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Abstract

An approach to the analysis of HAL/S software is discussed.
The approach, called anomaly detection;’invoTves the algorithmic
derivation of information concerning potential errors and the subse-
quent, possibly non-algorithmic determination of whether or not the
reported anomalies are actual errors. We give detailed designs for
algorithms for detecting data-usage and synchronization anomalies
and discuss how this technique may be integrated within a general
software deVélopment support system.




Introduction

In developing software systems, especially large, complex ones,
practitioners require analytic techniques to help them assess the
validity of the system. In this paper, we explore an approach to
providing these analytic techniques which we call anomaly detection and

present anomaly detection algorithms useful for the assessment of HAL/S
[Inte 76] programs.

In the anomaly detection appkoach, assessment is a two-step
procedure. First, algorithms are employed to discover potential
errors (anomalies) as evidenced by deviations from the developers'
expectations. Second, non-algorithmic analysis, rvelying upon the
experience, knowledge, and ekpertise of.the developers themselves,
is employed to determine whether or not a reported anomaly repre-
sents an actual error.

To focus our work, we have established the following criteria.
First, our techniques must be applicable to programming language
representations of the software system. Thus, they will not have to
await the acceptance of some mdde]ing representation by the system
developers. Second, our techniques should be oriented toward expec-
tations that arise from general concerns which pertain to a wide speétrum
of programs. These concerns may reflect problem-domain considerations,
the semantics of programming languages, or general rules of good pract-
ice. Thus, we do not have to develop techniques for specifying problem-
specific expectations in order to have our techniques be applicable
to a wide range of systems. Third, our techniques should not be
restricted to sequential systems, but should apply also to systems
with concurrency. This makes them applicable to those complex
systems which involve either actual or apparent parallelism.

Finally, our techniques should be of "reasonable" quality. We

desire techniques that are considerably more effective than the
trivial one which always, for all programs, announces "There's

possibly an error somewhere in the program"; but we want tech-

niques in which the algorithms have pleasing computational pro-
perties.



It should be stressed that we view anomaly detection as only
one of the types of analytic techniques which should be made availa-
ble to development practitioners. We feel that by not attempting to do
complete analysis, we can find usefu1 techniques which have reason-
able computational requirements and are generally appTicab1e over a
broad range of software systems. We also feel that our current work
gives rise to immediately usable techniques, but that it is prelim-
inary in nature and many questions remain concerning its effectiveness
and the degree to which anomaly detection techniques may be integrated
into a full set of analytic techniques.

In the next section we give a brief overview of the anomaly
detection system we envision, indicate how it may be incorporated as
part of a more extensive development support system, and present a
small example to convey an intuitive understanding of the purpose and
functioning of the various parts of the anomaly detectionksystem. The
following sections address the various phases of our system in turn,
covering the capabilities of the anomaly detection algorithms we have
developed. In the concluding section, we discuss the implications of
some of the constraints we have imposed in order to focus our work and
indicate future directions we plan to pursue.

In the Appendices to this report, we give detailed pseudo-code
descriptions for various segments of the anomaly detection system which
we have developed. These algorithm specifications give the logic of the
processing, but would have to be further refined during implementation
to introduce data storage and processing efficiencies.



IT. Anomaly Detection System Overview

We envision that the anomaly detection algorithms will be
provided as tools within a software development support system.
This support system would provide a variety of tools to development
practitioners, supporting both management and bookkeeping activities as
well as assessment activities. The support system would be organ-
ized as a set of modules, each of which augments and/or displays
the information concerning the system under development which is
stored in some central information repository. This organization

is depicted in Figure 1.

INFORMATION
REPOSITORY

Figure 1
Organization of Development Support System

Guided by an overall methodology, practitioners would use the
various modules, in sequence and in parallel, to gradually evolve a
detailed description of the system under development. During this
evolution process, progress and validity could be periodicallyand continu-
ously assessed by employing those modules provided for this purpose.

The anomaly detection modules would be amona .this set of assessment
modules. -



To represent specific ways in which use of the modules may be
coordinated to achieve some overall information transformation, we
use the graphical notations presented in Figures 2 and 3.

Figure 2
Representation of a Module Producing
Information Used in Another Module's
Processing

Information Information Information
Structure 1 Structure 2 Structure 3

Figure 3

Representation of a Module Producing
Information Used as Input by Another
ModuTe

The notation of Figure 2 is used to indicate that information in the

central repository has been deposited by one module (B) specifically
so that some other module (A) may perform its function. (The usual
implication is that B's processing is done much Tess frequently than
A's.) The notation of Figure 3 denotes that the information produced

by one module (C) is subsequently transformed by another module (D).

Using these notations, the ideal anomaly detection subsystem
may be depicted as in Figure 4. This system is language independent
but can be particularized by information prepared by a language .
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Ideal Anomaly Detection
System

definition processor. This system would also be able to accept
definitions of the anomalies to be detected.

We have reduced the scope of the problem by assuming that we
are working with a particular language and by focusing specifically
upon data-usage. and synchronization anomalies. Therefore, the
system for which we strive is that depicted in Figure 5. (We have
been working with a particular language, HAL/S,but our techniques can
be employed with other concurrent programming languages as they do not
depend on the exact form of the language's constructs.)

The anomaly detection task may be decomposed into two major sub-
tasks. The first is to derive a representation of the program under
analysis which retains the information pertinent to the anomalies
under detection and presents this information in a form which may be




conveniently used by the anomaly detection algorithms. The second
task is the anomaly detection itself. In Figures 6-9, we indicate
the major components which perform these tasks.

So that the anomaly detection subsystem may easily be gener-

alized to other languages, the initial processing module performs

a program-to-parse-tree transformation (Figure 6). Identifying
this as a separate module leads to two subsidiary benefits. First,
it allows the use of existing scanner and parser generation systems

in the preparation of the HAL/S Language Processor module. Second, the

overall system may be easily modified to use representations of HAL/S

programs other than the program text. In particular, the overall
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system may be changed to use the internal, intermediate representation
produced by the HAL/S Tlanguage's compiler.

The next module which we identify has the task of building
a flow graph representation of a program (see Figure 7). In a flow
graph, nodes represent program statements (or perhaps fragments of
statements) and arcs represent the flow of control within sequentially
executed segments of the program (i.e., within program tasks). Further,
for the purposes of our anomaly detection algorithms, cycles are removed
by "unfolding" iteration Toops. Identifying this as a separate module
again eases our task since it is possible for us to consider using exist-
ing techniques in the design of the Flow Graph Builder module.

We decompose the Flow Graph Analyzer as indicated in Figure 8.
In approaching the processing in this way, we separate out the task
of constructing the Inter-Process Precedence Graph in which atten-
tion is focused upon process synchronization interactions and arcs
are introduced to indicate the precedence of operations
enforced by these interactions. This Inter-Process Precedence Graph
may be used directly for the detection of synchronization anomalies,
or the information contained in this graph may be injected ﬁnto the
flow graph to produce a combined Flow And Precedence Graph which may
be used in the detection of data-usage anomalies.

Finally, we identify the modules depicted in Figure 9. These
divide the task of constructing an Inter-Process Precedence Graph
into three steps. First, the Flow Graph is processed to eliminate
those nodes and arcs which do not pertain to the use of synchroni-
zation constructs or directly affect the flow of execution of syn-
chronization operations. Then arcs reflecting the order of execu-
tion imposed by the synchronization operations are inserted into
the graph. Finally, most (or ideally all) of the arcs which reflect
impossible execution sequences are removed from the graph. The ,
identification of these last two modules allows separate focus upon
the simple task of obtaining a representation of the effect of
the synchronization operations and the much more difficult task
of obtaining a representation which reflects the actual run-
time behavior of the program under analysis. '
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Before giving the details of the individual components in this
decomposition of the system, we first give a small example and discuss
the relationship of our work to the work of others and to our previous
work.

IIT. An Example

In Figure 10 we present an example program in the HAL/S language
and show the various information structures produced during processing.
The program is a meaningless one except for the purpose of indicating
the major types of anomalies which our algorithms will detect.
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IV. Related Work

Closely related to our own work is that of Taylor and Osterweil
[TayR 78]. They share an interest in producing a general software
development support system, and Osterweil has been actively involved
in the DAVE data-usage anomaly detection éystem [OstL 76]. Although
our paths of development differ, we have arrived at essentially the
same point, except for relatively minor differences in capabilities
and algorithms. - |

Reif's recent work [Reid 78] on the analysis of interacting
processes deals with formal models of concurrent systems and decida-
bility. It relates most directly to the formal foundational work
which is a basis for the work reported here ([Grel 777, [OgdW 787,
[Petd 747, [Petd 761, [Petd 78], [RidW 727, [RidW 73], [RidW 747,
[RidW 78a], [ShaA 78], [WilJ 78]).

