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The change, reduction, or extinction of species is a major issue currently facing the Earth. Efforts 

are underway to measure, monitor, and protect habitats that contain high species diversity. Remote 

sensing technology shows extreme value for monitoring species diversity by mapping ecosystems and 

using those land cover maps or other derived data as proxies to species number and distribution. The 

National Ecological Observatory Network (NEON) Airborne Observation Platform (AOP) consists of 

remote sensing instruments such as an imaging spectrometer, a full-waveform lidar, and a high-resolution 

color camera. AOP collected data over the Ordway-Swisher Biological Station (OSBS) in May 2014. A 

majority of the OSBS site is covered by the Sandhill ecosystem, which contains a very high diversity of 

vegetation species and is a native habitat for several threatened fauna species. The research presented here 

investigates ways to analyze the AOP data to map ecosystems at the OSBS site. The research attempts to 

leverage the high spatial resolution data and study the variability of the data within a ground plot scale 

along with integrating data from the different sensors. Mathematical features are derived from the data 

and brought into a decision tree classification algorithm (rpart), in order to create an ecosystem map for 

the site. The hyperspectral and lidar features serve as proxies for chemical, functional, and structural 

differences in the vegetation types for each of the ecosystems. K-folds cross validation shows a training 

accuracy of 91%, a validation accuracy of 78%, and a 66% accuracy using independent ground validation. 

The results presented here represent an important contribution to utilizing integrated hyperspectral and 

lidar remote sensing data for ecosystem mapping, by relating the spatial variability of the data within a 

ground plot scale to a collection of vegetation types that make up a given ecosystem. 
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CHAPTER I 

SCIENCE BACKGROUND 

 

Human actions are affecting biological diversity, species composition, and ecosystem structure 

and function (Maestre et al., 2012; NRC, 2003; Vitousek et al., 1997). Land use changes and the spread of 

invasive species are occurring on unprecedented levels leading to shifts in abundances of species and 

decreases in biodiversity, which are vital to ecosystem functioning and ecosystem services (Maestre et al., 

2012; NRC, 2003; Schimel, Asner, & Moorcroft, 2013). Comprehensive biodiversity observation efforts 

have been proposed with the desire for standardized observations across taxonomic groups and spatially 

detailed data collection across a range of ecoclimatic regions in order to collect a baseline global 

inventory of life on Earth, construct ecological forecasting models, and monitor changes with time due to 

land use and climate change (Schimel et al., 2013). The first section of this chapter describes the concepts 

of biodiversity, biodiversity monitoring efforts, and reviews the National Research Council (NRC) Grand 

Challenges in Environmental Sciences which lists biological diversity and ecosystem functioning as a 

grand challenge. 

 

Remote sensing is an extremely powerful tool for biodiversity monitoring. Instruments can make 

global, repeated measurements of land cover and vegetation (Strand et al., 2007a; Schimel et al., 2013; 

Turner et al., 2003). Remote sensing can measure the environmental and climate parameters (drivers of 

biological change) necessary to estimate species richness, species distributions, and community structure 

(Turner et al., 2003; Turner, 2014). Long-term monitoring of climate, ecosystem processes, and 

degradation or disturbance of ecosystems can also be used to determine the effect on biodiversity (Rose et 

al., 2015). The second section of this chapter discusses the benefits and limitations of remote sensing of 
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biodiversity including: mapping of species, land cover, vegetation traits, biodiversity through spectral 

proxies, and the creation of biodiversity indicators for conservation efforts.  

 

Biodiversity is a major component of the terrestrial and aquatic sampling of the National 

Ecological Observatory Network (NEON), described in the third section of this chapter. Remote sensing 

data are collected by another component of NEON, the Airborne Observation Platform (AOP). NEON 

remote sensing products and ground truth vegetation species lists are used as the data sources for this 

research. 

 

Importance of Biodiversity and Biodiversity Monitoring 

 

Key climate and environmental parameters drive the distribution and abundance of species across 

landscapes (Turner et al., 2003). This correlation is used to generate species environmental niche models. 

Climate change affects ecosystems by causing shifts in species ranges, fostering pests and pathogens, 

altering fire disturbance regimes, changing migration patterns, and causing species extinctions (Strittholt 

& Steininger, 2007). In the boreal forests for example, recent observations have seen an increase in the 

growing season length and annual primary productivity, tree line expansion to the north, and an increase 

in fire frequency and intensity (Strittholt & Steininger, 2007). 

 

In addition to climate, assemblages of species are also influenced by topography, soils, 

hydrology, species interactions, dispersal limitation, disturbance history, and human land use patterns 

(Colwell, 2009). Human actions are affecting biological diversity, species composition, and ecosystem 
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structure and function (Maestre et al., 2012; NRC, 2003; Vitousek et al., 1997). Human land management 

such as urbanization, silviculture, agriculture, grazing, fire-suppression, habitat fragmentation, etc. has led 

to shifts in abundances of species and decreases in biodiversity (NRC, 2003). Destruction and 

fragmentation of natural habitats is a major driver in the global decline of biodiversity (Strittholt & 

Steininger, 2007). The spread of invasive species is accelerated by adjacent land uses, roads, edges 

around forests, and the declining size of forest fragments (Strittholt & Steininger, 2007). Highly 

fragmented landscapes may also prevent some species from moving with corresponding changes in 

climate, leading to their ultimate extinction (Schimel et al., 2013). Species diversity is vital to ecosystem 

functioning and providing ecosystem services to humans (Maestre et al., 2012; NRC, 2003). 

 

Biodiversity Concepts 

 

Biodiversity is a conjunction of biological diversity and was first coined in 1985 by Walter G 

Rosen during planning of the “1986 National Forum on BioDiversity” (Harper & Hawksworth, 1995, p. 

6). The United Nations Environmental Programme definition is:  

“Biodiversity is the variety of life on Earth. It includes diversity at the genetic level, such as that 

between individuals in a population or between plant varieties, the diversity of species, and the diversity 

of ecosystems and habitats” (UNEP, 2007, p. 160).  

Species form characteristic groupings, are associated with particular geographic localities, and are shaped 

by regional processes (Magurran, 2004). Ecological communities include interacting and interdependent 

constituent species (Magurran, 2004; Turner et al., 2003). The Florida Natural Areas Inventory (FNAI) 

defines a natural community as, “a distinct and recurring assemblage of populations of plants, animals, 

fungi and microorganisms naturally associated with each other and their physical environment” (FNAI, 
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2010, p. 2). Anne Magurran defines biodiversity in a more relevant definition with regards to this research 

as, “the variety and abundance of species in a defined unit of study” (Magurran, 2004, p. 8). For subsets 

of taxa, some experts use the term “assemblage” instead of “community,” where assemblages consist of 

phylogenetically related members of a community (Fauth et al., 1996; Magurran, 2004). Community is 

believed to be a natural study unit (Harper & Hawksworth, 1995) and this research focuses on 

assemblages of vegetation in a community. 

 

Biodiversity is typically measured on three levels (Harper & Hawksworth, 1995; Magurran, 2004; 

Norse, 1986): 

 Genetic diversity (within species) 

 Species or organismal diversity (species number) 

 Ecological diversity (community) 

 

When it comes to species or organismal diversity, indices or metrics are calculated at three levels 

of complexity (Gotelli & Chao, 2013; Harper & Hawksworth, 1995): 

 Species richness: number of species 

 Species diversity: richness and relative abundance (individuals, biomass, or % cover) 

 Phylogenetic, taxonomic, and functional diversity 

 

The simplest measure of species diversity is species richness or the number of species of a 

particular taxon that characterize a particular biological community (Colwell, 2009). This measure allows 

the comparison of the number of species observed in a unit of study against other locations (of the same 
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unit size) or as a function of time in the same location. The higher the number of species observed, the 

higher the diversity. Measurement of species richness follows one of the fundamental rules of ecology, 

the species-area curve (Gotelli, 2008): 

𝑆 = 𝑐𝐴𝑧, 

Where S is the number of species, A is the area, and c and z are fitted constants. According to this 

equation, the larger the observation unit, the more species that will be observed. When a large enough 

area is sampled, the species-area curves reaches an asymptote of the value of the total number of species 

in the community. Species richness is often used in efforts to preserve biodiversity due to its simplicity, 

where species losses can occur from extinction and species increases can reflect introductions or range 

shifts of species driven by climate change or anthropogenic causes (Gotelli & Chao, 2013). 

 

A more complicated measure of species diversity includes abundance (evenness) along with 

species richness (Magurran, 2004; Colwell, 2009). Most individuals in a community typically belong to a 

few common species (Colwell, 2009). These uneven distributions dominated by a few species have less 

diversity than even distributions with equal abundances of all species present. Species richness alone 

cannot capture this level of variability. Conservation biologists use relative abundance to identify rare 

species that are more vulnerable to extinction (Colwell, 2009). Species diversity metrics or indices are 

mathematical functions that combine richness and evenness into a single measure (Colwell, 2009). Two 

widely used nonparametric methods are the Shannon entropy  

𝐻𝑆ℎ = − ∑ 𝑝𝑖𝑙𝑜𝑔𝑝𝑖

𝑆

𝑖=1
, 

and the Gini-Simpson index 

𝐻𝐺𝑆 = 1 − ∑ 𝑝𝑖
2

𝑆

𝑖=1
, 
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where S is the number of species in an assemblage and pi is the ith species relative abundance. For a given 

pattern of evenness, both measures increase as richness increases and for a given richness level, both 

increase as evenness increases, though the Simpson index is more sensitive to evenness (Colwell, 2009). 

 

The third and most advanced measure of species diversity takes into account phylogenetic, 

taxonomic, and/or functional diversity. These measures are more than just species number and abundance 

but put a weight on how related species are (Harper & Hawksworth, 1995). Many studies care about the 

variety and number of species that fulfill different functional roles (Colwell, 2009). For instance, an 

ecosystem may have a uniform distribution of a large number of species but would not be as diverse if 

they are all functionally similar to each other.  

 

Biodiversity is a comparative science where an analysis might seek to determine if an area is 

more diverse than another or if diversity has changed over time (Magurran, 2004). Caution is required 

when comparing different diversity estimates (such as species number against biomass) or different units 

of observation (Magurran, 2004). Species area curves need to be adjusted using rarefaction in order to 

compare species numbers for different measurement areas (Gotelli & Chao, 2013). Diversity comparison 

measures are commonly categorized into alpha, beta, and gamma diversity. Alpha diversity studies the 

local diversity in a spatially defined unit (Colwell, 2009; Magurran, 2004). Species richness, Shannon 

entropy, and the Simpson index are all measures of alpha diversity. Beta diversity compares differences in 

the compositional diversity between areas of alpha diversity to look for species overlap or distinctness 

(Gotelli & Chao, 2013; Magurran, 2004). This could be a comparison of two sample areas in the same 

community or between two different habitats (Colwell, 2009). A more sophisticated set of measures such 

as biotic similarity is utilized to compare multiple assemblages (Gotelli & Chao, 2013). Finally, gamma 

diversity analyzes regional diversity for an entire landscape (Colwell, 2009). 
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Biodiversity Monitoring Efforts 

 

Biodiversity raises many science questions but a few relevant ones are (Dahlin, Asner, & Field, 

2013; NRC, 2001; Schimel et al., 2013; Strand, Fosnight, Herkenrath, & Höft, 2007b; Turner et al., 

2003): 

 What drives species distribution and diversity? 

 How and why do communities vary across space and time? 

 Why are some areas species rich? 

 Why do some have high levels of species endemism? 

 How does land use change affect biodiversity? 

 What is the sensitivity of species to environmental change? 

 What is the relationship between biodiversity and ecosystem structure and functioning? 

 

Observations of biodiversity attempt to answer these questions. However, field surveys can be 

flawed due to preferential treatment or weight towards certain taxa, rare species, specialists, or species 

with lots of genetic diversity. Other issues include: gaps in surveys; too small of study areas due to the 

time consuming and expensive realities of field work; and the need for taxonomical experts (Harper & 

Hawksworth, 1995; Magurran, 2004). Site based studies are highly variable due to disturbance, 

competition, predation, etc. so regional and global studies are required to truly understand trends in 

species ranges (Schimel et al., 2013). 
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Several biodiversity observation monitoring efforts have been proposed with the desire for 

standardized observations across taxonomic groups and spatially detailed data collection across a range of 

ecoclimatic regions. In the US, a series of workshops was held to discuss the concept of a Biodiversity 

Observation Network (NSF, 1998; NSF, 1999a; NSF, 1999b; NSF, 1999c), which was incorporated as a 

major component into the science design of the National Ecological Observatory Network (AIBS, 2004; 

NRC, 2003; Schimel et al., 2011), as discussed further in the third section of this chapter. Internationally, 

GEO BON – the Group on Earth Observations Biodiversity Observation Network (GEOBON, 2015) is 

working toward improving, coordinating, and standardizing the collection of biodiversity data and 

delivery of information to decision makers. GEOBON has identified a minimum candidate list of 

essential biodiversity variables (EBV) that capture the dimensions of biodiversity and are to be measured 

as part of the biodiversity monitoring efforts including: genetic composition, species population, species 

traits, community composition, ecosystem structure, and ecosystem function (Pereira et al., 2013). The 

EBVs address some of the Aichi Biodiversity Targets (CBD, 2015a) under the United Nations 

Convention of Biological Diversity (CBD, 2003; CBD, 2015b) as part of the Decade on Biodiversity 

(CBD, 2015c) to reduce the rate of biodiversity loss. Comprehensive biodiversity observation efforts are 

required now to collect a baseline global inventory of life on Earth, construct ecological forecasting 

models, and monitor changes with time due to land use and climate change (Schimel et al., 2013). 

 

NRC Grand Challenges in Environmental Sciences 

 

The National Research Council (NRC) formed a committee on behalf of the National Science 

Foundation (NSF) to identify grand challenges in environmental sciences (NRC, 2001). The committee 

expressed concern about the stresses placed on the biosphere and ecosystems by increases in human 
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population and economic development. Eight grand challenge areas were identified to the NSF to focus 

future funding to fill gaps in current understanding:  

 biogeochemical cycles, 

 biological diversity and ecosystem functioning, 

 climate variability, 

 hydrologic forecasting, 

 infectious disease and the environment, 

 institutions and resource use, 

 land-use dynamics, 

 and reinventing the use of materials. 

 

One desire is to better understand the factors affecting biological diversity and ecosystem 

structure and functioning and what role human activity plays. Many worry that habitat alteration or loss 

may cause ecosystems to be unable to support human needs or cause extinction of species. Important 

research areas include: 

 improving tools for rapid assessment of diversity at all scales, 

 producing a quantitative, process based theory, 

 understanding the relationship between diversity and ecosystem structure and functioning, 

 and developing and testing techniques for modifying, creating, and managing habitats that can 

sustain biological diversity. 

 

Land-use dynamics is also relevant with the desire to better understand how changes in land use 

and land cover may affect ecosystem functioning and services, or more specifically determine the 
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consequences of spatial changes in land use and land cover on biological diversity. Four primary science 

questions related to biological diversity can be formulated: 

 What factors affect biological diversity and ecosystem structure and functioning? 

 How does ecosystem structure and function relate to biodiversity? 

 How does biodiversity change with climate change, land use change, or invasive species? 

 What tools can we use to rapidly assess diversity at different spatial and temporal scales? 

 

The report identifies remote sensing as a valuable tool for its ability to generate global maps of 

ecosystem distribution which is critical information required to test and improve diversity models. 

Specifically remote sensing should be used to assess diversity and examine ecosystem characteristics. 

Remote sensing of biodiversity is discussed further in the next section. A series of workshops were held 

around the same time as the formulation of the Grand Challenges to discuss the idea of a National 

Ecological Observatory Network (NSF, 2010a; NSF, 2010b; NSF, 2010c; NSF, 2012a; NSF, 2012b; NSF, 

2012c), which is discussed in third section in this chapter. 

 

Remote Sensing of Biodiversity 

 

Global data is limited on key aspects of biodiversity such as species identity, species numbers, 

and ecosystem condition (Turner, 2014). Conservation policy calls for accurate and timely information 

(Rose et al., 2015), but extensive ground sampling takes too long and is too cost-preventative (Schimel et 

al., 2013). Satellite and airborne remote sensing are powerful technologies to monitor biodiversity as they 

are a more cost effective means to achieve regional and global coverage (Turner et al., 2003), can make 

repeated measurements across space and time (Turner, 2014), can measure change over large-scale 
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ecosystems (Strand et al., 2007a). Remote sensing can measure the environmental and climate parameters 

(drivers of biological change) necessary to estimate species richness, species distributions, and 

community structure (Turner et al., 2003; Turner, 2014). Long-term monitoring of climate, ecosystem 

processes, and degradation or disturbance of ecosystems can also be used to determine the effect on 

biodiversity (Rose et al., 2015). Remote sensing has been shown as an effective tool for environmental 

assessment and monitoring (Steininger & Horning, 2007), working across a range of ecosystems (Schimel 

et al., 2013), while increasing the speed and frequency to analyze landscapes in an objective and 

comprehensive assessment (Steininger & Horning, 2007). In the past decade, several books (Strand et al., 

2007a; Horning, Robinson, Sterling, Turner, & Spector, 2010), journal special issues (Asner, 2013; 

Rocchini, 2015), and workshops (Rose et al., 2015) have highlighted how remote sensing can be used for 

conservation of ecosystems and biodiversity. 

 

Multi sensor data has been identified as being extremely useful for ecosystem studies (Rose et al., 

2015). Several multi-modal airborne remote sensing platforms combine imaging spectrometers 

(hyperspectral data) with lidar instruments (3D structure) including the Carnegie Airborne Observatory 

(Asner et al., 2007; Asner et al., 2012); Goddard’s LiDAR, Hyperspectral, and Thermal Imager (Cook & 

Corp, 2012); the Airborne Prism Experiment (Schaepman et al., 2003, Schaepman et al., 2015); the 

Airborne Snow Observatory (JPL, 2015a); and the NEON Airborne Observation Platform (Kampe, 

Johnson, Kuester, & Keller, 2010; Kampe et al., 2011). The Airborne Observation Platform (AOP) is 

described in detail in the “Remote Sensing with the Airborne Observation Platform” Section. 
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Direct Versus Indirect Remote Sensing 

 

Remote sensing as applied to biodiversity studies can be grouped into one of two categories: 

either direct or indirect (Turner et al., 2003; Turner, 2014). With direct remote sensing, individual 

organisms, species assemblages, or ecological communities are identified in the data. Depending on the 

spatial resolution of the sensors, this can include detection of individual tree canopies, large mammals, or 

groups of birds from high resolution data. Alternatively, tree species can be identified by spectral analysis 

with hyperspectral data or time-series analysis of phenology (Turner et al., 2003). The methods and 

results presented in this research fall under the category of direct remote sensing of biodiversity through 

mapping of vegetation communities. 

 

With indirect remote sensing, climatic and environmental parameters are calculated from the 

remote sensing data and used as inputs into biodiversity models (Turner et al., 2003). Some commonly 

used environmental parameters include: climate and rainfall, geology, soil moisture, elevation, general 

land cover, habitat structure and topography, primary productivity, phenology, chlorophyll, and distance 

to manmade features (Turner et al., 2003; Steininger & Horning, 2007). Analysis of some species can be 

as simple as determining environmental limiting factors such as temperature, moisture and rainfall, or 

elevation (Turner et al., 2003). Another common approach is to correlate the variability in reflectance data 

(or derived indices) with field-based observations of vegetation diversity (White, Gómez, Wulder, & 

Coops, 2010). Previous studies have shown that areas of higher vegetation species diversity present as 

higher variability in the remote sensing data (Palmer et al., 2000; Palmer, Earls, Hoagland, White, & 

Wohlgemuth, 2002; Carlson, Asner, Hughes, Ostertag, & Martin, 2007). Either way, metrics or indices 

calculated from the remote sensing data are used as proxies for patterns of biodiversity (Turner et al., 

2003; Turner, 2014). 
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Land Cover Mapping 

 

Remote sensing is capable of global mapping of ecosystems, vegetation, and land use. The 

technology can also be used to analyze trends in extents of ecosystems, coverage of protected areas, 

threats to biodiversity, connectivity or fragmentation of ecosystems, trends in populations of select 

species, and human development (Strand et al., 2007a). Land cover mapping is an approach that typically 

tries to create a standard set of land classes that can be compared over large spatial extent and over time 

for change detection. A National Land Cover Database (NLCD) was created to “assess wall-to-wall, 

spatially explicit, national land cover changes and trends across the United States” (MRLC, 2015). NLCD 

maps are generated from remote sensing data at a spatial resolution of 30 m and contain 16 land cover 

classes for the continental U.S. (Fry et al., 2011): 

 Open Water 

 Perennial Ice/Snow  

 Developed-Open Space 

 Developed-Low Intensity 

 Developed-Med. Intensity 

 Developed-High Intensity 

 Barren Land 

 Deciduous Forest 

 Evergreen Forest 

 Mixed Forest 

 Shrub/Scrub 

 Grassland/Herbaceous 
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 Pasture/Hay 

 Cultivated Cropland 

 Woody Wetlands 

 Herbaceous Wetlands 

 

Only 7 of the classes represent natural landscapes and the forest descriptions are extremely 

generic. A National Vegetation Classification Standard (NVCS) was created and allows descriptions of 

vegetation cover over broad spatial scales with upper level global to continental, middle level 

subcontinental to regional, and lower level sub-regional to local descriptions (FGDC, 2008). Specifically 

the lower level descriptions are designed to capture plant alliance or association. Additionally, 

NatureServe has created a mid-scale classification scheme to describe ecological systems in the U.S. 

(Comer et al., 2003). For this research, a regional community classification system, the Florida Natural 

Areas Inventory (FNAI, 2010) is used and described in Chapter III. 

 

Even with specific ecosystem classes, land use land cover maps may not be adequate for 

answering certain biodiversity questions. For instance, other descriptive classes, individual species ids, 

and derived remote sensing data are required to identify natural forests versus industrial pine plantations 

(Strand et al., 2007b), differentiate natural open canopy versus degraded forests (Strittholt & Steininger, 

2007), and detect invasive species. Advances in remote sensing technology and algorithms have moved 

beyond basic mapping of vegetation distribution and have allowed the identification of individual species; 

characterization of structural, chemical, and functional traits; measurement of above ground biomass and 

carbon stocks; and detailed analyses of plant community composition, vegetation diversity (Asner, 2013; 

Schimel et al., 2013; Strittholt & Steininger, 2007; Turner et al., 2003). 
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Observations of Vegetation Chemical, Structural, and Functional Traits 

 

Reflectance as a function of wavelength has a distinct shape for vegetation. The reflectance 

values for each wavelength in the solar-reflective region are a combination of absorption and scattering. 

Airborne hyperspectral instruments measure the radiance at-sensor, which includes the sun as a light 

source, transmission and scattering in Earth’s atmosphere, and the reflectance of an object on the ground 

that is viewed by a detector element. The raw sensor data is calibrated to units of radiance and then an 

atmospheric correction algorithm can be applied to solve for the surface reflectance. Plant compound 

absorption occurs in discrete portions of the electromagnetic spectrum (Ollinger, 2011). Chlorophyll (Chl 

a and b) absorption in the blue and red wavelengths in the human visual range is the reason why plants are 

green (Ustin et al., 2009). Other plant pigments such as carotenoids and anthocyanins also absorb light at 

visible wavelengths (Ollinger, 2011). Scattering by leaves is dependent on the number and arrangement of 

cellular surfaces, and leaf area plus canopy structure influences multiple scattering (Asner, 1998; 

Ollinger, 2011). Absorption is low and scattering is high at near infrared wavelengths, which together 

with chlorophyll absorption in the red presents the classic “red edge” of vegetation curves. Healthy leaves 

are mostly water, where major water absorption features present in the shortwave infrared bands and 

moderately in the near infrared (Kokaly, Asner, Ollinger, Martin, & Wessman, 2009; Ollinger, 2011). 

Non-pigment leaf constituents such as nitrogen, proteins, lignin, and cellulose affect light absorption and 

also scattering indirectly through their influence on leaf/plant structure (Kokaly et al., 2009; Ollinger, 

2011). Figure 1 shows some reflectance curves of ground targets at Ordway-Swisher Biological Station. 
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Figure 1: Reflectance curves of ground targets showing absorption and scattering spectral traits 

 

Wavelengths with significant vegetation absorption and scattering are highlighted. The reflectance of bare 

sand is shown for comparison. 

 

Remote sensing can also be used to assess plant functional types such as conifers, broadleaved 

evergreens, deciduous trees, shrubs, and herbs (Ollinger, 2011; Schimel et al., 2013; Ustin & Gamon, 

2010). Many ecosystem process models rely on plant functional types (Dahlin et al., 2013). Spectral traits 

that can be derived from hyperspectral data include: chlorophyll, carotenoids, xanthophyll, anthocyanin, 

water content, carbon, nitrogen, phosphorus, lignin, cellulose, leaf area index, leaf mass per unit area 

(Asner, 1998; Asner & Martin, 2009; Asner, Martin, Ford, Metcalfe, & Liddell, 2009; Asner, Martin, 
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Anderson, & Knapp, 2015; Curran, 1989; Dahlin et al., 2013; Gamon, Peñulas, & Field, 1992; Gamon & 

Surfus, 1999; Kokaly et al., 2009; Martin, Plourde, Ollinger, Smith, & McNeil, 2008; Ollinger, 2011; 

Townsend, Foster, Chastain, & Currie, 2003; Townsend, Asner, & Cleveland, 2008; Ustin, Roberts, 

Gamon, Asner, & Green, 2004; Ustin et al., 2009; Ustin & Gamon 2010; Wessman, Aber, Peterson, & 

Melillo, 1988; Wessman, 1990). 

 

Lidar is an active remote sensing instrument that directly measures the 3D distribution of 

vegetation canopies and ground topography by emitting a laser pulse and then recording the received 

return signal as a function of time. Using lidar as a range-finder, structural traits that can be derived from 

lidar data include: vegetation height, canopy cover, canopy horizontal and vertical structure, topography, 

leaf area index, and above ground biomass (Lefsky, Cohen, Parker, & Harding, 2002). Different species 

or communities have different physical canopy and understory structures. Invasive species have been 

shown to alter the vegetation structure in areas they have expanded into (Asner et al., 2008). 

 

Spectral Variability Hypothesis 

 

The spectral variability hypothesis (SVH) attempts to eliminate the need to perform a land cover 

classification in order to assess biodiversity from remote sensing data. Specifically, SVH proposes that 

biodiversity is directly correlated to an objective measure of the variation in reflectance or intensity in an 

image (Palmer et al., 2000; Palmer et al., 2002). Put another way, the spatial variation in reflectance is 

correlated with the spatial variation in the environment, which is correlated to species richness. The 

original study used panchromatic imagery in a prairie ecosystem. 
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The hypothesis has been proven in other studies, with one notable example using hyperspectral 

imagery of a tropical lowland forest in Hawaii (Carlson et al., 2007). Carlson et al. conducted foliar 

sampling of identified woody species and then had biogeochemical measurements made on the leaves, 

specifically chlorophyll, nitrogen, and equivalent water thickness. If the inter-species variation in leaf 

biochemical properties exceeds the intra-species variation, then the SVH should hold. A Monte-Carlo 

analysis showed that the range (max-min) of values of each of the biogeochemical parameters increased 

with the number of individuals included in a sample (similar to a species-area curve). Based on the 

success with the foliar data, Carlson et al. next analyzed the hyperspectral imagery. Four spectral bands 

(530, 720, 1201, and 1523 nm) were chosen due to their correlation with chlorophyll, nitrogen, and water 

(either absorption bands or strong scattering wavelengths due to canopy structure). The first-derivative or 

slope of reflectance was calculated for each wavelength, then the range of the first-derivative was 

calculated for the spatial plot under study. Finally a regression was performed on the range in first-

derivative versus species richness for all the study plots. The final regression model was then applied to 

all of the hyperspectral imagery to create a spatial map of species richness. While this study successfully 

demonstrated the SVH, two issues are evident. The first is that the study sites used in Hawaii contain very 

tightly packed canopies which provides excellent results for those areas regressed against woody canopy 

species diversity but cannot speak to understory or ground cover species richness. The second issue is 

evident in the resulting maps of species richness which display roads as having the highest species 

richness (Asner, 2015). This highlights the need for pre-processing to remove pixels of man-made 

features and also suggests that variability in pixel reflectance due to shadowing or directional reflectance 

illumination differences could skew the resulting species richness maps.   

 

In a different study, foliar measurements of nitrogen mass, carbon mass, leaf water concentration, 

and canopy water content were performed in a Mediterranean-type ecosystem (Dahlin et al., 2013). 

Dahlin et al. proposed that variation in plant traits across an ecosystem is a proxy for variation in 
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functional diversity. A high variance in a trait within a community indicates that the community is 

capable of supporting a wide range of plant functional types and a narrow variance could be due to 

environmental filtering of functional types. The study performed an ordinary least squares analysis of 

plant traits versus environmental gradients, known land use history, plant community, and spatial 

autocorrelation. Plant community was found to be the strongest predictor of chemical trait variation 

independent of spatial autocorrelation. This important study establishes a correlation between plant 

communities and plant traits that can be measured by remote sensing data (either directly or through 

spectral proxies), supporting the spectral variability hypothesis and lending credibility to the research 

presented here to map vegetation communities using remote sensing data. 

 

Biodiversity Indicators 

 

An indicator is a measure that is used to evaluate the performance of functions, processes, and 

outcomes over time (Strand et al., 2007b). For this instance, indicators will monitor the effectiveness of 

biodiversity policies and conservation efforts. Successful indicators are tied to key questions, problem 

oriented (ex: human caused change), simple to understand, and cost-effective for long term 

implementation (Strand et al., 2007b). Rates of change are common indicators (ex: reduction in loss of 

natural forest extent) but require data collection at three or more points in time (Strand et al., 2007b). 

Analysts must understand what remote sensing data represent and translate that into a useful indicator 

(Strand et al., 2007a). A sample of commonly used indicators for ecosystem and vegetation monitoring 

are listed (Loucks & Leimgruber, 2007; Steininger & Horning, 2007; Strand et al., 2007b; Strand, 

Leimgruber, & Mueller, 2007c; Strittholt, 2007; Strittholt & Steininger, 2007; Underwood & Ustin, 

2007): 
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 Extent of biomes, ecosystems, and habitats 

 Area and location of old-growth forests, plantations, and sustainable forestry 

 Coverage of protected areas 

 Isolation of, levels of encroachment on, and degradation of protected areas 

 Landscape condition adjacent to protected areas 

 Connectivity/ fragmentation of forests and ecosystems 

 Area and number of large forest blocks 

 Ecosystem integrity and condition 

 Forest degradation 

 Forest change 

 Rate of deforestation/reforestation 

 Trends in abundance and distribution of select species 

 Location and extent of species aggregations 

 Species endemism 

 Rate of change in biological diversity 

 Carbon storage 

 Nitrogen deposition 

 Trends in invasive alien species 

 Grazing pressure 

 Fire location and frequency 

 Water quality 

 

The indicators listed come directly from, or are adapted from, the Convention on Biological 

Diversity (CBD, 2003). In general, maps are not as good as indicators because they require interpretation. 
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Statistical tables or graphs are ideal (Strand et al., 2007b). Depending on the application and user group, 

biodiversity indicators can be focused on local scale, regional to national, or global scale. 

 

Remote Sensing Limitations 

 

Several issues exist with respect to remote sensing for biodiversity studies including instrument 

spatial resolution, species or habitat detectability, accuracy of derived data products, and the need for in-

situ ground data. Remote sensing typically requires a tradeoff of resolution versus coverage (Turner, 

2014). High spatial resolution instruments that can observe fine detail can only do so over a small area 

and instruments that can acquire continental wide swaths are only able to do so by having coarse spatial 

resolution pixels. One challenge with global remote sensing is that the coarse pixel spatial resolution is 

larger than resolution that many taxa interact with (Rose et al., 2015). Remote sensing may not be able to 

detect certain individuals (Magurran, 2014). Features of interest must be large with respect to the 

resolution and land classification maps derived from the remote sensing data must contain sufficient 

thematic detail (Steininger & Horning, 2007; Strittholt & Steininger, 2007). Determination of forest 

extent is better with high resolution sensors (Strittholt & Steininger, 2007). More research is required to 

study pixel spatial resolution on species id and diversity detection (Schimel et al., 2013). 

 

Most remote sensing instruments are mounted on-board aircraft or spacecraft which means they 

can only monitor features that can be viewed from above (Steininger & Horning, 2007). Passive solar-

reflective instruments cannot see through clouds and even if the clouds are not between the sensor and the 

ground, atmosphere (including haze and thin clouds) and sensor artifacts that affect the data must be 

corrected (Steininger & Horning, 2007). Furthermore, features of interest must have sufficiently unique 
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spectral signatures to be discriminated from other targets (Steininger & Horning, 2007). Finally, passive 

solar-reflective instruments cannot see the understory directly in forests with closed canopies (Steininger 

& Horning, 2007). 

 

The accuracy of derived land cover and change data sets may not be high enough for certain 

applications (Strand et al., 2007a; Strand et al., 2007b; Steininger & Horning, 2007). Specific land cover 

classes are needed because some forest communities are more threatened than others and ideally, natural 

open canopy should be differentiated from degraded forests (Strittholt & Steininger, 2007). Also, change 

detection using two images collected in different seasons (dry versus wet or leaf-on versus leaf-off) can 

lead to errors (Strittholt & Steininger, 2007). 

 

For remote sensing to reach its full potential, in-situ ground sampling is required to improve 

accuracy and relate the remote sensing data to ecosystem components (Rose et al., 2015 and Turner, 

2014). Additionally, regional expertise of land use and land cover, species trends and habitat usage, and 

ecological communities and systems is required to properly interpret the remote sensing data (Steininger 

& Horning, 2007). Studies must take into account historical anthropological impacts as they impact 

ecosystems for a considerable length of time (Dahlin et al., 2013). 

 

The National Ecological Observatory Network 

 

The National Research Council (NRC) formed a committee to evaluate the National Ecological 

Observatory Network (NEON) workshop recommendations with respect to the Grand Challenges (NRC, 
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2001). The general opinion was that “environmental change and its influence on biological processes 

occurs at regional, continental, and global scales” (NRC, 2003, p. 23), however, previous ecological 

research was typically conducted by single investigators or small groups working at local scales and not 

capable of addressing the Grand Challenges (NRC, 2003). The advances in scientific knowledge required 

justifies a new national-level research infrastructure to study the direct effects and feedbacks between 

environmental change and biological processes. The over-arching goals of NEON are to: 

 measure the pace and nature of biological change, 

 improve mechanistic understanding of the environment, 

 develop a predictive capability (spatio-temporal analyses and forecasts), 

 and identify solutions to ecological problems. 

 

NEON would provide the capability to apply results from one site to other regions and 

ecosystems plus address questions regarding biodiversity, species composition, and ecosystem 

functioning. Terrestrial observations of plant species richness and airborne remote sensing data collected 

by NEON are the primary data used in this research. 

 

Overview of NEON 

 

The National Ecological Observatory Network (NEON) is “a continental-scale observation 

system for examining ecological change over time” (Neon, 2015a). More specifically, NEON is a 

continental-scale research platform to “enable understanding and forecasting of the impacts of climate 

change, land-use change, and invasive species on aspects of continental-scale ecology such as 

biodiversity, biogeochemistry, infectious diseases, and ecohydrology” (Keller et al., 2008; Schimel et al., 
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2011, p. 8). NEON science focuses on questions related to six of the eight Grand Challenges (NRC, 2001) 

plus science questions regarding invasive species. The NEON design strives to address questions relevant 

to large regions and not easily addressed by traditional ecological research. NEON will observe both the 

causes and effects to allow researchers to understand the underlying processes and better study the 

interactions and feedbacks. NEON construction is funded by the National Science Foundation under a 

Major Research Equipment and Facilities Construction (MREFC) account. Once completed in 2017, the 

first continental-scale observatory will operate for a period of 30 years and data products will be freely 

available. NEON’s open access approach to its data and information products will enable scientists, 

educators, planners, decision makers and the public to map, understand and predict the effects of human 

activities on ecology and effectively address critical ecological questions and issues. 

 

NEON has partitioned the U.S., including Alaska, Hawaii and Puerto Rico, into 20 eco-climatic 

domains, each of which represents different regions of vegetation, landforms, climate, and ecosystem 

performance, as depicted in Figure 2: 
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Figure 2: Map of the 20 NEON Domains and proposed site locations. Figure credit: NEON 

 

The statistical design is based upon algorithms for multivariate geographic clustering using 

national data sets of ecoclimatic variables (Hargrove & Hoffman, 1999; Hargrove & Hoffman, 2005). 

This ensures that NEON is able to systematically sample the U.S. in a design that covers the 

environmental variability in an approximately uniform way (Schimel et al., 2011). Each domain contains 

one core site representative of minimally managed wildland conditions within that domain and will be 

sampled for 30 years. In addition, relocatable sites are located in each domain to collect data over shorter 

temporal time spans and will focus key science questions specific to each region such as human land 

management effects on ecosystems. These comparisons at both the domain and national levels will 
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provide critical information that can be used to test ecological models and to identify the impacts of land 

use change and invasive species on ecology. 

 

The observatory consists of five data collection components: Terrestrial Instrument System (TIS), 

Terrestrial Observation System (TOS), Aquatic Instrument System (AIS), Aquatic Observation System 

(AOS), and the Airborne Observation Platform (AOP) (NEON, 2015b). Collocation of measurements 

associated with each of these components will allow for linkage and comparison of data products. 

 

The TIS will observe key physical and chemical climate causes of ecological change, as well as 

ecosystem-level responses to those causes, in terrestrial ecosystems to advance our understanding of how 

the structure and function of these systems are changing (Schimel et al., 2011). The TIS includes a flux 

tower at each site that measures key climate inputs such as air temperature, precipitation, solar and net 

radiation, aerosol optical depth, photosynthetically active radiation, and wind speed and direction (NEON, 

2015c; Schimel et al., 2011). Bioclimate variables are captured with vertical profiles of measurements 

into the canopy and near the ground including cameras to monitor phenology and measurements of latent 

heat exchange to determine evapotranspiration (Schimel et al., 2011). The towers also capture carbon 

cycling using micrometeorological techniques measuring 3D winds, CO2, soil respiration, and nutrient 

use efficiency (NEON, 2015c; Schimel et al., 2011). The TIS also includes soil arrays to measure 

temperature, moisture, CO2 concentration (NEON, 2015d) and a soil characterization is performed at each 

site. The TIS measurements cover the following ecological themes: soil structure physics, atmosphere and 

air quality, biogeochemistry, phenology, bioclimate, and energy balance (Schimel et al., 2011).  
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The TOS will quantify the impacts of climate change, land use, and biological invasions on 

terrestrial populations and processes by sampling key groups of organisms (sentinel taxa), infectious 

disease, soil, and nutrient fluxes across system interfaces (Kao et al., 2012; Schimel et al., 2011). The 

sentinel taxa include organisms with varying life spans and generation times, and wide geographic 

distributions to allow for standardized comparisons across the continent and include the following taxa: 

plants, birds, small mammals, ground beetles, mosquitos and ticks, and soil microbes (NEON, 2015e). 

The TOS samples cover the following ecological themes: diversity, abundance, phenology, biomass and 

productivity, biogeochemistry, metabolism, and pathogens (NEON, 2015b; Schimel et al., 2011). The 

vegetation sampling is discussed in more detail in the next section.  

 

Aquatic measurements and observations observe key physical, biological, and chemical drivers of 

ecological change, as well as responses to those factors, in freshwater systems. The AIS makes 

measurements of the physical and chemical properties of streams, rivers, and lakes. Physical 

measurements include flow rates and depth, ice cover, and temperature (Schimel et al., 2011). Chemical 

measurements of isotopes, dissolved oxygen, pH, specific conductivity, fluorescence dissolved organic 

matter, chlorophyll a, and nitrates are made (NEON, 2015f). Lakes include buoys to measure depth 

profiles of water quality. Each NEON aquatic site also measures the microclimate with meteorological 

sensors. The AIS measurements cover the following ecological themes: biogeochemistry, hydrology, 

ecohydrology, biodiversity, invasive species, genomics, habitat and landscape structure, biomass, and 

stream metabolism (Schimel et al., 2011).  

 

The AOS performs sampling on the following taxa: fish, macro-invertebrates, aquatic plants, 

algae, microbes (NEON, 2015g). Chemical analyses of sediment and water samples are performed and 

habitat observations are made such as: stream and lake morphology, stream/lake bed composition, habitat 
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type, riparian vegetation, and dead or down wood in stream corridor (Schimel et al., 2011). The AOS 

samples cover the following ecological themes: diversity, abundance, metabolism, biomass, and 

biogeochemistry (NEON, 2015g).  

 

The NEON airborne remote sensing instrumentation is designed to bridge scales from organism 

and stand scales, as captured by plot and tower observations, to the scale of satellite based remote sensing 

(Kampe et al., 2010; Schimel et al., 2011). Each AOP contains an instrument payload containing a 

hyperspectral imaging spectrometer, a full-waveform lidar, and a high spatial resolution color digital 

camera (NEON, 2015h). Airborne remote sensing plays a critical role in the scaling strategy of the 

Observatory by making measurements at the scale of individual shrubs (1-3 meters) and that of larger 

plants (over hundreds of square kilometers). The AOP data collections cover the following ecological 

themes: canopy chemistry, vegetation structure, land use and land cover, and topography (NEON, 2015h; 

Schimel et al., 2011). The AOP is discussed in detail in the “Remote Sensing with the Airborne 

Observation Platform” Section. 

