∣∣∣∣ > ε

)
= 0.

In other words, µn → µ in probability as n→∞ if and only if
∫
ϕdµn →

∫
ϕdµ in probability for

all bounded continuous ϕ : T → R. Similarly, we say µn converges weakly to µ almost surely

as n→∞ (and write µn → µ almost surely) if for all bounded continuous ϕ : T → R,

lim
n→∞

∫
ϕdµn =

∫
ϕdµ

almost surely.
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Pemantle and Rivin conjectured that when X1, X2, . . . are chosen to be independent and

identically distributed (iid) with distribution µ, then the empirical distribution constructed from

the critical points of pn converges weakly in probability to µ as n tends to infinity. They proved

their conjecture in [43] for measures satisfying some technical assumptions, and Subramanian [52]

refined their work for X1, X2, . . . on the unit circle. Kabluchko first proved the conjecture in full

generality in [28] to obtain the following result.

Theorem 1.3 (Kabluchko; [28]). Let µ be an arbitrary probability measure on C, and let X1, X2, . . .

be a sequence of iid random variables with distribution µ. For each n ≥ 1, let pn be the degree n

polynomial given in (1.1). Then µ′pn converges weakly to µ in probability as n→∞.

Naturally, one may ask whether the assumptions in Theorem 1.3 (such as the roots X1, X2, . . .

being independent) can be relaxed. O’Rourke established several versions of Theorem 1.3 for

random polynomials with dependent roots that satisfy some technical conditions [37]. For example,

the conclusion of Theorem 1.3 holds for characteristic polynomials of certain classes of matrices

from the classical compact matrix groups (the eigenvalues of such matrices are known to not be

independent). Similar results for characteristic polynomials of nearly Hermitian matrices were

studied in [41, Section 2.5].

In [47], Reddy considers polynomials whose zeros are chosen randomly from two deterministic

sequences of complex numbers in which the empirical measures for both sequences converge to the

same limit. It is shown that the limiting empirical measures of the zeros and critical points agree

for these polynomials, yielding a version of Theorem 1.3 where the randomness can be reduced

and independence still remains. More recently, O’Rourke and the author [40] adapted Kabluchko’s

strategy to the situation where pn is perturbed to have o(n) deterministic roots; these results

appear in Chapter 2 below. Byun, Lee, and Reddy [7] further generalized Kabluchko’s theorem,

showing that under some mild assumptions, the conclusion of Theorem 1.3 holds when pn has mostly

deterministic roots and several (potentially dependent) random ones. However, as the following

example shows, the randomness in Theorem 1.3 cannot be completely eliminated (i.e., the theorem
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does not always hold for sequences of deterministic polynomials).

Example 1.4. Let pn(z) := zn − 1. Then the roots of pn are the n-th roots of unity, and so µpn

converges weakly to the uniform measure on the unit circle as n tends to infinity. However, all

n− 1 critical points of pn are located at the origin. Hence, µ′pn = δ0 for all n.

We conclude this subsection by mentioning that in [7], Byun, Lee, and Reddy also proved

several other results including that the sequence of empirical measures constructed from the zeros

of p
(k)
n converges weakly in probability to the distribution µ, for any fixed choice of k, as well as a

version of Theorem 1.3 when the roots X1, . . . , Xn are given by a 2D Coulomb gas density.

1.2 Local behavior

Theorem 1.3 and most of the cited works above focus on the macroscopic, or global, behavior

of the critical points of pn. For example, by combining Theorem 1.3 with the Law of Large Numbers,

one obtains that, for any bounded and continuous function ϕ : C→ C,

n∑
j=1

ϕ(Xj) =

n−1∑
j=1

ϕ(w
(n)
j ) + o(n) (1.2)

with high probability.1 In contrast to Theorem 1.3, this thesis primarily focuses on describing the

local behavior of the critical points.

One important aspect of the local critical point behavior is that the critical points and roots

of pn appear to pair with one another. Theorem 1.3 and (1.2) describe this phenomenon at the

macroscopic level by comparing the global behaviors of the critical points and roots. However, a

glance at Figures 1.4 and 1.3 suggests that a stronger pairing phenomenon exists. In particular,

one sees that nearly every critical point is paired closely with a root of pn, an indication that the

local behavior of the critical points should be extremely similar to the local behavior of the roots.

Hanin investigated the pairing phenomenon between roots and critical points for several

classes of random functions [21, 22, 23], including random polynomials with independent roots. He

1 See Section 1.4 for a complete description of the asymptotic notation used here and in the sequel.
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proved that the distance between a fixed, deterministic root and its nearest critical point is roughly

1/n in the case where µ has a bounded density supported on the Riemann sphere [23].

Recently, Kabluchko and Seidel determined the asymptotic fluctuations of the critical point

of pn that is nearest a given root [29]. Kabluchko and Seidel’s results are similar to some of

our conclusions below and appear to have been concurrently derived using different methods. We

present a detailed comparison between [29] and our work in Section 3.2.3 below.

1.3 Overview of Chapters 2 and 3

In the remaining chapters of this thesis, we refine the results mentioned above to obtain a

more complete picture of the pairing that occurs between zeros and critical points of the polynomial

pn defined via (1.1).

Chapter 2 concerns pairing between zeros and critical points of pn, where several roots

ξ1, . . . , ξk are fixed, non-random complex values, and the remaining Xj , 1 ≤ j ≤ n − k, are iid

with a common distribution µ. We show that when k = 1 and ξ1 lies outside the support of µ, then

almost surely the polynomial

qn(z) := (z − ξ1)
n−1∏
j=1

(z −Xj)

has a critical point at distance O(1/n) from ξ1. In other words, conditioning the random polynomial

pn to have a root at ξ1 almost surely forces a critical point near ξ1. More generally, we prove an

analogous result for the critical points of

qn(z) := (z − ξ1) · · · (z − ξk)
n−k∏
j=1

(z −Xj),

where ξ1, . . . , ξk are deterministic. In addition, when k = o(n), we show that the empirical distri-

bution constructed from the critical points of qn converges to µ in probability as the degree tends

to infinity, extending Kabluchko’s Theorem 1.3.

We begin Chapter 3 by exhibiting a bound on the Wasserstein, or “transport,” distance

between the collections of roots and critical points of pn. While this result explains the nearly one

to one pairing between roots and critical points in Figures 1.4 and 1.3, it does not allow one to
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describe the behavior near any particular root. We accomplish this feat in Section 3.2.3, where we

discuss the joint fluctuations for a fixed number of critical points of pn. We conclude our analysis by

establishing a local law that describes the mesoscopic behavior of the critical points of pn. Many of

our results focus on the cases where the roots X1, . . . , Xn of pn are iid, but for some of our results,

we do not even require that the roots be independent (see Sections 3.2.3 and 3.2.4 for details).

1.4 Notation

Throughout the text, we use asymptotic notation, such as O and o, under the assumption

that n → ∞. We write Xn = O(Yn) , Yn = Ω(Xn), Xn � Yn, or Yn � Xn to denote the bound

|Xn| ≤ CYn for some constant C > 0 and for all n > C. If the implicit constant depends on a

parameter k, e.g., C = Ck, we denote this with subscripts, e.g., Xn = Ok(Yn) or Xn �k Yn. By

Xn = ok(Yn), we mean that for any ε > 0, there is a natural number Nε,k depending on k and ε

for which n ≥ Nε,k implies |Xn| ≤ εYn. In general, C, c,K are constants which may change from

one occurrence to the next. We often use subscripts, such as CP1,P2,..., to denote that the constant

depends on some parameters P1, P2, . . ..

We use the following set-theoretic conventions. For z0 ∈ C and r ≥ 0, we define

B(z0, r) := {z ∈ C : |z − z0| < r}

to be the open ball of radius r centered at z0, and B(z0, r) to be its closure. The notations #S and

|S| denote the cardinality of the finite set S. The natural numbers, N, do not include zero.

For a probability measure µ, we use X ∼ µ to mean that the random variable X has distribu-

tion µ and supp(µ) to denote its support. We say that a probability measure µ on C has density

f if µ is absolutely continuous with respect to Lebesgue measure on C and the Radon–Nikodym

derivative of µ with respect to Lebesgue measure is f . The random variable 1E is the indicator

supported on the event E, and we say an event E (which depends on n) holds with overwhelming

probability if for every α > 0, P(E) ≥ 1−Oα(n−α).

Finally, we use d2z to denote integration with respect to the Lebesgue measure on C to avoid
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confusion with complex line integrals, where we integrate against dz. We use
√
−1 to denote the

imaginary unit and reserve i as an index.



Chapter 2

Pairing between zeros and critical points of random polynomials with

independent roots

2.1 Introduction to the chapter

This chapter is an adaptation of the article [40], a recently published collaboration between

the author and Sean O’Rourke. There are several formatting differences between the content as it

appears in [40] and in the sections below. In particular, the introductory material from [40] was

assimilated into Chapter 1 above, and Appendix A from [40] appears in Section 2.4 below.

2.2 Main results

To introduce our results, we first consider the special case of the polynomial pn, defined

in (1.1), when X1, X2, . . . are iid with the common distribution µ that is the uniform probability

measure on the unit circle centered at the origin. In this case, Theorem 1.3 implies that µ′pn

converges weakly in probability to µ as n →∞. A numerical simulation of this result is shown in

Figure 2.1; as can be seen, all critical points of p′n lie very close to the unit circle. On the other

hand, if we consider the polynomial (z − ξ)pn(z) for some deterministic point ξ outside the unit

circle, we see in Figure 2.2 that one of the critical points leaves the unit disk and lies very close to

ξ. However, the remaining critical points still lie close to the unit circle. The goal of this chapter

is to describe the pairing between the root ξ and the nearby critical point. More generally, we

consider the case when several deterministic zeros are appended to the random polynomial pn and

when µ is an arbitrary measure in the complex plane with compact support (not just the uniform
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1

Figure 2.1: The roots (red circles) and critical points (blue crosses) of a random, degree 100
polynomial, where all 100 roots are chosen independently and uniformly from the unit circle (black
curve).
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0

0

1

1

Figure 2.2: The roots (red circles) and critical points (blue crosses) of a random, degree 101
polynomial, where 100 roots are chosen independently and uniformly from the unit circle (black
curve), and one root takes the deterministic value ξ = 1.5.
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distribution on the unit circle). See, for example, Figures 2.3 and 2.4.

Let us mention that this pairing phenomenon between roots and critical points has been

observed previously for random polynomials. Hanin [23] proves a similar pairing result when

a number of deterministic roots are appended to a random polynomial whose roots are chosen

independently from a probability measure µ supported on the Riemann sphere. Hanin’s proof is

guided by an intuitive electrostatic interpretation of the zeros and critical points. In contrast to

many of our results, Hanin’s proof works both when µ is supported on a compact subset and when

µ is supported on the entire Riemann sphere. Unlike the results in [23] however, our results do

not require the measure µ to have bounded density or require the deterministic roots to satisfy a

separation condition. In addition, our methods are significantly different than those used in [23]

and allow us to describe the exact number of critical points lying in a region outside the support

of µ. In a separate paper [21], Hanin considers the joint distribution of roots and critical points

for a class of Gaussian random polynomials. However, the polynomials considered in [21] are quite

different than the model considered in this chapter. Finally, let us mention the work of Dennis and

Hannay [12] from the physics literature, which gives an electrostatic explanation for the pairing of

critical points and zeros of random polynomials and characteristic polynomials of random matrices.

2.2.1 Limiting distribution of the critical points

To begin, we first consider the analogue of Theorem 1.3 when o(n) deterministic zeros are

appended to the random polynomial pn in (1.1).

Theorem 2.1 (Limiting distribution of the critical points). Let µ be an arbitrary probability mea-

sure on C, and suppose X1, X2, . . . are iid random variables with distribution µ. For each n ≥ 1,

let kn be a deterministic non-negative integer no larger than n such that kn = o(n). In addition,

let ξ
(n)
1 , . . . , ξ

(n)
kn

be a deterministic triangular array of complex values, and let

pn(z) :=

n−kn∏
j=1

(z −Xj)

kn∏
l=1

(z − ξ(n)
l ).

Then µ′pn converges weakly to µ in probability as n→∞.
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Figure 2.3: The roots (red circles) and critical points (blue crosses) of a random, degree 203
polynomial, where 200 roots are chosen independently and uniformly from the unit circle (black
curve), and three roots take the deterministic values ξ1 = 1 + i, ξ2 = 1.5, and ξ3 = 1.2 + 0.3i.
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Figure 2.4: The roots (red circles) and critical points (blue crosses) of a random, degree n = 100
polynomial, where 99 roots are chosen independently and uniformly from the outlined region, and
one root takes the deterministic value ξ = −0.8 − 0.8i. The small green circle centered at ξ that
contains the critical point nearby has radius 4/n.
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Theorem 2.1 is a generalization of Theorem 1.3. Indeed, Theorem 1.3 can be recovered from

Theorem 2.1 by taking kn = 0. Unsurprisingly, we prove Theorem 2.1 in Section 2.4 by slightly

generalizing the methods developed by Kabluchko in [28].

Let us discuss the intuition behind Theorem 2.1. To do so, we must begin with Theorem

1.3. Roughly speaking, Theorem 1.3 describes the phenomenon that if pn is a degree n random

polynomial, then

µpn − µ′pn −→ 0 (2.1)

in probability as n→∞. In other words, the limiting behavior of the critical points is the same as

the limiting behavior of the roots. While Theorem 1.3 only applies to random polynomials with iid

roots, the same phenomenon has been observed for other ensembles of random polynomials [37, 41],

and numerical simulations show that it should be true for many other models. Stated another way,

the behavior in (2.1) appears to be universal among random polynomials. Let us now consider the

polynomial pn from Theorem 2.1. It follows from the law of large numbers that µpn → µ weakly

almost surely as n → ∞ since kn = o(n). Therefore, if the convergence in (2.1) applies to the

polynomial pn, the triangle inequality would immediately imply that µ′pn also converges weakly to

µ in probability. This heuristic is the basis for our proof of Theorem 2.1.

The above heuristic also hints that the condition kn = o(n) in Theorem 2.1 is sharp. Indeed,

if dεne deterministic roots were to be appended, the limiting distribution is, in general, not µ as

shown by the following example.

Example 2.2. Let 0 < ε < 1 and kn := dεne. Define

pn(z) :=

n−kn∏
j=1

(z −Xj),

where X1, X2, . . . are iid random variables uniformly distributed on the unit circle centered at the

origin in the complex plane. Then, by Theorem 1.3, µ′pn converges weakly to the uniform measure

on the unit circle in probability as n→∞. However, the polynomial

qn(z) := zknpn(z)
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has at least kn−1 critical points at the origin. In particular, µ′qn({0}) ≥ ε/2 for n sufficiently large.

Among other things, this implies that µ′qn does not converge weakly to the uniform probability

measure on the unit circle as n→∞.

While Theorem 2.1 shows that the global behavior of the critical points is unchanged by the

addition of o(n) deterministic roots, the addition of one or more deterministic roots can create a

number of outlying critical points as illustrated in Figures 2.2 and 2.3. One way of viewing this

phenomenon is to view the deterministic roots as a small perturbation of the original polynomial.

This small perturbation is not enough to change the global distribution of the critical points; it

may, however, as observed in the figures above, create a small number of outlying critical points.

Our main results below describe these outliers.

2.2.2 No outlying critical points for the unperturbed model

Before we consider the perturbed model, we first consider the case when there are no de-

terministic roots. In this initial case, we want to determine exactly where the critical points of

the random polynomial pn, defined in (1.1), are located. This way, when we do append the small

perturbation of deterministic roots, we will be able to tell exactly what effect the perturbation has

had.

Let µ be a probability measure on C, and suppose X1, . . . , Xn are iid random variables

with distribution µ. In view of the Gauss–Lucas theorem (Theorem 1.1), the roots of pn(z) :=∏n
j=1(z − Xj), must lie in Conv(supp(µ)), the convex hull of the support of µ. However, as we

discussed above in the case when µ is supported on the unit circle (shown in Figure 2.1), nearly all

of the critical points appear near the support of µ, which is only a small subset of the convex hull.

Thus, our goal is to determine the exact subset of Conv(supp(µ)) where the critical points will lie,

with high probability. We do so in the theorem below. To define this set where the critical points

are located, we will first need to introduce the Cauchy–Stieltjes transform.

Let µ be a probability measure on C, and let mµ be the Cauchy–Stieltjes transform of µ
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defined by

mµ(z) :=

∫
C

dµ(x)

z − x
, z 6∈ supp(µ).

Also, define

Mµ := {z ∈ C \ supp(µ) : mµ(z) = 0}

to be the set of zeros of mµ. If µ has compact support, it turns out that Mµ ⊂ Conv(supp(µ)); see

Proposition 2.22 for details. For ε > 0, we also define the set

Nµ(ε) := {z ∈ C : dist(z, supp(µ) ∪Mµ) < ε}

to be the ε-neighborhood of supp(µ) ∪Mµ. Here, dist(z,D) := infw∈D |z − w| is the distance from

z ∈ C to a set D ⊂ C.

The following theorem shows that all critical points of pn must lie inside Nµ(ε) with high

probability.

Theorem 2.3 (No outliers in the unperturbed model). Let µ be a probability measure on C with

compact support, and suppose X1, . . . , Xn are iid random variables with distribution µ. Then, for

every ε > 0, there exists C, c > 0 (depending only on µ and ε) such that, with probability at least

1− Ce−cn, the polynomial pn(z) :=
∏n
j=1(z −Xj) has no critical points outside Nµ(ε).

Remark 2.4. By the Gauss–Lucas theorem (Theorem 1.1), the critical points of pn must lie inside

Conv(supp(µ)). Thus, Theorem 2.3 actually reveals that, with high probability, pn has no critical

points outside Nµ(ε) ∩ Conv(supp(µ)).

We now justify our choice of the set Nµ(ε) as the correct location of the critical points. First,

in the case that µ is degenerate, pn(z) = (z − a)n for some a ∈ C, which has critical point z = a

with multiplicity n−1. This example shows that clearly the critical points of pn may lie in supp(µ).

The next example shows that the critical points can also be in a neighborhood of the zero set Mµ.

Example 2.5. Let µ := pδa + (1 − p)δb for some a, b ∈ C with a 6= b and p ∈ (0, 1), and assume

X1, X2, . . . are iid random variables with distribution µ. Then

pn(z) :=

n∏
j=1

(z −Xj) = (z − a)α(z − b)β
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for some non-negative integers α, β with α+β = n. Almost surely, for n sufficiently large, α, β ≥ 1,

and, in this case,

p′n(z) = (z − a)α−1(z − b)β−1 (nz − αb− βa) .

Thus, by the law of large numbers, pn has a critical point at

z =
αb

n
+
βa

n
= pb+ (1− p)a+ o(1)

almost surely. On the other hand,

mµ(z) =
p

z − a
+

1− p
z − b

has exactly one zero located at z = pb+ (1− p)a.

By the Borel–Cantelli lemma, Theorem 2.3 immediately implies the following corollary.

Corollary 2.6. Let µ be a probability measure on C with compact support, and suppose X1, X2, . . .

are iid random variables with distribution µ. Fix ε > 0. Then, almost surely, for n sufficiently

large, the polynomial pn(z) :=
∏n
j=1(z −Xj) has no critical points outside Nµ(ε).

We conclude this subsection with two examples of Theorem 2.3 and Corollary 2.6.

Example 2.7. Let µ be the uniform distribution on the unit circle centered at the origin. A simple

computation shows that

mµ(z) =

 0, if |z| < 1,

1
z , if |z| > 1,

and hence Mµ = {z ∈ C : |z| < 1}. Since Conv(supp(µ)) = {z ∈ C : |z| ≤ 1}, Theorem 2.3 does

not rule out the possibility of critical points in the disk D1−ε := {z ∈ C : |z| < 1− ε}. This is not a

limitation of Theorem 2.3 and is consistent with the results in [43], which imply that, with positive

probability, D1−ε contains at least one critical point. More precisely, let pn(z) :=
∏n
j=1(z − Xj),

where X1, X2, . . . are iid random variables with distribution µ. Then for any 0 < ε < 1, there exists

η > 0 (independent of n) such that pn has a critical point in the disk D1−ε with probability at

least η for all sufficiently large n. This follows from the determinantal structure described in [43,

Theorem 2.5]. A numerical simulation of this example is shown in Figure 2.1.
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Example 2.8. Let µ be the uniform distribution on the union of disjoint circles C1 ∪ C2, where

C1 is the unit circle centered at 5/2 and C2 is the unit circle centered at −5/2. Then

mµ(z) =


4z

4z2−25
, if |z − 5/2| > 1 and |z + 5/2| > 1,

1
2z+5 , if |z − 5/2| < 1,

1
2z−5 , if |z + 5/2| < 1,

and Mµ = {0}. Let ε > 0, and take pn(z) :=
∏n
j=1(z − Xj), where X1, X2, . . . are iid random

variables with distribution µ. Then Corollary 2.6 guarantees that almost surely, for n sufficiently

large, all critical points of pn lie in the set

A1 ∪A2 ∪ {z ∈ C : |z| < ε},

where A1 and A2 are the annuli

A1 := {z ∈ C : 1− ε < |z − 5/2| < 1 + ε}, A2 := {z ∈ C : 1− ε < |z + 5/2| < 1 + ε}.

A numerical simulation of this example is shown in Figure 1.5. In particular, the simulation depicts

a single critical point near the origin, showing that critical points may lie in a neighborhood of the

zero set Mµ. In fact, it follows from the law of large numbers and Walsh’s two circle theorem (see,

for example, [46, Theorem 4.1.1]) that, for any 0 < ε < 1/4, almost surely, for n sufficiently large,

there is exactly one critical point of pn in the disk {z ∈ C : |z| < 1 + ε}. Combined with Corollary

2.6, we conclude that almost surely this critical point must converge to the origin as n tends to

infinity.

2.2.3 Locations of the outlying critical points in the perturbed model

We now consider the outlying critical points depicted in Figures 2.2 and 2.3. To do so, we

will need the following notation. For a polynomial p of degree n, we let w1(p), . . . , wn−1(p) be the

critical points of p counted with multiplicity.

Theorem 2.9 (Locations of the outlying critical points). Let µ be a probability measure on C with

compact support, and suppose X1, X2, . . . are iid random variables with distribution µ. Let k ≥ 1,
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and assume ξ1, . . . , ξk are deterministic complex numbers (which do not depend on n); in addition,

suppose there are s values ξ1, . . . , ξs not in supp(µ) ∪Mµ. Then, there exists ε0 > 0 such that the

following holds for any fixed 0 < ε < ε0. Almost surely, for n sufficiently large, there are exactly s

critical points (counted with multiplicity) of the polynomial

pn(z) =

n−k∏
j=1

(z −Xj)

k∏
l=1

(z − ξl)

outside Nµ(ε), and after labeling these critical points correctly,

wl(pn) = ξl + o(1)

for each 1 ≤ l ≤ s.

Theorem 2.9 describes exactly the phenomenon we observe in Figures 2.2 and 2.3. In partic-

ular, this theorem shows that each deterministic root outside supp(µ) ∪Mµ creates one outlying

critical point, which is asymptotically close to the deterministic root.

For comparison, we provide the following example which shows that the conclusion of Theo-

rem 2.9 fails for deterministic polynomials.

Example 2.10. Let pn(z) := zn−1 − 1 and qn(z) := pn(z)(z − 1/2). Then the roots of qn are

(n− 1)-th roots of unity with an outlier at z = 1/2. However, we will show that qn has no critical

points near z = 1/2. Indeed,

q′n(z) = nzn−1 − n− 1

2
zn−2 − 1,

and so the critical points are the solutions of

1

n
q′n(z) = zn−1 − 1

2

n− 1

n
zn−2 − 1

n
= 0.

For |z| ≤ 3/4, we have∣∣∣∣zn−1 − 1

2

n− 1

n
zn−2

∣∣∣∣ ≤ |z|n−1 + |z|n−2 ≤ 7

4

(
3

4

)n−2

<
1

n

for n sufficiently large. This implies that q′n(z) 6= 0 for every z ∈ C with |z| ≤ 3/4. Hence,

for n sufficiently large, there are no critical points of qn in the disk {z ∈ C : |z| ≤ 3/4}. More
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generally, this argument shows that for a fixed η ∈ (0, 1), there are no critical points of qn in the

disk {z ∈ C : |z| ≤ 1− η} for sufficiently large n.

We next state two generalizations of Theorem 2.9. Both results deal with the case when the

deterministic points ξ1, . . . , ξk (as well as the integer k) are allowed to depend on n. Because the

points can now depend on n, some additional technical assumptions are required. These technical

assumptions are trivially satisfied when ξ1, . . . , ξk do not depend on n. As such, Theorem 2.9 is

actually a corollary of the following more general result.

Theorem 2.11 (Locations of the outlying critical points: dependence on n). Let µ be a probability

measure on C with compact support, and suppose X1, X2, . . . are iid random variables with distri-

bution µ. For each n ≥ 1, let ξ
(n)
1 , . . . , ξ

(n)
kn

be a triangular array of deterministic complex numbers

with kn = O(1), and assume

max{|ξ(n)
1 |, . . . , |ξ

(n)
kn
|} = O(1). (2.2)

Fix ε > 0, and suppose that for all sufficiently large n, there are no values of ξ
(n)
1 , . . . , ξ

(n)
kn

in

Nµ(3ε) \ Nµ(ε) and there are s values ξ
(n)
1 , . . . , ξ

(n)
s outside Nµ(3ε). Then, almost surely, for n

sufficiently large, there are exactly s critical points (counted with multiplicity) of the polynomial

pn(z) :=

n−kn∏
j=1

(z −Xj)

kn∏
l=1

(z − ξ(n)
l )

outside Nµ(2ε), and after labeling these critical points correctly,

wl(pn) = ξ
(n)
l + o(1)

for each 1 ≤ l ≤ s.

The O(1)-magnitude assumption in (2.2) is required for our proof. However, we conjecture

that this condition is not needed. In fact, in the case when s = 1, we can remove this assumption,

and we obtain the following stronger result.

Theorem 2.12 (Locations of the outlying critical points: s = 1 case). Let µ be a probability measure

on C with compact support, and suppose X1, X2, . . . are iid random variables with distribution µ. For
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each n ≥ 1, let ξ
(n)
1 , . . . , ξ

(n)
kn

be a triangular array of deterministic complex numbers with kn = O(1).

Fix ε > 0, and suppose that for all sufficiently large n, there are no values of ξ
(n)
1 , . . . , ξ

(n)
kn

in

Nµ(3ε) \ Nµ(ε) and there is one value ξ
(n)
1 outside Nµ(3ε). Then, almost surely, for n sufficiently

large, there is exactly one critical point of the polynomial

pn(z) :=

n−kn∏
j=1

(z −Xj)

kn∏
l=1

(z − ξ(n)
l )

outside Nµ(2ε), and after labeling the critical points correctly,

w1(pn) = ξ
(n)
1 (1 +O (1/n)) +O(1/n). (2.3)

Remark 2.13. If ξ
(n)
1 = O(1), then (2.3) implies that, almost surely,

w1(pn) = ξ
(n)
1 +O(1/n).

More generally, if ξ
(n)
1 = o(n), Theorem 2.12 yields that, almost surely,

w1(pn) = ξ
(n)
1 + o(1).

In other words, the location of the outlying critical point w1(pn) is asymptotically close to the

outlying root ξ
(n)
1 .

Remark 2.14. In the case where ξ
(n)
1 lies at least a fixed distance away from the convex hull of the

support of µ, the conclusion in (2.3) is a deterministic result (regardless of the asymptotic behavior

of kn). This can be deduced from Walsh’s two-circle theorem (see [46, Theorem 4.1.1]).

We present a numerical simulation of Theorem 2.12 in Figure 2.4.

2.2.4 Outline

The rest of the chapter is devoted to the proof of our main results. In Section 2.3, we develop

several tools we will need for the proofs. The proof of Theorem 2.1 is given in Section 2.4, and the

proof of Theorem 2.3 is presented in Section 2.5. We prove Theorems 2.9, 2.11, and 2.12 in Section

2.6.
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2.3 Mathematical tools

We present here some tools we will need to prove our main results.

2.3.1 Tools from probability theory

We will need the following complex-valued version of Hoeffding’s inequality.

Lemma 2.15 (Hoeffding’s inequality for complex-valued random variables). Let Y1, . . . , Yn be iid

complex-valued random variables which satisfy |Yj | ≤ K almost surely for some K > 0. Then there

exist absolute constants C, c > 0 such that

P

∣∣∣∣∣∣ 1n
n∑
j=1

Yj −
1

n
E

 n∑
j=1

Yj

∣∣∣∣∣∣ ≥ t
 ≤ C exp

(
−cnt2/K2

)
for every t > 0.

Proof. Let

Sn :=
1

n

n∑
j=1

Yj −
1

n
E

 n∑
j=1

Yj

 .
If |Sn| ≥ t, then |Re(Sn)| ≥ t/

√
2 or | Im(Sn)| ≥ t/

√
2. So, we have

P(|Sn| ≥ t) ≤ P(|Re(Sn)| ≥ t/
√

2) + P(| Im(Sn)| ≥ t/
√

2).

The claim now follows from the classic (real-valued) version of Hoeffding’s inequality (see [24]) since

|Re(Yj)| ≤ K and | Im(Yj)| ≤ K.

2.3.2 Nets

We introduce ε-nets as a convenient way to discretize a compact set.

Definition 2.16. Let X be a subset of C, and ε > 0. A subset N of X is called an ε-net of X if

every point x ∈ X can be approximated within ε by some point y ∈ N , i.e. so that |x− y| ≤ ε.

For a finite set N , we let |N | denote the cardinality of N . We will need the following estimate

for the size of an ε-net.
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Lemma 2.17. Let D be a compact subset of {z ∈ C : |z| ≤M} for some M > 0. Then, for every

ε > 0, there is an ε-net N of D such that

|N | ≤
(

1 +
4M

ε

)2

.

Proof. Let N ′ be a maximal ε/2-separated subset of S := {z ∈ C : |z| ≤ M}. In other words, N ′

is such that |x − y| ≥ ε/2 for all x, y ∈ N ′ with x 6= y, and no subset of S containing N ′ has this

property. Such a set can always be constructed by starting with an arbitrary point in S and at

each step selecting a point that is at least ε/2 distance away from those already selected. Since S

is compact, this procedure will terminate after a finite number of steps.

The maximality property implies that N ′ is an ε/2-net of S. Indeed, otherwise there would

exist z ∈ S that is at least ε/2-far from all points in N ′. So N ′∪{z} would still be an ε/2-separated

set, contradicting the maximality property above.

Moreover, the separation property implies that the balls of radii ε/4 centered at the points

in N ′ are disjoint. In addition, all such balls lie in the ball of radius M +ε/4 centered at the origin.

Comparing areas gives

|N ′|
(ε

4

)2
≤
(
M +

ε

4

)2
,

and hence

|N ′| ≤
(

1 +
4M

ε

)2

.

We now use N ′ to construct an ε-net of D. Indeed, we construct N iteratively using the following

procedure. Let (xn)Nn=1 be an enumeration of the points in N ′, and set N0 := ∅. Given Nn for

0 ≤ n ≤ N − 1, we construct Nn+1 as follows:

(1) If the ball of radius ε/2 centered at xn+1 does not intersect D, then let Nn+1 := Nn.

(2) If the ball of radius ε/2 centered at xn+1 does intersect D, let yn+1 be an element of the

intersection and set Nn+1 := Nn ∪ {yn+1}.

Now take N := NN . By the procedure above, it follows that |N | ≤ |N ′|. It remains to show that

N is an ε-net of D. Let z ∈ D. Since D ⊆ S, there exists x ∈ N ′ such that |x − z| ≤ ε/2. This
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means that the ball of radius ε/2 centered at x intersects D. Thus, from the procedure above, there

exists y ∈ N such that |x− y| ≤ ε/2. Therefore, by the triangle inequality, |z − y| ≤ ε.

2.3.3 Tools from linear algebra

We will need the following companion matrix result, which describes a matrix whose eigen-

values are the critical points of a given polynomial. This result appears to have originally been

developed in [30] (see [30, Lemma 5.7]). However, the same result was later rediscovered and

significantly generalized by Cheung and Ng [10, 9].

Theorem 2.18 (Lemma 5.7 from [30]; Theorem 1.2 from [9]). Let p(z) :=
∏n
j=1(z − zj) for some

complex numbers z1, . . . , zn, and let D be the diagonal matrix D := diag(z1, . . . , zn). Then

1

n
zp′(z) = det

(
zI −D

(
I − 1

n
J

))
,

where I is the n× n identity matrix and J is the n× n all-one matrix.

Theorem 2.18 allows us to translate the problem of studying critical points to a problem

involving the eigenvalues of certain matrices. For studying the eigenvalues of such matrices, we will

need the following lemmata.

Lemma 2.19 (Block determinant). Suppose A,B,C, and D are matrices of dimension n × n,

n×m, m× n and m×m, respectively. If A is invertible, then

det

A B

C D

 = det(A) det(D − CA−1B).

Proof. The conclusion follows immediately from the decompositionA B

C D

 =

A 0

C Im


In A−1B

0 D − CA−1B

 ,

where In and Im are the identity matrices of dimension n× n and m×m, respectively. A similar

proof is given in [25, Section 0.8.5].
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Lemma 2.20 (Sherman–Morrison formula). Suppose A is an invertible matrix and u, v are column

vectors. If 1 + vTA−1u 6= 0, then

(A+ uvT)−1 = A−1 − A−1uvTA−1

1 + vTA−1u
.

Lemma 2.20 can be found in [3]; see also [25, Section 0.7.4] for a more general version of this

identity known as the Sherman–Morrison–Woodbury formula. We will also require the following

bound involving the difference of two determinants. For a matrix A, we let ‖A‖ denote the spectral

norm of A, i.e., ‖A‖ is the largest singular value of A.

Lemma 2.21. Let A and B be k × k matrices. If ‖A‖, ‖B‖ = O(1), then

|det(A)− det(B)| �k ‖A−B‖.

Proof. By the Leibniz formula for the determinant, it follows that

|det(A)− det(B)| =

∣∣∣∣∣∑
σ

sgn(σ)

(
k∏
i=1

Aσ(i),i −
k∏
i=1

Bσ(i),i

)∣∣∣∣∣
≤
∑
σ

∣∣∣∣∣
k∏
i=1

Aσ(i),i −
k∏
i=1

Bσ(i),i

∣∣∣∣∣ , (2.4)

where the sums range over all permutations σ of {1, . . . , k} and sgn(σ) is the sign of the permutation

σ. We now take advantage of the fact that the spectral norm of a matrix bounds the magnitude of

each entry. In particular,

sup
1≤i,j≤k

(|Aij |+ |Bij |) ≤ ‖A‖+ ‖B‖ = O(1)

and

sup
1≤i,j≤k

|Aij −Bij | ≤ ‖A−B‖.

Thus, by multiple applications of the triangle inequality, we obtain∣∣∣∣∣
k∏
i=1

Aσ(i),i −
k∏
i=1

Bσ(i),i

∣∣∣∣∣�k ‖A−B‖

uniformly in σ. Combining this bound with (2.4) completes the proof.