The Inter-Process Precedence Graph is an intermediate represeh-
tation for describing the partial ordering of synchronization events
within concurrent systems. Thus, it is closely related to other
techniques that have recently been developed for this purpose ([CamR 747,
[Grel 77], [HabA 757, [RidW 78b], [ShaA 78]). Its representational power
is equivalent to that of event expressions, defined in [RidW 78b].

Our synchronization anomaly detection algorithms were developed
after initially attempting to employ the static deadlock detection
algorithms developed by Saxena [SaxA 77]. However, we found the.
requirements for use of those algorithms to be too strict for our

purposes.

The data-usage anomaly detection phase of our system is derived from
the DAVE system for analyzing FORTRAN programsA[OstL 76]. Faster, more
efficient algorithms [FosL 76] evolved from the original system and the
elements of the analysis performed by them are essentially language
independent. These algorithms have been applied to the HAL/S language
for single-process programs to design a DAVE-HAL/S system [DreC 78].

This work has been extended to include analysis of multi-process HAL/S
programs as well and will be described here in relation to the HAL/S
language.
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V.1 Flow Graph

The flow graph is derived from the parse tree and symbol table
for a program specified in the HAL/S language. The flow graph is an
abstraction of the control structure of the hrogram and is used to
detect anomalous data flow patterns.

The flow graph is composed of a subgraph for each subprogram
unit in the program under analysis. Each subgraph contains:

1. N, a set of nodes, {n}, Ny n3, cees nk}
2. E, a set of ordered pairs of nodes (edges), {(nj , nj )s
1 2
(n; s ny )y (n. yn, ), ..., (n. 5, n. )}, where the
J30 g 350 g g p

nj s are not necessarily distinct.
i
3. Nas the unique entry node, Ng € N.

4, Ny the unique exit node, nX e N.

The nodes in the graph roughly correspond to statements in the
program. The edges in the graph indicate flow of control from one
node to the next. The flow graph is acyclic. Each loop in the pro-
gram is expanded to reflect zero-or-more or one-or-more repetitions
of the loop. Each node, nj e N, has the following information
associated with it:

1. P, the set of predecessor nodes. n, e P if the edge

(n_i;nj) e E.

2. S, the set of successor nodes. n; e S if the edge

(nj’ni) e E.

3. t, the type of the node, indicating the type of statement
in the language HAL/S which the node represents.

4. r, a representation of the actual statement or statement
fragment which the node represents.

5. m, the sequential number of the statement which the node
represents.
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V.2 Flow Graph Builder

The flow graph is produced by the flow graph builder from the
parse tree and symbol table for a program. The major tasks in the
production of the flow graph are to expand loops and to model the
synchronization constructs with SETs and WAITs. (See Appendix A.)
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V:3 Inter-Process Precedence Graph

The Inter-Process Precedence Graph, derived from the Flow
Graph, is an abstraction of the synchronization constructs and
the control structures which directly affect the flow of execu-
tion of the synchronization operations. The Inter-Process Prece-
dence Graph is used to detect anomalous patterns of synchroniza-
tion operations.

The graph is composed of subgraphs for each process in the
program. Each subgraph is a flow graph, representing the synchro-
nization operations and the pertinent control structures in the
program.

The synchronization constructs are modeled by combinations
of SET, RESET, and WAIT operations applied to event variables.
Event variables are binary valued variables. They may be set to
true (SET), set to false (RESET), or a process may be suspended
until a logical expression over event variables is true (WAIT).
For the languages we have considered, SET, RESET, and WAIT appear
to be sufficient to model all synchronization constructs.

Thé subgraphs are linked together by inter-process precedence
edges (IPPEs) as shown in Figure ]1. An IPPE is an edge

(n

,n.) € {(n} ,n.),(n.n,n‘), ey (n

T 13 T

such that at least one of the Ny s must execute before nj can
execute. Thus the IPPEs indicate inter-process time orderings.

R R T AR R Ay
PROCESS 1 PROCESS 2 PROCESS 3
\ \
SET eV D SET EV
, WAIT EV

Figure 11
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Since a WAIT on an event variable cannot be satisfied until
a SET for that event variable has been executed, the IPPEs may be
viewed as 11nking'a11 SETs for a particular event variable to all
of the WAITs for that same event variable.

The object of a WAIT can be a logical expression over event varia-
bles, and many SETs can occur for any particular event variable.
This results in multiple IPPEs which lead to the same WAIT node.
These IPPEs are grouped in conjunctive normal form. Thus, before the
 WAIT can be satisfied, at least one term in each conjunct must be
true. Therefore, for each conjunct, at least one node having an
IPPE in that conjunct must execute before the WAIT can be satisfied.

In the HAL/S Tanguage, the.synchronization constructs can be
modeled as follows:

1. SCHEDULE - a schedule is treated as a SET on an event .
variable representing permission for a process to execute.

2. PROCESS - a process iéytreated as having a WAIT on the
event variable representing permission to execute.

3. CLOSE - a close is treated as a RESET on the event variable
representing permission for the process to execute.

4. SIGNAL - a signal is treated as a SET, followed immediately
by a RESET.

V.4 Precedence Graph Construction

The inter-process precedence graph is produced from the flow
graph in three steps. First, Focus removes all nodes in the graph
which do not represent synchronization constructs or control struc-
tures which directly affect the flow of execution of the synchroniza-
tion constructs. Next, IPPEs are Inserted into the graph. (See
Appendix B.) Finally, Reduce removes all spurious IPPEs from the
graph. (See Section V.6.)

The flow and precedence graph is produced by Injecting the
IPPEs, from the inter-process precedence graph, into the flow graph.
(See Appendix B.)
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V.5 Execution Sequence Sets

The inter-process precedence graph is used in the generation of
a number of sets of nodes, collectively known as the execution sequence
sets, at each node in the graph. These execution sequence sets give
information about the possible and forced orders of execution of the
nodes in the graph.

Before we discuss the contents of the individual sets, we shall
first explain how we use the terms 'execution path' and 'execution
sequence' when referring to concurrent programs.

An execution sequence through a‘program is the ordered set of
statements that would be executed during a run of the program. It is
assumed that where sections of two or more processes execute concur-
rently, there will still be an order in time of the execution of the
individual statements; i.e. at some (possibly atomic) level, no two
actions can occur simultaneously.

An execution path through a program can be regarded as the set
of all possible execution sequences for the particular set of state-
ments that constitute a run of the program. An execution path is
a set of paths through each individual process in a run of the
program, together with the partial orderings that are enforced by the
synchroniiation statements. For a program with no potential concurrency,
the set of execution sequences in an execution path contains only one
element -- i.e. the two terms refer to the same thing. For a program
with potential concurrency, there will be several execution sequences
in an execution path, as the execution path contains no information
concerning the actual order of execution of the individual statements
in sections of two or more processes running concurrently.

At a node n, the following execution sequence sets will be
generated:
ALWAYS(n) contains all nodes which must execute if n is to execute;
i.e. those nodes that are always present in every execution
path containing n.

NEVER(n)  contains all nodes which cannot execute if n is to execute;
i.e. those nodes that do not appear in any execution path
containing n.



BEFORE(n)
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contains all nodes which, if they execute at all, will
execute before n; i.e. those nodes that occur before n on
at Teast one execution sequence containing n, but do not
occur after n in any execution sequences containing n.

ALWAYS BEFORE(n) 1is the subset of BEFORE(n) containing those nodes

which always execute before n on all execution sequences
containing n.

POSSIBLY BEFORE(n) 1is the superset of BEFORE(n) containing those nodes

which, for at least one execution path containing n, will
execute before n on all execution sequences in that execution
path.

CONCURRENT(n) contains every node e which satisfies the following

conditions:
— e and n co-occur in at least one execution path

— 1in every execution path in which both nodes occur,
there is no forced ordering of the two nodes, i.e. in
every execution path in which both nodes occur, e will
occur before n in at Teast one execution sequence in the
execution path, and n will occur before e in at least one
execution sequence in the execution path.

ALWAYS CONCURRENT(n) 1is the subset of CONCURRENT(n) containing those

nodes which satisfy the conditions for belonging to
CONCURRENT(n) but also co-occur with n in every execution
path containing n.

POSSIBLY CONCURRENT(n) contains every node e which co-occurs with n on

AFTER(n)

at least one execution path in which there is no forced
orderings of the two nodes.

contains those nodes which, if they execute at all, will
execute after n, i.e. those nodes that occur after n in
at lTeast one execution sequence, but do not occur before
n in any execution sequences.

ALWAYS AFTER(n) is the subset of AFTER(n) containing those nodes which

always execute after n in every execution sequence contain-
ing n.
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POSSIBLY AFTER(n) 1is the superset of AFTER(n) containing those nodes
which, for at Teast one execution path containing n, will

execute after n in all execution sequences in the execution
path.