 

The data products derived from the data collection components fall into five broad themes: 

atmosphere; biogeochemistry; ecohydrology; land use, land cover, and land processes; and organisms, 

populations, and communities (NEON, 2015i). Products from the instruments and observations are listed 

in detail in the NEON data products catalog (NEON, 2015j). NEON will combine site-based data with 

remotely sensed data and existing continental-scale data sets (e.g. satellite data) to provide a range of 

scaled data products that can be used to describe changes in the nation’s ecosystem through space and 

time. The land use analysis package provides access to satellite and national data sets to extend coverage 

to areas not sampled by the Observatory. 
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Vegetation Sampling With the Terrestrial Observation System 

 

The goal of the terrestrial sampling design is to direct the observation of terrestrial organisms and 

biogeochemistry endpoints for long-term trend detection within specific NEON sites, facilitate 

comparability across sites as well as with other ecological investigations, and contribute to the 

understanding of the cause and consequence of ecological change (Barnett et al., 2015). A site-level 

spatial sampling design that can be applied consistently across NEON domains has been developed for 

the Terrestrial Observation System (TOS). Many of the specific locations of the TOS sampling elements 

are collocated with each other and with environmental sensors (i.e., within the flux zone of the tower) to 

allow comparison of the data streams. Within a site, organismal and soil sampling for the TOS has been 

collocated to the extent possible to optimize linkages between data products and provide a more complete 

picture of processes associated with targeted observations and trends across the groups to be sampled 

(Fancy, Gross, & Carter, 2009). TOS sampling occurs using three different plot types (Barnett et al., 

2015): 

 Tower plots are located in the 90% flux area of the primary and secondary airsheds and observe 

the dominant vegetation type at the site. These plots allow linkages between TOS and TIS tower 

climate and flux measurements. A spatially balanced random design is used to establish ground 

plot coordinates in an unbiased and consistent fashion. 

 Distributed plots are located across the entire site in order to sample the variability of organisms 

and processes across the site and capture the heterogeneity. These plots allow analysis of 

gradients and enable scaling from ground measurements to airborne remote sensing. A stratified 

(by land cover type) random, spatially balanced design is used to establish ground plot 

coordinates and efficiently capture landscape-scale patterns and trends. 
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 Gradient plots are used if distributed plots fail to fully capture site-level gradients in vegetation 

structure, leaf area index (LAI), or plant canopy chemistry. A targeted, non-random approach 

informed by NEON’s Aerial Observation Platform remote-sensing data is used to establish 

ground plot coordinates. 

 

A general example of TOS plot locations at a site is given in Figure 3:  

 

 

Figure 3: Generalized site-scale schematic for the NEON Terrestrial Observation System (TOS). Figure 

credit: NEON 
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The plot locations are determined using a stratified, spatially balanced random design (Barnett et 

al., 2015). The spatially balanced random design establishes varied spatial distances between plots, 

allowing for better analysis of spatial patterns associated with various ecological processes. Stratification 

by vegetation type allows efficient observations of the variability across a given site. National Land Cover 

Database (NLCD) data (Fry et al., 2011) are used to stratify by vegetation land cover classes. NLCD 

provides a high-level land cover classification scheme that is appropriate for the entire continent, allowing 

a consistent approach for selecting TOS plot locations for all NEON sites. Next, a Reversed Random 

Quadrat-Recursive Raster (RRQRR) algorithm (Theobald et al., 2007) identifies randomly located 

potential plots within each vegetation class. The final plot locations are determined by field crews based 

on if they are the correct vegetation type and if they are logistically feasible to sample. An example of the 

RRQRR algorithm for plot location selection is shown in Figure 4: 
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Figure 4: The spatially balanced and randomized sample at the Ordway-Swisher Biological Station. Red 

points indicate plots selected from the complete sample (blue points). Plots are selected from a spatially-

balanced one dimensional list that is filtered by vegetation type. Figure credit: NEON 

 

NEON has chosen the plot design to allow sampling at multiple spatial scales in order to improve 

understanding of processes operating at different spatial extents, address problems associated with 

detectability of species, facilitate an understanding of local and regional patterns of diversity, and provide 

data to validate airborne observations at multiple grain (i.e. pixel) sizes (Barnett, 2015). A multi-scale plot 

design adapted from the Carolina Vegetation Survey (CVS, 2015; Peet, Wentworth, & White, 1998) is 

used to sample plant species in the tower and distributed plots and consists of a 20 m x 20 m square plot 

comprised of four modules with nested subplots in each module. This plot design allows scalability such 

as in the case of sampling vegetation structure over a 40 m x 40 m area. A schematic of the plot design is 

shown in Figure 5: 
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Figure 5: Schematic of the TOS tower and distributed plot design showing the sampling area in which 

plant biogeochemistry, biodiversity, above-ground biomass, productivity, and leaf area index (LAI) are 

sampled. Figure credit: NEON 

 

Nested subplots are used to estimate percent cover and richness of herbaceous species. 

Herbaceous clip-harvesting is excluded from nested subplots in order to minimize the impact of clipping 

on plant biodiversity data products. Vegetation biogeochemistry (Hinckley, 2014), plant phenology 

(Elmendorf & Jones, 2015), plant diversity (Barnett, 2014), and plant biomass, productivity, and leaf area 

index (Meier & Jones, 2014) are sampled by the TOS. Except for plant penology, all of the other 

measurements occur at both the tower and distributed plot locations. 
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NEON will quantify variation in plant tissue chemistry to provide valuable information about 

nutrient uptake and storage in terrestrial ecosystems, both above- and belowground (Hinckley, 2014). 

Samples of sun-lit canopy foliar tissues will be collected in tower and distributed plots at NEON sites 

during peak biomass and coincident with data collection by the airborne team. Sun-lit canopy foliar 

samples will be collected from 10-20 plots per site (i.e., four tower plots and 6-16 distributed plots), 

depending on the variability of the vegetation communities at each site. Ground-based collections for 

biogeochemistry will include sampling and analysis of total C and nutrient concentrations (N, P, S, Ca2+, 

Mg2+, K+, and Al3+) in sun-lit foliage of dominant and co-dominant canopy species, and C and N of litter 

and roots. Stable isotopic composition (δ13C and δ15N) and other chemical characteristics such as 

chlorophyll content and lignin plus leaf mass per area (LMA) will be measured. At grassland sites, 

samples (species bulked) will be obtained during aboveground biomass clip harvests. The ground-based 

plot-level assessments of plant chemical characteristics will be used to scale from plot-level to site wide 

maps of biogeochemistry derived from the hyperspectral airborne remote sensing data. 

 

Phenology is defined as the seasonal timing of life cycle events (Elmendorf & Jones, 2015). 

Phenology is a simple way to track changes in ecology in response to climate change, for example, 

monitoring the annual timing of breaking bud leafs each spring. During the first three years of operations, 

NEON will conduct intensive monitoring of the phonological stages of the three most dominant species at 

the site. This includes monitoring approximately 10 individuals of each species 2-3 times per week during 

the canopy development stages (spring during green-up and in the fall during senescence). Less frequent 

observations will take place during the flowering stages of plants. After the first three years of operations, 

limited sampling of up to 20 species per site will take place. In order to facilitate linkages between 

ground-based measurements and landscape greening metrics, NEON’s most intensive measurements will 

occur at the Tower and surrounding airshed. Phenology observations will be performed on marked 

individuals that are evenly situated along a fixed, 800 meter square ‘loop’ transect (200 meters on a side) 
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within the tower airshed. A phenocam is located on each TIS tower and pointed in the North direction. In 

the case where the in-situ phenology transect loop is not located within the view of the phenocam, an 

additional three individuals of each of the dominant species that are visible from the phenocam but offset 

from the phenology transect will also be monitored in order to make explicit linkages between phenocam 

greenness metrics and in-situ phenophase observations. 

 

Species composition drives ecosystem structure and function and species richness has been 

shown to be important to functional diversity and ecosystem multifunctionality (Maestre et al., 2012). 

NEON observations of plant diversity will focus on plant species presence, diversity, and abundance and 

the collection of plant material for genetic analyses (Barnett, 2014). Co-location of species composition 

and abundance with other NEON measurements and observations will allow analysis of the causes and 

consequences of changes in plant diversity and the relationship with ecosystem structure and function. 

Plant diversity information will be collected in the tower and distributed plots on: 

 the species present and species composition in each subplot across each module, 

 estimates of herbaceous abundance at the 1 m2 and 10 m2 subplots, 

 and the abundance of woody species as estimated from the location and size of each woody 

species in each 10 x 10 m module. 

 

One high-level component of the plant biomass and productivity sampling design is to measure 

above-ground biomass (AGB) stocks, vegetation structure, and LAI across the range of variability at each 

NEON site. Developing a better understanding of the spatial distribution and magnitude of above- and 

below-ground plant biomass stocks and fluxes is critical to reducing uncertainty in large-scale models of 

the carbon cycle (Meier & Jones, 2014). Measurements of plant biomass and productivity in the tower 

plots complement the TIS measurements of net ecosystem exchange. Vegetation structure is measured in 
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a 40 m x 40 m plot in forests to ensure enough individuals are sampled to get an accurate biomass 

estimate. The following measurements are made: 

 Herbaceous biomass: 20-30 tower plots sampled 1-2 times per year. Mixed C3/C4 grasslands will 

be clipped 2X per year, other veg types clipped 1X per year, and grazed sites clipped every 4 

weeks. Sampling of up to 20 distributed plots clipped once every three years (only clip plots with 

NLCD class ≠ Forest). 

 Leaf area index (LAI): 3 tower plots sampled every 2 weeks during the growing season and 20 

distributed plots sampled in coordination with AOP flights once every 5 years. A digital 

hemispherical photo system is used. Photos are taken along the center axes of the plot.   

 Vegetation structure of woody stems: 20-30 tower plots measured once per year. Sampling of up 

to 20 distributed plots once every three years. These measurements include: stem diameter(s), 

canopy diameter(s), stem height, stem location (for stems that meet certain criteria), stem species 

identification, and stem status (i.e. healthy, dead, or damaged). 

Above-ground woody biomass will be estimated from allometrical equations using the structure data and 

productivity will be calculated from changes in above-ground biomass with time (Meier & Jones, 2014). 

Herbaceous biomass and productivity will be assessed by measurements of the clip harvests. 

 

This research uses TOS plant diversity data and ground photos collected at the Ordway-Swisher 

Biological Station in 2010 and 2011. Refer to Chapter III for a description of the vegetation communities 

at the site and Chapter IV for a detailed description of the NEON data used in this research. 
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Remote Sensing with the Airborne Observation Platform 

 

One of NEON’s goals is to provide detailed aerial data about regional landscapes and vegetation. 

This will be accomplished via the remote sensing arm of NEON, called the Airborne Observation 

Platform (Kampe et al., 2010). Airborne remote sensing plays a critical role in the scaling strategy of the 

Observatory by making measurements at the scale of individual shrubs (1–3 meters), larger plants and 

forest canopies (over hundreds of square kilometers). The NEON airborne remote sensing instrumentation 

is designed to bridge scales from organism and stand scales, as captured by plot and tower observations, 

to the scale of satellite based remote sensing. The airborne instrumentation will support research on a 

range of important themes in ecology in response to grand challenges in the study of biodiversity, 

biogeochemistry, climate change, ecohydrology, infectious disease, invasive species and land use change. 

Each aircraft will fly a suite of integrated remote sensing instruments consisting of an imaging 

spectrometer, a waveform light detection and ranging (lidar) instrument and a high-resolution digital 

camera. The AOP instrument suite will provide regional observations of: land use, vegetation structure, 

biochemical and biophysical properties of vegetation, and ecosystem responses to changes in land use, 

climate and the movement of invasive species. 

  

The NEON Imaging Spectrometer (NIS) is a hyperspectral imager designed and built by NASA 

JPL and is part of the next generation class of AVIRIS instrument (JPL, 2015b). The NIS is a pushbroom 

sensor that collects data in 424 spectral bands covering the visible to shortwave-infrared (380-2510 nm) 

portion of the electromagnetic spectrum. A single 640 x 480 HgCdTe focal plane is used to collect data 

over the entire spectral range and a specially designed diffraction grating disperses the wavelengths of 

light (Kampe et al., 2011). The 34 degree field-of-view is covered by 600 effective across-track pixels. 

The telescope views a single row on the ground by imaging a slit onto the focal plane. The instrument’s 
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telescope, spectrometer, and focal plane are enclosed in a vacuum chamber that is cooled to 140 K for 

increased performance. A schematic of the instrument is shown on the left side of Figure 6 and a picture 

of the NIS on a test fixture in the lab is shown on the right. The instrument specifications are listed in 

Table 1: 

 

 

Figure 6: Schematic of the NEON Imaging Spectrometer on the left (figure courtesy of NASA JPL) and a 

picture of the instrument in the lab on a test fixture on the right 
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Table 1: Specifications of the NEON Imaging Spectrometer 

Parameter Value 

Wavelength Range  380 – 2510 nm 

Spectral Sampling (band center spacing) 5 nm 

Spectral Resolution (FWHM) 5.7 – 6.9 nm 

Field of View 34 degrees with 600 resolved elements 

Instantaneous Field of View 1.0 mrad 

Spectral and Spatial Response Uniformity > 95% 

Signal to Noise Ratio > 1000 at 550 and 2100 nm 

Focal Plane Array 640 (across-track) x 480 (spectral) 

Detector Size 27 µm x 27 µm 

Frame Rate 10 – 100 frames per second 

Data Resolution 14 bits 

Absolute Radiometric Calibration Uncertainty < 5% (1σ) 

 

The lidar instrument is an Optech Gemini which is a pulsed Nd:YAG laser operating at a 

wavelength of 1064 nm (Optech, 2010a). The Gemini uses a scanning mirror to sweep out the laser pulses 

in the across-track direction in a saw tooth pattern on the ground. The mirror scan angle can be configured 

to set the full field of view of the instrument. The pulse spacing on the ground can be tuned by setting the 

values for the pulse repetition frequency (PRF), the mirror scan angle, and the mirror scan frequency. The 

system simultaneously extracts discrete returns and records full digital waveforms by digitizing the 

analog signal. The Optech Gemini is shown in Figure 7 and the instrument specifications are listed in 

Table 2: 
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Figure 7: Optech Gemini full waveform lidar (photo courtesy of Optech) 
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Table 2: Specifications of the Optech Gemini Full Waveform Lidar 

Parameter Value 

Laser Type Pulsed Nd:YAG 

Laser Wavelength 1064 nm 

Laser Power 10 W 

Laser Pulse Energy 250 µJ 

Pulse Repetition Frequency Programmable: 33, 50, 70, 100, 125, 142 or 166 

kHz 

Outgoing Pulse FWHM 16 nsec at 100 kHz PRF 

Beam Divergence Dual Divergence: 0.25 mrad (1/e) and 0.8 mrad 

(1/e) 

Mirror Scan Angle (Field of View) Programmable: 0-50 degrees 

Mirror Scan Frequency Programmable: 0-70 Hz 

Discrete Return Range Capture Up to 4 range measurements, including 1st, 2nd, 3rd, 

and last returns 

Discrete Return Intensity Capture Up to 4 intensity returns for each pulse, including 

last (12 bit) 

Waveform Digitization 12 bit 

Waveform Sampling 1 nsec bins 

Operation Altitude 150-4000 m AGL 

Horizontal Geometric Accuracy 1/5500 * altitude (AGL) 

Elevation Accuracy < 5-35 cm (1σ) 
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The high spatial-resolution color camera is an Optech DiMAC D8900 and is a 60 megapixel 

medium format digital camera that captures true color images (Optech, 2010b). The camera provides 

detailed aerial views of the regional landscape and can be used to determine land cover and provide 

context as to what ground targets are being measured by the imaging spectrometer and lidar instruments. 

The Optech D8900 is shown in Figure 8 and the instrument specifications are listed in Table 3: 

 

 

Figure 8: Optech DiMAC D8900 high spatial-resolution digital camera 
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Table 3: Specifications of the High Spatial-Resolution Digital Camera 

Parameter Value 

Total Pixels 60 MP Full Frame CCD 

2D Array Pixel Dimensions 8984 x 6732 pixels (effective) 

Pixel Size 6 µm x 6µm 

Array Physical Dimensions 53.9 x 40.4 mm (effective) 

Lens 70 mm 

Shutter Electro-mechanical: 1/250 to 1/500 sec exposure 

Aperture Electro-mechanical iris: f-stops: 4, 5.6, 8, 11, 16 

Filter Standard size RGB 

Image Output 8 or 16 bits per channel 

Capture Rate 1 shot every 2.5 sec 

Forward Motion Compensation Solid-state electro-mechanical 

 

As part of the AOP, the airborne remote sensing instruments will observe ecosystem properties in 

the region (100-300 km2) surrounding NEON sites. The high cost of aircraft operations will limit the 

frequency of standard airborne observations of each site to once per year to detect inter-annual trends. To 

minimize the phenological contribution to the signal, flights will be planned to occur at each site during a 

period of peak greenness. Higher temporal frequency data on vegetation function is available from 

satellite measurements at a coarser spatial resolution. Two payloads are necessary to cover all of the 

NEON sites based on the deployment and data collection requirements. An example of the flight 

deployment is shown in Figure 9: 
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Figure 9: Deployment of two Airborne Observation Platforms to cover each of the NEON sites once per 

year during peak greenness. Figure credit: NEON 

 

A third dedicated payload will also be deployed in response to extreme events to monitor the 

ecological forcing (e.g., hurricane damage) and response (regrowth after fire), as well as other science 

directed requests. The remote sensing instruments are mounted in a common rigid frame to improve co-

registration between the data sets. Figure 10 shows a side view of the instruments in the payload mount 

on the left and a view from underneath the aircraft on the right.  
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Figure 10: The instruments are mounted in a common rigid frame to improve data co-registration. A side 

view shown on the left and the view of the instruments from underneath the plane is sown on the right 

 

The payload is installed in a DeHavilland DHC-6 Twin Otter aircraft (Figure 11) flying at 1000-

2000 m above ground level (AGL) at a speed of around 97.2 knots (50 m/s).  

 

 

Figure 11: The instrument payload is installed in a DeHavilland DHC-6 Twin Otter shown on the left and 

data are collected at a nominal flying altitude of 1000 m above ground level as shown on the right 
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The flight parameters are largely determined by the requirement to achieve meter-scale 

spectroscopy measurements and simultaneously achieve a sufficient signal-to-noise ratio to retrieve 

vertical structure from the waveform lidar and biogeochemical properties from measured reflectance 

spectra. 

 

This research uses both hyperspectral and lidar data collected by AOP at the Ordway-Swisher 

Biological Station in May 2014. Refer to Chapter III for a description of the vegetation communities at 

the site and Chapter IV for a detailed description of the NEON data used in this research. 
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CHAPTER II 

OBJECTIVES AND EXPECTED SIGNIFICANCE 

 

This research falls under the general science themes of biological diversity and land-use with 

specific research themes of observation of pattern, new technology evaluation, and development of 

analysis tools. The focus is on techniques for mapping vegetation communities which are an appropriate 

natural study unit for biodiversity (Harper & Hawksworth, 1995). The vegetation community map serves 

as a proxy for species richness, and when combined with field data, allows the generation of a species 

richness map. The result is a description of species pattern (Magurran, 2004) and not a process study.  

 

Remote sensing is a useful technology for observing vegetation biodiversity over large spatial 

scales (Turner et al., 2003). Imaging spectrometers measure the spectral variability across the landscape. 

Hyperspectral data from these instruments can be correlated to chemical, functional, or structural 

characteristics of the vegetation being imaged (Asner, 1998; Asner & Martin, 2009; Asner et al., 2009; 

Asner et al., 2015; Curran, 1989; Dahlin et al., 2013; Gamon et al., 1992; Gamon & Surfus, 1999; Kokaly 

et al., 2009; Lefsky et al., 2002; Martin et al., 2008; Ollinger, 2011; Townsend et al., 2003; Townsend et 

al., 2008; Ustin et al., 2004; Ustin et al., 2009; Ustin & Gamon, 2010; Wessman et al., 1988; Wessman, 

1990). Lidar instruments measure the intensity of each laser return pulse as a function of time/distance. 

The lidar data represents the 3D structural variability across the landscape (Lefsky et al., 2002). 

Integration of both hyperspectral and lidar data will improve the ability to characterize biodiversity using 

remote sensing. The NEON Airborne Observation Platform (AOP) consists of cutting edge hyperspectral 

and lidar instruments collecting data at a ground sample distance of 1 m or less. Access to integrated 

hyperspectral and lidar data at this high spatial resolution has been very limited in the past and so too has 

been corresponding algorithm development. While AOP has the potential to significantly advance the 
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field of remote sensing, the technologies are new and pose some challenges requiring extra processing in 

order to effectively work with the data. 

 

The Ordway-Swisher Biological Station (OSBS) is chosen as the study site for this research. 

OSBS has a wide variety of vegetation communities including closed canopy hardwood forests, 

savannahs of widely spaced pines, areas of altered land use, hardwood and marsh wetlands, plus lakes 

representing a variety of chemical, functional, and structural types. The OSBS landscape is dominated by 

the Sandhill vegetation community, which is a variant of the Longleaf Pine ecosystems that once 

dominated the Southeastern U.S. OSBS maintains GIS data of the vegetation communities at the site, but 

the accuracy of this data is not known. The goal of this research is to map the vegetation communities 

using the AOP remote sensing data collected in May of 2014. The NEON Terrestrial Observation System 

(TOS) also conducted observations of species richness at ground plots across the site in 2010 and 2011. 

The TOS data serves as independent ground truth validation points to assess the accuracy of the 

vegetation community maps generated from the AOP data. The OSBS vegetation communities are 

described in detail in Chapter III including the relevance of spectral or structural differences that can be 

measured by the remote sensing data. The NEON AOP and TOS data collection, the AOP Level-1 

processing steps, and the classification algorithm used in this research are described in Chapter IV. 

 

The spectral variability hypothesis proposes that variability in brightness or reflectance in remote 

sensing imagery is correlated to the variability of the species in the scene (Palmer et al., 2000; Palmer et 

al., 2002). While this theory has been demonstrated in practice in a diverse closed-canopy tropical 

ecosystem (Carlson et al., 2007), it is not clear if their methods can be universally applied to other 

temperate and savannah systems due to illumination geometry and shadowing, pixel size, and inability of 

the imaging spectrometer to see the understory and ground vegetation (in the case of a closed-canopy). 
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Further investigation of the approach of Carlson et al. to biodiversity mapping is required but is not 

performed in this research and instead is listed as future work. This research takes a more direct approach 

to the use of remote sensing to study biodiversity. A classification and regression tree (CART) algorithm 

(Breiman, Friedman, Olshen, & Stone, 1984; Therneau, Atkinson, & Ripley, 2015) is used to generate a 

vegetation community map. A series of metrics are calculated from the remote sensing data which 

characterize the spectral and structural variations across the landscape of the study site. The metrics serve 

as the input feature layers to the classification tree but can support future tools to analyze spatial patterns 

and inform ground sampling of vegetation diversity. Where possible, inferences are made linking the 

differences in the remote sensing data (between different vegetation communities) to ecologically 

meaningful chemical or structural traits. Classification results for hyperspectral data only, lidar data only, 

and integrated hyperspectral plus lidar data are given in Chapters V-VII respectively. The vegetation 

community map serves as a proxy for species richness, and when combined with field data, allows the 

generation of a species richness map (a local scale biodiversity indicator) as discussed in Chapter VIII. 

 

In summary, the research is an evaluation of remote sensing technologies and development of 

analysis tools to describe the spatial pattern of biodiversity in the form of vegetation communities as 

proxies for species richness. The project objectives are described next in the first section, knowledge gaps 

are highlighted in second section, and the expected significance of the research are given in third section 

of this chapter.  

 

 

 

 



50 
 

Overview of Objectives 

 

Seven focused objectives that fall within the high-level research themes have been identified for 

this research: 

 

 Objective 1: Investigate remote sensing technologies to map ecosystems.  

 Objective 2: Generate a vegetation community map from remote sensing data. Validate the map 

with in-situ ground truth data.  

 Objective 3: Show that integrated hyperspectral (spectral, chemical, species composition and 

function) and lidar (vertical structure) data improves the accuracy of the landscape 

characterization algorithm compared to data from a single instrument.  

 Objective 4: Start to relate derived remote sensing features to structure, chemistry, and function.  

 Objective 5: Leverage the collection of pixels within a ground plot.  

 Objective 6: Analyze the key spectral and structural differences between vegetation communities 

as measured in the remote sensing data.  

 Objective 7: Relate the classification results to a local scale biodiversity indicator. 

 

The objectives are described in detail in the following paragraphs. 
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Objective 1: Investigate remote sensing technologies to map ecosystems. 

 

Perform a literature search to identify previous research using remote sensing for land cover 

mapping and determine specific examples where the land cover classes represent ecosystems. Identify 

research that specifically links the remote sensing data to vegetation chemical, functional, or structural 

traits. Determine what statistical metrics have been calculated by others for use in classification 

algorithms. Finally, understand the current state of research and future desires for using remote sensing 

for biodiversity studies. 

 

Objective 2: Generate a vegetation community map from remote sensing data. Validate the map with in-

situ ground truth data. 

 

The primary output product of this research is a land cover map that uses regional vegetation 

communities as the land cover classes. A classification and regression tree (CART) algorithm (Breiman et 

al., 1984; Therneau et al., 2015) is used to generate the vegetation community map. A series of metrics 

are calculated from the remote sensing data which characterize the spectral and structural variations 

across the landscape of the study site. The metrics serve as the input feature layers to the classification 

tree. Training data points for each of the vegetation communities are hand selected using photo-

interpretation of high resolution imagery in combination with GIS data of the study site. The 

classification tree is generated using the training data and then validated using independent in-situ ground 

truth data by comparing the vegetation community class predicted by the classification tree against the 

actual vegetation community as determined by species lists and site photos from field sampling. 

Vegetation community maps are presented in Chapters V-VII along with corresponding accuracy 
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assessments using both the training data (with k-folds cross-validation) and the independent ground truth 

data.  

 

Objective 3: Show that integrated hyperspectral (spectral, chemical, species composition and function) 

and lidar (vertical structure) data improves the accuracy of the landscape characterization algorithm 

compared to data from a single instrument. 

 

Classification trees are generated using the hyperspectral instrument data alone (Chapter V) and 

lidar instrument data alone (Chapter VI). Based on the accuracy assessments, misclassification can occur 

in areas on the ground that have similar spectral or structural characteristics. If areas that are spectrally 

similar have different structure, or vice-versa, then combining the instrument data from the two sensors 

will improve the classification map. A classification tree generated using the integrated hyperspectral and 

lidar data is discussed in Chapter VII and shows an improvement in classification accuracy for the 

training data. 

 

Objective 4: Start to relate derived remote sensing features to structure, chemistry, and function. 

 

The input feature layers for the classification tree are statistical metrics calculated on the remote 

sensing data. At first glance, many of these features are specific to the remote sensing data themselves 

and do not immediately appear to be associated with ecologically meaningful features such as structure, 

chemistry, and function. For example, an input feature of the mean reflectance at a specific wavelength is 

specific to the hyperspectral data. If this wavelength happens to correspond to a wavelength of light that is 
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absorbed by chlorophyll, for instance, then this mean reflectance is now a proxy for canopy chlorophyll, 

which is a relationship of reflectance to canopy chemistry. Where possible, potential relationships are 

identified in Chapters V-VII between calculated remote sensing features (that are using by the 

classification tree) and physical structure, chemistry, or function. 

 

Objective 5: Leverage the collection of pixels within a ground plot. 

 

Just as vegetation communities are assemblages of species, a study area on the ground can be 

observed by an assemblage of remote sensing pixels or points. In this research, hyperspectral data are 

collected with a 1 m instantaneous field of view (IFOV) plus 1 m spacing pixels and the lidar has 0.8 m 

IFOV spots with a spacing of approximately 0.5 m. If analysis is performed at a 20 m ground plot scale, 

then an assemblage of 400 hyperspectral pixels and 1600 lidar pulses can be used to calculate assemblage 

input features, for example, fraction of vegetation pixels from hyperspectral data or fraction of ground 

points from lidar. While previous research has used pixel statistics such as standard deviation and range, 

little has been done in terms of thinking of groups of pixels as an assemblage of spectra or lidar points as 

an assemblage of vertical structure. Some of the metrics calculated as input feature layers for the 

classification trees in Chapters V-VII attempt to utilize the remote sensing data in this assemblage 

framework.  
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Objective 6: Analyze the key spectral and structural differences between vegetation communities as 

measured in the remote sensing data. 

 

The classification tree algorithm generates splitting decisions based on the ability to correctly 

classify the training data class as efficiently as possible. The input feature layers used by the classification 

tree for the splitting decisions provide insight into similarities or differences in the data between different 

vegetation communities. Part of the results discussion in Chapters V-VII will address the differences in 

the spectra and structure of the different vegetation communities and areas of misclassification due to 

similarities in the remote sensing data. 

 

Objective 7: Relate the classification results to a local scale biodiversity indicator. 

 

The Grand Challenges in Environmental Sciences (NRC, 2001) call for new tools of rapid 

assessment of biodiversity. A local scale biodiversity indicator can easily be derived from the remote 

sensing data and ground observations of biodiversity. In this research, the biodiversity indicator used is 

species richness. A relative species richness estimation map is generated from the vegetation community 

classification results and described in Chapter VIII.  
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Knowledge Gaps 

 

Remote sensing technologies are being used more frequently to monitor biodiversity, however, 

previous research has only scratched the surface of what might be possible. Four specific themes have 

emerged as having limited use and where significant gains could be made: 

 vegetation communities as land cover classes, 

 integration of hyperspectral and lidar data, 

 spectral variability hypothesis applied to different, diverse ecosystems, 

 and thinking of remote sensing data as an assemblage of pixels or points. 

 

While a significant amount of research has been performed on using remote sensing for land 

cover classification, very rarely do the resulting land cover classes represent ecosystems, let alone specific 

vegetation communities. For instance, the National Land Cover Database (Fry et al., 2011) uses only 20 

classes (13 are vegetation) to describe the entire nation and only four categories to describe forests: 

deciduous, evergreen, mixed, or woody wetlands. These vague descriptors may be successful for tracking 

land cover changes with time but say nothing about the chemistry, structure, and functioning of the 

vegetation. More specific land cover classes are needed as some forest communities are more threatened 

than others and cannot be monitored if general land cover classification is used (Strittholt & Steininger, 

2007). Additionally, the methods presented here will enable the detection of ecosystem disturbance or 

degradation in areas where no land cover change has taken place (Rose et al., 2015). 

 

Many previous studies have used a combination or fusion of hyperspectral and lidar data. It is 

unclear how effectively the data from the two sensors have been merged. Typically, the data are fused at 



56 
 

the feature layer, or more specifically, features are calculated individually for each sensor and then the 

resulting statistics are combined as inputs to a machine learning algorithm. The instruments on the NEON 

AOP view the same area on the ground plus the hyperspectral data is co-registered to the lidar data as part 

of camera model generation and geolocation which should easily allow more complex data fusion 

techniques. 

 

Carlson et al., 2007 demonstrate a very successful application of the spectral variability 

hypothesis (Palmer et al., 2000; Palmer et al., 2002) by generating maps of species richness using the 

variability of spectral reflectance within a defined ground plot. Links to biogeochemistry are proposed 

though the study uses the derivative-reflectance range in the remote sensing data to correlate against 

species richness and does not actually derive chemistry maps from the remote sensing. Furthermore, this 

study takes place in Hawaii in a forest with a diverse canopy. Individuals from the species richness data 

can be easily observed in the remote sensing data. It is unclear how applicable the techniques and results 

from this study are to other regions of the U.S. or other types of ecosystems. One general concern about 

biodiversity regression using spectral variability is that major sources of spectral variability in remote 

sensing data are the illumination geometry, shadowing, and pixel size. These non-biodiversity causes of 

spectral variability led to biases and trends in derived species richness maps during initial data exploration 

for this research, for example the results had an artificial trend in richness in the across-track direction of 

the pushbroom sensor data. Another major issue is that hyperspectral sensors are measuring the reflected 

solar radiation primarily from the top of a canopy in the case of trees. The hyperspectral data includes no 

information about what exists on the ground underneath the canopy. In the case of certain ecosystems, 

such as the Sandhill ecosystem (FNAI, 2010), the herbaceous ground layer contains the most vegetation 

diversity. Unfortunately, the spectral variability in the hyperspectral data would not properly detect the 

diversity and subsequent species richness maps would underrepresent the true number of vegetation 

species. 
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In the past, access to high-spatial resolution (on the order of 1 m sampling distance) hyperspectral 

and lidar data has been limited. With advances in technology used in recent airborne observatories such as 

the NEON AOP (Kampe et al., 2010) with free and open data policies, these types of data are becoming 

more prevalent. Many previous studies have used summary statistics as input features for classification 

algorithms, for example: mean reflectance at 550 nm or mean, stdev, min, and max of canopy height. 

New data sets from AOP present an opportunity to begin thinking and describing the data as a collection 

of pixels or points. Just as vegetation communities are assemblages of species, remote sensing data are 

assemblages of pixels or points. For improved vegetation community mapping, new techniques need to be 

developed that analyze the remote sensing data as assemblages. 

 

Research Significance 

 

This research plays a role in efforts to conserve and restore longleaf pine forests to the Southeast 

U.S. The Range-Wide Conservation Plan (America’s Longleaf, 2009) calls for use of remote sensing data 

to identify and map longleaf pine stands across the historical range of the species. The localized maps of 

the Sandhill ecosystem at Ordway-Swisher Biological Station achieve that goal. Future work to extend 

the use of the classification algorithms to other sites would be greatly beneficial to longleaf conservation 

efforts. The research also satisfies the desire to map ecosystem extent enabling future efforts to create an 

extent biodiversity indicator as well as ecosystem integrity and condition (Strand et al., 2007b). 

 

Three high-level research themes guided the work presented here: observation of pattern, new 

technology evaluation, and development of analysis tools. The outputs of this research are vegetation 
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community class maps and a species richness map (a local biodiversity indicator). In order to generate the 

class maps, a series of metrics are calculated on the hyperspectral and lidar data. The spatial maps of these 

metrics form observations of the spectral and structural pattern of the landscape of the study site. These 

maps could also be used to inform the NEON TOS ground sampling strategy in order to capture the 

spatial variability across the site. The NEON AOP contains cutting edge remote sensing instruments, 

especially the NEON imaging spectrometer. The imaging spectrometer has a 5 nm spectral resolution and 

a 1 m ground sample distance. These specifications allow analysis of the data in different and news ways 

than previous remote sensing instruments, but also pose some challenges for working with the new data. 

Several processing steps are required to adjust the data and prepare it to be used to calculate the spectral 

and structural metrics. This research also attempted a new interpretation of how to use the spectra. The 

full hyperspectral data is reduced to 32 key wavelengths and a full set of normalized difference indices 

are calculated and used as input features in the classification algorithm. Working with a 20 m x 20 m plot 

scale of 1 m pixels, the remote sensing data can be thought of as an assemblage of pixels. New analysis 

tools are developed in this research to take this concept and apply it in the form of new metrics (for 

example fraction of green vegetation pixels) that serve as the input features in the classification algorithm. 

Other metrics used in this research have a potential to be directly related to physical spectral (or chemical) 

or structural characteristics of the landscape that are ecologically meaningful. Future research could 

improve upon these relationships and allow analysis of structure and function across the site. Ordway-

Swisher Biological Station has a large amount of variability in the vegetation communities located at the 

site which serves as an excellent study area to develop analysis tools to relate observed remote sensing 

metrics to biophysical traits.  

 

Once NEON becomes fully operational, the combination of the airborne remote sensing with 

ground sampling of foliar chemistry, vegetation diversity, and vegetation structure will allow advances in 

analysis of spatial patterns, scaling approaches from ground point to regional scales, as well as process 
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studies that can understand the relationships of cause and effect of biological change. The 2014 remote 

sensing data used in this research serves as baseline for long-term change studies. 

 

With respect to the knowledge gaps identified in the previous section, this research is significant 

in that it uses specific vegetation communities as the land cover classes, allowing a more detailed 

understanding of the species composition that exists in each region of the classification map. 

Hyperspectral and lidar data are integrated at the feature layer, a practice that is common in the literature. 

The AOP data are co-registered enabling more advanced fusion techniques. Future research will include 

combining the data at earlier stages of processing, for instance using canopy height to stratify the 

hyperspectral pixels into sub-groups within the 20 m x 20 m plot, and then calculating metrics on each 

subgroup (for example separately calculating the mean reflectance of canopy vegetation versus ground 

vegetation). The spectral variability hypothesis was successfully applied to a closed-canopy system 

(Carlson et al., 2007) with a high degree of woody species diversity. A direct implementation of that 

method to the data collected at the Ordway-Swisher Biological Station is not successful because of open 

canopy savannah type ecosystems and the fact that the most vegetation diversity is in the herbaceous 

ground layer which may not be observable in the remote sensing data. For this research, vegetation 

communities are mapped and used as a proxy for species richness. Future work will include more pre-

processing to remove the effects of illumination that may enable the spectral variability hypothesis to be 

applied at this site and more analysis of spectral and structural variability is needed to correlate the remote 

sensing data directly to species richness and diversity. As mentioned in the previous paragraph, many of 

the metrics calculated from the remote sensing data in this research consider the idea of assemblages of 

pixels, which advances the analysis tools and classification algorithm accuracies achieved over summary 

statistics. 
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This research also addresses the NRC Grand Challenge (NRC, 2001) of biological diversity and 

ecosystem functioning with some aspects of land-use dynamics. Several relevant action items are 

specifically called out in the report. 

 Use remote sensing to assess diversity and develop remote sensing techniques to examine 

ecosystem characteristics 

NEON AOP hyperspectral and lidar remote sensing data are used in this research. The AOP flew over the 

entire study site of the Ordway-Swisher Biological Station. Spectral metrics are calculated from the 

hyperspectral data which represent the spectral differences and variability across the site. Structural 

metrics are calculated from the lidar data which represent the structural differences and variability across 

the site. The metrics calculated from the two instruments allow analysis of the chemical, structure, and 

function of the various ecosystems located at the study site. Combined with NEON TOS ground data of 

species richness, diversity across the study site can be mapped with the remote sensing data. 

 Improve accuracy and reduce uncertainty of vegetation classes from remote sensing data 

A land cover classification algorithm is run using the metrics calculated from the remote sensing data. For 

this research, the land cover classes are vegetation communities as specified by the Florida Natural Areas 

Inventory (FNAI, 2010). These specific vegetation community classifications are a great advancement 

over generic vegetation classes such as the National Land Cover Database (Fry et al., 2011) for describing 

species composition. Additionally, utilizing the high-spatial resolution AOP data will reduce the 

confusion and misclassification due to the mixed-pixel signals of coarse spatial resolution remote sensing 

data commonly used for land cover mapping. Finally, the integration of hyperspectral and lidar data 

increases the accuracy of the vegetation classes by utilizing both spectral and structural information. The 

accuracy of the classification maps generated in this research are assessed on the training data using k-

folds cross-validation and also with independent ground truth validation points. A discussion of the areas 

of confusion is provided, identifying areas of future research to improve the accuracy of the results. The 
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accuracy assessment framework can support future studies such as adding or removing metrics to 

simulate data from other sensors to determine the effects on accuracy of vegetation mapping. 

 Use imagery analysis to detect variables or develop proxy measures 

The calculated metrics from the remote sensing data represent various chemical and structural variables of 

the vegetation across the landscape. In this research, vegetation community classes are mapped using 

these variables. The resulting communities can then serve as a proxy for biodiversity by creating a 

relative species richness index using the ground data and applying that index to the vegetation community 

classes. 

 Develop tools for rapid assessment of biodiversity 

One output of this research is a local biodiversity indicator in the form of a species rightness map. The 

map highlights areas of high species richness that could be used by land managers to focus conservation 

efforts (Turner et al., 2003) and could inform field biologists which areas to target for specific research 

questions. 

 Determine the relationship between ecosystem structure and functioning and diversity 

 Ecosystem structure can be characterized using the NEON AOP lidar data and ecosystem functioning (on 

a high level) by the hyperspectral data. Combining the airborne remote sensing with the NEON TOS field 

sampling of species richness and abundance establishes initial data sets for future use in process studies 

that might be able to determine a relationship between ecosystem structure and functioning with diversity. 

 Link land change theory to space based imagery to move beyond local level analysis 

While satellite remote sensing data is not used in this research, the airborne remote sensing data serves as 

an important bridge to scale from limited ground points or plots, to the local site-scale as mapped by the 

airborne data, to that of regional, continental, and global scale possible with satellite imagery. 
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Hyperspectral and lidar remote sensing sensors designed for vegetation studies from space are currently 

being designed and until launched, the application of vegetation community mapping at the global scale 

may be limited. Analysis of regional generic land cover classes and their effect on local biodiversity is 

possible with current satellites but not part of this research. 

 Perform spatially mapping of land use and land cover with analysis of land changes with time 

Spatial maps of vegetation communities are generated which are specialized land cover classes. NEON 

AOP will fly over each NEON site once per year around peak greenness for a 30 year period. After 

several years of data collection, land cover changes with time can be analyzed.   
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CHAPTER III 

VEGETATION COMMUNITIES OF THE ORDWAY-SWISHER BIOLOGICAL STATION 

 

Ordway-Swisher Biological Station 

 

The study area for this research is the Ordway-Swisher Biological Station (OSBS), located in 

Melrose, FL approximately 22 miles East of Gainesville, FL as shown in Figure 12: 

  

 

Figure 12: Location of the Ordway-Swisher Biological Station approximately 22 miles east of 

Gainesville, FL. Figure credit: OSBS 
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OSBS is operated by the University of Florida Institute of Food and Agricultural Science through the 

Office of the Dean for Research (OSBS, 2015a). The site covers an area of 9300 acres and consists of 

uplands and wetlands including 55 lakes and ponds, a hardwood swamp, and three wet prairies (OSBS, 

2015a; OSBS, 2015b). The Ordway-Swisher Biological Station’s mission is to “further the study and 

conservation of unique ecosystems through research, education, and management” (OSBS, 2014, p. 2). 

