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Stochastic dynamics of social patch foraging decisions
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Animals typically forage in groups. Social foraging can help animals avoid predation and decrease their
uncertainty about the richness of food resources. Despite this, theoretical mechanistic models of patch foraging
have overwhelmingly focused on the behavior of single foragers. In this study, we develop a mechanistic model
that accounts for the behavior of individuals foraging together and departing food patches following an evidence
accumulation process. Each individual’s belief about patch quality is represented by a stochastically accumulat-
ing variable, which is coupled to another’s belief to represent the transfer of information. We consider a cohesive
group, and model information sharing by considering both intermittent pulsatile coupling (only communicate
decision to leave) and continuous diffusive coupling (communicate throughout the deliberation process). Groups
employing pulsatile coupling can obtain higher foraging efficiency, which depends more strongly on the coupling
parameter compared to those using diffusive coupling. Conversely, groups using diffusive coupling are more
robust to changes and heterogeneities in belief weighting and departure criteria. Efficiency is measured by a
reward rate function that balances the amount of energy accumulated against the time spent in a patch, computed
by solving an ordered first passage time problem for the patch departures of each individual. Using synthetic
departure time data, we can distinguish between the two modes of communication and identify the model
parameters. Our model establishes a social patch foraging framework to identify deliberative decision strategies
and forms of social communication, and to allow model fitting to field data from foraging animal groups.
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I. INTRODUCTION

Foraging is a ubiquitous behavior performed by all animals
for survival, and many species forage in groups. Communica-
tion among group members is essential to maintain cohesion
and share important information, e.g, available resources or
possible threats [1,2]. Group foraging can offer increased
vigilance and protection against predators [3–5], more rapid
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reduction of uncertainty about the density or quality of re-
sources [6,7], and enhanced ability to capture prey [8]. Since
resource distributions can be spatially heterogeneous [9–11],
a common modeling assumption takes resources distributed
in patches [12–14] with low availability between. Animals
exploit resources in a patch until departing for another patch.
A key question is how animals determine if and when to depart
a patch.

Many animals forage in groups and use social information
to shape their movement and resource exploitation decisions
(e.g., baboons and capuchins [15,16]), but mechanistic mod-
els of patch departure deliberation have mainly focused on
individual foragers [17,18]. Here we introduce a model of
social patch foraging and departure deliberation, describing
how the social information modulates the process of two or
more foragers deciding when to leave a patch. Social for-
aging differs from individual foraging because it alters both
resource availability and a forager’s behavior [19]. The prox-
imity of conspecifics may alter foraging performance through
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information sharing [20–22]; scrounging [23,24]; the oppor-
tunity for kleptoparasitism [25,26]; or attention required for
predator detection (e.g., the collective detection hypothesis
[27–29]). Individuals’ response to their social companions
recasts the relationship between their foraging performance
and the group density, potentially deviating from the typical
“ideal free distribution” model [30]. Group foragers often si-
multaneously share patches [24,31–35], which can increase or
decrease food uptake rate, depending on information sharing
or social learning [36]. Such arrangements are especially ben-
eficial to individuals who exploit their conspecifics’ discov-
eries for their own gains. For example, high-ranking birds in
dominance hierarchies can improve their average food intake
rate in this fashion [37], while lower-ranked birds’ average
uptake rate is reduced compared to the rest of the group. Nev-
ertheless, group foraging can decrease the likelihood of any
bird going without food. Animals may also change their level
of group cohesion depending on resource availability. Finches
tend to share patches when food is scarce (when the probabil-
ity of starvation was high) but search individually when food
is plentiful [34]. Thus, there is a rich landscape of behaviors
connecting social information sharing and energy yields from
patch foraging, which we quantitatively formalize here.

Bayesian models have proposed optimal ways to combine
individual and social information in order to gain information
about the environment [38]. Theory has been used to show
how group structure and communication affect behavior, de-
termining when differences in information drive a group to
split apart, or the fraction of informed individuals needed to
lead a group to a known location [39,40]. Other studies have
used models of contagion [41,42] to examine how a behavior
spreads through a group [43]. One observed advantage of
information sharing in groups is that multiple estimates of
the same quantity (e.g., chemical gradients or food density)
reduce uncertainty arising from measurement or internal noise
[44,45]. While the efficiency of patch foraging decisions can
be limited by uncertainty and stochasticity [18], such effects
may be ameliorated by social communication. To account
for uncertainty and noise in decision processes, one can treat
foraging decisions as the result of an evidence accumulation
process as in [17]. The stochastic departure time of each
individual can be calculated from an accumulation to bound
process, wherein a drifting and diffusing variable represents
a current belief and a fixed bound triggers a patch depar-
ture [17]. Such drift-diffusion models have been successful
in untangling the strategies animals use to make binary per-
ceptual choices [46]. Decision times can then be obtained as
the solutions to first passage time problems using methods
from stochastic processes and asymptotics [47–49]. Behaviors
described by stochastic bound-crossing problems commonly
emerge in decision making as well as neural spiking [50],
search processes [51], and biomolecular trafficking [52]. In
our study, we analyze bound crossing for coupled diffusion-
type processes in the case of different types of coupling.
Work in this direction could shed light on collective processes
that involve information exchange between stochastically-
evolving system components.

Leveraging the drift-diffusion modeling framework, we
formulate a social patch foraging model and study how in-
formation sharing in animal groups and heterogeneity of

beliefs affect patch-leaving decisions and the efficiency of
group decisions. In the model, we consider a cohesive for-
aging group and two different ways individuals might share
their evolving beliefs—diffusive or pulsatile coupling. Dif-
fusive coupling represents continuous sharing of information
described previously as an “ideal group” for human group
decision making [44,53]) and migrating animals collectives
[54,55]. Pulsatile coupling shares information only when a
decision is made [56,57]. Strengthening coupling between
individuals generally improves the efficiency of group deci-
sions (i.e., increasing the average rate of energy intake) in
either model by coordinating individual departure decisions.
The diffusively coupled model is generally more robust to
suboptimal, detuned parameter choices. Precise alignment of
patch departure time is more important for the efficiency of
cohesive foraging groups than the tuning individual departure
times. When individual decision times differ, agents wait for
one another after they stop foraging in the patch, and this
waiting time reduces the overall time spent foraging. We also
develop model-fitting methods and determine identifiability
using synthetic data (i.e., patch departure times generated by
the models), showing the more sensitive pulsatile coupled
model is more difficult to identify from data.