There is a certain amount of symmetry which is implied by the
above definitions of the execution sequence sets. Firstly, if node a
is in the NEVER set of node b, then node b will be in the NEVER set
of node a. If node a is in the AFTER set of node b, then node b will
be in the BEFORE set of node a, and vice versa. Similarly if node a
is in the POSSIBLY BEFORE set of node b, then node b will be in the
POSSIBLY AFTER set of node a, and vice versa.

To calculate the ALWAYS sets it is necessary to generate some
intermediate sets. ALWAYS BEFORE_WITHIN PROCESS(n) contains those |
nodes, within the same process as n, that must always execute before n
on all execution sequences containing n. Similarly for ALWAYS AFTER
WITHIN PROCESS(n). BEFORE_WITHIN PROCESS(n) contains those nodes within
the same process as n, that will execute either before n, or not at all,
in all execution sequences containing n. Similarly for AFTER_WITHIN
PROCESS(n). The procedure to generate these sets takes advantage of the 
fact that loops within processes will have been expanded out before
this stage is reached.

From these sets are generated the ALWAYS SUBPROCESS SETs and
SUBPROCESS_SETs for each process. For a process p, SUBPROCESS SET(p)
contains all subprocesses of p; i.e. those processes which can be
scheduled by p, or can be scheduled by a process scheduled by p, etc.
ALWAYS_SUBPROCESS SET(p) is the subset of SUBPROCESS SET(p) containing
those subprocesses of p which must always execute if p executes.

The first step in the generation of the final ALWAYS sets is to
generate the ALWAYS set for the open node of the main program. It
contains those nodes which must execute every time the program runs.
It consists of all nodes that always execute in all subprocesses of
MAIN that always execute, together with all nodes in MAIN that always
execute. For each other process, the ALWAYS set of the open node is
the same as the ALWAYS set of the schedule node.

For a node n, ALWAYS(n) contains the union of the following sets:
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— ALWAYS of the open node of the process containing n
— ALWAYS BEFORE_WITHIN PROCESS(n)
— ALWAYS AFTER WITHIN PROCESS(n)

— Those nodes that must execute in any subprocess p that must
execute if n executes, but does not necessarily have to execute
whenever the process containing n executes.

For the generation of the NEVER sets, it is necessary to generate
NEVER WITHIN_PROCESS sets. NEVER WITHIN PROCESS(n) contains those
nodes within the same process as n that cannot execute if n executes.
For the open node of a process other than the main program, the NEVER
set is the same as the NEVER set of the schedule node. For a general
node n, NEVER(n) is the union of the following sets:

— NEVER set of the open node of the process containing n
— NEVER_WITHIN_PROCESS(n)
— A171 nodes in all subprocesses that cannot execute if n executes.

CALCULATE BEFORE(m,p) is a recursive function which returns as its
value the BEFORE set of a node m in process p. Nodes in BEFORE WITHIN
PROCESS(m) are members of BEFORE(m). Nodes in the intersection
of the BEFORE and NEVER sets of nodes within p that have edges to m
are placed in BEFORE(m) as well as nodes in the intersection of the
BEFORE and NEVER sets of nodes within other processes which are the
tails of IPPEs to m.

Because of the possibility of loops in the graph involving IPPEs,
a stack, SAVE, is kept containing an entry (m,p) each time CALCULATE BEFORE
is entered. In the event that the recursive process leads to the
calculation of the BEFORE set of a node m which accurs within the same
process as a node n on SAVE and m is a descendant of n or an element
of NEVER(n), then the identity is returned as the result of the call.
Also, all entries on SAVE from the one after (n,p) to the top are
placed in REDO, indicating that their BEFORE set calculations are valid
only from the standpoint of node n and their true BEFORE sets need to
be calculated separately.
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CALCULATE_AFTER(m,p) employs the BEFORE sets, reasoning that if
n € BEFORE(m), then m & AFTER(n).

The POSSIBLY BEFORE set of each node m contains each entry node
e tom plus BEFORE(e). The POSSIBLY AFTER sets are formed from the
POSSIBLY BEFORE sets in the same manner as above.

The pseudo-code for the generation of the execution. sequence sets
appears in Appendix C.
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V.6 Spurious IPPE Elimination

The Tast step in the construction of the Inter-Process Prece-
dence Graph is to remove arcs which reflect impossible execution
sequences.

The presence of each IPPE in this graph should indicate that
three conditions have been satisfied.

1. The predecessor node causes a term in the wait expression
of the successor node to become true.

2. The predecessor node will execute before the successor
node in at least one legal execution sequence.

3. In at least one of the execution sequences in 2) the term
will not become false again before the wait has completed.

During the building of the graph, however, all IPPEs are inserted
which satisfy only condition 1) above, and it is possible for some 6f
these to violate conditions 2) or 3) above. Those that do are spuri-
ous, and for more accurate results, should be removed prior to perform-
ing any analysis.

For example, Figure 12 contains a section of an Inter-Process Prece-
dence Graph, as it would appear immediately following IPPE insertion. The
section corresponds to parts of two parallel processes, synchronizing them-
selves using one event variable, ev. Originally, ev has the value false,
and no other processes are using it. The node numbering is chosen arbi-
trarily. The presence of an IPPE from node 3 to node 4 should indicate
that in some sequences it is the execution of node 3 that allows for
the completion of the wait at node 4. However, inspection of the code
reveals that node 5 must execute before the wait at node 2 can complete,
preventing node 3 from being reached until after the wait at node 4 is
completed. The IPPE therefore violates condition 2, and should be removed.
In addition, the IPPE from node 1 to node 6 should indicate that the wait
at node 6 can complete at any time after node 1 has executed. However,
node 1 must always execute before the wait at node 4 can complete, and
hence its effect will be negated by node 5 before node 6 can be reached.
This IPPE should also be removed, as it violates condition 3. Figure 13
contains the section of the Inter-Process Precedence Graph as it should
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appear, and inspection of the code will reveal that the execution
sequencing enforced by the remaining IPPEs is genuine.

—— S A T I ST,
.

WAIT FOR EV

.
.

RESET EV

WAIT FOR EV

.

Figure 12
SET EV (D (1) WAIT FOR EV
WAIT FOR NOT EV (2 (5) RESET EV
SET EV (3) (6) WAIT FOR EV
Figure 13
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Spurious IPPEs can be removed by generating the execution sequence
sets for the nodes in the graph. If, for any IPPE, the predecessor
node is in the AFTER set or the NEVER set of the successor node, condi-
tion 2 is violated, and the IPPE is removed. If for any IPPE, a node
negating the effect of the predecessor node occurs in the intersection
of the ALWAYS AFTER set of the predecessor node and the BEFORE set of
the successor node, the IPPE violates condition 3, and is removed. The
removal of an IPPE may alter the genérated execution sequence sets, so
these must be regenerated after an IPPE is removed. The process
iterates until no more spurious IPPEs can be found. Note that the
presence of spurious IPPEs acts to increase potential concurrency,
so that the generated‘BEFORE, AFTER, and ALWAYS AFTER sets will be
subsets of the actual BEFORE, AFTER and ALWAYS AFTER sets. This implies
that the relative orderings we use are genuine, and only spurious IPPEs
can be removed.

If, at any time during the spurious IPPE elimination, a node |
is found to be in its own BEFORE or AFTER set, this indicates the
presence of a guaranteed deadlock in the code. The effect of the
deadlock may permeate throughout the entire graph in an unpredictable
manner, so the analysis should terminate at this point.

The pseudo-code for the spurious IPPE elimination phase appears
in Appendix D.
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VI. Data-Usage Anomaly Detection

The data-usage anomaly detection system will first be described
in relation to the detection of intra-procedural and inter-procedural
anomalies in programs containing no synchronization constructs. This
will be followed by a discussion of the modifications made to '
incorporate concurrency into the analysis to enable detection of
inter-process data-usage anomalies.

The single-process analysis system is designed to detect anoma-
lous data flow patterns, symptomatic of programming errors, not only
along paths within subprogram units but also along paths which cross
unit boundaries. The algorithms used to detect these patterns of
variable usage employ two types of graphs to represent execution
sequences of a program. The first, a flow graph, is used to repre-
sent the flow of control from statement to statement within a subpro-
gram unit. Note that while a statement containing a subprogram
invocation is represented as a single node, that node actually repre-
sents all the data actions which occur inside the called unit.
Because of the order 1in which subprogram units are processed, the’
data flow information in the called unit can be passed across the
boundary without placing its control structure at the point of invo-
cation in the calling unit.

The other type of graph used is the call graph, which has the
same form as a flow graph, but its nodes represent subprogram units
and its edges indicate invocation of one unit by another. The call
graph is used to guide the analysis of the units comprising a program
in an order referred to as "leafs-up." The leaf subprograms, which
invoke no other, are processed first; then those units which invoke
only processed units are analyzed in a backward order with the main
program being processed last. In order to use this procedure, the
call graph must be acyclic. If the call graph contains cycles,
indicating recursion, analysis is terminated..