OSBS is also the NEON Domain 3 Southeast Core Terrestrial site with the instrument tower located at 

29.68927 latitude, -81.99343 longitude (NEON, 2015k). 

 

Archaeological evidence shows that Native Americans had a long-term seasonal occupancy at 

OSBS (Eisenberg & Franz, 1995). Europeans began agricultural activities (mixed farming and cotton) in 

the region around 1848, but this was limited due to soil depletion (Eisenberg & Franz, 1995). After the 

civil war, longleaf pine was exploited across the southeast for extraction of resin, logging for timber, and 

extraction of tree roots (Eisenberg & Franz, 1995). In 1926, Carl Swisher buys land and uses his 25000 

acre private property for hunting, fishing, and limited agriculture (Eisenberg & Franz, 1995; OSBS, 2011; 

OSBS, 2015a). After his death, the Swisher-Wilcox family donates 3000 acres to the Nature Conservancy 

in 1979, named the Carl Swisher Memorial Sanctuary (Eisenberg & Franz, 1995; OSBS, 2011; OSBS, 

2015a). The Sanctuary includes the Mill Creek drainage, Ashley Prairie, and Putnum Prairie in the North 

and West portions of the site (Eisenberg & Franz, 1995). In 1980, the University of Florida Foundation 

buys 6000 acres adjacent to the sanctuary with a grant from the Goodhill Foundation and names it the 

Katharine Ordway Preserve (OSBS, 2011; OSBS, 2015a). The tracts include the uplands and Sandhill 

lakes in the South and East portions of the site (Eisenberg & Franz, 1995). The Nature Conservancy and 

University of Florida jointly manage the properties (Eisenberg & Franz, 1995) until 1983 when 

University of Florida begins managing the Swisher Sanctuary (OSBS, 2011). In 2006, University of 

Florida and the Nature Conservancy rename the property as the Ordway-Swisher Biological Station 

(OSBS, 2011; OSBS, 2015a). In 2008 the Nature Conservancy donates the Sanctuary to University of 
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Florida (OSBS, 2011). Smaller areas have been added to the site since 1980 (Eisenberg & Franz, 1995) 

including 341 acres and 6 buildings between 2011 and 2014 (OSBS, 2013 & OSBS, 2014). Facilities at 

the site have been upgraded or added to support teaching, lodging for researchers, and maintenance and 

fabrication (OSBS, 2011; OSBS, 2013; OSBS, 2014).  

 

Carl Swisher historically burned the pine uplands on an irregular schedule to reduce fuel loads, 

but in 1983, a three year rotational burn schedule was initiated on selected tracts (120-200 acres in size) 

of land (Eisenberg & Franz, 1995). The first 10 years of fire management at the site showed that the 

rotational burn favored longleaf pines over turkey oak and improved the condition of the uplands 

(Eisenberg & Franz, 1995). More recently, 27 prescribed burns were conducted in 2013 covering 2206 

acres of land (OSBS, 2013) and 17 prescribed burns were conducted in 2014 covering 1763 acres of land 

(OSBS, 2014). A drought in the 1980s caused many of the Sandhill lakes to dry out leaving only 9 basins 

that still contained water in 1992 (Eisenberg & Franz, 1995). Rapid succession of lake vegetation was 

observed but the xeric adapted species in the uplands showed resilience to the deficits in rainfall 

(Eisenberg & Franz, 1995). 

 

Florida Natural Areas Inventory 

 

The Florida Natural Areas Inventory (FNAI) is a nonprofit organization administered by Florida 

State University (FNAI, 2015). The inventory was founded in 1981 and collects, interprets, and 

communicates information for conservation of Florida’s biological diversity. In 1990, FNAI released a 

“Guide to the Natural Communities of Florida” (FNAI, 1990). The guide details a hierarchical 

classification system of 81 different natural biological associations (communities) found in Florida. Here 
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a natural community is defined as “a distinct and reoccurring assemblage of populations of plants, 

animals, fungi, and microorganisms natural associated with each other and their physical environment” 

(FNAI, 1990, p. 1). The guide contains 7 broad categories based on hydrology and vegetation type. In 

2007, FNAI began an update to the guide with funding from the Florida Department of Environmental 

Protection, Division of State Lands (FNAI, 2010). The purpose of the update was to provide further 

clarification on distinctions between similar communities and more description of variations within each 

community. The hierarchical organization was modified a bit to emphasize similarities in species 

composition, structure, and landscape position (FNAI, 2010). Even though the focus of the guide is on 

natural communities, a list of altered land cover types due to human impact was added. 

 

OSBS is in the process of updating their vegetation community map using the 2010 FNAI 

descriptions (S. Coates, personal communication, July 17, 2014). For this research, the 1990 FNAI 

descriptions are used along with the corresponding OSBS GIS data from 2004 (OSBS, 2015c; OSBS, 

2015d) as shown in Figure 13: 
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Figure 13: FNAI vegetation communities at OSBS. Figure credit: OSBS 

 

The GIS layers were created using photo-interpretation of high resolution imagery combined with site 

surveys (S. Coates, personal communication, July 17, 2014). Remote sensing data and a decision tree 

classification algorithm will be used to generate similar maps with results shown in Chapters V-VII. 

Eleven vegetation communities were identified at the site including: Basin Marsh, Basin Swamp, Baygall, 
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Clastic Upland Lake, Pine Plantation, Ruderal, Sandhill, Sandhill Upland Lake, Upland Mixed Forest, 

Upland Sandhill Lake Fringe, and Xeric Hammock. 

 

The area of each of the vegetation communities at OSBS is calculated and is shown in the pie 

chart in Figure 14 and listed as percent area in Table 4 along with the global and state rarity rank (FNAI, 

1990).  

 

 

Figure 14: Pie chart showing the relative area covered by each of the vegetation communities at OSBS 
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Table 4: Percent of area at OSBS covered by each FNAI vegetation community along with global and 

state rarity rank 

FNAI Community Percent of Area at OSBS Global and State Rarity Rank 

Sandhill 37.17 G3/S2 

Xeric Hammock 15.24 G3/S3 

Basin Marsh 12.59 G4/S3 

Upland Mixed Forest 8 G3/S3 

Sandhill Upland Lake 7.97 G3/S2 

Clastic Upland Lake 6.79 G3/S2 

Ruderal 4.83 NA 

Baygall 3.94 G4/S4 

Pine Plantation 1.65 NA 

Basin Swamp 1.3 G4/S3 

Upland Sandhill Lake Fringe 0.52 NA 

 

Definition of State (S) element ranks (FNAI, 1990, p. 4): 

S1 = “Critically imperiled in state because of extreme rarity (5 or fewer occurrences or very little 

remaining area) or because of some factor(s) making it especially vulnerable to extinction;” 

S2 = “Imperiled in state because of rarity (6-20 occurrences or little remaining area) or because of some 

factor(s) making it very vulnerable to extinction throughout it range;” 

S3 = “Rare or uncommon in state (on the order of 21 to 100 occurrences);” 

S4 = “Apparently secure in state, although it may be rare in some parts of its state range;” 

S5 = “Demonstrably secure in state and essentially ineradicable under present conditions;” 
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S? = “uncertain State rank.” 

 

The Sandhill community is the largest at OSBS covering 37.17% of the site. This is also a critically 

endangered ecosystem with a state rank of S2. Xeric Hammock and Basin Marsh cover the second and 

third largest areas at the site. The vegetation communities are defined below. 

 

Upland Mixed Forest and Xeric Hammock belong to the FNAI category Hardwood Forested 

Uplands described as “mesic or xeric forest dominated mainly by hardwood trees” (FNAI, 2010, p. 4). 

Sandhill belongs to the category High Pine and Scrub described as “hills with mesic or xeric woodlands 

or shrublands; canopy, if present, open and consisting of pine or a mixture of pine and deciduous 

hardwoods” (FNAI, 2010, p. 4). Basin Marsh belongs to the category Freshwater Non-forested Wetlands 

described as “herbaceous or shrubby palustrine communities in floodplains or depressions; canopy trees, 

if present, very sparse and often stunted” (FNAI, 2010, p. 6), specifically the Marshes group described as 

“long hydroperiod; dominated by grasses, sedges, broadleaf emergents, floating aquatics, or shrubs” 

(FNAI, 2010, p. 6). Basin Swamp belongs to the category Freshwater Forested Wetlands described as 

“floodplains or depressions dominated by hydrophytic trees” (FNAI, 2010, p. 7), specifically the 

Cypress/Tupelo group described as “dominated entirely by cypress or tupelo, or these species important 

in the canopy; long hydroperiod” (FNAI, 2010, p. 7). Baygall is also in the Freshwater Forested Wetlands 

category but in the Hardwood group described as “dominated by a mix of hydrophytic hardwood trees; 

cypress or tupelo may be occasional or infrequent in the canopy; short hydroperiod” (FNAI, 2010, p. 8). 

Clastic Upland Lakes and Sandhill Upland Lakes belong to the category Ponds and Lakes 

(LACUSTRINE) described as “non-flowing wetlands of natural depressions lacking persistent emergent 

vegetation except around the perimeter” (FNAI, 2010, p. 9). Finally, Ruderal and Pine Plantation are 

altered landcover types where humans have cleared the forests in these areas and used them for 
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agriculture, grazing, or plantations. Each of the vegetation communities are described in detail in the 

following sections. 

 

Basin Marsh 

 

A Basin Marsh is a depression that is regularly inundated with rain water, forming herbaceous 

wetlands. Basin Marshes are large landscape features and the four marshes at OSBS cover the third 

largest area of the vegetation communities at the site (OSBS, 2015c; OSBS, 2015d). Vegetation species 

can be divided into submerged, floating-leaved, emergent, and grassy zones. The marshes are dominated 

by herbs and shrubs. Trees are sparse so there is little or no canopy. The characteristic species include: 

white waterlily (Nymphaea odorata), maidencane (Panicum hemitomon), sawgrass (Cladium jamaicense), 

bulltongue arrowhead (Sagittaria lancifolia), pickerelweed (Pontederia cordata), and sand cordgrass 

(Spartina bakeri) (FNAI, 1990; FNAI, 2010). Figure 15 shows site photos of two areas of Basin Marsh. 

As seen in the pictures, the marshes are dominated by the herbaceous ground layer and there is little or no 

canopy. 
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Figure 15: Two areas of Basin Marsh. Photos courtesy of NEON 
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Basin Swamp 

 

A Basin Swamp is a type of wetland with an extended hydroperiod (can have standing water for 

most of the year) that contains hydrophytic trees and shrubs. This type of swamp is highly variable in 

size, shape, and species composition with mixed species canopies common. They occur in large landscape 

depressions where the soils are acidic, nutrient poor peats lying on top of a clay lens or other impervious 

layer.  The characteristic species include: pond cypress (Taxodium ascendens) and swamp tupelo (Nyssa 

sylvatica var. biflora). Higher vegetation diversity is expected near the perimeter of a Basin Swamp 

where the soils are more aerated (FNAI, 1990; FNAI, 2010). Figure 16 shows site photos of a Basin 

Swamp canopy (upper left), understory (upper right), and ground cover (bottom). The mostly closed 

canopy contains a mix of species, however, the open understory in this example is dominated by pond 

cypress. The ground was not flooded at the time these pictures were taken.  
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Figure 16: Basin Swamp canopy (upper left), understory (upper right), and ground cover (bottom). Photos 

courtesy of NEON 
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Baygall 

 

A Baygall is an evergreen forested wetland, situated in a depression, and dominated by bay 

species in both the canopy and understory. The canopy can be open or dense and may contain pine trees 

that can withstand a hydric soil. The canopy and understory typically do not form distinct strata and 

appear as a dense tall thicket. Vines may be abundant but herbs are absent or few. Baygalls form on wet 

acidic peat soils and are often drained by streams. Seepage from surrounding communities along with 

rainfall keep the peat saturated but rarely flooded. Baygall can be a succession from Basin Swamp. The 

characteristic species include: Loblolly bay (Gordonia lasianthus), sweetbay (Magnolia virginiana), 

and/or swamp bay (Persea palustris). Wetter Baygalls may contain pond cypress and swamp tupelo 

making them appear similar to Basin Swamp (FNAI, 1990; FNAI, 2010). Figure 17 shows site photos of 

two areas of Baygall. As seen in the pictures, the understory is very thick and the bottom image appears to 

be an area with an open canopy (with canopy trees in the top image and the background of the bottom 

image). 
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Figure 17: Two areas of Baygall. Photos courtesy of NEON 

 

 

 

 

 



77 
 

Sandhill and Clastic Upland Lakes 

 

Sandhill Lakes are shallow rounded depressions in sandy upland communities. These lakes are 

typically permanent water bodies however their levels can fluctuate significantly or completely dry out in 

times of severe drought. Sandhill Lakes are lentic water bodies that lack significant surface inflows or 

outflows. They primarily get their water through lateral ground water seepage from the neighboring well-

drained soils. A narrow band of vegetation may exist along the shore consisting of hydrophytic grasses 

and herbs or a dense shrub thicket. In cases of gradually sloping shorelines, broader bands of emergent 

vegetation with submerged aquatic plants may exist (FNAI, 1990; FNAI, 2010). A Sandhill Lake is 

shown in the site photo in the upper right of Figure 18. Emergent vegetation can be seen sticking up out 

of the water near the shore. 

 

A Clastic Upland Lake is an irregular-shaped depression or basin occurring in uplands on clay 

substrates. These lakes range in depth from shallow to relatively deep. Clastic Lakes are lentic water 

bodies with surface inflows but no significant outflows where water is dissipated through evaporation and 

transpiration. A large variation of vegetation can be found at the water’s edge. Shallow areas are densely 

vegetated by shallow bands of emergent, floating, and submersed aquatics (FNAI, 1990; FNAI, 2010). A 

Clastic Lake is shown in the site photo in the upper left of Figure 18. Emergent and floating vegetation 

can be seen sticking up out of the water near the shore. The aerial photo in the bottom of Figure 18 was 

taken by the AOP flight operators and shows significant floating vegetation on some of the lakes. 
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Figure 18: A Clastic Lake (upper left), a Sandhill Lake (upper right), and an arial view of lakes with a 

significant amount of floating vegetation. Photos courtesy of NEON 
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Pine Plantation 

 

A Pine Plantation is an area altered by silviculture, in this case planted pine trees. The ground 

cover could have been damaged in the past by mechanical site preparation, or historical and ongoing 

damage due to shading of the ground layer and deep pine needle duff, preventing the growth of herbs. 

Pine Plantations are typically dominated by dense, even-aged loblolly pine (Pinus taeda), sand pine 

(Pinus clausa), or slash pine (P. elliottii) (FNAI, 1990; FNAI, 2010). Figure 19 shows site photos of two 

areas of Pine Plantation at the University of Florida Austin Cary Forest (SFRC, 2015). As seen in the 

pictures, the plantations contain dense but regularly spaced slash pine trees. Active logging may remove 

rows of trees or leave large bare openings after tree harvest as seen in the bottom picture. 
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Figure 19: Two areas of Pine Plantation at the Austin Cary Forest. Photos courtesy of NEON 
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Ruderal 

 

At OSBS, a Ruderal vegetation community refers to the altered land cover type of an abandoned 

field or pasture. These are areas of old fields, formerly used for agriculture or grazing. These fields show 

early succession and are dominated by weeds but may also have successional oak trees (FNAI, 1990; 

FNAI, 2010). Figure 20 shows site photos of four Ruderal areas that used to be fields and pastures. As 

seen in the pictures, the Ruderal areas have been cleared of trees and are dominated by grasses, herbs, and 

shrubs. Some areas have patches of exposed sand. 
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Figure 20: Four rederal areas (abandoned fields and patures). Photos courtesy of NEON 
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Sandhill 

 

Sandhill is a variation of a longleaf pine (Pinus palustris) ecosystem with widely spaced pines, a 

sparse mid-story of deciduous oaks, and dense groundcover of grasses, herbs, and low shrubs. Sandhill 

occurs on rolling topography with deep well drained sands (often yellow in color). The herbaceous 

ground cover contains the greatest vegetation diversity. The characteristic species include: longleaf pine 

(Pinus palustris), turkey oak (Quercus laevis), and wiregrass (Aristida stricta var. beyrichiana). Sandhill 

requires frequent (1-3 year interval) low intensity growing season fires to maintain an open canopy 

structure. The open canopy provides plenty of sunlight to the ground which is needed for growth of 

longleaf pine juveniles, shrubs, and grasses. Without regular fires, the mid-layer of oaks will form a 

closed canopy preventing light from reaching herbs and juvenile longleaf pines and the ecosystem will 

change into a Xeric Hammock community. Sandhill ecosystems are considered critically endangered and 

are given a state rarity rank of S2 (FNAI, 1990; FNAI, 2010). See the final section in this chapter for 

more information about the importance of the Sandhill community. Figure 21 shows site photos of a 

Sandhill canopy (upper left), understory (upper right), and ground cover (bottom). The canopy is open 

with widely spaced pines and the open understory contains wiregrass and longleaf pine seedlings. 

Charring (due to active fire management) can be seen on the trunks of the longleaf pine trees. 
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Figure 21: Sandhill canopy (upper left), understory (upper right), and ground cover (bottom). Photos 

courtesy of NEON 
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Upland Mixed Forest  

 

The GIS map shown in Figure 13 uses the vegetation community Upland Mixed Forest. Since the 

creation of this map back in 2004, site managers have taken a closer look at the vegetation species at the 

site in these areas and have recommended that the map be updated and these areas be labeled as Mesic 

Hammock (S. Coates, personal communication, July 17, 2014). The following sentences use elements 

from the Mesic Hammock description in the 2010 FNAI report (FNAI, 2010).  

 

Upland Mixed Forest is a well-developed evergreen hardwood forest with a closed canopy 

dominated by live oak (Quercus virginiana) with cabbage palm (Sabal palmetto). Southern magnolia 

(Magnolia grandiflora) and pignut hickory (Carya glabra) are characteristic in the subcanopy. Pine trees 

may form a sparse divergent layer and both shrubs and herbs can be sparse or patchy. At OSBS, upland 

Mixed Forest forms in the ecotone between wetland and upland communities which has minimal or no 

fires due to its landscape position (FNAI, 2010). Figure 22 shows site photos of an upland Mixed Forest 

canopy (upper left), understory (upper right), and ground cover (bottom). The mostly closed canopy 

contains a mix of species and the understory in this example is dominated by saw palmetto (Serenoa 

repens). 
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Figure 22: Mixed Forest canopy (upper left), understory (upper right), and ground cover (bottom). Photos 

courtesy of NEON 
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Upland Sandhill Lake Fringe 

 

Upland Sandhill Lake Fringe is the area surrounding a Sandhill Lake. Depending on seasonal 

water levels, the fringe area may contain emergent vegetation around the perimeter of the lake or may be 

bare soil from the lake bottom (FNAI, 1990; FNAI, 2010). Figure 23 shows site photos of four Lake 

Fringe areas. As seen in the pictures, the Lake Fringes are dominated by grasses, herbs, and shrubs and 

are absent of canopy trees. Some areas have patches of exposed sand. 
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Figure 23: Four Lake Fringe areas. Photos courtesy of NEON 
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Xeric Hammock 

 

Xeric Hammock is an evergreen oak forest on well drained sandy soils. It has a closed canopy 

and the canopy height is lower than other forest communities. The understory is open but contains shrubs 

and an herb layer that is sparse or absent. Spanish moss (Tillandsia usneoides) and ballmoss (T. 

recurvata) are often found hanging in the trees. The characteristic set of species include: sand live oak 

(Quercus geminata) and saw palmetto (Serenoa repens). In the case of succession from a Sandhill 

community, turkey oak (Q. laevis) and bluejack oak (Q. incana) may be dominant. Xeric Hammocks 

occur when fire exclusion (requires 7-16 years without fire) allows the oak trees to grow enough to close 

the canopy and reduce sunlight reaching the ground, therefore decreasing the growth of herbs and juvenile 

longleaf pines (Pinus palustris) (FNAI, 1990; FNAI, 2010). Figure 24 shows site photos of a xeric 

Hammock canopy (upper left), understory (upper right), and ground cover (bottom). The mostly closed 

canopy is dominated by oak species and the understory is very open with a lot of leaf litter on the ground. 
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Figure 24: Xeric Hammock canopy (upper left), understory (upper right), and ground cover (bottom). 

Photos courtesy of NEON 
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Implications of Species and Structure for Utilizing Remote Sensing Data 

 

The imaging spectrometer is a passive hyperspectral instrument that measures reflected solar 

radiation in the form of at-sensor radiance. The measured pixel integrated column radiance values are 

dominated by species in top of the canopy, except in cases of canopy gaps or other significant light 

transmission at the 1 m spatial scale. Vegetation species may have unique spectral reflectance curves, or 

at least similar functional types will have unique spectra verses other functional types (Ollinger, 2011; 

Ustin & Gamon, 2010). In the case of areas of active fire management (Sandhill, Ruderal, Lake Fringe, 

and Basin Marsh), spectral signatures of burnt materials can be observed in the hyperspectral data. Lake 

water pixels and bare soil will also exhibit unique spectral signatures. One complication is that lakes can 

have floating vegetation that cover a large surface area so mapping lakes may not be as straightforward as 

mapping water spectra. Finally, vegetation communities are assemblages of species. Analysis of a 20 m x 

20 m plot scale will include assemblages of spectra, which could be leveraged to improve classification of 

the vegetation communities in the hyperspectral data. 

 

The lidar is an active instrument that emits laser pulses at a wavelength of 1064 nm. The pulse of 

light travels through the air and interacts with the vegetation and/or ground where some of the photons are 

scattered back to the receiver (after traveling back through the air). The receiver measures the return 

signal as a function of time, enabling it to resolve the backscattered radiation as a function of distance 

(using the speed of light). Each received laser shot measures the vertical structure of the scene (since the 

lidar instrument is located in an aircraft looking down at the ground). When analyzed at a 20 m x 20 m 

plot scale, the collection of received laser pulses additionally captures the 2D horizontal structure, giving 

a 3D picture of the vegetation structure. Physical vegetation parameters such as tree height, tree spacing, 

canopy closure, and understory structure can be derived from the lidar data (Lefsky et al., 2002). The top 
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of the canopy can be identified in the received laser pulses as the first detected signal. A canopy height 

model can be generated from the first returns. Similarly, the ground can be identified in the received laser 

pulses as the last detected signal (except where vegetation is so thick that the laser photons cannot 

penetrate to the ground). A bare-Earth digital terrain model can be generated from the ground returns. 

Topographic analysis such as slope and aspect can also be calculated. 

 

Each vegetation community contains specific characteristic species that together form a specific 

vegetation structure. The NEON AOP remote sensing instruments observe species as measured spectra in 

the hyperspectral data and can directly measure the 3D structure of the vegetation in the lidar data. Table 

5 lists the relevant species and structural parameters for each FNAI vegetation community that are 

measured by the remote sensing instruments and that can be leveraged by the classification algorithms 

used in this research. 

 

Table 5: Relevant Species and Structural Parameters for Each FNAI Vegetation Community 

FNAI Dominant 

Species 

Canopy Understory Soil & 

Moisture 

Topography 

Basin Marsh Herbs and 

shrubs: white 

waterlily, 

maidencane, 

sawgrass, 

bulltongue 

arrowhead, 

No canopy Submerged, 

floating level, 

emergent, and 

grassy zones 

Herbaceous 

wetlands from 

rainwater 

Large 

landscape 

depression 

occurring 

around lakes  
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pickerelweed, 

and sand 

cordgrass 

Basin Swamp Hydrophytic 

trees: pond 

cypress and 

swamp tupelo 

Mostly closed Hydrophytic 

shrubs, 

especially on 

perimeter 

Acidic nutrient 

poor peats on 

top of an 

impervious 

layer, wetland 

with extended 

hydroperiod 

Basin in large 

landscape 

depression 

Baygall Loblolly bay, 

sweetbay, and 

swamp bay 

Open to dense 

canopy 

Mixed over 

and 

understory, no 

distinct strata, 

dense tall 

thicket 

Wet acidic 

peat soils, 

saturated but 

not flooded, 

drained by a 

stream 

At the base of 

a slope or in a 

depression 

Clastic Upland 

Lake 

NA None Shallow areas 

are densely 

vegetated by 

shallow bands 

of emergent, 

floating, and 

submersed 

aquatics 

Clay substrate Irregular-

shaped 

depression or 

basin, surface 

inflows but no 

significant 

outflows 
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Pine 

Plantation 

Loblolly pine, 

sand pine, or 

slash pine 

Dense and 

even-aged 

Depends on 

mechanical 

site 

preparation, 

damage due to 

shading of the 

ground layer, 

and deep pine 

needle duff 

Same as 

Sandhill at 

OSBS 

Same as 

Sandhill at 

OSBS 

Ruderal NA Open canopy 

with sparse 

trees 

dominated by 

weeds but may 

also have 

successional 

oak trees 

Same as 

Sandhill at 

OSBS 

Same as 

Sandhill at 

OSBS 

Sandhill Longleaf pine, 

turkey oak, and 

wiregrass 

Open canopy 

of widely 

spaced pines 

Sparse mid-

story of 

deciduous 

oaks, and 

dense 

groundcover of 

grasses, herbs, 

and low shrubs 

Deep well 

drained sands 

(often yellow 

in color) 

Rolling 

topography 

Sandhill 

Upland Lake 

NA None Hydrophytic 

grasses and 

herbs may 

Sand substrate, 

levels can 

fluctuate 

Shallow 

rounded 

depressions, 



95 
 

exist along the 

shore in a 

narrow band 

significantly or 

completely dry 

out in times of 

severe drought 

lack significant 

surface inflows 

or outflows 

Upland Mixed 

Forest 

Live oak, 

cabbage palm, 

southern 

magnolia, and 

pignut hickory 

Closed canopy Dense or open 

shrubby 

understory, 

sparse or 

patchy herb 

layer 

Sands mixed 

with organic 

matter, may 

have a thick 

layer of leaf 

litter, soils 

have high 

moisture by 

heavy shading 

and 

accumulation 

of litter but 

rarely 

inundated 

Ecotones 

between 

wetlands and 

upland 

communities 

Upland 

Sandhill Lake 

Fringe 

NA None May contain 

emergent 

vegetation 

around the 

perimeter 

Visible bare 

soil from the 

lake bottom 

Edge of 

depression 

containing a 

lake 
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Xeric 

Hammock 

Sand live oak, 

saw palmetto, 

turkey oak, 

bluejack oak, 

spanish moss, 

and ballmoss 

Closed, lower 

height canopy 

Open 

understory of 

shrubs and 

sparse herbs 

Well-drained 

sandy soils 

Same as 

Sandhill at 

OSBS 

 

Sandhill requires frequent (1-3 year interval) low intensity growing season fires to maintain an 

open canopy structure (FNAI, 2010; Oswalt et al., 2012). The open canopy provides plenty of sunlight to 

the ground which is needed for growth of longleaf pine juveniles, shrubs, and grasses. Without regular 

fires, the mid-layer of oaks will form a closed canopy preventing light from reaching herbs and juvenile 

longleaf pines and the ecosystem will change into a Xeric Hammock community. The herbaceous ground 

cover contains the greatest vegetation diversity in Sandhill, but remote sensing may not be able to directly 

observe this diversity. Instead, analysis of mid and understory structure may provide an indirect insight 

into the diversity at specific ground locations. 

 

The FNAI community descriptions and property table suggest some relationships between FNAI 

classes (due to succession) or with topography and hydrology. Future work could incorporate GIS 

analysis techniques (ex: distance from lake as a feature layer) or incorporate object based image analysis 

techniques (ex: compare data to spatial neighbors and develop rules to modify the output class under 

different circumstances) to improve the vegetation classification using contextual information. 

Additionally, many of the canopy tree species are evergreens, but some like pond cypress are deciduous. 

Remote sensing data collections in the winter time could be used to help identify specific canopy species. 

Finally, a diverse herbaceous ground layer should not be as flat as open ground in lidar data. Current 
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discrete return data may not be able to detect this difference. Waveform lidar analysis could be utilized to 

further characterize ground vegetation and distinguish subtle differences in surface cover. 

 

Importance of the Sandhill Community 

 

The Sandhill vegetation community is one of several variants of the longleaf pine (Pinus palustris 

Mill.) ecosystem (FNAI, 2010). Longleaf pine ecosystems once covered up to 92 million acres across the 

Southeast U.S. (Frost, 2006; Oswalt et al., 2012) with an extent from Texas to Virginia and central 

Florida to the piedmont of Alabama and Georgia (Oswalt et al., 2012). The ecosystem became established 

between 4000-8000 years ago as the continental glacier retreated (Oswalt et al., 2012). Longleaf pine 

ecosystems contain a canopy of widely spaced longleaf pines with an herbaceous ground layer of grasses 

and forbs (Oswalt et al., 2012). Frequent, low-intensity fires are required to maintain the diversity of the 

ground layer, so longleaf pines flourished in the pre-Columbian era as Native Americans conducted 

periodic burns which maintained and enhanced the lands (Oswalt et al., 2012). 

 

Longleaf pine ecosystems are some of the most diverse in North America with an extremely 

diverse ground layer containing up to 40 or more vascular plant species in a 1 m2 area and more than 170 

species in a 1000 m2 (America’s Longleaf, 2009; Oswalt et al., 2012). These ecosystems contain around 

900 endemic plant species, 30 species of reptiles and amphibians that are specialists, and 29 species that 

are federally listed as threatened or endangered (America’s Longleaf, 2009). Sandhill specifically 

provides an important habitat for many rare, threatened, or endangered species (FNAI, 2010; FWS, 

2015a): 
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 gopher frog (Rana capito) 

 gopher tortoise (Gopherus polyphemus) 

 eastern indigo snake (Drymarchon couperi) 

 Florida pine snake (Pituophis melanoleucus mugitus) 

 short-tailed snake (Stilosoma extenuatum) 

 Eastern diamondback rattlesnake (Crotalus adamanteus) 

 red-cockaded woodpecker (Picoides borealis) 

 southeastern American kestrel (Falco sparverius paulus) 

 Florida mouse (Podomys floridanus) 

 southeastern squirrels and Sherman’s fox squirrels (Sciurus niger niger and S. niger shermani, 

respectively) 

 Florida deepdigger scarab beetle (Peltotrupes profundus) 

 Ocala deepdigger scarab beetle (Peltotrupes youngi) 

 north peninsular mycotrupes beetle (Mycotrupes gaigei) 

 Skelley's june beetle (Phyllophaga skelleyi) 

 pygmy anomala scarab beetle (Anomala exigua) 

 McCrone’s burrowing wolf spider (Geolycosa xera) 

 and several species of melanoplus grasshoppers including pygmy sandhill grasshopper 

(Melanoplus pygmaeus) and Tequesta grasshopper (Melanoplus tequestae).  

 

The gopher tortoise is listed as a threatened species by the U.S. Fish and Wildlife Service in 

certain regions of the Southeast (FWS, 2015b). Their populations have declined by 80% over the past 100 

years consistent with habitat loss and human predation (Smith, 1995). Tortoises prefer clear, unshaded 

areas for their nesting sites making Sandhill, old fields, and sand live oak hammocks prime habitat 
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(Smith, 1995). Previous research has determined that 61% of gopher tortoise burrows are occupied at any 

time (Smith, 1995) plus more than 60 species of vertebrates and more than 300 species of invertebrates 

use the burrows as shelters, making the gopher tortoise a keystone species in Sandhill ecosystems (FNAI, 

2010; Smith, 1995). 

 

Three centuries of land use change along with fire exclusion have significantly reduced the size 

of the longleaf pine ecosystem (Oswalt et al., 2012). The major causes of the reduced extent and condition 

in longleaf pine ecosystems include (America’s Longleaf, 2009; Oswalt et al., 2012): 

 

 Logging of longleaf pine and unsustainable harvest 

 Extraction of naval stores 

 Conversion to agriculture, industrial pine plantations, and urban development 

 Landscape fragmentation 

 Invasive species 

 Interruption of natural fire regimes 

 

Oswalt et al., 2012 provide an interesting historical account of the loss of longleaf pine 

ecosystems due to human land use, especially due to logging in the late 1800s and early 1900s. Florida 

continued to see a decline of 90% in longleaf pine forests between 1936 and 1995 due to conversion to 

pine plantations, urban development, and agriculture (FNAI, 2010). Across the Southeast, between 1987 

and 1995, 92000 acres of longleaf pine forest was converted to other land cover types including 7400 

acres a year to urbanization and 3700 acres a year to agriculture (Oswalt et al., 2012). The 92 million 

acres of longleaf pine ecosystems had been reduced to around 2.6 million acres (less than 3% of the 
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natural area) by 2005 (Oswalt et al., 2012). Decadal surveys of longleaf pine were conducted over the last 

50 years as part of the Forest Inventory and Analysis (FIA) program by the United States Department of 

Agriculture and US Forest Service. These surveys found longleaf pine in eight states but found that the 

ecosystems were highly fragmented and in poor condition (Oswalt et al., 2012).  

 

Several programs are underway to conserve and improve existing longleaf pine areas (Oswalt et 

al., 2012). One major program is run by the Longleaf Alliance to manage and restoring longleaf pine 

forests for ecological and economic benefits (America’s Longleaf, 2015). Working groups and workshops 

developed a conservation plan with a 15 year goal to increase the acreage of longleaf pine forests from 

3.4 to 8.0 million acres (America’s Longleaf, 2009). The plan calls for “maintaining existing longleaf 

ecosystems in good condition, improving areas identified as longleaf pine forests but missing significant 

components of the understory and/or fire regimes, and restoring longleaf pine to suitable sites currently in 

other forest types” (America’s Longleaf, 2009, p. ii). In line with the recommendations of the range wide 

conservation plan, Florida created a statewide forest action plan (FDACS, 2010). Longleaf pine 

ecosystems are called out as a specific issue. The strategy notes that one of the biggest problems was 

proper fire management which was only occurring on 0.2% of longleaf areas in Florida. Correspondingly, 

one goal is to increase fire management so that fire return intervals in longleaf pine ecosystems are every 

1-5 years. Both the range wide plan and Florida strategy identify the need to inventory and assess longleaf 

pine ecosystems (America’s Longleaf, 2009; FDACS, 2010). FNAI and the Florida Forest Service have 

created a “Longleaf Pine Ecosystem Geodatabase” which serves as a GIS repository of the distribution 

and condition of longleaf pine forests in Florida (LLPEG, 2014a; LLPEG, 2014b). To date, 2.2 million 

acres of longleaf pine ecosystems have been verified in Florida (LLPEG, 2014a; LLPEG, 2014b) with 

about 40% on private lands. This research maps all eleven vegetation communities at OSBS but due to its 

importance, the classification results of the Sandhill ecosystem are emphasized.  



101 
 

CHAPTER IV 

REMOTE SENSING AND GROUND DATA 

 

National Ecological Observatory Network Airborne Observation Platform Domain 03 Flight Campaign 

2014 

 

The Airborne Observation Platform (AOP) flew the NEON Domain 03 Southeast region in 2014 

as part of a campaign to train flight operators and perform nominal flight collections over NEON sites. 

All three Domain 03 sites were flown in May 2014 including Ordway-Swisher Biological Station 

(OSBS), Disney Preserve in Florida, and the Jones Ecological Research Center in Georgia (NEON, 

2015k). Two flight plans were generated to cover the Ordway-Swisher Biological Station including the 

surrounding watershed (J. Musinsky, personal communication, May 7, 2014). The flight plans were 

prioritized to ensure that the site was collected first. If extra flying time existed, then the rest of the 

watershed area would be flown. Flight plan 1 included 1 East-West cross-strip (used to improve the 

relative geolocation of the data) and 26 North-South survey lines ranging in length from 10 to 16 km. 

Flight plan 2 included 1 cross-strip and 15 survey lines ranging in length from 4 to 7 km. The sum of the 

flight plans gives 2 cross-strips and 41 survey lines. The plan flight lines are shown in Figure 25 with the 

priority 1 lines in yellow and priority 2 lines in blue. 
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Figure 25: Flight plans for the Ordway-Swisher Biological Station. The yellow lines are the priority 1 

area covering the site and the blue lines are the priority 2 area to cover the site watershed 

 

The flight parameters and instrument configurations are listed in Table 6: 
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Table 6: Flight Parameters and Instrument Configuration for the AOP Domain 03 Campaign 

Parameter Value 

Nominal Flight Altitude 1000 m (3280.84 ft) Above Ground Level 

Airspeed 50 m/s (97.2 knots) 

Flight Line Spacing 420 m (30% overlap between flight lines) 

Spectrometer Line Rate 100 frames per sec 

Camera Shot Overlap 50 % 

Lidar Pulse Repetition Frequency 100 kHz 

Lidar Mirror Scan Half Angle ± 18.5 deg 

Lidar Mirror Scan Frequency 50 Hz 

Lidar Beam Divergence Wide 0.8 mrad 

 

With the flight parameters listed above, the pixel resolution of the spectrometer is approximately 

1.0 m at nadir with a cross-track spacing of 1.0 m and an along-track spacing of 0.5 m (the spectrometer 

is over-sampled in the along-track direction). Using a 70 mm focal length lens, the high-resolution camera 

takes pictures with a pixel resolution of 8.5 cm at nadir. The lidar instrument achieves a nominal 3.82 

points per meter squared with a 0.8 m diameter spot and a spot spacing of about 0.524 m in the across-

track direction and 0.5 m in the along-track direction. 

 

The AOP flew the Ordway-Swisher Biological Station on two separate days: May 7 and May 19, 

2014. On May 7, 2014, the AOP began the survey in the center of the site working their way West until 

the last flight line in the priority 1 area. The aircraft then returned to the center of the site and continued 

East. The aircraft landed to re-fuel but then ran into electronics issues. The next flight took place on May 

19 after the issues had been resolved. The remainder of the priority 1 flight lines were surveyed as well as 
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all of the priority 2 watershed lines to the far West and East of the site. Figure 26 shows the lidar ground 

swaths of the data collected with the May 7 swaths in green and the May 19 swaths in orange. 

 

 

Figure 26: Ground footprints of the lidar data collected on May 7, 2014 (green polygons) and May 19, 

2014 (orange polygons) 

 

Several pieces of ground support equipment were deployed in the field in coordination with the 

flights including a GPS base station, a CIMEL sun photometer, and radiometric calibration tarps. The 

black 3% and gray 48% reflectance tarps are seen from the air in Figure 27 and are used to improve the 

values in the spectrometer surface reflectance product. 
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Figure 27: Radiometric calibration tarps as viewed from the aircraft on May 7 (left) and May 19, 2014 

(right). Photos courtesy of NEON AOP 

 

Airborne Observation Platform Data Processing 

 

The raw remote sensing data are processed into Level 1 calibrated products for the spectrometer, 

lidar, and high-resolution camera. The first step is to convert the raw position and orientation data from 

the GPS/IMU into a smoothed best estimate of trajectory (SBET) file. The SBETs are generated using the 

Applanix POSPacMMS software (Applanix, 2015) including ground GPS base station data plus CORS 

network station data (NOAA, 2015) to improve the accuracy of the GPS positions. The output of the 

SBET file is the aircraft position (latitude, longitude, and elevation) and aircraft attitude (roll, pitch, and 

heading) as a function of GPS time. The trajectory file is essential to the geolocation processing chains for 

all three instruments. 
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Imaging Spectrometer Data Processing 

 

The imaging spectrometer data are processed to a Level 1 directional surface reflectance product. 

The processing is comprised of three major steps: radiance conversion, ortho-rectification, and 

atmospheric correction. Radiance conversion transforms the raw imaging spectrometer digital number 

(DN) values into calibrated at-sensor radiance (µW / cm2 – nm – ster). The imaging spectrometer is 

calibrated in the laboratory at the beginning of the flight season using an integrating sphere (Kampe et al., 

2010.) to derive absolute radiometric calibration coefficients. A pixel non-uniformity correction table is 

generated to account for relative pixel-to-pixel brightness variations. Bad pixels are also identified and 

their values are replaced during the radiance conversion step. More information about the radiance 

conversion processing is found in an algorithm theoretical basis document (Gallery & Leisso, 2014). 