27

2.3.4 Other tools

We collect here some additional tools and facts we will need. First, we note that if µ has

compact support, then the convex hull of the support of µ is also a compact set; see [1, Corollary

5.33] for details.

The following proposition shows that the zero set of the Cauchy–Stieltjes transform of µ must

lie inside the convex hull of the support of µ. It is a generalization of the Gauss–Lucas Theorem

(Theorem 1.1) in the sense that Proposition 2.22 is precisely the Gauss–Lucas Theorem when µ is

atomic.

Proposition 2.22. Let µ be a probability measure on C with compact support. If mµ(z) = 0 for

some z 6∈ supp(µ), then z ∈ Conv(supp(µ)).

Proof. Let S := Conv(supp(µ)), and define

S := {x : x ∈ S}.

Suppose z 6∈ S. Then

|mµ(z)| = |eiθmµ(z)| ≥
∣∣∣Im(eiθmµ(z)

)∣∣∣ =

∣∣∣∣∣
∫
C

Im
(
eiθ(z − x)

)
|z − x|2

dµ(x)

∣∣∣∣∣
for any θ ∈ R. Since supp(µ) is compact, it follows from [1, Corollary 5.33] that S is also compact.

Thus, by the hyperplane separation theorem, there exists a pair of parallel lines, separated by a

gap ε > 0, separating S and z. Let θ be the angle these lines make with the real axis (if they do

not meet the real axis take θ = 0). Then Im
(
eiθ(z − x)

)
is of the same sign for all x ∈ S and

| Im(eiθ(z − x))| ≥ ε

for all x ∈ S. Thus, we obtain

|mµ(z)| ≥ ε
∫

supp(µ)

dµ(x)

|z − x|2
.

As supp(µ) is compact, there exists M > 0 such that |z−x| ≤M for all x ∈ S. Hence, we conclude

that

|mµ(z)| ≥ ε 1

M2
> 0,
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and the proof is complete.

We will also need the following observation concerning the translation of roots and critical

points.

Proposition 2.23 (Translation of the critical points). Let p be a monic polynomial of degree n,

and suppose w1, . . . , wn−1 are the critical points of p counted with multiplicity. Then, for any a ∈ C,

the critical points of q(z) := p(z − a) are w1 + a, . . . , wn−1 + a.

Proof. Since p is a monic polynomial of degree n,

p′(z) = n
n−1∏
j=1

(z − wj).

Thus,

q′(z) = p′(z − a) = n
n−1∏
j=1

(z − a− wj),

and the claim follows.

2.4 Proof of Theorem 2.1

The proof of Theorem 2.1 presented here is modeled after Kabluchko’s proof of [28, Theorem

1.1]. We note that Theorem 2.1 does not follow from the results in [28], and the notable difference

between our proof and the one given in [28] is that we must control the additional contribution

coming from the deterministic triangular array. For convenience, we use µn and µ′n to mean µpn

and µp′n , respectively and define

Ξ :=

∞⋃
n=1

{
ξ

(n)
l : 1 ≤ l ≤ kn

}
(2.5)

to be the collection of values present in the deterministic triangular array. We let λ represent

Lebesgue measure on C, and we denote the positive and negative parts of the real logarithm by

log− x :=


|log x| , 0 ≤ x ≤ 1,

0, x ≥ 1,

and log+ x :=


0, 0 ≤ x ≤ 1,

log x, x ≥ 1,
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for x ∈ [0,∞). We use the convention that log−(0) :=∞ so that log−(·) is a function taking values

in the extended real line.

We prove Theorem 2.1 using the following result, which requires the deterministic array

satisfy an additional assumption.

Theorem 2.24. Under the same hypotheses as in Theorem 2.1 and with the additional assumption

that there is a set E of Lebesgue measure zero for which z ∈ C \ E implies

lim sup
n→∞

1

n

kn∑
l=1

log−

∣∣∣z − ξ(n)
l

∣∣∣ = 0, (2.6)

it follows that µ′n converges weakly to µ in probability as n→∞.

Unfortunately, we cannot always guarantee that the deterministic array satisfies condition

(2.6). To get around this issue, we will work on subsequences where the condition does hold;

specifically, the proof of Theorem 2.1 will require the following corollary of Theorem 2.24.

Corollary 2.25. Assume the same hypotheses as in Theorem 2.1 and, in addition, suppose µnm is

a subsequence of µn for which there is a set E ⊂ C of zero Lebesgue measure such that z ∈ C \ E

implies

lim sup
m→∞

1

nm

knm∑
l=1

log−

∣∣∣z − ξ(nm)
l

∣∣∣ = 0.

Then µ′nm converges weakly to µ in probability as n→∞.

Proof. We show that µnm is a subsequence of a new sequence of random measures (modified from

µn) for which condition (2.6) does hold. To this end, define the sequence k̃n by

k̃n :=


kn, if n = nm for some m ∈ N,

0, otherwise,

and the random polynomial

p̃n(z) :=

n−k̃n∏
j=1

(z −Xj)

k̃n∏
l=1

(z − ξ(n)
l ).
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Also let µ̃n and µ̃′n denote µp̃n and µp̃′n , respectively. By construction, µnm and µ′nm are subsequences

of µ̃n and µ̃′n, respectively. Now, k̃n = o(n), and for z ∈ C \ E,

lim sup
n→∞

1

n

k̃n∑
l=1

log−

∣∣∣z − ξ(n)
l

∣∣∣ = lim sup
m→∞

1

nm

knm∑
l=1

log−

∣∣∣z − ξ(nm)
l

∣∣∣ = 0.

Thus, Theorem 2.24 implies that µ̃′n converges weakly to µ in probability as n → ∞. It follows

that the subsequence µ′nm also converges to µ weakly in probability as m→∞.

The following lemma will allow us to justify the use of Corollary 2.25.

Lemma 2.26. Let µn be a sequence of random probability measures on C, and suppose µ is a

deterministic probability measure on C. Then, µn converges weakly to µ in probability if and only

if each subsequence of µn contains a further subsequence that converges weakly to µ in probability.

Proof. Observe that, for each bounded and continuous function f : C→ R, the sequence
∫
C f dµn

is a sequence of complex-valued random variables whose subsequences are of the form
∫
C f dµnm ,

where µnm is a subsequence of µn. In addition,
∫
f dµ is a constant. Thus, the claim follows by

applying Theorem 2.6 on page 20 of [4] to the random variables
∫
C f dµn.

We now prove Theorem 2.1 by way of Corollary 2.25 and Lemma 2.26. The proof of Theorem

2.24 is delayed until Section 2.4.1. Fix a subsequence µ′nm of µ′n. We will show that there exists

a further subsequence that converges weakly to µ in probability, which, by Lemma 2.26 would

complete the proof of Theorem 2.1.

Clearly, µnm is a subsequence of µn. If λ denotes Lebesgue measure on C, then Markov’s

inequality implies that, for any ε > 0,

λ

z ∈ C :
1

nm

knm∑
l=1

log−

∣∣∣z − ξ(nm)
l

∣∣∣ ≥ ε
 ≤ 1

ε

∫
C

1

nm

knm∑
l=1

log−

∣∣∣z − ξ(nm)
l

∣∣∣ dλ(z)

=
1

ε · nm

knm∑
l=1

∫
C

log−

∣∣∣z − ξ(nm)
l

∣∣∣ dλ(z)

=
knm
ε · nm

∫
C

log− |z| dλ(z).
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The last expression tends to zero as m→∞ by the local integrability of the logarithm and the fact

that kn = o(n). Thus, the sequence of functions

z 7→ 1

nm

knm∑
l=1

log−

∣∣∣z − ξ(nm)
l

∣∣∣
converges to zero in measure as m → ∞. Among other things, this implies that there exists a

subsequence of this sequence that converges to zero for almost every z ∈ C (see, for instance,

Theorem 2.30 on page 61 of [17] for details). Let µnmj denote the corresponding subsequence of

random measures. By Corollary 2.25, we have that µ′nmj converges weakly to µ in probability as

j →∞, completing the proof.

2.4.1 Proof of Theorem 2.24

It remains to prove Theorem 2.24. The proof presented here is modeled after the arguments

given in [28]. The case where µ is degenerate is straightforward to establish by computing µ′n

explicitly and directly verifying that
∣∣∫

C f dµ
′
n −

∫
C f dµn

∣∣ → 0 almost surely as n → ∞ for any

bounded and continuous function f : C→ R. We now consider the case that µ is non-degenerate.

The proof of Theorem 2.24 will reduce to studying the logarithmic derivative Ln of pn defined

by the formula

Ln(z) :=
p′n(z)

pn(z)
=

n−kn∑
j=1

1

z −Xj
+

kn∑
l=1

1

z − ξ(n)
l

.

Specifically, Theorem 2.24 will follow from Lemma 2.28 below. We also now state a related lemma

(Lemma 2.27), which we will need later. Note that these two lemmas are very similar to [28,

Lemmas 2.1 and 2.2]; however, neither lemma follows directly from the results in [28] because of

the deterministic contribution to Ln.

Lemma 2.27. Under the assumptions of Theorem 2.24, there is a set F ⊂ C of Lebesgue measure

zero such that if z ∈ C \ F , then

1

n
log |Ln(z)| −→ 0

in probability as n→∞.
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Lemma 2.28. Under the assumptions of Theorem 2.24, for any continuous, compactly supported

function ϕ : C→ R, we have

1

n

∫
C

log |Ln(z)|ϕ(z) dλ(z) −→ 0 (2.7)

in probability as n→∞. (Recall that λ denotes Lebesgue measure on C.)

We now prove Theorem 2.24 assuming Lemma 2.28. The key idea is the following formula

(see, for instance, [26, Section 2.4.1]), which relates the integral in (2.7) to the measures µn and

µ′n. For any polynomial f that is not identically zero,

1

2π
∆ log |f | =

∑
z∈C : f(z)=0

δz

in the distributional sense, where each root in the sum is counted with multiplicity. In other words,

for any compactly supported, smooth function ϕ : C→ R, we have

1

2π

∫
C

log |f(z)|∆ϕ(z) dλ(z) =
∑

z∈C : f(z)=0

ϕ(z).

From this relationship we obtain that, for any smooth, compactly supported function ϕ : C→ R,

1

n

∑
z∈C : p′n(z)=0

ϕ(z)− 1

n

∑
z∈C : pn(z)=0

ϕ(z) =
1

2πn

∫
C

log |Ln(z)|∆ϕ(z) dλ(z).

In view of Lemma 2.28, the integral on the right tends to zero in probability as n→∞. In addition,

by the law of large numbers and the fact that kn = o(n),

1

n

∑
z∈C : pn(z)=0

ϕ(z) =
1

n

n−kn∑
j=1

ϕ(Xj) +
1

n

kn∑
l=1

ϕ(ξ
(n)
l ) −→

∫
C
ϕ(z) dµ(z)

almost surely as n→∞. Hence, for any smooth, compactly supported function ϕ : C→ R∫
C
ϕ(z) dµ′n(z) =

1

n− 1

∑
z∈C : p′n(z)=0

ϕ(z) −→
∫
C
ϕ(z) dµ(z)

in probability as n→∞. Since µ is a probability measure, we conclude from a simple approximation

argument that µ′n converges weakly to µ in probability. This completes the proof of Theorem 2.24.
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2.4.2 Proof of Lemma 2.27

We now turn our attention to proving Lemmas 2.27 and 2.28. We begin with Lemma 2.27,

which we will need to prove Lemma 2.28. First, we construct the exceptional set F described in

Lemma 2.27 from several smaller subsets. The first of these, F1, contains points where µmisbehaves,

while another, F2, includes values too close to the deterministic array. Define the set F1 by

F1 :=

{
z ∈ C :

∫
C

log2
− |z − y| dµ(y) =∞

}
.

F1 has Lebesgue measure zero since∫
C

(∫
C

log2
− |z − y| dµ(y)

)
dλ(z) =

∫
C

(∫
C

log2
− |z − y| dλ(z)

)
dµ(y)

=

∫
C

π

2
dµ(y) =

π

2
<∞

by the Fubini–Tonelli theorem.

We now construct the subset F2 by applying the Borel–Cantelli lemma. Recall that the set Ξ,

defined in (2.5), is at most countable, and hence λ(Ξ) = 0. Thus, for a fixed n ∈ N and 1 ≤ l ≤ kn,

λ

(
z ∈ C \ Ξ :

1

|z − ξ(n)
l |
≥ e
√
n

)
= λ

(
z ∈ C \ Ξ : log− |z − ξ

(n)
l | ≥

√
n
)

≤ 1

n3

∫
C

log6
− |z − ξ

(n)
l | dλ(z)

=
C

n3

by Markov’s inequality, where C > 0 is an absolute constant equal to the integral of log6
− |·| over

C. Thus, we obtain

∞∑
n=1

kn∑
l=1

λ

(
z ∈ C \ Ξ :

1

|z − ξ(n)
l |
≥ e
√
n

)
≤
∞∑
n=1

kn∑
l=1

C

n3
=
∞∑
n=1

Ckn
n3

<∞

since k(n) = o(n). It follows by the Borel–Cantelli lemma and the fact that Ξ is countable that

there exists a set F2 ⊃ Ξ of Lebesgue measure zero such that, for every z ∈ C\F2, |z−ξ(n)
l |
−1 < e

√
n

for all but finitely many pairs (n, l). We conclude that, for z ∈ C \ F2,

kn∑
l=1

1

|z − ξ(n)
l |

= Oz(e
2
√
n), (2.8)
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where the asymptotic notation Oz(·) means the implicit constant is allowed to depend on z.

If we define F to be F := E ∪ F1 ∪ F2, then F has Lebesgue measure zero and, as we shall

see, satisfies the requirements of Lemma 2.27. (Recall the definition of E from the statement of

Theorem 2.24 above.) Notice that F contains the atoms of µ and the values in the deterministic

triangular array.

Lemma 2.29. For every z ∈ C \ F ,

lim sup
n→∞

1

n
log |Ln(z)| ≤ 0

almost surely.

Proof. Fix z ∈ C \ F , and let ε > 0 be given. By Markov’s inequality, for any n ∈ N, we have

P
(

1

|z −Xn|
≥ eεn

)
= P

(
log− |z −Xn| ≥ εn

)
≤

E
[
log2
− |z −Xn|

]
ε2n2

=
1

ε2n2

∫
C

log2
− |z − y| dµ(y)

=
C1

ε2n2
,

for a non-negative constant C1 since z /∈ F1. Hence,

∞∑
n=1

P
(

1

|z −Xn|
≥ eεn

)
<∞,

so the Borel–Cantelli lemma applies. In particular, almost surely 1
|z−Xn| < eεn for all but finitely

many n. Furthermore, z is not an atom of µ, so we have almost surely that, for all n,

|Ln(z)| ≤W + (n− kn)eεn +

kn∑
l=1

1

|z − ξ(n)
l |

,

where W is an almost surely finite random variable. Now, since z ∈ C \ F2, the bound in (2.8)

implies that, for n sufficiently large,

|Ln(z)| ≤W + neεn + C2e
2
√
n ≤ e2εn
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for a positive constant C2 (depending on z). It follows that

lim sup
n→∞

1

n
log |Ln(z)| ≤ 2ε

almost surely. Since ε > 0 was arbitrary, the proof is complete.

The reverse inequality in Lemma 2.27 requires an anti-concentration result that can be found,

for example, in [44, Theorem 2.22 on page 76]. Before stating the lemma, we define the Lévy

concentration function of a complex-valued random variable.

Definition 2.30 (Lévy concentration function). Let Z be a complex-valued random variable. The

Lévy concentration function of Z is defined as

L(Z, t) := sup
u∈C

P (|Z − u| ≤ t)

for all t ≥ 0.

The Lévy concentration function bounds the small ball probabilities for Z, which are the

probabilities that Z falls in a ball of radius t.

Lemma 2.31 (Anti-concentration estimate). Suppose that Z1, . . . , Zn are iid, non-degenerate,

complex-valued random variables. Then, there is a positive constant C (depending only on the

distribution of Z1), so that, for any t ≥ 0,

L (Z1 + · · ·+ Zn, t) ≤ C
1 + t√
n

(2.9)

for all n ≥ 1.

Proof. Theorem 2.22 on page 76 in [44] implies that equation (2.9) holds when Z1, . . . , Zn are iid

real-valued random variables and the supremum in the concentration function is taken over real

numbers (see also [38, Corollary 6.8] for a more general version of this inequality). We extend this

to the complex case in the following way. By assumption, Z1, . . . , Zn are iid and non-degenerate,

so at least one of the real-valued random variables Re(Z1) or Im(Z1) is non-degenerate. Without
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loss of generality, assume Re(Z1) is non-degenerate. Then

L(Z1 + · · ·+ Zn, t) = sup
u∈C

P (|Z1 + · · ·+ Zn − u| ≤ t)

≤ sup
u∈C

P (|Re(Z1) + · · ·+ Re(Zn)− Re(u)| ≤ t)

= sup
u∈R

P (|Re(Z1) + · · ·+ Re(Zn)− u| ≤ t) .

The last expression is bounded by C 1+t√
n

, for some constant C that depends only on the distribution

of Re(Z1) by the previously mentioned result in [44]. A nearly identical argument applies if Re(Z1)

is degenerate and Im(Z1) is non-degenerate.

Lemma 2.32. For every z ∈ C \ F and every ε > 0,

lim
n→∞

P
[

1

n
log |Ln(z)| ≤ −ε

]
= 0.

Proof. Since kn = o(n), we assume n is sufficiently large so that kn < n. Fix z ∈ C \ F , and let

ε > 0 be given. Since µ is non-degenerate and z is not an atom of µ, it follows that 1
z−X1

, 1
z−X2

, . . .

are iid, non-degenerate, complex-valued random variables satisfying the hypotheses of Lemma 2.31.

By absorbing the contribution of
∑kn

l=1(z − ξ(n)
l )−1 into the complex number u in the definition of

the concentration function, we conclude from Lemma 2.31 that

P
(
|Ln(z)| ≤ e−εn

)
≤ L

n−kn∑
j=1

1

z −Xj
, e−εn

 ≤ C 1 + e−εn√
n− kn

for a positive constant C depending only on the distribution of 1
z−X1

. As n → ∞, the right-hand

side goes to zero (since kn = o(n)), which completes the proof.

Together, Lemmas 2.29 and 2.32 establish Lemma 2.27.

2.4.3 Proof of Lemma 2.28

In this section, we prove Lemma 2.28 by way of the following dominated convergence result

due to Tau and Vu [55].
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Lemma 2.33 (Tao–Vu; Lemma 3.1 in [55]). Let (X,A, ν) be a finite measure space, and let

f1, f2, . . . : X → R be random functions which are defined over a probability space (Ω,B,P) and are

jointly measurable with respect to A⊗ B. Assume that

(i) for ν-a.e. x ∈ X we have fn(x)→ 0 in probability, as n→∞,

(ii) for some δ > 0, the sequence
∫
X |fn(x)|1+δ dν(x) is tight.

Then
∫
X fn(x) dν(x) converges in probability to 0.

In order to prove Lemma 2.28, we will apply Lemma 2.33 to the random functions fn(z) :=

1
n(log |Ln(z)|)ϕ(z), where ϕ is a continuous function with compact support. Lemma 2.27 establishes

the first condition, and the tightness condition (with δ = 1) follows from the next lemma. For the

remainder of the paper, we let

DR := {z ∈ C : |z| < R}

denote the open disk of radius R > 0 centered about the origin. Fix r > 0 such that the support of

ϕ is contained in the open disk Dr. We will occasionally use 1Dr to denote the indicator function

of the set Dr.

Lemma 2.34. The sequence 1
n2

∫
Dr log2 |Ln(z)| dλ(z) is tight.

In view of Lemma 2.33, the proof of Lemma 2.28 reduces to establishing Lemma 2.34. We

bound the integral in Lemma 2.34 by employing the Poisson–Jensen formula as in [28]. In order to

do so, we will need a uniform bound on |Ln(z)| for z of certain magnitudes, which is the content

of the following lemma.

Lemma 2.35. There is an exceptional set G ⊂ (0,∞) of Lebesgue measure zero such that, for any

R ∈ (0,∞) \G, we have

lim sup
n→∞

1

n
log sup
|z|=R

|Ln(z)| ≤ 0 (2.10)

almost surely.
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Proof. The proof is similar in spirit to that of Lemma 2.29. We first claim that

sup
|z|=R

1

|z −X|
≥ K ⇐⇒ ||X| −R| ≤ 1

K
, (2.11)

for any X ∈ C, R ∈ (0,∞)\{|X|}, and K > 0. This equivalence will allow us to employ the method

of Lemma 2.29 and control the behavior of log− ||Xn| −R|. To establish the forward direction of

(2.11), observe that

0 < ||X| −R| = ||X| − |z|| ≤ |X − z|

for any z satisfying |z| = R. Hence, sup|z|=R |X − z|
−1 ≥ K implies ||X| −R| ≤ K−1. On the

other hand, if ||X| −R| ≤ K−1, write X = ρeiθ in polar coordinates, and note that z∗ := Reiθ has

modulus R 6= ρ and satisfies

0 < |z∗ −X| = |R− ρ| = ||X| −R| ≤ 1

K
.

The fact that sup|z|=R |X − z|
−1 ≥ K follows.

We are ready to construct G from two exceptional sets G1 and G2. Define

G1 :=

{
R ∈ (0,∞) :

∫
C

log2
− ||y| −R| dµ(y) =∞

}
.

It follows from the Fubini–Tonelli theorem that G1 has Lebesgue measure zero since∫
R

∫
C

log2
− ||y| −R| dµ(y) dR =

∫
C

∫
R

log2
− ||y| −R| dRdµ(y) =

∫
C

2 dµ(y) = 2 <∞.

We now construct G2. Let λR denote Lebesgue measure on the real line, and let

ΞR :=
∞⋃
n=1

{
|ξ(n)
l | : 1 ≤ l ≤ kn

}
.

Clearly, λR(ΞR) = 0. Equivalence (2.11) and Markov’s inequality imply that for a fixed n ∈ N and
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1 ≤ l ≤ kn,

λR

(
R ∈ (0,∞) \ ΞR : sup

|z|=R

1

|z − ξ(n)
l |
≥ e
√
n

)

= λR

(
R ∈ (0,∞) \ ΞR : log− ||ξ

(n)
l | −R| ≥

√
n
)

≤ 1

n3

∫
[0,∞)

log6
− ||ξ

(n)
l | −R| dR

≤ 1

n3

∫
R

log6
− |R| dR

=
C

n3
,

where C > 0 is an absolute constant. It follows that

∞∑
n=1

kn∑
l=1

λR

(
R ∈ (0,∞) \ ΞR : sup

|z|=R

1

|z − ξ(n)
l |
≥ e
√
n

)
≤
∞∑
n=1

Ckn
n3

<∞,

so the Borel–Cantelli lemma and the countability of ΞR show that outside of a set G2 ⊃ ΞR of

Lebesgue measure zero,

sup
|z|=R

1

|z − ξ(n)
l |

< e
√
n

for all but finitely many pairs (n, l). Hence, for R ∈ (0,∞) \G2,

kn∑
l=1

sup
|z|=R

1

|z − ξ(n)
l |

< CR + kne
√
n = OR(e2

√
n), (2.12)

where CR is a positive constant depending onR. (Note that since ΞR ⊂ G2, sup|z|=R |z−ξ
(n)
l |
−1 <∞

for each pair (n, l)). If we define G = G1 ∪G2, then, G ⊂ (0,∞) has Lebesgue measure zero, and

for R ∈ (0,∞) \G, we have that, for any n ∈ N and any ε > 0,

P

(
sup
|z|=R

1

|z −Xn|
≥ eεn

)
= P

(
log− ||Xn| −R| ≥ εn

)
≤ 1

ε2n2
E[log2

− ||Xn| −R|]

=
C ′R
n2
,

where we used (2.11) in the first step and Markov’s inequality in the second. Here, C ′R is a positive

constant depending only on R and µ. By the Borel–Cantelli lemma, it follows that almost surely,
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sup|z|=R
1

|z−Xn| < eεn for all but finitely many n. This guarantees that for R ∈ (0,∞) \G, there is

an almost surely bounded, real-valued random variable WR for which

sup
|z|=R

|Ln(z)| ≤WR + (n− kn)eεn +

kn∑
l=1

sup
|z|=R

1

|z − ξ(n)
l |
≤ e2εn

almost surely. (Note that P(|Xn| = R) = 0 for all R ∈ (0,∞) \G by the definition of the set G1.)

The last inequality holds for all sufficiently large n by (2.12). As ε > 0 was arbitrary, (2.10) now

follows.

We now use the Poisson–Jensen formula to re-write log |Ln(z)|. For any R > r and n ∈ N,

let

y
(n)
1 , . . . , y(n)

sn and w
(n)
1 , . . . , w

(n)
tn

be the roots and critical points, respectively, of pn that are located in the open disk DR. The

Poisson–Jensen formula (see, for example, [36, Chapter II.8]) implies that for any z ∈ DR which is

not a zero or pole of Ln,

log |Ln(z)| = In(z;R) +

tn∑
t=1

log

∣∣∣∣∣∣
R
(
z − w(n)

t

)
R2 − w(n)

t z

∣∣∣∣∣∣−
sn∑
s=1

log

∣∣∣∣∣∣
R
(
z − y(n)

s

)
R2 − y(n)

s z

∣∣∣∣∣∣ , (2.13)

where

In(z;R) :=
1

2π

∫ 2π

0
log
∣∣∣Ln(Reiθ)

∣∣∣PR(|z| , θ − arg z) dθ,

and PR denotes the Poisson kernel

PR(ρ, α) :=
R2 − ρ2

R2 + ρ2 − 2Rρ cosα
, ρ ∈ [0, R], α ∈ [0, 2π]. (2.14)

Lemma 2.36. There exists an R ≥ max {1, 3r} such that

lim sup
n→∞

1

n
sup
z∈Dr

In(z;R) ≤ 0 (2.15)

almost surely.

Proof. Fix z ∈ Dr. Then, for any α ∈ [0, 2π] and R ≥ 3r, we have

PR(|z| , α) =
R2 − |z|2

R2 + |z|2 − 2R |z| cosα
≤ (R+ |z|)(R− |z|)
R2 + |z|2 − 2R |z|

=
R+ |z|
R− |z|

≤ 2. (2.16)
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The last inequality follows from the fact that |z| ≤ r and from the equivalence

R+ r

R− r
≤ 2 ⇐⇒ R ≥ 3r,

which holds for all R > r > 0. Consequently, for any z ∈ Dr and R ≥ 3r,

1

n
In(z;R) ≤ 1

2π

∫ 2π

0

1

n
log
∣∣∣Ln(Reiθ)

∣∣∣ · 2 dθ
≤ 1

π

∫ 2π

0

1

n
log sup
|w|=R

|Ln(w)| dθ

=
2

n
log sup
|w|=R

|Ln(w)| .

Therefore, we obtain

lim sup
n→∞

1

n
sup
z∈Dr

In(z;R) ≤ lim sup
n→∞

2

n
log sup
|w|=R

|Ln(w)| . (2.17)

The desired result now follows by applying Lemma 2.35 to (2.17). In particular, since the excep-

tional set G ⊂ (0,∞) of Lemma 2.35 has measure zero, we can choose R ≥ max {1, 3r} so that

(2.15) holds almost surely.

Next, we show that In(z;R) is bounded below uniformly for z ∈ Dr. We assume that 0 /∈ F ,

and we first consider the case when z = 0. There is no loss of generality in assuming 0 /∈ F , for

if 0 ∈ F , we can choose a different point c /∈ F and prove Theorem 2.24 for the random variables

X̃j := Xj − c and the deterministic array ξ̃
(n)
l := ξ

(n)
l − c. This follows since the translation of the

roots of pn by c simply translates the critical points by c (see Proposition 2.23).

Lemma 2.37. Suppose 0 /∈ F . Let R ≥ max {1, 3r} be the value from Lemma 2.36. Then there

exists a non-negative constant A such that

lim
n→∞

P
(

1

n
In(0;R) ≤ −A

)
= 0.

Proof. Since 0 /∈ F , we have pn(0) 6= 0 almost surely; in other words, 0 is almost surely not a pole

of Ln. Furthermore, by Lemma 2.32, it follows that 0 is not a zero of Ln with probability 1− o(1).
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Consequently, on the same event, the Poisson–Jensen formula (2.13) applies to z = 0 ∈ Dr, and we

obtain

1

n
In(0;R) =

1

n
log |Ln(0)| − 1

n

tn∑
t=1

log

∣∣∣∣∣w(n)
t

R

∣∣∣∣∣+
1

n

sn∑
s=1

log

∣∣∣∣∣y(n)
s

R

∣∣∣∣∣
≥ 1

n
log |Ln(0)|+ 1

n

sn∑
s=1

log

∣∣∣∣∣y(n)
s

R

∣∣∣∣∣ .
(2.18)

The inequality comes from eliminating

1

n

tn∑
t=1

log

∣∣∣∣∣w(n)
t

R

∣∣∣∣∣ ≤ 0.

We bound the remaining two terms in probability. A bound for the first term follows from Lemma

2.32. It remains to find a lower bound (in probability) for the last term in (2.18). Let

x
(n)
1 , . . . , x(n)

un and ζ
(n)
1 , . . . , ζ(n)

vn

be the random and deterministic roots, respectively, of pn that are contained in DR. (Note that

un + vn = sn.) The law of large numbers implies that

1

n− kn

un∑
u=1

log

∣∣∣∣∣x(n)
u

R

∣∣∣∣∣ =
1

n− kn

n−kn∑
j=1

log

∣∣∣∣Xj

R

∣∣∣∣1DR(Xj) −→ −E log−

∣∣∣∣X1

R

∣∣∣∣
almost surely as n → ∞. The expectation on the right-hand side is finite since E log− |X1| < ∞

due to the assumption 0 /∈ F and by the bounds

−E
[
log−

∣∣∣∣X1

R

∣∣∣∣] = −E
[
log−

∣∣∣∣X1

R

∣∣∣∣− log− |X1|+ log− |X1|
]

≥ −E
[
log−

(
1

R

)]
− E

[
log− |X1|

]
≥ − log(R)− E

[
log− |X1|

]
,

which follow from the fact that R ≥ 1. Since kn = o(n), it follows that

1

n

un∑
u=1

log

∣∣∣∣∣x(n)
u

R

∣∣∣∣∣ −→ −E
[
log−

∣∣∣∣X1

R

∣∣∣∣] ≥ − log(R)− E log− |X1|

almost surely as n→∞, and as a consequence, we have almost surely

lim inf
n→∞

1

n

un∑
u=1

log

∣∣∣∣∣x(n)
u

R

∣∣∣∣∣ ≥ −A1, (2.19)
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for some non-negative constant A1 (depending on R). Similarly, as R ≥ 1, we have

0 ≥ 1

n

vn∑
v=1

log

∣∣∣∣∣ζ(n)
v

R

∣∣∣∣∣ =
1

n

kn∑
l=1

log

∣∣∣∣∣ξ
(n)
l

R

∣∣∣∣∣1DR (ξ(n)
l

)
= − 1

n

kn∑
l=1

log−

∣∣∣∣∣ξ
(n)
l

R

∣∣∣∣∣
= − 1

n

kn∑
l=1

(
log−

∣∣∣∣∣ξ
(n)
l

R

∣∣∣∣∣− log−

∣∣∣ξ(n)
l

∣∣∣)− 1

n

kn∑
l=1

log−

∣∣∣ξ(n)
l

∣∣∣
≥ − 1

n

kn∑
l=1

log−

∣∣∣∣ 1

R

∣∣∣∣− 1

n

kn∑
l=1

log−

∣∣∣ξ(n)
l

∣∣∣
= −kn

n
log(R)− 1

n

kn∑
l=1

log−

∣∣∣ξ(n)
l

∣∣∣ .
By condition (2.6) and the fact that kn = o(n), we obtain

lim
n→∞

1

n

vn∑
v=1

log

∣∣∣∣∣ζ(n)
v

R

∣∣∣∣∣ = 0. (2.20)

(Recall that 0 /∈ F , and hence 0 /∈ E.) Together, (2.19) and (2.20) imply the desired conclusion.

Lemma 2.38. Suppose 0 /∈ F . Let R ≥ max {1, 3r} be the constant from Lemma 2.36. Then there

exists a non-negative constant B such that

lim
n→∞

P
(

1

n
inf
z∈Dr

In(z;R) ≤ −B
)

= 0.

Proof. The proof presented here closely follows the arguments in [28]. For simplicity, define

q+
n (θ) :=

1

n
log+

∣∣∣Ln(Reiθ)
∣∣∣ and q−n (θ) :=

1

n
log−

∣∣∣Ln(Reiθ)
∣∣∣

for θ ∈ [0, 2π]. By the definition of the Poisson kernel (2.14) and reasoning similar to that used to

derive the bounds in (2.16), we have

1

2
≤ PR(|z| , θ) ≤ 2

for all z ∈ Dr and θ ∈ [0, 2π]. Notice that PR(0, θ) = 1 for all θ ∈ [0, 2π], so we have

2π

n
In(0;R) =

∫ 2π

0
q+
n (θ) dθ −

∫ 2π

0
q−n (θ) dθ.
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It follows that, for any n ∈ N and any z ∈ Dr,

2π

n
In(z;R) =

∫ 2π

0
q+
n (θ)PR(|z| , θ − arg z) dθ −

∫ 2π

0
q−n (θ)PR(|z| , θ − arg z) dθ

≥ 1

2

∫ 2π

0
q+
n (θ) dθ − 2

∫ 2π

0
q−n (θ) dθ

=

(
1

2
− 2

)∫ 2π

0
q+
n (θ) dθ + 2

(∫ 2π

0
q+
n (θ) dθ −

∫ 2π

0
q−n (θ) dθ

)
= −3

2

∫ 2π

0
q+
n (θ) dθ +

4π

n
In(0;R).

In the case where q+
n (θ) = 0 for all θ ∈ [0, 2π], we obtain the bound

2π

n
In(z;R) ≥ 4π

n
In(0;R).

Otherwise,

q+
n (θ) ≤ 1

n
log sup
|z|=R

|Ln(z)|

for all θ ∈ [0, 2π], and continuing from above,

2π

n
In(z;R) ≥ 4π

n
In(0;R)− 3

2

∫ 2π

0

1

n
log sup
|z|=R

|Ln(z)| dθ

=
4π

n
In(0;R)− 3π

n
log sup
|z|=R

|Ln(z)| .

In either case, taking the infimum over all z ∈ Dr and applying the results of Lemmas 2.35 and

2.37 gives the desired conclusion.

We complete the proof of Lemma 2.34 by applying Lemma 2.36 and Lemma 2.38 to (2.13).