At the core of the data flow analysis is the idea of sets of
variables called "path sets," which are associated with nodes in the



-29-

flow graph. Membership of a variable in a path set for a node
indicates that a particular sequence of data actions on that variable
occurs at the node. The three possible actions are reference, define,
and undefine. For statements containing no procedure or function
invocations, determination of path set membership is straightforward.
For instance, for the assignment statement, o = o + B8, associated
with a node n, o and B will be placed'in those path sets which repre-
sent a reference as the first data action at n. o will also be placed
in those path sets representing an arbitrary sequence of actions
followed by a definition. A variable y appearing in the same sub-
program, would be placed in the path set representing no action upon
the variable at node n.

Let us consider a leaf subprogram. Once the path sets have been
determined for the nodes in its flow graph, the path sets for the unit
as a whole can be constructed using the algorithms described in _
[FosL 76]. The same procedures are followed whether analyzing varia-
bles declared in the unit or global to it. For formal parameters and
global variables, the path sets are used for passing variable usage
information across subprogram boundaries and are saved in a master
table as each unit is analyzed. At the same time as these path sets for
the unit as a whole are created, additional path sets are formed for each
node reflecting what sequences of data actions occur entering and
leaving that node. By intersecting the path sets representing sequences of
actions entering (or lTeaving) the node and occurring at the node,
anomalous data flow patterns are detected. The three types of anomalies
found in this manner are: | |

(1) a reference to an uninitialized variable

(2) two definitions of a variable with no intervening
reference

(3) failure to subsequently reference a variable after
defining it

When a non-leaf subprogram is analyzed, path set membership is
determined as for a leaf with this exception: when a subprogram
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invocation is encountered at a node, path set information must be
passed from the invoked unit to this node. First the path sets

for the invoked routine as a whole are retrieved from the master

- table. Then the actual arguments are placed in the same path sets as
their corresponding formal parameters. This is also done for any
global variables which are members of the path sets for the invoked
unit. Thus, the data actions which occur in the invoked subprogram
are reflected in the path sets for the node containing the invocation.
Other than this, the analysis follows the same steps as outlined for a
leaf unit.

In addition to the aforementioned anomalous path detection, the
analysis provides information which may be used for program documenta—
tion. This includes the order in which subprograms may be invoked,
which variables must be assigned values before entry to a unit
and which variables are actually assigned values there, as well as the
subprogram's side effects with respect to global variables. |

Now Tet us consider the effect of the inclusion of synchronization
constructs upon the analysis. To analyze the usage of variables global
to more than one process, we must consider the entire Flow And Prece-
dence Graph at once. We cannot use the leafs-up ordering technique as
we did for subprogram units in single-process programs since now the sub-
graphs for the units may contain IPPEs connecting them to other processes'
subgraphs. Although that technique could still be used for those varia-
bles not participating in the concurrency, it would be preferable to be
able to process all variables in parallel. This can be done by perform-
ing the analysis for all variables over the entire Flow And Precedence
Graph, in which case the call graph would not be needed. However, it
appears advantageous to integrate the leafs-up technique where possible
to enable variable usage information gathered about subprograms to be
compressed and inserted at each invocation point.

When performing data flow analysis on concurrent processes, paths
through the flow graph give information on sequential patterns of refer-
ences and definitions, but it is also necessary to know what other nodes
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in the graph could be executing concurrently with a given node. There-
fore preliminary analysis must be performed upon the Flow and Precedence
Graph to find the node sets CONCURRENT(n), ALWAYS CONCURRENT(n),

and POSSIBLY CONCURRENT(n), as described in Section V. 5., for each node n.

The form of the path sets and the anomaly detection techniques are
basically the same for multi-process as for single-process programs, but
the data flow algorithms must be modified to work on the expanded process
flow graph containing precedence edges. Now, predecessors and successors
of a node may be in different processes.

Consider the graph segment in Figure 14. Assume that no usage of

Process Process i
P q
(:) alpha = 0
= )
WAIT FOR EV SET EV
alpha = alpha+1 (2
v :
Figure 14

alpha has appeared prior to this segment. Node 1 must execute before
node 2 and is the head of an IPPE originating in process g. Since a
definition of alpha occurs on all paths into node 4, it will occur before
the execution of node 1, and thus node 2. Therefore, the data flow along
the IPPE (4,1) is treated differently from that along a regular flow
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graph edge. Similarly, in Figure 15, although it appears that beta is

Lo e
Process Process
p q‘

; !
: | @  beta=1
, i

V4
WAIT FOR EV1 Qe~—~——rr——rur-(®  SETEV
\/ \'%
alpha = beta +1 (:)
A4 v
SET B2 @~~——~——~~~>(7)  WAIT FOR EV2
v v

béta =0

CLOSE p (%j é%j CLOSE q

Figure 15

defined twice within q on the path through nodes 4, 5, 6, 7, 8 with no
intervening reference, because of the IPPEs (5,1) and (3,7) the analy-
sis will indicate that beta will always be referenced between the
definitions.

The pseudo-code description of the data flow analysis phase 1in
Appendix E is an expanded and modified version of that for single-proc-
ess HAL/S programs[DreC 78]. It is designed to handle the leafs-up
order analysis of a single-process program or the analysis of a multi-
process program using the entire flow graph. The anomalies detected
reflect the role of concurrency since we now consider actions which
occur at nodes concurrent, always concurrent, or possibly concurrent to
a given node as well as those actions occurring at the node.
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The types of anomalies detected in single-process programs
[DreC 78] are also apb]icab}e to multi-process programs. In addition,
the concurrent node sets enable the detection of the possibility of
references and definitions of variables at these nodes occurring in
an unspecified order. Consider, for example, the situation in Figure 16.

Process Process Process
p q r

beta =1 (:)

|

SCHEDULE g @vawv.)@

] ] |

beta =2 (B SCHEDULE r @) ~rmrmneny(®)

! | /N

pha = alpha + beta (@) alpha =0 {Z) , (§) ﬁzﬁbeta==0

P

Figure 16

Here, alpha may or may not be defined when node 4 is executed since node

7 € ALWAYS CONCURRENT(4). This is a possible case of anomaly type (1),
a reference to an uninitialized variable. Without considering what

actions occur at concurrent nodes, we have a definite case of alpha'’s
being uninitialized at node 4. Incorporating the ALWAYS CONCURRENT
node sets and making the assumption, for the sake of analysis, that
actions occurring at concurrent nodes happen at the same time as the
node's actions, we find that alpha will be defined before node 4
executes. Combining this with the previous information indicates the
presence of the type (1) anomaly with the restriction that due to con-
currency it may not actually occur during the program's execution.
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This is also an example of a reference and a definition of a variable
occurring at nodes whose execution is always unordered. -

“An example of anomaly type (2) also appears in Figure 16. Two
definitions of a variable, with no intervening reference, occurs on the
path 1, 2, 3 involving the variable beta. Another case of double defi-
nition, this time 1involving concurrency and representing a race condi-
tion; concerns beta at the concurrent nodes 3 and 10: the value of
beta used in the computation at node 4 depends upon the order of execu-
tion of these nodes. Finally, anomaly type (3), the failure to sub-
sequently reference a variable after defining it, is exemplified in
Figure 15 by beta, last assigned a value at node 8.
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VII. Synchronization Anomaly Detection

In addition to aiding in the search for data-usage anoma-
‘lies, the execution sequence sets at each node can be used in the
detection of potential synchronization anomalies. These are
anomalies arising directly from potential concurrencies in the
programs. It was encouraging to discover that all the synchroni-
zation anomalies we originally set out to detect can be found using
these sets.

The first such anomaly is the potential for infinite waits,
which includes deadlock as a subset. A process will wait indefinitely
at a WAIT statement if the wait condition is false when the WAIT is
reached during execution, and either no combination of statements
will be executed in other processes that would set the wait condition
to true, or all such combinations will be prevented from executing
while waiting on this process (a deadlock).

The detection method involves considering each WAIT node in
turn for legal execution sequences resulting in an infinite wait.
Note that in order to produce reasonable time and space bounds for the
algorithm, all possible combinations of loops and branches in a process
are treated as legal execution sequences, even though some of these may
constitute unexecutable paths due to the particular branch and loop
conditions. This implies that all potential anomalies of this type will
be discovered, but in addition some potential anomalies may be flagged
where they do not exist.

The wait condition will have already been converted to conjunc-
tive normal form during the insertion of IPPEs: For a potentially"
infinite wait, there must be at Teast one conjunct which can remain
indefinitely false from the time the wait is started. This would require
all the terms in that conjunct to remain indefinitely false. Therefore
each conjunct, and each term in the conjunct, is checked for the poten-
tial to remain indefinitely false. If it cannot be proved that the
wait is always finite, an énoma]y is assumed.

The worst possible case is assumed while checking a term. It is
assumed that a Tegal execution sequence exists in which the only nodes
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that occur setting the term to true must always execute if the WAIT is
“to be reached; i.e. those nodes from the ALWAYS set at the WAIT node.