 

The radiance spectrometer data are in their native 2D sensor format, i.e. 600 across-track pixels 

by 424 spectral bands by number of collected along-track data lines. The pixels are geolocated to the 

Earth’s surface during the ortho-rectification processing step. Each pixel is raytraced using the position 

and orientation from the trajectory file, a camera distortion model (generated using imagery from a 

calibration flight at the beginning of the flight season which co-registers the spectrometer to the lidar 

instrument), and a surface model derived from the lidar data. The raytracing determines the corresponding 

ground location for each pixel in a WGS84 UTM projection with a Geoid height. The pixels are 

rearranged onto a fixed output 1 m resolution grid using a nearest neighbor resampling. Figure 28 shows 

the ortho-rectification of a portion of a single flight line.  
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Figure 28: Radiometric correction and ortho-rectification of a portion of a single flight line of imaging 

spectrometer data. The left image is the raw data in the native 2D sensor rectangular format collected by 

the spectrometer where vertical radiometric streaks are visible. The center image has been converted to 

radiance, removing the streaks, but showing wavy lines due to aircraft turbulence and is oversampled by a 

factor of two in the along-track direction. The flight line is ortho-rectified onto a fixed 1 m output grid 

with a WGS84 UTM projection using nearest neighbor resampling as shown on the right 

 

The left side of the figure is a color image in the native sensor format. The image is square and 

waves/curves can be seen in the trees and roads due to aircraft turbulence and the optical distortion. The 

image is also oversampled by a factor of two with an across-track (columns) pixel sampling of 1 m but an 

along-track (rows) pixel sampling of 0.5 m. The right side of the figure shows the output ortho image 

which is half as long as the original image. The roads are now straight and the edges of the image are 

wavy showing the projection of the ground swath due to turbulence. More information about the 

geolocation processing is found in an algorithm theoretical basis document (Kampe, 2014). 
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Atmospheric correction is performed using the ATCOR 4 Software (ReSe, 2015) to convert at-

sensor radiance to directional surface reflectance. ATCOR attempts to compensate for absorption and 

scattering in the atmosphere and solves for the surface reflectance (surface leaving radiance divided by 

the downwelling solar spectral irradiance). ATCOR uses the hyperspectral data to solve for column water 

vapor absorption on a pixel-by-pixel basis but solves for atmospheric absorption and scattering over a 

larger portion of the scene. The software also estimates the molecular path radiance and aerosol scattering 

using dark targets (the contribution of scattered light by the atmosphere into the radiance signal). Finally, 

the ATCOR software solves for the adjacency effect of nearby ground targets whose radiance is scattered 

by the atmosphere into the instantaneous field of view of a given pixel. Figure 29 shows spectral at-sensor 

radiance curves on the left for several natural targets such as sand, grass and shrubs in a pasture, the 

canopy of a pine tree, the canopy of an oak tree, and water.  
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Figure 29: At-sensor radiance (bottom left) and directional surface reflectance (bottom right) curves for 

several natural targets whose spatial locations are shown in the top of the figure 
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The shape of these curves is dominated by the shape of the solar spectral irradiance and atmospheric 

absorption bands can be seen at several wavelengths. The plot on the right side of the figure shows the 

corresponding directional surface reflectance curves. Here the pasture, pine tree, and oak tree spectra 

show the classic vegetation “red edge” where their reflectance values increase significantly around 700 

nm. More information about the atmospheric correction is found in an algorithm theoretical basis 

document (Karpowicz & Kampe, 2015). 

 

All 26 of the North-South survey flight lines in the priority 1 flight plan are used in the research. 

Imaging spectrometer data from these flight lines are mosaicked together into a seamless data set as 

described further in Chapter V and shown in Figure 30. A few of the longer lines in the center of the 

image appear brighter because they were collected later in the afternoon at higher sun angles and the 

shadows are smaller.  
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Figure 30: Mosaic of 26 flight lines of imaging spectrometer data 
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Discrete Return Lidar Data Processing 

 

The discrete return lidar data are processed to a Level 1 point cloud (a series of geolocated points 

that can be displayed in 3D) product as well as Level 3 gridded surface model products. The processing 

begins by converting the raw discrete return lidar range file into a geolocated point for each return. The 

lidar instrument emits a laser pulse and then records the received energy as a function of time. Figure 31 

illustrates a single laser pulse with the outgoing pulse shape on the left and a return waveform from 

vegetation on the right.  

 

 

Figure 31: Discrete lidar ranging example using a simple 50% leading edge target detection algorithm 
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The system records the time interval between the outgoing pulse and the received signal. The figure 

shows a simple object detection algorithm that marks the 50% leading edge of any peaks in the signal. 

The range to a given target can be calculated by using the time of flight between the leading edge of the 

outgoing pulse and the leading edge of a given detected target (Stilla & Jutzi, 2009) as well as taking into 

account the speed of light and the index of refraction of air according to: 

𝑅 =
𝑐

𝑛
∙

𝜏

2
, 

 Where R is the range in m, c is the speed of light (m/s), and τ is the time interval between the outgoing 

pulse and the received signal, and n is the index of refraction of air which varies with temperature, 

pressure, and humidity. 

 

The Optech Gemini analyzes the received signals in real-time to detect targets using a proprietary 

algorithm. Instrument and timing information is stored in the raw range file which is processed by NEON 

using the Optech LMS software. LMS calculates the range for each detected return and then uses the 

mirror angle data as well as the SBET file to calculate the geometric position of the return on the Earth’s 

surface. Special test flights are conducted by NEON at the beginning of the flight season to calibrate the 

boresight angles for the lidar instrument and the LMS software uses the cross-strip and overlapping areas 

to adjust the flight lines to be self-consistent. More information about the lidar processing is found in an 

algorithm theoretical basis document (Krause & Goulden, 2015). The output of LMS is a Level 1 

geolocated point cloud data product where each return has a set of X, Y, and Z coordinates (Easting, 

Northing, and Geoid height) and a corresponding peak signal intensity value. Figure 32 illustrates discrete 

return lidar points for a couple trees located in a field as a 2D perspective view rendering of the 3D data.  
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Figure 32: Discrete return lidar point cloud showing a couple trees in a field. Each return has a set of X, 

Y, and Z coordinates as well as a corresponding intensity value 

 

Figure 33 shows discrete return lidar points for a single flight line at OSBS colorized by height 

with low elevations in blue and high elevations in red. 
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Figure 33: Discrete return lidar points for a single flight line colorized by height (blue for low elevations 

and red for high) 

 

All 26 of the North-South survey flight lines in the priority 1 flight plan are used in the research. 

Discrete return lidar data from these flight lines are mosaicked together into a seamless data set as shown 

in Figure 34: 
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Figure 34: Mosaic of 26 flight lines of discrete return lidar data 
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Level 3 surface model products are derived from the discrete return point clouds using LASTools 

(Rapidlasso, 2015). First, noisy data are removed from the point clouds using the “lasnoise” routine. 

Next, ground points are classified using the “lasground” routine and buildings and high vegetation points 

are classified using the “lasclassify” routine. The ground points are gridded into a digital terrain model 

(DTM) using the “las2dem” routine. The first return points are gridded into a digital surface model 

(DSM) using the “las2DEM” routine. Finally, the height above ground is calculated for each vegetation 

point by subtracting the DTM using the “lasheight” routine. The height above ground vegetation points 

are gridded into a canopy height model (CHM) using the “lasgrid” routine. All three of the surface model 

products are created on a fixed 1 m resolution output grid. Figure 35 shows a 1 km x 1 km area with the 

DSM in the upper left, the DTM in the upper right, and the CHM in the lower left.  
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Figure 35: Gridded Digital Surface Model (DSM) in the upper left, Bare-Earth Digital Terrain Model 

(DTM) in the upper right, and Canopy Height Model (CHM) in the lower left. The plot in the lower right 

shows the heights along a diagonal transect with the DSM in purple, DTM in brown, and CHM in green 

 

The height of each model is plotted for a diagonal transect starting at the lower left of each data set and 

moving across to the upper right. The DSM (purple curve) and DTM (brown curve) are in absolute 

GEOID height. Surfaces such as trees stand above the bare ground but both curves match in the middle 
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where there is an open pasture and near the right of the plot where there is a lake. The DTM is subtracted 

from the DSM to derive the CHM which shows the height of the vegetation (green curve).  

 

National Ecological Observatory Network Ground Validation Data 

 

NEON conducted ground sampling at Ordway-Swisher Biological Station in 2010, 2011, 2013 

and 2014. The 2010 Pathfinder Campaign combined airborne remote sensing with terrestrial observations 

of vegetation. At the time, the AOP instruments hadn’t been purchased yet so NASA JPL was contracted 

to collect imagine spectrometer data with the AVIRIS Classic (JPL, 2015b) instrument and the National 

Center for Airborne Laser Mapping (NCALM, 2015) was contracted to collect lidar data with an Optech 

Gemini, flown separately than AVIRIS. The terrestrial observations performed by NEON personnel and 

contractors focused on the airshed region surrounding the proposed location of the NEON tower in the 

Sandhill ecosystem. Leaf area index measurements were made along 8 transects on the ground and 

vegetation structure data (canopy height, canopy width, and trunk diameter at breast height DBH) were 

collected for a small area along one transect. In addition, vegetation species lists were created for 26 

ground locations distributed across the site in different ecosystems. Species were identified in a 7.31 m 

radius circle (168 m2) at each location. In 2011, a more detailed site characterization effort was conducted 

by NEON. Species lists were created for 47 ground locations distributed across the site and photographs 

were taken. An example of a species list from one location is given: 
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 Plot: os343c 

 No doubt of identification 

aevi aeschynomene viscidula, sticky jointvetch 

agju2 ageratina jucunda, hammock snakeroot 

ammu2 amphicarpum muehlenbergianum, muhlenberg maidencane 

anfl andropogon floridanus, florida bluestem 

angy2 andropogon gyrans, elliott`s bluestem 

ante2 andropogon ternarius, splitbeard bluestem 

anvi2 andropogon virginicus, broomsedge bluestem 

arco7 aristida condensata, piedmont threeawn 

armo3 aristida mohrii, mohr`s threeawn 

arpu8 aristida purpurascens, arrowfeather threeawn 

arst5 aristida stricta, pineland threeawn 

arse3 aristolochia serpentaria, virginia snakeroot 

asin12 asimina incana, woolly pawpaw 

buci bulbostylis ciliatifolia, capillary hairsedge 

chni2 chamaecrista nictitans, partridge pea 

chfl2 chapmannia floridana, florida alicia 

clma4 clitoria mariana, atlantic pigeonwings 

crro5 crotalaria rotundifolia, rabbitbells 

crar2 croton argyranthemus, healing croton 

cycr6 cyperus croceus, baldwin`s flatsedge 

cyre5 cyperus retrorsus, pine barren flatsedge 

dapi2 dalea pinnata, summer farewell 

diac dichanthelium aciculare, needleleaf rosette grass 

dico6 digitaria cognata, fall witchgrass 

difi digitaria filiformis, slender crabgrass 

divi5 diospyros virginiana, common persimmon 

erto2 eriogonum tomentosum, dogtongue buckwheat 

erar13 eryngium aromaticum, fragrant eryngo 

gare2 galactia regularis, eastern milkpea 

gavo galactia volubilis, downy milkpea 

hopr houstonia procumbens, roundleaf bluet 

lehi2 lespedeza hirta, hairy lespedeza 

lipa8 liatris pauciflora, fewflower blazing star 

lite6 liatris tenuifolia, shortleaf blazing star 

limi5 licania michauxii, gopher apple 

ophu opuntia humifusa, devil`s-tongue 

pase5 paspalum setaceum, thin paspalum 

phgr12 phoebanthus grandiflorus, florida false sunflower 

pipa2 pinus palustris, longleaf pine 

pigr4 pityopsis graminifolia, narrowleaf silkgrass 

ptaq pteridium aquilinum, western brackenfern 

ptpy2 pterocaulon pycnostachyum, wand blackroot 

quge2 quercus geminata, sand live oak 

quin quercus incana, bluejack oak 

qula2 quercus laevis, turkey oak 

rhci3 rhynchosia cinerea, brownhair snoutbean 

rhmi10 rhynchosia michauxii, michaux`s snoutbean 

rhre rhynchosia reniformis, dollarleaf 
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ruca4 ruellia caroliniensis, carolina wild petunia 

scmu4 scutellaria multiglandulosa, small`s skullcap 

seto7 sericocarpus tortifolius, dixie whiettop aster 

smau smilax auriculata, earleaf greenbrier 

sood solidago odora, anisescented goldenrod 

sose5 sorghastrum secundum, lopsided indiangrass 

spju sporobolus junceus, pineywoods dropseed 

stsy stillingia sylvatica, queen`s-delight 

stab stylisma abdita, showy dawnflower 

stpa8 stylisma patens, coastalplain dawnflower 

stbi2 stylosanthes biflora, sidebeak pencilflower 

tefl tephrosia florida, florida hoarypea 

tevi tephrosia virginiana, virginia tephrosia 

trro4 tradescantia roseolens, longleaf spiderwort 

 Uncertain of genus 

spju sporobolus junceus, pineywoods dropseed 

 

This ground location is within a Sandhill ecosystem based on the indicator species longleaf pine 

(Pinus palustris), turkey oak (Quercus laevis), and wiregrass (Aristida stricta var. beyrichiana). A photo of 

the location also confirms the classification as Sandhill as shown in Figure 36:  
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Figure 36: Photo of NEON 2011 ground site os343c, a Sandhill ecosystem (photo courtesy of NEON) 

 

Charring seen on the trunks of the pine trees is a reminder that OSBS actively burns the Sandhill regions 

periodically to preserve those ecosystems. 

 

FNAI communities are assigned to the 2010 and 2011 ground validation locations using the 

species lists, site photos, and photo-interpretation of USGS NAIP imagery. Table 7 lists the number of 

ground validation locations in each of the 10 FNAI vegetation communities and Figure 37 shows the 

locations on a map.  
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Table 7: Number of Ground Validation Locations for Each FNAI Vegetation Community 

 Number of Validation Locations 

FNAI NEON 2010 NEON 2011 Total 

Basin Marsh 4 3 7 

Basin Swamp 1 2 3 

Baygall 0 0 0 

Lake 0 0 0 

Lake Fringe 3 1 4 

Pine Plantation 0 0 0 

Ruderal 0 2 2 

Sandhill 10 20 30 

Upland Mixed Forest 3 9 12 

Xeric Hammock 5 10 15 

Total 26 47 73 
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Figure 37: Map of the 2010 and 2011 NEON ground validation locations where species lists were 

generated 

 

In total 30 Sandhill validation locations were identified, 10 from 2010 and 20 from 2011. These ground 

locations are used in the research as independent validation points to assess the accuracy of the 

classification models in the following chapters.  

 

The total number of vegetation species at each ground location is tallied and plotted in Figure 38 

sorted by FNAI vegetation community.  
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Figure 38: Number of vegetation species at each of the 73 ground validation locations 

 

A relationship exists between species richness and FNAI community, i.e. some communities support a 

larger diversity of vegetation species. The data suggest that a map of the FNAI communities could serve 

as a proxy of vegetation diversity. 

 

NEON also measured the spectral reflectance of several vegetation species in 2010 and 2014, 

performed site selection of the distributed plots (for use in NEON operations for the 30 year observatory 

period) in 2013, and collected foliar samples for biogeochemical analysis in 2014. 
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Classification Model Training Data 

 

Several popular machine learning classification algorithms exist but decision trees are used in this 

research as they are easy to interpret and understand the relationship between inputs and outputs. 

Classification and Regression Trees (CART) is the specific implementation of the algorithm used 

(Breiman et al., 1984). CART creates a decision tree through recursive splitting of the data, where each 

split has two branches. The decision rules are similar to a parallelepiped classifier in that only a single 

feature is considered in a split and the decision boundaries are orthogonal to the feature axes (Tso & 

Mather, 2009). The algorithm builds the tree by testing each possible input feature and all possible split 

values for each feature. A Gini impurity index is calculated for each hypothetical split to analyze how 

well the output training data point classes are separated (Breiman et al., 1984; Therneau et al., 2015). 

Essentially, the split that separates the data classes into the two most dissimilar groups is chosen for the 

decision tree node. If the training point classes could be split perfectly into two groups, the Gini impurity 

index would equal 0 and this would be the best split. If the training classes are evenly mixed after the 

split, the Gini impurity index would equal 0.5. The lower this index, the better the splitting decision. 

Interpretation of the resulting decision tree structure allows understanding of the relationships between 

objects (data input features representing the objects) at varying scales of observation (Tso & Mather, 

2009).  

 

Classification and regression trees (CART) are a type of supervised classification algorithm. 

CART models such as package “rpart” in R require training data where the output classes are explicitly 

labeled (Therneau et al., 2015). A set of 1000 training locations are hand selected through photo 

interpretation of USGS NAIP imagery using the OSBS vegetation community GIS vectors for reference. 
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100 locations are selected for each of the 10 FNAI vegetation communities. Since these points are hand-

picked, they are spatially distributed across the site as best as possible. Features are calculated from the 

hyperspectral and lidar data for each of the 1000 locations and used to train the classification tree. A 20 m 

x 20 m spatial plot is chosen to calculate the feature metrics as that size is consistent with the NEON TOS 

distributed vegetation sampling ground plot size (Barnett, 2014). The classification model will then be 

applied to predict the FNAI vegetation community at other locations across the site (also using calculated 

features from a 20 m x 20 m plot), as discussed further in the following chapters. A map of the training 

points is shown in Figure 39:  
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Figure 39: Map of the hand-picked locations used in training of the classification algorithm 
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CHAPTER V 

VEGETATION CLASSIFICATION USING SPECTRAL VARIABILITY AS MEASURED BY 

HYPERSPECTRAL REMOTE SENSING 

 

The NEON Imaging Spectrometer (NIS) measures the reflected solar radiation in 424 channels 

over the 380 nm-2500 nm spectral range with a spectral resolution of about 5-6 nm. The instrument can 

detect medium-to broad spectral features due to absorption and scattering of light by vegetation and other 

ground targets. In this chapter, the hyperspectral data provided by the Airborne Observation Platform 

(Kampe et al., 2010; Kampe et al., 2011; NEON, 2015h) of the National Ecological Observatory Network 

(NEON, 2015a; NRC 2003; Schimel et al., 2011) are prepared with some data processing before a series 

of hyperspectral features are calculated. The features for the ground training locations are used to generate 

a decision tree classification algorithm with the goal of producing a classification map for the Ordway-

Swisher Biological Station (OSBS, 2015a; OSBS, 2015c; OSBS, 2015d) site using the Florida Natural 

Areas Inventory (FNAI, 2010) vegetation communities as the output classes. Classification accuracy is 

assessed using k-folds cross validation and the independent ground truth data collected by NEON. 

 

Objectives 

 

Objectives 

 Investigate how hyperspectral data can be used to observe vegetation species diversity through 

spectral (chemical or functional) differences. 

 Generate a vegetation community map using spectral differences in the data. This will serve as a 

proxy for vegetation species diversity.  
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Science questions 

 How do vegetation communities differ spectrally? 

 How is spectral diversity related to species diversity? 

 What spectral differences can we observe in the remote sensing data? 

 How is the measured variability in the remote sensing data related to biodiversity or vegetation 

community type? 

 

Hyperspectral Data Preparation 

 

The NEON hyperspectral products require some data preparation before feature layers are 

calculated and the classification algorithm is run. As part of the NEON standard processing, an 

atmospheric correction is applied and the data are processed to surface reflectance. Each flight line is also 

geolocated onto the Earth’s surface and an ortho is generated with a pixel spacing of 1 m and a North-up 

WGS-84 UTM projection on a standard grid. First, the data from all of the flight lines need to be 

combined into a single mosaic for the entire site. The flight lines are planned to have an overlap of 30% 

but in reality the actual overlap can be smaller or larger due to the aircraft position and attitude or 

turbulence. In the case where multiple pixels from more than one flight line fall within the same grid cell 

of the mosaic, the pixel with the smallest off-nadir angle is used. A portion of the mosaic is shown in 

Figure 40: 
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Figure 40: A true color image of a portion of the hyperspectral data showing several flight lines stitched 

together to form a mosaic for the entire site. Ground calibration tarps can be seen in the field 

 

Here four flight lines are stitched together. The seam lines can be seen due to solar illumination, brdf, and 

shadow differences between adjacent flight lines and in some cases flight line edge artifacts from the 

atmospheric correction algorithm show up as slight brightness variations. Some of the features calculated 

in the next section will cancel out these illumination geometries through band ratios but hopefully enough 

training locations have been selected across the mosaic to account for the variations within each 

vegetation community. 

 

Next the quality of the surface reflectance curves is evaluated. A series of endmembers are 

chosen for a single flight line. These endmembers are unique objects on the ground with a size larger than 

1 m such that the spectra from a single pixel within the object will represent a spectrally pure pixel, for 



132 
 

example: water, sand, or vegetation from a single tree. The delivered reflectance curves versus 

wavelength for the endmembers are plotted in Figure 41: 

 

 

Figure 41: Delivered reflectance versus wavelength for endmembers pixels. Atmospheric artifacts and 

other noise can be seen in the data 

 

The reflectance curves appear to have noise plus some bias at wavelengths with atmospheric absorption. 

Several potential error sources include: stray light within the spectrometer, spectral or radiometric 

calibration errors, and issues with the atmospheric correction algorithm not using the best atmospheric 

parameters. 
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Black (3%) and white (48%) calibration tarps were deployed during the data collection and can 

be seen in the grass field in Figure 40. The reflectance of the tarps is measured in the field with an ASD 

spectrometer. The ground-truth reflectance can be compared to the data product reflectance as measured 

by the airborne NEON Imaging Spectrometer and is shown in Figure 42: 

 

 

Figure 42: The as-delivered reflectance of calibration tarps (03% tarp in red and the 48% tarp in blue) and 

a vegetation pixel (green) measured by the airborne NEON Imaging Spectrometer. Noise and atmospheric 

artifacts are seen in the NIS curves. The black curves are ground truth reflectance measured by an ASD 

spectrometer 

 

The 3% tarp (red curve), the 48% tarp (blue), and a vegetation pixel (green) curves are noisy and have 

atmospheric artifacts compared to the ground truth ASD curves (black) which are very smooth. 
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An empirical line correction is performed to improve the quality of the airborne reflectance 

spectra. Gain and offset values are calculated by adjusting the airborne spectra of the tarps so that they 

perfectly match the ground truth ASD measured reflectance, i.e. adjust the blue and red curves so they 

match their respective black curve. Tarps were deployed in the field for each of the two flight collection 

dates, and so two sets of empirical line coefficients are calculated to account for the atmospheric 

differences between May 7 and May 19, 2014. The gain and offset adjustment coefficients are shown in 

Figure 43 for both dates: 

 

 

Figure 43: Gain and offset coefficients used in the empirical line adjustment to improve the quality of the 

NEON Imaging Spectrometer reflectance products collected on May 7 and May 19, 2014 at Ordway-

Swisher Biological Station 
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Flight line reflectance values are adjusted using the scale factors from their respective dates. 

 

Once adjusted, the tarps in the hyperspectral data will perfectly match the ground data. Figure 44 

illustrates the improvement with the atmospheric spikes significantly reduced.  

 

 

Figure 44: Adjusted reflectance of calibration tarps (03% tarp in red and the 48% tarp in blue) and a 

vegetation pixel (green) measured by the airborne NEON Imaging Spectrometer 

 

The adjusted endmember reflectance curves are shown in Figure 45:  
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Figure 45: Reflectance versus wavelength for endmembers pixels, adjusted using scale factors generated 

by using ground calibration tarps 

 

The curves are considerably smoother than those in Figure 41 except at wavelengths longer than 2100 nm 

where scene targets are brighter than the 48% reflectance tarp leading to extrapolation of the scale factors 

beyond their useful range.  

 

Finally, 424 spectral bands is a large number of inputs considering that the reflectance is highly 

correlated for neighboring bands. The desire is to represent the overall shapes of the reflectance curves, 

but using a subset of wavelengths. Based on this ideal, 32 wavelengths have been hand selected. Those 



137 
 

wavelengths are 467.8, 502.9, 527.9, 553.0, 578.0, 603.1, 643.2, 668.2, 708.3, 743.4, 783.4, 878.6, 993.8, 

1064.0, 1104.0, 1199.2, 1249.3, 1284.4, 1314.4, 1514.8, 1544.9, 1585.0, 1615.0, 1650.1, 1685.1, 1730.2, 

2035.8, 2105.9, 2161.1, 2216.2, 2281.3, and 2326.4 nm. The chosen wavelengths are shown in Figure 46 

as the vertical dashed lines.  

 

 

Figure 46: Selection of 32 wavelengths for use in feature calculation, show as the vertical dashed lines on 

top of the endmember spectra. The blue regions are wavelengths with higher atmospheric absorption 

 

Wavelengths with higher absorption by the atmosphere are also colored blue. While a few bands were 

selected near the edges of the blue atmospheric keep out zones, most are within atmospheric 

transmissions windows. 
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The full hyperspectral mosaic image containing 424 bands is reduced to 32 bands. In order to 

clean up noisy data a bit more, each output band is the average of three consecutive hyperspectral bands 

(effectively the average reflectance over 15 nm) centered on each of the 32 selected wavelengths. The 

first derivative of reflectance is also calculated for each of the 32 wavelengths using the slope calculated 

from the two adjacent hyperspectral bands on either side of a given output wavelength (± 5 nm). 

 

A 20 m x 20 m spatial area is subset, centered on each of the classification training locations and 

the mean reflectance is calculated for each of the 32 selected wavelengths. Figure 47 shows the mean 

reflectance for each of the 10 FNAI vegetation communities versus the 32 selected wavelengths.  
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Figure 47: The mean reflectance of the classification training data for each of the 10 FNAI vegetation 

communities versus the 32 selected wavelengths 

 

In a general sense, the orange Ruderal and chartreuse Lake Fringe reflectance is higher for most 

wavelengths and the dark blue Lake reflectance is lower for most wavelengths. The relative shapes from 

wavelength to wavelength are different for the different vegetation communities, which could be taken 

advantage of by an appropriate classification feature layer such as a band ratio or normalized index. 

However, several areas of confusion can be seen. For instance the green Mixed Forest and brown Xeric 

Hammock curves are similar to each other at all wavelengths (these can be identified at 900 nm in the 

figure as they have a higher reflectance than all other curves except aqua Baygall). 

 

A considerable amount of spectral variability exists with a given vegetation community. The 

variation is a combination of vegetation variability across the site and the illumination and reflectance 
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differences between different flight lines in the airborne data. Figure 48 shows the plot level mean 

reflectance versus the selected wavelengths for all 100 of the Sandhill training locations.  

 

 

Figure 48: Plot level mean reflectance versus the 32 selected wavelengths for all 100 of the Sandhill 

training locations 

 

While most of the curves share a similar shape, they vary considerably in absolute reflectance in the near-

infrared and shortwave-infrared portions of the spectrum. Also, a few of the curves appear to be outliers 

with a high reflectance between 500-700 nm and a relatively flat reflectance at wavelengths longer than 

1300 nm. Comparing these outlier Sandhill curves to Figure 47, they seem to match quite well with the 

shapes of the Lake Fringe and Ruderal curves. It is likely that the decision tree will have a difficult 

correctly classifying these as Sandhill. 
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The first derivative of reflectance is also calculated for each pixel and the mean value is 

calculated for a 20 m x 20 m spatial area centered on each of the classification training locations for each 

of the 32 selected wavelengths. The first derivative captures the slope or shape of the reflectance curves at 

various wavelengths. Any variations in absolute reflectance are ignored and the relative slope differences 

can be compared. Figure 49 shows the mean of the first derivative of reflectance for each of the 10 FNAI 

vegetation communities versus the 32 selected wavelengths.  

 

 

Figure 49: The mean of the first derivative of reflectance of the classification training data for each of the 

10 FNAI vegetation communities versus the 32 selected wavelengths 
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The largest variation occurs around 700 nm at the “red edge” where the reflectance rises significantly for 

vegetation due to absorption by chlorophyll around 650 nm (low reflectance) and multiple scattering 

above 750 nm (high reflectance). Communities with more vegetation cover such as Baygall, Mixed 

Forest, and Xeric Hammock will have a higher slope at this wavelength than communities with open 

ground and sand such as Lake Fringe and Ruderal, allowing the classification algorithm to take advantage 

of this feature to separate these classes. Also, at several wavelengths, the dark blue Lake curve has a 

lower value that stands apart from the other groups making it easier to classify (such as using 1064 nm). 

 

Calculation of Hyperspectral Features 

 

Before the decision tree classification model can be generated, a series of input features must be 

calculated, in this case hyperspectral features. A 20 m x 20 m data subset centered on a ground plot 

location is extracted for the feature calculation. A major benefit of this airborne remote sensing data is the 

high spatial resolution. Working at a plot scale, collections of pixels can be analyzed and related to the 

vegetation communities which are collections of species. As mentioned previously, reflectance and first 

derivative of reflectance is calculated on the 1 m full resolution mosaic for each of the selected 32 

wavelengths. A basic endmember analysis is also performed on the 1 m data. A suite of feature layers are 

created: 

  

 The mean and standard deviation of the reflectance for each of the 32 wavelengths is calculated 

for the 20 m x 20 m plot. 

 The mean and standard deviation of the first derivative of reflectance for each of the 32 

wavelengths is also calculated for the 20 m x 20 m plot. 
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 Vegetation pixels are identified using the endmember analysis and the mean and standard 

deviation of the reflectance for each of the 32 wavelengths is calculated for the vegetation pixels 

within the 20 m x 20 m plot. 

 Vegetation pixels are identified using the endmember analysis and the mean and standard 

deviation of the first derivative of reflectance for each of the 32 wavelengths is also calculated for 

the vegetation pixels within the 20 m x 20 m plot. 

 Normalized difference indices (NDIs) are calculated for each band pair combination on the mean 

reflectance values for each of the 32 wavelengths according to: 

𝑁𝐷𝐼𝜆1−𝜆2 =
𝜇(𝜌𝜆1) − 𝜇(𝜌𝜆2)

𝜇(𝜌𝜆1) + 𝜇(𝜌𝜆2)
. 

 Normalized difference indices (NDIs) are also calculated for each band pair combination on the 

mean reflectance values of the vegetation pixels for each of the 32 wavelengths. 

 Triangle metrics, similar to a band-depth formula, are calculated on the mean reflectance values 

using 503 nm, 553 nm, and 668 nm for a green peak and 553 nm, 668 nm, and 743 nm for a red 

depth according to: 

𝐺𝑟𝑒𝑒𝑛 𝑝𝑒𝑎𝑘 =  𝜇(𝜌553) −
𝜇(𝜌503) + 𝜇(𝜌668)

2
 

Or  

𝑅𝑒𝑑 𝑑𝑒𝑝𝑡ℎ =  𝜇(𝜌668) −
𝜇(𝜌553) + 𝜇(𝜌743)

2
. 

 A second variation of this triangle metric applies a coordinate rotation using the edge 

wavelengths and calculating the peak or depth from the center wavelength normal to the line that 

connects the edge wavelengths. 
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 Triangle metrics are calculated on the mean reflectance values of the vegetation pixels using 503 

nm, 553 nm, and 668 nm for a green peak and 553 nm, 668 nm, and 743 nm for a red depth. 

 The basic endmember analysis is used to calculate the fraction of pixels in the 20 m x 20 m plot 

that were classified as each endmember. 

 

In total, a suite of 1283 hyperspectral features or metrics are calculated for each ground location. 

A summary of the hyperspectral feature categories is listed in Table 8 and a full list of the hyperspectral 

features can be found in Appendix A.1. These metrics serve as the input feature layer to the classification 

model. 

 

Table 8: Summary of Hyperspectral Feature Categories 

Category Examples 

Summary Statistics Mean of reflectance at 743 nm, standard deviation 

of reflectance at 528 nm, mean of the first 

derivative of reflectance at 2106 nm 

Normalized Difference Indices (NDIs) NDI 578 nm and 643 nm, NDI 1515 nm and 2216 

nm for vegetation pixels 

Triangle Metrics Green peak, Green peak rotated, Red depth, Red 

depth rotated 

Endmember Analysis Fraction of sand road, fraction of dark water, 

fraction of Sandhill vegetation type 1, etc. 

 

The features are meant to be proxies of the 2D spectral (chemical, functional, and structural) 

differences of the vegetation communities as measured by the NEON Imaging Spectrometer instrument. 
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The imaging spectrometer measures reflected solar radiation, which interacts with the atmosphere and 

canopy or surface showing influences of scattering and absorption at different wavelengths. Figure 50 

shows a false color composite of three features where the red, green, and blue display channels are 

“vegNDI1515i2216”, “NDI578i643”, and “muDeriv2106” respectively.  

 

 

Figure 50: False color composite of three hyperspectral features where the red, green, and blue display 

channels are “vegNDI1515i2216”, “NDI578i643”, and “muDeriv2106” respectively 
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In the figure, different FNAI vegetation communities display as different colors, illustrating the potential 

for a decision tree to classify the vegetation communities using the feature data. 

 

Basin Marsh and burnt Sandhill areas have higher values in the “vegNDI1515i2216” feature, 

which is displayed in the red channel of the false color image. The green display channel is the 

hyperspectral feature “NDI578i643”. The normalized difference index between wavelengths 578 nm and 

643 nm is correlated to the chlorophyll content in a given ground area. Chlorophyll absorbs light at 643 

nm so ground locations dominated by vegetation with high chlorophyll content will have a negative 

“NDI578i643” value. Other natural targets such as soil and sand have an increasing reflectance curve 

between 578 nm and 643 nm so these will have a positive “NDI578i643” if a ground location is 

dominated by soil. The 20 m x 20 m spatial sampling size contains soil/sand pixels for Basin Marsh, 

Sandhill, and Ruderal areas which have higher “NDI578i643” values. Other community types are greener 

and have higher chlorophyll content so they have lower “NDI578i643” values. The blue channel is the 

feature “muDeriv2106” in which Basin Marsh, Lake Fringe, Ruderal, and some Baygall areas have higher 

values. Based on the values in the display channels, Basin Marsh shows up as hues of lavender or 

chartreuse, Lakes are yellow or red, Baygall, Mixed Forest, and Xeric Hammock are blue and dark 

purple, Ruderal is pink, and Sandhill is green where burnt areas of active fire management show up as a 

lighter color than the rest of the Sandhill. 

 

Decision Tree Training 

 

A classification decision tree is generated using the “rpart” package (Breiman et al., 1984; 

Therneau et al., 2015) in R (R Core Team, 2015). The variable “minbucket” is set to a value of 1 allowing 
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terminal nodes to contain a single training location. Package “rpart” also has a complexity parameter 

variable “cp” that determines if the tree should generate more splits along a branch. A split must decrease 

the lack of fit by a factor of cp or else it is not attempted. The decision tree algorithm will iterate through 

different threshold values of each input feature, and determine the best data partitioning according to the 

fitting function of classified outputs (i.e. it picks the split that most correctly classifies the outputs). As 

described in the previous sections, the lidar data are subset for each of the training ground locations, 

features are calculated, and those features are brought into package “rpart”, shown in Figure 51: 

 

 

Figure 51: Hyperspectral decision tree classification algorithm flowchart 

 

K-folds cross validation is employed to determine the optimal value of the complexity parameter. 

A random number generator is used to separate the training data into 10 groups. For each fold, data from 

9 of the groups is used to train the classification model and the data from the 10th group is used as 

independent validation. The process is performed a total of 10 times, each time generating a new decision 

tree and using a different group as the validation set. The complexity parameter value is varied to get an 
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idea of the classification accuracy versus complexity parameter. If a very small complexity value is used, 

the classification model will over-fit the training data. The model will achieve a 100% classification 

accuracy for the training data but will have lower accuracy values for the validation data. By iterating the 

complexity parameter and performing the k-folds cross validation 10 times, the complexity parameter 

value that gives the overall best classification accuracy can be chosen. The results from the k-folds cross 

validation are shown in Figure 52: 

 

 

Figure 52: K-folds cross validation to determine the optimal value of the complexity parameter for the 

hyperspectral decision tree 

 

As seen in the figure, as the value of the complexity parameter decreases, the classification 

accuracy of the training data increases toward 100%. The classification accuracy of the validation data 
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increases to a point, but then starts to decrease as the training data is over fit. Based on the k-fold cross 

validation results of the spectrometer data, a complexity parameter value of 0.003 produced a model with 

the best validation results. A classification accuracy of 90.0% ± 0.54 is achieved for the training data and 

an accuracy of 76.0% ± 3.50 is achieved for the validation data. 

 

Classification Model 

 

A full decision tree model is generated using the combined 1283 hyperspectral features, all 1000 

of the training points, and a complexity parameter value of 0.003. The final model only uses 33 of the 

total hyperspectral features, using 27 of 32 wavelengths. 18 metrics use single wavelengths and 14 

metrics are Normalized Difference Indices of wavelength pairs. The model also reports which variables or 

features are important based on the statistics of each split. The variable importance is listed in Table 9:  

 

Table 9: Variable Importance in the Hyperspectral Data Classification Decision Tree 

Variable Variable Importance Used in Decision Tree 

muDeriv1249       3 Yes 

muDeriv1064        2 Yes 

muDeriv783        2 Yes 

NDI578i643        2 Yes 

NDI528i668        2 No 

NDI553i668        2 No 

NDI578i668 2 No 
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NDI603i643        2 No 

NDI553i643       2 No 

muDeriv1650        2 No 

muDeriv879   2 No 

vegNDI1515i2216           2 Yes 

muR1314      2 No 

NDI1515i2216 2 No 

muDeriv2106   2 Yes 

vegNDI1515i2161      2 No 

NDI1515i2161           2 No 

muR1249   2 No 

vegNDI1545i2216   2 No 

vegNDI1515i2106        2 No 

muDeriv528 2 Yes 

NDI1199i1249      1 No 

NDI1585i1730        1 Yes 

muDeriv994      1 No 

NDI1650i1685   1 Yes 

vegNDI1650i1685   1 No 

vegNDI1585i1730       1 Yes 

muDeriv2216 1 Yes 

FracSandhillVeg2      1 No 

NDI1615i1730      1 No 

NDI2161i2281   1 No 

vegNDI2161i2281        1 No 
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muDeriv503        1 No 

muDeriv468           1 No 

muR1545 1 No 

stdDeriv2216   1 No 

vegNDI2216i2281      1 No 

NDI2216i2281      1 No 

GreenPeakRot      1 No 

NDI1249i1284   1 No 

vegNDI1249i1284      1 Yes 

stdDeriv2106 1 No 

stdDeriv2161           1 No 

muR1585        1 No 

NDI783i879    1 No 

muVegDeriv1650   1 No 

vegNDI1615i1685        1 No 

NDI503i603     1 No 

vegNDI783i879 1 Yes 

NDI783i1064   1 No 

vegNDI1199i1314     1 No 

vegNDI783i994      1 No 

NDI1199i1314   1 No 

vegNDI2106i2281     1 No 

muVegDeriv668        1 Yes 

NDI783i994 1 No 

NDI2106i2281 1 No 
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The table lists 57 features that are significant in a relative sense, i.e. they appear at the top of the 

split decision list more often than other features. Many of these are not used in the decision tree because 

they were beat out by other features that could achieve a higher classification for a single split. Looking at 

the top variables in a spectral context: “muDeriv1249”, “muDeriv1064”, “muDeriv783”, “muDeriv1650”, 

“muDeriv879”, “muDeriv2106”, and “muDeriv528” capture the slope of the reflectance curves in several 

different wavelength regions; “NDI578i643”, “NDI528i668”, “NDI553i668”, “NDI578i668”, 

“NDI603i643”, “NDI553i643” are inversely related to high chlorophyll or green areas; and “muR1314” 

and “muR1249” take advantage of absolute reflectance at individual wavelengths. More specifically, 

“muDeriv1064” can detect Lake areas and “muDeriv2106” can separate Pine Plantation and Sandhill 

from Basin Marsh, Lake Fringe, and Ruderal solely based on the slope of the reflectance. Eighteen 

additional features are used in the decision tree but were not identified as important by the algorithm: 

“vegNDI743i994”, “stdR528”, “NDI743i1585”, “muDeriv2036”, “stdR668”, “muR743”, 

“NDI503i2161”, “NDI2281i2326”, “vegNDI1199i1284”, “muVegDeriv1730”, “FracSandhillGrass”, 

“NDI994i1104”, “stdVegDeriv643”, “muDeriv708”, “stdDeriv2326”, “muVegDeriv503”, 

“vegNDI1104i1284”, and “stdDeriv603”. These features achieved the best classification for their 

individual split but did not appear enough times throughout the tree to be listed as important. 

 

A version of the decision tree generated with a complexity parameter of 0.01 is shown in Figure 

53: 
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Figure 53: Hyperspectral decision tree generated with a complexity parameter of 0.01 
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The higher cp value allows a cleaner view of the top split points of the tree. The first split is on the feature 

“muDeriv1064” which separates Lakes from the rest of the vegetation communities. The split decision is 

shown in further detail in Figure 54 displaying a scatter plot of “muDeriv1064” for each FNAI vegetation 

community.  

 

 

Figure 54: Mean of the first derivative of reflectance at 1064nm as the first split of the decision tree, 

separating Lake areas from the other vegetation communities 

 

While this split isolates most of the Lake locations below the dashed line, a few Lake points remain above 

the line and a few Basin Marsh points fall below it. 
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The second split (Figure 55) is on “NDI578i643” separating the closed canopy (areas of mostly 

green pixels) Baygall, Basin Swamp, Mixed Forest, and Xeric Hammock areas from the open canopy or 

areas with significant ground signal: Basin Marsh, Lake Fringe, Pine Plantation, Ruderal, and Sandhill.  

 

 

Figure 55: “NDI578i643” as the second split of the decision tree, separating the closed canopy (areas of 

mostly green pixels) Baygall, Basin Swamp, Mixed Forest, and Xeric Hammock areas from open the 

canopy or areas with significant ground signal: Basin Marsh, Lake Fringe, Pine Plantation, Ruderal, and 

Sandhill 

 

These two hyperspectral features are able to separate the data for the entire site establishing the best 

starting route for classification accuracy. 

 

The third split on the left side of the tree uses “vegNDI1515i2216” to separate Swamp areas from 

the rest of the closed canopy classes. The fourth split on the left side of tree uses “NDI1650i1685” to 
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separate Baygall from Xeric Hammock and most of the Mixed Forest. The left side of Figure 56 shows 

“vegNDI1515i2216” plotted against “NDI1650i1685”.  

 

 

Figure 56: Scatter plots showing how a few of the decision tree splits separate the data. The left side is the 

normalized difference index for vegetation pixels using the reflectance at wavelengths of 1515 nm and 

2216 nm versus the normalized difference index using the reflectance at wavelengths of 1650 nm and 

1685 nm. The right side is the mean of the first derivative of reflectance at 2106 nm versus the mean of 

the first derivative of reflectance at 2216 nm  

 

The pink Basin Swamp points are easily separated into the top half of the plot as they have higher values 

in the “vegNDI1515i2216” feature. The brown Xeric Hammock points are separated in the lower left 

quadrant as they have low “vegNDI1515i2216” and low “NDI1650i1685” values whereas the aqua 

Baygall points are in the lower right quadrant with low “vegNDI1515i2216” and high “NDI1650i1685” 

values. While the green Mixed Forest points are separated in the bottom of the plot from the Basin 

Swamp points and mostly in the lower left quadrant, they cover both the Xeric Hammock and Baygall 
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points. The final model requires more splits using other data features in order to separate these classes 

better. 