Let R ≥ max {1, 3r} be as in Lemma 2.36. From (2.13), we apply the Cauchy–Schwarz inequality

twice to obtain

1

n2
log2 |Ln(z)| ≤ 3

n2
I2
n(z;R) +

3tn
n2

tn∑
t=1

log2

∣∣∣∣∣∣
R
(
z − w(n)

t

)
R2 − w(n)

t z

∣∣∣∣∣∣
+

3sn
n2

sn∑
s=1

log2

∣∣∣∣∣∣
R
(
z − y(n)

s

)
R2 − y(n)

s z

∣∣∣∣∣∣ ,
(2.21)
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for z ∈ DR that is not a zero or pole of Ln. Since there are finitely many zeros and poles of Ln for

a fixed n and a fixed realization of Ln, (2.21) implies

1

n2

∫
Dr

log2 |Ln(z)| dλ(z) ≤
∫
Dr

(
3

n2
I2
n(z;R) +

3tn
n2

tn∑
t=1

log2

∣∣∣∣∣∣
R
(
z − w(n)

t

)
R2 − w(n)

t z

∣∣∣∣∣∣
+

3sn
n2

sn∑
s=1

log2

∣∣∣∣∣∣
R
(
z − y(n)

s

)
R2 − y(n)

s z

∣∣∣∣∣∣
)
dλ(z)

(2.22)

almost surely. Lemmas 2.36 and 2.38 establish that

lim
n→∞

P
(∣∣∣∣ 3

n2

∫
Dr
I2
n(z;R) dλ(z)

∣∣∣∣ ≥ C) = 0

for some constant C > 0, and hence the sequence 3
n2

∫
Dr I

2
n(z;R) dλ(z) is tight.

The remaining two terms of (2.22) are bounded almost surely. Indeed, for z ∈ Dr and

y
(n)
s ∈ DR, we have

|z − y(n)
s |

2R
≤

∣∣∣∣∣R(z − y(n)
s )

R2 − y(n)
s z

∣∣∣∣∣ ≤ |z − y(n)
s |

R− r
,

and hence

log2

∣∣∣∣∣R(z − y(n)
s )

R2 − y(n)
s z

∣∣∣∣∣ ≤ log2 |z − y
(n)
s |

2R
+ log2 |z − y

(n)
s |

R− r
.

By a simple change of variables, we obtain∫
Dr

log2 |z − y
(n)
s |

2R
dλ(z) ≤

∫
D2R

log2 |z|
2R

dλ(z),

and similarly ∫
Dr

log2 |z − y
(n)
s |

R− r
dλ(z) ≤

∫
D2R

log2 |z|
R− r

dλ(z).

Thus, by the local integrability of the squared logarithm,

3sn
n2

∫
Dr

sn∑
s=1

log2

∣∣∣∣∣∣
R
(
z − y(n)

s

)
R2 − y(n)

s z

∣∣∣∣∣∣ dλ(z) ≤ 3s2
n

n2
C ′ ≤ 3C ′

almost surely for all n ∈ N, where C ′ > 0 is a constant that depends only on R and r, and, in the

last inequality, we used the fact that sn ≤ n. A similar argument applies to the integral of the sum

in (2.22) involving the critical points w
(n)
t ; we omit the details.

We conclude that the sequence 1
n2

∫
Dr log2 |Ln(z)| dλ(z) is tight, and the proof of Lemma

2.34 is complete.
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2.5 Proof of Theorem 2.3

This section is devoted to the proof of Theorem 2.3. For ε > 0, define

Sµ(ε) := {z ∈ C : dist(z, supp(µ)) < ε}

to be the ε-neighborhood of the support of µ. We begin with the following concentration inequality.

Lemma 2.39. Let µ be a probability measure on C with compact support, and suppose X1, . . . , Xn

are iid random variables with distribution µ. Then, for every M, ε, t > 0,

P

 sup
z∈C:|z|≤M,z 6∈Sµ(ε)

∣∣∣∣∣∣ 1n
n∑
j=1

1

z −Xj
−mµ(z)

∣∣∣∣∣∣ ≥ t
 ≤ C (1 +

40M

ε2t

)
exp

(
−cnt2ε2

)
for some absolute constants C, c > 0.

Proof. Let M, ε, t > 0, and define

D := {z ∈ C : |z| ≤M, z 6∈ Sµ(ε)}.

We assume D is nonempty as the conclusion is trivial otherwise. Let N be an ε2t/10-net of D. By

Lemma 2.17, N can be chosen so that

|N | ≤
(

1 +
40M

ε2t

)2

. (2.23)

We observe that Xj ∈ supp(µ) almost surely for every 1 ≤ j ≤ n. Thus, almost surely, for

z ∈ D, ∣∣∣∣ 1

z −Xj

∣∣∣∣ ≤ 1

ε
. (2.24)

Hence, for z, w ∈ D, ∣∣∣∣∣∣ 1n
n∑
j=1

1

z −Xj
− 1

n

n∑
j=1

1

w −Xj

∣∣∣∣∣∣ ≤ |z − w|ε2
.

In other words, the function mn(z) := 1
n

∑n
j=1

1
z−Xj is almost surely Lipschitz continuous on D
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with Lipschitz constant ε−2. Similarly, for z, w ∈ D,

|mµ(z)−mµ(w)| =

∣∣∣∣∣
∫

supp(µ)

(
1

z − x
− 1

w − x

)
dµ(x)

∣∣∣∣∣
≤
∫

supp(µ)

|z − w|
|z − x||w − x|

dµ(x)

≤ |z − w|
ε2

.

Suppose supz∈D |mn(z)−mµ(z)| ≥ t. As mn and mµ are both continuous on the compact

set D, there exists z ∈ D such that |mn(z) − mµ(z)| ≥ t. Since N is an ε2t/10-net of D, there

exists w ∈ N such that |z − w| ≤ ε2t
10 . So, by the reverse triangle inequality and the fact that the

mn and mµ are Lipschitz continuous, we have

|mn(w)−mµ(w)| ≥ |mn(z)−mµ(z)| − |mn(z)−mn(w)− (mµ(z)−mµ(w))|

≥ t− 2
|z − w|
ε2

≥ 4t

5
.

Therefore, by the union bound, we conclude that

P
(

sup
z∈D
|mn(z)−mµ(z)| ≥ t

)
≤ P

(
sup
w∈N

|mn(w)−mµ(w)| ≥ 4t

5

)
≤
∑
w∈N

P
(
|mn(w)−mµ(w)| ≥ 4t

5

)
(2.25)

As Emn(z) = mµ(z) for z ∈ D, Hoeffding’s inequality (Lemma 2.15) and the bound in (2.24) imply

that

sup
w∈N

P
(
|mn(w)−mµ(w)| ≥ 4t

5

)
≤ C exp(−cnt2ε2) (2.26)

for some absolute constants C, c > 0. Thus, combining (2.23), (2.25), and (2.26) yields

P
(

sup
z∈D
|mn(z)−mµ(z)| ≥ t

)
≤ C

(
1 +

40M

ε2t

)
exp(−cnt2ε2),

as desired.

We now prove Theorem 2.3.
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Proof of Theorem 2.3. Let ε > 0. With probability one, Xj ∈ supp(µ) for each 1 ≤ j ≤ n. Thus,

the zeros of

mn(z) :=
1

n

p′n(z)

pn(z)
=

1

n

n∑
j=1

1

z −Xj

outside of Nµ(ε) are exactly the critical points of pn outside of Nµ(ε). We will show that mn(z)

has no zeros in D := Conv(supp(µ)) \ Nµ(ε). The claim then follows immediately since, by the

Gauss–Lucas theorem (Theorem 1.1), all the critical points of pn lie in Conv(supp(µ)).

Since µ has compact support, Conv(supp(µ)) is also a compact set (see [1, Corollary 5.33]),

and hence D is compact. As mµ is a continuous function on D, |mµ| achieves its minimum on D,

which, by definition of Nµ(ε) cannot be zero (since Nµ(ε) contains the zero set Mµ). Thus, there

exists c′ > 0 such that

|mµ(z)| ≥ c′ for all z ∈ D.

Since D is compact, there exists M > 0 (depending only on supp(µ)) such that |z| ≤ M for

all z ∈ D. Thus, by Lemma 2.39 (taking t = c′/2), we obtain

P
(

sup
z∈D
|mn(z)−mµ(z)| ≥ c′

2

)
≤ C

(
1 +

80M

ε2c′

)
exp(−cnc′ε2)

for some absolute constants C, c > 0. Hence, on the complementary event, we have

|mn(z)| ≥ |mµ(z)| − |mn(z)−mµ(z)| ≥ c′

2

for all z ∈ D. Since the constants C
(
1 + 80M

ε2c′

)
and cc′ε2 only depend on µ and ε, the proof is

complete.

2.6 Proof of Theorems 2.9, 2.11, and 2.12

This section is devoted to the proof of Theorems 2.9, 2.11, and 2.12.

2.6.1 Proof of Theorem 2.9

We now prove Theorem 2.9 using Theorem 2.11. Indeed, let ξ1, . . . , ξk satisfy the assumptions

of Theorem 2.9. Since ξ1, . . . , ξk do not depend on n, there exists ε0 > 0 such that, for any

0 < ε < ε0,
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• ξ1, . . . , ξs are outside Nµ(3ε),

• ξs+1, . . . , ξk are in Nµ(ε).

In addition, condition (2.2) trivially holds because ξ1, . . . , ξk do not depend on n. Thus, Theorem

2.11 is applicable for any 0 < ε < ε0, and hence Theorem 2.9 follows.

2.6.2 Proof of Theorems 2.11 and 2.12

We will prove Theorem 2.11 via the following result.

Theorem 2.40. Let µ be a probability measure on C with compact support, and suppose 0 ∈

supp(µ). Let X1, X2, . . . be iid random variables with distribution µ. For each n ≥ 1, let ξ
(n)
1 , . . . , ξ

(n)
kn

be a triangular array of deterministic complex numbers with kn = O(1), and assume

max{|ξ(n)
1 |, . . . , |ξ

(n)
kn
|} = O(1).

Fix ε > 0, and suppose that for all sufficiently large n, there are no values of ξ
(n)
1 , . . . , ξ

(n)
kn

in

Nµ(3ε) \ Nµ(ε) and there are s values ξ
(n)
1 , . . . , ξ

(n)
s outside Nµ(3ε). Then, almost surely, for n

sufficiently large, there are exactly s critical points (counted with multiplicity) of the polynomial

pn(z) :=

n−kn∏
j=1

(z −Xj)

kn∏
l=1

(z − ξ(n)
l )

outside Nµ(2ε), and after labeling these critical points correctly,

wl(pn) = ξ
(n)
l + o(1)

for each 1 ≤ l ≤ s.

The only difference between this theorem and Theorem 2.11 is that Theorem 2.40 assumes

0 ∈ supp(µ). Using Theorem 2.40, we prove Theorem 2.11 by applying Proposition 2.23.

Proof of Theorem 2.11. Let µ have compact support. Since supp(µ) is nonempty, choose a ∈

supp(µ). We now consider the polynomial

pn(z + a) =

n−kn∏
j=1

(z − (Xj − a))

kn∏
l=1

(z − (ξ
(n)
l − a)) =

n−kn∏
j=1

(z − Yj)
kn∏
l=1

(z − (ξ
(n)
l − a)),
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where Yj := Xj−a. Let ν be the distribution of Y1. Then ν has compact support and 0 ∈ supp(ν).

In addition, the sets Mν and supp(ν) are translates by −a of the sets Mµ and supp(µ), respectively.

Thus, by assumption, there are no values of ξ
(n)
1 − a, . . . , ξ(n)

kn
− a in Nν(3ε) \Nν(ε) and there are s

values ξ
(n)
1 − a, . . . , ξ(n)

s − a outside Nν(3ε). Therefore, by Theorem 2.40 and Proposition 2.23, we

conclude that almost surely, for n sufficiently large, there are exactly s critical points of pn outside

Nµ(2ε) and after labeling correctly,

wl(pn)− a = ξ
(n)
l − a+ o(1)

for 1 ≤ l ≤ s. Adding a to both sides completes the proof.

Similarly, Theorem 2.12 can be proven using the following.

Theorem 2.41. Let µ be a probability measure on C with compact support, and suppose 0 ∈

supp(µ). Let X1, X2, . . . be iid random variables with distribution µ. For each n ≥ 1, let ξ
(n)
1 , . . . , ξ

(n)
kn

be a triangular array of deterministic complex numbers with kn = O(1). Fix ε > 0, and suppose

that for all sufficiently large n, there are no values of ξ
(n)
1 , . . . , ξ

(n)
kn

in Nµ(3ε) \ Nµ(ε) and there is

one value ξ
(n)
1 outside Nµ(3ε). Then, almost surely, for n sufficiently large, there is exactly one

critical point of the polynomial

pn(z) :=

n−kn∏
j=1

(z −Xj)

kn∏
l=1

(z − ξ(n)
l )

outside Nµ(2ε), and after labeling the critical points correctly,

w1(pn) = ξ
(n)
1 (1 +O (1/n)) .

The proof of Theorem 2.12 using Theorem 2.41 is nearly identical to the proof of Theorem

2.11 above; we omit the details. It remains to prove Theorems 2.40 and 2.41.

2.6.3 Proof of Theorems 2.40 and 2.41

We prove Theorems 2.40 and 2.41 simultaneously. Indeed, for the first part of the proof, we

continue to use the notation of Theorem 2.40. However, the same argument applies to Theorem
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2.41 by simply taking s = 1. The conclusion of the proof will require us to consider the conditions

of both theorems separately. In fact, the conclusion of the proof is the only place where we require

condition (2.2). For notational convenience, throughout the proof we allow the implicit constants

and rates of convergence in our asymptotic notation (such as O, o) to depend on the parameter ε

without notating this dependence.

For n sufficiently large, we decompose

pn(z) =

n−kn∏
j=1

(z −Xj)

s∏
l=1

(z − ξ(n)
l )

kn∏
l=s+1

(z − ξ(n)
l ),

where, by assumption, ξ
(n)
1 , . . . , ξ

(n)
s are outside Nµ(3ε) and ξ

(n)
s+1, . . . , ξ

(n)
kn

are in Nµ(ε). In addition,

X1, . . . , Xn−kn are in supp(µ) ⊂ Nµ(ε) with probability 1.

Let D be the diagonal matrix

D :=

Din 0

0 Dout

 ,

where

Din := diag(X1, . . . , Xn−kn , ξ
(n)
s+1, . . . , ξ

(n)
kn

)

and

Dout := diag(ξ
(n)
1 , . . . , ξ(n)

s ).

Here, the subscripts “in” and “out” refer to the roots inside and outside Nµ(ε), respectively. Of

course, D, Din, and Dout all depend on n, but we do not denote this dependence in our notation.

By Theorem 2.18, it follows that

1

n
zp′n(z) = det

(
zI −D +

1

n
DJn

)
(2.27)

= det


zI 0

0 zI

−
Din 0

0 Dout

+
1

n

Din 0

0 Dout

 Jn

 ,
where I is the identity matrix and Jn is the n× n all-one matrix. We decompose,

Jn =

 Jn−s Jn−s,s

Js,n−s Js

 ,
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where Jl,m denotes the l ×m all-one matrix. Thus, we conclude that

1

n
zp′n(z) = det

zI −Din + 1
nDinJn−s

1
nDinJn−s,s

1
nDoutJs,n−s zI −Dout + 1

nDoutJs

 . (2.28)

We will eventually apply Lemma 2.19 to compute this determinant, but first we will need to consider

the upper-left block

zI −Din +
1

n
DinJn−s.

Let 1n denote the all-one n-vector; we will often drop the subscript (and just write 1) when its size

can be deduced from context. We will make use of the following lemma.

Lemma 2.42. Under the assumptions of Theorem 2.40 (alternatively, Theorem 2.41), almost

surely, for n sufficiently large, the matrix

zI −Din +
1

n
DinJn−s (2.29)

is invertible for every z 6∈ Nµ(2ε) and the function

z 7→ 1

n
1T

(
zI −Din +

1

n
DinJn−s

)−1

Din1 (2.30)

is analytic outside Nµ(2ε). In addition, almost surely

sup
z∈C\Nµ(2ε)

∣∣∣∣∣ 1n1T

(
zI −Din +

1

n
DinJn−s

)−1

Din1

∣∣∣∣∣ = O(1).

Proof. Recall that the entries of the diagonal matrix Din are contained in Nµ(ε). Thus, for z 6∈

Nµ(2ε), the matrix zI −Din is invertible. In addition, since (zI −Din)−1 is a diagonal matrix, we

obtain

1

n
1T(zI −Din)−1Din1 =

1

n
tr[(zI −Din)−1Din]

=
1

n

n−kn∑
j=1

Xj

z −Xj
+

1

n

kn∑
l=s+1

ξ
(n)
l

z − ξ(n)
l

. (2.31)

Among other things, this implies that the function 1
n1T(zI−Din)−1Din1 is analytic outside Nµ(2ε);

we will use this fact later to show that the function in (2.30) is analytic on the same set. Since



53

supp(µ) is compact, it follows from Proposition 2.22 that Nµ(ε) is bounded. Let κ > 0 be such

that |z| ≤ κ for all z ∈ Nµ(ε). Let M := 10κ. Then for |z| ≥M , we have

|Xj | ≤ κ, |z −Xj | ≥M − κ = 9κ

for 1 ≤ j ≤ n− kn and similarly

|ξ(n)
l | ≤ κ, |z − ξ(n)

l | ≥M − κ = 9κ

for each s+ 1 ≤ l ≤ kn. Thus,

sup
|z|≥M

∣∣∣∣ 1n1T(zI −Din)−1Din1

∣∣∣∣ ≤ κ

9κ
=

1

9
. (2.32)

In particular, this bound implies that 1 + 1
n1T(zI −Din)−1Din1 6= 0 for all |z| ≥M . Thus, we can

apply Lemma 2.20 to conclude that the matrix in (2.29) is invertible for every |z| ≥ M . Indeed,

since 1
nDinJn−s = 1

nDin11T is at most rank one1 , it follows from Lemma 2.20 (taking u = Din1

and v = 1
n1) that

1

n
1T

(
zI −Din +

1

n
DinJn−s

)−1

Din1

=
1

n
1T(zI −Din)−1Din1−

(
1
n1T(zI −Din)−1Din1

)2
1 + 1

n1T(zI −Din)−1Din1
. (2.33)

Hence, by the bound in (2.32), we have, with probability one,

sup
|z|≥M

∣∣∣∣∣ 1n1T

(
zI −Din +

1

n
DinJn−s

)−1

Din1

∣∣∣∣∣ ≤ 1

9
+

(
1
9

)2
1− 1

9

= O(1).

In addition, the right-hand side of (2.33) is analytic in the region |z| ≥M , which implies that the

function on the left-hand side is also analytic in the same region.

Let Ω be the compact set {z ∈ C : |z| ≤M}\Nµ(2ε). It remains to show that, almost surely,

for n sufficiently large, the matrix in (2.29) is invertible for every z ∈ Ω, the function in (2.30) is

analytic in Ω, and

sup
z∈Ω

∣∣∣∣∣ 1n1T

(
zI −Din +

1

n
DinJn−s

)−1

Din1

∣∣∣∣∣ = O(1).

1 Here, we have used the fact that Jn−s is rank one, and so the product DinJn−s is either rank one or rank zero.
In fact, a simple computation reveals that the product is rank zero if and only if Din is the zero matrix.
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To establish these results we will again apply Lemma 2.20. However, in this case, we will need

more precise estimates than those established above.

Indeed, returning to (2.31), we find that

1

n
1T(zI −Din)−1Din1 = −n− s

n
+
z

n

n−kn∑
j=1

1

z −Xj
+
z

n

kn∑
l=s+1

1

z − ξ(n)
l

. (2.34)

Since ξ
(n)
s+1, . . . , ξ

(n)
kn

are contained in Nµ(ε), it follows from the triangle inequality that

sup
z∈Ω

∣∣∣∣∣ zn
kn∑

l=s+1

1

z − ξ(n)
l

∣∣∣∣∣ ≤ kn
n

M

ε
= o(1). (2.35)

In addition, by Lemma 2.39 and the Borel–Cantelli lemma, we have, almost surely

sup
z∈Ω

∣∣∣∣∣∣ zn
n−kn∑
j=1

1

z −Xj
− zmµ(z)

∣∣∣∣∣∣ = o(1). (2.36)

As Ω is compact and mµ cannot vanish on Ω (since Mµ ⊂ Nµ(ε)), there exists C, c > 0 such that

c ≤ |mµ(z)| ≤ C for all z ∈ Ω. Specifically, by the assumption that 0 ∈ supp(µ), it follows that

εc ≤ |zmµ(z)| ≤MC, for all z ∈ Ω. (2.37)

Therefore, by (2.35), (2.36), and (2.37), we conclude from (2.34) that, almost surely, for n

sufficiently large,

sup
z∈Ω

∣∣∣∣ 1n1T(zI −Din)−1Din1

∣∣∣∣ ≤ 2 +MC

and

inf
z∈Ω

∣∣∣∣1 +
1

n
1T(zI −Din)−1Din1

∣∣∣∣ ≥ εc

2
.

Hence, by Lemma 2.20, we obtain (2.33) for z ∈ Ω which, combined with the bounds above, yields

sup
z∈Ω

∣∣∣∣∣ 1n1T

(
zI −Din +

1

n
DinJn−s

)−1

Din1

∣∣∣∣∣ ≤ 2 +MC +
(2 +MC)2

cε
2

= O(1)

almost surely. As before, (2.33) also implies that the function in (2.30) is analytic on Ω. The proof

of the lemma is complete.
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Let us dispatch the simplest case of Theorem 2.40: when s = 0. Indeed, if s = 0, then

D = Din. In this case, (2.27) and the invertibility of (2.29) imply that pn has no critical points

outside Nµ(2ε), completing the proof. Thus, for the remainder of the proof, we assume s ≥ 1.

We return to the block determinant in (2.28). By Lemma 2.42, almost surely, for n sufficiently

large, the upper-left block is invertible for all z 6∈ Nµ(2ε). Thus, by Lemma 2.19, we conclude that

almost surely

1

n
zp′n(z) = det

(
zI −Din +

1

n
DinJn−s

)
× det

(
zI −Dout +

1

n
DoutJs −

1

n
DoutJs,n−sG(z)

1

n
DinJn−s,s

)
for all z 6∈ Nµ(2ε), where

G(z) :=

(
zI −Din +

1

n
DinJn−s

)−1

.

In other words, the zeros of p′n outside of Nµ(2ε) (counted with multiplicity) are precisely the zeros

of

det

(
zI −Dout +

1

n
DoutJs −

1

n
DoutJs,n−sG(z)

1

n
DinJn−s,s

)
(2.38)

outside of Nµ(2ε) (counted with multiplicity). Notice that this is the determinant of an s×s matrix,

and s ≤ kn = O(1). We have thus reduced the problem of studying an n × n matrix to an s × s

matrix. This reduction greatly simplifies the forthcoming analysis. Before we conclude the proof,

we make one final observation: since Js,n−s = 1s1
T
n−s and Jn−s,s = 1n−s1

T
s , we can rewrite the

determinant in (2.38) as

det

(
zI −Dout +

1

n
DoutJs −

1

n2

(
1T
n−sG(z)Din1n−s

)
DoutJs

)
. (2.39)

We now conclude the proof of Theorems 2.40 and 2.41 separately. Let us begin with Theorem

2.40. Indeed, under the assumptions of Theorem 2.40,

‖Dout‖ = max{|ξ(n)
1 |, . . . , |ξ

(n)
s |} = O(1).

(Recall that ‖Dout‖ denotes the spectral norm of the matrix Dout.) Thus, by Lemma 2.21 and
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Lemma 2.42, we have, almost surely

sup
z 6∈Nµ(2ε)

∣∣∣∣det

(
zI −Dout +

1

n
DoutJs −

1

n2
DoutJs,n−sG(z)DinJn−s,s

)
− det(zI −Dout)

∣∣∣∣
� 1

n
‖Dout‖‖Js‖+ ‖Dout‖‖Js‖ sup

z 6∈Nµ(2ε)

∣∣∣∣ 1

n2
1T
n−sG(z)Din1n−s

∣∣∣∣
� 1

n

because ‖Js‖ = s ≤ kn = O(1). Notice that the zeros of det(zI − Dout) are precisely the values

ξ
(n)
1 , . . . , ξ

(n)
s . In view of Rouché’s theorem (since both determinants are analytic outside Nµ(2ε)

due to Lemma 2.42), we conclude that, almost surely, for n sufficiently large, pn has exactly s

critical points outside Nµ(2ε), and after correctly labeling the critical points,

wl(pn) = ξ
(n)
l + o(1) (2.40)

for each 1 ≤ l ≤ s. This completes the proof of Theorem 2.40.

Remark 2.43. With a more careful application of Rouché’s theorem, the error in (2.40) can be

improved to

wl(pn) = ξ
(n)
l +O(n−τ )

for each 1 ≤ l ≤ s, where τ > 0 depends on s. In addition, if the deterministic roots ξ
(n)
l , 1 ≤ l ≤ s

satisfy some kind of separation criteria, this error term can be further improved. We do not pursue

these matters here.

We now turn to the proof of Theorem 2.41. Recall that, in this case, s = 1. Thus, the

matrix in (2.39) is just a 1 × 1 matrix, and hence the zeros of p′n outside of Nµ(2ε) are precisely

the solutions of

z − ξ(n)
1 +

1

n
ξ

(n)
1 − ξ(n)

1

1

n2
1TG(z)Din1 = 0 (2.41)

outside Nµ(2ε). By Lemma 2.42, we have, almost surely,

sup
z 6∈Nµ(2ε)

∣∣∣∣(z − ξ(n)
1 +

1

n
ξ

(n)
1 − ξ(n)

1

1

n2
1TG(z)Din1

)
−
(
z − ξ(n)

1

)∣∣∣∣ ≤ C

n
|ξ(n)

1 | (2.42)
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for some constant C > 0. Since both these terms are analytic outside Nµ(2ε) due to Lemma 2.42,

we can again apply Rouché’s theorem. However, since C
n |ξ

(n)
1 | does not necessarily converge to zero,

we have to be slightly more careful. Let Γn be any simple closed contour outside Nµ(2ε) which

satisfies |z − ξ(n)
1 | > C

n |ξ
(n)
1 | for all z ∈ Γn. Then, by the estimate in (2.42), Rouché’s theorem

implies that the number of solutions to (2.41) inside Γn is the same as the number of zeros of

z − ξ(n)
1 inside Γn. Hence, we conclude that almost surely, for n sufficiently large, there is exactly

one critical point of pn outside Nµ(2ε) and that critical point takes the value ξ
(n)
1 (1+O(1/n)). The

proof of Theorem 2.41 is complete.



Chapter 3

On the local pairing behavior of critical points and roots of random polynomials

3.1 Introduction to the chapter

This chapter is an adaption of the paper [39], a recent collaboration with Sean O’Rourke.

For clarity, much of the introductory material from [39] appears in Chapter 1, and the content of

Appendix A from [39], which consisted of many supporting calculations, is included in the relevant

sections below. Note that some of the results in Section 3.2.3 are similar to those in Kabluchko

and Seidel’s recent paper [29]. We compare the work in detail in Section 3.2.3.

3.2 Main results

We begin by introducing the Wasserstein metric in order to discuss the pairing between the

roots and critical points of

pn(z) =
n∏
j=1

(z −Xj),

that one sees in Figures 1.4 and 1.3. (Note: Here, pn is defined as in (1.1).)

3.2.1 Wasserstein distance

For probability measures µ and ν on C, let W1(µ, ν) denote the L1-Wasserstein distance

between µ and ν defined by

W1(µ, ν) := inf
π

∫
|x− y|dπ(x, y),

where the infimum is over all probability measures π on C × C with marginals µ and ν (see e.g.

[61], Chapter 6).
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Theorem 3.3 below gives a bound on the Wasserstein distance between the empirical measures

constructed from the roots and the critical points of the polynomial pn defined in (1.1). Before we

state the theorem, we mention some notation and assumptions. For any probability measure µ on

C, let mµ denote the Cauchy–Stieltjes transform of µ, given by

mµ(z) :=

∫
C

dµ(x)

z − x
, (3.1)

and defined for those values of z ∈ C for which the integral exists. To denote the empirical measure

constructed from the roots of pn, we use

µn :=
1

n

n∑
j=1

δXj , (3.2)

and our notation for the empirical measure constructed from the critical points, w
(n)
1 , . . . , w

(n)
n−1, of

pn is

µ′n :=
1

n− 1

n−1∑
j=1

δ
w

(n)
j

. (3.3)

The following assumptions describe some regularity conditions that µ must satisfy in the hypothesis

of Theorem 3.3.

Assumption 3.1. Suppose there are positive constants, C1, C2, so that the following conditions

hold when X1, . . . , Xn are iid complex-valued random variables with common distribution µ:

(i) for any ε > 0,

P(|mµ(X1)| < ε) ≤ C1ε
2;

(ii) the random variable ηn := max1≤j≤n |Xj | satisfies

P
(
ηn ≥ nC2

)
= o(1).

Assumption 3.2 (Alternative to Assumption 3.1 for radially symmetric distributions). Suppose

µ has two finite absolute moments and a continuous density, f , that is radially symmetric about

z = z0 and that satisfies f(z0) > 0.
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We can now state the main result of this subsection.

Theorem 3.3. Let X1, . . . , Xn be iid, complex random variables whose distribution, µ, has a

bounded density and satisfies either Assumption 3.1 or Assumption 3.2. Then, there is a posi-

tive constant C, depending on µ, so that with probability 1− o(1),

W1(µn, µ
′
n) ≤ Cηn(log n)9

n
, (3.4)

where ηn := max1≤j≤n |Xj |, and µn, µ
′
n (defined in (3.2) and (3.3)) are the empirical measures

constructed from the roots and critical points of

pn(z) =

n∏
j=1

(z −Xj).

In the case where µ has sub-exponential tails, one can show that with probability tending to

1, ηn = O(log n). Consequently, Theorem 3.3 immediately implies the following corollary.

Corollary 3.4. Let X1, . . . , Xn be iid, complex random variables whose distribution, µ, satisfies

Assumption 3.1 part (i) in addition to the following condition:

(ii’) there exist C, c > 0 such that if X ∼ µ, then, P(|X| > t) ≤ Ce−ct for every t > 0.

Then, there is a positive constant Cµ, depending only on µ, so that with probability 1− o(1),

W1(µn, µ
′
n) ≤ Cµ(log n)10

n
,

where µn, µ
′
n (defined in (3.2) and (3.3)) are the empirical measures constructed from the roots and

critical points of

pn(z) =
n∏
j=1

(z −Xj).

Theorem 3.3 and Corollary 3.4 show that the roots and critical points can be paired in

such a way that the typical spacing between a critical point and its paired root is O(n−1), up to

logarithmic corrections. This precisely describes the phenomenon observed in Figures 1.4 and 1.3,

and O’Rourke and the author believe that these bounds are optimal (up to logarithmic factors)

based on the theorems of Section 3.2.3 below and the results in [29].
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A couple of remarks concerning Theorem 3.3 and its corollary are in order. Due to the

heuristic that motivates our proof of Theorem 3.3 (see Figure 3.3), O’Rourke and the author

conjecture that Assumption 3.1 part (i) can be weakened to require that for some fixed δ > 0,

P(|mµ(X1)| < ε) ≤ C1ε
1+δ. At present, we require δ = 1 to obtain some technical bounds in the

proof. An examination of the proof reveals exactly where this condition is needed. The second

remark concerns the appearance of ηn on the right-hand side of (3.4). The authors believe this term

is at least partially necessary. Indeed, based on numerical experiments, the Wasserstein distance

W1(µn, µ
′
n) appears larger for distributions µ with extremely heavy tails. In this way, ηn can be

viewed as quantifying how heavy-tailed the distribution µ is.

3.2.2 Examples of Theorem 3.3 and Corollary 3.4

The assumptions of Theorem 3.3 and Corollary 3.4 are rather technical, so this subsection is

devoted to several specific examples worked out in detail.

The following lemma is useful for computing the Cauchy–Stieltjes transforms of radially

symmetric distributions, which can expedite the verification of Assumptions 3.1 and 3.2 in a variety

of situations. We note that Lemma 3.5 also appears as Proposition 3.1 in [29].

Lemma 3.5 (Computation of mµ(ξ) for radially symmetric distributions). Suppose µ has a density

f(r, θ) = f(r) that is radially symmetric about the origin. Then, mµ(0) = 0, and for ξ 6= 0,

mµ(ξ) =
2π

ξ

∫ |ξ|
0

rf(r) dr =
1

ξ
P(|X| < |ξ|),

where X ∼ µ.
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Proof. For ξ 6= 0, we can use polar coordinates and Laurent series to obtain

mµ(ξ) =

∫ 2π

0

∫ ∞
0

f(r)

ξ − reiθ
· r dr dθ

=
1

ξ

∫ |ξ|
0

rf(r)

∫ 2π

0

1

1− r
ξe
iθ
dθ dr − 1

ξ

∫ ∞
|ξ|

rf(r)

∫ 2π

0

ξ
re
−iθ

1− ξ
re
−iθ

dθ dr

=
1

ξ

∫ |ξ|
0

rf(r)
∞∑
j=0

∫ 2π

0

(
r

ξ
eiθ
)j

dθ dr

− 1

ξ

∫ ∞
|ξ|

rf(r)
∞∑
j=0

ξ

r

∫ 2π

0
e−iθ

(
ξ

r
e−iθ

)j
dθ dr.

The only nonzero integral occurs when the power on the exponential is 0, so we obtain

mµ(ξ) =
2π

ξ

∫ |ξ|
0

rf(r) dr

as is desired. Finally, observe that

mµ(0) =

∫ ∞
0

∫ 2π

0

−f(r)

reiθ
· r dθ dr = −

∫ ∞
0

f(r)

∫ 2π

0
e−iθ = 0.

Example 3.6 (µ is uniform on a disk). If µ has a uniform distribution on the disk of radius R

centered at z0, then, µ has density

f(z) =
1

πR2
1|z−z0|≤R

and Cauchy–Stieltjes transform

mµ(z) =


1
R2 (z − z0) if |z − z0| ≤ R,

1
z−z0 if |z − z0| ≥ R.

(Lemma 3.5 facilitates the computation of mµ(z) when µ is radially symmetric. For this example,

apply Lemma 3.5 when z = 0, R = 1, and apply a linear transformation.) It follows that if X ∼ µ,

then for any ε < 1,

P (|mµ(X)| < ε) ≤ P
(
|X − z0| < R2ε

)
= R2ε2,

so µ satisfies Assumption 3.1, and by Theorem 3.3, with probability 1 − o(1), W1(µn, µ
′
n) =

O((log n)9/n). (Note that almost surely, ηn ≤ |z0|+R).
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Example 3.7 (µ is supported on all of C). Assumption 3.2 is easy to verify for a large class of

measures that do not necessarily have compact support. For example, suppose µ has a standard

complex normal distribution with density

f(z) =
1

π
e−|z|

2

.

Clearly, µ is radially symmetric about the origin, and f(z) is continuous with f(0) = π−1 >

0. Furthermore, µ has sub-exponential tails, so by Corollary 3.4, with probability tending to 1,

W1(µn, µ
′
n) ≤ O((log n)10/n). Figure 1.3 illustrates this example.