It is assumed that of those nodes, any that may not be able to execute
until after the WAIT has completed, i.e. those from the POSSIBLY AFTER
~set at the WAIT node, will have to wait until after the WAIT is
completed. Further, it is assumed that all nodes setting the term to
false not belonging to the AFTER set at the WAIT node will execute
before the WAIT node is reached. Given these assumptions, and consider-
ing only those nodes which now will execute before the WAIT is reached,
the term can be false for the duration of the WAIT if either no node
remains setting it to true, or all such nodes can be followed by a

node setting it back to false. One restriction is that the node'setting
the term back to false is not always subsequently followed by a node
setting it to true.

Thus the wait at WAIT node w can be infinite if there exists a
conjunct ¢ in the wait expression such that

for each term t in ¢ and
for each node ny setting t to true
s e {ALWAYS(w) - POSSIBLY AFTER(w)}

there exists a node ne setting t to false

ne e {everything - {NEVER(n,) v BEFORE(n,)}}

¢)
n {everything - {NEVER(w) u AFTER(w)}}

and such that no node ny exists

ny e {ALWAYS_AFTER(n,)}
n {everything - {NEVER(w) u POSSIBLY AFTER(w)}}

The algorithm itself is a direct implementation of the above set
expression.

Two other types of synchronization anomalies proved readily detect-
able from the execution sequence sets. The first of these is the
possibility that a process may be rescheduled while it is still active.
This involves checking the execution sequence sets at each schedule or
close node. If at any of these nodes, a different schedule or close
on the same process exists, but does not belong to the NEVER, BEFORE,
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or AFTER sets of the node being considered, then there is a potential
anomaly. Further, if a different schedule for the same process appears
in the BEFORE set of the open node, and the corkespond%ng close is

not also in the BEFORE set, this also signifies a potential anomaly.
Due to the symmetry of the BEFORE and AFTER sets, the possibility that
the same process must start after the open of the one being considered,
but not after it has closed, will be discovered when considering the
schedule and close for that instance of the process itself.

The second type of anomaly is the possibility of the premature
termination of a process. Although this is not a violation of the
- rules of HAL/S, it may be indicative of a programming error. For
instance, if a process which updates a database is terminated prema-
turely, it may leave the database in an inconsistent state. Checking
for premature termination requires looking at the execution sequence
sets at each terminate node. If the close node of any process that
could be terminated by a particular terminate statement is in either
the CONCURRENT set or the AFTER set of the terminate node, that process
could be terminated prematurely.

The pseudo-code for these algorithms appears in Appendix F.

We anticipate that anomalies specific to other concurrent
languages will also prove to be readily detectable from the execution
sequence sets, although this work still remains to be done.

An additional area that we have been exploring is the checking of
assertions. It is likely that, in certain circumstances, the system
developer will wish to obtain information about the system that is
unrelated to any specific anomaly, e.g., whether a particular execu-
tion ordering is forced, possible, or impossible.

The execution sequence sets may be used to test assertions about
the time orderings of individual nodes. By examining the sets at the
open and close nodes we can readily test assertions about whole
processes. OQOther time-ordering assertions must be ultimately reducible
to combinations of assertions about individual nodes.
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VIII. Conclusion

The anomaly detection technique appears to provide an approach
to software system analysis that does not suffer from many of the
traditional problems of decidabi]fty and computational complexity.
Its va1ué is highly dependent on the ability to derive high-quality
information concerning anomalies. However, the dual aims of obtain-
ing high-quality information and using algorithms with pleasant compu-
tational complexity characteristics are sometimes in conflict. We have
been successful so far in obtaining algorithms, but more, formal work
is needed to determine the 1imits of this approach with respect to
specific analysis problems.

We plan to expand the scope of our results by considering other
languages within the class we have roughly delineated here. We expect
this will bring us to considering the question of how best, with respect
to specific language constructs and specific behavioral properties, to
determine an abstract representation (akin to our present Flow And
Precedence Graphs) which contains the information required for analysis.

We also plan to broaden the scope of the anomalies we can detect
and enhance our system by the addition of anomaly definition capabili-
ties. -
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APPENDIX A

. Pseudo-code for
Building Flow Graph

The pseudo-code in this appendix
uses the syntax defined in Caine
and Gordon, "PDL - A tool for soft-
ware Design," Proc, 1975 National
Computer Conference, June 1975,

pp. 271-276.
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Tree of Inter-Segment References

Segment
flow graph builder

build flow graph segment
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SEGMENT fTow graph builder

****************************************************************:

*
*
X This segment builds a flow graph from the parse tree ol
* . *
X and symbol table for a given program. o
i****************************************************************¥

DO  for each program unit

create (subgraph) named (program unit name)

create (entry) node (ne)

create (exit) node (nx)

end nodes = { }

build flow graph segment (program unit body,{ne}, end nodes)
create edges from (end nodes) to (nx)'

ENDDO
END
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SEGMENT build flow graph segment (statement, start nodes, end nodes)

****************************************************************:
This recursive segment produces a flow graph segment

*
%
for a single statement at a time. ol
* *
khkkkhkhkkhhkhkhhkhkkhkhhkkkhhkhhkhhkhkkhhhhkrhhkhrhhrkrhkhhkhrkhrkhrhrdkhrrkhhkrrhrx

IF statement type is simple statement

create (statement type) node (n)

create edges from (start nodes) to (n)

end nodes

= {n}

DO case of statement type

if statement:

create (if) node (i)
create edges from (start nodes) to (1)
end then = { } |
end else = { } :
build flow graph segment (then part, {i}, end then)
IF  there is an "ELSE" part
build flow graph segment (else part, {i}, end else)
ENDIF |
end nodes = end then uend else

do case statement:

create (do case) node (dc)

create edges from (start nodes) to (dc)

end nodes = { }

DO for each case part
end case = { }
build flow graph segment (case part, {dc}, end case)
end nodes = end nodes u end case

ENDDO
IF  there is an "ELSE" part
end else = { }
build flow graph segment (else part, {dc}, end else)
end nodes = end nodes u end else
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ENDIF

do_statement:
S = start nodes
Do for each statement
end statement = { }

build flow graph segment (statement, s, end state-
ment)

S =end Statement

ENDDO
end nodes = end statement

do while statement: .
create (do test) node (dt)
create edges from (start node) to (dt)
end while = { }
build flow graph segment (do part, {dt}, end}whiTe)

end nodes ='end while u {dt}

do until statement:
end until = { }
build flow graph segment (do part, start nodes, end until)
create (do test) node (dt)
create edges from (end until) to (dt)
end until = { }
build flow graph segment (do part, {dt}, end until)
end fiodes = end until u {dt}

do for statement:

create (do initialization) node (di)

create edges from (start nodes) to (di)

create (do test) node (dt)

create edges from ({di}) to (dt)

end for = { }

build flow graph segment (do part, {dt}, end for)
create (do successor) node (ds)

create edges from (end for) to (ds)

end nodes = {dt, ds}



ENDDO
ENDIF

END
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APPENDIX B

Pseudo-code for
Building the Inter-
Process Precedence
Graph and the Flow
and Precedence Graph

The pseudo-code in this appendix
uses the syntax defined in Caine
and Gordon, "PDL - A tool for soft-
ware Design," Proc, 1975 National
Computer Conference, dJune 1975,

pp. 271-276.
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Tree of Inter-Segment References

Segment

focus
insert

inject
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SEGMENT focus

;\;****-k*****************-k**-k***************************-k********:
¥ This segment builds the Synchronization and Control Flow %
z Graph from the Flow Graph, by removing nodes which do not z
z represent synchronization constructs, or control struc- E
% tures which affect their flow of execution. f
i*****k e ke de ke sk e do ke kek ke Fedek dekoke Jokkdkkkkdkkkk 7"******‘k******-k***********?):

DO for every node n, d {ne,nx}

IF n; is not a structured node or a synchronization node

Create’edge from (predecessor of ni) to (successor of ni)
‘delete edge from (predecessor of ni) to'(ni)
"~ delete edge from (ni)'to (successor of ni)

delete node (ni)
ENDIF
ENDDO

DO  for every node n, £ {ne,nx}

IF n, is a structured node

IF n, has exactly one successor node

create edge from (predecessor of ni) to (successor of ni)
delete edge from (predecessor of ni) to (ni)

delete edge from (ni) to (successor of ni)

delete node (ni)
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SEGMENT 1insert

kkkdkkkkhkhkhkhkrkrhkhkhihhkhkhkhkhhkhhhkhhhhhrkhkhkhkhkhhhhhhrrrrrrchikrtik

This segment builds the Inter-Process Precedence Graph, by
inserting IPPEs into the Synchronization and Control Flow
Graph.