 

The third split on the right side of the tree uses “muDeriv2106” to separate the bare-Earth Basin 

Marsh, Lake Fringe, and Ruderal areas from the open canopy Pine Plantation and Sandhill areas. One of 

the fourth splits on the right side of the tree uses “muDeriv2216” to further separate the Basin Marsh from 

the Lake Fringe and Ruderal areas. The right side of Figure 56 shows “muDeriv2106” plotted against 

“muDeriv2216”. The dark green Pine Plantation and yellow Sandhill points are in the bottom half of the 

plot with “muDeriv2106” values less than 1.35. The purple Basin Marsh points are separated in the upper 

left quadrant with high values of “muDeriv2106” and low values of “muDeriv2216”. The chartreuse Lake 

Fringe and orange Ruderal points are separated in the upper right quadrant with high values of 

“muDeriv2106” and high values of “muDeriv2216”. More splits are required to separate Pine Plantation 

from Sandhill and Lake Fringe from Ruderal. 

 

The final hyperspectral based decision tree classification model using a complexity parameter of 

0.003 is listed in full in Appendix B.1 and shown in Figure 57: 
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Figure 57: Final hyperspectral decision tree generated with a complexity parameter of 0.003 
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The Basin Swamp and Ruderal classes each have one terminal node and the Lake class has two terminal 

nodes suggesting that hyperspectral data from ground locations of these classes were most homogeneous. 

Several other classes such as Basin Marsh, Lake Fringe, and Xeric Hammock have 5 or 6 terminal nodes 

highlighting the heterogeneity of these classes. Based on terminal node pairs, the decision tree is trying to 

separate similarities between: Basin Marsh versus Lake; Lake Fringe versus Basin Marsh and Ruderal; 

Mixed Forest versus Baygall and Xeric Hammock; Basin Swamp versus Basin Marsh and Baygall; and 

Sandhill versus Lake Fringe, Pine Plantation, and Ruderal. 

 

Results 

 

The final decision tree is generated using all of the training points. Evaluating the training points 

through the decision tree, an overall classification accuracy of 89.8% is achieved for all vegetation 

communities. The classification accuracy for each FNAI vegetation community is listed in the confusion 

matrix in Table 10: 
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Table 10: Hyperspectral Decision Tree, Training Data Confusion Matrix 
M

ap
 

FNAI 

Vegetation 

Community 

Reference Sites  

Baygall 

 

Lake 

Fringe 

Xeric 

Hammock 

Lake 

 

Basin 

Marsh 

Mixed 

Forest 

Pine 

Plantation 

Ruderal 

 

Sandhill 

 

Basin 

Swamp 

Total User’s 

Accuracy 

Baygall 

 

89 0 1 0 2 2 0 0 0 2 96 93% 

Lake 

Fringe 

0 95 2 1 2 0 0 7 2 1 110 86% 

Xeric 

Hammock  

2 0 89 0 1 7 1 0 0 3 103 86% 

Lake 

 

0 0 0 95 2 0 0 0 1 0 98 97% 

Basin 

Marsh 

0 1 0 3 88 2 0 1 0 1 96 92% 

Mixed 

Forest 

7 1 5 0 2 85 3 0 0 3 106 80% 

Pine 

Plantation  

0 2 1 0 1 2 91 2 6 0 105 87% 

Ruderal 

 

0 1 1 0 1 0 0 87 1 0 91 96% 

Sandhill 

 

0 0 0 1 0 0 5 3 89 0 98 91% 

Basin 

Swamp 

2 0 1 0 1 2 0 0 1 90 97 93% 

Total 

 

100 100 100 100 100 100 100 100 100 100 898/ 

1000 

 

Producer’s 

Accuracy 

89% 95% 89% 95% 88% 85% 91% 87% 89% 90%  90% 

 

Lake and Lake Fringe achieved the highest classification accuracies at 95%. Sandhill achieved a 

producer’s accuracy of 89% (89% of Sandhill training locations are correctly classified) and a user’s 

accuracy of 91% (91% of the locations labeled as Sandhill actually are Sandhill). Sandhill is primarily 

misclassified as Pine Plantation and occasionally misclassified as Lake Fringe. Pine Plantation is 

primarily misclassified as Sandhill. The confusion likely stems from the fact that the Sandhill ecosystem 

was disturbed to plant the Pine Plantations and both ecosystems contain pines, although the pines are 
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more regularly spaced in the plantations and might contain Slash Pine versus Longleaf Pine. The 

confusion of the rest of the output classes is described in Table 11: 

 

Table 11: Confusion of Output Classes by the Decision Tree 

Output Class Confused As 

Baygall Mixed Forest and a little as Basin Swamp and 

Xeric Hammock 

Lake Fringe A little as Pine Plantation 

Xeric Hammock Mixed Forest and a little as Lake Fringe 

Lake Basin Marsh 

Basin Marsh A little as Baygall, Lake, Lake Fringe and Mixed 

Forest 

Mixed Forest Xeric Hammock and a little as Basin Marsh, 

Basin Swamp, Baygall, and Pine Plantation 

Pine Plantation Sandhill and a little as Mixed Forest 

Ruderal Lake Fringe and a little as Pine Plantation an 

Sandhill 

Sandhill Pine Plantation and a little as Lake Fringe 

Basin Swamp A little as Baygall, Mixed Forest, and Xeric 

Hammock 

 

 

Hyperspectral data features are also calculated for a 20 m x 20 m plot covering the independent 

ground validation locations collected by NEON and are run through the decision tree. An overall accuracy 
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of 66% is achieved for all vegetation communities with Sandhill achieving a producer’s accuracy of 80% 

and a user’s accuracy of 100%. For this hyperspectral model, Sandhill achieved the highest classification 

accuracy of all of the vegetation communities. The classification accuracy for each ground validation 

location is listed in the confusion matrix in Table 12: 

 

Table 12: Hyperspectral Decision Tree, NEON Ground Validation Data Confusion Matrix 

M
ap

 

FNAI 

Vegetation 

Community 

Reference Sites  

Baygall 

 

Lake 

Fringe 

Xeric 

Hammock 

Lake 

 

Basin 

Marsh 

Mixed 

Forest 

Pine 

Plantation 

Ruderal 

 

Sandhill 

 

Basin 

Swamp 

Total User’s 

Accuracy 

Baygall 

 

-  1   1     2 0% 

Lake 

Fringe 

 3   2   1   6 50% 

Xeric 

Hammock  

  8   4   2 2 16 50% 

Lake 

 

   -       - NA 

Basin 

Marsh 

  1  5      6 83% 

Mixed 

Forest 

  1   7    1 9 78% 

Pine 

Plantation  

  3    -  4  7 0% 

Ruderal 

 

 1      1   2 50% 

Sandhill 

 

        24  24 100% 

Basin 

Swamp 

  1       0 1 0% 

Total 

 

- 4 15 - 7 12 - 2 30 3 48/73  

Producer’s 

Accuracy 

NA 75% 53% NA 71% 58% NA 50% 80% 0%  66% 
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Finally, hyperspectral data features are calculated for a 20 m x 20 m plot on a 5 m posting 

covering the entire site. Data from each 5 m posting is run through the decision tree to generate a 

classification map. The output class map is shown in Figure 58 and has been cropped by the OSBS site 

boundary.  

 

 

 

 

 



164 
 

 

Figure 58: FNAI vegetation community classification map generated using hyperspectral data 

 

Figure 59: FNAI classmap legend 
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At a first glance, the classification map closely resembles the OSBS GIS vegetation community 

map shown in Chapter III. As the classification accuracy states, the dark blue Lakes visually appear 

correct. Small Lake pixels in the purple Basin Marsh region in the North center of the image are probably 

areas of standing water. The classification confusion discussed earlier can also been seen in this map: 

dark green Pine Plantation pixels are littered throughout the chartreuse Lake Fringe area in the Southeast; 

brown Xerick Hammock is misclassified as green Mixed Forest in the Southwest and purple Basin Marsh 

or aqua Baygall in the East; senescent vegetation (showing up as bright areas in the color imagery) in 

purple Basin Marsh region in the North center are mislabeled as chartreuse Lake Fringe and Basin Marsh 

areas with trees are mislabeled as aqua Baygall; some of the green Mixed Forest in the North right of the 

map (between the Basin Marshes) is mislabeled as brown Xeric Hammock; and the yellow Sandhill 

regions are speckled with small dark green Pine Plantation and orange Ruderal pixels.    
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CHAPTER VI 

VEGETATION CLASSIFICATION USING STRUCTURAL VARIABILITY AS MEASURED BY 

DISCRETE RETURN LIDAR 

 

Discrete return lidar data measure the vertical structure of the vegetation and ground topography 

as collected by a pulsed laser instrument operating at a wavelength of 1064 nm. In this chapter, the lidar 

data provided by the Airborne Observation Platform (Kampe et al., 2010; Kampe et al., 2011; NEON, 

2015h) of the National Ecological Observatory Network (NEON, 2015a; NRC, 2003; Schimel et al., 

2011) are prepared with some data processing before a series of lidar features are calculated. The features 

for the ground training locations are used to generate a decision tree classification algorithm with the goal 

of producing a classification map for the Ordway-Swisher Biological Station (OSBS, 2015a; OSBS, 

2015c; OSBS, 2015d) site using the Florida Natural Areas Inventory (FNAI, 2010) vegetation 

communities as the output classes. Classification accuracy is assessed using k-folds cross validation and 

the independent ground truth data collected by NEON. 

 

Objectives 

 

Objectives 

 Investigate how discrete return lidar data can be used to observe vegetation species diversity 

through structural differences. 

 Generate a vegetation community map using structural differences in the data. This will serve as a 

proxy for vegetation species diversity.  
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Science questions 

 How do vegetation communities differ structurally? 

 How is structural diversity related to species diversity? 

 What structural differences can we observe in the remote sensing data? 

 How is the measured variability in the remote sensing data related to biodiversity or vegetation 

community type? 

 

Lidar Data Preparation 

 

The NEON lidar products require some data preparation before feature layers are calculated and 

the classification algorithm is run. The digital surface model (DSM), the bare-Earth digital terrain model 

(DTM), and the canopy height model (CHM) provided by NEON contain ignore values of -9999 in areas 

where no discrete return lidar points exist. These null or void areas exist within the interior of a given 

flight line such as a lake, or in the overlap between adjacent mosaicked flight lines caused by a gap in 

data collection. The void areas in the DSM and DTM are filled in using an iterative median filter. Void 

areas in the CHM are set to a value of 0. The elevation models are also buffered in extent to make sure 

that they have valid values for every discrete return lidar point plus an extra area, referred to as the 

backfill area. A coarse resolution (~10 m gsd) digital elevation model is downloaded from the USGS, 

resampled to a UTM projection grid in ENVI. The backfill areas of the DSM and DEM are replaced with 

the USGS DEM values using nearest neighbor resampling. Once again the CHM backfill areas are set to 

0. The slope of the DTM is calculated in ENVI using a fine resolution 3 x 3 pixel kernel and a coarse 

resolution 21 x 21 pixel kernel. Also surface roughness or rugosity is calculated for a moving 3 x 3 pixel 

kernel using an algorithm that calculates the total surface area of a set of triangles within the kernel.  
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The discrete return lidar points with an absolute height less than -75.0 m and greater than +75.0 m 

are removed to filter out noisy points. In order to analyze vegetation height and structure across multiple 

sites, it is desirable to remove topography from the data. The bare-Earth digital terrain model (DTM) is 

subtracted from each lidar point using a nearest-neighbor lookup to convert the discrete returns from 

absolute height to height above ground (relative height in meters) as shown in Figure 60: 

  

 

Figure 60: Subtraction of digital terrain model to convert absolute height into height above ground 

 

The data are subset into 20 m x 20 m boxes centered on each training plot location. Figure 61 

shows an example of the discrete lidar data for a Basin Marsh training plot location.  
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Figure 61: Example of the discrete lidar data for a Basin Marsh training plot location. The left is a side 

view of the lidar point cloud subset, the center is a normalized histogram of point heights, and the right is 

a normalized histogram of canopy height points 

 

The left is a side view of the lidar point cloud subset, the center is a normalized histogram of point 

heights, and the right is a normalized histogram of canopy height points. In the case of Basin Marsh, there 

is little or no canopy so most or all of the lidar points fall on the ground. Figure 62 shows an example of 

the discrete lidar data for a Sandhill training plot location.  

 

 

Figure 62: Example of the discrete lidar data for a Sandhill training plot location. The left is a side view 

of the lidar point cloud subset, the center is a normalized histogram of point heights, and the right is a 

normalized histogram of canopy height points 
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The left and center figures show that Sandhill has a fairly open canopy so a significant number of ground 

points are still recorded. Also, Sandhill has an open understory so there are very few points in height 

between 1.0 – 2.0 m. The canopy vertical height distribution seems to be fairly well balanced around the 

mean canopy height (see the right side of the figure). Figure 63 shows an example of the discrete lidar 

data for a Xeric Hammock training plot location.  

 

 

Figure 63: Example of the discrete lidar data for a Sandhill training plot location. The left is a side view 

of the lidar point cloud subset, the center is a normalized histogram of point heights, and the right is a 

normalized histogram of canopy height points 

 

The left and center figures show that the canopy is starting to close in Xeric Hammock and less ground 

points are recorded. Also, Xeric Hammock has an open understory so there are very few points in height 

between 1.0 – 2.0 m. The canopy vertical height distribution seems to be top heavy where more laser 

points are returned from higher up in the canopy (see the right side of the figure). Finally, Figure 64 

shows an example of the discrete lidar data for a Basin Swamp training plot location.  
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Figure 64: Example of the discrete lidar data for a Basin Marsh training plot location. The left is a side 

view of the lidar point cloud subset, the center is a normalized histogram of point heights, and the right is 

a normalized histogram of canopy height points 

 

Unlike, Sandhill and Xeric Hammock, Basin Swamp has some understory so there are lots of points in 

height between 1.0 – 2.0 m. The left and center figures show a very thick and closed canopy where there 

are fewer ground points. The fraction of ground points is no longer the histogram bin with the highest 

count. 

 

Calculation of Lidar Features 

 

Before the decision tree classification model can be generated, a series of input features must be 

calculated, in this case lidar features. Most of the features are calculated on the discrete return lidar point 

clouds, adjusted as height above ground. A 20 m x 20 m data subset centered on a ground plot location is 

extracted for the feature calculation. The point clouds are categorized into several groups: all points, 

canopy points, and ground points. The data is classified into ground or canopy categories according to: 
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 Ground point if height above ground < 1.37 m 

 Canopy point if height above ground ≥ 1.37 m 

 

Also, other categories are calculated: 

 

 Below ground aoi0 if height above ground < 0.0 m 

 Below ground aoi1 if height above ground < -0.25 m 

 Below ground aoi2 if height above ground < -0.5 m 

 Shrub point if height above ground > 0.3 m and < 1.37 m 

 First return if return number = 1 

 One_one if return number = 1 and total number of returns in the laser pulse = 1 

 Two_two if return number = 2 and total number of returns in the laser pulse = 2 

 Three_three if return number = 3 and total number of returns in the laser pulse = 3 

 Four_four if return number = 4 and total number of returns in the laser pulse = 4 

 

Next height histograms are calculated for both ground and canopy groups using a vertical bin size 

of 0.5 m. Percentile heights are also calculated. A series of features are derived from the percentiles such 

as specific percentile height range (ex. 90th minus 50th percentile), percentile height range fraction (ex. 

percentile height range divided by the 100th minus 0 percentile height value), and normalized difference 

height index (ex. [(P90 – P50) – (P50 – P10)] / [(P90 – P50) + (P50 – P10)]). Point distribution 

calculations are also performed: 
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 Median absolute deviation or MAD = Median(abs[Height – median(height)]) 

 Mean absolute deviation or AAD = Mean(abs[Height – mean(height)]) 

 Vertical distribution ratio or VDR = (P100 – P50) / P100 

 Canopy Relief Ratio or CRR = (P50-P0) / (P100 – P0) 

 Canopy density = fraction of first returns above 3 m / total number of first returns 

 

Summary statistics are calculated for all points, ground points, canopy points, and first returns. 

Additionally, the fraction of 1st return ground points and the 95th percentile height of the first returns are 

calculated. Finally, several features are derived from the 2D gridded canopy height model and bare-Earth 

digital elevation/terrain model including summary statistics, fraction of ground pixels in the canopy 

height model, rugosity (integrated triangular surface area as a measure of surface roughness), coarse 

resolution slope of the terrain model, and total of the fine resolution slope (another measure of 

roughness). Fractions are multiplied by 100 to help balance out size of the numbers, though this step isn’t 

required for the “rpart” algorithm. Intensity values were not used as part of the feature set in order to 

focus the features on structural differences. 

 

In total, a suite of 89 lidar features or metrics are calculated for each ground location. A summary 

of the lidar feature categories is listed in Table 13 and a full list of the lidar features can be found in 

Appendix A.2. These metrics serve as the input feature layer to the classification model. 
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Table 13: Summary of Lidar Feature Categories 

Category Examples 

Summary Statistics Mean, standard deviation, min, and max 

Point Classification Ground point, below ground, shrub, canopy, high 

canopy, first return, 1st of 1, 2nd of 2, etc. 

Percentile Height 0, 5th, 10th, 15th, 20th, 25th, 30th, 35th, 40th, 

45th, 50th, 55th, 60th, 65th, 70th, 75th, 80th, 85th, 

90th, 95th, and 100th percentiles 

Percentile Height Range (including interquartile 

range) 

90th minus 50th percentile, 75th minus 50th 

percentile, 100th minus 0 percentile height, etc. 

Percentile Height Range Fraction Percentile height range divided by the 100th 

minus 0 percentile height value 

Normalized Difference Height Index [(P90 – P50) – (P50 – P10)] / [(P90 – P50) + (P50 

– P10)] 

Point Distribution Median absolute deviation, mean absolute 

deviation, canopy vertical distribution ratio, and 

canopy relief ratio 

Elevation Model Bare-Earth slope, canopy height model rugosity 

 

The features are meant to be proxies of the horizontal 2D and vertical 3D structure of the 

different vegetation communities as measured by the discrete return lidar instrument. The lidar point 

clouds represent not only the 3D structure of the canopies and ground, based on their reflectance of light 

at 1064 nm, but also exhibit optical phenomena such as light penetration and multiple scattering.  Figure 

65 shows a false color composite of three features where the red, green, and blue display channels are 

“CanopyDensity”, “Frac22”, and “CHMrugosity” respectively.  
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Figure 65: False color composite of three lidar features where the red, green, and blue display channels 

are “CanopyDensity”, “Frac22”, and “CHMrugosity” respectively 

 

In the figure, different FNAI vegetation communities display as different colors, illustrating the potential 

for a decision tree to classify the vegetation communities using the feature data. 

 

The canopy density feature did not end up being used by the lidar decision tree but is used by the 

integrated hyperspectral and lidar decision tree in Chapter VII. Baygall, Mixed Forest, and Xeric 
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Hammock have higher canopy density values because they have thicker canopies and a larger fraction of 

the lidar first returns are from heights 3 m or higher above the ground. Basin Swamp and Mixed Forest 

areas typically show up as pink and red hues in the false color image. Xeric Hammock and Pine 

Plantation have higher values in the second of two feature layer suggesting the light penetration within the 

canopy for these vegetation communities is higher and causing the Pine Plantation areas to show up as 

green and the Xeric Hammock areas to show up as yellow or orange (high in both the red and green 

display channels) in the false color image. The “Frac22” feature is used in both the lidar and integrated 

decision trees. The surface roughness of the canopy height model “CHMrugosity” is the third feature in 

the false color image where Baygall, Basin Swamp, and Sandhill high higher values or their canopy tops 

have a higher roughness. Sandhill areas show up as blue hues and Baygall areas show up as blue or 

magenta hues in the false color image. Rugosity shows up on the lidar variable importance list given later 

in this chapter but is not used by any of the final decision trees. The Basin Marsh, Lake, and Ruderal 

areas of little or no canopy have low values in all three features used in the false color image and show up 

as black. 

 

Decision Tree Training 

 

A classification decision tree is generated using the “rpart” package (Breiman et al., 1984; 

Therneau et al., 2015) in R (R Core Team, 2015). The variable “minbucket” is set to a value of 1 allowing 

terminal nodes to contain a single training location. Package “rpart” also has a complexity parameter 

variable “cp” that determines if the tree should generate more splits along a branch. A split must decrease 

the lack of fit by a factor of cp or else it is not attempted. The decision tree algorithm will iterate through 

different threshold values of each input feature, and determine the best data partitioning according to the 

fitting function of classified outputs (i.e. it picks the split that most correctly classifies the outputs). As 
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described in the previous sections, the lidar data are subset for each of the training ground locations, 

features are calculated, and those features are brought into package “rpart”, shown in Figure 66: 

 

 

Figure 66: Lidar decision tree classification algorithm flowchart 

 

K-folds cross validation is employed to determine the optimal value of the complexity parameter. 

A random number generator is used to separate the training data into 10 groups. For each fold, data from 

9 of the groups is used to train the classification model and the data from the 10th group is used as 

independent validation. The process is performed a total of 10 times, each time generating a new decision 

tree and using a different group as the validation set. The complexity parameter value is varied to get an 

idea of the classification accuracy versus complexity parameter. If a very small complexity value is used, 

the classification model will over-fit the training data. The model will achieve a 100% classification 

accuracy for the training data but will have lower accuracy values for the validation data. By iterating the 

complexity parameter and performing the k-folds cross validation 10 times, the complexity parameter 
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value that gives the overall best classification accuracy can be chosen. The results from the k-folds cross 

validation are shown in Figure 67: 

 

 

Figure 67: K-folds cross validation to determine the optimal value of the complexity parameter for the 

lidar decision tree 

 

As seen in the figure, as the value of the complexity parameter decreases, the classification 

accuracy of the training data increases toward 100%. The classification accuracy of the validation data 

increases to a point, but then starts to decrease as the training data is over fit. Based on the k-fold cross 

validation results for the lidar data, a complexity parameter value of 0.003 produced a model with the best 

validation results. A classification accuracy of 82.4% ± 1.08 is achieved for the training data and an 

accuracy of 61.1% ± 4.25 is achieved for the validation data. 
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Classification Model 

 

A full decision tree model is generated using the 89 lidar features, all 1000 of the training points, 

and a complexity parameter value of 0.003. The final model only uses 37 of the lidar features. The model 

also reports which variables or features are important based on the statistics of each split. The variable 

importance is listed in Table 14:  

 

Table 14: Variable Importance in the Lidar Data Classification Decision Tree 

Variable Variable Importance Used in Decision Tree 

FracGround 6 Yes 

CanopyDensity 5 No 

mu1st 4 Yes 

muAll 4 No 

muCHM 4 Yes 

grP75mP25 4 No 

FracGroundCHM 3 Yes 

grP90mP10 3 Yes 

stdGround 3 Yes 

grP90          3 No 

grAAD 3 No 

grP90mP50 3 Yes 

Frac1stGround           3 Yes 
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caP75           2 Yes 

caP90           2 Yes 

caP25           2 Yes 

caP50           2 Yes 

caP10 2 Yes 

DEMslopeK21         2 Yes 

FracLT0       2 No 

grP75mP50       2 No 

caP75mP25          1 No 

maxCHM          1 No 

stdAll 1 No 

std1st          1 Yes 

Frac11          1 No 

Frac22       1 Yes 

stdCanopy           1 Yes 

grMAD       1 Yes 

caP90mP10 1 No 

Frac1st          1 Yes 

p951st             1 Yes 

AAD       1 Yes 

grP50mP10      1 Yes 

caP100mP75      1 Yes 

grP100mP75 1 Yes 

caP0       1 No 

grP50mP25   1 Yes 
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totDEMslopeK3       1 Yes 

FracShrub      1 Yes 

caP100mP50 1 Yes 

grP100mP75Frac 1 Yes 

caP100        1 No 

muCanopy           1 No 

grP75       1 Yes 

caP100mP0       1 Yes 

caP50mP25     1 Yes 

CHMrugosity 1 No 

grP100        1 No 

caP50mP0        1 Yes 

muGround       1 No 

caP50mP10 1 No 

 

The table lists 52 features that are significant in a relative sense, i.e. they appear at the top of the 

split decision list more often than other features. Many of these are not used in the decision tree because 

they were beat out by other features that could achieve a higher classification for a single split. Looking at 

the top six important variables in a structural context: “FracGround” and “CanopyDensity” represent the 

portion of the lidar returns that come from the 3D canopy or ground, “mu1st” and “muCHM” are the 

mean height of the top of the canopy, “muAll” is the overall mean height of the lidar returns, and 

“grP75mP25” is the height difference of the 25th to 75th percentile ground points representing surface 

roughness or existence of shrubs/understory. Four additional features are used in the decision tree but 

were not identified as important by the algorithm: “grP75mP25Frac”, “stdCHM”, “caP100mP75Frac”, 
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“caP50mP25Frac”. These features achieved the best classification for their individual split but did not 

appear enough times throughout the tree to be listed as important. 

 

A version of the decision tree generated with a complexity parameter of 0.01 is shown in Figure 

68: 
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Figure 68: Lidar decision tree generated with a complexity parameter of 0.01 
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The higher cp value allows a cleaner view of the top split points of the tree. The first split is on the feature 

“muCHM” which uses the mean height of the gridded canopy height model to separate areas with and 

without canopies (such as the open areas of Basin Marsh, Lake, Lake Fringe, and Ruderal). The split 

decision is shown in further detail in Figure 69 showing a scatter plot of “muCHM” for each FNAI 

vegetation community.  

 

 

Figure 69: Mean of the Canopy Height Model as the first split of the decision tree, separating closed from 

open canopy areas 

 

Most of the Basin Marsh, Lake, Lake Fringe, and Ruderal points are below the dashed line, however, a 

few ground locations with some trees are misclassified. Also, open canopy areas in Baygall and Sandhill 

are grouped with the other open canopy classes.  
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The second split on the left side of the tree uses the feature “DEMsplopek21” to separate flat 

Lakes and Basin Marsh from sloped ground areas of Lake Fringe, Basin Marsh, and Ruderal. The left side 

of Figure 70 shows the log of “DEMsplopek21” plotted against “grP50mP25”.  

 

 

Figure 70: Scatter plots showing how a few of the decision tree splits separate the data. The left side is the 

log of the coarse resolution bare-Earth slope versus the height difference of the 50th minus 25th percentile 

height of ground points. The right side is fraction of ground points versus the standard deviation of height 

of the ground points 

 

As previously described, the dark blue Lake and purple Basin Marsh points tend to fall in the bottom half 

of the plot with chartreuse Lake Fringe and orange Ruderal points separated in the top half. The 

“grP50mP25” decision attempts to pull the Lake Fringe points to the right of the Ruderal points but there 

is still some overlap between these classes. The final model requires more splits using other data features 

in order to separate these classes better. 
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The second split on the right side of the tree uses “FracGround” to separate closed canopy Basin 

Swamp, Baygall, Xeric Hammock, and Mixed Forest areas from partially open canopy Baygall, Pine 

Plantation, and Sandhill areas. The right side of Figure 70 shows “FracGround” plotted against 

“stdGround”. Brown Xeric Hammock and green Mixed Forest are separated in the lower left quadrant of 

the plot with low fraction of ground points and a low ground height standard deviation, pink Basin 

Swamp and aqua Baygall are separated in the lower right quadrant with a low fraction of ground points 

and a higher ground height standard deviation, and yellow Sandhill and dark green Pine Plantation are 

separated in the upper left quadrant with a high fraction of ground points and a low ground height 

standard deviation. 

 

The final lidar based decision tree classification model using a complexity parameter of 0.003 is 

listed in full in Appendix B.2 and shown in Figure 71: 
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Figure 71: Final lidar decision tree generated with a complexity parameter of 0.003 
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The Basin Swamp and Lake classes each have two terminal nodes suggesting that lidar data from ground 

locations of these classes were most homogeneous. Several other classes such as Basin Marsh, Baygall, 

Lake Fringe, Mixed Forest, and Pine Plantation have 6 or 7 terminal nodes highlighting the heterogeneity 

of these classes. Based on terminal node pairs, the decision tree is trying to separate similarities between 

Basin Marsh versus Lake, Lake Fringe versus Ruderal, Pine Plantation versus Sandhill, and Mixed Forest 

versus Baygall, Basin Swamp, and Xeric Hammock. 

 

Results 

 

The final decision tree is generated using all of the training points. Evaluating the training points 

through the decision tree, an overall classification accuracy of 82.3% is achieved for all vegetation 

communities. The classification accuracy for each FNAI vegetation community is listed in the confusion 

matrix in Table 15: 
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Table 15: Lidar Decision Tree, Training Data Confusion Matrix 
M

ap
 

FNAI 

Vegetation 

Community 

Reference Sites  

Baygall 

 

Lake 

Fringe 

Xeric 

Hammock 

Lake 

 

Basin 

Marsh 

Mixed 

Forest 

Pine 

Plantation 

Ruderal 

 

Sandhill 

 

Basin 

Swamp 

Total User’s 

Accuracy 

Baygall 

 

78 0 0 1 3 4 0 1 0 4 91 86% 

Lake 

Fringe 

0 72 0 2 2 0 0 5 5 0 86 84% 

Xeric 

Hammock  

1 1 91 0 0 7 2 0 0 0 102 89% 

Lake 

 

0 0 0 87 12 0 0 0 0 0 99 88% 

Basin 

Marsh 

1 10 0 8 80 0 0 2 0 0 101 79% 

Mixed 

Forest 

9 0 6 0 0 77 5 0 0 13 110 70% 

Pine 

Plantation  

1 0 2 0 2 4 84 0 9 2 104 81% 

Ruderal 

 

0 16 0 1 1 0 0 92 4 0 114 81% 

Sandhill 

 

1 1 1 1 0 0 9 0 82 1 96 85% 

Basin 

Swamp 

9 0 0 0 0 8 0 0 0 80 97 82% 

Total 

 

100 100 100 100 100 100 100 100 100 100 823/ 

1000 

 

Producer’s 

Accuracy 

78% 72% 91% 87% 80% 77% 84% 92% 82% 80%  82% 

 

The producer’s accuracy is lower than for that of the hyperspectral based model suggesting the decision 

tree had a more difficult time correctly separating classes due to a higher similarity in the lidar data for 

different classes. Xeric Hammock and Ruderal achieved the highest classification accuracies at 91% and 

92% respectively. Sandhill achieved a producer’s accuracy of 82% (82% of Sandhill training locations are 

correctly classified) and a user’s accuracy of 85% (85% of the locations labeled as Sandhill actually are 

Sandhill). Sandhill is primarily misclassified as Pine Plantation and occasionally misclassified as Lake 
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Fringe and Ruderal. Pine Plantation is primarily misclassified as Sandhill. The confusion likely stems 

from the fact that the Sandhill ecosystem was disturbed to plant the Pine Plantations and both ecosystems 

contain pines, although the pines are more regularly spaced in the plantations and might contain Slash 

Pine versus Longleaf Pine. The confusion of the rest of the output classes is described in Table 16: 

 

Table 16: Confusion of Output Classes by the Decision Tree 

Output Class Confused As 

Baygall Mixed Forest and Basin Swamp 

Lake Fringe Basin Marsh and Ruderal 

Xeric Hammock A little as Mixed Forest 

Lake A little as Basin Marsh 

Basin Marsh Lake and a little as Baygall 

Mixed Forest A little as Xeric Hammock, Basin Swamp, 

Baygall, and Pine Plantation 

Pine Plantation Sandhill and a little as Mixed Forest 

Ruderal A little as Lake Fringe 

Sandhill Pine Plantation and a little as Lake Fringe and 

Ruderal 

Basin Swamp Mixed Forest and a little as Baygall 

 

Lidar data features are also calculated for a 20 m x 20 m plot covering the independent ground 

validation locations collected by NEON and are run through the decision tree. An overall accuracy of 

64% is achieved for all vegetation communities with Sandhill achieving a producer’s accuracy of 70% 
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and a user’s accuracy of 91%. Xeric Hammock has the highest classification accuracy at 73%. The 

classification accuracy for each ground validation location is listed in the confusion matrix in Table 17: 

 

Table 17: Lidar Decision Tree, NEON Ground Validation Data Confusion Matrix 

M
ap

 

FNAI 

Vegetation 

Community 

Reference Sites  

Baygall 

 

Lake 

Fringe 

Xeric 

Hammock 

Lake 

 

Basin 

Marsh 

Mixed 

Forest 

Pine 

Plantation 

Ruderal 

 

Sandhill 

 

Basin 

Swamp 

Total User’s 

Accuracy 

Baygall 

 

-     1   1  2 0% 

Lake 

Fringe 

 2   2    2  6 33% 

Xeric 

Hammock  

  11   3    1 15 73% 

Lake 

 

 1  - 1      2 0% 

Basin 

Marsh 

 1   4      5 80% 

Mixed 

Forest 

  1   8    2 11 73% 

Pine 

Plantation  

  2    -  3  5 0% 

Ruderal 

 

       1 3  4 25% 

Sandhill 

 

  1     1 21  23 91% 

Basin 

Swamp 

         0 - NA 

Total 

 

- 4 15 - 7 12 - 2 30 3 47/73  

Producer’s 

Accuracy 

NA 50% 73% NA 57% 67% NA 50% 70% 0%  64% 
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Finally, lidar data features are calculated for a 20 m x 20 m plot on a 5 m posting covering the 

entire site. Data from each 5 m posting is run through the decision tree to generate a classification map. 

The output class map is shown in Figure 72 and has been cropped by the OSBS site boundary.  
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Figure 72: FNAI vegetation community classification map generated using lidar data 

 

Figure 73: FNAI classmap legend 
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The black areas in the lakes represent regions of the lakes where no lidar exists. The lidar instrument 

might not detect a return over dark water at off-nadir angles due to the specular reflection of the water 

surface sending photons away from the receiver. Lidar data from adjacent flight lines may not be 

perfectly registered due to drifts and errors in GPS location, attitude of the aircraft, and sensor mirror and 

ranging. The lidar pre-processing attempts to block adjust all of the lidar lines to maximize their co-

registration. Even after this process, some vertical mis-registration is seen in the flight line overlap areas 

leading to higher standard deviation values, especially in the calculation of ground features. These errors 

show up as vertical bands of Basin Marsh that can be seen in the lakes of the classification map. The areas 

of confusion discussed earlier can also been seen in the classification map: purple Basin Marsh and dark 

blue Lake pixels are intermixed and a lot of extra lake areas are displayed in the Basin Marsh in the top 

center of the map; aqua Baygall, pink Basin Swamp, and green Mixed Forest pixels are intermixed in the 

left portion of the map; and the yellow Sandhill regions are speckled with small dark green Pine 

Plantation and orange Ruderal pixels.  
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CHAPTER VII 

INTEGRATED REMOTE SENSING OBSERVATIONS FOR IMPROVED VEGETATION MAPPING 

 

In this chapter, the hyperspectral and lidar data provided by the Airborne Observation Platform 

(Kampe et al., 2010; Kampe et al., 2011; NEON, 2015h) of the National Ecological Observatory Network 

(NEON, 2015a; NRC, 2003; Schimel et al., 2011) are integrated at the feature level to take full advantage 

of the cutting edge AOP instrument payload. The features for the ground training locations are used to 

generate a decision tree classification algorithm with the goal of producing a classification map for the 

Ordway-Swisher Biological Station (OSBS, 2015a; OSBS, 2015c; OSBS, 2015d) site using the Florida 

Natural Areas Inventory (FNAI, 2010) vegetation communities as the output classes. Classification 

accuracy is assessed using k-folds cross validation and the independent ground truth data collected by 

NEON. 

 

Objectives 

 

Objectives 

 Investigate how integrated hyperspectral and discrete return lidar data can be used to observe 

vegetation species diversity through both spectral (chemical or functional) and structural 

differences. 

 Generate a vegetation community map using integrated spectral and structural differences in the 

data. This will serve as a proxy for vegetation species diversity.  
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 Show that integrated hyperspectral (spectral, chemical, species composition and function) and 

lidar (vertical structure) data improves the accuracy of the landscape characterization algorithm 

compared to data from a single instrument. 

 Relate the community map to a local scale biodiversity indicator. 

 

Science questions 

 How do vegetation communities differ spectrally and structurally? 

 How is combined spectral and structural diversity related to species diversity? 

 What spectral and structural differences can we observe in the remote sensing data? 

 How is the measured variability in the remote sensing data related to biodiversity or vegetation 

community type? 

 

Integrated Hyperspectral and Lidar Features 

 

The hyperspectral features from Chapter V are combined with the lidar features from Chapter VI 

to form a set of integrated features, representing both spectral and structural information. The integrated 

data contains a total number of 1372 features. As with the previous chapters, the data are subset for each 

of the training ground locations, features are calculated, and those features are brought into package 

“rpart” for decision tree generation, shown in Figure 74: 
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Figure 74: Integrated hyperspectral and lidar decision tree classification algorithm flowchart 

 

Figure 75 shows a false color composite of three integrated features. 
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Figure 75: False color composite of three features where the red, green, and blue display channels are 

lidar “Frac1st”, hyperspectral “NDI578i643”, and lidar “CanopyDensity” respectively 

 

The red display channel is the lidar feature “Frac1st” or fraction of first returns. Areas of bare 

ground such as Basin Marsh, Lake, Lake Fringe, and Ruderal which contain a significant number of 

single, first returns have very high “Frac1st” values. Also the open canopy areas in the Baygall and 

Sandhill communities will have an above average fraction of first returns. The green display channel is 

the hyperspectral feature “NDI578i643”. The normalized difference index between wavelengths 578 nm 

and 643 nm is correlated to the chlorophyll content in a given ground area. Chlorophyll absorbs light at 

643 nm so ground locations dominated by vegetation with high chlorophyll content will have a negative 
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“NDI578i643” value. Other natural targets such as soil and sand have an increasing reflectance curve 

between 578 nm and 643 nm so these will have a positive “NDI578i643” if a ground location is 

dominated by soil. The 20 m x 20 m spatial sampling size contains soil/sand pixels for Basin Marsh, 

Sandhill, and Ruderal areas which have higher “NDI578i643” values. Other community types are greener 

and have higher chlorophyll content so they have lower “NDI578i643” values. The blue display channel 

is the lidar feature “CanopyDensity”. Baygall, Mixed Forest, and Xeric Hammock have higher canopy 

density values because they have thicker canopies and a larger fraction of the lidar first returns are from 

heights 3 m or higher above the ground. Table 18 describes the display color of each vegetation 

community in the false color image as well as the relative value within each of the three features.  
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Table 18: Display Color and Relative Value of Each Vegetation Community in the False Color Feature 

Display 

FNAI False color Frac1st NDI578i643 CanopyDensity 

Baygall Purple, red, or 

maroon with 

patches of blue 

Low to High Low Low to High 

Lake Fringe Red or orange High Low to Medium Zero 

Xeric Hammock Blue Low Low High 

Lake Yellow or green 

(no lidar points) 

High Medium to High Zero 

Basin Marsh Yellow or orange High Medium to High Zero to Low 

Mixed Forest Purple Medium to High Low High 

Pine Plantation Aqua Low to Medium Medium to High High 

Ruderal Orange High Medium Zero to Low 

Sandhill Green with 

intermixed pixels 

of blue, yellow, 

and orange 

Medium to High Medium to High Low to High 

Basin Swamp Purple Medium to High Low High 

 

 

In Figure 75, different FNAI vegetation communities display as different colors, illustrating the potential 

for a decision tree to classify the vegetation communities using the feature data. The three features shown 
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and listed here can quantitatively separate vegetation communities and all are used in the final integrated 

classification model. 

 

Decision Tree Training 

 

A classification decision tree is generated using the “rpart” package (Breiman et al., 1984; 

Therneau et al., 2015) in R (R Core Team, 2015). The variable “minbucket” is set to a value of 1 allowing 

terminal nodes to contain a single training location. Package “rpart” also has a complexity parameter 

variable “cp” that determines if the tree should generate more splits along a branch. A split must decrease 

the lack of fit by a factor of cp or else it is not attempted. The decision tree algorithm will iterate through 

different threshold values of each input feature, and determine the best data partitioning according to the 

fitting function of classified outputs (i.e. it picks the split that most correctly classifies the outputs). 

 

K-folds cross validation is employed to determine the optimal value of the complexity parameter. 