Our paper considers combining deliberative evidence-
accumulation processes with information sharing in the
context of patch-leaving decisions. By specifying different
forms of information sharing, we have identified how the
nuances of social communication shape patch-departure co-
ordination within groups. Not only are these models relevant
to patch departure but also other stay/go decisions like preda-
tor escape, mating initiation, and habitat search. Finally, our
model-fitting framework can accurately constrain animals’
deliberation strategies from experimental field data and also
infer modes of communications they use during natural social
patch foraging decisions.

II. MODEL AND METHODS

Our stochastic model describes N agents’ beliefs about the
quality of the patch where they are currently foraging (Fig. 1).
We consider a cohesive group where all individuals in the
group leave the patch together once all group members have
made a departure decision. Thus, there are two key time points
for any individual: when that individual i decides to leave and
stops foraging (Ti ), and when the whole group leaves (TN ).
The group leaving time is the maximum individual decision
time among the N group members [TN = max({Ti})], and
therefore a high variance in Ti leads to a low average returns,
due to the time early individuals spend waiting for others to
depart. Consider the concrete example of capuchin monkeys
foraging on fruit trees. The time Ti is when individual i comes
down from the tree, and the time TN is when all individuals
have come down from the tree and the group leaves together
for another tree.

Prior to introducing models with information coupling, we
discuss our model of a single forager (N = 1). In previous
paper, we have shown that the decision of whether or not to de-
part a patch containing food can be described using Bayesian
evidence accumulation [18]. Stochastic variables representing
probabilities associated with different possible food densities
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(a) (bi)

(ii)

FIG. 1. Evidence accumulation model for patch leaving in individuals and groups. (a) Schematic of patch departure decision in a group
with two agents. (b) (i) Diffusive coupling—agents communicate their beliefs throughout the evidence accumulation process to their neighbors.
(ii) Pulsatile coupling—agents only communicate their decision to leave the patch to their neighbors.

evolve in response to the time spent by the forager, its food
encounters, and food depletion. This generally evolves as a
drift-jump process, but when food encounters are rapid, a
diffusion approximation results in a drift-diffusion process
representing the stochasticity of food encounters and any
additional sensory/memory noise associated with an agent’s
imperfect estimate of food availability [17]. Rather than sur-
veying the detailed suite of individual forager models we
derived in previous paper, we opt for a simple and approxi-
mate version of this evidence accumulation process. See the
Appendix for details on deriving the drift term as the first
moment of the depletion process arising from resource con-
sumption. Also, while a diffusion approximation of the ideal
Bayesian model would have noise amplitude that changes
over time in a specific way, to identify models of evidence
accumulation from data, it is necessary to make this amplitude
parameterizable and constant. The belief x of a foraging agent
is driven by the noisy sampling of a depleting resource in a
patch, which starts at density ρ and decays with timescale τ

as the agent forages. Our previous paper considered an opti-
mal Bayesian description of the belief of patch food density
[18]. This motivates the use of this more general form of
model in which the decision variable x represents not patch
quality belief but rather an animal’s motivation to stay in
the patch, driven food encounters, food decrementing, and
internal noise [17]. Negative values of x imply that the patch
is no longer profitable and decreases in x eventually lead to
the agent reaching threshold and leaving the patch. Note that
the drift in our model represents the average rate of resource
consumption; due to the stochastic nature of foraging, the
agent will not encounter food with perfect regularity, and the
agent may not maintain a perfect estimate of available food.

With this, the evidence accumulation process of a single for-
ager evolves according to the following stochastic differential
equation (SDE) with initial and stopping conditions,

dx = (ρe− t
τ − α) dt +

√
2B dW (t ), (1)

with x(0) = 0 and x(T ) = θ , where α is the cost associated
with foraging, and W (t ) is the standard Wiener process (zero
mean, variance unity). The scaling B captures the stochasticity
in food encounters as well as the imperfect food availability
estimate maintained by the forager. We might expect B to
vary with time in precise correspondence between Eq. (1)
and a diffusion approximation of a Bayesian observer, but
we approximate it as constant since we are incorporating
constant amplitude sensory noise as well. We assume ρ > α,
i.e., the foraging cost is less than the initial energy gained
from foraging the patch. The agent will depart the patch at a
stochastically determined time t = T such that x(T ) = θ < 0.
We consider an “increment-decrement” patch leaving strategy,
where food encounters initially increase the animal’s likeli-
hood to stay in the patch but eventually deplete it, leading to a
lack of encounters and departure [17]. Following Eq. (1), we
use negative threshold values, such that food encounters move
the agent away from the decision threshold, and the absence
of food towards the threshold.

We incorporate information transfer among individuals
to represent foraging social groups [Fig. 1(a)]. Information
sharing can take the form of social cues and signals (inad-
vertent or intentional) emitted to influence the behavior of
conspecifics [58–62] and is mathematically represented in our
models as the coupling of decision states between individuals
in a group [56]. Note, based on previous results in [57], it is
likely that we should include an additional weak term based
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on information foragers might glean from their conspecifics
indecision, but we omit this in the interest of focusing on
models more identifiable from data. Thus, while we could
potentially derive an ideal observer model based on Bayesian
sequential updating, in this study we are interested in a flexible
model with different kinds of information sharing and a free
parameter describing variability in the resource estimate. We
consider two different information-sharing mechanisms. (i)
Diffusive coupling. Agents communicate their beliefs continu-
ously throughout the evidence accumulation process, and are
attracted to the relative beliefs of their neighbors according
to an individual coupling strength κ j . A similar formulation
has been considered previously for drift-diffusion models with
constant drift [44]. The corresponding stochastic differential
equations evolve as

dxi =
[
ρe−N (t ) t

τ − α +
∑
j �=i

κi((x j − θ j ) − (xi − θi ))