*hkkhkrkhhkhkhkkhkhkkkhkrkhkhkhkhhkhhkhhkrkhhhhkhkhkkhhhhbhhkhhrhhhkhhkhkhrkhkhhirrrirs

O o o o o o o o X 2O
o8 o A2 A ok o o 6 ok

DO for:every node n, ¢ {ne,nx}

IF n, is a SET or RESET node

DO  for every node nj-z {ne;nx}

IF  n_ is a WAIT node involving the event SET (RESET)

b§ n, create IPPE from (ni) to (nj)

ENDIF

SEGMENT inject
e ke ke e e e e ke vk e ke vk vk ok vk ke ke v sk ke ok ke e sk ke ke ke e ok vk sk ke ke e e e e ok v ke vk vk ok v vk ok sk ke ok ke e ok e e e s e sk e ke v ke e e ok
This segment injects the correct IPPEs from the

Inter-Process Precedence Graph into the Flow Graph,

producing the Flow and Precedence Graph.
e e e ke e e e e de ke e e e ke ek e ke e dhe e ke e e ke e ke T e ke e vk e e e ok v ok ke vk ok ok ok e vk ek ke ok ke ok ok ke e ke ok ok ok e e ke ke

Ao A oK
b o0 o - b of % ok

DO  for each IPPE = (ni,nj) in IPPG

create IPPE from n, to nj in the Flow Graph
ENDDO
END



APPENDIX C

Pseudo-code for
Determination of the
Execution Sequence Sets

The pseudo-code in this appendix
uses the syntax defined in Caine
and Gordon, "PDL - A tool for soft-
ware Design," Proc, 1975 National
Computer Conference, June 1975,

pp. 271-276.
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53
58
59
60
62
62
63
63
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Tree of Inter-Segment References

Segment

calculate execution sequence sets
calculate ALWAYS sets

calculate ALWAYS BEFORE WITHIN PROCESS
‘and BEFORE_WITHIN PROCESS sets

calculate ALWAYS AFTER WITHIN_PROCESS
and AFTER WITHIN PROCESS sets

calculate ALWAYS SUBPROCESS and
SUBPROCESS sets

calculate final ALWAYS sets
calculate NEVER sets
calculate NEVER WITHIN_PROCESS sets
calculate final NEVER sets
CALCULATE BEFORE (node,process.)
calculate AFTER sets
calculate ALWAYS BEFORE and ALWAYS AFTER sets
calculate POSSIBLY BEFORE and POSSIBLY_AFTER sets

calculate CONCURRENT, ALWAYS CONCURRENT
and POSSIBLY_CONCURRENT sets
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SEGMENT calculate execution sequence sets

calculate ALWAYS sets

calculate NEVER sets

D0  for all nodes n in flow graph
BEFORE(n) =

ENDDQ

DO for all nodes n in flow graph in BFS (breadth first search order)
BEFORE(n) = CALCULATE_BEFORE(n,p)

ENDDO

calculate AFTER sets

calculate ALWAYS BEFORE and ALWAYS AFTER sets
calculate POSSIBLY BEFORE and POSSIBLY AFTER sets
calculate CONCURRENT, ALWAYS_CONCURRENT, and POSSIBLY CONCURRENT sets

END

SEGMENT calculate ALWAYS sets

calculate
calculate
calculate
calculate

END

ALWAYS: BEFORE_WITHIN_PROCESS and BEFORE_WITHIN_PROCESS sets
ALWAYS_AFTER_WITHIN_PROCESS and AFTER_WITHIN PROCESS sets
ALWAYS: SUBPROCESS and SUBPROCESS sets A
final ALWAYS sets

SEGMENT calculate NEVER sets

calculate NEVER_WITHIN PROCESS sets

calculate

END

final NEVER sets
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SEGMENT calculate ALWAYS BEFORE_WITHIN PROCESS and
BEFORE_WITHIN_PROCESS sets

DO  for all processes p in the flow graph

DO  for all nodes n in p in breadth-first order
ABWP = ALWAYS BEFORE_WITHIN_PROCESS (e) for any node
e such that there exists a flow graph edge (e,n)
BWP = BEFORE_WITHIN_PROCESS (e)

DO for all nodes f # e such that there exists a
flow graph edge (f,n)
ABWP = ABWP intersection ALWAYS BEFORE_WITHIN_PROCESS(f)
BWP = BWP union BEFORE_WITHIN PROCESS (f)

ENDDO

ALWAYS BEFORE_WITHIN PROCESS (n) = ABWP
BEFORE_WITHIN_PROCESS (n) = BWP
ENDDO

ENDDO
END
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SEGMENT calculate ALWAYS AFTER WITHIN PROCESS and
AFTER WITHIN PROCESS sets

DO for all processes p in the flow graph

DO for all nodes n in p in bottom-up breadth-first order

AAWP = ALWAYS AFTER WITHIN_PROCESS (e) for any node e
such that therc exists a flow graph edge (e,n)

AWP = AFTER_WITHIN_PROCESS (e)

DO for all nodes f # e such that there exists a flow graph
edge (f,n)
AAWP = AAWP intersection ALWAYS -AFTER WITHIN PROCESS (f)
AWP = AWP union AFTER WITHIN PROCESS (f) '

ENDDOQ

ALWAYS AFTER WITHIN PROCESS (n) = AAWP
AFTER WITHIN PROCESS (n) = AWP
ENDDO

ENDDO
END
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SEGMENT calculate ALWAYS:- SUBPROCESS and SUBPROCESS sets

DO . for all processes p in the flowgraph in reverse breadth-first-: -

search order
ASS = {1}

DO for all processes q such that SCHEDULE (q) belongs to
ALWAYS -AFTER WITHIN-PROCESS (open node of p)
ASS = ASS union ALWAYS: SUBPROCESS-SET (q)
ASS = ASS union g

ENDDO

ALWAYS SUBPROCESS: SET (p) = ASS
SS=1{1}

QQ_for all processes q such that SCHEDULE (q) belongs to
AFTER _WITHIN -PROCESS (open node of p)
SS = SS union SUBPROCESS: SET (q)
SS = SS union g

ENDDO

SUBPROCESS: SET (p) = SS
ENDDO

END



-57-

SEGMENT calculate final ALWAYS sets

DO for each process p ihfthe flow graph in breadth-first order

IF P = main program
A = OPEN node of main
A = A union ALWAYS_AFTER WITHIN PROCESS (open node of main)

D0 for all processes q belonging to ALWAYS SUBPROCESS SET(main)
A = A union (open node of q)
A = A union ALWAYS_AFTER WITHIN_PROCESS (open node of q)
ENDDO '

ALWAYS (open node of main) = A
ELSE ALWAYS (open node of p) = ALWAYS (SCHEDULE(p) node)

ENDIF

DO for all nodes n in p apart from open node of p
A =n ; '
A = A union ALWAYS BEFORE_WITHIN PROCESS (n)
A = A union ALWAYS_AFTER WITHIN PROCESS (n)
A = A union ALWAYS (open node of p)

DO for each process q such that SCHEDULE (g) belongs to
ALWAYS_BEFORE_WITHIN_PROCESS (n) union n union
ALWAYS_AFTER WITHIN PROCESS (n) minus
ALWAYS AFTER_WITHIN PROCESS (open node of p)

DO for each process r belonging to ALWAYS SUBPROCESS SET (q)

A = A union (open node of r)
A = A union ALWAYS_AFTER WITHIN_PROCESS (open node of r)
ENDDO
A = A union (open node of q)
A = A union ALWAYS_AFTER_WITHIN_PROCESS (open node of q)
ENDDO

ALWAYS (n) = A
ENDDO
ENDDO
END
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SEGMENT calculate NEVER_WITHIN_PROCESS sets
DO  for all processes p in the flow graph

DO  for all nodes n in p

NWP = all nodes in p
NWP = NWP minus BEFORE_WITHIN PROCESS (n)
NWP = NWP minus n
NWP = NWP minus AFTER WITHIN PROCESS (n)
NEVER_WITHIN PROCESS (n) = NWP
ENDDO |
ENDDO

END
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SEGMENT calculate final NEVER sets
DO for each process p in the flow graph in breadth-first order

IF  p not the main program
NEVER (open node of p) = NEVER (SCHEDULE(p)node)
ENDIF

DO  for each node n in p apart from open node of p
N = NEVER (open node of p)
N = N union NEVER WITHIN PROCESS (n)

DO  for each process g such that SCHEDULE (q) belongs to
NEVER_WITHIN_ PROCESS (n)
N = N union all nodes in g

D0  for each process r belonging to SUBPROCESS SET (q)
N = N union all nodes in r
ENDDO :

ENDDO
NEVER (n) = N
ENDDO
ENDDO

END
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SEGMENT CALCULATE_BEFORE(m,p)