A random number generator is used to separate the training data into 10 groups. For each fold, data from 

9 of the groups is used to train the classification model and the data from the 10th group is used as 

independent validation. The process is performed a total of 10 times, each time generating a new decision 

tree and using a different group as the validation set. The complexity parameter value is varied to get an 

idea of the classification accuracy versus complexity parameter. If a very small complexity value is used, 

the classification model will over-fit the training data. The model will achieve a 100% classification 

accuracy for the training data but will have lower accuracy values for the validation data. By iterating the 

complexity parameter and performing the k-folds cross validation 10 times, the complexity parameter 
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value that gives the overall best classification accuracy can be chosen. The results from the k-folds cross 

validation are shown in Figure 76: 

 

 

Figure 76: K-folds cross validation to determine the optimal value of the complexity parameter for the 

integrated hyperspectral and lidar decision tree 

 

As seen in the figure, as the value of the complexity parameter decreases, the classification 

accuracy of the training data increases toward 100%. The classification accuracy of the validation data 

increases to a point, but then starts to decrease as the training data is over fit. Based on the k-fold cross 

validation results for the lidar data, a complexity parameter value of 0.003 produced a model with the best 

validation results. A classification accuracy of 91.5% ± 0.75 is achieved for the training data and an 

accuracy of 77.9% ± 3.14 is achieved for the validation data. 
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Classification Model 

 

A full decision tree model is generated using the combined 1372 hyperspectral and lidar features, 

all 1000 of the training points, and a complexity parameter value of 0.003. The final model only uses 34 

of the total features, 21 hyperspectral (using 17 of 32 wavelengths) and 13 lidar. The model also reports 

which variables or features are important based on the statistics of each split. The variable importance is 

listed in Table 19:  

 

Table 19: Variable Importance in the Integrated Hyperspectral and Lidar Data Classification Decision 

Tree 

Variable Variable Importance Used in Decision Tree 

CanopyDensity            2 Yes 

muCHM           2 No 

Frac11           2 No 

Frac22      2 Yes 

muDeriv1064       2 Yes 

NDI578i643 2 Yes 

NDI528i668       2 No 

NDI553i668       2 No 

NDI578i668          2 No 

Frac1st       2 Yes 

NDI603i643       2 No 
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NDI553i643 2 No 

muDeriv1249    2 No 

FracGroundCHM       2 No 

muDeriv783       2 No 

muDeriv879          2 No 

muR1314 2 Yes 

vegNDI1515i2216 2 Yes 

muR1249     2 No 

NDI1515i2216 2 No 

vegNDI1515i2161     2 No 

NDI1515i2161 2 No 

vegNDI1545i2216 2 No 

vegNDI1515i2106 2 No 

stdDeriv2216       2 No 

muDeriv528       1 Yes 

muDeriv994     1 No 

stdDeriv2326        1 Yes 

grP90mP10        1 No 

stdGround 1 Yes 

stdDeriv2106            1 No 

grP90            1 No 

grAAD        1 No 

grP90mP50     1 No 

NDI1585i1730     1 Yes 

GreenPeakRot 1 No 



205 
 

grP75mP25     1 No 

stdDeriv2161     1 No 

stdDeriv2281       1 No 

muDeriv503       1 No 

muDeriv708        1 No 

caP100mP0 1 Yes 

muR2216           1 No 

caP100           1 No 

maxCHM      1 No 

muDeriv1515     1 No 

NDI1650i1685      1 Yes 

muDeriv1650 1 No 

vegNDI1585i1730           1 No 

p951st            1 No 

caP90        1 No 

stdCanopy   1 No 

muVegDeriv1650 1 No 

vegNDI1615i1685 1 No 

muDeriv2216       1 Yes 

muDeriv668 1 Yes 

 

The table lists 56 features that are significant in a relative sense, i.e. they appear at the top of the 

split decision list more often than other features. Many of these are not used in the decision tree because 

they were beat out by other features that could achieve a higher classification for a single split. Looking at 

the top variables in a structural context: “Frac11” and “FracGroundCHM” represent hard-target lidar 
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returns from the ground; “muCHM” is the average canopy height; “CanopyDensity” is the proportion of 

the lidar returns from the canopy; and finally “Frac22” and “Frac1st” represent multiple scattering and 

light penetration within the canopy. Looking at the top variables in a spectral context: “muDeriv1064” 

can detect Lake areas and “NDI578i643”, “NDI528i668”, “NDI553i668”, and “NDI578i668” are 

inversely related to high chlorophyll or green areas. Nineteen additional features are used in the decision 

tree but were not identified as important by the algorithm: “grP100mP0”, “FracMarshGreen”, 

“muVegDeriv2036”, “caP90mP50”, “muDeriv1685”, “caP50mP10”, “NDI1545i2106”, “FracGround”, 

“mu1st”, “stdR528”, “muVegDeriv668”, “muVegDeriv578”, “DEMslopeK21”, “stdDeriv643”, 

“caP100mP75Frac”, “stdVegDeriv643”, “caP100mP50”, “FracMixedDark”, and “vegNDI1104i1249”. 

These features achieved the best classification for their individual split but did not appear enough times 

throughout the tree to be listed as important. 

 

A version of the decision tree generated with a complexity parameter of 0.01 is shown in Figure 

77: 
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Figure 77: Integrated hyperspectral and lidar decision tree generated with a complexity parameter of 0.01 
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The higher cp value allows a cleaner view of the top split points of the tree. Just as in the hyperspectral 

decision tree, the first split is on the feature “muDeriv1064” which separates Lakes and the second split is 

on “NDI578i643” separating the closed canopy (areas of mostly green pixels) Baygall, Basin Swamp, 

Mixed Forest, and Xeric Hammock areas from open the canopy or areas with significant ground signal: 

Basin Marsh, Lake Fringe, Pine Plantation, Ruderal, and Sandhill. These two hyperspectral features are 

able to separate the data for the entire site establishing the best starting route for classification accuracy. 

 

The third split on the left side of the tree uses “vegNDI1515i2216” to separate Swamp areas from 

the rest of the closed canopy classes. The fourth split on the left side of tree uses “stdGround” to separate 

Baygall from Xeric Hammock taking advantage of the open understory of the Xeric Hammock that would 

have a lower standard deviation in the ground points. The left side of Figure 78 shows 

“vegNDI1515i2216” plotted against “stdGround”.  
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Figure 78: Scatter plots showing how a few of the decision tree splits separate the data. The left side is the 

normalized difference index for vegetation pixels using the reflectance at wavelengths of 1515 nm and 

2216 nm versus the standard deviation of height of the ground points. The right side is the fraction of first 

returns versus the normalized difference index using the reflectance at wavelengths of 1585 nm and 1730 

nm 

 

The pink Basin Swamp points are easily separated into the top half of the plot as they have higher values 

in the “vegNDI1515i2216” feature. The brown Xeric Hammock points are separated in the lower left 

quadrant as they have low “vegNDI1515i2216” and low “stdGround” values whereas the aqua Baygall 

points are in the lower right quadrant with low “vegNDI1515i2216” and high “stdGround” values. While 

the green Mixed Forest points are separated in the bottom of the plot from the Basin Swamp points, they 

cover both the Xeric Hammock and Baygall points. The final model requires more splits using other data 

features in order to separate these classes better. 

 

The third split on the right side of the tree uses “Frac1st” to separate the wide open Basin Marsh, 

Lake Fringe, and Ruderal areas from the open canopy Pine Plantation and Sandhill areas. One of the 
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fourth splits on the right side of the tree uses “NDI1585i1730” to further separate the Pine Plantation from 

Sandhill. The right side of Figure 78 shows “Frac1st” plotted against “NDI1585i1730”. The dark green 

Pine Plantation points are in the lower left quadrant with fraction of first returns below 93.9% and 

“NDI1585i1730” less than -0.3, the yellow Sandhill points are in the lower right quadrant with fraction of 

first returns below 93.9% and “NDI1585i1730” greater than -0.3, and the rest of the points are in the top 

of the plot. The purple Basin Marsh, chartreuse Lake Fringe, and orange Ruderal points require more 

splits using other data features in order to separate these classes better. 

 

The final integrated hyperspectral and lidar based decision tree classification model using a 

complexity parameter of 0.003 is listed in full in Appendix B.3 and shown in Figure 79: 
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Figure 79: Final integrated hyperspectral and lidar decision tree generated with a complexity parameter of 

0.003 
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The Lake class has a single terminal node and Basin Swamp has 2 terminal nodes suggesting that the 

integrated data from ground locations of these classes were most homogeneous. Several other classes 

such as Basin Marsh, Baygall, and Xeric Hammock have 5 or 6 terminal nodes highlighting the 

heterogeneity of these classes. Based on terminal node pairs, the decision tree is trying to separate 

similarities between: Basin Marsh versus Lake; Lake Fringe versus Basin Marsh and Ruderal; Mixed 

Forest versus Baygall and Xeric Hammock; Basin Swamp versus Basin Marsh, Baygall, and Xeric 

Hammock; and Sandhill versus Lake Fringe, Pine Plantation, and Ruderal. 

 

 

Results 

 

The final decision tree is generated using all of the training points. Evaluating the training points 

through the decision tree, an overall classification accuracy of 91.9% is achieved for all vegetation 

communities. The classification accuracy for each FNAI vegetation community is listed in the confusion 

matrix in Table 20:  
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Table 20: Integrated Hyperspectral and Lidar Decision Tree, Training Data Confusion Matrix 
M

ap
 

FNAI 

Vegetation 

Community 

Reference Sites  

Baygall 

 

Lake 

Fringe 

Xeric 

Hammock 

Lake 

 

Basin 

Marsh 

Mixed 

Forest 

Pine 

Plantation 

Ruderal 

 

Sandhill 

 

Basin 

Swamp 

Total User’s 

Accuracy 

Baygall 

 

95 0 2 0 2 5 0 0 0 5 109 87% 

Lake 

Fringe 

0 92 1 1 1 0 0 5 3 0 103 89% 

Xeric 

Hammock  

2 1 93 0 0 0 1 0 0 0 97 96% 

Lake 

 

0 0 0 93 2 0 0 0 1 0 96 97% 

Basin 

Marsh 

1 2 1 5 94 0 0 0 0 0 104 90% 

Mixed 

Forest 

1 0 0 0 0 89 3 0 0 1 94 95% 

Pine 

Plantation  

0 0 1 1 1 2 87 1 5 1 98 89% 

Ruderal 

 

0 3 0 0 0 0 1 93 0 0 97 96% 

Sandhill 

 

0 0 1 0 0 1 6 1 90 0 99 91% 

Basin 

Swamp 

1 2 1 0 0 3 2 0 1 93 103 90% 

Total 

 

100 100 100 100 100 100 100 100 100 100 919/ 

1000 

 

Producer’s 

Accuracy 

95% 92% 93% 93% 94% 89% 87% 93% 90% 93%  92% 

 

The producer’s accuracy is higher than for that of the hyperspectral based model for most of the output 

classes except Lake, Lake Fringe, and Pine Plantation suggesting the decision tree has a higher success at 

correctly separating classes. Furthermore all of producer’s accuracies are at or above 90% except Mixed 

Forest (89%) and Pine Plantation (87%). Basin Marsh and Baygall achieved the highest classification 

accuracies at 94% and 95% respectively. Sandhill achieved a producer’s accuracy of 90% (90% of 

Sandhill training locations are correctly classified) and a user’s accuracy of 91% (91% of the locations 
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labeled as Sandhill actually are Sandhill). Sandhill is primarily misclassified as Pine Plantation and 

occasionally misclassified as Lake Fringe. Pine Plantation is primarily misclassified as Sandhill. The 

confusion likely stems from the fact that the Sandhill ecosystem was disturbed to plant the Pine 

Plantations and both ecosystems contain pines, although the pines are more regularly spaced in the 

plantations and might contain Slash Pine versus Longleaf Pine. The confusion of the rest of the output 

classes is described in Table 21: 

 

Table 21: Confusion of Output Classes by the Decision Tree 

Output Class Confused As 

Baygall A little as Xeric Hammock 

Lake Fringe A little as Basin Marsh, Basin Swamp, and 

Ruderal 

Xeric Hammock A little as Baygall 

Lake Basin Marsh 

Basin Marsh A little as Baygall and Lake 

Mixed Forest Baygall and a little as Basin Swamp and Pine 

Plantation 

Pine Plantation Sandhill and a little as Mixed Forest and Basin 

Swamp 

Ruderal Lake Fringe 

Sandhill Pine Plantation and a little as Lake Fringe 

Basin Swamp Baygall 
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Hyperspectral and lidar data features are also calculated for a 20 m x 20 m plot covering the 

independent ground validation locations collected by NEON and are run through the decision tree. An 

overall accuracy of 66% is achieved for all vegetation communities with Sandhill achieving a producer’s 

accuracy of 67% and a user’s accuracy of 87%, which is worse than the hyperspectral model from 

Chapter V. Mixed Forest has the highest classification accuracy at 92%. The classification accuracy for 

each ground validation location is listed in the confusion matrix in Table 22: 
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Table 22: Integrated Hyperspectral and Lidar Decision Tree, NEON Ground Validation Data Confusion 

Matrix 

M
ap

 

FNAI 

Vegetation 

Community 

Reference Sites  

Baygall 

 

Lake 

Fringe 

Xeric 

Hammock 

Lake 

 

Basin 

Marsh 

Mixed 

Forest 

Pine 

Plantation 

Ruderal 

 

Sandhill 

 

Basin 

Swamp 

Total User’s 

Accuracy 

Baygall 

 

-         1 1 0% 

Lake 

Fringe 

 2   2    2  6 33% 

Xeric 

Hammock  

  10   1   2  13 77% 

Lake 

 

   -       - NA 

Basin 

Marsh 

    4      4 100% 

Mixed 

Forest 

  1   11    2 14 79% 

Pine 

Plantation  

  1    -  5  6 0% 

Ruderal 

 

 2   1   1   4 25% 

Sandhill 

 

  2     1 20  23 87% 

Basin 

Swamp 

  1      1 0 2 0% 

Total 

 

- 4 15 - 7 12 - 2 30 3 48/73  

Producer’s 

Accuracy 

NA 50% 67% NA 57% 92% NA 50% 67% 0%  66% 

 

Finally, lidar data features are calculated for a 20 m x 20 m plot on a 5 m posting covering the 

entire site. Data from each 5 m posting is run through the decision tree to generate a classification map. 

The output class map is shown in Figure 80 and has been cropped by the OSBS site boundary.  
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Figure 80: FNAI vegetation community classification map generated using the integrated hyperspectral 

and lidar data 

 

Figure 81: FNAI classmap legend 
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The areas of confusion discussed earlier can also been seen in the classification map: purple 

Basin Marsh pixels dot the lakes in areas that have a significant amount of floating vegetation; pixels in 

the aqua Baygall area on the left of the map are misclassified as brown Mixed Forest, pink Basin Swamp, 

and purple Basin Marsh; yellow Sandhill regions are speckled with small dark green Pine Plantation and 

in the case of recently burned management units, Sandhill is misclassified as Lake Fringe (this confusion 

may be due to the fact that prescribed burning recently took place in both Sandhill and Lake Fringe units 

in the Southeast portion of the site). Unfortunately, some of the thick vegetation areas in the Sandhill are 

misclassified as pink Basin Swamp.    
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CHAPTER VIII 

CONCLUSIONS 

 

Local Scale Biodiversity Indicator 

 

The Grand Challenges in Environmental Sciences (NRC, 2001) call for new tools of rapid 

assessment of biodiversity. A local scale biodiversity indicator can easily be derived from the remote 

sensing data and the ground observations of biodiversity. In this research, the biodiversity indicator used 

is vegetation species richness. The NEON ground diversity data (species number derived from species 

lists) from Figure 38 in Chapter IV shows that a relationship exists between species richness and FNAI 

community, i.e. some communities support a larger diversity of vegetation species. A relative ranking is 

generated using the species number data and is listed in Table 23: 

 

 

 

 

 

 

 



220 
 

Table 23: Species Richness Relative Rank 

FNAI Vegetation Community Species Richness Relative Rank 

Upland Clastic Lake 0 

Upland Sandhill Lake 0 

Basin Marsh 2 

Upland Sandhill Lake Fringe 3 

Basin Swamp 4 

Upland Mixed Forest 5 

Baygall 6 

Xeric Hammock 7 

Ruderal 8 

Pine Plantation 9 

Sandhill 10 

 

A map of the FNAI vegetation communities serves as a proxy of vegetation species richness by 

applying the relative rank to the identified vegetation community in the classification map for each pixel 

location. The resulting relative vegetation species richness map generated from the hyperspectral 

classification map is shown in Figure 82: 
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Figure 82: Relative vegetation species richness as a local scale biodiversity indicator 

 

Here the relative rank is displayed as shades of green where darker areas have lower vegetation 

species richness and saturated green areas have higher richness. Since the brightness scale on the map is 

relative to the vegetation communities at the study site, it is categorized as a local scale biodiversity 

indicator. The species richness map is a type of alpha diversity metric. A total of 329530 pixels are 

labeled as Sandhill with a relative rank of 10. The spatial resolution of the map is 5 m so this comes to a 

total area of 9.81 km2 or 2424.91 acres. 29.35% of the pixels are labeled Sandhill which is a bit lower 
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than the 37% estimated from the GIS data in Chapter III. This underestimation of Sandhill area is 

consistent with the 76.0% classification accuracy measured during the k-folds cross validation.  

 

Discussion of Results 

 

Project Objectives 

 

 Objective 1: Investigate remote sensing technologies to map ecosystems.  

 

The literature on biodiversity, remote sensing of biodiversity, and ecosystem mapping was 

reviewed. Remote sensing primarily observes vegetation from above with hyperspectral data influenced 

by chemical, structural, and functional traits of the vegetation and lidar data capable of measuring the 3D 

physical structure of vegetation. Remote sensing data are commonly used to map generalized land cover 

with a few studies focusing on mapping specific ecosystems. Another common practice is to identify and 

map specific species. Some biogeochemistry studies looked at mapping vegetation traits such as nitrogen, 

carbon, and water thickness in order to assess the spatial variability in the vegetation and then use proxies 

to determine the species richness. The prior literature and early data prototypes led this research in the 

direction of mapping vegetation communities using both hyperspectral and lidar remote sensing data. 
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 Objective 2: Generate a vegetation community map from remote sensing data. Validate the map 

with in-situ ground truth data.  

 

A classification and regression tree (CART) algorithm (Breiman et al., 1984; Therneau et al., 

2015) is used to generate the vegetation community map. A series of metrics are calculated for a 20 m x 

20 m plot size from the remote sensing data which characterize the spectral and structural variations 

across the landscape of the study site. The metrics serve as the input feature layers to the classification 

tree. Training data points for each of the vegetation communities are hand selected using photo-

interpretation of high resolution imagery in combination with GIS data of the study site. The 

classification tree is generated using the training data and then validated using independent in-situ ground 

truth data by comparing the vegetation community class predicted by the classification tree against the 

actual vegetation community as determined by species lists and site photos from field sampling. 

Vegetation community classification maps are presented in Chapters V-VII. 

 

Using k-folds cross validation, a complexity parameter value of 0.003 is chosen as both the best 

hyperspectral model and lidar model. The hyperspectral decision tree produces a classification accuracy 

of 90.0% ± 0.54 for the training data and an accuracy of 76.0% ± 3.50 for the validation data. Sandhill 

achieved a producer’s accuracy of 89% (89% of Sandhill training locations are correctly classified) and a 

user’s accuracy of 91% (91% of the locations labeled as Sandhill actually are Sandhill). Assessing the 

independent ground truth points, an overall accuracy of 66% is achieved for all vegetation communities 

with Sandhill having a producer’s accuracy of 80% and a user’s accuracy of 100%. The lidar decision tree 

produces a classification accuracy of 82.4% ± 1.08 for the training data and an accuracy of 61.1% ± 4.25 

for the validation data. Sandhill achieved a producer’s accuracy of 82% and a user’s accuracy of 85%. 

Assessing the independent ground truth points, an overall accuracy of 64% is achieved for all vegetation 
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communities with Sandhill having a producer’s accuracy of 70% and a user’s accuracy of 91%. The 

accuracy numbers for both the hyperspectral and lidar data models are listed in Table 24 in the next 

section discussing Objective 3. 

 

The lidar data alone didn’t perform as well as the hyperspectral data suggesting that the decision 

tree had a more difficult time correctly separating classes due to a higher similarity in the lidar data 

(vegetation structure similarity) for different classes. The lidar classification accuracy might be improved 

by using the intensity values as an input feature to the classification model. Intensity might be able to 

distinguish areas that have similar structure, though intensity values are dependent on the range between 

the instrument and the ground and a correction would need to be applied to properly scale the intensities 

before they could be used. The hyperspectral model showed a higher accuracy over the lidar model by 

+7.6% for the k-folds training data, +14.9% for the k-folds validation data, and +2.0% for the independent 

ground validation. For both models, Sandhill is primarily misclassified as Pine Plantation and 

occasionally misclassified as Lake Fringe and Ruderal. Pine Plantation is primarily misclassified as 

Sandhill. The confusion likely stems from the fact that the Sandhill ecosystem was disturbed to plant the 

Pine Plantations and both ecosystems contain pines, although the pines are more regularly spaced in the 

plantations and might contain Slash Pine versus Longleaf Pine. Sandhill and Xeric Hammock achieved 

the highest classification accuracies of all of the vegetation communities for the hyperspectral and lidar 

data models respectively for the independent ground truth data.  
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 Objective 3: Show that integrated hyperspectral (spectral, chemical, species composition and 

function) and lidar (horizontal and vertical structure) data improves the accuracy of the landscape 

characterization algorithm compared to data from a single instrument.  

 

Using k-folds cross validation, a complexity parameter value of 0.003 is also chosen as the best 

integrated hyperspectral plus lidar data model. The integrated decision tree produces a classification 

accuracy of 91.5% ± 0.75 for the training data and an accuracy of 77.9% ± 3.14 for the validation data. 

Sandhill achieved a producer’s accuracy of 90% (90% of Sandhill training locations are correctly 

classified) and a user’s accuracy of 91% (91% of the locations labeled as Sandhill actually are Sandhill). 

Assessing the independent ground truth points, an overall accuracy of 66% is achieved for all vegetation 

communities with Sandhill having a producer’s accuracy of 67% and a user’s accuracy of 87%. The 

accuracy numbers for the integrated hyperspectral and lidar data model are compared against the 

individual sensor models and listed in Table 24: 

 

Table 24: Classification Accuracies for Hyperspectral, Lidar, and Integrated Decision Trees of Vegetation 

Community at OSBS 

 Lidar Hyperspectral Integrated 

K-Folds Training 

Accuracy 

82.4% ± 1.08 90.0% ± 0.54 91.5% ± 0.75 

K-Folds Validation 

Accuracy 

61.1% ± 4.25 76.0% ± 3.50 77.9% ± 3.14 

Independent Ground 

Validation 

64.0% 66.0% 66.0% 
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Overall the integrated model achieves better accuracy where the producer’s accuracy is higher 

than for that of the hyperspectral based model for most of the output classes except Lake, Lake Fringe, 

and Pine Plantation suggesting the decision tree has a higher success at correctly separating classes. The 

integrated model showed a higher accuracy over the hyperspectral model by +1.5% for the k-folds 

training data, +1.9% for the k-folds validation data. The accuracy for the independent ground validation 

points is the same for the integrated and hyperspectral models. Furthermore all of producer’s accuracies 

are at or above 90% except Mixed Forest and Pine Plantation. However, the Sandhill independent 

validation points were worse for the integrated model versus those of the hyperspectral and lidar only 

models. Sandhill is primarily misclassified as Pine Plantation and occasionally misclassified as Lake 

Fringe, Xeric Hammock, and Basin Swamp (some pixels in burn areas). 

 

 Objective 4: Start to relate derived remote sensing features to structure, chemistry, and function.  

 

The hyperspectral features are meant to be proxies of the 2D spectral (chemical, functional, and 

structural) differences of the vegetation communities as measured by the NEON Imaging Spectrometer 

instrument. The subset of 32 wavelengths capture the spectral shapes of the ground objects and are 

influenced by absorption and scattering. Feature layers using visible wavelengths shorter than 680 nm are 

highly correlated to chlorophyll absorption. Several of the normalized difference indices are influenced by 

liquid water absorption in leaves. Others features (depending on the wavelengths used) are tied to lignin 

and cellulose. Higher reflectance in the near-infrared wavelengths may indicate multiple scattering due to 

increased leaf area index and is related to the structure of the leaves and canopies. Finally, the spectra 

themselves, or the assemblage of certain endmembers in a 20 m x 20 m ground plot may be indicative or 

certain vegetation functional groups and can separate closed canopy from open canopy areas based on 
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fraction of green pixels. Vegetation chemistry and structure (leaf area index for example) hyperspectral 

products were not available from NEON at the time of the research but could create a tighter link between 

reflectance and the underlying vegetation traits. 

 

The lidar features are meant to be proxies of the horizontal 2D and vertical 3D structure of the 

different vegetation communities as measured by the discrete return lidar instrument. The lidar point 

clouds represent not only the 3D structure of the canopies and ground, based on their reflectance of light 

at 1064 nm, but also exhibit optical phenomena such as light penetration and multiple scattering. Open 

verses closed canopy areas can be differentiated based on the fraction of discrete returns classified as 

canopy or ground based on their relative height above a bare-Earth terrain model. Mean and max height in 

the discrete points or the canopy height model can detect differences in species, stand age, and functional 

groups. Analysis of multiple returns in a canopy is directly related to leaf area and clumping and may 

provide some insight into the absorption, transmission, and reflection properties of leaves. The vertical 

distribution of discrete returns (a pseudo waveform) can also capture vertical profiles of leaf area and 

canopy stratification (overstory versus understory layers). Finally, statistics calculated on discrete returns 

near the ground can provide insight into how flat the ground is and whether or not tall grasses or shrubs 

exist. 

 

 Objective 5: Leverage the collection of pixels within a ground plot. 

 

Analysis of 1 m ground sample distance hyperspectral pixels in a 20 m x 20 m ground plot 

includes 400 pixels that are used for the metric/feature calculations. The objective strives to move beyond 

basic summary statistics such as mean, standard deviation, min, max, and range, and utilize the variability 
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of the 400 pixels in new ways. While standard deviation and range have been shown to be correlated to 

biodiversity, grouping pixels into endmembers allows the data to be analyzed as a distribution of pixel 

reflectance values which may share a stronger link to vegetation communities. This research performs a 

basic pixel classification on the hyperspectral data and then calculates features as “fraction of” in order to 

capture pixel distributions. The fraction feature list is: FracSandRoad, FracLakeFringe, 

FracWaterShallow, FracWaterDark, FracWaterGlint, FracWaterDarkVeg, FracWaterMedVeg, 

FracWaterLightVeg, FracWaterWhiteVeg, FracShadowGround, FracShadowCanopy, FracSandhillVeg1, 

FracSandhillVeg2, FracSandhillGrass, FracSandhillBurnt, FracTreesBright, FracTreesDark, 

FracMixedDark, FracTreesGray, FracRuderalGreen, FracRuderalMixed, FracRuderalBright, 

FracMarshGreen, FracMarshPink, FracMarshLight, FracMarshDark, and FracBurnScar. This research 

subsets vegetation endmember pixels and calculates features on them separately, which is enabled by 

having the group of 1 m pixels. The fraction feature list is fairly generic but future versions could improve 

the vegetation classes to directly represent actual species or possibly use unsupervised training techniques 

to group pixels into distinct clusters of spectra. Foliar chemistry maps (such as chlorophyll) could be 

generated and the distribution of values within the ground plot could be analyzed as another advanced 

assemblage technique. 

 

Analysis of 3.82 lidar points per meter2 in a 20 m x 20 m ground plot includes 1528 pixels that 

are used for the metric/feature calculations. Each of these points can be classified as either a ground point, 

below ground, shrub, canopy, high canopy, first return, 1st of 1, 2nd of 2, 3rd of 3, and 4th of 4. Similar to 

the hyperspectral data, “fraction of” metrics can be calculated on the lidar data. Other features common in 

the literature include combining the discrete return points into a vertical distribution (pseudo waveform) 

of height above ground. Percentile heights, percentile height ranges (including interquartile range), and 

point distribution statistics are calculated. Future work might include analyzing full-waveform lidar for 

species identification or possibly using the lidar heights in an integrated fashion with the hyperspectral 
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data to calculate features for low vegetation pixels separately than high vegetation pixels for example. See 

concept of assemblages of pixels or points in “Future Work” Section of this chapter for more information 

about future work on this objective. 

 

 Objective 6: Analyze the key spectral and structural differences between vegetation communities 

as measured in the remote sensing data.  

 

Each split within the decision tree separates the data into two groups. Ideally, the intra-variability 

within a single group should be low and the inter-variability between groups should be high (i.e. the two 

groups should be different in terms of the remote sensing data). The decision tree forms a dendrogram 

diagram where output classes whose branches are closer together on the graph are more similar to each 

other in terms of their remote sensing data (i.e. data from these classes are grouped together during the 

earlier splits). 

 

The first hyperspectral split is on the feature “muDeriv1064” which separates Lakes from the rest 

of the vegetation communities based on water spectra having decreasing reflectance versus wavelength in 

the near-infrared region. While this split isolates most of the Lake locations, a few Lake points are 

excluded and a few Basin Marsh points are included. This may be a case where the excluded Lake points 

have significant floating vegetation and the included Basin Marsh points may have standing water. The 

second split is on “NDI578i643” separating the closed canopy (areas of mostly green pixels) Baygall, 

Basin Swamp, Mixed Forest, and Xeric Hammock areas from open the canopy or areas with significant 

ground signal (sand and grasses): Basin Marsh, Lake Fringe, Pine Plantation, Ruderal, and Sandhill. 

Further splits attempt to separate Swamp areas from the rest of the closed canopy classes; separate 
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Baygall from Xeric Hammock and most of the Mixed Forest; separate the bare-Earth Basin Marsh, Lake 

Fringe, and Ruderal areas from the open canopy Pine Plantation and Sandhill areas; and separate the 

Basin Marsh from the Lake Fringe and Ruderal areas. The Basin Swamp and Ruderal classes each have 

one terminal node and the Lake class has two terminal nodes suggesting that hyperspectral data from 

ground locations of these classes were most homogeneous. Several other classes such as Basin Marsh, 

Lake Fringe, and Xeric Hammock have 5 or 6 terminal nodes highlighting the heterogeneity of these 

classes. Based on terminal node pairs, the decision tree is trying to separate similarities between: Basin 

Marsh versus Lake; Lake Fringe versus Basin Marsh and Ruderal; Mixed Forest versus Baygall and Xeric 

Hammock; Basin Swamp versus Basin Marsh and Baygall; and Sandhill versus Lake Fringe, Pine 

Plantation, and Ruderal. 

 

The first lidar split is on the feature “muCHM” which uses the mean height of the gridded canopy 

height model to separate areas with and without canopies (such as the open areas of Basin Marsh, Lake, 

Lake Fringe, and Ruderal). Most of the Basin Marsh, Lake, Lake Fringe, and Ruderal points are grouped 

together after the split, however, a few ground locations with some trees are misclassified. Also, open 

canopy areas in Baygall and Sandhill are grouped with the other open canopy classes. The second split on 

the left side of the tree uses the feature “DEMsplopek21” to separate flat Lakes and Basin Marsh from 

sloped ground areas of Lake Fringe, Basin Marsh, and Ruderal. Lake and Basin Marsh points are grouped 

together but separated from Lake Fringe and Ruderal points. A further decision attempts to separate the 

Lake Fringe points from the Ruderal points but there is still some overlap between these classes. The final 

model requires more splits using other data features in order to separate these classes better. The second 

split on the right side of the tree uses “FracGround” to separate closed canopy Basin Swamp, Baygall, 

Xeric Hammock, and Mixed Forest areas from partially open canopy Baygall, Pine Plantation, and 

Sandhill areas. With splits using “FracGround” and “stdGround”, Xeric Hammock and Mixed Forest are 

separated with low fraction of ground points and a low ground height standard deviation, Basin Swamp 
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and Baygall are separated with a low fraction of ground points and a higher ground height standard 

deviation, and Sandhill and Pine Plantation are separated with a high fraction of ground points and a low 

ground height standard deviation. The Basin Swamp and Lake classes each have two terminal nodes 

suggesting that lidar data from ground locations of these classes were most homogeneous. Several other 

classes such as Basin Marsh, Baygall, Lake Fringe, Mixed Forest, and Pine Plantation have 6 or 7 

terminal nodes highlighting the heterogeneity of these classes. Based on terminal node pairs, the decision 

tree is trying to separate similarities between Basin Marsh versus Lake, Lake Fringe versus Ruderal, Pine 

Plantation versus Sandhill, and Mixed Forest versus Baygall, Basin Swamp, and Xeric Hammock. 

 

The integrated model first tries to separate out Lake points similar to the hyperspectral model. 

Next, the closed canopy (areas of mostly green pixels) Baygall, Basin Swamp, Mixed Forest, and Xeric 

Hammock areas are separated from open the canopy or areas with significant ground signal: Basin Marsh, 

Lake Fringe, Pine Plantation, Ruderal, and Sandhill. The Lake areas are distinct in the hyperspectral data 

making them easy to separate but they have a similar structure to other flat areas without trees in the lidar 

data (which is why they aren’t separated in the lidar model). A common theme in all three decision tree 

models is the separation of open canopy from closed canopy vegetation communities. Fraction of canopy 

manifests as greenness in the hyperspectral data and 2D canopy structure in the lidar data. 

 

 Objective 7: Relate the classification results to a local scale biodiversity indicator. 

 

A local scale biodiversity indicator is presented in the first section of this chapter. The 

biodiversity indicator is species richness. Using the relationship between FNAI community and species 

richness, a relative rank of diversity is created. A map of the FNAI vegetation communities serves as a 
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proxy of vegetation species richness by applying the relative rank to the identified vegetation community 

in the classification map for each pixel location. Saturated green areas have higher richness, with the 

maximum richness given to pixels classified as Sandhill. A future version of this result could take 

advantage of spatial variability in the remote sensing data along with some regression against species 

richness to display a finer gradation in the richness relative rank and spatial variability in richness. The 

map can be used to inform which areas of the site should be prioritized for conservation and serves as a 

baseline for long-term change analysis with future AOP remote sensing data of OSBS. 

 

General discussion 

 

The integrated remote sensing decision tree has the highest classification accuracy, although the 

hyperspectral only model was very close. This suggests that hyperspectral sensors capture structural 

information in the reflectance curves either directly due to scattering or indirectly due to endmembers or 

individual species as observed in the pixel data. The accuracy results may also suggest that the 

hyperspectral and lidar data integration was not as successful as originally planned. Integrating at the 

feature layer does not provide a significant improvement in overall classification accuracy. Future work 

includes fusing earlier in the processing chain such as separating high and low vegetation and calculating 

individual features/metrics for each of those classes. 

 

Several error sources exist which might have prevented the achievement of higher accuracy 

numbers. The decision tree training points are hand selected using photo-interpretation of high resolution 

imagery and GIS layers provided by the study site. Confusion about boundaries between vegetation 

communities and errors in the GIS layers can cause training points to be selected in the wrong community 
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type. Human error could also cause the ground coordinates of training points to be recorded incorrectly. 

The independent ground validation points could also be mislabeled with the wrong vegetation 

community. While species lists are helpful, vegetation communities tend to have dominant canopy 

species that are primarily observed by the remote sensing data. Vegetation abundance, especially in the 

canopy, would be extremely valuable to confirm that the correct community class is assigned to the 

validation data. Considering that only 73 independent ground validation points were available at the time 

of the research, a few misclassified points causes a significant reduction in accuracy. Finally, noise or 

other artifacts in the remote sensing data could cause misclassification errors. 

 

The success of vegetation community mapping using remote sensing relies on detectability of 

community differences in the sensor data. The hyperspectral instrument measures reflected solar energy 

from the top of the canopy. This sensor cannot penetrate all the way through the canopy to the ground 

unless the canopy is open. In the case of the Sandhill community, the herbaceous ground layer has the 

most diversity. This is an open canopy ecosystem, but even 1 m spatial pixels cannot measure individual 

herbs and grasses. Lidar is able to directly measure the 3D structure of the canopy and ground, but also 

has limits in the vertical resolution of what size objects can be individually detected.  

 

Vegetation communities that only have one or two terminal nodes in the classification model 

have homogeneous remote sensing data and can be considered endemic in terms of the chemical, 

functional, and structural traits as observed by remote sensing. Other heterogeneous vegetation 

communities that follow multiple branches in the decision tree are more difficult to correctly classify as 

these tend to look similar to other vegetation communities. For instance, the decision trees misclassify 

Sandhill as Pine Plantation and vice-versa. The confusion likely stems from the fact that the Sandhill 

ecosystem was disturbed to plant the Pine Plantations and both ecosystems contain pines, although the 



234 
 

pines are more regularly spaced in the plantations and might contain Slash Pine versus Longleaf Pine. 

Ground locations that flow out of terminal nodes whose branches are grouped near each other at the later 

splits in the decision tree are more similar to each other in terms of their remote sensing data, and likely 

have similar chemical, functional, and structural traits. 

 

Biodiversity is much more than just trees and plants. Overall, the airborne remote sensing data 

have enough resolution to map habitats which can serve as a proxy for species diversity including other 

taxa (such as fauna) that may not be directly detected by remote sensing. More work is required to 

characterize biodiversity in finer detail than just vegetation community. Variability in the remote sensing 

data can be correlated to vegetation species diversity as long as illumination geometry and other sensor 

artifacts are corrected for. Other biodiversity indicators besides species richness could be applied such as 

diversity measures like the Shannon Index or assessment of ecosystem condition and fragmentation. This 

research contains vegetation community maps collected at a single point in time and serves as a baseline 

for analysis of ecosystem change with time, a very important metric in many biodiversity indicators. The 

research is also only performed at a single study site. The next section addresses extending this research 

to other sites and space remote sensing missions. This research provides a solid framework for 

classification of vegetation community. During the course of the work, many ideas were born or evolved 

but require further investigation. The final section of this chapter contains an extensive list of possible 

follow on or derivative work that is complimentary to the research presented here.  

 

 

 

 



235 
 

Extendibility to Other Sites and Space Remote Sensing Missions 

 

In this research, vegetation community classification maps are only generated for a single site 

(Ordway-Swisher Biological Station) using a state/regional based classification system (FNAI). The 

desire exists to apply the techniques developed here across multiple sites and ecoregions. In 2014, NEON 

AOP also collected data over two other sites in the NEON Southeast Domain 03 including Florida 

(Disney Preserve) and Georgia (Jones Ecological Research Center). Jones has longleaf pine but not 

necessarily in a Sandhill ecosystem. One issue is that detailed vegetation community maps of these two 

sites were not available at the time of the research, nor were independent ground truth points. The 

classification trees could be applied to these data sets, and would inappropriately predict one of the ten 

FNAI vegetation community classes from the OSBS data. Ground truth data at these sites would need to 

be collected to determine what new vegetation communities exist (new compared to OSBS) and select 

training locations to build a new decision tree. Independent ground truth data would also be required to 

perform an accuracy assessment.  

 

Similarity/dissimilarity analysis tools could be developed to compare data from new areas and 

determine if the areas are similar to previous ones in terms of the spectra and structure as measured by the 

remote sensing instruments. The current decision tree could be applied to the new data where appropriate 

or in the case of dissimilar data, new training points and new output classes could be added to the decision 

tree. A generalized framework for extension to other sites would include the calculation of all of the 

metrics used here in this research, but would require site specific vegetation community output classes 

and additional training points for classification tree model generation. NEON AOP also has data available 

for various sites in the Northeast Domain 01 (2014), Appalachians and Cumberland Plateau Domain 07 
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(2015), Ozarks Complex Domain 08 (2015), Central Plains Domain 10 (2013), and Pacific Southwest 

Domain 17 (2013) covering a variety of different ecosystems. 

 

Satellite remote sensing is a cost effective means to achieve global coverage and monitor change 

with time. The benefits of global and seasonal coverage are obtained by sacrificing spatial resolution, 

where most satellite based instruments with high spectral resolution have a pixel size of 30-60 m. Here, 

high spatial resolution pixels do not exist so the idea of an assemblage cannot be leveraged. The coarse 

pixels may or may not be able to capture the variability of vegetation chemistry, structure, and 

functioning, however, they will measure the mean values. In other cases, some commercial imaging 

satellites have high spatial resolution but only a limited number of spectral bands with coarse spectral 

resolution. Different biodiversity indicators may need to be used for satellite remote sensing versus 

airborne remote sensing due to what level of spatial and spectral variability is observable. 

 

Two upcoming missions are proposing instruments to collect hyperspectral and lidar data from 

space (HyspIRI and GEDI). The Hyperspectral Infrared Imager (HyspIRI) is a proposed decadal study 

mission to collect hyperspectral imagery from low earth orbit (JPL, 2015c). The mission includes a 

visible to shortwave infrared (VSWIR) imaging spectrometer with a spectral range of 380-2500 nm and a 

10 nm fwhm and also includes a thermal infrared (TIR) multispectral imager covering the 3-12 µm 

spectral range. The VSWIR instrument has a spatial resolution of 60 m at nadir and a revisit time of 19 

days. A prime example of a space based lidar instrument to measure vegetation is the Global Ecosystem 

Dynamics Investigation (GEDI) Lidar (NASA, 2015). GEDI is an Earth System Science Pathfinder 

mission that proposes to place a lidar instrument on the International Space Station. The GEDI instrument 

will have three laser beams that are optically divided into 14 tracks on the ground (spaced 500 m apart) 

and covering a total swath width of 6.5 km. Each beam divergence is designed to illuminate a 25 m spot 
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on the ground. The return signal as a function of time is captured as a waveform where canopy height can 

be determined to an accuracy of 1 m. GEDI is due to be completed in 2018. One major limitation is that 

the two instruments will be on different platforms and will not have coincident ground coverage. The 

following paragraphs address how this research could be applied and/or adapted for use on data collected 

from space as well as looking at issues that arise from the coarse spatial resolution of the proposed space 

instruments. In addition, the airborne data may be used as validation for algorithms developed for satellite 

remote sensing.  

 

The NEON AOP high spatial resolution airborne imaging spectrometer collects 1 m ground 

sample distance pixels at a nominal flight altitude. Analysis of a 20 m x 20 m ground plot includes 400 

pixels that are used for the metric/feature calculations. NASA spaceborne multispectral and hyperspectral 

instruments typically have pixels with a ground sample distance of 30 m or larger (HyspIRI will be 60 m). 

The at-sensor radiance values of all ground objects that fall within that pixel are averaged together into a 

single radiance value. Any spatially explicit information about where the radiance came from is lost. A 

major complication is that the scaling of radiances is linear (assuming spatial response uniformity within 

a pixel for this example) but feature layers such as vegetation indices scale in a non-linear fashion 

depending on the mix of surface objects within the pixel (Wessman & Bateson, 2004). 