]
dt

+
√

2B dWi(t ), (2a)

xi(0) = 0, xi(Tj ) = θi. (2b)

The quantity (xi − θi ) is the agent i’s distance-to-threshold, so
agents are attracted to (repelled from) their decision threshold
by the coupling term if other agents are at (not at) their deci-
sion threshold, promoting synchronization of agents’ decision
variables and departure times of agents [Fig. 1(b)(i)]. Deci-
sion thresholds θi and coupling strengths κi can vary across
individuals in the model. For instance, an individual may be
more likely to assign higher value to their neighbors’ beliefs if
following them yielded high reward rates in previous foraging
bouts. Similarly, individuals might need more or less evidence
to depart the patch based on their experience in a similar
resource environment.

For individuals foraging in a group, the resource decay rate
scales with the number of agents in a patch, which begins at N .
We represent this with N (t ), which is the decreasing counting
function

N (t ) =

⎧⎪⎪⎨
⎪⎪⎩

N 0 < t < T1

N − 1 T1 < t < T2
...

1 TN−1 < t < TN

, (3)

where Tj is the time when the jth decider reaches their de-
cision threshold [xi(Tj ) = θi], after which their belief state
remains there. This continues until the final agent has decided
when xlast(TN ) = θi. (ii) Pulsatile coupling. Agents only com-
municate a pulse of information to their neighbors when they
decide to stop foraging. When an agent’s belief state reaches
the threshold, neighboring agents receive a pulse in their belief
state towards the threshold corresponding of size given by
their coupling strength κi [Fig. 1(b)(ii)]. The belief states of
agents evolve as

dxi =
[
ρe−N (t ) t

τ − α −
∑
j �=i

κiδ(x j − θ j )

]
dt

+
√

2B dWi(t ), (4a)

xi(0) = 0, xi(Tj ) = θi, (4b)

where N (t ) is defined in Eq. (3) and δ(x) is the delta distri-
bution. When the first agent decides to leave (at time t = T1),
undecided agents (x j) receive a pulse of size κ j , propelling
their belief towards their decision threshold. This may imme-
diately trigger remaining agents to make a decision (x j (T +

1 ) �
θ j), or the agents may continue to accumulate evidence until
reaching threshold θ j . Like many animals [16,63], individuals
do not depart for another patch until all others in the group
have decided to leave. Our model thus incorporates the notion
of group cohesion into the travel bouts between patches.

III. RESULTS

Collectives can improve their foraging efficiency by coor-
dinating spatial movements and patch departures so the group
remains cohesive [1]. We measure efficiency of the group’s
decision according to the average reward rate for all group
members, averaged across many patch bouts. Note that the
density of food in a patch is given by ρe− N (t )·t

τ , proportional to
the rate at which food is encountered as identified in [18]. For
simplicity, we assume a rescaling of resource and energy con-
sumption so that the corresponding proportionality constant is
unity. Assuming the rate of resource consumption by each of
the agents equals the rate of resource decay,

dr

dt
= ρe− N (t )·t

τ ,

we can integrate and scale by the number of agents consuming
food at any given time N (t ) to obtain the the total food
consumed by all of the agents before the time T = TN ,

rN (T ) =
∫ TN

0
N (t )

dr

dt
dt

=ρτ
[(

1 − e− N ·T1
τ

)
+ e− N ·T1

τ

(
1 − e− (N−1)(T2−T1 )

τ

)
+ · · · + e− N ·T1

τ e− (N−1)(T2−T1 )
τ · · ·

×
(

1 − e− (TN −TN−1 )
τ

)]
.

Scaling by N (t ) accounts for how many agents are consuming
food at any given time, given the total food consumption of the
group. Accounting for the travel time between patches TI and
a constant energy loss rate α due to movement, we define the
reward rate in the patch as

RR = 〈rN (T )〉 − α(TI + 〈T 〉)

TI + 〈T 〉 ,

where the reward and departure time are averaged across
realizations for a given strategy. Efficiency of a group foraging
strategy is thus measured by the relative value of RR. We
compute the expected reward rate in the patch by averaging
the distributions of patch departure times determined from the
first passage times of the threshold crossing processes defined
by Eq. (2) and Eq. (4).

Before delving into the optimality of different coupling
mechanisms, we compare limiting cases in a symmetric two
agent system where agents have the same decision threshold
θ j = θ and coupling constant κ j = κ for j = 1, 2 that is either
absent (κ = 0) or infinite (κ → ∞).
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FIG. 2. Coupling of belief states between group members increases the reward rate (RR). (a) Comparison of reward rate for a two-agent
system: perfectly diffusively coupled (D∞), perfectly pulsatile coupled (P∞), and no information coupling (NC). For lower values of initial
food, diffusive and pulsatile coupling perform similarly generating higher reward compared to the uncoupled case. When the initial food
amount is higher, pulsatile coupling outperforms diffusive coupling. For fixed values of model parameters τ = 5, B = 1, α = 1, TI = 5, and
ρ = 2, we maximize the reward rate for the group by optimizing the patch departure threshold θ . [(b),(c)] Patch departure time distribution for
diffusive (blue) and pulsatile (red) coupling. The dashed line shows average patch departure time. A single simulation of pulsatile (red) and
diffusive coupled (blue) models when (d) ρ = 2 and (e) ρ = 6.

A. Perfectly coupled homogeneous two agents system

We start by comparing groups’ patch departure times
(TN ) and reward rates (RR) for various idealized conditions,
including (1) No information coupling (NC), (2) Perfect dif-
fusive coupling (D∞), and (3) Perfect pulsatile coupling (P∞).

With no information coupling (NC), the decision variable
for each agent evolves as an independent and identically dis-
tributed (i.i.d) process

dxi =
(
ρe− N (t ) t

τ − α
)

dt +
√

2B dWi(t ),

where xi(0) = 0 and xi(Tj ) = θ , and N (t ) is a decreasing
counting function as in Eq. (3).