;***********************;c')'c*i
z m is a node in process p %
Kk ke kk ki ke hk ke hhdkeokokdek kkkkokkk
N = {all nodes} = identity
IF  3(n,p) e SAVE - [ne NEVER(m) u {ancestors of m}]
REDO = SAVE from entry after (n,p) to top
CALCULATE_BEFORE = N
RETURN
ENDIF
IF BEFORE(m) = { }
CALCULATE_BEFORE=BEFORE(m)
RETURN
ENDIF
Push (m,p) on SAVE
BEFORE_SET = BEFORE_WITHIN_PROCESS(m)

E = {eeprocess p |3 edge(e,n)}?

m

IFE=# {1}
TEMP = N
DOVecE

TEMP = TEMP n {CALCULATE_BEFORE(E,D) u NEVER(e))
ENDDO
I = {keprocess q|.3 IPPE(k,m)}
IF I+#¢}
TEMPX = N
DOYk el
TEMPX = TEMPX n (CALCULATE BEFORE(k,q) u {k} -
u NEVER(k))

ENDDO

ENDIF
ENDIF
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BEFORE_SET = BEFORE_SET wu TEMP u TEMPX

IF m e REDO
BEFORE(m) = BEFORE_SET
ELSE remove m from REDO

ENDIF
Pop SAVE
END
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SEGMENT calculate AFTER sets

D0 for all nodes n in flow graph
DO for all nodes m e BEFORE(n)
AFTER(m) = AFTER(m) ¢ {n}

ENDDO

ENDDO
END

SEGMENT calculate ALWAYS BEFORE and ALWAYS AFTER sets

DO for all nodes n in flow graph
ALWAYS BEFORE(n) = ALWAYS(n) n BEFORE(n)
ALWAYS AFTER(n) = ALWAYS(n) n AFTER(n)

ENDDO
EN
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SEGMENT calculate POSSIBLY BEFORE and POSSIBLY AFTER sets

DO for all nodes n in flow graph
POSSIBLY BEFORE(n) = BEFORE(n)
POSSIBLY_AFTER(n) = { }

ENDDO

DO for all nodes n in flow graph in BFS order
DO for all entry nodes e to n
POSSIBLY_BEFORE(n) = POSSIBLY_BEFORE(n) u {e} u POSSIBLY

BEFORE(e)
ENDDO

ENDDO

DO for all nodes n in flow graph
DO for all nodes m e POSSIBLY BEFORE(n)
POSSIBLY_AFTER(m) = POSSIBLY AFTER(m) u {n}

ENDDO
ENDDO
END

SEGMENT calculate CONCURRENT, ALWAYS_EONCURRENT, and POSSIBLY CONCURRENT
sets

DO for all nodes n in flow graph

CONCURRENT(n) = {all nodes} - {NEVER(n) u POSSIBLY BEFORE(n)
U POSSIBLY_AFTER(n)}

ALWAYS CONCURRENT(n) = ALWAYS(n) n CONCURRENT(n)

POSSIBLY CONCURRENT(n) = {(POSSIBLY BEFORE(n) - BEFORE(n))
u (POSSIBLY AFTER(n) - AFTER(n))}

ENDDO
END



APPENDIX D

Pseudo-code for
Removal of
Spurious IPPEs

The pseudo-code in this appendix
uses the syntax defined in Caine
and Gordon, “"PDL - A tool for soft-
ware Design," Proc, 1975 National
Computer Conference, June 1975,

pp. 271-276,
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SEGMENT remove spurious IPPEs

D0

until no m
calculate
calculate
calculate
calculate

D0 for e

IF
OR
OR

ENDIF

ore IPPEs can be removed
BEFORE sets

AFTER sets

ALWAYS AFTER sets

NEVER sets

ach IPPE in the flow graph

predecessor node belongs to AFTER (successor node)
predecessor node belongs to NEVER (successor node)
there exists a node negating the predecessor node
belonging to ALWAYS AFTER (predecessor node) union
BEFORE (successor node) ‘

remove IPPE from flow graph

ENDDO

ENDDO

END



APPENDIX E

Pseudo-code for
.Data-usage Anomaly
Detection

The pseudo-code in this appendix
uses the syntax defined in Caine
and Gordon, "PDL - A tool for soft-
ware Design," Proc, 1975 National
Computer Conference, June 1975

pp. 271-276.




Page

69
70
71
72
73
77
80
81
82
84

85

91
91
92
94
95
96
101
102

103

-68~

Tree of Inter-Segment References

Segment

Data flow dhalysis driver
Process call graph for cycles (and leafs-up ordering)
Depth first search(v)
Form path sets for template
Build path sets (flow graph)
Place (expression variables) in (X) path sets
Pass path set membership of (parameter) to (argument)
Report non-usage of (argument)
Report side effects involving (argument)
Pass path set membership of global variables over block
boundary
Determine path sets (flow graph)
Number flow graph in postorder
~ Search and number(v)
Execute LIVE on graph
Execute AVAIL on graph
Report anomalies (flow graph)
Determine anomalous sequences of type ur, dd, du, r-d
Report always concurrent references and definitions at (n)
Find a path that contains anomaly (direction, xy,
frequency, node) for (variable)
Report invocation anomalies(block)



SEGMENT Data Flow Analysis Driver

Process call graph for cycles (and leafs-up ordering if single-process
program)
IF cycles are present in call graph

Output message ("Il1legal recursion in program")

STOP

ENDIF

DO for all blocks specified by template

Form path sets for template
Make entry in master table
Output message ("Template used for (block name)")

ENDDO

IF single-process program
DO for each block in Teafs-up order
Get flow graph for block
Build path sets (flow graph)
Report anomalies (flow graph)
Make entry in master table
~ ENDDO
ELSEIF multi-process program
Get flow graph for program
Build path sets (flow graph)
Report anomalies (flow graph)
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SEGMENT Process call graph for cycles and leafs-up ordering

***********************************************************************i

This segment determines the presence of cycles in the call graph
(indicating recursion) and determines the postorder numbering of the
call graph, which is the leafs-up order in which the subprogram units

will be analyzed.
e e e vk e e ke e e vk e sk ek sk Kk ek ke ok ek ke ek ke ke e e ke ek ke ek ok e ke ok ke vk sk ok ok ek ke ke e sk ok ke ke ke ke ke ke ok ok ok ok ok ke ke ke ok ok

O 3 3% ok o ok o o 2 2k O e A
o o3 3 o o ok O b oo

Initialize TREE to { }

DO for all nodes v in call graph
PREORDER(v) = 0

ENDDO
i=0
j=0

Depth first search(entry node)

*** Check for backedges *xk
cycles = false

DO for each node v in graph
DO for each node w on v's exit list
IF edge (v,w) ¢ TREE
IF w<v <w+DESCENDANTS(w)
cycles = true
ENDIF
ENDIF
ENDDO
ENDDO

END
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SEGMENT Depth first search(v)

khkhkrkkhkkhhhkhhkhkhkhkkhkhhhhhhrhrhkhrhkhhkhkkhhhkhrhdrhhhhkhhrkhkrrhkhhrhrhrikrrrrtrdd

This segment performs a depth first search on a directed graph,
numbers the nodes in preorder and postorder and determines the depth
first spanning tree and the number of descendants for each node in
that tree.

kkkkkhkkhkhhkhhkhhkhkhrhkhkhkkhhhhhhhhhkhkhhkhkhhkrrhhhkhkrkrkhhrrhhkhhhhkhhkrrhkrdhrrrrkirk

8 565 o o X oo Ao o
5 o A o K Xk

i= 4+
PREORDER(v) = 1
DO for each node won v's 1ist of exit nodes
IF PREORDER(v) = 0
Add (v,w) to TREE
Depth first search(w)
ENDIF

ENDDO

3

[
m

DESCENDANTS(v) = i - PREORDER(v) + I
RSl

POSTORDER(v) = J

—

END
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SEGMENT Form path sets for template

dkkkkkkkhhkhhkhkhhhhhhhhhkhhhhrkhhkhrhkhkhkhhkhrhkhhkhhhkhhhkrhhhhkhhrhkhhhhhkhkrrkrkhrkid

This segment places all input parameters in referencing path sets
and assign parameters in defining path sets for procedure and function

blocks represented by templates.
Joe e e e vk vk e ok e o T Tk e v vk ok v ke ok ke ke ke e ke ke ke e ke e e ke e ok ke e e vk ke e ke e ke e ke ke vk vk vk vk v vk vk ke ke e ke e vk v e ok ok vk o ok ok ok v ok e e e ok

%A %ok o o o o kot
o b o %26 o %ok %5

Set up and initialize path sets: ‘AysBCsD SELF LG T for X = r.d,u

DO for each input formal parameter 
Enter (parameter) in (Ar)

Enter (parameter) in (Cr)

ENDDO

DO for each assign formal parameter
Enter (parameter) in (Dd)

Enter (parameter) in (Fy4)

Enter (parameter) in &
ENDDO |

END
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SEGMENT Build path sets (flow graph)

DO for each subprogram unit in flow graph

G(graphunit) = {1 \
I(graphunit) = {all variables}
ENDDO

DO for each node in flow graph
Initialize SIDEFCT =REF =DEF=1{}
Set up an initialize path sets:

A_(node), Bx(node), Cx(node),

D_(node), Ex(node), Fx(node),
I

x X

~~

node) for x = r,d,u

DO case of node type

Assignment:

*kkkdkkkkhkkkk

*SIDEFCT %

X p
*used for *

*¥detection}

* :
*of side

reffects.