Example 3.8 (µ is not radially symmetric). In this last example, we consider a situation where

µ does not exhibit radial symmetry. Suppose µ is uniform on the two disks B(−2, 1) and B(2, 1)

with density

f(z) =
1

2π

(
1|z+2|<1(z) + 1|z−2|<1(z)

)
,

which is depicted in Figure 1.4. By separately considering the cases |z + 2| < 1, |z − 2| < 1, and

|z ± 2| ≥ 1, we can use the calculations from Example 3.6 to obtain the Cauchy–Stieltjes transform:

mµ(z) =



1
2

(
z + 2 + 1

z−2

)
if |z + 2| < 1,

z
z2−4

if |z ± 2| > 1,

1
2

(
z − 2 + 1

z+2

)
if |z − 2| < 1.

(3.5)

Since µ has compact support, Assumption 3.1 part (ii) holds trivially.

Next, we establish that µ satisfies part (i) of Assumption 3.1. Setting each of the three

branches in (3.5) to zero shows that the only zeros of mµ(z) are when z = 0,±
√

3. We claim that

there is a C > 0 such that if X ∼ µ, and ε > 0 is small, then, P(|mµ(X)| < ε) ≤ Cε2. To start,
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consider that for |z + 2| < 1,

|mµ(z)| = 1

2(z − 2)

∣∣(z − 2)(z + 2) + 1
∣∣

=
1

2 |z − 2|

∣∣∣(z +
√

3−
√

3− 2
)(

z +
√

3−
√

3 + 2
)

+ 1
∣∣∣

=
1

2 |z − 2|

∣∣∣∣∣∣∣z +
√

3
∣∣∣2 + (2−

√
3)(z +

√
3)− (2 +

√
3)(z +

√
3)

∣∣∣∣
=

∣∣z +
√

3
∣∣

2 |z − 2|

∣∣∣∣∣(z +
√

3) + 2−
√

3− (2 +
√

3)
z +
√

3

z +
√

3

∣∣∣∣∣ .
Since |z + 2| < 1, it follows that |z − 2| < 6 and also, by the triangle inequality,∣∣∣z +

√
3
∣∣∣ ≤ |z + 2|+

∣∣∣√3− 2
∣∣∣ ≤ 1 + 2−

√
3 = 3−

√
3.

Hence, the reverse triangle inequality transforms our previous calculation into

|mµ(z)| ≥
∣∣z +

√
3
∣∣

12

(∣∣∣∣∣(2 +
√

3)
z +
√

3

z +
√

3

∣∣∣∣∣− ∣∣∣z +
√

3
∣∣∣− ∣∣∣2−√3

∣∣∣)

≥
∣∣z +

√
3
∣∣

12

(
(2 +

√
3)− (3−

√
3)− (2−

√
3)
)

=

√
3− 1

4

∣∣∣z +
√

3
∣∣∣ ,

for |z + 2| < 1. Similarly, |z − 2| < 1 implies that

|mµ(z)| ≥
√

3− 1

4

∣∣∣z −√3
∣∣∣ .

Since the random variable X can only take values z for which |z ± 2| < 1, it follows that

P (|mµ(X)| < ε) ≤ P
(∣∣∣X +

√
3
∣∣∣ < cε

)
+ P

(∣∣∣X −√3
∣∣∣ < cε

)
≤ c2ε2

2
,

where c = 4/(
√

3− 1) and ε > 0 is small enough that B(
√

3, cε) ⊂ B(2, 1).

We have verified Assumption 3.1, so by Theorem 3.3, with probability at least 1 − o(1),

W1(µn, µ
′
n) = O((log n)9/n).

3.2.3 Fluctuations of the critical points

While Theorem 3.3 describes the typical distance between a root and its paired critical point,

it does not allow one to study any particular root or critical point. Toward this end, we now fix
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several of the roots and treat them as deterministic: consider the polynomial

pn(z) :=

s∏
l=1

(z − ξl)
n+1−s∏
j=1

(z −Xj),

where X1, . . . , Xn+1−s are iid complex-valued random variables with distribution µ, and ~ξ =

(ξ1, . . . , ξs) is a deterministic vector in Cs. Our goal is to simultaneously study the behavior of

the critical points closest to ξl, 1 ≤ l ≤ s.

Our first result, Theorem 3.9, covers the situation where ξ1, . . . , ξs are inside the support of

µ. In particular, for each 1 ≤ l ≤ s, equation (3.7) locates the critical point, w
(n)
l , that is near ξl to

within O(n−2) (up to logarithmic corrections). This bound indicates that each w
(n)
l is centered at

ŵ
(n)
l := ξl −

1

n+ 1

n∑
j 6=l

1
ξl−ξj +

∑n+1−s
j=1

1
ξl−Xj

, (3.6)

rather than at ξl, and we use this to show that the vector (w
(n)
1 , . . . , w

(n)
s ) fluctuates around

(ŵ
(n)
1 , . . . , ŵ

(n)
s ) according to a law that converges in distribution to a multivariate normal dis-

tribution. See Figure 3.1.

In order to state Theorem 3.9 we need the following definitions. Let

Mµ := {z ∈ C : mµ(z) = 0}

denote the set of zeros of mµ. We say that a measure µ has a density in a neighborhood of z0 if

there exists a ρ > 0 so that the restriction of µ to the open ball B(z0, ρ) is absolutely continuous

with respect to the Lebesgue measure on B(z0, ρ).

Theorem 3.9 (Locations and fluctuations of critical points when pn has several deterministic

roots). Let X1, X2, . . . be iid complex-valued random variables with distribution µ, fix s and the

distinct, deterministic values ξ1, . . . , ξs /∈ Mµ, and suppose that in a neighborhood of each ξl, 1 ≤

l ≤ s, µ has a bounded density, f . Then, with probability 1− o(1), the polynomial

pn(z) =
s∏
l=1

(z − ξl)
n+1−s∏
j=1

(z −Xj)
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n=10

ξ

−1

−1

0

0

1
1

n=25

ξ

−1

−1

0

0

1
1

n=50

ξ

−1

−1

0

0

1
1

n=100

ξ

−1

−1

0

0

1
1

Figure 3.1: Simulation to illustrate Theorem 3.9. The roots (red dots) and critical points (blue
crosses) of pn(z) = (z − ξ1)

∏n
j=1(z −Xj) for increasing values of n, where the roots, X1, . . . , X100,

are chosen independently and uniformly from the outlined region. The green circle centered at ξ1

is of radius 2n
n+1

(∑n
j=1

1
ξ1−Xj

)−1
and the gray circle has radius 20

n2 and center ŵ
(n)
1 (see (3.6)).
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has s critical points, w
(n)
1 , . . . , w

(n)
s , such that for 1 ≤ l ≤ s, w

(n)
l is the unique critical point of pn

that is within a distance of 3
|mµ(ξl)|n of ξl, and∣∣∣∣∣w(n)

l − ξl +
1

n+ 1

n∑
j 6=l

1
ξl−ξj +

∑n+1−s
j=1

1
ξl−Xj

∣∣∣∣∣ = O
µ,~ξ

((
log n

n

)2
)
. (3.7)

In addition, if f is continuous at ξ1, . . . , ξs, then we have(
n3/2

√
log n

·mµ(ξl)
2 ·
(
w

(n)
l − ξl +

1

n+ 1

1

mµ(ξl)

))s
l=1

−→ (N1, . . . , Ns) (3.8)

in distribution as n → ∞, where (N1, . . . , Ns) is a vector of complex random variables whose

real and imaginary components (Re(N1), Im(N1), . . . ,Re(Ns), Im(Ns)) have a multivariate normal

distribution with mean zero and covariance structure characterized by

Cov(Re(Nj),Re(Nl)) =


πf(ξj)

2 if l = j,

0 else

Cov(Im(Nj), Im(Nl)) =


πf(ξj)

2 if l = j,

0 else

Cov(Re(Nj), Im(Nl)) = 0.

(3.9)

Remark 3.10. Theorem 3.9 can also be extended to the case where ξ1, . . . , ξs are independent

random variables (rather than deterministic values). This can be seen by conditioning on ξ1, . . . , ξs

and applying Theorem 3.9; a similar argument was used in [29].

Compare Theorem 3.9 to Theorem 2.2 of [29], which describes the same phenomenon when

s = 1. Both theorems identify the same fluctuations of w
(n)
1 about ξ1, however, the two results

locate the critical point w
(n)
1 on different scales. While Theorem 2.2 from [29] shows that w

(n)
1 is the

unique critical point of pn within a distance of order o(1/
√
n) of ξ1, Theorem 3.9 refines the location

of w
(n)
1 to within order O(n−2) up to logarithmic corrections. In fact, since 1

n

∑n
j=1

1
ξ1−Xj converges

almost surely to mµ(ξ1), the results of the two theorems can be combined to give a stronger picture
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of the local behavior of w
(n)
1 . Note that in contrast to the method of proof used by Kabluchko and

Seidel in [29], our approach is based on a deterministic argument (see Theorem 3.23).

For values of ξ1, . . . , ξs outside the support of µ, (3.8) and (3.9) demonstrate that the scaling

factor n3/2/
√

log n is too small to achieve a meaningful result. (Indeed, f may be chosen to be

identically zero outside supp(µ), so the random vector (N1, . . . Ns) is almost surely the zero vector.)

The following result refines the analysis in this situation and is depicted in Figure 3.2.

Theorem 3.11 (Locations and Fluctuations of critical points when pn has several roots outside

supp(µ)). Let X1, X2, . . . be iid complex-valued random variables with common distribution µ, fix

s ∈ N, and suppose ξ1, . . . , ξs /∈ supp(µ) ∪Mµ are distinct, fixed deterministic values. Then, there

exist constants C, c
µ,~ξ
, C

µ,~ξ
> 0, so that with probability at least 1−C exp(−c

µ,~ξ
n), the polynomial

pn(z) =
s∏
l=1

(z − ξl)
n+1−s∏
j=1

(z −Xj)

has s critical points, w
(n)
1 , . . . , w

(n)
s , such that for 1 ≤ l ≤ s, w

(n)
l is the unique critical point of pn

that is within a distance of 3
|mµ(ξl)|n of ξl, and∣∣∣∣∣w(n)

l − ξl +
1

n+ 1

n∑
j 6=l

1
ξl−ξj +

∑n+1−s
j=1

1
ξl−Xj

∣∣∣∣∣ < C
µ,~ξ

n2
. (3.10)

In addition, we have(
n3/2 ·mµ(ξl)

2 ·
(
w

(n)
l − ξl +

1

n+ 1

1

mµ(ξl)

))s
l=1

−→ (N1, . . . , Ns) (3.11)

in distribution as n→∞, where (N1, . . . , Ns) is a vector of complex random variables whose whose

real and imaginary components (Re(N1), Im(N1), . . . ,Re(Ns), Im(Ns)) have a multivariate normal

distribution with mean zero and covariance structure

Cov(Re(Nj),Re(Nl)) = Cov

(
Re

(
1

ξj −X1

)
,Re

(
1

ξl −X1

))
Cov(Im(Nj), Im(Nl)) = Cov

(
Im

(
1

ξj −X1

)
, Im

(
1

ξl −X1

))
Cov(Re(Nj), Im(Nl)) = Cov

(
Re

(
1

ξj −X1

)
, Im

(
1

ξl −X1

))
.

(3.12)
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n=5
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n=6
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n=8

ξ1
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ξ2
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ξ2

n=50

ξ1

ξ2

Figure 3.2: Simulation to illustrate Theorem 3.11. The roots (red circles) and critical points
(blue crosses) of pn(z) =

∏2
l=1(z − ξl)

∏n−1
j=1 (z − Xj) for increasing values of n, where the roots,

X1, . . . , X49, are chosen independently and uniformly from the unit circle. The gray circles are of

radius 10
n2 and are centered at ŵ

(n)
1 , ŵ

(n)
2 defined in (3.6).
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Remark 3.12. After an application of the Borel–Cantelli lemma, Theorem 3.11 can be combined

with Theorem 2.9 above to establish the following: when µ has compact support, almost surely, for

n sufficiently large, w
(n)
1 , . . . , w

(n)
s , characterized by (3.10), are the only critical points of pn outside

an ε-neighborhood of supp(µ) ∪Mµ.

In Section 3.3, we provide a generalization of Theorem 3.11 to a situation where pn has a

number of deterministic roots that may depend on n (see Theorem 3.25 below). The proofs of

Theorems 3.9 and 3.11 are based on a technical, deterministic argument that applies to cases where

X1, . . . , Xn are random variables that are not independent (see Theorem 3.23). To illustrate this

point, we conclude the subsection with a result that demonstrates pairing between individual roots

and critical points of pn when pn is the characteristic polynomial of a random matrix.

Theorem 3.13. Fix ε > 0 and λ ∈ C with |λ| ≥ 1 + 3ε. Let M be an n× n random matrix whose

entries are iid copies of a random variable with mean zero, unit variance, and finite fourth moment.

Let A be an n×n deterministic matrix with operator norm O(1), rank O(1), and whose only nonzero

eigenvalue is λ. Then almost surely, for n sufficiently large, the characteristic polynomial1

pn(z) := det

(
zI − 1√

n
M −A

)
= (z − ξ)

n−1∏
i=1

(z −Xi)

of 1√
n
M +A satisfies the following properties:

(i) The roots X1, . . . , Xn−1 lie inside the disk B(0, 1 + 2ε).

(ii) The root ξ lies outside the disk B(0, 1 + 2ε) and satisfies ξ = λ+ o(1).

(iii) pn contains a unique critical point, w
(n−1)
ξ , which satisfies∣∣∣∣∣w(n−1)

ξ − ξ +
1

n
· 1

1
n−1

∑n−1
i=1

1
ξ−Xi

∣∣∣∣∣ = Oλ,ε

(
1

n2

)
. (3.13)

and hence

w
(n−1)
ξ = λ+ o(1) (3.14)

1 Here, I denotes the identity matrix.
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Remark 3.14. The conclusion in (3.14) can be deduced from properties (i) and (ii) and Walsh’s two

circle theorem (see, for example, [46, Theorem 4.1.1]). However, the conclusion in (3.13) cannot

be deduced from Walsh’s two circle theorem and instead follows from Theorem 3.23. We prove

Theorem 3.13 in Section 3.3.

3.2.4 A local law for the critical points

In this subsection, we consider a local law that describes the behavior of the critical points

of

pn(z) :=

n∏
i=1

(z −Xi).

We begin with the case where X1, . . . , Xn are arbitrary random variables (not assumed to be

independent nor identically distributed) and then specialize our main result to several applications

and examples.

Theorem 3.15 (Local law). Fix C > 0, and let X1, . . . , Xn be complex-valued random variables

(not necessarily independent nor identically distributed) which satisfy the following axioms.

(i) (Upper bound) With overwhelming probability,

max
1≤i≤n

|Xi| ≤ en
C
,

(ii) (Anti-concentration) For every a > 0, there exists b > 0 such that∣∣∣∣∣
n∑
i=1

1

Z −Xi

∣∣∣∣∣ ≥ n−b (3.15)

with probability 1 − Oa(n−a), where Z is uniformly distributed on B(0, nC), independent of

X1, . . . , Xn.

Let ϕ : C → R be a twice continuously differentiable function (possibly depending on n) which is

supported on B(0, nC) and which satisfies the pointwise bound

|∆ϕ(z)| ≤ nC (3.16)
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for all z ∈ C. Then, for every fixed c > 0 and every α > 0,

n−1∑
j=1

ϕ(w
(n)
j ) =

n∑
i=1

ϕ(Xi) +Oα(‖∆ϕ‖1 log n) +Oα(n−c)

with probability 1−Oα(n−α), where w
(n)
1 , . . . , w

(n)
n−1 are the critical points of the polynomial

pn(z) :=

n∏
i=1

(z −Xi)

and ‖∆ϕ‖1 is the L1-norm of ∆ϕ. Here, the implicit constants in our asymptotic notation depend

on C, c, and α.

Remark 3.16. Condition (ii) on the random variables X1, . . . , Xn from Theorem 3.15 is implied by

the following:

(ii’) for every a > 0, there exists b > 0 such that, for almost every z ∈ B(0, nC),∣∣∣∣∣
n∑
i=1

1

z −Xi

∣∣∣∣∣ ≥ n−b
with probability 1−Oa(n−a).

Indeed, the implication follows by simply conditioning on the random variable Z (which avoids a

set of Lebesgue measure zero with probability 1).

The assumptions of Theorem 3.15 are fairly technical, and we derive some simpler conditions

that guarantee when the hypotheses of Theorem 3.15 are met in Section 3.2.5. We now specialize

Theorem 3.15 to the case where X1, . . . , Xn are independent random variables.

Theorem 3.17 (Local law for independent roots). Fix C > 0, and let X1, . . . , Xn be independent

complex-valued random variables which satisfy

max
1≤i≤n

E|Xi| ≤ nC .

In addition, assume X1 is absolutely continuous (with respect to Lebesgue measure on C) and has

density bounded by nC . Let ϕ : C → R be a twice continuously differentiable function (possibly
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depending on n) which is supported on B(0, nC) and which satisfies the pointwise bound given in

(3.16) for all z ∈ C. Then, for every fixed c > 0 and every α > 0,

n−1∑
j=1

ϕ(w
(n)
j ) =

n∑
i=1

ϕ(Xi) +Oα(‖∆ϕ‖1 log n) +Oα(n−c)

with probability 1−Oα(n−α), where w
(n)
1 , . . . , w

(n)
n−1 are the critical points of the polynomial

pn(z) :=
n∏
i=1

(z −Xi)

and ‖∆ϕ‖1 is the L1-norm of ∆ϕ. Here, the implicit constants in our asymptotic notation depend

on C, c, and α.

Theorem 3.17 can be viewed as a local version of Theorem 1.3 and (1.2). Indeed, since the

functions in the theorem above can depend on n, one can approximate an indicator function of

Borel sets which changes with n. In addition, the error bound in Theorem 3.17 is significantly

better then the error term from (1.2).

Interestingly, Theorem 3.17 only requires a single root (X1) to actually be random; the rest

may be deterministic. In particular, since the density of X1 is bounded by nC , X1 can itself be

quite close to deterministic. Obviously, though, the result fails for deterministic polynomials. For

example, consider qn(z) := zn−1. The conclusion of Theorem 3.17 fails for this polynomial since all

of the critical points are located at the origin while the roots are the n-th roots of unity, located on

the unit circle. However, Theorem 3.17 does apply to pn(z) := qn(z)(z−X), where X is uniformly

distributed on B(z0, n
−C/2) for any fixed z0 ∈ C. Theorem 3.17 strengthens Theorem 1.6 of [7] for

the empirical distribution associated with the zeros of p′n by providing a rate of convergence. As a

consequence of Theorem 3.17, we have the following central limit theorem (CLT).

Theorem 3.18 (Central limit theorem for linear statistics). Let X1, X2, . . . be iid random variables

which are absolutely continuous (with respect to Lebesgue measure on C) and have a bounded density.

In addition, assume E|X1| <∞. Let ϕ : C→ R be a twice continuously differentiable function with

compact support which does not depend on n. Then,

1√
n

n−1∑
j=1

(
ϕ(w

(n)
j )− Eϕ(w

(n)
j )
)
−→ N(0, v2)
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in distribution as n→∞, where w
(n)
1 , . . . , w

(n)
n−1 are the critical points of the polynomial

pn(z) :=
n∏
i=1

(z −Xi)

and v2 is the variance of ϕ(X1).

We now state a version of Theorem 3.17 that applies when the function ϕ is analytic. While

analyticity is a much more rigid assumption, the next result does not contain the extra factor of

log n present in the error term from Theorem 3.17.

Theorem 3.19 (Local law for analytic test functions). Fix C, c, ε > 0. Let µ be a probability

measure on C supported on B(0, C), and assume

|mµ(z)| ≥ c (3.17)

for all z ∈ Γ, where Γ is the boundary of B(0, C + ε). Then for any function ϕ (possibly depending

on n), analytic in a neighborhood containing the closure of B(0, C + ε), one has

n−1∑
j=1

ϕ(w
(n)
j ) =

n∑
i=1

ϕ(Xi) +O

(∮
Γ
|ϕ(z)||dz|

)
,

where w
(n)
1 , . . . , w

(n)
n−1 are the critical points of the polynomial

pn(z) :=
n∏
i=1

(z −Xi)

and X1, . . . , Xn are iid random variables with distribution µ. Here, the implicit constants in our

asymptotic notation depend on C, c, and ε.

3.2.5 Guaranteeing the assumptions in the local law

In this section, we provide some criteria for assuring the assumptions in Theorem 3.15 are

met.

Lemma 3.20 (Simple criterion for an upper bound). Fix C, ε > 0, and suppose X1, . . . , Xn are

complex-valued random variables (not necessarily independent nor identically distributed). If

max
1≤i≤n

E|Xi|ε ≤ nC ,
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then

max
1≤i≤n

|Xi| ≤ en
C

with overwhelming probability.

Proof. As

P
(

max
1≤i≤n

|Xi| > en
C

)
≤

n∑
i=1

P(|Xi| > en
C

),

the claim follows from a simple application of Markov’s inequality.

Lemma 3.21 (Criterion for anti-concentration). Fix C > 0, and let X1, . . . , Xn be complex-valued

random variables such that X1 is independent of X2, . . . , Xn. In addition, assume X1 is absolutely

continuous (with respect to Lebesgue measure on C) with density bounded by nC , and suppose that

E|X1| ≤ nC . Then for every a > 0, there exists b > 0 such that∣∣∣∣∣
n∑
i=1

1

Z −Xi

∣∣∣∣∣ ≥ n−b
with probability 1 − Oa(n

−a), where Z is uniformly distributed on B(0, nC) and independent of

X1, . . . , Xn.

Proof. Fix a > 0, and let b > 0 be a large constant (depending on C and a) to be chosen later.

Since Z is independent of X1, . . . , Xn it follows that, with probability 1, Z 6∈ {X1, . . . , Xn}. Hence

the sum
n∑
i=1

1

Z −Xi

is well-defined and finite. By conditioning on the values of X2, . . . , Xn and Z, it suffices to prove

that

sup
w∈C

sup
z∈B(0,nC)

P
(∣∣∣∣ 1

z −X1
− w

∣∣∣∣ ≤ n−b)�a n
−a.

The claim now follows from Lemma 3.22 below by taking ε := n−b and choosing b sufficiently large

in terms of C and a.
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Lemma 3.22. Fix C > 0, and let X be a complex-valued random variable that is absolutely

continuous (with respect to Lebesgue measure on C) and which has density bounded by nC . If

E|X| ≤ nC , then for every a > 0 and 0 < ε < 1,

sup
w∈C

sup
z∈B(0,nC)

P
(∣∣∣∣ 1

z −X
− w

∣∣∣∣ ≤ ε) ≤ 4
√
εnC + 4πεn3C+2a + n−a.

Proof. Fix w ∈ C and z ∈ B(0, nC). We consider two cases. If |w| ≤
√
ε, then

P
(∣∣∣∣ 1

z −X
− w

∣∣∣∣ ≤ ε) ≤ P
(∣∣∣∣ 1

z −X

∣∣∣∣ ≤ 2
√
ε

)
≤ P

(
|X − z| ≥ 1

2
√
ε

)
≤ 2
√
ε
(
E|X|+ nC

)
≤ 4
√
εnC

by Markov’s inequality.

We now consider the case where |w| >
√
ε. Define the event

E := {|X| ≤ nC+a}.

By Markov’s inequality, it follows that

P(Ec) ≤ n−a.

Thus, we obtain

P
(∣∣∣∣ 1

z −X
− w

∣∣∣∣ ≤ ε) ≤ P
(∣∣∣∣ 1

w
− (z −X)

∣∣∣∣ ≤ √ε|z −X|)
≤ P

(∣∣∣∣ 1

w
− (z −X)

∣∣∣∣ ≤ √ε|z −X| ∣∣∣∣ E)P(E) + P(Ec)

≤ P
(∣∣∣∣ 1

w
− (z −X)

∣∣∣∣ ≤ 2
√
εnC+a

)
+ n−a

≤ P
(
X ∈ B(w−1 − z, 2

√
εnC+a)

)
+ n−a

≤ πnC
(
2
√
εnC+a

)2
+ n−a.

Combining the bounds above yields

P
(∣∣∣∣ 1

z −X
− w

∣∣∣∣ ≤ ε) ≤ 4
√
εnC + 4πεn3C+2a + n−a
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for any w ∈ C and z ∈ B(0, nC). The proof of the lemma is complete.

3.2.6 Overview and outline

The remainder of the chapter is devoted to proving our main results. In Section 3.3, we

establish Theorems 3.9, 3.11, and 3.13 of Subsection 3.2.3 by way of Theorem 3.23 for deterministic

polynomials, which we also use to prove a generalization to Theorem 3.11. Section 3.4 contains

the proofs of the local laws from Subsection 3.2.4 including those for Theorems 3.15, 3.17, 3.18,

and 3.19. We conclude the paper with a proof of Theorem 3.3 in Section 3.5. Note that Appendix

A contains some classical arguments that establish a Lindeberg CLT that we use to prove part of

Theorem 3.9.

3.3 Proof of results in Section 3.2.3

The proofs of Theorems 3.9, 3.11, and 3.13 rely on the following theorem for deterministic

polynomials.

Theorem 3.23. Suppose ξ is a complex number, ~X = (X1, X2, . . . , Xn) is a vector of complex

numbers, and C1, C2, kLip are positive values for which the following three conditions hold:

(i) C1 ≤
∣∣∣ 1
n

∑n
j=1

1
ξ−Xj

∣∣∣ ≤ C2;

(ii) The function z 7→ 1
n

∑n
j=1

1
z−Xj is Lipschitz continuous with constant kLip on the set{

z ∈ C : |z − ξ| ≤ 2

C1n

}
;

(iii) min
1≤j≤n

|ξ −Xj | >
3

C1n
.

Then, if C > 0 and n ∈ N satisfy

C >
8(1 + 2C2

2 )

C3
1

and n > 4C2 max

{
1

C1
, C(kLip + 1)

}
, (3.18)

the polynomial

pn(z) := (z − ξ)
n∏
j=1

(z −Xj)
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has exactly one critical point, w
(n)
ξ , that is within a distance of 3

2C1n
of ξ, and∣∣∣∣∣w(n)

ξ − ξ +
1

n+ 1

1
1
n

∑n
j=1

1
ξ−Xj

∣∣∣∣∣ < C(kLip + 1)

n2
. (3.19)

We remark that criteria (i) and (ii) appear relevant in view of the equality

1

n
p′n(z) =

n∏
j=1

(z −Xj)

(z − ξ) 1

n

n∑
j=1

1

z −Xj
+

1

n

 ,

which suggests that if 1
n

∑n
j=1

1
z−Xj is finite and bounded away from zero near ξ, then p′n(z) ≈ 0

for some z satisfying |z − ξ| = O(1/n). Assumption (iii) helps to guarantee that pn(z) has only

one critical point that is within order O(1/n) of ξ, but with respect to establishing equation (3.19),

(iii) is likely an artificial constraint related to the use of Rouché’s theorem in the proof. We prove

Theorem 3.23 in the next subsection.

3.3.1 Proof of Theorem 3.23

Our strategy is to compare pn(z) to the simpler polynomial

p̃(z) = (z − ξ)(z − Yn)n,

where

Yn := ξ − 1
1
n

∑n
j=1

1
ξ−Xj

is chosen so that near ξ, the logarithmic derivatives

Ln(z) :=
1

z − ξ
+

n∑
j=1

1

z −Xj
and L̃n(z) :=

1

z − ξ
+

n

z − Yn

of pn and p̃n, respectively, are close to each other. In particular, we will use Rouché’s theorem to

show that Ln and L̃n both have exactly one zero in each of the nested open balls

Dsm
n := B

(
cn,

C(kLip + 1)

n2

)
and Dlg

n := B

(
ξ,

3

2C1n

)
,
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where

cn := ξ − 1

n+ 1

1
1
n

∑n
j=1

1
ξ−Xj

can be easily verified to be a root of L̃n. By “clearing the denominators” we will conclude that pn

has exactly one critical point in each of the two balls. The lemma below establishes a few key facts

that we frequently reference throughout the proof.

Lemma 3.24. Under the assumptions of Theorem 3.23:

(i) For |z − cn| ≤
C(kLip+1)

n2 :

C(kLip + 1)

n2
< |z − ξ| < 5

4C1n
, so Dsm

n ⊂ Dlg
n ;

C(kLip + 1)

n2
< |z − Yn| <

2

C1
;

C(kLip + 1)

n2
<

1

C1n
< |z −Xj | for 1 ≤ j ≤ n.

(ii) For |z − ξ| ≤ 3
2nC1

:

3

2C1n
< |z − Yn| <

5

2C1
;

3

2C1n
< |z −Xj | for 1 ≤ j ≤ n;

1

2C1n
< |z − cn| if |z − ξ| = 3

2nC1
.

Proof. To prove (i), suppose |z − cn| ≤
C(kLip+1)

n2 . By the triangle inequality, we have

|z − ξ| ≥ |cn − ξ| − |z − cn| ≥
1

(n+ 1)C2
−
C(kLip + 1)

n2
≥ 1

2nC2
−
C(kLip + 1)

n2
,

and by the hypothesis that n > 4C2C(kLip + 1), it follows that

|z − ξ| > 1

2nC2
− 1

4nC2
=

1

4nC2
>
C(kLip + 1)

n2
.

On the other hand, we have

|z − ξ| ≤ |z − cn|+ |cn − ξ| ≤
C(kLip + 1)

n2
+

1

(n+ 1)C1
,
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and the assumption n > 4C2C(kLip + 1) guarantees that

|z − ξ| < 1

4nC1
+

1

(n+ 1)C1
<

5

4C1n

(note: C1 ≤ C2). This establishes the first inequality. The second follows from nearly identical

reasoning; we omit the details. To achieve the inequalities 1
C1n

< |z −Xj |, we use |z − ξ| < 5
4C1n

,

which we just proved, and the assumption that min1≤j≤n |ξ −Xj | > 3
C1n

. Indeed, for 1 ≤ j ≤ n,

the triangle inequality yields

|z −Xj | ≥ |ξ −Xj | − |z − ξ| >
3

C1n
− 5

4C1n
>

1

C2n
>
C(kLip + 1)

n2
.

This completes the proof of part (i). Part (ii) follows from nearly identical reasoning. Note that the

assumption n > 4C2/C1 is useful for achieving the lower bound on |z − Yn|. We omit the remaining

details.

The lower bounds in Lemma 3.24 imply that under the assumptions of Theorem 3.23, Ln(z)

and L̃n(z) are holomorphic on the domain Dsm
n and that (z−ξ)Ln(z) and (z−ξ)L̃n(z) are holomor-

phic on the domain Dlg
n . We will show that under the same assumptions,

∣∣∣Ln(z)− L̃n(z)
∣∣∣ < ∣∣∣L̃n(z)

∣∣∣
for z in the boundaries of Dsm

n and Dlg
n in order to justify Rouché’s theorem. To that end, assume

the hypotheses of Theorem 3.23 and let z ∈ ∂Dsm
n ∪ ∂D

lg
n . Then, the triangle inequality implies

∣∣∣Ln(z)− L̃n(z)
∣∣∣ =

∣∣∣∣∣∣
n∑
j=1

1

z −Xj
− n

z − Yn

∣∣∣∣∣∣
≤

∣∣∣∣∣∣
n∑
j=1

1

z −Xj
−

n∑
j=1

1

ξ −Xj

∣∣∣∣∣∣+

∣∣∣∣∣∣
n∑
j=1

1

ξ −Xj
− 1

1
nz −

1
nYn

∣∣∣∣∣∣
≤ nkLip |z − ξ|+

∣∣∣∣∣∣∣
n∑
j=1

1

ξ −Xj
− 1

1
n(z − ξ) + 1∑n

j=1
1

ξ−Xj

∣∣∣∣∣∣∣ ,
where we have used hypothesis (ii) of Theorem 3.23 to bound the first term on the left. By factoring∣∣∣∑n

j=1
1

ξ−Xj

∣∣∣ from both terms in the right summand, we obtain

∣∣∣Ln(z)− L̃n(z)
∣∣∣ ≤ nkLip |z − ξ|+ n ·

∣∣∣∣∣∣ 1n
n∑
j=1

1

ξ −Xj

∣∣∣∣∣∣ ·
∣∣∣∣∣1− 1

(z − ξ) 1
n

∑n
j=1

1
ξ−Xj + 1

∣∣∣∣∣ ,
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and then, combining the fractions, factoring out another
∣∣∣∑n

j=1
1

ξ−Xj

∣∣∣, and applying hypothesis (i)

of Theorem 3.23 twice yields

∣∣∣Ln(z)− L̃n(z)
∣∣∣ ≤ nkLip |z − ξ|+ nC2 ·

∣∣∣∣∣ (z − ξ) 1
n

∑n
j=1

1
ξ−Xj

(z − ξ) 1
n

∑n
j=1

1
ξ−Xj + 1

∣∣∣∣∣
≤ nkLip |z − ξ|+ nC2

2 ·
|z − ξ|∣∣∣(z − ξ) 1

n

∑n
j=1

1
ξ−Xj + 1

∣∣∣ .
Finally, we can use the reverse triangle inequality and hypothesis (i) of Theorem 3.23 to show∣∣∣Ln(z)− L̃n(z)

∣∣∣ ≤ nkLip |z − ξ|+ nC2
2 |z − ξ| ·

1

1−
∣∣∣(z − ξ) 1

n

∑n
j=1

1
ξ−Xj

∣∣∣
≤ n |z − ξ|

(
kLip +

C2
2

1− |z − ξ|C2

)
.

(3.20)

At this point, we split the argument into two cases: |z − cn| =
C(kLip+1)

n2 and |z − ξ| = 3
2nC1

. In the

first case, Lemma 3.24 guarantees that |z − ξ| < 2
nC1

, and the hypotheses of Theorem 3.23 require

that 1
2 >

2C2
nC1

, so we obtain

∣∣∣Ln(z)− L̃n(z)
∣∣∣ < 2

C1

(
kLip + 2C2

2

)
≤ 2

C1
(kLip + 1)(1 + 2C2

2 ). (3.21)

On the other hand,

∣∣∣L̃n(z)
∣∣∣ =

∣∣∣∣ 1

z − ξ
+

n

z − Yn

∣∣∣∣
=

∣∣∣∣z − Yn + n(z − ξ)
(z − ξ)(z − Yn)

∣∣∣∣
= (n+ 1) · |z − ξ|−1 · |z − Yn|−1 · |z − cn|

> n · nC1

2
· C1

2
·
C(kLip + 1)

n2
,

where the last inequality follows from Lemma 3.24. One of the assumptions in Theorem 3.23 is

that C >
8(1+2C2

2 )

C3
1

, so

∣∣∣L̃n(z)
∣∣∣ > C2

1

4
(kLip + 1)

8(1 + 2C2
2 )

C3
1

=
2

C1
(kLip + 1)(1 + 2C2

2 ). (3.22)

Combining (3.21) and (3.22) yields
∣∣∣Ln(z)− L̃n(z)

∣∣∣ < ∣∣∣L̃n(z)
∣∣∣ for z in the boundary of Dsm

n . In

addition, recall (Lemma 3.24 part (ii)) that Ln(z) and L̃(z) are holomorphic on the domain Dsm
n ,
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so Rouché’s theorem guarantees that Ln(z) and L̃n(z) have the same number of zeros inside Dsm
n .