In a perfectly diffusive coupled model (D∞) with the same
thresholds, we can show that the strong limit of diffusive
coupling averages out half the noise. Before either agent’s
belief reaches threshold, the mean x+ = (x1 + x2)/2 and half-
difference x− = (x1 − x2)/2 evolve as

dx+ = (ρe−2t/τ − α)dt +
√

B/2 dW1 +
√

B/2 dW2,

dx− = −κx− dt +
√

B/2 dW1 −
√

B/2 dW2,

for arbitrary κ . Using standard methods for Ornstein-
Uhlenbeck processes [49], we see in this limit 〈x−〉 = 0 and
〈x2

−〉 = limκ→∞ B
4κ

(1 − e−4κt ) = 0. Clearly, x− ≡ 0 for κ →
∞, implying x1 = x2 = x+. Thus, each agent’s belief evolves
identically due to the averaging of all agents’ drift and diffu-
sion terms, reducing Eq. (2) to

dx = (ρe− 2 t
τ − α) dt +

√
B dW (t ), (5)

where x(0) = 0 and x(T ) = θ . The noise amplitude of this
averaged equation is half that of the full model in Eq. (2)
due to the noise-cancellation by diffusive coupling [49].
Since the agents’ decision times are identical, the group’s

patch departure time is given by the first passage time of
Eq. (5).

In a model with perfect-pulsatile coupling (P∞), the first
decider always immediately triggers departure decisions from
the remainder of the group. Thus, group decision time is given
by the minimum first passage time across j = 1, 2 of

dxi = (ρe− 2 t
τ − α) dt +

√
2B dWi(t ),

where xi(0) = 0 and xi(Tj ) = θ .
Compared to the no-coupling case, having information

coupling increases the group reward rate [Fig. 2(a)] for op-
timal choices of the departure threshold θ of each limiting
model. With infinitely strong coupling, the diffusive model
has lower effective noise, but in both models, agents make si-
multaneous departure decisions. For high ρ values [Fig. 2(a)],
increasing the noise amplitude increases the overall average
RR, by lowering the average decision time [Figs. 2(b)–2(e)].
Note the sharp peak in the likelihood of early departure
times for the pulsatile coupled model given more initial food
[Fig. 2(c)]. This is because the optimal threshold θopt sits
closer to the initial belief at xi(0) = 0. These results demon-
strate that social coupling generally increases the average
reward rate for a cohesive group, but results depend on the
parameter regime. While the drift and threshold values can
be tuned to maximize RR for a solitary individual or for the
idealized coupling case [17], here we fix the drift, and focus on
a comparison of the two coupling methods and their parameter
dependence in a finite range. The departure time statistics are
computed by numerically simulating the associated Fokker-
Planck equations (see Appendix A 2 b).

B. Decisions in diffusive coupled system

Relaxing to finite coupling strengths, we now examine how
group strategy parametrization shapes foraging efficiency. In
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FIG. 3. Comparison of reward rates (RRs) in a group with dif-
fusively coupled belief states. (a) Heat map shows how reward
rate varies with the decision threshold θ and coupling strength
κ for a symmetric model θ1 = θ2 = θ and κ1 = κ2 = κ , and α =
1, ρ = 4, τ = 5, and TI = 5. Decision and departure time statistics
are obtained by running Monte Carlo simulations for Eq. (2) (see
Appendix A 2 a). Grey line: Optimal threshold value θopt for fixed
coupling strength. The line is smoothed by computing averages over
a sliding window of length 3. Right column: RR for the infinite cou-
pling limit (κ → ∞). (b) Asymmetric strategies. Optimal threshold
θ2 (1st row), coupling κ2 (2nd row), and RR (3rd row) when fixing
agent 1 threshold θ1 and coupling strength κ1. Grey line: Optimal
symmetric θ and κ . (c) Patch departure decision time distributions
for each group in (b).

a homogeneous group (individuals all use the same decision
threshold θ and coupling strength κ) with diffusive coupling,
increasing the coupling strength increases the RR, as long as
the decision threshold is properly tuned (along blue line) due
to noise cancellation [Fig. 3(a)].

If we break the symmetry of the diffusive coupling model
(differing coupling strengths or decision thresholds), indi-
viduals may value their neighbor’s beliefs less (lower κi) or
may need less evidence to decide to depart the patch (θi

closer to zero), which could occur due to varying experience
or access to information across the group. To identify how
asymmetric strategies shape group performance, we consider
two agents with different decision thresholds θ1 �= θ2 and
coupling strengths κ1 �= κ2. We compare four representative
cases, different combinations of high and low decision thresh-
olds (θ1) and coupling parameters (κ1) for agent 1, in which
we optimize the other agent’s (θ2, κ2). When agent 1’s fixed
decision threshold is mistuned but diffusive coupling is strong,
the group RR can still be near optimal if agent 2 chooses a de-
cision threshold that counteracts agent 1’s threshold being too
large/small [Fig. 3(b)]. However, when agent 1’s coupling is
weak, the optimal group RR is substantially suboptimal even
when agent 2 compensates for decision threshold mistuning.
As with symmetric groups, strong social communication is
important for efficient group-level foraging. Strong coupling

FIG. 4. Comparison of RRs in group with pulsatile coupling.
(a) RR heat map for a two agent group with the same decision
threshold θ and coupling strength κ , and α = 1, ρ = 4, τ = 5, and
TI = 5. Decision and departure time statistics are obtained by run-
ning Monte Carlo simulations for Eq. (4) (see Appendix A 2 a). Grey
line: Optimal decision threshold θ for a given coupling strength. The
line is smoothed by computing average over a sliding window of
length 3. Right column: RR in the infinite coupling limit (κ → ∞).
(b) Asymmetric strategies. Optimal threshold θ2 (1st row), coupling
κ2 (2nd row), and RR (3rd row) for fixed agent 1 threshold θ1 and
coupling strength κ1. Grey line: Optimal symmetric θ and κ . (c) Patch
departure decision time distributions for each group in (b).

pushes (pulls) the belief of the first agent with a far (close)
decision threshold towards their decision threshold such that
the foraging time for both agents is similar [Fig. 3(c), blue/red
curves]. When agent 1 is weakly coupled to agent 2, the
best strategy for the group is for agent 2 to compensate for
late/hasty decisions by speeding/slowing their own, but the
agents decide at different times and the group’s RRs are de-
creased [Fig. 3(c), purple/green curves].