 

In terms of the hyperspectral feature categories, some are already compatible with a 60 m pixel, 

some calculations could be modified, and a few are lost due to the large pixel size that cannot detect 

ground objects smaller than that scale. The radiance of a 60 m pixel equals the mean of radiance of 1 m 

pixels within a 60 m cell so this summary statistic exists but stdev cannot be calculated without the high 

resolution data. Mean and stdev of the first derivative of reflectance is lost but the first derivative of mean 

reflectance could be calculated as an alternative feature (but these two are not equal). For this research, 
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the normalized vegetation indices and triangle metrics are calculated on the spatial mean (the entire 20 m 

x 20 m ground plot) of reflectance and are applicable to larger resolution instruments. Finally, 

endmember analysis techniques (Roberts et al., 1998) could be applied to calculate “fraction of” metrics 

(like fraction of vegetation) but actual vegetation spectra cannot be separated for use in feature 

calculations. About half of the splitting features used early in the decision tree are not possible with the 

coarse pixel size. These might be easily replaced by other features that split the data in the same manner 

as the features used. Effectively, the coarse resolution of spaceborne hyperspectral systems makes it more 

difficult to analyze the data as an assemblage of points (depending on how well endmember analysis 

works), but does not prevent the use of decision trees to map vegetation communities. 

 

Commercial imaging satellites can collect high spatial resolution data but at a few wide spectral 

bands. WorldView-2 has 8 multispectral bands covering 400-1040 nm with a nadir pixel ground sample 

distance of 1.85 m and pan-sharpened products can be generated at 0.5 m (DigitalGlobe, 2015a). 

WorldView-3 has increased spectral coverage by including the same 8 bands as WorldView-2 and adding 

8 additional bands in the shortwave-infrared (SWIR) covering 1195-2365 nm (DigitalGlobe, 2015a). The 

multispectral bands have a ground resolution of 1.24 m at nadir and the SWIR bands have a resolution of 

3.7 m. With these instruments, the spectral bandwidth is greater than 30 nm which is significantly wider 

than the NEON imaging spectrometer. A series of input features could be generated taking advantage of 

the high spatial resolution pixels at the 20 m x 20 m ground plot scale, albeit using fewer spectral bands 

(8 or 16 instead of 32). The accuracy of classification models derived from WorldView data cannot be 

assumed as the wider band widths may reduce the effectiveness of certain spectral bands to discriminate 

the spectral differences between vegetation communities. 
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The NEON AOP high spatial resolution airborne lidar collects approximately 3.82 points per 

meter2 at a nominal flight altitude with a 0.8 m spot on a 0.5 m point spacing. This comes out to 1528 

return laser pulses that are analyzed as part of a 20 m x 20 m ground plot. In the case of spaceborne lidar 

instruments, the divergence angle creates a 25 m (ex: GEDI) or larger spot. Assuming the ability to save 

full waveform data with a fine vertical resolution (say 1 m bins), the returned laser energy from all ground 

objects located within the spot is grouped together into a single return waveform. Any spatially explicit 

information about where the return energy came from is lost. Another issue is that the waveform shape 

will be smeared out vertically if any terrain exists or the data are collected at an off-nadir angle. This will 

cause return energy from bare-Earth and ground vegetation or shrubs to blend together and making those 

difficult to detect as individual structural layers. 

 

In terms of the lidar feature categories, calculations could be modified to analyze the single return 

waveform: summary statistics can be calculated on waveform energy directly (for example, stdev of 

ground could be the full-width at half maximum of the potion of the waveform identified as ground 

energy); point classification can be performed based on analyzing the fraction of waveform energy at 

various heights; percentile height, percentile height range, percentile height range fraction, and 

normalized height difference index can be performed based on analyzing the fraction of waveform energy 

at versus height; and point distribution calculations could be modified to be applied to the waveform 

vertical energy distribution. 

 

One issue is that the spaceborne lidar data cannot be evaluated to describe the top of the surface 

(the first returns in the discrete lidar data) since the waveform energy is not known in a spatially explicit 

manner. Another issue is that a high spatial resolution bare-Earth terrain map cannot be generated. Slope 

could be calculated at a more coarse resolution but the calculation of the variability of the canopy height 
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model at high resolution and calculation of surface roughness (such as rugosity) are not possible. A final 

issue is that spaceborne lidar instruments typically cannot maintain a contiguous point spacing on the 

ground leaving large gaps on the Earth’s surface where vegetation structure isn’t measured resulting in 

maps that either have gaps or require interpolation. A few of the splitting features used early in the 

decision tree are not possible with the coarse spot size such as std1st, p951st, and FracGroundCHM. 

These might be easily replaced by other features that split the data in the same manner as the features 

used. Effectively, the coarse resolution of spaceborne lidar systems makes it more difficult to analyze the 

data as an assemblage of points, but does not prevent the use of decision trees to map vegetation 

communities. 

 

Future Work 

 

The methods utilized in this research achieve a 91.5% classification accuracy for all k-folds 

training points, a 77.9% accuracy for all k-folds validation points, and 66% accuracy for all of the 

independent ground validation points. A 90% classification accuracy is achieved for Sandhill training 

points and a 67% accuracy for Sandhill independent ground validation points. While these results are 

promising, more could be done to improve the overall classification accuracy and reduce uncertainty in 

the output vegetation classes. During the course of the research, many ideas were sparked to improve or 

extend the methods used and some advanced concepts were conceived that will require further research 

and development. Future research tasks cover the following themes: improvements to current 

methodology (improved classification algorithm training and validation and new or improved features); 

investigation of scale; extendibility (extendibility to other sites and extendibility to space remote sensing 

missions); concept of assemblages of pixels or points; alternative classification techniques; advanced 
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analysis (vegetation diversity models and similarity/dissimilarity analysis); tool development; direct 

remote sensing of vegetation diversity; and process studies and long-term change. 

 

Improved classification algorithm training and validation: 

 Get the updated vegetation GIS layers from Ordway-Swisher Biological Station and double check 

that training points are labeled with the correct vegetation community 

 Identify and fix any errors in ground training or validation coordinates 

 Use more training points and make sure to adequately sample burn areas (especially in the 

Sandhill vegetation community) 

 Acquire more independent ground truth validation points, preferably from the NEON vegetation 

structure ground plots that will have canopy species lists and abundances species to determine the 

dominant species with respect to vegetation community 

 

New or improved data features: 

 Perform a more detailed study to quantitatively determine the optimum number and wavelength 

of spectral bands needed to capture the spectral shape of the ground targets of interest 

 Generate new features that describe or characterize the unique spectral shapes and curvatures of 

endmembers or vegetation communities 

 Revisit the endmember analysis on hyperspectral pixels. What are the most important high level 

classes (sand, shadow, water, veg, etc.)? 

 Calculate normalized difference indices on the 1m hyperspectral pixels, then calculate plot 

summary statistics 
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 Derive chemical maps from the hyperspectral data and use to calculate new input features (for 

example: chlorophyll, nitrogen, effective water thickness, lignin, cellulose, etc.) 

 Apply a Fourier Transform to the lidar canopy height model data to see if there is a detectable 

spatial frequency in the case of Pine Plantations with regularly spaced trees 

 Clumping index using range to 1st return (M. van Leeuwen & J. van Aardt, personal 

communication, August 27, 2014) 

 Use lidar intensity values 

 Conduct a future site survey using multi-wavelength lidar systems 

 Investigate the misclassified cases of similar vegetation communities. Look to see if there are 

differences in the data that could be captured with new features (for instance Sandhill versus Pine 

Plantation) 

 Perform data fusion earlier, for instance using lidar data to identify categories of vegetation in the 

hyperspectral data and then calculate features on those pixels separately (example: canopy 

vegetation versus  ground vegetation) 

 

Investigation of scale: 

 More testing of spatial scale. Repeat classification with 5 m, 10 m, 30 m, 40 m, and 60 m ground 

plots to see if results improve 

 Analysis could be strengthened with similarity/dissimilarity tools described in the advanced 

analysis section below 

 

Extendibility to other sites: 

 Validate current algorithm in other portions of Florida with Sandhill communities 
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 Include data from other sites with different FNAI vegetation communities to train the 

classification tree to identify more FNAI classes 

 Generate classification trees for other regions of the U.S. using the current input features but with 

region specific vegetation classes 

 Develop an analysis capability that could determine the validity of the current output classes of 

the classification tree on new data (i.e. the analysis would show if the remote sensing data at a 

new location was representative of any of the training data, and if not, it would produce a low 

certainty quality flag). This could be strengthened with similarity/dissimilarity tools described in 

the advanced analysis section below 

 

Extendibility to space remote sensing missions: 

 Run current classification tree using appropriate spatial scales and the input features that could be 

calculated on data from current or near-future space remote sensing missions 

 Investigate endmember analysis and spectral unmixing techniques 

 

Concept of assemblages of pixels or points: 

 Refine the concept of assemblages of remote sensing data pixels or points 

 Investigate the best way to use the collection of 1 m pixels in a 20 m x 20 m plot scale 

 What metrics should come out of this?  

 Cluster pixels into endmembers. Analyze distributions of the endmembers to relate to vegetation 

communities 
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 Use histogram bins of a parameter (such as reflectance, normalized difference indices, 

chlorophyll levels, or other chemical traits) and/or percentile metrics (ex. 50th percentile of 

chlorophyll) 

 

Alternative classification techniques: 

 Investigate hierarchical classification techniques 

 Try other machine learning classification algorithms: random forests, support vector machines, 

neural networks, etc. 

 Incorporate GIS analysis techniques for contextual analysis (ex: distance from lake as a feature 

layer) 

 Incorporate object based image analysis techniques for contextual analysis (ex: compare data to 

spatial neighbors and develop rules to modify the output class under different circumstances) 

 

Vegetation diversity models: 

 Apply biodiversity theory to remote sensing data pixel diversity 

 Develop a remote sensing pixel diversity index (spectral and structural)  

 Investigate spatial heterogeneity and relate to a remote sensing diversity index 

 Characterize the intra- and inter-specific diversity in the remote sensing data for different 

vegetation communities 

 Build a regression model of variability in remote sensing vegetation parameters vs ground truth 

data of species richness 
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Similarity/dissimilarity analysis: 

 Investigate similarity/dissimilarity calculations 

 Investigate spectral and structural data clustering 

 For each input feature layer, look at the inter- and intraspecific variability across FNAI 

communities. Identify features that show the most promise for separating data 

 Investigate biotic similarity (Gotelli & Chao, 2013) as an alternative classification technique (ex. 

Horn overlap (Horn, 1966) or Morisita-Horn (Morisita, 1959) similarity measure) 

 

Tool development: 

 Develop a tool for rapid assessment of biodiversity  

 Improve species richness map based on spectral variability hypothesis (Palmer et al., 2000; 

Palmer et al., 2002) and diversity regression models 

 Investigate other local scale biodiversity indicators (besides species richness) such as ecosystem 

extent, fragmentation, condition, etc. 

 Develop tools to inform ground sampling strategy 

 Develop tools to identify areas of interest which could be unusual habitats, such as places where 

biodiversity is higher or where different or rare species may be found 

 

Direct remote sensing of vegetation diversity: 

 Identify which species dominate the canopies or visible portions of the ground 

 Investigate remote sensing algorithms to classify and map individual canopy species 

 Use data from TOS structure plots as ground validation of species maps 
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 Examine the data closer to identify differences between similar species and communities (can 

remote sensing data observe spectral and structural differences between similar species such as 

sand live oak vs live oak or a longleaf pine vs loblolly or slash pine?) 

 

Process studies and long-term change: 

 Investigate the relationship between ecosystem structure and functioning and diversity. Combine 

NEON AOP with TOS data for advanced analysis 

 Monitor changes in vegetation community maps with time as NEON AOP re-flies sites (the 2014 

data serves as a baseline for long-term change) 

 Spatially map land use and land cover and analyze LULC change with time 

 Link land change theory to spaced based imagery for regional or continental analysis 
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APPENDIX 

 

Appendix A.1 Full List of Hyperspectral Data Features 

 

Metric Category Variable Description 

Summary 

Statistics 

muR468, muR503, muR528, muR553, muR578, muR603, 

muR643, muR668, muR708, muR743, muR783, muR879, 

muR994, muR1064, muR1104, muR1199, muR1249, 

muR1284, muR1314, muR1515, muR1545, muR1585, 

muR1615, muR1650, muR1685, muR1730, muR2036, 

muR2106, muR2161, muR2216, muR2281, muR2326 

Mean reflectance of 

all pixels for each 

chosen wavelength 

Summary 

Statistics 

stdR468, stdR503, stdR528, stdR553, stdR578, stdR603, 

stdR643, stdR668, stdR708, stdR743, stdR783, stdR879, 

stdR994, stdR1064, stdR1104, stdR1199, stdR1249, 

stdR1284, stdR1314, stdR1515, stdR1545, stdR1585, 

stdR1615, stdR1650, stdR1685, stdR1730, stdR2036, 

stdR2106, stdR2161, stdR2216, stdR2281, stdR2326 

Standard deviation of 

reflectance of all 

pixels for each 

chosen wavelength 

Summary 

Statistics 

muDeriv468, muDeriv503, muDeriv528, muDeriv553, 

muDeriv578, muDeriv603, muDeriv643, muDeriv668, 

muDeriv708, muDeriv743, muDeriv783, muDeriv879, 

muDeriv994, muDeriv1064, muDeriv1104, muDeriv1199, 

muDeriv1249, muDeriv1284, muDeriv1314, muDeriv1515, 

muDeriv1545, muDeriv1585, muDeriv1615, muDeriv1650, 

muDeriv1685, muDeriv1730, muDeriv2036, muDeriv2106, 

muDeriv2161, muDeriv2216, muDeriv2281, muDeriv2326 

Mean of the first 

derivative of 

reflectance of all 

pixels for each 

chosen wavelength 

Summary 

Statistics 

stdDeriv468, stdDeriv503, stdDeriv528, stdDeriv553, 

stdDeriv578, stdDeriv603, stdDeriv643, stdDeriv668, 

stdDeriv708, stdDeriv743, stdDeriv783, stdDeriv879, 

stdDeriv994, stdDeriv1064, stdDeriv1104, stdDeriv1199, 

stdDeriv1249, stdDeriv1284, stdDeriv1314, stdDeriv1515, 

stdDeriv1545, stdDeriv1585, stdDeriv1615, stdDeriv1650, 

stdDeriv1685, stdDeriv1730, stdDeriv2036, stdDeriv2106, 

stdDeriv2161, stdDeriv2216, stdDeriv2281, stdDeriv2326 

Standard deviation of 

the first derivative of 

reflectance of all 

pixels for each 

chosen wavelength 

Summary 

Statistics 

muVegR468, muVegR503, muVegR528, muVegR553, 

muVegR578, muVegR603, muVegR643, muVegR668, 

muVegR708, muVegR743, muVegR783, muVegR879, 

muVegR994, muVegR1064, muVegR1104, muVegR1199, 

muVegR1249, muVegR1284, muVegR1314, 

muVegR1515, muVegR1545, muVegR1585, 

muVegR1615, muVegR1650, muVegR1685, 

muVegR1730, muVegR2036, muVegR2106, 

muVegR2161, muVegR2216, muVegR2281, muVegR2326 

Mean reflectance of 

vegetation pixels for 

each chosen 

wavelength 

Summary 

Statistics 

stdVegR468, stdVegR503, stdVegR528, stdVegR553, 

stdVegR578, stdVegR603, stdVegR643, stdVegR668, 

stdVegR708, stdVegR743, stdVegR783, stdVegR879, 

Standard deviation of 

reflectance of 

vegetation pixels for 



264 
 

stdVegR994, stdVegR1064, stdVegR1104, stdVegR1199, 

stdVegR1249, stdVegR1284, stdVegR1314, stdVegR1515, 

stdVegR1545, stdVegR1585, stdVegR1615, stdVegR1650, 

stdVegR1685, stdVegR1730, stdVegR2036, stdVegR2106, 

stdVegR2161, stdVegR2216, stdVegR2281, stdVegR2326 

each chosen 

wavelength 

Summary 

Statistics 

muVegDeriv468, muVegDeriv503, muVegDeriv528, 

muVegDeriv553, muVegDeriv578, muVegDeriv603, 

muVegDeriv643, muVegDeriv668, muVegDeriv708, 

muVegDeriv743, muVegDeriv783, muVegDeriv879, 

muVegDeriv994, muVegDeriv1064, muVegDeriv1104, 

muVegDeriv1199, muVegDeriv1249, muVegDeriv1284, 

muVegDeriv1314, muVegDeriv1515, muVegDeriv1545, 

muVegDeriv1585, muVegDeriv1615, muVegDeriv1650, 

muVegDeriv1685, muVegDeriv1730, muVegDeriv2036, 

muVegDeriv2106, muVegDeriv2161, muVegDeriv2216, 

muVegDeriv2281, muVegDeriv2326 

Mean of the first 

derivative of 

reflectance of 

vegetation pixels for 

each chosen 

wavelength 

Summary 

Statistics 

stdVegDeriv468, stdVegDeriv503, stdVegDeriv528, 

stdVegDeriv553, stdVegDeriv578, stdVegDeriv603, 

stdVegDeriv643, stdVegDeriv668, stdVegDeriv708, 

stdVegDeriv743, stdVegDeriv783, stdVegDeriv879, 

stdVegDeriv994, stdVegDeriv1064, stdVegDeriv1104, 

stdVegDeriv1199, stdVegDeriv1249, stdVegDeriv1284, 

stdVegDeriv1314, stdVegDeriv1515, stdVegDeriv1545, 

stdVegDeriv1585, stdVegDeriv1615, stdVegDeriv1650, 

stdVegDeriv1685, stdVegDeriv1730, stdVegDeriv2036, 

stdVegDeriv2106, stdVegDeriv2161, stdVegDeriv2216, 

stdVegDeriv2281, stdVegDeriv2326 

Standard deviation of 

the first derivative of 

reflectance of 

vegetation pixels for 

each chosen 

wavelength 

Normalized 

Difference 

Indices (NDIs) 

NDI468i503, NDI468i528, NDI468i553, NDI468i578, 

NDI468i603, NDI468i643, NDI468i668, NDI468i708, 

NDI468i743, NDI468i783, NDI468i879, NDI468i994, 

NDI468i1064, NDI468i1104, NDI468i1199, NDI468i1249, 

NDI468i1284, NDI468i1314, NDI468i1515, NDI468i1545, 

NDI468i1585, NDI468i1615, NDI468i1650, NDI468i1685, 

NDI468i1730, NDI468i2036, NDI468i2106, NDI468i2161, 

NDI468i2216, NDI468i2281, NDI468i2326, NDI503i528, 

NDI503i553, NDI503i578, NDI503i603, NDI503i643, 

NDI503i668, NDI503i708, NDI503i743, NDI503i783, 

NDI503i879, NDI503i994, NDI503i1064, NDI503i1104, 

NDI503i1199, NDI503i1249, NDI503i1284, NDI503i1314, 

NDI503i1515, NDI503i1545, NDI503i1585, NDI503i1615, 

NDI503i1650, NDI503i1685, NDI503i1730, NDI503i2036, 

NDI503i2106, NDI503i2161, NDI503i2216, NDI503i2281, 

NDI503i2326, NDI528i553, NDI528i578, NDI528i603, 

NDI528i643, NDI528i668, NDI528i708, NDI528i743, 

NDI528i783, NDI528i879, NDI528i994, NDI528i1064, 

NDI528i1104, NDI528i1199, NDI528i1249, NDI528i1284, 

NDI528i1314, NDI528i1515, NDI528i1545, NDI528i1585, 

NDI528i1615, NDI528i1650, NDI528i1685, NDI528i1730, 

NDI528i2036, NDI528i2106, NDI528i2161, NDI528i2216, 

NDI528i2281, NDI528i2326, NDI553i578, NDI553i603, 

NDI553i643, NDI553i668, NDI553i708, NDI553i743, 

Normalized 

difference index 

between two chosen 

wavelengths for all 

pixels 
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NDI553i783, NDI553i879, NDI553i994, NDI553i1064, 

NDI553i1104, NDI553i1199, NDI553i1249, NDI553i1284, 

NDI553i1314, NDI553i1515, NDI553i1545, NDI553i1585, 

NDI553i1615, NDI553i1650, NDI553i1685, NDI553i1730, 

NDI553i2036, NDI553i2106, NDI553i2161, NDI553i2216, 

NDI553i2281, NDI553i2326, NDI578i603, NDI578i643, 

NDI578i668, NDI578i708, NDI578i743, NDI578i783, 

NDI578i879, NDI578i994, NDI578i1064, NDI578i1104, 

NDI578i1199, NDI578i1249, NDI578i1284, NDI578i1314, 

NDI578i1515, NDI578i1545, NDI578i1585, NDI578i1615, 

NDI578i1650, NDI578i1685, NDI578i1730, NDI578i2036, 

NDI578i2106, NDI578i2161, NDI578i2216, NDI578i2281, 

NDI578i2326, NDI603i643, NDI603i668, NDI603i708, 

NDI603i743, NDI603i783, NDI603i879, NDI603i994, 

NDI603i1064, NDI603i1104, NDI603i1199, NDI603i1249, 

NDI603i1284, NDI603i1314, NDI603i1515, NDI603i1545, 

NDI603i1585, NDI603i1615, NDI603i1650, NDI603i1685, 

NDI603i1730, NDI603i2036, NDI603i2106, NDI603i2161, 

NDI603i2216, NDI603i2281, NDI603i2326, NDI643i668, 

NDI643i708, NDI643i743, NDI643i783, NDI643i879, 

NDI643i994, NDI643i1064, NDI643i1104, NDI643i1199, 

NDI643i1249, NDI643i1284, NDI643i1314, NDI643i1515, 

NDI643i1545, NDI643i1585, NDI643i1615, NDI643i1650, 

NDI643i1685, NDI643i1730, NDI643i2036, NDI643i2106, 

NDI643i2161, NDI643i2216, NDI643i2281, NDI643i2326, 

NDI668i708, NDI668i743, NDI668i783, NDI668i879, 

NDI668i994, NDI668i1064, NDI668i1104, NDI668i1199, 

NDI668i1249, NDI668i1284, NDI668i1314, NDI668i1515, 

NDI668i1545, NDI668i1585, NDI668i1615, NDI668i1650, 

NDI668i1685, NDI668i1730, NDI668i2036, NDI668i2106, 

NDI668i2161, NDI668i2216, NDI668i2281, NDI668i2326, 

NDI708i743, NDI708i783, NDI708i879, NDI708i994, 

NDI708i1064, NDI708i1104, NDI708i1199, NDI708i1249, 

NDI708i1284, NDI708i1314, NDI708i1515, NDI708i1545, 

NDI708i1585, NDI708i1615, NDI708i1650, NDI708i1685, 

NDI708i1730, NDI708i2036, NDI708i2106, NDI708i2161, 

NDI708i2216, NDI708i2281, NDI708i2326, NDI743i783, 

NDI743i879, NDI743i994, NDI743i1064, NDI743i1104, 

NDI743i1199, NDI743i1249, NDI743i1284, NDI743i1314, 

NDI743i1515, NDI743i1545, NDI743i1585, NDI743i1615, 

NDI743i1650, NDI743i1685, NDI743i1730, NDI743i2036, 

NDI743i2106, NDI743i2161, NDI743i2216, NDI743i2281, 

NDI743i2326, NDI783i879, NDI783i994, NDI783i1064, 

NDI783i1104, NDI783i1199, NDI783i1249, NDI783i1284, 

NDI783i1314, NDI783i1515, NDI783i1545, NDI783i1585, 

NDI783i1615, NDI783i1650, NDI783i1685, NDI783i1730, 

NDI783i2036, NDI783i2106, NDI783i2161, NDI783i2216, 

NDI783i2281, NDI783i2326, NDI879i994, NDI879i1064, 

NDI879i1104, NDI879i1199, NDI879i1249, NDI879i1284, 

NDI879i1314, NDI879i1515, NDI879i1545, NDI879i1585, 

NDI879i1615, NDI879i1650, NDI879i1685, NDI879i1730, 
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NDI879i2036, NDI879i2106, NDI879i2161, NDI879i2216, 

NDI879i2281, NDI879i2326, NDI994i1064, NDI994i1104, 

NDI994i1199, NDI994i1249, NDI994i1284, NDI994i1314, 

NDI994i1515, NDI994i1545, NDI994i1585, NDI994i1615, 

NDI994i1650, NDI994i1685, NDI994i1730, NDI994i2036, 

NDI994i2106, NDI994i2161, NDI994i2216, NDI994i2281, 

NDI994i2326, NDI1064i1104, NDI1064i1199, 

NDI1064i1249, NDI1064i1284, NDI1064i1314, 

NDI1064i1515, NDI1064i1545, NDI1064i1585, 

NDI1064i1615, NDI1064i1650, NDI1064i1685, 

NDI1064i1730, NDI1064i2036, NDI1064i2106, 

NDI1064i2161, NDI1064i2216, NDI1064i2281, 

NDI1064i2326, NDI1104i1199, NDI1104i1249, 

NDI1104i1284, NDI1104i1314, NDI1104i1515, 

NDI1104i1545, NDI1104i1585, NDI1104i1615, 

NDI1104i1650, NDI1104i1685, NDI1104i1730, 

NDI1104i2036, NDI1104i2106, NDI1104i2161, 

NDI1104i2216, NDI1104i2281, NDI1104i2326, 

NDI1199i1249, NDI1199i1284, NDI1199i1314, 

NDI1199i1515, NDI1199i1545, NDI1199i1585, 

NDI1199i1615, NDI1199i1650, NDI1199i1685, 

NDI1199i1730, NDI1199i2036, NDI1199i2106, 

NDI1199i2161, NDI1199i2216, NDI1199i2281, 

NDI1199i2326, NDI1249i1284, NDI1249i1314, 

NDI1249i1515, NDI1249i1545, NDI1249i1585, 

NDI1249i1615, NDI1249i1650, NDI1249i1685, 

NDI1249i1730, NDI1249i2036, NDI1249i2106, 

NDI1249i2161, NDI1249i2216, NDI1249i2281, 

NDI1249i2326, NDI1284i1314, NDI1284i1515, 

NDI1284i1545, NDI1284i1585, NDI1284i1615, 

NDI1284i1650, NDI1284i1685, NDI1284i1730, 

NDI1284i2036, NDI1284i2106, NDI1284i2161, 

NDI1284i2216, NDI1284i2281, NDI1284i2326, 

NDI1314i1515, NDI1314i1545, NDI1314i1585, 

NDI1314i1615, NDI1314i1650, NDI1314i1685, 

NDI1314i1730, NDI1314i2036, NDI1314i2106, 

NDI1314i2161, NDI1314i2216, NDI1314i2281, 

NDI1314i2326, NDI1515i1545, NDI1515i1585, 

NDI1515i1615, NDI1515i1650, NDI1515i1685, 

NDI1515i1730, NDI1515i2036, NDI1515i2106, 

NDI1515i2161, NDI1515i2216, NDI1515i2281, 

NDI1515i2326, NDI1545i1585, NDI1545i1615, 

NDI1545i1650, NDI1545i1685, NDI1545i1730, 

NDI1545i2036, NDI1545i2106, NDI1545i2161, 

NDI1545i2216, NDI1545i2281, NDI1545i2326, 

NDI1585i1615, NDI1585i1650, NDI1585i1685, 

NDI1585i1730, NDI1585i2036, NDI1585i2106, 

NDI1585i2161, NDI1585i2216, NDI1585i2281, 

NDI1585i2326, NDI1615i1650, NDI1615i1685, 

NDI1615i1730, NDI1615i2036, NDI1615i2106, 

NDI1615i2161, NDI1615i2216, NDI1615i2281, 
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NDI1615i2326, NDI1650i1685, NDI1650i1730, 

NDI1650i2036, NDI1650i2106, NDI1650i2161, 

NDI1650i2216, NDI1650i2281, NDI1650i2326, 

NDI1685i1730, NDI1685i2036, NDI1685i2106, 

NDI1685i2161, NDI1685i2216, NDI1685i2281, 

NDI1685i2326, NDI1730i2036, NDI1730i2106, 

NDI1730i2161, NDI1730i2216, NDI1730i2281, 

NDI1730i2326, NDI2036i2106, NDI2036i2161, 

NDI2036i2216, NDI2036i2281, NDI2036i2326, 

NDI2106i2161, NDI2106i2216, NDI2106i2281, 

NDI2106i2326, NDI2161i2216, NDI2161i2281, 

NDI2161i2326, NDI2216i2281, NDI2216i2326, 

NDI2281i2326 

Normalized 

Difference 

Indices (NDIs) 

vegNDI468i503, vegNDI468i528, vegNDI468i553, 

vegNDI468i578, vegNDI468i603, vegNDI468i643, 

vegNDI468i668, vegNDI468i708, vegNDI468i743, 

vegNDI468i783, vegNDI468i879, vegNDI468i994, 

vegNDI468i1064, vegNDI468i1104, vegNDI468i1199, 

vegNDI468i1249, vegNDI468i1284, vegNDI468i1314, 

vegNDI468i1515, vegNDI468i1545, vegNDI468i1585, 

vegNDI468i1615, vegNDI468i1650, vegNDI468i1685, 

vegNDI468i1730, vegNDI468i2036, vegNDI468i2106, 

vegNDI468i2161, vegNDI468i2216, vegNDI468i2281, 

vegNDI468i2326, vegNDI503i528, vegNDI503i553, 

vegNDI503i578, vegNDI503i603, vegNDI503i643, 

vegNDI503i668, vegNDI503i708, vegNDI503i743, 

vegNDI503i783, vegNDI503i879, vegNDI503i994, 

vegNDI503i1064, vegNDI503i1104, vegNDI503i1199, 

vegNDI503i1249, vegNDI503i1284, vegNDI503i1314, 

vegNDI503i1515, vegNDI503i1545, vegNDI503i1585, 

vegNDI503i1615, vegNDI503i1650, vegNDI503i1685, 

vegNDI503i1730, vegNDI503i2036, vegNDI503i2106, 

vegNDI503i2161, vegNDI503i2216, vegNDI503i2281, 

vegNDI503i2326, vegNDI528i553, vegNDI528i578, 

vegNDI528i603, vegNDI528i643, vegNDI528i668, 

vegNDI528i708, vegNDI528i743, vegNDI528i783, 

vegNDI528i879, vegNDI528i994, vegNDI528i1064, 

vegNDI528i1104, vegNDI528i1199, vegNDI528i1249, 

vegNDI528i1284, vegNDI528i1314, vegNDI528i1515, 

vegNDI528i1545, vegNDI528i1585, vegNDI528i1615, 

vegNDI528i1650, vegNDI528i1685, vegNDI528i1730, 

vegNDI528i2036, vegNDI528i2106, vegNDI528i2161, 

vegNDI528i2216, vegNDI528i2281, vegNDI528i2326, 

vegNDI553i578, vegNDI553i603, vegNDI553i643, 

vegNDI553i668, vegNDI553i708, vegNDI553i743, 

vegNDI553i783, vegNDI553i879, vegNDI553i994, 

vegNDI553i1064, vegNDI553i1104, vegNDI553i1199, 

vegNDI553i1249, vegNDI553i1284, vegNDI553i1314, 

vegNDI553i1515, vegNDI553i1545, vegNDI553i1585, 

vegNDI553i1615, vegNDI553i1650, vegNDI553i1685, 

vegNDI553i1730, vegNDI553i2036, vegNDI553i2106, 

Normalized 

difference index 

between two chosen 

wavelengths for 

vegetation pixels 
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vegNDI553i2161, vegNDI553i2216, vegNDI553i2281, 

vegNDI553i2326, vegNDI578i603, vegNDI578i643, 

vegNDI578i668, vegNDI578i708, vegNDI578i743, 

vegNDI578i783, vegNDI578i879, vegNDI578i994, 

vegNDI578i1064, vegNDI578i1104, vegNDI578i1199, 

vegNDI578i1249, vegNDI578i1284, vegNDI578i1314, 

vegNDI578i1515, vegNDI578i1545, vegNDI578i1585, 

vegNDI578i1615, vegNDI578i1650, vegNDI578i1685, 

vegNDI578i1730, vegNDI578i2036, vegNDI578i2106, 

vegNDI578i2161, vegNDI578i2216, vegNDI578i2281, 

vegNDI578i2326, vegNDI603i643, vegNDI603i668, 

vegNDI603i708, vegNDI603i743, vegNDI603i783, 

vegNDI603i879, vegNDI603i994, vegNDI603i1064, 

vegNDI603i1104, vegNDI603i1199, vegNDI603i1249, 

vegNDI603i1284, vegNDI603i1314, vegNDI603i1515, 

vegNDI603i1545, vegNDI603i1585, vegNDI603i1615, 

vegNDI603i1650, vegNDI603i1685, vegNDI603i1730, 

vegNDI603i2036, vegNDI603i2106, vegNDI603i2161, 

vegNDI603i2216, vegNDI603i2281, vegNDI603i2326, 

vegNDI643i668, vegNDI643i708, vegNDI643i743, 

vegNDI643i783, vegNDI643i879, vegNDI643i994, 

vegNDI643i1064, vegNDI643i1104, vegNDI643i1199, 

vegNDI643i1249, vegNDI643i1284, vegNDI643i1314, 

vegNDI643i1515, vegNDI643i1545, vegNDI643i1585, 

vegNDI643i1615, vegNDI643i1650, vegNDI643i1685, 

vegNDI643i1730, vegNDI643i2036, vegNDI643i2106, 

vegNDI643i2161, vegNDI643i2216, vegNDI643i2281, 

vegNDI643i2326, vegNDI668i708, vegNDI668i743, 

vegNDI668i783, vegNDI668i879, vegNDI668i994, 

vegNDI668i1064, vegNDI668i1104, vegNDI668i1199, 

vegNDI668i1249, vegNDI668i1284, vegNDI668i1314, 

vegNDI668i1515, vegNDI668i1545, vegNDI668i1585, 

vegNDI668i1615, vegNDI668i1650, vegNDI668i1685, 

vegNDI668i1730, vegNDI668i2036, vegNDI668i2106, 

vegNDI668i2161, vegNDI668i2216, vegNDI668i2281, 

vegNDI668i2326, vegNDI708i743, vegNDI708i783, 

vegNDI708i879, vegNDI708i994, vegNDI708i1064, 

vegNDI708i1104, vegNDI708i1199, vegNDI708i1249, 

vegNDI708i1284, vegNDI708i1314, vegNDI708i1515, 

vegNDI708i1545, vegNDI708i1585, vegNDI708i1615, 

vegNDI708i1650, vegNDI708i1685, vegNDI708i1730, 

vegNDI708i2036, vegNDI708i2106, vegNDI708i2161, 

vegNDI708i2216, vegNDI708i2281, vegNDI708i2326, 

vegNDI743i783, vegNDI743i879, vegNDI743i994, 

vegNDI743i1064, vegNDI743i1104, vegNDI743i1199, 

vegNDI743i1249, vegNDI743i1284, vegNDI743i1314, 

vegNDI743i1515, vegNDI743i1545, vegNDI743i1585, 

vegNDI743i1615, vegNDI743i1650, vegNDI743i1685, 

vegNDI743i1730, vegNDI743i2036, vegNDI743i2106, 

vegNDI743i2161, vegNDI743i2216, vegNDI743i2281, 

vegNDI743i2326, vegNDI783i879, vegNDI783i994, 
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vegNDI783i1064, vegNDI783i1104, vegNDI783i1199, 

vegNDI783i1249, vegNDI783i1284, vegNDI783i1314, 

vegNDI783i1515, vegNDI783i1545, vegNDI783i1585, 

vegNDI783i1615, vegNDI783i1650, vegNDI783i1685, 

vegNDI783i1730, vegNDI783i2036, vegNDI783i2106, 

vegNDI783i2161, vegNDI783i2216, vegNDI783i2281, 

vegNDI783i2326, vegNDI879i994, vegNDI879i1064, 

vegNDI879i1104, vegNDI879i1199, vegNDI879i1249, 

vegNDI879i1284, vegNDI879i1314, vegNDI879i1515, 

vegNDI879i1545, vegNDI879i1585, vegNDI879i1615, 

vegNDI879i1650, vegNDI879i1685, vegNDI879i1730, 

vegNDI879i2036, vegNDI879i2106, vegNDI879i2161, 

vegNDI879i2216, vegNDI879i2281, vegNDI879i2326, 

vegNDI994i1064, vegNDI994i1104, vegNDI994i1199, 

vegNDI994i1249, vegNDI994i1284, vegNDI994i1314, 

vegNDI994i1515, vegNDI994i1545, vegNDI994i1585, 

vegNDI994i1615, vegNDI994i1650, vegNDI994i1685, 

vegNDI994i1730, vegNDI994i2036, vegNDI994i2106, 

vegNDI994i2161, vegNDI994i2216, vegNDI994i2281, 

vegNDI994i2326, vegNDI1064i1104, vegNDI1064i1199, 

vegNDI1064i1249, vegNDI1064i1284, vegNDI1064i1314, 

vegNDI1064i1515, vegNDI1064i1545, vegNDI1064i1585, 

vegNDI1064i1615, vegNDI1064i1650, vegNDI1064i1685, 

vegNDI1064i1730, vegNDI1064i2036, vegNDI1064i2106, 

vegNDI1064i2161, vegNDI1064i2216, vegNDI1064i2281, 

vegNDI1064i2326, vegNDI1104i1199, vegNDI1104i1249, 

vegNDI1104i1284, vegNDI1104i1314, vegNDI1104i1515, 

vegNDI1104i1545, vegNDI1104i1585, vegNDI1104i1615, 

vegNDI1104i1650, vegNDI1104i1685, vegNDI1104i1730, 

vegNDI1104i2036, vegNDI1104i2106, vegNDI1104i2161, 

vegNDI1104i2216, vegNDI1104i2281, vegNDI1104i2326, 

vegNDI1199i1249, vegNDI1199i1284, vegNDI1199i1314, 

vegNDI1199i1515, vegNDI1199i1545, vegNDI1199i1585, 

vegNDI1199i1615, vegNDI1199i1650, vegNDI1199i1685, 

vegNDI1199i1730, vegNDI1199i2036, vegNDI1199i2106, 

vegNDI1199i2161, vegNDI1199i2216, vegNDI1199i2281, 

vegNDI1199i2326, vegNDI1249i1284, vegNDI1249i1314, 

vegNDI1249i1515, vegNDI1249i1545, vegNDI1249i1585, 

vegNDI1249i1615, vegNDI1249i1650, vegNDI1249i1685, 

vegNDI1249i1730, vegNDI1249i2036, vegNDI1249i2106, 

vegNDI1249i2161, vegNDI1249i2216, vegNDI1249i2281, 

vegNDI1249i2326, vegNDI1284i1314, vegNDI1284i1515, 

vegNDI1284i1545, vegNDI1284i1585, vegNDI1284i1615, 

vegNDI1284i1650, vegNDI1284i1685, vegNDI1284i1730, 

vegNDI1284i2036, vegNDI1284i2106, vegNDI1284i2161, 

vegNDI1284i2216, vegNDI1284i2281, vegNDI1284i2326, 

vegNDI1314i1515, vegNDI1314i1545, vegNDI1314i1585, 

vegNDI1314i1615, vegNDI1314i1650, vegNDI1314i1685, 

vegNDI1314i1730, vegNDI1314i2036, vegNDI1314i2106, 

vegNDI1314i2161, vegNDI1314i2216, vegNDI1314i2281, 

vegNDI1314i2326, vegNDI1515i1545, vegNDI1515i1585, 
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vegNDI1515i1615, vegNDI1515i1650, vegNDI1515i1685, 

vegNDI1515i1730, vegNDI1515i2036, vegNDI1515i2106, 

vegNDI1515i2161, vegNDI1515i2216, vegNDI1515i2281, 

vegNDI1515i2326, vegNDI1545i1585, vegNDI1545i1615, 

vegNDI1545i1650, vegNDI1545i1685, vegNDI1545i1730, 

vegNDI1545i2036, vegNDI1545i2106, vegNDI1545i2161, 

vegNDI1545i2216, vegNDI1545i2281, vegNDI1545i2326, 

vegNDI1585i1615, vegNDI1585i1650, vegNDI1585i1685, 

vegNDI1585i1730, vegNDI1585i2036, vegNDI1585i2106, 

vegNDI1585i2161, vegNDI1585i2216, vegNDI1585i2281, 

vegNDI1585i2326, vegNDI1615i1650, vegNDI1615i1685, 

vegNDI1615i1730, vegNDI1615i2036, vegNDI1615i2106, 

vegNDI1615i2161, vegNDI1615i2216, vegNDI1615i2281, 

vegNDI1615i2326, vegNDI1650i1685, vegNDI1650i1730, 

vegNDI1650i2036, vegNDI1650i2106, vegNDI1650i2161, 

vegNDI1650i2216, vegNDI1650i2281, vegNDI1650i2326, 

vegNDI1685i1730, vegNDI1685i2036, vegNDI1685i2106, 

vegNDI1685i2161, vegNDI1685i2216, vegNDI1685i2281, 

vegNDI1685i2326, vegNDI1730i2036, vegNDI1730i2106, 

vegNDI1730i2161, vegNDI1730i2216, vegNDI1730i2281, 

vegNDI1730i2326, vegNDI2036i2106, vegNDI2036i2161, 

vegNDI2036i2216, vegNDI2036i2281, vegNDI2036i2326, 

vegNDI2106i2161, vegNDI2106i2216, vegNDI2106i2281, 

vegNDI2106i2326, vegNDI2161i2216, vegNDI2161i2281, 

vegNDI2161i2326, vegNDI2216i2281, vegNDI2216i2326, 

vegNDI2281i2326 

Triangle Metrics GreenPeak, GreenPeakRot, RedDepth, RedDepthRot Three band triangle 

metrics for all pixels 

Triangle Metrics vegGreenPeak, vegGreenPeakRot, vegRedDepth, 

vegRedDepthRot 

Three band triangle 

metrics for vegetation 

pixels 

Endmember 

Analysis 

FracSandRoad, FracLakeFringe, FracWaterShallow, 

FracWaterDark, FracWaterGlint, FracWaterDarkVeg, 

FracWaterMedVeg, FracWaterLightVeg, 

FracWaterWhiteVeg, FracShadowGround, 

FracShadowCanopy, FracSandhillVeg1, FracSandhillVeg2, 

FracSandhillGrass, FracSandhillBurnt, FracTreesBright, 

FracTreesDark, FracMixedDark, FracTreesGray, 

FracRuderalGreen, FracRuderalMixed, FracRuderalBright, 

FracMarshGreen, FracMarshPink, FracMarshLight, 

FracMarshDark, FracBurnScar 

Fraction of 

endmember pixels 
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Appendix A.2 Full List of Lidar Data Features 