Since cn is the unique zero of L̃n(z) in Dsm
n , we conclude that Ln(z) has exactly one zero, w

(n)
ξ , in

Dsm
n . Furthermore,

Ln(z) =
p′n(z)

pn(z)

(which is analytic for z ∈ Dsm
n by (i) of Lemma 3.24), so the zeros of Ln(z) in Dsm

n are the same as

the critical points of pn(z) in Dsm
n . We conclude that pn(z) has exactly one critical point in Dsm

n .

Lemma 3.24 shows that Dsm
n ⊂ D

lg
n , so it remains to establish that pn(z) also has exactly one

critical point in Dlg
n , for then, the critical point in both domains must be the same one. Continuing

from (3.20), in the case where |z − ξ| = 3
2C1n

, we obtain∣∣∣Ln(z)− L̃n(z)
∣∣∣ < 3

2C1
(kLip + 2C2

2 ) ≤ 3

2C1
(kLip + 1)(1 + 2C2

2 ), (3.23)

where we have once again used the assumption that 1
2 ≥

2C2
nC1

. Similarly to above, we also have∣∣∣L̃n(z)
∣∣∣ =

∣∣∣∣ 1

z − ξ
+

n

z − Yn

∣∣∣∣
=

∣∣∣∣z − Yn + n(z − ξ)
(z − ξ)(z − Yn)

∣∣∣∣
= (n+ 1) · |z − ξ|−1 · |z − Yn|−1 · |z − cn|

> n · 2C1n

3
· 2C1

5
· 1

2C1n

=
2C1n

15

where the inequality follows from Lemma 3.24, (ii). From the assumptions on n and C in Theorem

3.23, it follows that

n > 4C2C(kLip + 1) >
32(1 + 2C2

2 )(kLip + 1)

C2
1

· C2

C1
≥

32(1 + 2C2
2 )(kLip + 1)

C2
1

(recall C1 ≤ C2), so in the case when |z − ξ| = 3
2C1n

,∣∣∣L̃n(z)
∣∣∣ > 64

15C1
(kLip + 1)(1 + 2C2

2 ). (3.24)

Combining (3.23) and (3.24) yields
∣∣∣Ln(z)− L̃n(z)

∣∣∣ < ∣∣∣L̃n(z)
∣∣∣ for z in the boundary of Dlg

n . Con-

sequently, for z ∈ ∂Dlg
n , ∣∣∣(z − ξ)Ln(z)− (z − ξ)L̃n(z)

∣∣∣ < ∣∣∣(z − ξ)L̃n(z)
∣∣∣ ,
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and since (z− ξ)Ln(z), (z− ξ)L̃n(z) are holomorphic in Dlg
n by Lemma 3.24, (ii), Rouché’s theorem

guarantees that (z−ξ)Ln(z), (z−ξ)L̃n(z) have the same numbers of zeros inDlg
n . In fact, (z−ξ)L̃n(z)

has exactly one zero in Dlg
n , namely cn, so

(z − ξ)Ln(z) =
p′n(z)∏n

j=1(z −Xj)

has exactly one zero in Dlg
n , too. (Note: by Lemma 3.24, (i), Dsm

n ⊂ D
lg
n .) Hence, p′n(z) has exactly

one root in Dlg
n , and as we showed above, this root lies in Dsm

n . The proof of Theorem 3.23 is

complete.

In the remainder of this section, we use Theorem 3.23 to prove Theorems 3.9, 3.11 and

3.13. We also include a subsection where we sketch how the arguments could be modified to

prove Theorem 3.25, which generalizes part of Theorem 3.11 to situations where pn has many

deterministic roots. When ξ ∈ supp(µ), it is difficult to control 1
n

∑n
j=1

1
ξ−Xj , so we start with the

proof of Theorem 3.11, which is more straightforward than the justification of Theorem 3.9.

3.3.2 Proof of Theorem 3.11

We begin by establishing equation (3.10) via Theorem 3.23. To that end, we consider {ξl}sl=1,

one at a time, letting each in turn play the role of ξ in the statement of Theorem 3.23. Fix ξl,

1 ≤ l ≤ s. We will show that for large n, on the complement of the “bad” event

Eln :=


∣∣∣∣∣∣ 1

n+ 1− s

n+1−s∑
j=1

1

ξl −Xj
−mµ(ξl)

∣∣∣∣∣∣ ≥ |mµ(ξl)|
2.1

 ,

the hypotheses of Theorem 3.23 are satisfied with ξ = ξl,

~X = (ξ1, . . . , ξl−1, ξl+1, . . . , ξs, X1, . . . , Xn+1−s),

and the positive constants

C1,l :=
|mµ(ξl)|

2
, C2,l :=

3 |mµ(ξl)|
2

, kLip,l :=
9

dist(ξl, supp(µ) ∪ {ξj : j 6= l})2
. (3.25)

(Here, dist(z,D) := infw∈D |z − w| is the distance from z ∈ C to a set D ⊂ C.)
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For large n, on the complement of Eln,∣∣∣∣∣∣∣∣
1

n

 s∑
j=1
j 6=l

1

ξl − ξj
+

n+1−s∑
j=1

1

ξl −Xj


∣∣∣∣∣∣∣∣

≤

∣∣∣∣∣∣∣∣
1

n

s∑
j=1
j 6=l

1

ξl − ξj

∣∣∣∣∣∣∣∣+
n+ 1− s

n

∣∣∣∣∣∣ 1

n+ 1− s

n+1−s∑
j=1

1

ξl −Xj

∣∣∣∣∣∣
≤ ol(1) +

∣∣∣∣∣∣ 1

n+ 1− s

n+1−s∑
j=1

1

ξl −Xj
−mµ(ξl)

∣∣∣∣∣∣+ |mµ(ξl)| ≤ C2,l

(3.26)

(The last inequality holds for large n.) Similarly, for large n, on the event
(
Eln
)c

,∣∣∣∣∣∣∣∣
1

n

 s∑
j=1
j 6=l

1

ξl − ξj
+
n+1−s∑
j=1

1

ξl −Xj


∣∣∣∣∣∣∣∣ ≥ C1,l, (3.27)

and condition (i) of Theorem 3.23 follows from equations (3.26) and (3.27). If n is chosen large

enough that

εl := dist(ξl, supp(µ) ∪ {ξj : j 6= l}) > 3

C1,ln
,

then condition (iii) of Theorem 3.23 holds, and for |z − ξl| ≤ 2
C1,ln

,

min
1≤j≤n+1−s

|z −Xj | ≥ min
1≤j≤n+1−s

|ξl −Xj | − |z − ξl| ≥ εl −
2

C1,ln
>
εl
3
,

min
j 6=l
|z − ξj | ≥ min

j 6=l
|ξl − ξj | − |z − ξl| ≥ εl −

2

C1,ln
>
εl
3
.

In particular, this shows that for positive integers n > 3(C1εl)
−1 and complex numbers z, w ∈{

z : |z − ξ| ≤ 2
C1,ln

}
,∣∣∣∣∣∣∣∣

1

n

 s∑
j=1
j 6=l

1

z − ξj
+

n+1−s∑
j=1

1

z −Xj

− 1

n

 s∑
j=1
j 6=l

1

z − ξj
+

n+1−s∑
j=1

1

w −Xj


∣∣∣∣∣∣∣∣

=
1

n

∣∣∣∣∣∣∣∣
s∑
j=1
j 6=l

w − z
(z − ξj)(w − ξj)

+
n+1−s∑
j=1

w − z
(z −Xj)(w −Xj)

∣∣∣∣∣∣∣∣
≤ |w − z| · 9

ε2
l

= kLip,l · |w − z| ,
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which implies condition (ii) of Theorem 3.23.

Now, fix any C > max1≤l≤s
8(1+2C2

2,l)

C3
1,l

. If n is a natural number large enough to guarantee

inequalities (3.26) and (3.27) for 1 ≤ l ≤ s and that satisfies

n > max

{
4C2,l

C1,l
, 4C2,lC(kLip,l + 1),

3

C1,lεl
: 1 ≤ l ≤ s

}
, (3.28)

Theorem 3.23 guarantees that on the complement of ∪sl=1E
l
n, the polynomial pn has s critical

points, w
(n)
1 , . . . , w

(n)
s , such that for 1 ≤ l ≤ s, w(n)

l is the unique critical point of pn that is within

a distance of 3
|mµ(ξl)|n of ξl, and∣∣∣∣∣w(n)

l − ξl +
1

n+ 1

n∑
j 6=l

1
ξl−ξj +

∑n+1−s
j=1

1
ξl−Xj

∣∣∣∣∣ < C(kLip,l + 1)

n2
. (3.29)

(Note that for large n, w
(n)
1 , . . . , w

(n)
s are distinct because ξ1, . . . , ξs are distinct and (3.29) implies

w
(n)
l → ξl for 1 ≤ l ≤ s.) We complete our justification of (3.10) from Theorem 3.11 by choosing C

µ,~ξ

larger than maxl C(kLip,l+1) and applying Hoeffding’s inequality to the bounded random variables

(ξl − Xj)
−1 to achieve the desired control over P(∪lEln). More specifically, since ξl /∈ supp(µ)

for 1 ≤ l ≤ s, the random variables Y l
j := (ξl −Xj)

−1 are almost surely uniformly bounded by

Kl := dist(ξl, supp(µ))−1, and Lemma 2.15 applies with tl :=
|mµ(ξl)|

2.1 . By Lemma 2.15, we can find

C, c
µ,~ξ

> 0 such that ∪lEln occurs with probability at least 1− C exp(−c
µ,~ξ
n) as is desired.

We have established, with overwhelming probability, the existence of the critical points

w
(n)
1 , . . . , w

(n)
s characterized by (3.10). It remains to show that they satisfy the convergence in

(3.11). To that end, apply the Borel–Cantelli Lemma to the events ∪lEln to see that almost surely,

for large enough n, w
(n)
l satisfies (3.10) for 1 ≤ l ≤ n. It follows that with probability 1, for
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sufficiently large n and any l, 1 ≤ l ≤ s,

√
n(n+ 1) ·mµ(ξl)

2 ·
(
w

(n)
l − ξl +

1

n+ 1

1

mµ(ξl)

)
= mµ(ξl)

2 ·
√
n

(
1

mµ(ξl)
− n∑

j 6=l
1

ξl−ξj +
∑n+1−s

j=1
1

ξl−Xj

)
+O

µ,~ξ
(n−1/2)

= mµ(ξl)
2 ·
√
n

(
1

mµ(ξl)
− 1

1
n

∑n
j=1

1
ξl−Xj +O

µ,~ξ
(1/n)

)
+O

µ,~ξ
(n−1/2)

=
mµ(ξl)

1
n

∑n
j=1

1
ξl−Xj +O

µ,~ξ
(1/n)

·
√
n

 1

n

n∑
j=1

1

ξl −Xj
−mµ(ξl)

+O
µ,~ξ

(n−1/2).

(3.30)

In the case s > 1, we have used that

max
1≤l≤s

∣∣∣∣∣∣
∑
j 6=l

1

ξl − ξk
−

n∑
j=n+2−s

1

ξl −Xj

∣∣∣∣∣∣ = O
µ,~ξ

(1).

Now, we will use the Cramér–Wold device (see e.g. Theorem 29.4 in [5]) to show the convergence

(3.11). To start, let t1, . . . , ts, r1, . . . , rs be arbitrary real numbers and define the random variables

Yn,l := n3/2 ·mµ(ξl)
2 ·
(
w

(n)
l − ξl +

1

n+ 1

1

mµ(ξl)

)
,

Zl,j := Re

(
1

ξl −Xj

)
,

Wl,j := Im

(
1

ξl −Xj

)
,

for 1 ≤ l ≤ s. By (3.30), we have, with probability tending to 1,

Yn,l =
n

n+ 1

mµ(ξl)
1
n

∑n
j=1

1
ξl−Xj + o(1)

·
√
n

 1

n

n∑
j=1

1

ξl −Xj
−mµ(ξl)

+O

(
1√
n

)

= (1 + o(1))
√
n

 1

n

n∑
j=1

1

ξl −Xj
−mµ(ξl)

+O

(
1√
n

)

=
√
n

 1

n

n∑
j=1

1

ξl −Xj
−mµ(ξl)

+ o(1),

(3.31)

where all of the implied constants depend on ξ1, . . . , ξs and µ, and we have made ample use of

Slutsky’s theorem (see e.g. Theorem 11.4 from [20]). To obtain the last line, we also used the

classical CLT (see e.g. Theorem 29.5 from [5]) in conjunction with Slutsky’s theorem. If we take
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linear combinations of the real and imaginary parts of Yn,l, we obtain that with probability at least

1− o(1),

s∑
l=1

tl Re(Yn,l) +
s∑
l=1

rl Im(Yn,l)

=
√
n

 1

n

n∑
j=1

s∑
l=1

[tlZl,j + rlWl,j − tl Re (mµ(ξl))− tl Im (mµ(ξl))]

+ o(1),

which converges by the classical CLT (and Slutsky’s theorem) in distribution to a normally dis-

tributed random variable with mean 0 and variance

Var

(
s∑
l=1

[tlZl,1 + rlWl,1]

)
.

This limiting distribution is also the distribution of the random variable

s∑
l=1

[tl Re(Nl) + rl Im(Nl)]

with covariance structure given by (3.12), so by the Cramér–Wold strategy, the proof of Theorem

3.11 is complete.

The next subsection illustrates how to modify the argument above to prove a generalization

of Theorem 3.25 to the case where pn has a number of deterministic roots that may grow with n.

3.3.3 Generalization of Theorem 3.11

The following result shows how Theorem 3.23 could be used to locate the critical points near

a number of outlying deterministic roots that is allowed to depend on n. Compare the following

theorem to Theorem 2 in [23]. Both theorems discuss the pairing between sn roots and critical

points of pn, where sn = o(n) is allowed to depend on n. Theorem 3.25 describes the locations

of the critical points with higher precision than Theorem 2 of [23], however our theorem requires

that the deterministic roots ξ1, . . . , ξsn be outside the support of µ, while Theorem 2 in [23] doesn’t

make this restriction.

Theorem 3.25 (Locations of critical points when pn has many deterministic roots.). Suppose

X1, X2, . . . are iid complex-valued random variables with distribution µ, let ξ1, ξ2, . . . be fixed deter-
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ministic values, let sn, ln, an be positive integers less than n, and fix ε, L > 0, so that all of these

together satisfy:

(i) 1 ≤ sn ≤ ln = o(n), anln = o(n), an = o(
√
n);

(ii) min {|mµ(ξl)| : 1 ≤ l ≤ sn} ≥ ε and max {|mµ(ξl)| : 1 ≤ l ≤ sn} ≤ L;

(iii) min
{
|ξl − x| : 1 ≤ l ≤ sn, x ∈ supp(µ) ∪ {ξj}lnj=1,j 6=l

}
> 6

ε·an .

Then, there exist constants C, cµ,ε,L, Cµ,ε,L > 0 so that with probability at least 1−C ·sn exp(−cµ,ε,L ·

n/a2
n), the polynomial

pn(z) =

ln∏
l=1

(z − ξl)
n+1−ln∏
j=1

(z −Xj)

has sn critical points, w
(n)
1 , . . . , w

(n)
sn , such that for 1 ≤ l ≤ sn, w

(n)
l is the unique critical point of

pn within 3
2εn of ξl and

max
1≤l≤sn

∣∣∣∣∣∣w(n)
l − ξl +

1

n+ 1

n∑ln
k=1,k 6=l

1
ξl−ξk +

∑n+1−ln
j=1

1
ξl−Xj

∣∣∣∣∣∣ < Cµ,ε,L · a2
n

n2
. (3.32)

Theorem 3.25 follows from an argument quite similar to the one provided in the previous

subsection. We outline the main differences in the following proof sketch.

Argue as in Subsection 3.3.2 for each l, 1 ≤ l ≤ sn, separately but in place of the definitions

in equation (3.25) choose

C1 :=
ε

2
, C2 :=

3L

2
, and kLip :=

ε2a2
n

4
.

Also, modify the events Eln into the events

Eln :=


∣∣∣∣∣∣ 1

n+ 1− ln

n+1−ln∑
j=1

1

ξl −Xj
−mµ(ξl)

∣∣∣∣∣∣ < |mµ(ξl)|
2.1

 , 1 ≤ l ≤ sn.

Notice that condition (i) from Theorem 3.23 now holds for n sufficiently large (depending on the

rate of convergence of anln/n→ 0) on the complement of Eln because∣∣∣∣∣∣ 1n
ln∑

k=1,k 6=l

1

ξl − ξk

∣∣∣∣∣∣ ≤ εanln
6n

= o(1),
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and this limit is uniform with respect to 1 ≤ l ≤ sn. The requirements (3.28) on n now become

n > max

{
4C2

C1
, 4C2C

(
ε2a2

n

4
+ 1

)
, an

}
,

which hold uniformly for 1 ≤ l ≤ sn by assumption (i) in the statement of Theorem 3.25. By

Hoeffding’s inequality (Lemma 2.15), with Y l
j := 1

ξl−Xj , Kl := εan
6 , and tl :=

|mµ(ξl)|
2.1 > ε

2 , there are

constants C, cµ,ε > 0, independent of l, ξl, and sn, so that for large n

P
(

(Eln)c
)
≤ C exp

(
−cµ,ε(n+ 1− ln)/a2

n

)
.

Taking a union over l, 1 ≤ l ≤ sn establishes the desired result.

3.3.4 Proof of Theorem 3.9

We now proceed to prove Theorem 3.9. In order to control the behavior of 1
n

∑n
j=1

1
ξ−Xj , we

will rely on the Law of Large Numbers. Lemma 3.26 below justifies this approach by establishing

some regularity properties for E(ξ − X1)−1 = mµ(ξ) that we will continue to use throughout the

remainder of the paper. We note that Lemma 3.26 is similar to Lemma 5.7 in [29].

Lemma 3.26 (Regularity properties of the Cauchy–Stieltjes transform). Suppose that on B(ξ, ρ) ⊂

C, µ has a density with respect to the Lebesgue measure that is bounded by Cµ,ξ,ρ. Then,

(i) for any z ∈ B(ξ, ρ/2),

|mµ(z)| ≤
∫
C

1

|z − w|
dµ(w) ≤ 2πCµ,ξ,ρ min {ρ/2, 1}+ max {2/ρ, 1} ;

(ii) if ρ = ∞ so that µ has a density bounded by Cµ on all of C, then there exist constants

κµ, εµ > 0, depending on µ, so that the following holds. If x, y ∈ C with |x− y| < εµ, then

|mµ(x)−mµ(y)| ≤ κµ |x− y| log
(
|x− y|−1

)
.
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Proof. To prove the first inequality, observe that for any z ∈ B(ξ, ρ/2),

|mµ(z)| ≤
∫
C

1

|z − w|
1|z−w|<min{ρ/2,1} dµ(w) +

∫
C

1

|z − w|
1|z−w|≥min{ρ/2,1} dµ(w)

≤ 2πCµ,ξ,ρ

∫ min{ρ/2,1}

0

1

r
· r dr + max {2/ρ, 1}

≤ 2πCµ,ξ,ρ min {ρ/2, 1}+ max {2/ρ, 1} ,

where we have used polar coordinates in the integral. To prove (ii), let Z ∼ µ and fix x, y ∈ C with

|x− y| ≤ 1. We will compute the difference

|mµ(x)−mµ(y)| =
∣∣∣∣E [ 1

x− Z

]
− E

[
1

y − Z

]∣∣∣∣
by considering the expectations at right on each of the events

A := {|x− Z| ≥ |x− y| and |y − Z| ≥ |x− y|} ,

B := {|x− Z| ≥ |x− y| and |y − Z| < |x− y|} ,

C := {|x− Z| < |x− y| and |y − Z| ≥ |x− y|} ,

D := {|x− Z| < |x− y| and |y − Z| < |x− y|} ,

whose union has probability 1. By the triangle inequality, we have

|mµ(x)−mµ(y)|

≤ |x− y|E
[

1

|x− Z| |y − Z|
1A

]
+ E

[
1

|x− Z|
1Ac

]
+ E

[
1

|y − Z|
1Ac

]
.

(3.33)

We will bound each term separately as follows. Via Cauchy–Schwarz, we have

|x− y| · E
[

1

|x− Z| |y − Z|
1A

]
≤ |x− y|

√
E
[

1

|x− Z|2
1|x−Z|≥|x−y|

]
E
[

1

|y − Z|2
1|y−Z|≥|x−y|

]

≤ |x− y|

(
2πCµ

∫ 1

|x−y|

1

r2
r dr + E[1]

)

≤ |x− y|
(

2πCµ log

∣∣∣∣ 1

x− y

∣∣∣∣+ 1

)
.
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Next, observe that

E
[

1

|x− Z|
1Ac

]
≤ E

[
1

|x− Z|
1B

]
+ E

[
1

|x− Z|
1C∪D

]
≤ E

[
1

|y − Z|
1|y−Z|<|x−y|

]
+ E

[
1

|x− Z|
1|x−Z|<|x−y|

]
≤ 4πCµ

∫ |x−y|
0

1

r
r dr

= 4πCµ |x− y| .

For similar reasons,

E
[

1

|y − Z|
1Ac

]
≤ 4πCµ |x− y| ,

and we can combine the last few inequalities to obtain

|mµ(x)−mµ(y)| ≤ |x− y|
(

2πCµ log

∣∣∣∣ 1

x− y

∣∣∣∣+ 1 + 8πCµ

)
.

The proof of Lemma 3.26 is complete.

We proceed to prove Theorem 3.9, starting with a justification of (3.7) in the case s = 1 and

ξ1 = ξ. Choose ρξ > 0 so that in the disk B(ξ, 3ρξ), µ has a density f that is bounded by Cf . Our

plan of attack will be to show that the hypotheses of Theorem 3.23 are satisfied on the complement

of a “bad” event whose probability tends to 0 as n grows. To optimize our control over this event,

we allow it to depend on the parameter εn = o(1) that we will choose appropriately to achieve the

asymptotic bound in (3.7).

To that end, suppose εn ∈ (0, 1), let dn := dlog(
√
n)e, and for each n ≥ 1 define the annuli

A0
n :=

{
z ∈ C : |z − ξ| <

ρξ√
n

}
,

Akn :=

{
z ∈ C :

ρξe
k−1

√
n
≤ |z − ξ| <

ρξe
k

√
n

}
, 1 ≤ k ≤ dn,

and the binomial random variables

Nk
n := #

{
1 ≤ j ≤ n : Xj ∈ Akn

}
, 0 ≤ k ≤ dn.
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Consider the “bad” events

En =


∣∣∣∣∣∣ 1n

n∑
j=1

1

ξ −Xj
−mµ(ξ)

∣∣∣∣∣∣ ≥ |mµ(ξ)|
2

 ,

F kn =

{
Nk
n ≥ πCfρ2

ξe
2k +

ek
√
εn

}
, 0 ≤ k ≤ dn,

Gn =

{
min

1≤j≤n
|Xj − ξ| <

√
εn
n

}
.

We will demonstrate that if

C1 :=
|mµ(ξ)|

2
, C2 :=

3 |mµ(ξ)|
2

, and kLip :=
Cµ,ξ log n

ε
3/2
n

, (3.34)

for εn := (log n)−2/3 and Cµ,ξ defined in Lemma 3.27 below, then the conditions in Theorem 3.23

hold on the complement of En ∪ Gn ∪
⋃
k F

k
n for large enough n. Furthermore, we will show that

the union of these events occurs with probability tending to 0. Notice that events En, F kn , and Gn

are related to conditions (i), (ii), and (iii) of Theorem 3.23, respectively.

It is clear that condition (i) holds on the complement of En because mµ(ξ) 6= 0. For n > 9
C2

1εn
,

(iii) is true, on the complement of Gn, because in this case,
√

εn
n > 3

C1n
. The following lemma

establishes condition (ii).

Lemma 3.27. There exists a constant Cµ,ξ > 0, depending only on µ and ξ, so that if εn ∈ (0, 1),

and

n > max

{(
8ρξ
C1εn

)2

,

(
8e2

C1ρξ

)2

,
8

C1ρξ

}
,

then, on the complement of
⋃dn
k=0 F

k
n ∪Gn, any complex numbers

z, w ∈ B
(
ξ,

2

C1n

)
satisfy ∣∣∣∣∣∣

n∑
j=1

1

(z −Xj)(w −Xj)

∣∣∣∣∣∣ ≤ Cµ,ξ · n log n

ε
3/2
n

.
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Proof. Fix z, w ∈ B
(
ξ, 2

C1n

)
and 1 ≤ j ≤ n. By applying the triangle inequality several times, we

obtain

|z −Xj | |w −Xj | ≥
∣∣∣( |ξ −Xj | − |z − ξ|

)(
|ξ −Xj | − |w − ξ|

)∣∣∣
≥ |ξ −Xj |2 − |ξ −Xj | (|z − ξ|+ |w − ξ|)

≥ |ξ −Xj |2 − |ξ −Xj |
4

C1n
.

Consequently, on the complement of
⋃dn
k=0 F

k
n ∪Gn,∣∣∣∣∣∣

n∑
j=1

1

(z −Xj)(w −Xj)

∣∣∣∣∣∣ ≤
n∑
j=1

1

|z −Xj | · |w −Xj |

≤
n∑
j=1

1

|ξ −Xj |2 − |ξ −Xj | 4
C1n

≤
∑

1≤j≤n s.t.
√
εn√
n
≤|Xj−ξ|<

ρξ√
n

1
εn
n −

ρξ√
n

4
C1n

+

dn∑
k=1

∑
1≤j≤n s.t.
Xj∈Akn

1
ρ2
ξe

2k−2

n − ρξek√
n

4
C1n

+
∑

1≤j≤n s.t.
|Xj−ξ|≥ρξ

1

|ξ −Xj |2 − |ξ −Xj | 4
C1n

.

We have split the sum over 1 ≤ j ≤ n into dn + 2 pieces. Notice that for n >
(

8ρξ
C1εn

)2
,

0 <
1

εn
n −

ρξ√
n

4
C1n

≤ 2n

εn

and for n >
(

8e2

C1ρξ

)2
,

0 <
1

ρ2
ξe

2k−2

n − ρξek√
n

4
C1n

≤ 2n

ρ2
ξe

2k−2
, for 1 ≤ k ≤ dn.

Additionally, if n > 8
C1ρξ

and |Xj − ξ| ≥ ρξ, then,

0 <
1

|ξ −Xj |2 − |ξ −Xj | 4
C1n

≤ 1

|ξ −Xj |
(
ρξ − 4

C1n

) ≤ 2

ρ2
ξ

.
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It follows that if

n > max

{(
8ρξ
C1εn

)2

,

(
8e2

C1ρξ

)2

,
8

C1ρξ

}
,

on the complement of
⋃dn
k=0 F

k
n ∪Gn, for all z, w ∈ B

(
ξ, 2

C1n

)
,∣∣∣∣∣∣

n∑
j=1

1

(z −Xj)(w −Xj)

∣∣∣∣∣∣
≤ N0

n ·
2n

εn
+

dn∑
k=1

Nk
n ·

2n

ρ2
ξe

2k−2
+

2n

ρ2
ξ

≤
(πCfρ

2
ξ + 1)
√
εn

· 2n

εn
+

dn∑
k=1

(
πCfρ

2
ξe

2k +
ek
√
εn

)
2n

ρ2
ξe

2k−2
+

2n

ρ2
ξ

= Oµ,ξ

(
n

ε
3/2
n

)
+

dn∑
k=1

Oµ,ξ

(
n
√
εn

)
= Oµ,ξ

(
n log n

ε
3/2
n

)
,

which completes the proof.

It remains to find an upper bound on the probability of En ∪
⋃d
k=1 F

k
n ∪ Gn, which we

accomplish in the next lemma.

Lemma 3.28.

P

(
En ∪

dn⋃
k=0

F kn ∪Gn

)
= oµ,ξ(1) +Oµ,ξ

(
log n · ε2

n + εn
)

= oµ,ξ(1)

Proof. To control P(En), apply the Weak Law of Large Numbers to the random variables 1
ξ−Xj ,

which have finite expectation by Lemma 3.26. Next, consider that for large n,

P(Gn) ≤ n · P
(
|X1 − ξ| ≤

√
εn
n

)
≤ n · πCf ·

εn
n

= πCfεn,

which establishes P(Gn) = Oµ,ξ(εn).

We now turn our attention to the events F kn . For 0 ≤ k ≤ dn and 1 ≤ j ≤ n, define the

random variables

χj,k := 1{Xj∈Akn},
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which, for a fixed k, are independent and identically distributed according to a Bernoulli distribution

with parameter pk ≤ πCfρ
2
ξe

2k/n. Since Nk
n =

∑n
j=1 χj,k has expectation at most πCfρ

2
ξe

2k,

Markov’s inequality yields

P
(
Nk
n ≥ πCfρ2

ξe
2k +

ek
√
εn

)
≤
ε2
nE
[(
Nk
n − E[Nk

n ]
)4]

e4k
. (3.35)

In order to control the fourth central moment of Nk
n , recall that for two independent, real-valued

random variables X and Y ,

E
[
(X + Y − E[X]− E[Y ])4

]
= E

[
(X − E[X])4

]
+ E

[
(Y − E[Y ])4

]
+ 6 Var(X) Var(Y ).

Since χj,k are iid, it follows by inductively applying the previous identity that

E
[(
Nk
n − E[Nk

n ]
)4
]

= nE
[
(χ1,k − E[χ1,k])

4
]

+ 6
n(n− 1)

2
Var(χ1,k)

2

≤ n
(
E[χ4

1,k] + 6 Var(χ1,k) (E[χ1,k])
2
)

+ 3n2 Var(χ1,k)
2

≤ n
(
E[χ1,k] + 6 (E[χ1,k])

2
)

+ 3n2 (E[χ1,k])
2

≤ n

(
πCfρ

2
ξe

2k

n
+ 6

π2C2
fρ

4
ξe

4k

n2

)
+ 3n2

π2C2
fρ

4
ξe

4k

n2

= Oµ,ξ

(
e4k
)
.

Consequently, (3.35) becomes

P
(
Nk
n ≥ πCfρ2

ξe
2k +

ek
√
εn

)
= Oµ,ξ(ε

2
n),

and by the union bound

P

(
dn⋃
k=0

F kn

)
= Oµ,ξ

(
log n · ε2

n

)
.

The proof of Lemma 3.28 is complete.

We have established that C1, C2, and kLip defined in (3.34) satisfy conditions (i), (ii), and

(iii) of Theorem 3.23 for large n, on the complement of En ∪
⋃dn
k=0 F

k
n ∪Gn, a “bad” event whose
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probability tends to zero. Consequently, the conclusion of Theorem 3.23 guarantees that with

probability at least 1− oµ,ξ(1), the polynomial pn has a unique critical point w
(n)
ξ that fulfills (3.7).

We now consider the case s > 1. The argument in this more general situation is much the

same as the one just presented for s = 1, so we sketch the proof and point out the major differences.

Consider each of the roots ξl, 1 ≤ l ≤ s separately and modify the argument above in the obvious

ways. In particular, we replace the annuli Akn with

A0
l,n :=

{
z ∈ C : |z − ξl| <

δ√
n

}
, 1 ≤ l ≤ s;

Akl,n :=

{
z ∈ C :

δek−1

√
n
≤ |z − ξl| <

δek√
n

}
, 1 ≤ k ≤ dn, 1 ≤ l ≤ s;

where δ > 0 is any real number such that f is a density for µ in the balls B(ξl, δ) and so that

2δ < min1≤j<l≤s |ξj − ξl|. Define the random variables Nk
l,n accordingly, in addition to the modified

“bad” events

El,n =


∣∣∣∣∣∣ 1

n+ 1− s

n+1−s∑
j=1

1

ξl −Xj
−mµ(ξl)

∣∣∣∣∣∣ < |mµ(ξl)|
2.1

 , 1 ≤ l ≤ s;

F kl,n =

{
Nk
l,n ≥ πCfδ2e2k +

δek
√
εn

}
, 0 ≤ k ≤ dn, 1 ≤ l ≤ s;

Gl,n =

{
min

1≤j≤n
|Xj − ξl| <

√
εn
n

}
, 1 ≤ l ≤ s;

and the modified constants

C l1 :=
|mµ(ξl)|

2
, C l2 :=

3 |mµ(ξl)|
2

, and klLip := C l
µ,~ξ
· log n

ε
3/2
n

, 1 ≤ l ≤ s.

(Note that C l
µ,~ξ
, 1 ≤ l ≤ s will be defined via lemmata similar to Lemma 3.27.) On the complement

of the union of the modified “bad” events, for each l, 1 ≤ l ≤ s, conditions (i), (ii), and (iii) of

Theorem 3.23 hold for reasons similar to those given in the argument for s = 1 above. (Notice that

for 1 ≤ l ≤ s, ∣∣∣∣∣∣ 1n
s∑

k=1,k 6=l

1

ξl − ξk

∣∣∣∣∣∣ = o(1),

so computations similar to (3.26) and (3.27) establish condition (i) of Theorem 3.23.) The fact that

the union of the modified “bad” events occurs with probability at most o(1) follows by an updated

version of Lemma 3.28 and the union bound (recall s is fixed and finite).
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We now turn our attention to (3.8) which describes the joint fluctuations of w
(n)
l , 1 ≤ l ≤ s.

This is considerably more difficult than our consideration of (3.11) because in the current situation,

(ξl−Xj)
−1, are heavy-tailed random variables. In Appendix A, we appeal to the Lindeberg exchange

method with an appropriate truncation to establish Theorem A.1, a CLT that we use to prove (3.8)

in a similar manner to our justification of (3.11).

To start, consider that with probability 1 − o(1), w
(n)
l , 1 ≤ l ≤ s satisfy (3.7), so with

inspiration from (3.30) and (3.31), we obtain with probability at least 1− o(1) that for 1 ≤ l ≤ s,

n3/2

√
log n

·mµ(ξl)
2 ·
(
w

(n)
l − ξl +

1

n+ 1

1

mµ(ξl)

)

=
√
n

 1

n

n∑
j=1

1

ξl −Xj
−mµ(ξl)

+ o(1),

where all of the implied constants depend on ξ1, . . . , ξs and µ, and we have used Slutsky’s theorem

several times. (We also used the heavy-tailed CLT, Theorem A.1 once.) For the arbitrary constants

t1, . . . , ts ∈ C, we have with probability at least 1− o(1),

Re

(
s∑
l=1

tl
n3/2

√
log n

·mµ(ξl)
2 ·
(
w

(n)
l − ξl +

1

n+ 1

1

mµ(ξl)

))

= Re

√ n

log n

 1

n

n∑
j=1

s∑
l=1

tl

[
1

ξl −Xj
−mµ(ξl)

]+ o(1),

which converges in distribution by Slutsky’s theorem and Theorem A.1 to a normal distribution

with with mean zero and variance
∑s

l=1
π|tl|2f(ξl)

2 . This is exactly the same distribution as the

sum Re (
∑s

l=1 tlNl), where Nl are defined as in (3.8) with covariance structure (3.9). Recall that

studying the real parts of the linear combinations over C of a s-complex dimensional random vector

is the same as analyzing the linear combinations over R of a 2s-real dimensional random vector.