C. Decisions in pulsatile coupled system

Pulsatile coupling involves less overall information ex-
change and yet has a stronger dependence on the coupling
parameters κ j compared to diffusive coupling [Fig. 4(a)].
As with the diffusively coupled group, strong coupling in-
creases groups’ RR in a pulsatile coupled system [Fig. 4(a)].
Moreover, the RR falls off sharply for weak coupling [com-
pare Fig. 3(a) and Fig. 4(a)]. For asymmetric strategies, this
trend is even apparent when agent 1’s coupling is weak but
agent 2 employs strong compensatory coupling [Fig. 4(b),
purple/green bars]. Even with strong bidirectional pulsatile
coupling, heterogeneous groups attain lower RRs than het-
erogeneous diffusively coupled groups [compare Fig. 3(b),
blue/red and Fig. 4(b), blue/red]. This indicates that while
pulsatile coupling strategies can attain high RRs in the sym-
metric case with intermediate values of κ , their performance
is sensitive to mistuning. Since agents only communicate their
decisions to depart, one cannot compensate for the mistiming
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of their neighbor’s departure decisions, but can only synchro-
nize with poor departure decision times to raise the group RR
[Fig. 4(c)].

D. Model identification and fitting

To test model identifiability and illustrate model fitting,
we developed a method for inferring model parameters from
synthetic data (i.e., generated by the model itself) for a group
with two agents. Parameters were selected using the Bayesian
maximum a posteriori (MAP) method [64]. Using Bayes rule
and the independence of each departure time observation pair
Tk , we can write down the posterior distribution for the prob-
ability of model parameters � given K observed departure
decision time pairs T1:K ,

P(�|T1:K ) = P(T1:K |�)P(�)

P(T1:K )
=

∏K
k=1 P(Tk|�)

P(T1:K )
P(�),

(6)

where P(�) = P(θ ) · P(B) · P(κ ) is a jointly independent
parametric prior and P(T1:K ) is the marginal over the decision
time set, which can be dropped as it does not depend condi-
tionally on model parameters. The MAP estimate for model
parameters �̂ is then the mode of the posterior, Eq. (6),

�̂ = argmax�P(�|TK ) = argmax�

K∏
k=1

P(Tk|�)P(�),

selecting (θ, κ, B) for diffusive and pulsatile coupling and
(θ, B) for no coupling.

We fit models to data generated by a model whose models
are randomly chosen from the parametric prior [Fig. 5(a)],
and compute the error relative to the true parameters used to
generate synthetic data. For the coupled models,

Rel Err = 1

3

( |θ̂ − θ true|
|θ true| + |B̂ − Btrue|

Btrue
+ |κ̂ − κ true|

κ true

)
,

(7)

and an analogous expression is used for the model with no
coupling. Parameters for the pulsatile coupled model have the
highest relative error, but we find no other systematic variation
in error. We conjecture that the higher relative error of the
pulsatile coupled model is due to its parameter sensitivity. As
such, sampling variability in generating synthetic data makes
parameters more difficult to identify.

We also compare the error in parameter estimation for
different sample sizes of departure times for the three differ-
ent models across the parametric prior [Fig. 5(b)]. The box
plot shows the relative error in the MAP estimate of model
parameters for data of sample size n = 50, 100, and 500.
The average error is slightly higher for the pulsatile model,
consistent with the results for individual parameter sets in
Fig. 5(a). Generally, increasing the number of decision time
pairs sampled tends to decrease the average relative error. One
exception is the coupling parameter κ in the pulsatile coupling
model [Fig. 5(b)(iii)], which we expect is due to stochasticity
in the calculation of the effective average relative error.

To develop a framework for determining the modes of
communication used by foraging animals, we calculate Bayes

FIG. 5. Parametric fits of no coupling, diffusive, and pulsatile
model using Bayesian maximum a posteriori (MAP) estimation.
(a) Estimation errors for (i) no information coupling, (ii) diffusive
coupling, and (iii) pulsatile coupling. Bubble location represents
true parameters and bubble size/color indicates the total sum of
relative estimation error for displayed parameters, Eq. (7). Each plot
is obtained from 100 parametric samples from a uniform prior where
θ ∈ [−0.1, −5], κ ∈ [0.1, 6], B ∈ [0.1, 4] given n = 100 departure
time samples each. (b) Box plots showing the median relative error
(notches), upper/lower quartiles (boxes), minimum/maximum ex-
cluding the outliers (error bars), and outliers (stars) in MAP estimate
of the model parameters (θ , B, κ) for (i) no information coupling, (ii)
diffusive coupling, and (iii) pulsatile coupling models, calculated us-
ing data of sample size n = 50, 100, 500. The displayed distributions
of the relative error were computed using 100 parametric samples
from a uniform prior.

factors to determine which of two model classes of a pair
better explains data. Bayes factors are a model comparison
measure defined as the ratios of the likelihood of either model
class across all possible parameter values [65]. Considering
two such models {M1, M2} ∈ {Mno coupling, Mdiff , Mpulse}, we
can define the log likelihood ratio of either model Mj given
a set of observed decision times and then use Bayes rule to
rearrange

log BF = log
P(M1|T1:K )

P(M2|T1:K )
= log

P(T1:K |M1)P(M1)

P(T1:K |M2)P(M2)
,

where T1:K is the set of K patch departure decision time
pairs. For equally likely models P(M1) = P(M2), and we can
marginalize over parametric priors to obtain

log BF = log

∫
	�M1

P(TK |�M1 )P(�M1 )d�M1∫
	�M2

P(TK |�M2 )P(�M2 )d�M2

, (8)

where �Mj is the set of parameters for model Mj with corre-
sponding parametric prior P(�Mj ) defined on the set 	�M j