 

Metric Category Variable Description 

Point Classification Fraction of ground points Fraction of ground points 

Percentile Height Ground percentile height array[0] 0 percentile height of ground points 

Percentile Height Ground percentile height array[2] 10th percentile height of ground points 

Percentile Height Ground percentile height array[5] 25th percentile height of ground points 

Percentile Height Ground percentile height array[10] 50th percentile height of ground points 

Percentile Height Ground percentile height array[15] 75th percentile height of ground points 

Percentile Height Ground percentile height array[18] 90th percentile height of ground points 

Percentile Height Ground percentile height array[20] 100th percentile height of ground points 

Percentile Height 

Range 

Ground p100 p0 range Height range between 0 and 100th 

percentile of ground points 

Percentile Height 

Range 

Ground p90 p10 range Height range between 10th and 90th 

percentile of ground points 

Percentile Height 

Range 

Ground p75 p25 range Height range between 25th and 75th 

percentile of ground points 

Percentile Height 

Range 

Ground p90 p50 range Height range between 50th and 90th 

percentile of ground points 

Percentile Height 

Range 

Ground p50 p10 range Height range between 10th and 50th 

percentile of ground points 

Percentile Height 

Range 

Ground p100 p50 range Height range between 50th and 100th 

percentile of ground points 

Percentile Height 

Range 

Ground p50 p0 range Height range between 0 and 50th 

percentile of ground points 

Interquartile Height 

Range 

Ground p100 p75 range Height range between 75th and 100th 

percentile of ground points 

Interquartile Height 

Range 

Ground p75 p50 range Height range between 50th and 75th 

percentile of ground points 

Interquartile Height 

Range 

Ground p50 p25 range Height range between 25th and 50th 

percentile of ground points 

Interquartile Height 

Range 

Ground p25 p0 range Height range between 0 and 25th 

percentile of ground points 

Percentile Height 

Range Fraction 

Ground p100 p50 fraction Fraction of ground points between 50th 

and 100th percentile 

Percentile Height 

Range Fraction 

Ground p75 p25 fraction Fraction of ground points between 25th 

and 75th percentile 

Percentile Height 

Range Fraction 

Ground p50 p0 fraction Fraction of ground points between 0 and 

50th percentile 

Interquartile Height 

Range Fraction 

Ground p100 p75 fraction Fraction of ground points between 75th 

and 100th percentile 

Interquartile Height 

Range Fraction 

Ground p75 p50 fraction Fraction of ground points between 50th 

and 75th percentile 

Interquartile Height 

Range Fraction 

Ground p50 p25 fraction Fraction of ground points between 25th 

and 50th percentile 
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Interquartile Height 

Range Fraction 

Ground p25 p0 fraction Fraction of ground points between 0 and 

25th percentile 

Normalized 

Difference Height 

Index 

Ground p90 p10 ndhi Normalized difference height index using 

10th, 50th, and 90th percentile of ground 

points 

Normalized 

Difference Height 

Index 

Ground p75 p25 ndhi Normalized difference height index using 

25th, 50th, and 75th percentile of ground 

points 

Point Distribution Ground median absolute deviation Median absolute deviation of ground 

points 

Point Distribution Ground mean absolute deviation Mean absolute deviation of ground points 

Percentile Height Canopy percentile height array[0] 0 percentile height of canopy points 

Percentile Height Canopy percentile height array[2] 10th percentile height of canopy points 

Percentile Height Canopy percentile height array[5] 25th percentile height of canopy points 

Percentile Height Canopy percentile height array[10] 50th percentile height of canopy points 

Percentile Height Canopy percentile height array[15] 75th percentile height of canopy points 

Percentile Height Canopy percentile height array[18] 90th percentile height of canopy points 

Percentile Height Canopy percentile height array[20] 100th percentile height of canopy points 

Percentile Height 

Range 

Canopy p100 p0 range Height range between 0 and 100th 

percentile of canopy points 

Percentile Height 

Range 

Canopy p90 p10 range Height range between 10th and 90th 

percentile of canopy points 

Percentile Height 

Range 

Canopy p75 p25 range Height range between 25th and 75th 

percentile of canopy points 

Percentile Height 

Range 

Canopy p90 p50 range Height range between 50th and 90th 

percentile of canopy points 

Percentile Height 

Range 

Canopy p50 p10 range Height range between 10th and 50th 

percentile of canopy points 

Percentile Height 

Range 

Canopy p100 p50 range Height range between 50th and 100th 

percentile of canopy points 

Percentile Height 

Range 

Canopy p50 p0 range Height range between 0 and 50th 

percentile of canopy points 

Interquartile Height 

Range 

Canopy p100 p75 range Height range between 75th and 100th 

percentile of canopy points 

Interquartile Height 

Range 

Canopy p75 p50 range Height range between 50th and 75th 

percentile of canopy points 

Interquartile Height 

Range 

Canopy p50 p25 range Height range between 25th and 50th 

percentile of canopy points 

Interquartile Height 

Range 

Canopy p25 p0 range Height range between 0 and 25th 

percentile of canopy points 

Percentile Height 

Range Fraction 

Canopy p100 p50 fraction Fraction of canopy points between 50th 

and 100th percentile 

Percentile Height 

Range Fraction 

Canopy p75 p25 fraction Fraction of canopy points between 25th 

and 75th percentile 

Percentile Height 

Range Fraction 

Canopy p50 p0 fraction Fraction of canopy points between 0 and 

50th percentile 

Interquartile Height 

Range Fraction 

Canopy p100 p75 fraction Fraction of canopy points between 75th 

and 100th percentile 

Interquartile Height 

Range Fraction 

Canopy p75 p50 fraction Fraction of canopy points between 50th 

and 75th percentile 
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Interquartile Height 

Range Fraction 

Canopy p50 p25 fraction Fraction of canopy points between 25th 

and 50th percentile 

Interquartile Height 

Range Fraction 

Canopy p25 p0 fraction Fraction of canopy points between 0 and 

25th percentile 

Normalized 

Difference Height 

Index 

Canopy p90 p10 ndhi Normalized difference height index using 

10th, 50th, and 90th percentile of canopy 

points 

Normalized 

Difference Height 

Index 

Canopy p75 p25 ndhi Normalized difference height index using 

25th, 50th, and 75th percentile of canopy 

points 

Summary Statistics µ all Mean height of all points 

Summary Statistics σ all Standard deviation of heights for all points 

Summary Statistics µ ground Mean height of ground points 

Summary Statistics σ ground Standard deviation of heights for ground 

points 

Summary Statistics µ canopy Mean height of canopy points 

Summary Statistics σ canopy Standard deviation of heights for canopy 

points 

Point Classification Fraction of below ground aoi0 

points 

Fraction of below ground points 

Point Classification Fraction of below ground aoi1 

points 

Fraction of below ground points 

Point Classification Fraction of below ground aoi2 

points 

Fraction of below ground points 

Point Classification Fraction of shrub points Fraction of shrub points 

Point Distribution Canopy vertical distribution ratio Ratio of the top half of the canopy height 

range to the max canopy height 

Point Distribution Canopy median absolute deviation Median absolute deviation of canopy 

points 

Point Distribution Canopy mean absolute deviation Mean absolute deviation of canopy points 

Point Distribution Canopy relief ratio Ratio of the bottom half of the canopy 

height range to the total canopy height 

range 

Point Classification Fraction of first return points The fraction of first return points 

Summary Statistics µ first Mean height of first return points 

Summary Statistics σ first Standard deviation of heights for first 

return points 

Point Classification Fraction of first return ground 

points 

The fraction of first return points that are 

classified as ground points 

Percentile Height First P95 95th percentile height of first return points 

Point Classification Canopy density The fraction of high canopy first return 

points to total first return points 

Point Classification Fraction 1 of 1 The fraction of points that are the first 

return of one 

Point Classification Fraction 2 of 2 The fraction of points that are the second 

return of two 

Point Classification Fraction 3 of 3 The fraction of points that are the third 

return of three 

Point Classification Fraction 4 of 4 The fraction of points that are the fourth 

return of four 

Elevation Model µ CHM Mean height of the canopy height model 
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Elevation Model σ CHM Standard deviation of height of the canopy 

height model 

Elevation Model Min CHM Min height of the canopy height model 

Elevation Model Max CHM Max height of the canopy height model 

Elevation Model Fraction of ground points CHM Fraction of ground points in the canopy 

height model 

Elevation Model CHM Rugosity Surface roughness (rugosity) of the canopy 

height model 

Elevation Model DEM Slope 21x21 Coarse resolution slope of the bare-Earth 

digital terrain model 

Elevation Model Total DEM Slope 3x3 Fine resolution slope of the bare-Earth 

digital terrain model 
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Appendix B.1 Hyperspectral Decision Tree 

 

n= 1000  

 

node), split, n, loss, yval, (yprob) 

      * denotes terminal node 

 

  1) root 1000 900 Baygall (0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1)   

    2) muDeriv1064< 0.932652 105  10 Lake (0 0 0 0.9 0.086 0 0 0 0.0095 0)   

      4) vegNDI743i994< 6.361945 95   3 Lake (0 0 0 0.97 0.021 0 0 0 0.011 0) * 

      5) vegNDI743i994>=6.361945 10   3 Marsh (0 0 0 0.3 0.7 0 0 0 0 0)   

       10) stdR528< 0.7787 3   0 Lake (0 0 0 1 0 0 0 0 0 0) * 

       11) stdR528>=0.7787 7   0 Marsh (0 0 0 0 1 0 0 0 0 0) * 

    3) muDeriv1064>=0.932652 895 795 Baygall (0.11 0.11 0.11 0.0056 0.1 0.11 0.11 0.11 0.11 0.11)   

      6) NDI578i643< -12.37815 401 301 Baygall (0.25 0.005 0.22 0.0025 0.025 0.24 0.017 0 0.0025 0.24)   

       12) vegNDI1515i2216< -16.7446 290 196 Mixed (0.31 0.0034 0.3 0 0.021 0.32 0.024 0 0 0.021)   

         24) NDI1650i1685>=-0.4336285 93  20 Baygall (0.78 0 0.022 0 0.043 0.13 0 0 0 0.022)   

           48) NDI743i1585>=-41.5957 80   7 Baygall (0.91 0 0.012 0 0.025 0.025 0 0 0 0.025) * 

           49) NDI743i1585< -41.5957 13   3 Mixed (0 0 0.077 0 0.15 0.77 0 0 0 0) * 

         25) NDI1650i1685< -0.4336285 197 113 Hammock (0.086 0.0051 0.43 0 0.01 0.42 0.036 0 0 0.02)   

           50) vegNDI783i879>=4.68648 74  17 Hammock (0.054 0 0.77 0 0.014 0.14 0.014 0 0 0.014)   

            100) muDeriv2036< 1.77944 61   7 Hammock (0.016 0 0.89 0 0 0.066 0.016 0 0 0.016) * 

            101) muDeriv2036>=1.77944 13   7 Mixed (0.23 0 0.23 0 0.077 0.46 0 0 0 0)   

              202) stdR668< 0.914061 7   4 Baygall (0.43 0 0.43 0 0.14 0 0 0 0 0)   

                404) muR743< 29.46505 3   0 Baygall (1 0 0 0 0 0 0 0 0 0) * 

                405) muR743>=29.46505 4   1 Hammock (0 0 0.75 0 0.25 0 0 0 0 0) * 

              203) stdR668>=0.914061 6   0 Mixed (0 0 0 0 0 1 0 0 0 0) * 

           51) vegNDI783i879< 4.68648 123  51 Mixed (0.11 0.0081 0.22 0 0.0081 0.59 0.049 0 0 0.024)   

            102) vegNDI1585i1730>=1.28819 18   2 Hammock (0.056 0 0.89 0 0 0.056 0 0 0 0) * 

            103) vegNDI1585i1730< 1.28819 105  34 Mixed (0.11 0.0095 0.1 0 0.0095 0.68 0.057 0 0 0.029)   

              206) muDeriv783>=3.43161 9   2 Hammock (0 0 0.78 0 0 0.22 0 0 0 0) * 

              207) muDeriv783< 3.43161 96  27 Mixed (0.12 0.01 0.042 0 0.01 0.72 0.062 0 0 0.031)   

                414) NDI503i2161< 54.0168 5   0 Baygall (1 0 0 0 0 0 0 0 0 0) * 

                415) NDI503i2161>=54.0168 91  22 Mixed (0.077 0.011 0.044 0 0.011 0.76 0.066 0 0 0.033)   

                  830) NDI2281i2326< -7.9344 87  18 Mixed (0.08 0.011 0.046 0 0 0.79 0.034 0 0 0.034) * 

                  831) NDI2281i2326>=-7.9344 4   1 Plantation (0 0 0 0 0.25 0 0.75 0 0 0) * 

       13) vegNDI1515i2216>=-16.7446 111  20 Swamp (0.09 0.009 0.009 0.009 0.036 0.018 0 0 0.009 0.82)   

         26) vegNDI1199i1284< 4.570385 14   6 Baygall (0.57 0.071 0 0.071 0.21 0 0 0 0 0.071)   

           52) stdR528>=1.47904 8   0 Baygall (1 0 0 0 0 0 0 0 0 0) * 

           53) stdR528< 1.47904 6   3 Marsh (0 0.17 0 0.17 0.5 0 0 0 0 0.17) * 

         27) vegNDI1199i1284>=4.570385 97   7 Swamp (0.021 0 0.01 0 0.01 0.021 0 0 0.01 0.93) * 

      7) NDI578i643>=-12.37815 494 394 Ruderal (0 0.2 0.026 0.0081 0.16 0.0081 0.19 0.2 0.2 0.0061)   

       14) muDeriv2106>=1.34994 256 161 Ruderal (0 0.33 0.0039 0.0078 0.24 0.0078 0.0039 0.37 0.027 0.0039)   

         28) muDeriv2216< 0.6161705 102  41 Marsh (0 0.33 0 0.02 0.6 0.02 0 0.0098 0.0098 0.0098)   

           56) muVegDeriv668< 2.10495 40  11 Fringe (0 0.72 0 0.025 0.22 0 0 0 0 0.025)   

            112) muR743< 23.08555 33   4 Fringe (0 0.88 0 0.03 0.061 0 0 0 0 0.03) * 

            113) muR743>=23.08555 7   0 Marsh (0 0 0 0 1 0 0 0 0 0) * 

           57) muVegDeriv668>=2.10495 62  10 Marsh (0 0.081 0 0.016 0.84 0.032 0 0.016 0.016 0)   

            114) muVegDeriv1730>=-0.6620275 6   1 Fringe (0 0.83 0 0 0 0 0 0 0.17 0) * 

            115) muVegDeriv1730< -0.6620275 56   4 Marsh (0 0 0 0.018 0.93 0.036 0 0.018 0 0) * 

         29) muDeriv2216>=0.6161705 154  60 Ruderal (0 0.33 0.0065 0 0.0065 0 0.0065 0.61 0.039 0)   
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           58) muDeriv528< 5.846135 52   7 Fringe (0 0.87 0 0 0 0 0 0.12 0.019 0) * 

           59) muDeriv528>=5.846135 102  14 Ruderal (0 0.059 0.0098 0 0.0098 0 0.0098 0.86 0.049 0)   

            118) FracSandhillGrass< 24.9433 97   9 Ruderal (0 0.062 0.01 0 0.01 0 0 0.91 0.01 0)   

              236) NDI994i1104< 4.58154 6   1 Fringe (0 0.83 0 0 0 0 0 0.17 0 0) * 

              237) NDI994i1104>=4.58154 91   4 Ruderal (0 0.011 0.011 0 0.011 0 0 0.96 0.011 0) * 

            119) FracSandhillGrass>=24.9433 5   1 Sandhill (0 0 0 0 0 0 0.2 0 0.8 0) * 

       15) muDeriv2106< 1.34994 238 146 Plantation (0 0.055 0.05 0.0084 0.08 0.0084 0.39 0.021 0.38 0.0084)   

         30) NDI1585i1730< -0.3178745 114  31 Plantation (0 0.018 0.053 0 0 0.018 0.73 0.018 0.17 0)   

           60) stdVegDeriv643< 1.466715 84   9 Plantation (0 0.012 0.012 0 0 0.024 0.89 0.012 0.048 0) * 

           61) stdVegDeriv643>=1.466715 30  15 Sandhill (0 0.033 0.17 0 0 0 0.27 0.033 0.5 0)   

            122) muDeriv1249< 4.18075 16   9 Plantation (0 0.062 0.31 0 0 0 0.44 0.062 0.12 0)   

              244) muDeriv708>=42.505 5   0 Hammock (0 0 1 0 0 0 0 0 0 0) * 

              245) muDeriv708< 42.505 11   4 Plantation (0 0.091 0 0 0 0 0.64 0.091 0.18 0) * 

            123) muDeriv1249>=4.18075 14   1 Sandhill (0 0 0 0 0 0 0.071 0 0.93 0) * 

         31) NDI1585i1730>=-0.3178745 124  52 Sandhill (0 0.089 0.048 0.016 0.15 0 0.073 0.024 0.58 0.016)   

           62) vegNDI1249i1284< 0.8054935 26   7 Marsh (0 0 0.15 0.038 0.73 0 0 0 0 0.077)   

            124) stdDeriv2326< 1.40391 20   1 Marsh (0 0 0 0.05 0.95 0 0 0 0 0) * 

            125) stdDeriv2326>=1.40391 6   2 Hammock (0 0 0.67 0 0 0 0 0 0 0.33) * 

           63) vegNDI1249i1284>=0.8054935 98  26 Sandhill (0 0.11 0.02 0.01 0 0 0.092 0.031 0.73 0)   

            126) muVegDeriv503< 2.911595 13   2 Fringe (0 0.85 0.15 0 0 0 0 0 0 0) * 

            127) muVegDeriv503>=2.911595 85  13 Sandhill (0 0 0 0.012 0 0 0.11 0.035 0.85 0)   

              254) vegNDI1104i1284< -4.19105 12   6 Plantation (0 0 0 0.083 0 0 0.5 0.17 0.25 0)   

                508) stdDeriv603< 1.84285 6   0 Plantation (0 0 0 0 0 0 1 0 0 0) * 

                509) stdDeriv603>=1.84285 6   3 Sandhill (0 0 0 0.17 0 0 0 0.33 0.5 0) * 

              255) vegNDI1104i1284>=-4.19105 73   4 Sandhill (0 0 0 0 0 0 0.041 0.014 0.95 0) * 
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Appendix B.2 Lidar Decision Tree 

 

n= 1000  

 

node), split, n, loss, yval, (yprob) 

      * denotes terminal node 

 

  1) root 1000 900 Baygall (0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1)   

    2) muCHM< 3.075415 403 304 Lake (0.032 0.24 0 0.25 0.23 0 0 0.24 0.022 0)   

      4) DEMslopeK21< 9.23421 196 102 Lake (0.02 0.097 0 0.48 0.37 0 0 0.031 0.0051 0)   

        8) FracGround>=99.96925 138  44 Lake (0 0.043 0 0.68 0.28 0 0 0 0 0)   

         16) grP100mP75< 0.3400005 31   0 Lake (0 0 0 1 0 0 0 0 0 0) * 

         17) grP100mP75>=0.3400005 107  44 Lake (0 0.056 0 0.59 0.36 0 0 0 0 0)   

           34) grP90mP50>=0.2149995 79  21 Lake (0 0.013 0 0.73 0.25 0 0 0 0 0)   

             68) grP100mP75< 0.7499995 68  12 Lake (0 0 0 0.82 0.18 0 0 0 0 0) * 

             69) grP100mP75>=0.7499995 11   3 Marsh (0 0.091 0 0.18 0.73 0 0 0 0 0) * 

           35) grP90mP50< 0.2149995 28  10 Marsh (0 0.18 0 0.18 0.64 0 0 0 0 0) * 

        9) FracGround< 99.96925 58  24 Marsh (0.069 0.22 0 0 0.59 0 0 0.1 0.017 0)   

         18) totDEMslopeK3< 27.6088 21  10 Fringe (0 0.52 0 0 0.19 0 0 0.24 0.048 0)   

           36) caP50mP0>=0.93 18   7 Fringe (0 0.61 0 0 0.056 0 0 0.28 0.056 0)   

             72) caP100mP0< 6.995 9   0 Fringe (0 1 0 0 0 0 0 0 0 0) * 

             73) caP100mP0>=6.995 9   4 Ruderal (0 0.22 0 0 0.11 0 0 0.56 0.11 0) * 

           37) caP50mP0< 0.93 3   0 Marsh (0 0 0 0 1 0 0 0 0 0) * 

         19) totDEMslopeK3>=27.6088 37   7 Marsh (0.11 0.054 0 0 0.81 0 0 0.027 0 0)   

           38) caP100mP50>=8.02 4   1 Baygall (0.75 0 0 0 0 0 0 0.25 0 0) * 

           39) caP100mP50< 8.02 33   3 Marsh (0.03 0.061 0 0 0.91 0 0 0 0 0) * 

      5) DEMslopeK21>=9.23421 207 117 Ruderal (0.043 0.37 0 0.024 0.092 0 0 0.43 0.039 0)   

       10) grP50mP25>=0.0899993 74  41 Fringe (0.12 0.45 0 0.054 0.26 0 0 0.068 0.054 0)   

         20) grP90mP10< 0.475 42  11 Fringe (0 0.74 0 0.048 0.048 0 0 0.071 0.095 0) * 

         21) grP90mP10>=0.475 32  15 Marsh (0.28 0.062 0 0.062 0.53 0 0 0.062 0 0)   

           42) grP50mP10>=0.370001 10   1 Baygall (0.9 0 0 0.1 0 0 0 0 0 0) * 

           43) grP50mP10< 0.370001 22   5 Marsh (0 0.091 0 0.045 0.77 0 0 0.091 0 0) * 

       11) grP50mP25< 0.0899993 133  48 Ruderal (0 0.32 0 0.0075 0 0 0 0.64 0.03 0)   

         22) DEMslopeK21>=53.3116 8   1 Fringe (0 0.88 0 0 0 0 0 0.12 0 0) * 

         23) DEMslopeK21< 53.3116 125  41 Ruderal (0 0.29 0 0.008 0 0 0 0.67 0.032 0)   

           46) grMAD>=0.07999985 75  34 Ruderal (0 0.4 0 0 0 0 0 0.55 0.053 0)   

             92) totDEMslopeK3< 23.22615 9   0 Fringe (0 1 0 0 0 0 0 0 0 0) * 

             93) totDEMslopeK3>=23.22615 66  25 Ruderal (0 0.32 0 0 0 0 0 0.62 0.061 0)   

              186) grP100mP75Frac< 54.27695 32  15 Fringe (0 0.53 0 0 0 0 0 0.38 0.094 0)   

                372) caP50< 6.225 15   2 Fringe (0 0.87 0 0 0 0 0 0.067 0.067 0) * 

                373) caP50>=6.225 17   6 Ruderal (0 0.24 0 0 0 0 0 0.65 0.12 0) * 

              187) grP100mP75Frac>=54.27695 34   5 Ruderal (0 0.12 0 0 0 0 0 0.85 0.029 0) * 

           47) grMAD< 0.07999985 50   7 Ruderal (0 0.12 0 0.02 0 0 0 0.86 0 0) * 

    3) muCHM>=3.075415 597 497 Hammock (0.15 0.0084 0.17 0.0017 0.015 0.17 0.17 0.0067 0.15 0.17)   

      6) FracGround< 52.19205 395 296 Mixed (0.18 0.0025 0.25 0 0.02 0.25 0.041 0 0.01 0.24)   

       12) stdGround< 0.31632 192 100 Hammock (0.021 0 0.48 0 0.031 0.32 0.083 0 0.021 0.047)   

         24) std1st< 5.617505 95  19 Hammock (0.011 0 0.8 0 0.042 0.12 0.011 0 0 0.021)   

           48) Frac22>=10.34305 77   5 Hammock (0 0 0.94 0 0 0.052 0.013 0 0 0) * 

           49) Frac22< 10.34305 18  11 Mixed (0.056 0 0.22 0 0.22 0.39 0 0 0 0.11)   

             98) std1st< 3.927075 8   4 Hammock (0 0 0.5 0 0.5 0 0 0 0 0)   

              196) caP10>=8.92 4   0 Hammock (0 0 1 0 0 0 0 0 0 0) * 
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              197) caP10< 8.92 4   0 Marsh (0 0 0 0 1 0 0 0 0 0) * 

             99) std1st>=3.927075 10   3 Mixed (0.1 0 0 0 0 0.7 0 0 0 0.2) * 

         25) std1st>=5.617505 97  47 Mixed (0.031 0 0.16 0 0.021 0.52 0.15 0 0.041 0.072)   

           50) mu1st< 15.29255 59  39 Mixed (0.034 0 0.27 0 0.034 0.34 0.17 0 0.068 0.085)   

            100) stdGround>=0.265778 25  11 Mixed (0.08 0 0.2 0 0 0.56 0 0 0 0.16) * 

            101) stdGround< 0.265778 34  23 Hammock (0 0 0.32 0 0.059 0.18 0.29 0 0.12 0.029)   

              202) FracGround< 30.4306 14   4 Hammock (0 0 0.71 0 0 0.21 0.071 0 0 0) * 

              203) FracGround>=30.4306 20  11 Plantation (0 0 0.05 0 0.1 0.15 0.45 0 0.2 0.05) * 

           51) mu1st>=15.29255 38   8 Mixed (0.026 0 0 0 0 0.79 0.13 0 0 0.053) * 

       13) stdGround>=0.31632 203 116 Swamp (0.34 0.0049 0.03 0 0.0099 0.19 0 0 0 0.43)   

         26) muCHM< 14.0278 57  16 Baygall (0.72 0.018 0.088 0 0.035 0.12 0 0 0 0.018)   

           52) Frac22< 12.58255 47   7 Baygall (0.85 0 0 0 0.043 0.085 0 0 0 0.021) * 

           53) Frac22>=12.58255 10   5 Hammock (0.1 0.1 0.5 0 0 0.3 0 0 0 0)   

            106) grP75mP25Frac< 30.19925 7   2 Hammock (0.14 0.14 0.71 0 0 0 0 0 0 0) * 

            107) grP75mP25Frac>=30.19925 3   0 Mixed (0 0 0 0 0 1 0 0 0 0) * 

         27) muCHM>=14.0278 146  60 Swamp (0.19 0 0.0068 0 0 0.21 0 0 0 0.59)   

           54) p951st>=30.105 22  10 Baygall (0.55 0 0 0 0 0.36 0 0 0 0.091)   

            108) stdCanopy>=10.39745 9   1 Baygall (0.89 0 0 0 0 0 0 0 0 0.11) * 

            109) stdCanopy< 10.39745 13   5 Mixed (0.31 0 0 0 0 0.62 0 0 0 0.077) * 

           55) p951st< 30.105 124  40 Swamp (0.13 0 0.0081 0 0 0.19 0 0 0 0.68)   

            110) grP75< 0.525 23  10 Mixed (0.087 0 0.043 0 0 0.57 0 0 0 0.3)   

              220) FracShrub< 10.2555 15   4 Mixed (0.067 0 0.067 0 0 0.73 0 0 0 0.13) * 

              221) FracShrub>=10.2555 8   3 Swamp (0.12 0 0 0 0 0.25 0 0 0 0.62) * 

            111) grP75>=0.525 101  24 Swamp (0.14 0 0 0 0 0.099 0 0 0 0.76)   

              222) stdCHM>=6.40041 12   6 Baygall (0.5 0 0 0 0 0.33 0 0 0 0.17)   

                444) caP25>=6.19 6   0 Baygall (1 0 0 0 0 0 0 0 0 0) * 

                445) caP25< 6.19 6   2 Mixed (0 0 0 0 0 0.67 0 0 0 0.33) * 

              223) stdCHM< 6.40041 89  14 Swamp (0.09 0 0 0 0 0.067 0 0 0 0.84) * 

      7) FracGround>=52.19205 202 115 Sandhill (0.069 0.02 0.0099 0.005 0.005 0.005 0.42 0.02 0.43 0.02)   

       14) FracGroundCHM>=13.60545 86  36 Sandhill (0.14 0.047 0.012 0.012 0.012 0 0.13 0.047 0.58 0.023)   

         28) stdGround>=0.2362425 15   3 Baygall (0.8 0 0 0 0.067 0 0 0 0 0.13) * 

         29) stdGround< 0.2362425 71  21 Sandhill (0 0.056 0.014 0.014 0 0 0.15 0.056 0.7 0)   

           58) AAD>=2.79167 15  10 Plantation (0 0.2 0 0 0 0 0.33 0.27 0.2 0)   

            116) caP90< 20.03 10   6 Ruderal (0 0.3 0 0 0 0 0 0.4 0.3 0)   

              232) caP100mP75Frac< 23.0631 6   3 Fringe (0 0.5 0 0 0 0 0 0 0.5 0)   

                464) Frac1st>=93.26195 3   0 Fringe (0 1 0 0 0 0 0 0 0 0) * 

                465) Frac1st< 93.26195 3   0 Sandhill (0 0 0 0 0 0 0 0 1 0) * 

              233) caP100mP75Frac>=23.0631 4   0 Ruderal (0 0 0 0 0 0 0 1 0 0) * 

            117) caP90>=20.03 5   0 Plantation (0 0 0 0 0 0 1 0 0 0) * 

           59) AAD< 2.79167 56   9 Sandhill (0 0.018 0.018 0.018 0 0 0.11 0 0.84 0) * 

       15) FracGroundCHM< 13.60545 116  43 Plantation (0.017 0 0.0086 0 0 0.0086 0.63 0 0.32 0.017)   

         30) caP100mP75< 5.665 105  32 Plantation (0.0095 0 0.0095 0 0 0.0095 0.7 0 0.27 0.0095)   

           60) caP75< 10.92 23   0 Plantation (0 0 0 0 0 0 1 0 0 0) * 

           61) caP75>=10.92 82  32 Plantation (0.012 0 0.012 0 0 0.012 0.61 0 0.34 0.012)   

            122) Frac1stGround< 49.15255 21   1 Plantation (0 0 0 0 0 0 0.95 0 0.048 0) * 

            123) Frac1stGround>=49.15255 61  31 Plantation (0.016 0 0.016 0 0 0.016 0.49 0 0.44 0.016)   

              246) caP50mP25Frac>=14.07245 23   7 Plantation (0.043 0 0.043 0 0 0 0.7 0 0.17 0.043) * 

              247) caP50mP25Frac< 14.07245 38  15 Sandhill (0 0 0 0 0 0.026 0.37 0 0.61 0)   

                494) caP100mP75< 2.095 8   0 Plantation (0 0 0 0 0 0 1 0 0 0) * 

                495) caP100mP75>=2.095 30   7 Sandhill (0 0 0 0 0 0.033 0.2 0 0.77 0)   

                  990) caP50mP25< 1.11 4   1 Plantation (0 0 0 0 0 0.25 0.75 0 0 0) * 

                  991) caP50mP25>=1.11 26   3 Sandhill (0 0 0 0 0 0 0.12 0 0.88 0) * 

         31) caP100mP75>=5.665 11   2 Sandhill (0.091 0 0 0 0 0 0 0 0.82 0.091) * 
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Appendix B.3 Integrated Decision Tree 

 

n= 1000  

 

node), split, n, loss, yval, (yprob) 

      * denotes terminal node 

 

  1) root 1000 900 Baygall (0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1)   

    2) muDeriv1064< 0.932652 105  10 Lake (0 0 0 0.9 0.086 0 0 0 0.0095 0)   

      4) grP100mP0< 1.535 96   3 Lake (0 0 0 0.97 0.021 0 0 0 0.01 0) * 

      5) grP100mP0>=1.535 9   2 Marsh (0 0 0 0.22 0.78 0 0 0 0 0) * 

    3) muDeriv1064>=0.932652 895 795 Baygall (0.11 0.11 0.11 0.0056 0.1 0.11 0.11 0.11 0.11 0.11)   

      6) NDI578i643< -12.37815 401 301 Baygall (0.25 0.005 0.22 0.0025 0.025 0.24 0.017 0 0.0025 0.24)   

       12) vegNDI1515i2216< -16.7446 290 196 Mixed (0.31 0.0034 0.3 0 0.021 0.32 0.024 0 0 0.021)   

         24) stdGround>=0.3372265 119  36 Baygall (0.7 0 0.017 0 0.017 0.22 0 0 0 0.05)   

           48) NDI1650i1685>=-0.6650525 83   9 Baygall (0.89 0 0 0 0.024 0.048 0 0 0 0.036) * 

           49) NDI1650i1685< -0.6650525 36  14 Mixed (0.25 0 0.056 0 0 0.61 0 0 0 0.083)   

             98) FracMarshGreen>=37.98185 11   5 Baygall (0.55 0 0.18 0 0 0.091 0 0 0 0.18) * 

             99) FracMarshGreen< 37.98185 25   4 Mixed (0.12 0 0 0 0 0.84 0 0 0 0.04)   

              198) Frac22>=17.91175 3   0 Baygall (1 0 0 0 0 0 0 0 0 0) * 

              199) Frac22< 17.91175 22   1 Mixed (0 0 0 0 0 0.95 0 0 0 0.045) * 

         25) stdGround< 0.3372265 171  87 Hammock (0.041 0.0058 0.49 0 0.023 0.4 0.041 0 0 0)   

           50) caP100mP0< 20.495 92  19 Hammock (0.033 0 0.79 0 0.043 0.12 0.011 0 0 0)   

            100) muVegDeriv2036< 2.246195 81   9 Hammock (0.025 0 0.89 0 0 0.074 0.012 0 0 0)   

              200) caP90mP50< 4.155 70   3 Hammock (0.029 0 0.96 0 0 0 0.014 0 0 0) * 

              201) caP90mP50>=4.155 11   5 Mixed (0 0 0.45 0 0 0.55 0 0 0 0)   

                402) muDeriv1685>=-2.9831 5   0 Hammock (0 0 1 0 0 0 0 0 0 0) * 

                403) muDeriv1685< -2.9831 6   0 Mixed (0 0 0 0 0 1 0 0 0 0) * 

            101) muVegDeriv2036>=2.246195 11   6 Mixed (0.091 0 0.091 0 0.36 0.45 0 0 0 0)   

              202) caP50mP10< 3.145 6   2 Marsh (0.17 0 0.17 0 0.67 0 0 0 0 0) * 

              203) caP50mP10>=3.145 5   0 Mixed (0 0 0 0 0 1 0 0 0 0) * 

           51) caP100mP0>=20.495 79  22 Mixed (0.051 0.013 0.14 0 0 0.72 0.076 0 0 0)   

            102) muDeriv668< 1.87541 8   0 Hammock (0 0 1 0 0 0 0 0 0 0) * 

            103) muDeriv668>=1.87541 71  14 Mixed (0.056 0.014 0.042 0 0 0.8 0.085 0 0 0)   

              206) NDI1545i2106>=-38.32745 7   4 Hammock (0 0.14 0.43 0 0 0 0.43 0 0 0)   

                412) FracGround>=15.3989 4   1 Hammock (0 0.25 0.75 0 0 0 0 0 0 0) * 

                413) FracGround< 15.3989 3   0 Plantation (0 0 0 0 0 0 1 0 0 0) * 

              207) NDI1545i2106< -38.32745 64   7 Mixed (0.062 0 0 0 0 0.89 0.047 0 0 0)   

                414) FracMarshGreen>=61.56465 3   0 Baygall (1 0 0 0 0 0 0 0 0 0) * 

                415) FracMarshGreen< 61.56465 61   4 Mixed (0.016 0 0 0 0 0.93 0.049 0 0 0) * 

       13) vegNDI1515i2216>=-16.7446 111  20 Swamp (0.09 0.009 0.009 0.009 0.036 0.018 0 0 0.009 0.82)   

         26) mu1st< 6.68162 16   7 Baygall (0.56 0.062 0 0.062 0.25 0 0 0 0 0.062)   

           52) stdR528>=1.47904 9   0 Baygall (1 0 0 0 0 0 0 0 0 0) * 

           53) stdR528< 1.47904 7   3 Marsh (0 0.14 0 0.14 0.57 0 0 0 0 0.14) * 

         27) mu1st>=6.68162 95   5 Swamp (0.011 0 0.011 0 0 0.021 0 0 0.011 0.95) * 

      7) NDI578i643>=-12.37815 494 394 Ruderal (0 0.2 0.026 0.0081 0.16 0.0081 0.19 0.2 0.2 0.0061)   

       14) Frac1st>=93.88985 288 190 Ruderal (0 0.33 0.0035 0.01 0.28 0 0.0035 0.34 0.031 0)   

         28) stdDeriv2326< 1.63329 73   8 Marsh (0 0.055 0 0.041 0.89 0 0 0.014 0 0)   

           56) muVegDeriv668< 1.86629 6   2 Fringe (0 0.67 0 0.17 0 0 0 0.17 0 0) * 

           57) muVegDeriv668>=1.86629 67   2 Marsh (0 0 0 0.03 0.97 0 0 0 0 0) * 

         29) stdDeriv2326>=1.63329 215 118 Ruderal (0 0.43 0.0047 0 0.07 0 0.0047 0.45 0.042 0)   
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           58) muDeriv528< 5.8747 94  13 Fringe (0 0.86 0.011 0 0.011 0 0.011 0.074 0.032 0)   

            116) muVegDeriv578>=-3.248385 88   8 Fringe (0 0.91 0.011 0 0.011 0 0 0.034 0.034 0) * 

            117) muVegDeriv578< -3.248385 6   2 Ruderal (0 0.17 0 0 0 0 0.17 0.67 0 0) * 

           59) muDeriv528>=5.8747 121  31 Ruderal (0 0.091 0 0 0.12 0 0 0.74 0.05 0)   

            118) muDeriv2216< 0.446008 21   7 Marsh (0 0.29 0 0 0.67 0 0 0.048 0 0)   

              236) DEMslopeK21>=9.0028 6   1 Fringe (0 0.83 0 0 0 0 0 0.17 0 0) * 

              237) DEMslopeK21< 9.0028 15   1 Marsh (0 0.067 0 0 0.93 0 0 0 0 0) * 

            119) muDeriv2216>=0.446008 100  11 Ruderal (0 0.05 0 0 0 0 0 0.89 0.06 0)   

              238) muR1314< 38.28815 13   7 Sandhill (0 0.23 0 0 0 0 0 0.31 0.46 0)   

                476) stdDeriv643< 1.728095 7   3 Ruderal (0 0.43 0 0 0 0 0 0.57 0 0)   

                  952) caP100mP75Frac< 23.3621 3   0 Fringe (0 1 0 0 0 0 0 0 0 0) * 

                  953) caP100mP75Frac>=23.3621 4   0 Ruderal (0 0 0 0 0 0 0 1 0 0) * 

                477) stdDeriv643>=1.728095 6   0 Sandhill (0 0 0 0 0 0 0 0 1 0) * 

              239) muR1314>=38.28815 87   2 Ruderal (0 0.023 0 0 0 0 0 0.98 0 0) * 

       15) Frac1st< 93.88985 206 114 Plantation (0 0.0097 0.058 0.0049 0.0049 0.019 0.45 0.0097 0.43 0.015)   

         30) NDI1585i1730< -0.3178745 112  30 Plantation (0 0 0.062 0 0.0089 0.027 0.73 0 0.17 0)   

           60) stdVegDeriv643< 1.466715 82   8 Plantation (0 0 0.012 0 0.012 0.024 0.9 0 0.049 0) * 

           61) stdVegDeriv643>=1.466715 30  15 Sandhill (0 0 0.2 0 0 0.033 0.27 0 0.5 0)   

            122) CanopyDensity>=63.9873 6   0 Hammock (0 0 1 0 0 0 0 0 0 0) * 

            123) CanopyDensity< 63.9873 24   9 Sandhill (0 0 0 0 0 0.042 0.33 0 0.62 0)   

              246) caP100mP50< 4.175 8   1 Plantation (0 0 0 0 0 0 0.88 0 0.12 0) * 

              247) caP100mP50>=4.175 16   2 Sandhill (0 0 0 0 0 0.062 0.062 0 0.88 0) * 

         31) NDI1585i1730>=-0.3178745 94  24 Sandhill (0 0.021 0.053 0.011 0 0.011 0.11 0.021 0.74 0.032)   

           62) FracMixedDark>=6.00907 12   8 Hammock (0 0.17 0.33 0 0 0.083 0.17 0 0 0.25)   

            124) Frac22>=21.269 4   0 Hammock (0 0 1 0 0 0 0 0 0 0) * 

            125) Frac22< 21.269 8   5 Swamp (0 0.25 0 0 0 0.12 0.25 0 0 0.38) * 

           63) FracMixedDark< 6.00907 82  12 Sandhill (0 0 0.012 0.012 0 0 0.098 0.024 0.85 0)   

            126) vegNDI1104i1249< -5.840945 5   2 Plantation (0 0 0 0.2 0 0 0.6 0.2 0 0) * 

            127) vegNDI1104i1249>=-5.840945 77   7 Sandhill (0 0 0.013 0 0 0 0.065 0.013 0.91 0) * 

 