Thus, we can apply the Cramér–Wold technique to conclude our justification of Theorem 3.9.

3.3.5 Proof of Theorem 3.13

We conclude this section by using Theorem 3.23 to prove Theorem 3.13.
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Proof. Conclusions (i) and (ii) follow from [54, Theorem 1.7]. We now use Theorem 3.23 to establish

(3.13). In particular, we will verify the three conditions of Theorem 3.23 hold for some constants

C1, C2, kLip > 0 which depend only on ε and λ. In view of parts (i) and (ii), it suffices to work on

the event where

max
1≤i≤n−1

|Xi| ≤ 1 + 2ε, min
1≤i≤n−1

|ξ −Xi| ≥
ε

2
, 1 +

11

4
ε ≤ |ξ| ≤ |λ|+ 1. (3.36)

In fact, this event automatically guarantees the third condition from Theorem 3.23 for all values

of n sufficiently large. The second condition also follows for large n since, for z, w ∈ C with

|z|, |w| > 1 + 5/2ε, we have∣∣∣∣∣ 1n
n−1∑
i=1

1

z −Xi
− 1

n

n−1∑
i=1

1

w −Xi

∣∣∣∣∣ ≤ |z − w|n

n−1∑
i=1

1

|z −Xi||w −Xi|
�ε |z − w|

on the same event. The upper bound in the first condition of Theorem 3.23 follows from a similar

argument. The lower bound, however, is slightly more involved. Indeed, for any θ ∈ R, we have∣∣∣∣∣ 1n
n−1∑
i=1

1

ξ −Xi

∣∣∣∣∣ =

∣∣∣∣∣ 1n
n−1∑
i=1

1

ξe
√
−1θ −Xie

√
−1θ

∣∣∣∣∣ ≥ 1

n

n−1∑
i=1

Re(ξe
√
−1θ)− Re(Xie

√
−1θ)

|ξ −Xi|2
.

Choose θ ∈ R so that ξe
√
−1θ is real-valued and positive. This gives∣∣∣∣∣ 1n

n−1∑
i=1

1

ξ −Xi

∣∣∣∣∣ ≥ 1

n

n−1∑
i=1

ξe
√
−1θ − Re(Xie

√
−1θ)

|ξ −Xi|2
≥ 1

n

n−1∑
i=1

|ξ| − |Xi|
(|ξ|+ |Xi|)2

.

Thus, on the event (3.36), we conclude that∣∣∣∣∣ 1n
n−1∑
i=1

1

ξ −Xi

∣∣∣∣∣�ε,λ 1, (3.37)

which completes the proof of the lower bound. Hence, the three conditions of Theorem 3.23 are

satisfied. Applying Theorem 3.23, we obtain (3.13). Lastly, (3.14) follows from (3.13) after applying

conclusion (ii) and (3.37).

3.4 Proof of results in Section 3.2.4

3.4.1 Proof of Theorem 3.15

This section is devoted to the proof of Theorem 3.15. We will need the following lemmata.
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Lemma 3.29 (Monte Carlo sampling; Lemma 36 from [58]). Let (X,µ) be a probability space, and

let F : X → C be a square-integrable function. Let m ≥ 1, let x1, . . . , xm be drawn independently

at random from X with distribution µ, and let S be the empirical average

S :=
1

m
(F (x1) + · · ·+ F (xm)).

Then S has mean
∫
X Fdµ and variance 1

m

∫
X |F −

∫
X Fdµ|

2dµ. In particular, by Chebyshev’s

inequality, one has

P
(∣∣∣∣S − ∫

X
Fdµ

∣∣∣∣ ≥ t) ≤ 1

mt2

∫
X

∣∣∣∣F − ∫
X
Fdµ

∣∣∣∣2 dµ
for any t > 0, or equivalently, for any δ > 0 one has with probability at least 1− δ that∣∣∣∣S − ∫

X
Fdµ

∣∣∣∣ ≤ 1√
mδ

(∫
X

∣∣∣∣F − ∫
X
Fdµ

∣∣∣∣2 dµ
)1/2

.

Lemma 3.30. Fix C > 0, and let X1, . . . , Xn be complex-valued random variables (not necessarily

independent nor identically distributed) such that, with overwhelming probability,

max
1≤i≤n

|Xi| ≤ en
C
. (3.38)

Let ϕ : C → R be a twice continuously differentiable function (possibly depending on n) which

satisfies the pointwise bound in (3.16) for all z ∈ C. Then, with overwhelming probability,∫
B(0,nC)

|∆ϕ(z)|2 log2 |pn(z)|d2z � n2CnO(1), (3.39)∫
B(0,nC)

|∆ϕ(z)|2 log2 |p′n(z)|d2z � n2CnO(1), (3.40)

and ∫
B(0,nC)

|∆ϕ(z)|2d2z � n4C . (3.41)

Proof. The bound in (3.41) follows immediately from the pointwise bound in (3.16). In order

to prove (3.39) it suffices, by the pointwise bound in (3.16), to prove that with overwhelming

probability ∫
B(0,nC)

log2 |pn(z)|d2z � nO(1).
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By supposition, we now work on the event where X1, . . . , Xn ∈ B(0, en
C

). As

log2 |pn(z)| � n

n∑
i=1

log2 |z −Xi|,

it suffices to prove that

max
1≤i≤n

∫
B

log2 |z −Xi|d2z � nO(1),

where B := B(0, nC). Since X1, . . . , Xn ∈ B(0, en
C

), it follows that

max
1≤i≤n

∫
B\B(Xi,1)

log2 |z −Xi|d2z � n2C |B| � nO(1),

where |B| is the Lebesgue measure of B, and |B| = O(n2C). Near each root, we have

max
1≤i≤n

∫
B∩B(Xi,1)

log2 |z −Xi|d2z ≤ max
1≤i≤n

∫
B(Xi,1)

log2 |z −Xi|d2z � 1

since log | · | is locally square-integrable. This completes the proof of (3.39).

For (3.40), we observe that on the event where (3.38) holds, the Gauss–Lucas theorem implies

that

max
1≤j≤n−1

|wj | ≤ en
C
,

where w
(n)
1 , . . . , w

(n)
n−1 are the critical points of pn. Working on this event, the proof follows from

the same procedure as we used to prove (3.39); we omit the details.

Lemma 3.31 (Crude upper bound). Fix C > 0, and let X1, . . . , Xn be complex-valued random vari-

ables (not necessarily independent nor identically distributed). Assume Z is uniformly distributed

on B(0, nC), independent of X1, . . . , Xn. Then for every a > 0, there exits b > 0 such that∣∣∣∣∣
n∑
i=1

1

Z −Xi

∣∣∣∣∣ ≤ nb
with probability 1−Oa(n−a).

Proof. Conditioning on X1, . . . , Xn, we find that

P
(

min
1≤i≤n

|Z −Xi| ≤ ε
)
≤

n∑
i=1

P(Z ∈ B(Xi, ε))� n
ε2

n2C
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for all ε > 0. In addition, on the event where min1≤i≤n |Z −Xi| > ε, we have∣∣∣∣∣
n∑
i=1

1

Z −Xi

∣∣∣∣∣ ≤ n

ε
.

In order to prove the claim, it suffices to assume a > 2C. In this case, by taking ε :=
√

n2C

na+1 , the

result follows from the estimates above.

We now prove Theorem 3.15.

Proof of Theorem 3.15. Let B := B(0, nC), and let |B| denote its Lebesgue measure. Fix α > 0,

and let β ∈ N be a large constant (depending on C, c, α) to be chosen later.

Using the log-transform of the empirical measures constructed from the roots and critical

points of p, we obtain

n∑
i=1

ϕ(Xi) =
1

2π

∫
B

∆ϕ(z) log |pn(z)|d2z,

n−1∑
j=1

ϕ(wj) =
1

2π

∫
B

∆ϕ(z) log |p′n(z))|d2z.

(These identities can also be found in a more general form in [26, Section 2.4.1].) Instead of working

with the integrals on the right-hand sides, we will work with large empirical averages by applying

Lemma 3.29. Indeed, let m := nβ, and let Z1, . . . , Zm be iid random variables uniformly distributed

on B, independent of X1, . . . , Xn. Taking β sufficiently large and applying Lemmas 3.29 and 3.30,

we conclude that

2π

|B|

n∑
i=1

ϕ(Xi) =
1

m

m∑
l=1

∆ϕ(Zl) log |pn(Zl)|+O(n−c−2C), (3.42)

2π

|B|

n−1∑
j=1

ϕ(wj) =
1

m

m∑
l=1

∆ϕ(Zl) log |p′n(Zl)|+O(n−c−2C), (3.43)

1

|B|

∫
B
|∆ϕ(z)|d2z =

1

m

m∑
l=1

|∆ϕ(Zl)|+O(n−c−2C−1) (3.44)

with probability 1− O(n−α). In addition, by (3.15), Lemma 3.31, and the union bound it follows

that there exists b > 0 such that

n−b ≤ min
1≤l≤m

∣∣∣∣∣
n∑
i=1

1

Zl −Xi

∣∣∣∣∣ ≤ max
1≤l≤m

∣∣∣∣∣
n∑
i=1

1

Zl −Xi

∣∣∣∣∣ ≤ nb
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with probability 1−O(n−α). Thus, since

p′n(z)

pn(z)
=

n∑
i=1

1

z −Xi
,

we obtain

sup
1≤l≤m

∣∣log |pn(Zl)| − log |p′n(Zl)|
∣∣ = O(log n) (3.45)

with probability 1−O(n−α).

From (3.42) and (3.43), we find∣∣∣∣∣∣ 2π

|B|

n∑
i=1

ϕ(Xi)−
2π

|B|

n−1∑
j=1

ϕ(wj)

∣∣∣∣∣∣
≤ 1

m

m∑
l=1

|∆ϕ(Zl)|
∣∣log |pn(Zl)| − log |p′n(Zl)|

∣∣+O(n−c−2C)

with probability 1−O(n−α). Applying (3.44) and (3.45) yields∣∣∣∣∣∣ 2π

|B|

n∑
i=1

ϕ(Xi)−
2π

|B|

n−1∑
j=1

ϕ(wj)

∣∣∣∣∣∣
� (log n)

1

m

m∑
l=1

|∆ϕ(Zl)|+ n−c−2C

� (log n)
1

|B|

∫
B
|∆ϕ(z)|d2z + n−c−2C

with probability 1−O(n−α). Since |B| = Θ(n2C), we rearrange to obtain∣∣∣∣∣∣
n∑
i=1

ϕ(Xi)−
n−1∑
j=1

ϕ(wj)

∣∣∣∣∣∣� (log n)‖∆ϕ‖1 + n−c (3.46)

with probability 1−O(n−α). The proof of the theorem is complete.

3.4.2 Proof of Theorems 3.17 and 3.18

In order to prove Theorem 3.17, it suffices to show that X1, . . . , Xn satisfy the two axioms of

Theorem 3.15. This follows from Lemmas 3.20 and 3.21.

We now turn to the proof of Theorem 3.18. By Theorem 3.17,

n−1∑
j=1

ϕ(w
(n)
j ) =

n∑
i=1

ϕ(Xi) +O(log n)
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with probability 1−O(n−100). Since ϕ is bounded, we obtain

n−1∑
j=1

Eϕ(w
(n)
j ) =

n∑
i=1

Eϕ(Xi) +O(log n).

Therefore, we conclude that

1√
n

n−1∑
j=1

(
ϕ(w

(n)
j )− Eϕ(w

(n)
j )
)

=
1√
n

n∑
i=1

(ϕ(Xi)− Eϕ(Xi)) + o(1)

with probability 1−O(n−100). By the classical CLT,

1√
n

n∑
i=1

(ϕ(Xi)− Eϕ(Xi)) −→ N(0, v2)

in distribution as n→∞, where v2 is the variance of ϕ(X1), and the claim follows.

3.4.3 Proof of Theorem 3.19

Our proof of Theorem 3.19 involves the companion matrix result, Theorem 2.18, and the

Sherman–Morrison formula, Lemma 2.20, that we used Chapter 2 above. We also require the

following consequence of Lemma 2.39.

Lemma 3.32. Under the assumptions of Theorem 3.19, there exists a constant c′ > 0 (depending

only on C, c, and ε) such that

inf
z∈Γ

∣∣∣∣∣ zn
n∑
i=1

1

z −Xi

∣∣∣∣∣ ≥ c′
with overwhelming probability.

Proof. Clearly |z| = C + ε for all z ∈ Γ. Thus, it suffices to prove that

inf
z∈Γ

∣∣∣∣∣ 1n
n∑
i=1

1

z −Xi

∣∣∣∣∣ ≥ c′
with overwhelming probability. The claim now follows from the uniform bound in Lemma 2.39 and

the assumption on mµ given in (3.17).

With Lemma 3.32 in hand, we are now prepared to present the proof of Theorem 3.19.
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Proof of Theorem 3.19. Let D be the diagonal matrix D := diag(X1, . . . , Xn). Using the notation

from Theorem 2.18, we observe that zI−D is invertible for all z ∈ Γ since X1, . . . , Xn ∈ B(0, C) by

supposition. In addition, by the Gauss–Lucas theorem and Theorem 2.18, it must be the case that

the eigenvalues of D
(
I − 1

nJ
)

are also contained in B(0, C). This implies that zI −D
(
I − 1

nJ
)

is

also invertible for every z ∈ Γ. In view of these observations, we define the resolvents

G(z) := (zI −D)−1, R(z) :=

(
zI −D

(
I − 1

n
J

))−1

for z ∈ Γ.

Thus, by Cauchy’s integral formula

n∑
i=1

ϕ(Xi) =
1

2π
√
−1

∮
Γ
ϕ(z) trG(z)dz

and
n−1∑
j=1

ϕ(wj) + ϕ(0) =
1

2π
√
−1

∮
Γ
ϕ(z) trR(z)dz.

We now take the difference of these two equalities. Since |ϕ(0)| �
∫

Γ |ϕ(z)||dz|, it suffices by the

triangle inequality to show

sup
z∈Γ
|trG(z)− trR(z)| = O(1) (3.47)

with overwhelming probability.

Since J = 11T, where 1 is the all-ones vector, the Sherman–Morrison formula (Lemma 2.20)

implies that

R(z) = G(z)−
1
nG(z)DJG(z)

1 + 1
n1TG(z)D1

(3.48)

provided 1 + 1
n1TG(z)D1 6= 0. In view of Lemma 3.32, there exists a constant c′ > 0 (depending

only on C, c, and ε) such that

inf
z∈Γ

∣∣∣∣1 +
1

n
1TG(z)D1

∣∣∣∣ = inf
z∈Γ

∣∣∣∣∣ zn
n∑
i=1

1

z −Xi

∣∣∣∣∣ ≥ c′ (3.49)

with overwhelming probability. Here, we have exploited the fact that D and G(z) are diagonal

matrices, which implies that

1TG(z)D1 =

n∑
i=1

Xi

z −Xi
.
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Using (3.48) and (3.49), we conclude that with overwhelming probability

sup
z∈Γ
|trG(z)− trR(z)| ≤ 1

nc′
sup
z∈Γ
|tr[G(z)DJG(z)]| .

To bound this last remaining term, we again exploit the fact that J = 11T. Indeed, from the cyclic

property of the trace, we have the deterministic bound

|tr[G(z)DJG(z)]| =
∣∣1TG2(z)D1

∣∣ =

∣∣∣∣∣
n∑
i=1

Xi

(z −Xi)2

∣∣∣∣∣ ≤
n∑
i=1

|Xi|
|z −Xi|2

≤ nC
ε2

for all z ∈ Γ. Combining the bounds above, we obtain (3.47), and the proof is complete.

3.5 Proof of Theorem 3.3

This section is devoted to proving Theorem 3.3. Our first lemma shows that Assumption 3.2

implies Assumption 3.1.

Lemma 3.33 (Sufficiency of Assumption 3.2). If µ satisfies Assumption 3.2, then µ also satisfies

Assumption 3.1.

Proof. Without loss of generality, suppose µ is radially symmetric about z = 0, and let X ∼ µ. By

Lemma 3.5, we can write

|mµ(z)| = P(|X| < |z|)
|z|

,

so the hypotheses guarantee that |mµ(z)| is continuous on C \ {0}. (Indeed, P(|X| < r) is the

cumulative distribution function associated to the radial part of µ, which has a continuous density.)

Since f(0) > 0, there are δ, c > 0 so that |z| ≤ δ implies |f(z)| ≥ c > 0. In particular, for |z| ≤ δ,

|mµ(z)| = 1

|z|

∫ |z|
0

rf(r) dr ≥ c

|z|

∫ |z|
0

r dr =
c |z|

2
. (3.50)

Let r1/2 be any value for which P(|X| < r1/2) = 1/2. By the extreme value theorem, |mµ(z)|

achieves its minimum, mmin, on the closed, bounded annulus

A :=
{
z ∈ C : δ ≤ |z| ≤ r1/2

}
.
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We know that mmin is non-zero by (3.50) and the fact that P(|X| < r) is non-decreasing in r. This

second fact additionally implies that for |z| ≥ r1/2,

|mµ(z)| = P(|X| < |z|)
|z|

≥ 1

2 |z|
.

We conclude that for any ε ∈ (0,mmin),

P(|mµ(X)| < ε) ≤ P
(
c |X|

2
< ε

)
+ P(mmin < ε) + P

(
1

2 |X|
< ε

)
≤ Cε2, (3.51)

for some C > 0. (We have used the fact that µ has two finite absolute moments to bound the last

probability.) It follows that µ satisfies Assumption 3.1 part (i).

To see that µ satisfies Assumption 3.1 part (ii), let X1, . . . , Xn be iid complex-valued random

variables with distribution µ, and observe that

P
(

max
j
|Xj | >

√
n log n

)
= 1− P

(
|X1| ≤

√
n log n

)n
.

By Markov’s inequality,

P
(
|X1| ≤

√
n log n

)n
≥

(
1− E |X1|2

n log n

)n
n→∞−−−→ 1,

which completes the argument.

3.5.1 Introduction to and motivation for the proof of Theorem 3.3.

The following proof of Theorem 3.3 is motivated by the illustration in Figure 3.3 that depicts

the roots (red dots) and critical points (blue crosses) of pn(z) when the roots, X1, . . . , X150 are

chosen independently and uniformly in the unit disk centered at the origin. The observer will

notice two things:

1) since the Xj are chosen uniformly at random, they tend to “clump together,” and

2) the roots further from the origin tend to “pair” more closely with nearby critical points than

the roots near the origin.
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The first of these makes it difficult to use our strategy from Theorems 3.9, 3.11 and 3.23,

where it was a simple matter to “zoom in” on a fixed root and ensure that no other roots were

nearby. We address this concern by grouping the critical points that lie near each “clump” of roots

and simultaneously considering all of the critical points that lie in the same group. We will show

that each “clump” of roots (and its corresponding group of critical points) is far away from other

“clumps,” for large n.

The second observation can be explained by Theorem 3.9, which suggests that the closest

critical point, w
(n)
j , to a given root Xj is at a distance 1

n|mµ(Xj)| from Xj . For example, in the

case where µ is uniform on the unit disk, |mµ(z)| = |z| for |z| ≤ 1, so near the origin, it makes

sense that the “pairing” phenomenon gets worse. We tackle this problem by counting the “clumps”

of roots and critical points in exponentially widening, nested regions that avoid the zeros of mµ.

(In Figure 3.3, these are the annuli delimited by concentric dashed circles.) Using this method,

we can take advantage of the fact that the number of “clumps” that are a given distance from

the zero set of mµ is roughly proportional to the strength of the “pairing” within those “clumps.”

The “pairing” phenomenon is quite unreliable near the zeros of mµ, so for any “clumps” that are

sufficiently close to the zeros of mµ, we bound the distances between the roots and critical points

using the Gauss–Lucas theorem. (In fact, this is where we expect to find the “extra,” un-paired

root that results because pn has a higher degree than p′n).

In order to synthesize these two ideas, we will form random, disjoint, simple closed curves

to encircle each “clump” of roots and critical points. We will build the curves from the arcs of

circles centered at the roots of pn and will use smaller circles for roots that are farther away from

the zeros of mµ. See, for example, the boundaries of the gray domains depicted in Figure 3.3.

We will conclude with an argument involving Rouché’s theorem to count the number of critical

points interior to each curve by comparing p′n to a simpler polynomial whose critical points can be

located with Walsh’s two circle theorem. Near the zeros of mµ, our method breaks down, and we

use the Gauss–Lucas theorem for a bound on the distances between the critical points and roots

of pn. Luckily, there are few critical points near the zeros of mµ, a fact which follows in part from
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Assumptions 3.1 and 3.2.

3.5.2 Definitions

In view of Lemma 3.33, we prove Theorem 3.3 under Assumption 3.1. Let Cµ > 0 be larger

than each of the constants in Assumption 3.1 and larger than the constant bounding the density

associated to µ. For each n ∈ N, define the following sets which partition C into regions based on

the size of |mµ(z)|:

Akn :=

{
z ∈ C : |mµ(z)| < ek√

n

}
, k = b4 log(logn)c,

Akn :=

{
z ∈ C :

ek−1

√
n
≤ |mµ(z)| < ek√

n

}
, b4 log(log n)c+ 1 ≤ k ≤

⌊
log
(√
n
)⌋
,

An :=

{
z ∈ C : |mµ(z)| ≥ eblog(

√
n)c

√
n

}
.

Additionally, define the random variables

Nk
n := #

{
1 ≤ j ≤ n : Xj ∈ Akn

}
, b4 log(log n)c ≤ k ≤

⌊
log
(√
n
)⌋
,

ζ
(n)
i,j :=


1

Xi −Xj
1
|Xi−Xj |≥ (logn)2

n|mµ(Xi)|
, |mµ(Xi)| 6= 0

0, otherwise

, 1 ≤ i, j ≤ n, j 6= i,

and let Nn be a n−1/2-net of the closed disk B(0, nCµ) that satisfies:

(i) B(0, nCµ) ⊆
⋃
x∈Nn B(x, n−1/2),

(ii) if x, y ∈ Nn, and x 6= y, then |x− y| ≥ 1
2
√
n

,

(iii) #Nn = Oµ(n1+2Cµ).

Such a collection of points exists by e.g. Lemma 2.17. Let δ > 0 be a fixed real parameter to be

chosen later. We will show that the conclusion of Theorem 3.3 holds on the complement of the
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Figure 3.3: An illustration motivating the strategy we use to prove Theorem 3.3. The red circles
and blue crosses represent the locations of the roots and critical points, respectively, of p150(z),
where µ is the uniform distribution on the unit disk. Roughly speaking, the gray disks around the
Xj are of radius max {1/(n |mµ(Xj)|), 1/

√
n}. The dashed concentric circles are meant to divide

the unit disk into exponentially widening annuli.
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union of the following “bad” events:

Ekn :=
{
Nk
n ≥ 2Cµe

2k log(log n)
}
, b4 log(logn)c ≤ k ≤

⌊
log
(√
n
)⌋

;

F in :=

|mµ(Xi)| ≥
(log n)4

√
n

,

∣∣∣∣∣∣∣∣
1

n− 1

n∑
j=1
j 6=i

(
ζ

(n)
i,j − E[ζ

(n)
i,j |Xi]

)∣∣∣∣∣∣∣∣ ≥
|mµ(Xi)|

2

 ,

for 1 ≤ i ≤ n;

Gδn :=

{
∃x ∈ Nn ∪ {Xi}ni=1 s.t. #

{
1 ≤ j ≤ n : |Xj − x| <

1√
n

}
≥ 2 + δ log n

}
;

Hn :=
{
ηn ≥ nCµ

}
.

For convenience, we use Ebad
n to denote the union of all of the “bad” events:

Ebad
n :=

blog(cµ
√
n)c⋃

k=b4 log(logn)c

Ekn ∪
n⋃
i=1

F in ∪Gδn ∪Hn.

3.5.3 The “bad” events are unlikely

In this subsection, we establish that

P
(
Ebad
n

)
= o(1). (3.52)

By assumption, P(Hn) = o(1), so it remains to bound the probabilities of the remaining events.

Lemma 3.34.

P

 blog(
√
n)c⋃

k=b4 log(logn)c

Ekn

 ≤ 1

Cµ[log(log n)]2
= o(1).

Proof. Observe that for a fixed n and k, b4 log(logn)c ≤ k ≤ blog (
√
n)c, Nk

n is a binomial random
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variable with parameters n and pk ≤ Cµe2k/n. By Markov’s inequality, we have,

P
(
Nk
n ≥ 2Cµe

2k log(log n)
)
≤ P

(∣∣∣Nk
n − E

[
Nk
n

]∣∣∣ ≥ Cµe2k log(log n)
)

≤
Var

(
Nk
n

)
C2
µe

4k[log(log n)]2

=
npk(1− pk)

C2
µe

4k[log(log n)]2

≤ 1

Cµe2k[log(log n)]2
.

If we take the union over k, we obtain

P

 blog(
√
n)c⋃

k=b4 log(logn)c

Ekn

 ≤ ∞∑
k=1

1

Cµe2k[log(log n)]2
=

1

Cµ(e2 − 1)[log(log n)]2
,

which implies the desired result.

Lemma 3.35.

P

(
n⋃
i=1

F in

)
= o(1).

Proof. We will use the method of moments to control the probability of each F in, 1 ≤ i ≤ n. Since

F in ⊂
{
|mµ(Xi)| ≥ n−1/2

}
, we will often assume that |mµ(Xi)| ≥ n−1/2 in our calculations. Recall

from Lemma 3.26, part (i) that |mµ(Xi)| is almost surely bounded above by an absolute constant

(that depends only on µ).

First, we argue that for complex-valued random variables X,Y , where Y has a finite fourth

absolute moment,

E
[
|Y − E [Y | X]|4

∣∣∣| X]
≤ E

[
|Y |4

∣∣∣ X]+ 6
(
E
[
|Y |2

∣∣∣ X])2
+ 4E

[
|Y |3

∣∣∣ X] · E [|Y | | X] .

(3.53)
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Indeed, we have

E
[
|Y − E[Y | X]|4

∣∣∣ X]
= E

[(
Y − E[Y | X]

)2 (
Y − E[Y | X]

)2
∣∣∣∣ X]

= E
[∣∣Y 4

∣∣ ∣∣ X]+ 4E
[
|Y |2

∣∣∣ X] · |E[Y | X]|2 + 2 Re
(

(E[Y | X])2 · E
[
Y

2
∣∣∣ X])

− 4 Re
(
E [Y | X] · E

[
|Y |2 Y

∣∣∣ X])− 3 |E[Y | X]|4

≤ E
[
|Y |4

∣∣∣ X]+ 4
(
E
[
|Y |2

∣∣∣ X])2
+ 2

(
E
[
|Y |2

∣∣∣ X])2
+ 4E

[
|Y |3

∣∣∣ X] · |EY | ,
from which the desired result follows. Now, for X = Xi and Y = ζ

(n)
i,j , where 1 ≤ i, j ≤ n with

j 6= i,

E
[
|Y |4

∣∣∣ Xi

]
≤ E

[
1

|Xi −Xj |4
1 (logn)2

n|mµ(Xi)|
≤|Xi−Xj |≤1

∣∣∣∣∣ Xi

]

+ E

[
1

|Xi −Xj |4
1|Xi−Xj |>1

∣∣∣∣∣ Xi

]

≤ 2πCµ

∫ 1

(logn)2

n|mµ(Xi)|

r

r4
dr + 1

=
πCµn

2 |mµ(Xi)|2

(log n)4
− πCµ + 1,

and similarly,

E
[
|Y |3

∣∣∣ Xi

]
≤ 2πCµn |mµ(Xi)|

(log n)2
− 2πCµ + 1

E
[
|Y |2

∣∣∣ Xi

]
≤ 2πCµ log

(
n |mµ(Xi)|

(log n)2

)
+ 1

E [|Y | | Xi] ≤ 2πCµ + 1.

Consequently, via (3.53), there are positive constants C ′µ, Kµ that depend only on µ so that if

n ≥ Kµ, on the event |mµ(Xi)| ≥ n−1/2,

E
[∣∣∣ζ(n)

i,j − E
[
ζ

(n)
i,j

∣∣∣ Xi

]∣∣∣4 ∣∣∣∣ Xi

]
≤
C ′µ |mµ(Xi)|2 n2

(log n)4
. (3.54)

Next, we show that there are constants C ′′µ,K
′
µ > 0 that depend only on µ, so that for n ≥ K ′µ and
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any fixed i, 1 ≤ i ≤ n,

1|mµ(Xi)|≥ 1√
n
· E


∣∣∣∣∣∣∣∣
n∑
j=1
j 6=i

(
ζ

(n)
i,j − E

[
ζ

(n)
i,j |Xi

])∣∣∣∣∣∣∣∣
4 ∣∣∣∣∣∣∣∣ Xi

 ≤ C ′′µ |mµ(Xi)|2 n3

(log n)4
. (3.55)

Write

E


∣∣∣∣∣∣∣∣
n∑
j=1
j 6=i

(
ζ

(n)
i,j − E

[
ζ

(n)
i,j |Xi

])∣∣∣∣∣∣∣∣
4 ∣∣∣∣∣∣∣∣ Xi



= E


 n∑
j=1
j 6=i

(
ζ

(n)
i,j − E

[
ζ

(n)
i,j |Xi

])
2 n∑

j=1
j 6=i

(
ζ

(n)
i,j − E

[
ζ

(n)
i,j |Xi

])
2 ∣∣∣∣∣∣∣∣ Xi

 ,
and observe that if we distribute the factors inside the expectation, the independence of {Xj}nj=1

implies that the only terms which contribute to a nonzero expectation are bounded by expectations

of the form

E
[∣∣∣ζ(n)

i,j − E
[
ζ

(n)
i,j

∣∣∣ Xi

]∣∣∣2 · ∣∣∣ζ(n)
i,k − E

[
ζ

(n)
i,k

∣∣∣ Xi

]∣∣∣2 ∣∣∣∣ Xi

]
,

where 1 ≤ j, k ≤ n and j, k 6= i. By a routine counting argument and the fact that ζ
(n)
i,j , j 6= i are

identically distributed, it follows that

E


∣∣∣∣∣∣∣∣
n∑
j=1
j 6=i

(
ζ

(n)
i,j − E

[
ζ

(n)
i,j

∣∣∣ Xi

])∣∣∣∣∣∣∣∣
4 ∣∣∣∣∣∣∣∣ Xi


≤ (n− 1)E

[∣∣∣ζ(n)
i,l − E

[
ζ

(n)
i,l

∣∣∣ Xi

]∣∣∣4 ∣∣∣∣ Xi

]
+

(
n− 1

2

)(
4

2

)(
E
[∣∣∣ζ(n)

i,l − E
[
ζ

(n)
i,l

∣∣∣ Xi

]∣∣∣2 ∣∣∣∣ Xi

])2

,

where l 6= i is any fixed index. From (3.54) and the bounds on E[
∣∣Y 2
∣∣ | Xi] and E [|Y | | Xi] above, we

can find C ′′µ,K
′
µ > 0 large enough so that n ≥ K ′µ implies (3.55). (For the asymptotics, we are using

that n−1/2 ≤ |mµ(Xi)| = Oµ(1), where the implied constant depends only on µ.) Via Markov’s

inequality, it follows that for n ≥ K ′µ and a fixed i, 1 ≤ i ≤ n, on the event |mµ(Xi)| ≥ n−1/2,

P


∣∣∣∣∣∣∣∣

1

n− 1

n∑
j=1
j 6=i

(
ζ

(n)
i,j − E[ζ

(n)
i,j |Xi]

)∣∣∣∣∣∣∣∣ ≥
|mµ(Xi)|

2

∣∣∣∣∣∣∣∣ Xi

 ≤ C ′′µ

n |mµ(Xi)|2 (log n)4
. (3.56)



114

We conclude the proof by demonstrating that P(∪ni=1F
i
n) = o(1). Indeed, for n ≥ K ′µ,

P

(
n⋃
i=1

F in

)
≤ nP

(
F 1
n

)

= nP(∅) + n

blog(
√
n)c∑

k=b4 log(logn)c+1

P
({
X1 ∈ Akn

}
∩ F 1

n

)
+ n · P

(
{X1 ∈ An} ∩ F 1

n

)

= n

blog(
√
n)c∑

k=b4 log(logn)c+1

E
(
1{X1∈Akn} · P(F 1

n | X1)
)

+ n · E
(
1{X1∈An} · P(F 1

n | X1)
)

≤ n
blog(

√
n)c∑

k=b4 log(logn)c+1

E

(
C ′′µ · 1{X1∈Akn}

n |mµ(X1)|2 (log n)4

)
+ n · E

(
C ′′µ · 1{X1∈An}

n |mµ(X1)|2 (log n)4

)

≤
blog(

√
n)c∑

k=b4 log(logn)c+1

C ′′µ · n2 · P(X1 ∈ Akn)

n(log n)4e2k−2
+
C ′′µ · n2 · P(X1 ∈ An)

n(log n)4e2blog(
√
n)c ,

where we used (3.56) to bound P(F 1
n | X1). Assumption 3.1 guarantees that

P(X1 ∈ Akn) ≤ Cµ ·
e2k

n
, b4 log(log n)c ≤ k ≤

⌊
log
(√
n
)⌋
.

We also have

e2blog(
√
n)c ≥ e2 log(

√
n)−2 = ne−2.

Hence, for large n, our calculation from above yields

P

(
n⋃
i=1

F in

)
≤
blog(

√
n)c∑

k=1

C ′′µCµe
2

(log n)4
+

C ′′µe
2

(log n)4
· 1 = o(1).

Lemma 3.36. For a fixed δ ∈
(

0, 1
2πCµ

)
,

P(Gδn) = Oµ

(
n2+2Cµ

(1 + δ log n)(2+δ logn)

)
= oδ(1).

Proof. This is a straight-forward application of the Chernoff bound for binomial random variables.

In particular, for each x ∈ Nn, define the random variable

Nx :=

n∑
j=1

1|Xj−x|≤ 1√
n
,
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which has a binomial distribution with parameters n and p ≤ πCµ/n. The moment generating

function for Nx is

E[etNx ] = (1 + p(et − 1))n ≤ enp(et−1) ≤ eπCµ(et−1).

Choosing t = log(1 + 1/(πCµ) log n) establishes

E
[
(1 + 1/(πCµ) log n)Nx

]
≤ n,

and by Markov’s inequality, we obtain

P (Nx ≥ 2 + δ log n) ≤
E
[
(1 + 1/(πCµ) log n)Nx

]
(1 + 1/(πCµ) log n)(2+δ logn)

≤ n

(1 + 1/(πCµ) log n)(2+δ logn)
.