.
Positive (negative) log Bayes factors provide evidence for
model M1 (M2). For a randomly chosen parametric set of an
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FIG. 6. Confusion matrix showing model identifiability for no
coupling (NC); diffusive coupling (Diff); and pulsatile coupling
(Pulse). Numbers and heatmap represent fraction of actual model
samples predicted to be each model type, based on a Bayes Factor
analysis, Eq. (8). Each row is generated from 900 parametric sam-
ples of the actual model using a uniform prior on θ ∈ [−5,−0.1],
κ ∈ [0.1, 6], B ∈ [0.1, 4]. Each model fit uses n = 50 decision time
pairs.

actual model, the predicted model is the one that always gen-
erates log BF > 0 when in the numerator (M1). To determine
how difficult it is to identify each model, given 900 parametric
samples from a uniform prior for each model, we empirically
generate a likelihood of each model class being identified as
itself or another model (Fig. 6). The model without coupling
is easily identified whereas the coupled models are misclas-
sified more often. For instance, using a coupled model with
weak coupling parameters can lead to misidentification as
a model with no coupling. The pulsatile coupled model is
the most difficult to identify. We conjecture this is because
of its goodness-of-fit sensitivity to the coupling parameters
(which is penalized by Bayes factors). The diffusive model,
on the other hand, is a more robust model, so it is identified
more often, and also often predicted when synthetic data from
the pulsatile model is provided. Note, these results do not
change significantly as the number of decision time samples
is increased (see Fig. 7).

We conclude that the pulsatile model can perform well
despite only generating one moment of information exchange
per trial, but does require fine-tuning and can be difficult
to identify. The diffusive coupled model is more robust and
does require fine tuning, but involves continuous information
exchange. Our model identification results suggest that we
can expect reasonable model class identifiability even with
only n = 50 patch departure decision observations for a pair,
suggesting our analysis could translate well to identifying the
strategies used by animals in the field.

IV. DISCUSSION

Many animals forage in groups, but most models greatly
simplify the decision formation and belief sharing processes
of groups or only focus on the mechanics of single foragers
patch departure decision process. In this paper we extended
our previous mechanistic models of patch foraging decisions
[17,18] to consider social information sharing among a co-
hesive foraging group. Group cohesion is formulated as a
constraint, and represents the movement dynamics of animals,
for example, baboons or capuchin monkeys, which tend to
move together. Individuals in the group must not only infer the
current state of resources to choose an efficient time to leave
the patch, but also must synchronize decisions for the group
to stay together. Poor synchronization decreases the group
reward rate, due to wasted time of early deciders. Information
sharing not only helps synchronize the group but also im-
proves the accuracy of noisy or imperfect decision processes.

We considered two different form of information
coupling—diffusive (full sharing of an agent’s belief about
the current patch quality) and pulsatile (sharing only of time
of decision to leave). We asked how these couplings affect
overall foraging efficiency, and further examined how the cou-
pling parameters and type can be inferred from data. Strong
coupling leads to efficient group decisions (i.e., maximizing
the average reward among group members) through synchro-
nization of departure decisions. Over the parameter ranges we
tested, pulsatile coupling can yield similar or higher average
return rates than diffusive coupling because it more readily
promotes group synchronization in decision times. On the
other hand, the pulsatile model must be fine tuned, since
it generates singular communication events, so performance
falls off more rapidly than in the diffusive coupled model.

We determined the identifiability of model parameters
from data generated by the models themselves. Both coupling
and decision threshold parameters were accurately inferred
when the model class was known. Although, the pulsatile
model’s parameters were more difficult to identify, likely
due to the model’s sensitivity. When the model class was
not known, the diffusive coupled model was occasionally
misclassified (mostly as a model with no coupling) and the
pulsatile model was misclassified more often (typically as a
diffusive coupled model). Model parameter and class identi-
fication performance was limited to that obtained using 10 to
100 decision time pairs, a feasible volume of social foraging
field data [66–68]. Our approach provides a clear framework
for identifying information exchange strategies during social
patch foraging, and for fitting models to data.

FIG. 7. Confusion matrix showing identifiability of model classes using data of sample sizes (a) n = 10; (b) n = 100; (c) n = 500; (d) n =
1000. Model parameters are drawn randomly with uniform prior as in Fig. 6.
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Other factors still can complicate the decision of whether
or not to depart a patch, beyond an agent’s estimate of avail-
able resources. Classic theory has considered the marginal
value theorem (MVT), based on the principle that animals
will tend to depart when resource availability wanes below
a density at which current patch exploitation would be more
profitable than departing and exploiting another patch [69].
However, this approach neglects the variability extant in an-
imals’ resource density estimates, which can strongly shape
their patch departure statistics [17,18]. Threat of predation is
another factor that might affect an animal’s decision to leave
a patch [70]. Remaining in the same location for too long
puts one at risk, so animals may leave well before predicted
by the MVT [71]. Such threats can even be paired with that
of competition from species foraging similar resources, so
as to further complicate the decision to depart a patch [72].
Vigilance in response to possible threats can also shape the
ongoing rate of resource consumption, as animals must heed
the potential for threats as they feed [73]. Such factors could
be accounted for in our model by considering predator threat
costs in the reward rate function or drifts that would balance
considerations of resource attainment with animals’ vulnera-
bility during foraging bouts.

Some efforts have been made to identify group-wide prin-
ciples of the MVT for those that leverage social information.
A previous study suggested members of groups should leave
sooner than if they were alone, each gaining less energy than
single animals exploiting the same patch [74]. Predictions of
patch departure statistics were validated using spice finches,
exploiting food patches alone or in groups of three under
two habitats that required different travel times. Group mem-
bers left the patch sooner and with fewer seeds than solitary
foragers, but birds did not share the patch equally and their
patterns of exploitation could not be predicted by single for-
ager models. Moreover, within each group, the bird expected
to leave first delayed its departure although it collected fewer
seeds than the others, perhaps attempting to maintain cohe-
sion. Birds seemed to depart at the same time, as a unit, and
there was no preferential order of departure measured across
patches. Birds seemed to assess patch richness by observ-
ing their conspecifics’ feeding rates, combining this “public
information” with personal information derived from their
own foraging success [21,75]. Despite differences in indi-
vidual feeding rates, all group members can leverage social
information to obtain the same estimate of patch richness,
suggesting they should depart simultaneously [76]. Among
other bird species, starlings appear to use public information
during foraging [75], while budgerigars do not [76].

Indeed there are a number of possible extensions to the
model we could consider, relevant to identifying collective
decision strategies of foraging groups and tractable models
that might admit explicit departure time expressions. Note, we
could incorporate time-varying noise into the drift-diffusion
process to better represent the nonmonotonic changes in food
encounter rate variance as the forager depletes the patch. Such
an assumption could result in tighter patch departure distribu-
tion peaks as the variance would wane as the patch is depleted.
Also, some animals do forage in large (N 
 1) groups [77],
so that (a) diffusive coupling could significantly dampen noise
in the patch quality estimate or (b) pulsatile coupling could

lead to rapid departure of all animals in a connected group
[78]. Model statistics in such large system-size limits could be
obtained using mean field approximations or moment closure
approximations, which would account for the dominant motifs
in the social structure network [79]. To account for the energy
involved in communication, we could consider a cost in the
reward rate function either scaling linearly with time in patch
for diffusive coupling or a smaller one-time cost for pulsatile
coupling.

Variations in social hierarchy and energy seeking aims
can also arise within animal groups. First, while some an-
imal groups move as a cohesive whole on the landscape,
other groups (for example, spider monkeys) have fission-
fusion dynamics. One can relax the assumption that foragers
leave together, and represent fission-fusion group dynamics
by considering agents that move between patches in a forag-
ing landscape. Second, one can introduce a variety of biases
that animals exhibit into these models such as satisficing or
state-dependence (e.g., hunger or thirst) [80]. Third, one can
study effects of social structure observed in different animal
groups, such as either hierarchical or egalitarian [81], as well
as forms of coupling on the foraging dynamics, opening up
the opportunity to link collective social structure to collective
and individual foraging dynamics.

One category of previous foraging models focuses on the
problem of two-dimensional stochastic movement dynamics
and efficient modes of spatial exploration and search [82]. Our
model simplifies this interesting and complementary aspect of
the foraging problem, since we wished to focus on how social
influence shapes the cognitive processes underlying the deci-
sion to leave a local resource region and search for another.
One commonly modeled and experimentally identified search
strategy involves local diffusive search interspersed with long-
range ballistic motion [83]. Such intermittent search strategies
are consistent with the framework of patch foraging, which
also involves local exploitation of patches punctuated by inter-
patch travel [84]. Statistics of these strategies have often been
characterized by power law (Lévy flights) or gamma transit
length distributions [85,86]. In future work, we could consider
models that also identify how social interactions can steer
transits between patches or local foraging bouts to see how
this shapes the efficiency of search strategies. It would also
be interesting to consider foraging strategies of agents whose
environments are not strictly patchy but are sampled locally
due to finite spatiotemporal precision [87]. In this case, the de-
cision to leave a local region may still follow the deliberation
and commitment process laid down here for patch foraging.

In previous paper, we considered Bayesian agents that
could learn the resource distribution in an environment as they
visit multiple patches [88]. Such a model calls into question
the primary goal of maximizing reward rate, since rapid learn-
ing may require overharvesting patches. Aside from needing
to learn their environmental context, there are a number of
factors (predation, season, reproductive state, or competition)
that could affect patch departure decisions that could evolve
dynamically over time [84].

Social foraging is crucial for animals as it is important
for resource localization and collective search [15,66,89–
93]. While we considered cohesive group movement, other
animals such as spider monkeys live in groups but do not
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maintain cohesion during daily foraging, instead leaving
and rejoining groups as they forage (so-called fission-fusion
group dynamics) [94,95]. An extension of our modeling
approach could be used to represent fission-fusion group dy-
namics by considering agents that move between patches in
a foraging landscape. Factors other than reward optimiza-
tion also play a strong role in driving group organization
including predator protection, environmental constraints, and
mating behavior. Current work seeks to examine evolution-
ary drivers of differences in group social dynamics within
and across species, which could provide a broader class of
group performance measures and communication modalities
for quantitative models [16,68].

Our model represents patch-leaving decisions using an
accumulation-to-bound process [17], where individuals in-
corporate both personal and social information in order to
determine when to leave a patch. Linear diffusive coupling
has been shown to generally reduce noise in belief estimates
[44], but it is important to consider various forms of infor-
mation sharing (e.g., diffusive versus pulsatile coupling) and
the way in which such shared information is translated into
a decision. Other work has considered nonlinear (e.g., sig-
moidal) interactions and information sharing in social groups
[96,97]. For larger groups, an alternative representation could
treat beliefs as a “complex contagion,” based on a fraction
of connected neighbors that have made a decision, instead of
a simple sum [41,98]. Furthermore, individuals may not be
uniformly connected to others so that influential individuals
have more weight in their information sharing with neighbors
[81,99,100], is an interesting further extension of our model
approach, and can help inform how different species exchange
information [101].

To socially forage, animals often use social cues, informing
their decisions through a variety of sensory modalities: the
observed harvest or departure of conspecifics from patches
[102], olfactory cues (e.g., informative breath [103]); vocal-
izations [104–106]; or visual signals [107]. Birds and other
species have broad-ranging sensory abilities to detect con-
specifics: scavengers can visually detect a conspecific circling
a carcass from many kilometers [67], and marine birds can
spot diving neighbors [108]. Our model forms a basis for
future studies that could incorporate more nuanced spatiotem-
poral features and modalities of communication.