Note that the bound is independent of x, and that the argument can be easily modified (by condi-

tioning on Xi) to show that for a fixed 1 ≤ i ≤ n,

P

∑
j=1
j 6=i

1|Xj−Xi|≤ 1√
n
≥ 2 + δ log n

 ≤ n

(1 + 1/(2πCµ) log n)(2+δ logn)
.

Hence, we can apply the the union bound over all x ∈ Nn and X1, . . . , Xn to obtain the desired

result.

Combining Lemmas 3.34, 3.35, and 3.36 from this subsection establishes (3.52), so for the

remainder of the proof, we work on the complements of the “bad” events.

3.5.4 Constructing disjoint domains that partition the roots

We will create disjoint domains which contain clusters of roots of pn(z) that are close to one

another and show that inside each domain, the numbers of roots and critical points of pn(z) are

the same. The domains will be disjoint to ensure that no roots or critical points are counted more

than once (see Figure 3.3 for reference). For technical reasons involving Rouché’s theorem, we will

require that the boundaries of the regions be simple, closed curves.

Our strategy will be to make an open ball around each Xi, 1 ≤ i ≤ n and to consider the

path-connected components of the union of these balls. Some of the resulting regions may not be
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simply connected, so we need to “fill in the holes.” To start, define the random collection of open

balls

Cn :=

B
x, (log n)3

n ·max
{
|mµ(x)| , (logn)4

√
n

}
 : x ∈ {Xj}nj=1

 ,

and define on {1, 2, . . . , n} the equivalence relation given by the following rule: i ∼ j if and only if

there is a collection

{B0, B1, . . . , Bl} ⊂ Cn,

with

B0 = B

Xi,
(log n)3

n ·max
{
|mµ(Xi)| , (logn)4

√
n

}
 ,

and

Bl = B

Xj ,
(log n)3

n ·max
{
|mµ(Xj)| , (logn)4

√
n

}
 ,

such that Bk ∩Bk+1 6= ∅ for 0 ≤ k ≤ l − 1. Let Pn be the set of equivalence classes induced by ∼.

The idea is that for a fixed P ∈ Pn,

Un,P :=
⋃
i∈P

B

Xi,
(log n)3

n ·max
{
|mµ(Xi)| , (logn)4

√
n

}


forms a connected component of ∪B∈CnB. Each light gray region in Figure 3.3 is one connected

component, Un,P for some P ∈ Pn; a “zoomed-in” version is presented in Figure 3.5. Notice that

some of the Un,P , P ∈ Pn may not have simple, closed boundaries, and some could be “nested”

inside “holes” formed by others. We address these concerns in the following discussion, where we

demonstrate how to select a simple, closed component of the boundary of each Un,P , P ∈ Pn, whose

interior contains Un,P .

More specifically, for each equivalence class P ∈ Pn, we will create a simple closed curve,

γn,P ⊂ ∂Un,P , such that each Xj , j ∈ P is contained interior to the bounded component of

C \ γn,P . Furthermore, we will show that the interiors of the bounded regions defined by the

curves {γn,P }P∈Pn are partially ordered with respect to set inclusion. This will allow us to combine

“nested” regions.
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To that end, fix an equivalence class P ∈ Pn, and recall the definition of the open set Un,P

from above. For simplicity, write

Un,P =
l⋃

i=1

Bi,

where B1, . . . , Bl are distinct open balls (in the definition of Un,P , some of the open balls could

coincide if, for example Xi = Xj for i, j ∈ P , i 6= j). We use Vn,P to denote the unique unbounded,

path-connected component of the complement of Un,P . (The complement of Un,P has a unique

unbounded, path-connected component because Un,P , a union of finitely many closed disks, is

compact.) By construction, the boundaries ∂Un,P ⊇ ∂Vn,P consist of arcs of the finitely many

circles ∂B1, . . . , ∂Bl.

Lemma 3.37. The curve γn,P := ∂Vn,P is a simple, closed curve (i.e. a Jordan curve), and Un,P

is contained in the bounded component of C \ γn,P .

Proof. There are several ways that one could proceed. One method is to construct a simple path

starting on the boundary ∂Vn,P that follows circle arcs until it returns to the start. A second

approach is to consider the genus of the region Un,P , find generators for its fundamental group, and

“close-off” any “holes.” We present, in detail, a third method that relies on the following converse

of the Jordan curve theorem due to Schönflies (see [15, 60], and the discussion on pp. 13 and 67 of

[62]). The theorem statement requires two definitions.

A region of the closed set F ⊂ C is defined as a path-connected component of C \F . A point

x in F is accessible from a region R if there is a point y ∈ R and a simple path from y to x, whose

intersection with F is {x}.

Theorem 3.38 (Theorem 1 in [60]; see also Theorem II 5.38 on p. 67 of [62]). If F is a compact set

in C with precisely two regions such that every point of F is accessible from each of those regions,

then F is a simple closed curve.

Our goal is to show that the compact set γn,P = ∂Vn,P has precisely two regions from which

γn,P is accessible at every point. Define U ′n,P := C \ Vn,P . Observe that C \ γn,P = Vn,P ∪ U ′n,P ,
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where the union is disjoint. It is clear that Vn,P is a region of γn,P ; next, we argue that U ′n,P is also

a region of γn,P .

Since U ′n,P ⊂ C is open, it suffices to show that U ′n,p is connected. Suppose, for a contradiction,

that this is not the case. Then, there are disjoint, non-empty open sets S, T ⊂ C such that

S ∪ T = U ′n,P . By construction, the open set Un,P ⊂ U ′n,P is path-connected, and hence connected,

so Un,P must be completely contained in either S or T . Suppose, without loss of generality, that

Un,P ⊂ S. Since T is non-empty, there is some x ∈ T . We will demonstrate that a path whose image

is contained entirely in U ′n,P connects x to a point of Un,P ⊂ S, which results in a contradiction.

We may assume that x /∈ ∂Un,P because otherwise x lies on a one of the circles ∂Bi, 1 ≤ i ≤ l, and

there is a path in U ′n,P between x and a point of Un,P ⊂ S.

Since the (finitely many) circles ∂B1, . . . , ∂Bl are distinct, there are only finitely many points

of C that are contained in more than one circle. Consequently, we can choose a point v ∈ Vn,P

such that the line segment xv does not contain any points of C that lie in the intersection of two

or more distinct Bi, 1 ≤ i ≤ l. (Indeed, choose a circle Cx ⊂ Vn,P , centered at x, whose interior

contains the compact set U ′n,P . Then, the collection {xz : z ∈ Cx} of line segments connecting x to

points of Cx is infinite in number. Also, x /∈ ∂Un,P by assumption.) Define the path ` : [0, 1]→ C

via t 7→ tx+ (1− t)v, whose image is the line segment xv. Since xv is connected, it cannot be the

case that xv ∈ C \ γn,P (indeed, U ′n,P ∪Vn,P = C \ γn,P is a disjoint union of non-empty open sets).

Consequently, xv contains a point of γn,P . Let t∗ := min {t : `(t) ∈ γn,P } and set y := `(t∗). Note

that t∗ > 0 since x /∈ Un,P .

By construction, y lies on precisely one of the circles {∂Bi}li=1; suppose, without loss of

generality, that y ∈ ∂B1. Hence, we can choose an open ball By 3 y small enough that By \ ∂B1

consists of exactly two disjoint, path-connected open regions (See Figure 3.4A). One of these regions

must be a subset of B1 ⊂ Un,P , and the other must be a subset of Vn,P . (The second region

is connected and open, contains no points of ∂Vn,P , and must contain a point of Vn,P because

y ∈ ∂Vn,P .)

Choose η > 0 small enough so that t∗ − η > 0 and `(t∗ − η) ∈ By. It follows that the line
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yUn,P

Vn,P

(A) Case 1: y is on precisely one circle

among {∂Bi}li=1.

y

(B) Case 2: y is on more than one of the

circles {∂Bi}li=1.

Figure 3.4: The geometry near y ∈ γn,P .

segment

L := {`(t) : 0 ≤ t ≤ t∗ − η}

is connected and disjoint from γn,P . We conclude that L is contained entirely in T , for it contains

x ∈ T . This means L does not contain any points of Vn,P , so `(t∗ − η) ∈ By ∩B1 ⊂ Un,P ⊂ S. We

have reached a contradiction since S and T are disjoint, so U ′n,P must be connected.

We have shown that γn,P has precisely two regions, Vn,P and U ′n,P . It remains to show that

every point of γn,P is accessible from both of these regions. Suppose y ∈ γn,P . There are two cases:

y is contained in precisely one of ∂Bi, 1 ≤ i ≤ l, or y is contained in more than one of these circles.

(See Figures 3.4A and 3.4B, respectively.)

If the first case is true, just as we did above, we can choose an open ball By 3 y small enough

that By \ ∂B1 consists of the two disjoint, path-connected open regions By ∩Un,P and By ∩Vn,P . It

is now clear that y is accessible from both Vn,P and U ′n,P ⊃ Un,P .

On the other hand, suppose, without loss of generality, that y is contained in the circles

∂B1, ∂B2, . . . , ∂Bj . Then, we can choose an open ball By 3 y small enough that By \
⋃j
i=1 ∂Bi

consists of 2j disjoint path-connected, open regions that do not contain points from γn,P (see

Figure 3.4B). Consequently, each of these regions must be entirely contained in one of the disjoint

open sets U ′n,P or Vn,P . Since y ∈ ∂U ′n,P = ∂Vn,P , at least one of the 2j regions must be contained

in U ′n,P and at least one must be contained in Vn,P . It follows that y is accessible from both Vn,P

and U ′n,P .
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We conclude via Theorem 3.38 that γn,P is a simple closed curve whose interior contains Un,P

because U ′n,P is the bounded component of C \ γn,P , and Un,P ⊂ U ′n,P .

We have shown that there are simple, closed curves {γn,P }P∈Pn so that for each P ∈ Pn,

γn,P ⊆ ∂Un,P and Un,P is contained in the interior of the bounded region defined by γn,P . Further-

more, the path-connected, open regions {Un,P }P∈Pn are disjoint by the definition of the equivalence

relation ∼. This means that no curve γn,P can pass through the interior of any region Un,P , and

as a result, we can identify “maximal” curves which we will use in the remainder of the proof.

Definition 3.39. We say that a simple, closed curve γn,P ∗ among {γn,P }P∈Pn is maximal if when-

ever Un,P ∗ is in the bounded component of C \ γn,P for some P ∈ Pn, we have P = P ∗. We use

Mn to denote the collection of maximal curves. For each Γ ∈ Mn, let OΓ denote the bounded

component of C \ Γ, so that ∂OΓ = Γ.

Notice that the domains OΓ, Γ ∈Mn are disjoint by construction and that each Xj , 1 ≤ j ≤

n, is contained in precisely one OΓ. We conclude this subsection with two important lemmas that

restrict the sizes of the equivalence classes P , P ∈ Pn and domains OΓ, Γ ∈Mn.

Lemma 3.40. Suppose 0 < δ < 1/3. There exists Cδ > 0 so that for n ≥ Cδ, the following holds

on the complement of Gδn: for each P ∈ Pn, |P | ≤ δ log n+ 2, and if x, y ∈ Un,P , then,

|x− y| < 3δ√
n
.

Proof. Assume, for a contradiction, that there is a P ∈ Pn for which |P | > δ log n+2, and suppose,

without loss of generality, that 1 ∈ P . By the definition of Pn, for each i ∈ P \ {1}, there are

elements Bi
0, B

i
1, . . . B

i
li
∈ Cn, where

Bi
0 = B

X1,
(log n)3

n ·max
{
|mµ(X1)| , (logn)4

√
n

}
 ,

Bi
li

= B

Xi,
(log n)3

n ·max
{
|mµ(Xi)| , (logn)4

√
n

}
 ,
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Bi
k ∩ Bi

k+1 6= ∅ for 0 ≤ k ≤ li − 1, and Bi
0, . . . , B

i
li

are balls with radius at most (log n)−1n−1/2.

Notice that the distance between X1 and any Xi, i ∈ P \ {1} is bounded by 2 + 2(li− 1) times this

maximum radius (recall that X1 and Xi, i ∈ P \ {1} are the centers of Bi
0 and Bi

li
, respectively).

We consider two cases:

(i) for every i ∈ P \ {1}, li < δ log n+ 2

(ii) there is an i∗ ∈ P \ {1} for which li∗ ≥ δ log n+ 2.

If case (i) is true, then, for n large enough to guarantee δ log n ≥ 3,

max
i∈P\{1}

|X1 −Xi| < max
i∈P\{1}

2 + 2(li − 1)

log n
√
n

<
2 + 2(δ log n+ 1)

log n
√
n

≤ 3δ√
n
<

1√
n
,

so every Xi, i ∈ P is in the ball of radius n−1/2 centered at X1, which is impossible on the

complement of Gδn. On the other hand, if case (ii) is true, then, for large n,

dδ logn+2e⋃
k=0

Bi∗
k ⊂ B

(
X1,

1√
n

)
.

Indeed,
{
Bi∗
k

}dδ logn+2e
k=0

are overlapping balls with radius at most (log n)−1n−1/2, so if n is large

enough that δ log n ≥ 7 and y ∈
⋃dδ logn+2e
k=0 Bi∗

k , then,

|y −X1| ≤
1 + 2dδ log n+ 2e

log n
√
n

<
2δ log n+ 7

log n
√
n
≤ 3δ√

n
<

1√
n
.

This is impossible on the complement of Gδn because it would imply too many roots among {Xj}nj=1

in the ball of radius n−1/2 centered at X1.

Now, suppose x, y ∈ Un,P and n is large enough to guarantee that, on the complement of

Gδn, |P | ≤ δ log n+ 2 and δ log n > 4. Since the path-connected set Un,P consists of |P | overlapping

closed disks of radius at most (log n)−1n−1/2, we have

|x− y| ≤ |P | 2

log n
√
n
≤ 2(δ log n+ 2)

log n
√
n

<
3δ√
n
.
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Corollary 3.41. Suppose 0 < δ < 1/3. There exists Cδ > 0 such that for n ≥ Cδ, on the

complement of Gδn, each Γ ∈Mn satisfies the following. There exist x∗, y∗ ∈ Γ so that if x, y ∈ OΓ,

then

|x− y| ≤ |x∗ − y∗| < 3δ√
n
.

Proof. In view of Lemma 3.40, it suffices to show that there exist x∗, y∗ ∈ Γ so that

sup
x,y∈OΓ

|x− y| ≤ |x∗ − y∗| . (3.57)

(Recall that there exists P ∗ ∈ Pn so that Γ ⊂ ∂Un,P ∗ .) Since OΓ is compact and (x, y) 7→ |x− y|

is continuous, the extreme value theorem guarantees the existence of x∗, y∗ ∈ OΓ so that the

supremum in (3.57) is achieved when x = x∗ and y = y∗. Suppose, for a contradiction, that x∗ /∈ Γ.

Then, x∗ is in the open set OΓ, and there is a ρ > 0 so that x∗ ∈ B(x∗, ρ) ⊂ OΓ. Consequently,

the line segment x∗y∗ can be extended along the line connecting x∗ and y∗ by length ρ/2 without

leaving OΓ. This contradicts the assumption that the supremum in (3.57) is achieved for x = x∗,

y = y∗. We conclude that x∗ ∈ Γ. A similar argument shows that y∗ ∈ Γ.

3.5.5 Pairing of roots and critical points inside each domain

We now show that on the complement of the “bad” events, the roots and critical points

within most of the domains OΓ, Γ ∈ Mn are “paired.” The only domains for which this does not

occur are those that contain roots of pn(z) that are “too close” to the zeros of mµ. (See Figure

3.3 for reference; recall that mµ(z) = 0 precisely when z = 0 in the case where µ is the uniform

measure on the unit disk.) To make “too close” rigorous, we define the random collection of roots

Rpair
n :=

{
Xj : 1 ≤ j ≤ n and Xj ∈ C \

(
Ab4 log(logn)c
n ∪Ab4 log(logn)c+1

n

)}
⊆
{
Xj : 1 ≤ j ≤ n and |mµ(Xj)| >

(log n)4

√
n

}
.

The following lemma is the main result of this subsection.
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Lemma 3.42. For a fixed δ > 0 chosen sufficiently small, there is a constant Cδ > 0 so that for

n ≥ Cδ, on the complement of ∪ni=1F
i
n ∪ Gδn ∪ Hn, the following conclusion holds. For each OΓ,

Γ ∈ Mn, such that OΓ ∩ Rpair
n 6= ∅, the number of critical points of pn(z) that lie inside OΓ is

equal to the number of roots of pn(z) that lie inside OΓ (where both counts include multiplicity).

Furthermore, if X ∈ OΓ ∩Rpair
n and w ∈ OΓ is a critical point of pn(z), then,

|X − w| ≤ (log n)4

n |mµ(X)|
.

Proof. The proof of this lemma is similar in flavor to the proofs of Theorems 3.9 and 3.23, although

the argument presented here is much more technical. Fix n ∈ N, suppose OΓ, Γ ∈Mn is such that

OΓ ∩ Rpair
n 6= ∅, and choose an X ∈ OΓ ∩ Rpair

n to be a distinguished root that will be a reference

point in our calculations. We classify the roots {Xj}nj=1 into three groups based on their proximity

to X (see Figure 3.5). To that end, define

Rnear :=

{
j : 1 ≤ j ≤ n, |Xj −X| <

(log n)2

n |mµ(X)|

}
Rmed :=

{
j : 1 ≤ j ≤ n, |Xj −X| <

1√
n

}
\Rnear

Rfar :=

{
j : 1 ≤ j ≤ n, |Xj −X| ≥

1√
n

}
,

and let

qX(z) :=
∏

j /∈Rnear

(z −Xj) and rX(z) :=
∏

j∈Rnear

(z −Xj),

so that pn(z) = qX(z)rX(z). Note that |Rmed| and |Rnear| are of size at most δ log n + 2 on the

complement of Gδn. We will compare the zeros of p′n(n) inside OΓ to the zeros of the function

fX(z) := qX(z)

(
r′X(z) + rX(z)

n− |Rnear|
z − YX

)
that are inside OΓ, where YX is defined by

YX := X − n− |Rnear|∑
j /∈Rnear

1
X−Xj

.
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The idea is that

fX(z)

pn(z)
=
r′X(z)

rX(z)
+
n− |Rnear|
z − YX

is similar to the logarithmic derivative of pn(z) for z near X. Furthermore, the number of roots of

the equation

0 = r′X(z) + rX(z)
n− |Rnear|
z − YX

that are inside OΓ will be easy to calculate since these are the same as the critical points of

p̃X(z) := rX(z) · (z − YX)n−|Rnear|

that lie inside OΓ (we will show that YX /∈ OΓ), and these can be located with Walsh’s two circle

theorem.

The following lemma contains a few facts that we will frequently reference for the remainder

of the proof of Lemma 3.42.

Lemma 3.43. Suppose δ < 1/3. There is a constant Kµ,δ ∈ N, depending only on µ and δ (and

not on X,P,Γ, etc...), so that n ≥ Kµ,δ implies the following. On the complement of ∪ni=1F
i
n ∪Gδn,

if X ∈ OΓ ∩Rpair
n and z ∈ OΓ, then

(i) |z −X| ≤ 4δ(log n)4

n |mµ(X)|
, and |z −X| ≥ (logn)3

n|mµ(X)| if z ∈ Γ;

(ii)
|mµ(X)|

4
≤

∣∣∣∣∣∣ 1

n− |Rnear|
∑

j /∈Rnear

1

X −Xj

∣∣∣∣∣∣ ≤ 2 |mµ(X)|;

(iii)
1

4 |mµ(X)|
≤ |z − YX | ≤

5

|mµ(X)|
, so in particular, fX(z) is analytic in OΓ.

Proof. Much of this proof relies on the fact that mµ(·) is nearly Lipschitz (see Lemma 3.26 part

(ii)). To establish (i), we first observe that for large n, on the complement of Gδn, if ξ ∈ OΓ, then

|mµ(X)|
2

≤ |mµ(ξ)| ≤ 3 |mµ(X)|
2

. (3.58)

Indeed, via Corollary 3.41, |ξ −X| < 3δ√
n
< 1√

n
for large n, on the complement of Gδn, so as long as

we also have 1√
n
< min

{
εµ, e

−1
}

, Lemma 3.26 guarantees that

|mµ(ξ)−mµ(X)| ≤ κµ
3δ√
n

log

(√
n

3δ

)
.
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(We have used the fact that on the interval [0, e−1], the function −x log x is increasing.) It follows

that for n ≥ 5 and larger than some constant depending on µ and δ, on the complement of Gδn,

|mµ(ξ)−mµ(X)| ≤ (log n)2

√
n
≤ (log n)4

2
√
n
≤ |mµ(X)|

2
,

which implies equation (3.58). (The last inequality follows since X ∈ Rpair
n .) We will use this

inequality to compute |z −X|, for z ∈ OΓ, in a way that references the balls that we started with

when we constructed Γ.

Let n be large enough to establish (3.58) and the conclusion of Corollary 3.41 on the com-

plement of Gδn. Since, z,X ∈ OΓ, Corollary 3.41 guarantees the existence of w1, w2 ∈ Γ for which

|z −X| ≤ |w1 − w2|. Recall that Γ ⊆ ∂Un,P ∗ for some P ∗ ∈ Pn, so there are i1, i2 ∈ P ∗ ⊂ OΓ, for

which

w1 ∈ ∂B

Xi1 ,
(log n)3

nmax
{
|mµ(Xi1)| , (logn)4

√
n

}


and

w2 ∈ ∂B

Xi2 ,
(log n)3

nmax
{
|mµ(Xi2)| , (logn)4

√
n

}
 .

Furthermore, since i1 and i2 are related by the equivalence that defines Pn, there are open balls

B0, B1, . . . Bl ∈ Cn, of the form

B

Xj ,
(log n)3

n ·max
{
|mµ(Xj)| , (logn)4

√
n

}
 , j ∈ P ∗ ⊂ OΓ,

where

B0 = B

Xi1 ,
(log n)3

n ·max
{
|mµ(Xi1)| , (logn)4

√
n

}
 ,

Bl = B

Xi2 ,
(log n)3

n ·max
{
|mµ(Xi2)| , (logn)4

√
n

}
 ,

and Bk ∩ Bk+1 6= ∅ for 0 ≤ k ≤ l − 1. Notice that on the complement of Gδn, equation (3.58)

guarantees that the radii of these balls are bounded by 2(logn)3

n|mµ(X)| (recall that X ∈ Rpair
n ), and if
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n is large enough to guarantee the conclusion of Lemma 3.40, the number of balls, l, is less than

|P ∗| ≤ δ log n+ 2. It follows that for n larger than a constant depending on δ, on the complement

of Gδn,

|z −X| ≤ |w1 − w2| ≤ |P ∗| · 2
2(log n)3

n |mµ(X)|
≤ 4(δ log n+ 2)(log n)3

n |mµ(X)|
≤ 4δ(log n)4

n |mµ(X)|
.

We have established the first half of (i). To see the second inequality, simply recall that Γ does not

pass through Un,P for any P ∈ Pn, so if z ∈ Γ, then

|z −Xj | ≥
(log n)3

n ·max
{
|mµ(Xj)| , (logn)4

√
n

}
for any root Xj , 1 ≤ j ≤ n. In particular, this is true for X ∈ Rpair

n , which satisfies |mµ(X)| ≥
(logn)4
√
n

, so we obtain the second part of (i).

Inequality (ii) holds for large n on the complement of ∪ni=1F
i
n∪Gδn after several interpolations.

For each i, 1 ≤ i ≤ n, the random variables E[ζ
(n)
i,j | Xi], 1 ≤ j ≤ n, j 6= i are identically distributed,

so ∣∣∣∣∣∣∣∣
1

n− 1

n∑
j=1
j 6=i

ζ
(n)
i,j

∣∣∣∣∣∣∣∣ ≤
∣∣∣∣∣∣∣∣

1

n− 1

n∑
j=1
j 6=i

(
ζ

(n)
i,j − E[ζ

(n)
i,j | Xi]

)∣∣∣∣∣∣∣∣
+
∣∣∣E[ζ

(n)
i,l | Xi]−mµ(Xi)

∣∣∣+ |mµ(Xi)| ,

(3.59)

where l is any index different from i. Since the Xj are iid, we have

∣∣∣E[ζ
(n)
i,l | Xi]−mµ(Xi)

∣∣∣ =

∣∣∣∣∣E
[

1

Xi −Xl
1
|Xi−Xl|< (logn)2

n|mµ(Xi)|

∣∣∣∣∣ Xi

]∣∣∣∣∣
≤ 2πCµ

∫ (logn)2

n|mµ(Xi)|

0

1

r
· r dr

= 2πCµ
(log n)2

n |mµ(Xi)|
,

so equation (3.59) implies that for any i, 1 ≤ i ≤ n,∣∣∣∣∣∣∣∣
1

n− 1

n∑
j=1
j 6=i

ζ
(n)
i,j

∣∣∣∣∣∣∣∣ ≤
∣∣∣∣∣∣∣∣

1

n− 1

n∑
j=1
j 6=i

(
ζ

(n)
i,j − E[ζ

(n)
i,j | Xi]

)∣∣∣∣∣∣∣∣+
2πCµ(log n)2

n |mµ(Xi)|
+ |mµ(Xi)| .
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Now, X = XiX for some iX , 1 ≤ iX ≤ n, and X ∈ Rpair
n , so on the complement of ∪ni=1F

i
n,∣∣∣∣∣∣ 1

n− |Rnear|
∑

j /∈Rnear

1

X −Xj

∣∣∣∣∣∣ =
n− 1

n− |Rnear|

∣∣∣∣∣∣∣∣
1

n− 1

n∑
j=1
j 6=iX

ζ
(n)
iX ,j

∣∣∣∣∣∣∣∣
≤ n− 1

n− |Rnear|

(
3

2
|mµ(XiX )|+ 2πCµ(log n)2

n |mµ(XiX )|

)
≤ n− 1

n− |Rnear|

(
3

2
|mµ(X)|+ 2πCµ√

n(log n)2

)
.

(3.60)

On the complement of Gδn, |Rnear| is at most δ log n + 2, so for large n, on the complement of

∪ni=1F
i
n ∪ Gδn inequality (3.60) establishes the upper bound in (ii). (We have used that X ∈ Rpair

n

to bound
2πCµ√
n(logn)2 above by, say, 1/4 |mµ(X)| for large n.) The lower bound in (ii) is achieved

similarly by using the reverse triangle inequality to obtain∣∣∣∣∣∣∣∣
1

n− 1

n∑
j=1
j 6=i

ζ
(n)
i,j

∣∣∣∣∣∣∣∣ ≥ |mµ(Xi)| −

∣∣∣∣∣∣∣∣
1

n− 1

n∑
j=1
j 6=i

(
ζ

(n)
i,j − E[ζ

(n)
i,j | Xi]

)∣∣∣∣∣∣∣∣
−
∣∣∣E[ζ

(n)
i,l | Xi]−mµ(Xi)

∣∣∣ ,
in place of (3.59).

We conclude by establishing (iii) as a consequence of (i) and (ii). Indeed, via the triangle

inequality, we have for large n, on the complement of ∪ni=1F
i
n ∪Gδn, that

|z − YX | ≤ |z −X|+

∣∣∣∣∣∣ n− |Rnear|∑
j /∈Rnear

1
X−Xj

∣∣∣∣∣∣ ≤ 4δ(log n)4

n |mµ(X)|
+

4

|mµ(X)|
≤ 5

|mµ(X)|
,

where the rightmost inequality holds for large n. The lower bound in (iii) follows for similar reasons,

and fX is analytic because |mµ(X)| is almost surely bounded above by an constant that depends

only on µ (apply Lemma 3.26, part (i) with ξ = 0 and ρ = +∞).

The next Lemma justifies our choice of fX(z) as an intermediate comparison between pn(z)

and p′n(z) because it establishes that under the right conditions, fX(z) and pn(z) have the same

number of roots in the domain OΓ. Consider Figure 3.5 which provides a visual aid to the argument.

Lemma 3.44. Suppose δ < 1/3. For large n, on the complement of ∪ni=1F
i
n ∪Gδn, the polynomial

p̃X(z) = rX(z)(z − YX)n−|Rnear|
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X

YX

ℭℭ1

ℭ2

OΓ

Γ

Rmed

Rfar

Figure 3.5: A diagram to illustrate Lemma 3.44 and its proof. The red dots and blue crosses are
meant to represent roots and critical points, respectively, of pn that lie in a region near X, which
is denoted by a green star. The large dashed circle is intended to be on the order of n−1/2. Note
that indices 1 ≤ j ≤ n in Rnear correspond to roots Xj that lie interior to C1. This figure is neither
to scale nor the result of a simulation.
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has |Rnear| critical points inside B
(
X, 5(logn)2

n|mµ(X)|

)
⊂ OΓ, and none of these is YX /∈ OΓ. In particu-

lar, under these conditions, fX(z) has the same number of roots inside OΓ as pn(z) does.

Proof. This follows from Walsh’s two circle theorem (see e.g. Theorem 4.1.1 in [46].) First, we will

show that rX(z) and p̃′X(z) have the same number of roots, |Rnear|, inside OΓ by using Walsh’s two

circle theorem, and then, we will use this fact to compare the roots of pn(z) and fX(z) inside OΓ.

To that end, choose n large enough so that the statements in Lemma 3.43 hold on the

complement of ∪ni=1F
i
n ∪Gδn, and define the circular domains

C1 := B

(
X,

(log n)2

n |mµ(X)|

)
and C2 := B

(
YX ,

(log n)2

n |mµ(X)|

)
.

Note that C1 and C2 are disjoint for large n on the complement of ∪ni=1F
i
n ∪Gδn by inequality (iii)

of Lemma 3.43:

|X − YX | ≥
1

4 |mµ(X)|
>

(log n)2

n |mµ(X)|
.

In fact, for n large enough,

1

4 |mµ(X)|
>

4δ(log n)4

n |mµ(X)|
+

(log n)2

n |mµ(X)|
,

so on the complement of ∪ni=1F
i
n ∪Gδn, Lemma 3.43 part (i) guarantees that C2 is disjoint from OΓ.

Next, observe that all of the roots of p̃X(z) lie in C1 ∪ C2, so by Walsh’s two circle theorem,

the critical points of p̃X lie in C1 ∪ C2 ∪ C, where C is the open ball

C := B

(
n− |Rnear|

n
X +

|Rnear|
n

YX ,
(log n)2

n |mµ(X)|

)
.

By Lemma 3.43, for large n, on the complement of ∪ni=1F
i
n ∪Gδn, x ∈ C implies

|x−X| ≤
∣∣∣∣n− |Rnear|

n
X +

|Rnear|
n

YX −X
∣∣∣∣+

(log n)2

n |mµ(X)|

=
|Rnear|
n

∣∣∣∣∣ n− |Rnear|∑
j /∈Rnear

1
X−Xj

∣∣∣∣∣+
(log n)2

n |mµ(X)|

≤ |Rnear|
n

4

|mµ(X)|
+

(log n)2

n |mµ(X)|

≤ 4(δ log n+ 2) + (log n)2

n |mµ(X)|

<
5(log n)2

n |mµ(X)|
,
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where the last inequality holds for large n. It follows that for large n, on the complement of

∪ni=1F
i
n ∪Gδn,

C ⊆ B
(
X,

5(log n)2

n |mµ(X)|

)
⊆ B

X, (log n)3

n ·max
{
|mµ(X)| , (logn)4

√
n

}


(recall X ∈ Rpair
n ), so in particular, C ∪ C1 is contained in OΓ, and this union is disjoint from

C2. Consequently, by the Supplement Theorem 4.1.1 in [46], for large n, on the complement of

∪ni=1F
i
n ∪ Gδn, p̃′X(z) has |Rnear| roots inside OΓ, just like rX(z) does. Under these conditions,

fX(z) has the same roots as qX(z)p̃′X(z) inside OΓ because YX /∈ OΓ, so it follows that fX(z) and

pn(z) = qX(z)rX(z) have the same number of roots inside OΓ.

We conclude this subsection with two lemmas and an application of Rouché’s theorem to

establish that fX(z) and p′n(z) have the same numbers of zeros in OΓ. This will imply via Lemma

3.44 that pn(z) and p′n(z) have the same numbers of zeros in OΓ.

Lemma 3.45. Suppose δ < 1/8. There exist positive constants C̃µ, dependent only on µ, and Cµ,δ,

dependent only on µ and δ (and not on X, Γ, etc...), so that for n ≥ Cµ,δ, on the complement of

∪ni=1F
i
n ∪Gδn ∪Hn, if z ∈ Γ,

∣∣p′n(z)− fX(z)
∣∣ ≤ |pn(z)| C̃µδ2n |mµ(X)| (3.61)

(here, C̃µ is independent of δ).
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Proof. For large n, on the complement of ∪ni=1F
i
n∪Gδn, Lemma 3.43 guarantees that if z ∈ Γ, then,∣∣p′n(z)− fX(z)

∣∣
= |pn(z)| ·

∣∣∣∣∣∣
n∑
j=1

1

z −Xj
−
r′X(z)

rX(z)
− n− |Rnear|

z − YX

∣∣∣∣∣∣
= |pn(z)| ·

∣∣∣∣∣∣
∑

j /∈Rnear

1

z −Xj
− n− |Rnear|

z − YX

∣∣∣∣∣∣
≤ |pn(z)| ·

∣∣∣∣∣∣
∑

j /∈Rnear

1

z −Xj
−

∑
j /∈Rnear

1

X −Xj

∣∣∣∣∣∣+

∣∣∣∣∣∣
∑

j /∈Rnear

1

X −Xj
− n− |Rnear|

z − YX

∣∣∣∣∣∣


= |pn(z)| · |z −X|

∣∣∣∣∣∣
∑

j /∈Rnear

1

(z −Xj)(X −Xj)

∣∣∣∣∣∣
+ |pn(z)|

∣∣∣∣∣∣
∑

j /∈Rnear

1

X −Xj

∣∣∣∣∣∣
∣∣∣∣∣1− 1

(z −X) 1
n−|Rnear|

∑
j /∈Rnear

1
X−Xj + 1

∣∣∣∣∣
≤ |pn(z)| |z −X|

×

kn +

∣∣∣∣∣∣ 1

n− |Rnear|
∑

j /∈Rnear

1

X −Xj

∣∣∣∣∣∣
2

n− |Rnear|

1− |z −X|
∣∣∣ 1
n−|Rnear|

∑
j /∈Rnear

1
X−Xj

∣∣∣


≤ |pn(z)| 4δ(log n)4

n |mµ(X)|

kn + 4 |mµ(X)|2 n

1− 4δ(logn)4

n|mµ(X)|2 |mµ(X)|


≤ |pn(z)|

(
4δ(log n)4

n |mµ(X)|
kn +Oδ

(
(log n)4 |mµ(X)|

))
,

where

kn := sup
z∈Γ

∣∣∣∣∣∣
∑

j /∈Rnear

1

(z −Xj)(X −Xj)

∣∣∣∣∣∣ .
What remains is to show that there exist positive constants C̃ ′µ, C ′µ,δ so that n ≥ C ′µ,δ implies

kn = C̃ ′µδ(log(n))−4n2 |mµ(X)|2 . (3.62)

First observe that for any z ∈ Γ,∑
j /∈Rnear

1

(z −Xj)(X −Xj)

=
∑

j∈Rmed

1

(z −Xj)(X −Xj)
+
∑
j∈Rfar

1

(z −Xj)(X −Xj)
.

(3.63)



132

We will bound each term on the right separately. By construction of the sets {OΓ}Γ∈Mn
, recall

that the curves Γ ∈ Mn do not intersect the interiors of the open balls forming Un,P , P ∈ Pn.

Hence, for z ∈ Γ and j ∈ Rmed,

|z −Xj | ≥
(log n)3

n ·max
{
|mµ(Xj)| , (logn)4

√
n

} .
By Lemma 3.26, it follows that for large n, |mµ(Xj)| ≤ 2 |mµ(X)| (Recall that for j ∈ Rmed,

|X −Xj | < 1√
n

and X ∈ Rpair
n ). Consequently, for large n, on the complement of ∪ni=1F

i
n ∪Gδn,

|z −Xj | ≥
(log n)3

n ·max
{

2 |mµ(X)| , (logn)4
√
n

} ≥ (log n)3

2n |mµ(X)|
.

In addition, for j ∈ Rmed, |X −Xj | ≥ (logn)2

n|mµ(X)| . Hence, for n large, on the complement of ∪ni=1F
i
n ∪

Gδn, if z ∈ Γ,∣∣∣∣∣∣
∑

j∈Rmed

1

(z −Xj)(X −Xj)

∣∣∣∣∣∣ ≤ |Rmed|
2n2 |mµ(X)|2

(log n)5
≤ (δ log n+ 2)

2n2 |mµ(X)|2

(log n)5
. (3.64)

We now turn our attention to the second term on the right side of (3.63). We will split the

sum into pieces based on how far away from X each Xj is. In particular, define for 1 ≤ k ≤
√
n−1,

the annuli

Dk,n :=

{
z ∈ C :

k√
n
≤ |z −X| ≤ k + 1√

n

}
D′k,n :=

{
z ∈ C :

k − 1√
n
≤ |z −X| ≤ k + 2√

n

}
D′′k,n :=

{
z ∈ C :

k − 2√
n
≤ |z −X| ≤ k + 3√

n

}
and the random variables

#k,n := # {j : 1 ≤ j ≤ n, Xj ∈ Dk,n} .

(Note that D′1,n, D
′′
1,n, D

′′
2,n are disks.) Now, on the complement of Hn, each Xj , 1 ≤ j ≤ n is

within n−1/2 of some xj ∈ Nn, and on the complement of Gδn, there are at most 2 + δ log n roots

Xl, 1 ≤ l ≤ n within n−1/2 of xj . It follows that

#k,n ≤
∣∣Nn ∩D′k,n∣∣ · (δ log n+ 2). (3.65)
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We will argue that due to the fact that any distinct x, y ∈ Nn are separated by at least 1
2
√
n

, the

size of Nn ∩D′k,n is bounded by 162k. Indeed, for any distinct x, y ∈ Nn, the balls B(x, n−1/2/4)

and B(y, n−1/2/4) are disjoint, and if x ∈ D′k,n, then,

B(x, n−1/2/4) ⊂ D′′k,n.

The area of D′′k,n for k ≥ 2 is π
n(10k + 5), so at most 16(10k + 5) disjoint balls of radius n−1/2/4

can fit in D′′k,n. Similarly, at most 162 balls of radius n−1/2/4 can fit in D′′1,n. Combining this with

equation (3.65) establishes that #k,n ≤ 162k(δ log n+ 2).

We can now bound the second term on the right of (3.63) as follows. For δ < 1/8 and n

large enough to guarantee the conclusions of Lemma 3.43, on the complement of ∪ni=1F
i
n∪Gδn∪Hn,

j ∈ Rfar implies

|X −Xj | ≥
1√
n
>

8δ√
n
≥ 8δ(log n)4

n |mµ(X)|
≥ 2 |z −X|

for z ∈ Γ (note that |mµ(X)| ≥ (logn)4
√
n

). Consequently, for n large and z ∈ Γ, on the complement

of ∪ni=1F
i
n ∪Gδn ∪Hn,∑

j∈Rfar

1

|z −Xj | |X −Xj |

≤

√
n−1∑
k=1

∑
j:Xj∈Dk,n

1

|z −Xj | |X −Xj |
+

∑
j:|X−Xj |≥1

1

|z −Xj |

≤

√
n−1∑
k=1

∑
j:Xj∈Dk,n

1

(|X −Xj | − |z −X|) |X −Xj |

+
∑

j:|X−Xj |≥1

1

|X −Xj | − |z −X|

≤

√
n−1∑
k=1

∑
j:Xj∈Dk,n

2

|X −Xj |2
+

∑
j:|X−Xj |≥1

2

|X −Xj |

≤

√
n−1∑
k=1

#k,n
2n

k2
+ 2n

≤

√
n−1∑
k=1

2
(
162k(δ log n+ 2)

)
n

k2
+ 2n

= O
(
δn(log n)2 + 2n

)
,



134

where the implied constant is independent of δ. The asymptotic comes from approximating∑√n−1
k−1 k−1 with 1 +

∫ √n−1
1 x−1 dx. Together with (3.64), this establishes equation (3.62) since

|mµ(X)| ≥ (logn)4
√
n

.

The last lemma in this subsection establishes a lower bound on |fX(z)| that will combine

with (3.61) to fulfill the hypotheses of Rouché’s theorem on the boundary Γ of the domain OΓ.

Lemma 3.46. For fixed δ > 0, there is a constant Čµ,δ depending only on µ and δ so that when

n ≥ Čµ,δ, on the complement of ∪ni=1F
i
n ∪Gδn, if z ∈ Γ,

|fX(z)| ≥ |pn(z)|n |mµ(X)| · e−9. (3.66)

Proof. We have

|rX(z)| =
∏

Xj∈Rnear

|z −Xj | ≤
(
|z −X|+ (log n)2

n |mµ(X)|

)|Rnear|

and ∣∣∣∣fX(z)

qX(z)

∣∣∣∣ =
1

|z − YX |
∣∣(z − YX)r′X(z) + rX(z) (n− |Rnear|)

∣∣ .
By Lemma 3.44, for large n, on the complement of ∪ni=1F

i
n ∪Gδn, the polynomial expression

(z − YX)r′X(z) + rX(z) (n− |Rnear|) =
p̃′X(z)

(z − YX)n−|Rnear|−1

has degree |Rnear|, leading coefficient n, and |Rnear| roots in B
(
X, 5(logn)2

n|mµ(X)|

)
⊂ OΓ. It follows that

under these conditions, ∣∣∣∣fX(z)

qX(z)

∣∣∣∣ =
n

|z − YX |
∏
w∈OΓ

p̃′X(w)=0

|z − w|

≥ n

|z − YX |

(
|z −X| − 5(log n)2

n |mµ(X)|

)|Rnear|
,

where the critical points of p̃X(z) that index the product are considered with multiplicity.
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If additionally, δ < 1 and n is large enough to guarantee the bounds on |z −X| in Lemma

3.43, we have that on the complement of ∪ni=1F
i
n ∪Gδn and for z ∈ Γ,

(log n)2

n |mµ(X)|
≤ |z −X|

δ log n
.

Hence, if n is large enough, on the complement of ∪ni=1F
i
n ∪Gδn, for z ∈ Γ,

|fX(z)| = |pn(z)| · 1

|rX(z)|
·
∣∣∣∣fX(z)

qX(z)

∣∣∣∣
≥ |pn(z)| · n

|z − YX |
·

 |z −X|
(

1− 5
δ logn

)
|z −X|

(
1 + 1

δ logn

)
|Rnear|

≥ |pn(z)| · n |mµ(X)|
5

·

(
1− 5

δ logn

1 + 1
δ logn

)δ logn+2

≥ |pn(z)|n |mµ(X)| · e−9.

We have used Lemma 3.43 to bound |z − YX |, and the last inequality holds for large n and comes

from the fact that (
1 +

x

δ log n

)δ logn+2
n→∞−−−→ ex.

(Note that the rate of convergence possibly depends on δ.) We have achieved (3.66) as was desired.

We have now established both (3.61) and (3.66), where the inequalities are independent

of X, Γ, and z ∈ Γ. Since C̃µ is independent of δ, we can choose δ ∈ (0, 1/8) small enough

that C̃µδ
2 < e−9. For such a δ, by Lemmas 3.45 and 3.46, for large n, on the complement of

∪ni=1F
i
n ∪Gδn ∪Hn, any z ∈ Γ satisfies

∣∣p′n(z)− fX(z)
∣∣ < |fX(z)| .

It follows by Rouché’s theorem that for large n, on the complement of ∪ni=1F
i
n ∪ Gδn ∪ Hn, p′n(z)

and fX(z) have the same number of zeros inside OΓ, and by Lemma 3.44, we conclude that p′n(z)

and pn(z) have the same number of zeros inside OΓ. The inequality in the conclusion of Lemma

3.42 follows directly from this and Lemma 3.43 part (i) (note δ ≤ 1/4).



136

In the argument above, the particular curve Γ ∈ Mn and the root X ∈ OΓ ∩ Rpair
n were

arbitrary, and all of the constants involved were independent of Γ, so we have proved Lemma

3.42.

3.5.6 Bounding the Wasserstein distance

In this subsection, we use Lemma 3.42 to prove Theorem 3.3. Let w
(n)
1 , . . . , w

(n)
n−1 denote

the (not necessarily distinct) critical points of pn(z), and recall the definitions of the empirical

measures, µn and µ′n (see (3.2) and (3.3)). Since the numbers of roots and critical points of a

polynomial differ by one, we first compare the measure µ′n to the intermediate measure

µ̃′n :=
1

n

δX +

n−1∑
j=1

δ
w

(n)
j

 , where X =
1

n

n∑
j=1

Xj .

The following lemma justifies our choice of µ̃′n.

Lemma 3.47. Let µ′n, µ̃′n, and ηn := max1≤j≤n |Xj | be defined as above. Then, with probability 1,

W1(µ′n, µ̃
′
n) ≤ 2ηn

n
.

Proof. Let π̃ be the measure on C× C given by

π̃ :=
1

n

n−1∑
j=1

δ
(w

(n)
j ,w

(n)
j )

+
1

n(n− 1)

n−1∑
j=1

δ
(w

(n)
j ,X)

,

whose marginal distributions are easily seen to be µ′n and µ̃′n. It follows from the definition of the

L1-Wasserstein metric that, almost surely,

W1(µ′n, µ̃
′
n) ≤ 1

n

n−1∑
j=1

∣∣∣w(n)
j − w

(n)
j

∣∣∣+
1

n(n− 1)

n−1∑
j=1

∣∣∣w(n)
j −X

∣∣∣ ≤ 0 +
1

n
· 2ηn,

where the last inequality follows from the Gauss–Lucas theorem.

The next result is an L1-Wasserstein comparison between µn and µ̃′n that we will use in

conjunction with Lemma 3.47 and the triangle inequality to prove Theorem 3.3.
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Lemma 3.48. Let X1, . . . , Xn be iid, complex random variables with distribution µ that has a

bounded density and satisfies Assumption 3.1. Then, there is a constant C, depending only on µ,

so that with probability 1− o(1),

W1(µn, µ̃
′
n) ≤ Cηn(log n)9

n
,

where µn, µ̃′n, and ηn are defined as above.

Proof. Suppose w
(n)
1 , . . . , w

(n)
n−1 are critical points of pn(z) defined above, and define w

(n)
n := X.

Then, for any permutation σn of {1, 2, . . . , n}, the measure

πσn :=
1

n

n∑
j=1

δ
(Xj ,w

(n)
σn(j)

)

has marginal distributions µn and µ̃′n, so

W1(µn, µ̃
′
n) ≤

∫
|x− y| dπσn(x, y) =

1

n

n∑
j=1

∣∣∣Xj − w(n)
σn(j)

∣∣∣ .
We will now make a judicious choice of σn in order to take advantage of the “clumping” behavior

of the roots and critical points of pn(z) proclaimed in the conclusion of Lemma 3.42.

To start, define the index sets SΓ, Γ ∈Mn by

SΓ := {1 ≤ j ≤ n : Xj ∈ OΓ} .

For large n, on the complement of Ebad
n , Lemma 3.42 guarantees that each OΓ, Γ ∈ Mn satisfying

OΓ ∩ Rpair
n 6= ∅ contains the same numbers of critical points and roots of pn(z). Consequently, we

can choose σn so that for each Γ ∈MΓ satisfying OΓ ∩Rpair
n 6= ∅, we have

σ(SΓ) =
{

1 ≤ j ≤ n− 1 : w
(n)
j ∈ OΓ

}
(recall that OΓ, Γ ∈ Mn are pairwise disjoint). For the remaining indices whose images under σn

we haven’t specified, arbitrarily assign them from among the remaining choices. (There is at least

one index 1 ≤ i ≤ n for which σn(i) is still undefined because the number of roots and critical

points of pn(z) differs by 1. Recall that we have added w
(n)
n = X to account for this fact.)
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Based on our construction of σn, Lemma 3.42 also implies that for large n, on the complement

of Ebad
n , ∣∣∣Xj − w(n)

σn(j)

∣∣∣ ≤ (log n)4

n |mµ(Xj)|
,

for each j, 1 ≤ j ≤ n, such that Xj ∈ Rpair
n . (Indeed, Xj ∈ Rpair

n implies that Xj ∈ OΓ for some

Γ ∈ Mn.) By the Gauss–Lucas theorem, each critical point (and each root) of pn(z) is in the

convex hull of the set {Xj}nj=1 of roots of pn(z). Consequently, for any Xj /∈ Rpair
n , we have the

trivial bound ∣∣∣Xj − w(n)
σn(j)

∣∣∣ ≤ 2ηn.

It follows, for large n, on the complement of Ebad
n , that

n ·W1(µn, µ̃
′
n)

≤
∑

j:Xj /∈Rpair
n

∣∣∣Xj − w(n)
σn(j)

∣∣∣+
∑

j:Xj∈Rpair
n

(log n)4

n |mµ(Xj)|

≤
(
N b4 log(logn)c
n +N b4 log(logn)c+1

n

)
2ηn

+

blog(
√
n)c∑

k=b4 log(logn)c+2

∑
j:Xj∈Akn

(log n)4

n |mµ(Xj)|
+ n · (log n)4√n

neblog(
√
n)c

<
(

2Cµe
2b4 log(logn)c log(log n) + 2Cµe

2b4 log(logn)c+2 log(log n)
)

2ηn

+

blog(
√
n)c∑

k=b4 log(logn)c+2

Nk
n ·

(log n)4√n
nek−1

+
(log n)4√n
eblog(

√
n)c

≤ 2Cµ log(log n)

e8 log(logn)(1 + e2) · 2ηn +

blog(
√
n)c∑

k=b4 log(logn)c+2

e2k · (log n)4√n
nek−1


+

(log n)4√n
eblog(

√
n)c

≤ 2Cµ log(log n)

4e2ηn(log n)8 +
e(log n)4

√
n

blog(
√
n)c∑

k=1

ek

+
e(log n)4√n√

n

�µ (log n)9ηn + (log n)6.

To complete the proof of Lemma 3.48, recall that P(Ebad
n ) = o(1), and observe that with probability

1− o(1), ηn log n ≥ 1.
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We conclude this subsection by remarking that Theorem 3.3 follows from Lemmas 3.33, 3.47,

and 3.48 and the triangle inequality for the L1-Wasserstein metric.
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Appendix A

A heavy-tailed CLT

In this subsection, we prove Theorem A.1, a CLT for “heavy-tailed” random variables that

have the same distribution as Y := 1
ξ−X , where X ∼ µ and µ has a continuous density f in a neigh-

borhood of ξ. Notice that E |Y |p < ∞ for p ∈ [0, 2), but E |Y |2 = ∞. Many results demonstrate

that Y is in the domain of attraction of a normal random variable (see e.g. Section XVII.5 in [16],

Theorem 11 in Section 6.4 of [18], and Theorem 3.10 in [44]), however, our implementation of The-

orem A.1 requires specific information about the parameters of the limiting normal distribution;

we include an explicit statement and proof for clarity.

Theorem A.1. Let X1, X2, . . . be iid, complex-valued random variables with common distribution

µ, fix s, k ∈ N, and suppose ξ1, . . . , ξs, t1, . . . , tk ∈ C are deterministic values with ξ1, . . . , ξs distinct.

In addition, assume that µ has a bounded density f in a neighborhood of each ξl, 1 ≤ l ≤ s, that is

continuous at these points. Then,

1√
n log n

n∑
j=1

s∑
k=1

tk

[
1

ξk −Xj
−mµ(ξ)

]
−→ N

in distribution as n → ∞, where N is a complex random variable with mean zero whose real and

imaginary parts have a joint Gaussian distribution that has covariance matrix

Σ :=

s∑
k=1

π |tk|2 f(ξk)

2
I. (A.1)

(Here, I denotes the 2× 2 identity matrix.)

Proof. We proceed by Lindeberg’s exchange method [31]. (See also [8]. Similar methods have been

applied to problems in random matrix theory; see e.g. [56], [57].) To that end, let N,N1, N2, . . . be
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a sequence of iid complex random variables independent of {Xj}, whose components have a joint

Gaussian distribution with mean zero and covariance matrix Σ, defined in (A.1), and let g : C→ R

be a smooth test function with compact support. We will show that∣∣∣∣∣∣E
g
 1√

n log n

n∑
j=1

s∑
k=1

tk

[
1

ξk −Xj
−mµ(ξk)

]− E

g
 1√

n

n∑
j=1

Nj

∣∣∣∣∣∣→ 0, (A.2)

as n → ∞, which implies convergence of the corresponding measures in the vague topology. Con-

vergence in distribution follows because for each n, n−1/2
∑n

j=1Nj has the same distribution as the

random variable N . (See e.g. Exercise 1.1.25 of [53], pages 23-33.)

Since the random variables
∑s

k=1
tk

ξk−Xj are heavy-tailed, we initially need to truncate them.

Let ε ∈ (0, 1) be fixed, and define

ζj :=

s∑
k=1

tk
ξk −Xj

1{|ξk−Xj |−1<ε
√
n logn},

ζ̃j := ζj − E[ζj ].

(Be aware that this notation suppresses the dependence of ζj and ζ̃j on ε and n.)

Lemma A.2. There is a constant Cµ,s,~t > 0, depending only on µ, s, and t1, . . . , tk, and there is

a natural number Kµ,g,ε so that n ≥ Kµ,g,ε implies∣∣∣∣∣∣E
g
 1√

n log n

n∑
j=1

ζ̃j

− E

g
 1√

n

n∑
j=1

Nj

∣∣∣∣∣∣ ≤ Cµ,s,~tε.

Proof. By Taylor’s theorem applied to the Taylor series for g centered at

A1,n :=
1√

n log n

n∑
j=2

ζ̃j ,

we have

g

 1√
n log n

n∑
j=1

ζ̃j

 = g (A1,n) +
gx (A1,n)√
n log n

Re
(
ζ̃1

)
+
gy (A1,n)√
n log n

Im
(
ζ̃1

)
+
gxx (A1,n)

2n log n
Re
(
ζ̃1

)2
+
gyy (A1,n)

2n log n
Im
(
ζ̃1

)2

+
gxy (A1,n)

n log n
Re
(
ζ̃1

)
Im
(
ζ̃1

)
+R3

 1√
n log n

n∑
j=1

ζ̃j

 ,
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where ∣∣∣∣∣∣R3

 1√
n log n

n∑
j=1

ζ̃j

∣∣∣∣∣∣ ≤ 8 · Cg
2! · (n log n)3/2

∣∣∣ζ̃1

∣∣∣3 ,
and Cg is any constant that is an upper bound for the mixed partial derivatives of g up to and

including order three (which are compactly supported and thus bounded). Taking the expectation

of both sides yields (by independence and the fact that ζ̃j are centered)

E

g
 1√

n log n

n∑
j=1

ζ̃j


= E[g(A1,n)] +

E[gxx (A1,n)]

2n log n
E
[
Re
(
ζ̃1

)2
]

+
E[gyy (A1,n)]

2n log n
E
[
Im
(
ζ̃1

)2
]

+
E[gxy (A1,n)]

n log n
E
[
Re
(
ζ̃1

)
Im
(
ζ̃1

)]
+ E

R3

 1√
n log n

n∑
j=1

ζ̃j

 .
Similarly, we have

E

g
N1√

n
+

1√
n log n

n∑
j=2

ζ̃j


= E[g(A1,n)] +

E[gxx (A1,n)]

2n
E
[
Re (N1)2

]
+

E[gyy (A1,n)]

2n
E
[
Im (N1)2

]
+

E[gxy (A1,n)]

n
E [Re (N1) Im (N1)] + E

R3

N1√
n

+
1√

n log n

n∑
j=2

ζ̃j

 ,
where ∣∣∣∣∣∣R3

N1√
n

+
1√

n log n

n∑
j=2

ζ̃j

∣∣∣∣∣∣ ≤ 8 · Cg
2! · n3/2

|N1|3 .

The difference between these two equations is bounded by∣∣∣∣∣∣E
g
 1√

n log n

n∑
j=1

ζ̃j

− E

g
N1√

n
+

1√
n log n

n∑
j=2

ζ̃j

∣∣∣∣∣∣
≤ Cg

2n

∣∣∣∣ 1

log n
E
[
Re(ζ̃1)2

]
− E

[
Re (N1)2

]∣∣∣∣
+
Cg
2n

∣∣∣∣ 1

log n
E
[
Im(ζ̃1)2

]
− E

[
Im (N1)2

]∣∣∣∣
+
Cg
n

∣∣∣∣ 1

log n
E
[
Re(ζ̃1) Im(ζ̃1)

]
− E [Re (N1) Im (N1)]

∣∣∣∣
+

4Cg

(n log n)3/2
E
[∣∣∣ζ̃1

∣∣∣3]+
4Cg

n3/2
E
[
|N1|3

]
.
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If we continue, for 2 ≤ k ≤ n, the process of computing the second order Taylor polynomials of g

centered at

Ak,n :=
1√
n

k−1∑
j=1

Nj +
1√

n log n

n∑
j=k+1

ζ̃j

and evaluating them at both

1√
n

k−1∑
j=1

Nj +
1√

n log n

n∑
j=k

ζ̃j and
1√
n

k∑
j=1

Nj +
1√

n log n

n∑
j=k+1

ζ̃j ,

we find that ∣∣∣∣∣∣E
g
 1√

n

k−1∑
j=1

Nj +
1√

n log n

n∑
j=k

ζ̃j


− E

g
 1√

n

k∑
j=1

Nj +
1√

n log n

n∑
j=k+1

ζ̃j

∣∣∣∣∣∣
≤ Cg

2n

∣∣∣∣ 1

log n
E
[
Re(ζ̃k)

2
]
− E

[
Re (Nk)

2
]∣∣∣∣

+
Cg
2n

∣∣∣∣ 1

log n
E
[
Im(ζ̃k)

2
]
− E

[
Im (Nk)

2
]∣∣∣∣

+
Cg
n

∣∣∣∣ 1

log n
E
[
Re(ζ̃k) Im(ζ̃k)

]
− E [Re (Nk) Im (Nk)]

∣∣∣∣
+

4Cg

(n log n)3/2
E
[∣∣∣ζ̃k∣∣∣3]+

4Cg

n3/2
E
[
|Nk|3

]
.

Now, repeatedly applying the triangle inequality and using the fact that the ζ̃j and Nj are iid gives

∣∣∣∣∣∣E
g
 1√

n log n

n∑
j=1

ζ̃j

− E

g
 1√

n

n∑
j=1

Nj

∣∣∣∣∣∣
≤ Cg

2

∣∣∣∣ 1

log n
E
[
Re(ζ̃1)2

]
− E

[
Re (N)2

]∣∣∣∣
+
Cg
2

∣∣∣∣ 1

log n
E
[
Im(ζ̃1)2

]
− E

[
Im (N)2

]∣∣∣∣
+ Cg

∣∣∣∣ 1

log n
E
[
Re(ζ̃1) Im(ζ̃1)

]
− E [Re (N) Im (N)]

∣∣∣∣
+

4Cg

log n
√
n log n

E
[∣∣∣ζ̃1

∣∣∣3]+
4Cg√
n
E
[
|N |3

]
.

(A.3)

In order to establish Lemma A.2, we need to show that each of the terms on the right side of (A.3)

is dominated by ε as n→∞. It is in these computations that we use the fact that f is continuous at
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ξ1, . . . , ξs. To take advantage of this hypothesis, fix η > 0, and note that there is a δ = δ(η) > 0 such

that δ < 1
2 min1≤k<l≤s |ξk − ξl| and for which |z − ξk| < δ implies |f(z)− f(ξk)| < η for 1 ≤ k ≤ s.

We have

E
[
Re2(ζ̃1)

]
= E

[
Re2(ζ1)

]
− (E [Re(ζ1)])2 ≤ E

[
Re2(ζ1)

]
≤ E

[
Re2

(
s∑

k=1

tk
ξk −X1

)
s∏

k=1

1|ξk−X1|≥δ

]

+
s∑

k=1

E

Re2

(
s∑
l=1

tl
ξl −X1

)
11/(ε

√
n logn<|ξk−X1|<δ

∏
l 6=k

1|ξl−X1|≥δ


≤

(
s∑

k=1

|tk|
δ

)2

+

s∑
k=1

E
[
Re2

(
tk

ξk −X1

)
11/(ε

√
n logn<|ξk−X1|<δ

]

+ 2

s∑
k=1

∑
l 6=k

|tl|
δ
E
∣∣∣∣ tk
ξk −X1

∣∣∣∣+

s∑
k=1

∑
l 6=k

|tl|
δ

2

,

where the last inequality follows from the fact that

Re2(z + w) = Re2(z) + 2 Re(z) Re(w) + Re2(w) ≤ Re2(z) + 2 |z| |w|+ |w|2 .

Since E
∣∣∣ 1
ξk−X1

∣∣∣ is bounded by a constant that depends only on µ (see Lemma 3.26), there is a

constant Cs,~t,δ depending on s, t1, . . . , ts and δ so that, continuing from above,

E
[
Re2(ζ̃1)

]
≤ Cs,~t,δ +

s∑
k=1

E
[

Re2((ξk −X1)/tk)

|(ξk −X1)/tk|4
11/(ε

√
n logn)<|ξk−X1|<δ

]

≤ Cs,~t,δ +

s∑
k=1

(f(ξk) + η) |tk|2
∫ 2π

0

∫ δ/|tk|

1/(|tk|ε
√
n logn)

r2 cos2 θ

r4
r dr dθ

≤ Cs,~t,δ +

s∑
k=1

π(f(ξk) + η) |tk|2 log(δε
√
n log n).

Dividing both sides by log n yields

1

log n
E
[
Re2(ζ̃1)

]
≤

s∑
k=1

|tk|2
π(f(ξ) + η)

2
+ o(1). (A.4)
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On the other hand, similar to above,

E
[
Re2(ζ̃1)

]
= E

[
Re2(ζ1)

]
− (E [Re(ζ1)])2

≥
s∑

k=1

E

Re2

(
s∑
l=1

tl
ξl −X1

)
11/(ε

√
n logn<|ξk−X1|<δ

∏
l 6=k

1|ξl−X1|≥δ

− o(log n)

≥
s∑

k=1

E
[

Re2((ξk −X1)/tk)

|(ξk −X1)/tk|4
11/(ε

√
n logn)<|ξ−X1|<δ

]
− o(log n)

≥
s∑

k=1

(f(ξk)− η) |tk|2
∫ 2π

0

∫ δ/|tk|

1/(|tk|ε
√
n logn)

r2 cos2 θ

r4
r dr dθ − o(log n)

≥
s∑

k=1

π(f(ξk)− η) |tk|2 log(δε
√
n log n)− o(log n),

and dividing by log n yields

E
[
Re2(ζ̃1)

]
log n

≥
s∑

k=1

π(f(ξk)− η) |tk|2

2
− o(1). (A.5)

If we combine inequalities (A.4) and (A.5) and first take lim supn→∞ (respectively lim infn→∞) of

both sides and then take η → 0, we see that

lim
n→∞

1

log n
E
[
Re2(ζ̃1)

]
=

s∑
k=1

πf(ξk) |tk|2

2
= E[Re2(N)]. (A.6)

(Note here that f is bounded, and by Lemma 3.26, the expectation of |ξ −X1|−1 is uniformly

bounded, so the limit in n is uniform in ξ.) Nearly identical arguments to the one just made show

that

lim
n→∞

1

log n
E
[
Im2(ζ̃1)

]
=

s∑
k=1

πf(ξk) |tk|2

2
= E[Im2(N)] (A.7)

and

lim
n→∞

1

log n
E
[
Re(ζ̃1) Im(ζ̃1)

]
= 0 = E[Re(N) Im(N)], (A.8)

with the only modification being that to achieve upper and lower bounds for E
[
Re(ζ̃1) Im(ζ̃1)

]
, one

needs to consider separately the cases where the integrand is positive and negative.

In our quest to prove Lemma A.2, we next show that

lim sup
n→∞

1

log n
√
n log n

E
[∣∣∣ζ̃1

∣∣∣3] ≤ Oµ,s,~t(ε). (A.9)
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Note that

E
[∣∣∣ζ̃1

∣∣∣3] ≤ 2 · E
[
|ζ1|3

]
+ 6 · E

[
|ζ1|2

]
· E |ζ1| ≤ 8ε

√
n log n

s∑
k=1

|tk|E
[
|ζ1|2

]
,

where the last inequality comes from using the fact that, almost surely, |ζ1| ≤ ε
√
n log n

∑s
k=1 |tk|.

Choose δ1 > 0 so that δ1 <
1
2 min1≤k<l≤s |ξk − ξl| and that for |z − ξk| < δ1, 1 ≤ k ≤ s, we have

|f(z)− f(ξk)| < 1. Then, it follows that for n large enough to ensure 1
ε
√
n logn

≤ δ1,

E
[∣∣∣ζ̃1

∣∣∣3]
log n

√
n log n

≤
s∑

k=1

8ε |tk|
log n

E
[
|ζ1|2

]

≤
s∑

k=1

8ε |tk|
log n

E

( s∑
k=1

tk
ξk −X1

)2 s∏
k=1

1|ξk−X1|≥δ1


+

s∑
k=1

E

( s∑
l=1

tl
ξl −X1

)2

11/(ε
√
n logn<|ξk−X1|<δ

∏
l 6=k

1|ξl−X1|≥δ1


≤

s∑
k=1

8ε |tk|
log n

(
s∑
l=1

|tk|
δ1

)2

+
s∑

k=1

8ε |tk|
log n

s∑
l=1

E

[∣∣∣∣ tl
ξl −X1

∣∣∣∣2 11/(ε
√
n logn<|ξl−X1|<δ1

]

+

s∑
k=1

8ε |tk|
log n

 s∑
l=1

2E
∣∣∣∣ tl
ξl −X1

∣∣∣∣∑
j 6=l

|tj |
δ1

+

s∑
l=1

∑
j 6=l

|tj |
δ1

2 ,

where we have used the fact that

|z + w|2 ≤ |z|2 + 2 |z| |w|+ |w|2 .

Continuing from above, where the second sum is the only one of non-negligible order, we have

1

log n
√
n log n

E
[∣∣∣ζ̃1

∣∣∣3]
≤

s∑
k=1

8ε |tk|
log n

s∑
l=1

E

[∣∣∣∣ tl
ξl −X1

∣∣∣∣2 11/(ε
√
n logn<|ξl−X1|<δ1

]
+ o(1)

≤
s∑

k,l=1

8ε |tk|
log n

8ε(f(ξl) + 1) |tl|2
∫ 2π

0

∫ δ1

1/(ε
√
n logn)

1

r2
r dr dθ + o(1)

=
s∑

k,l=1

16πε(f(ξl) + 1) |tk| |tl|2 log(δ1ε
√
n log n)

log n
+ o(1)
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and taking lim supn→∞ establishes (A.9). We conclude the proof of Lemma A.2 by combining

equations (A.3), (A.6), (A.7), (A.8), and (A.9) in view of the facts that |N | has a finite third

moment and f(z) and ε are bounded.

In order to establish (A.2), we still need to remove the truncation, which we will accomplish

through a series of interpolations. We have

1√
n log n

n∑
j=1

s∑
k=1

tk

(
1

ξk −Xj
−mµ(ξk)

)

=
1√

n log n

n∑
j=1

(
s∑

k=1

tk
ξk −Xj

− ζj

)
+

1√
n log n

n∑
j=1

ζ̃j

+
1√

n log n

n∑
j=1

(
E[ζj ]−

s∑
k=1

tkmµ(ξk)

)
.

For n large enough to guarantee that the density, f , is well-defined and bounded by a constant,

Cf , on
s⋃

k=1

B

(
ξk,

1

ε
√
n log n

)
,

it follows that

E

∣∣∣∣∣∣ 1√
n log n

n∑
j=1

(
s∑

k=1

tk
ξk −Xj

− ζj

)∣∣∣∣∣∣ and

∣∣∣∣∣∣ 1√
n log n

n∑
j=1

(
E[ζj ]−

s∑
k=1

tkmµ(ξk)

)∣∣∣∣∣∣
are both less than

n√
n log n

s∑
k=1

|tk|E
[

1

|ξk −X1|
1|ξk−X1|−1≥ε

√
n logn

]

≤
nsmax1≤k≤s |tk| · Cf√

n log n

∫ 2π

0

∫ 1/(ε
√
n logn)

0

1

r
r dr dθ

≤
nsmax1≤k≤s |tk| · Cf√

n log n

2π

ε
√
n log n

= o(1).

Consequently,

E

∣∣∣∣∣∣ 1√
n log n

n∑
j=1

s∑
k=1

tk

(
1

ξ −Xj
−mµ(ξ)

)
− 1√

n log n

n∑
j=1

ζ̃j

∣∣∣∣∣∣ = o(1).
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We can take advantage of the fact that g is Lipshitz (indeed, g is smooth with compact support,

so it has bounded partial derivatives), to obtain

E

∣∣∣∣∣∣g
 1√

n log n

n∑
j=1

s∑
k=1

tk

(
1

ξ −Xj
−mµ(ξ)

)− g
 1√

n log n

n∑
j=1

ζ̃j

∣∣∣∣∣∣ = o(1).

Lemma A.2 now implies that for n larger than a constant depending on µ, g, ε, s, and t1, . . . , ts,∣∣∣∣∣∣E
g
 1√

n log n

n∑
j=1

s∑
k=1

tk

[
1

ξ −Xj
−mµ(ξ)

]− E

g
 1√

n

n∑
j=1

Nj

∣∣∣∣∣∣
≤

∣∣∣∣∣∣E
g
 1√

n log n

n∑
j=1

ζ̃j

− E

g
 1√

n

n∑
j=1

Nj

∣∣∣∣∣∣+ o(1)

= Oµ,s,~t,g(ε),

so taking ε → 0 yields equation (A.2). The conclusion of Theorem A.1 follows since our choice of

g was arbitrary.