Increasingly sophisticated recording technology facilitates
high-resolution motion tracking of diverse species [109,110],
allowing for a thorough validation of theoretical models [111].
The availability of such technologies and the gathered large
scale data can allow model fitting to foraging behavior; e.g.,
building on the use of drift-diffusion models fit to evidence
accumulation or visual search tasks [112]. By fitting to simu-
lated data, we showed that the parameters in our model can
be readily identified, but if the coupling type is unknown,
inferring the pulsatile coupling strategy and its parameters is
more difficult than inferring diffusive coupling. Future work
can build on these results to fit to social foraging data, and
infer the information-sharing strategies and differences among
individuals.

Software generating model statistics, identifying models,
and plotting figures can be found at GitHub [113].
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APPENDIX

1. Moments of resource depletion model

Consider the depletion process by which a forager encoun-
ters food chunks in a patch at a rate λ · a proportional to the
current number a of food chunks left, immediately consumes
a chunk when encountering, and continues until leaving the
patch or consuming all food chunks. In this case the number of
chunks left evolves stochastically as a pure death process, and
the probability of there being a chunks left at time t is given
by the coupled system p′

A(t ) = −λApA(t ); p′
a(t ) = λ(a +

1)pa+1(t ) − λapa(t ) (a = 1, ..., A − 1); p′
0(t ) = λp1(t ). As-

sume initially there are A chunks of food [pA(0) = 1]. To
determine the first moment (mean) for the number of chunks
left at time t , we define μ1(t ) = ∑A

a=0 apa(t ) so that μ′
1(t ) =∑A

a=0 ap′
a(t ). As such, we can define the differential equation

μ′
1(t ) = −λ

A∑
a=1

a2 pa(t ) + λ

A−1∑
a=0

(a + 1)apa+1(t )

= λ

A∑
a=1

[a(a − 1) − a2]pa(t ) = −λμ1(t ),

with initial condition μ1(0) = A, so μ1(t ) = Ae−λt . Since the
encounter rate increases linearly with the number of foragers,
if there are N foragers, we would analogously find μ1(t ) =
Ae−λNt , so N can be absorbed into the rate λ. Considering now
the second moment μ2(t ) = ∑A

a=0 a2 pa(t ), we can similarly
formulate an evolution equation

μ′
2(t ) = −2λμ2(t ) + λμ1(t ) = −2λμ2(t ) + λAe−λt

with initial condition μ2(0) = A2, which can be solved to
find μ2(t ) = (A2 − A)e−2λt + Ae−λt . Variance is then eas-
ily computed as σ 2 = (A2 − A)e−2λt + Ae−λt − A2e−2λt =
Ae−λt (1 − e−λt ), which rises and falls as resources are con-
sumed. As with the first moment (mean), instantaneously
changing the number of foragers will instantaneously change
the rate λ as a piecewise smooth process. As such, we can
compute the mean piecewise in time, adapting the rate for
each forager count.

2. Departure time statistics calculation

Decision and departure time statistics are obtained either
by running Monte Carlo simulations (on the order of 105 per
parameter set) or simulating the corresponding Fokker-Planck
equation and calculating the flux through decision boundaries
at this x1 = θ1 and x2 = θ2. Although the model formulation
is general, we focus the analysis in this paper on the tractable
case of two coupled agents.
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a. Monte Carlo simulations

One straightforward way to approximate departure time
statistics is to perform many realizations of the stochas-
tic differential equations describing agents’ beliefs. For a
pair of agents, a single Monte Carlo simulation initializes
(x1(0), x2(0)) = (0, 0) and employs the Euler-Maruyama al-
gorithm with the time step �t = 0.01 for the corresponding
pair of coupled Langevin equations until either x1(t ) � θ1 or
x2(t ) � θ2. Thereafter, for diffusive coupling the remaining
agent’s belief x j evolves with xk replaced by θk until x j � θ j .
For pulsatile coupling, the remaining agent’s belief is instan-
taneously incremented x j (t ) − κ j and evolves until x j � θ j .
The resulting first and second decision times T1 and T2 are
recorded and used to compute statistics.

b. Fokker-Planck equation simulations

When the group’s decision time can be described by a
single variable system (perfectly coupled cases considered in
Sec. III A), the departure time statistics are computed by nu-
merically simulating the associated Fokker-Planck equations.
The Fokker-Planck equation takes the form

∂P(x, t )

∂t
= − ∂

∂x

((
ρe− N t

τ − α
)
P(x, t )

) + B̃
∂2

∂x2
P(x, t ),

P(θ, t ) = 0,
(
ρe− N t

τ − α
)
P(L, t ) = B̃

∂

∂x
P(L, t ), (A1)

and is defined over the domain [θ, L], where x = θ is an
absorbing boundary and x = L (L sufficiently large) is a re-

flecting boundary. The value of B̃ is B(B/2) for pulsatile
(diffusive) coupling. Eq. (A1) is numerically simulated using
a second order finite difference method in both time and
space dimensions with �t = 0.005 and �x = 0.1 to obtain
the probability density for the decision variable x, P(x, t ). The
time dependent probability of departure decisions is obtained
by calculating flux through the absorbing boundary x = θ .

3. Likelihood functions calculation

Likelihood functions P(T|�) used for model identification
and model fitting were obtained by solving the associated
Langevin equations using Monte Carlo simulations for a dis-
crete set of parameters, which covers the space of the uniform
prior. We discretized the parameter space � into a three-
dimensional grid (θ, B, κ ) ∈ [−5,−0.1] × [0.1, 4] × [0.1, 6]
with 40 partitions along each dimension. Decision time distri-
butions for each parameter set are binned as a probability mass
function along (T1, T2) ∈ [0, 75] × [T1, 75] with steps of size
�T = 0.5 along each dimension.

4. Model identification with data samples of varying length

Here show the general trends reported above (Fig. 6)
are preserved when identifying model class using various
volumes of decision time sets (Fig. 7). The model with-
out coupling is easily identified whereas the coupled models
are more likely to be misidentified, especially the pulsatile
coupled model. Moreover, note there is not substantial im-
provement in the model class identification fractions when
increasing to n = 1000 samples per model fit.
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