*
*
*
*
*
kkdkkkkkhkkkk

6 25 % 56 %2 2 X 06 o o o X 3k K0k o b A b o

i**********************

Path set G has been
added to the path
sets described in
[FosL 76] to be able
to identify varia-
bles which are de-
fined anywhere in
the unit.

Kkkkdkkdkkhkkhkhdhkhhhkkk

b2 08 o 22 o o o 3 3 b o b ok ok ot ok

Place (right-hand-side) in (referencing) path sets

Place (left-hand-side) in (defining) path sets

CALL:

Place (arguments) in (referencing) path sets

DO initialization:

Place (loop variable) in (defining) path sets

Place (variables in initial value e

path sets

DO successor:

xpression) in {ref reneing)

Place (variables in successor expressions) in (referencing)

path sets

Place (loop variable) in (referencing) path sets

Place (loop variable) in (defining) path sets
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DO test:

Place (variables in conditional expression) in (referencing)
path sets .

DO case:
Place (variables in expression) in (referencing) path sets

IF:

Place (variables in conditional expression) in (referencing)
path sets

Program entry:

DO for all variables declared in program block
IF variable appeared with initialization attribute
Place (variable) in (defining) path sets
ELSE
Place (variable) in (undefining) path sets
ENDIF
ENDDO
DO for all COMPOOL variables

IF variable appeared with initialization attribute

Place (variable) in (defining) path sets
ELSE

Place (variable) in (undefining) path sets
ENDIF

ENNDO

Procedure, function or process entry:
DO for all variables declared in this block
IF variable appeared with initialization attribute
Place (variable) in (defining) path sets
ELSE
Place (variable) in (undefining) path sets
ENDIF
ENDDO
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CLOSE program:

DO for all variables declared in program block
Place (variable) in (undefining) path sets
ENDDO | |
DO for all COMPOOL variables

Place (variable) in (undefining) path sets
ENDDO

CLOSE procedure, function or process:
DO for all variables declared AUTOMATIC in this block
Place (variable) in (undefining) path sets
ENDDO

RETURN:
Place (variables in expression) in (referencing) path sets

READ:
Place (expression variables) in (defining) path sets

WRITE:
Place (expression variables) in (referencing) path sets

FILE input:
Place (variable on left-hand-side) in (defining) path sets

Place (variables in right-hand-side file expression) in (referenc-
ing) path sets

FILE output:

Place (variables in left-hand-side file expression) in (referenc-
ing) path sets

Place (variables in right-hand-side expression) in (referencing)
path sets
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Other:.

Ignore .
ENDDO
Cy (node) = Cy (HOde)LJAX (node)
FX (node) = FX (node) v DX (node)
I  (node)={all variables} -(AX(NOde)tJBX(ﬂOdE) UCX(nOde)LJDX(ﬂOdE)LJFX(HOde»

G [graph = G {graph unit] Y Cd (riode) U Fd (node), where node & unit

unit}
IF node — entry or exit of unit

I [graph unit] =1 (graph unit] n I (node)
ENDIF
IF SIDEFCT — empty

DO for each variable in SIDEFCT
Output message ("A possible side effect has been detected‘in
this statement involving (variable)")

ENDDO
ENDIF

ENDDO

Determine path sets for (flow graph)

END
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SEGMENT Place (expression variables) in (X) path séts

‘kkkkk*%kkk**%**%kkik**kk%kkk*kkkkk***k*k*ik%%***************************
This recursive segment processes data item tokens ---which may
be variables or references ‘to procedures or functions ---in exhres~m;

sions and places the variables in the appropriate path sets.
X is either referencing, defining, or unde?iﬁing

.......................

***************x

DO for each token in expression
Initialize TEMPREF, TEMPDEF to { 7}
DO case of token type
Built-in or conversion function (other than SUBBIT) name:
DO for each argument

Place (argument) in (referencing) path sets
ENDDO

SUBBIT pseudo-conversion function:
IF X is referencing
Place (argument) in (referencing) path sets
ELSEIF X is defining ‘
Place (argument) in (defining) path sets
ENDIF '

NAME pseudo-function

IF X is referencing

IF argument is NAME data item
Place (argument) in (referencing) path sets

ENDIF

ELSEIF X is defining

‘ Place (argument) in (defining) path sets

ENDIF

User-defined function or procedure name:g

DO for each argument
IF argument is an expression other thana single data item

Place (argument) in_(referencing) path sets
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ELSE

********************************************t

*
* -
E Argument is single data item - E
%¥ subscripted or unsubscripted variable name %
i********************************************I
IF argument is subscripted variable

Place (variables in subscript) in
(referencing) path sets

ENDIF
Associate formal parameter to argument

IF single-process program

Pass path set membership of (parameter)
to (argument)

Report non-usage of (argument) corresponding
to (parameter)

- Report side effects involving (argument)
ENDIF
ENDIF.
ENDDO

IF single-process program

Pass path set membership of global variables over
block boundary

Qutput message (documentation information on global
variable usage in invoked block)

ENDIF

Unsubscripted or subscripted variable:

IF X is referencing or undefining
Enter (variable) in (AX) path set

Enter (variable) in (DX) path set

IF X is referencing
Enter (variable) in (TEMPREF) path set
ENDIF
ELSE
Enter (variable) in (Dd) path set

IF variable is already in A or D,
Remove variable from Dr &

ELSE : ¢
Enter (variable) 1in (Ad) path set
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ENDIF
IF subscripted variable

Place (variables in subscript) in (referencing)
path sets

ENDIF

Othéf:
Skip token
ENDDO

*hkkkhkdkhkrkhkkkhhkkikkkkhhkhhhkhhkhkhhkhkhkhhhkhkkkkhhkhkkhkhhhkhkkkkrirx

Check for side effects. A side effect occurs if evaluation of a
function alters the value of any other element within the expres-
sion, right-hand-side of assignment statement, dr CALL statement
in which the function invocation appears. Sets TEMPREF and TEMPDEF
are used to contain variables which were c?assified referenced or
defined while processing this token (variable or procedure or
function reference). Sets REF and DEF contain yariab]esvwhich
were referenced or defined in that part of the statement analyzed
up to this token. /
%ok ke kkkkkkkkkhkkhkkhkhk kg kkkkhkhkhhkhkhkhkhkhhkhkkhkhhkhkhkhhkhkhkhrkhkhhkhkhkhhhkhkhkhhhkikhkrthhkht
SIDEFCT = (TEMPREF n DEF) u SIDEFCT |
SIDEFCT = (TEMPDEF n REF) u SIDEFCT
REF = REF u TEMPREF
DEF = DEF u TEMPDEF
ENDDO
END

3283 08 b 5 5 30 50 o o X2 200 o S b b b O
b % 2ok o o 2 A 3 56 o o o 2 2 M o o OF 2 A b o O e A ook
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SEGMENT Pass path set membership of (parameter) to (argument)

kkkkkkkkhkhkhkkkhhkhkhhihhhkkihkhhhhkhhhkkkhkkhhkhhhkhkhhhhhrrkkhkhhkhhkrkhhkrkikhkikx

This segment passes the path set membership of a formal para-
meter in an invoked procedure to the corresponding actual argu-

ment in order to reflect data flow across procedure boundaries.
e vk e T ek ek T ke ke e Kk ke ke ke ke vk e ke e T vk vk e ok ke ok ok ok e sk ok ke ke ke e sk ke ke ke e vk ke ok e vk e ke v ke sk ke ok ok e ke ok e ke ke ke ke ke ke ok

o o o of o o o o e oF
A A kA AR

DO for PATHSET = AX, BX’ CX’ DX’ EX’ FX’ and I for x = r, d, u
IF parameter e PATHSET (graphca]1ed) '
Enter (argument) in (PATHSET(node
ENDIF
ENDDO.

ca]]er)) path set .

IF parameter ¢ G(graphca]]ed)
Enter (argument) in (G(graphcal]er)) path set
Enter (argument) in (TEMPDEF) path set

ENDIF

IF parameter ¢ Cr (graph

) or Fr (graph )

called called

Enter (argument) in (TEMPREF) path set
ENDIF
END
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SEGMENT Report non-usage of (argument) corresponding to (parameter)

IF argument is input argument
IF parameter ¢ I(graphca]1ed) .
Output message ("(Argument) specified as input argument is
not referenced in (called)")
ENDIF
ELSEIF parameter g G (graphca]]ed)
Qutput message ("(Argument) specified as assign argument is not

assigned a value in (called)")
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SEGMENT Report side effects involving (argument)

**********************************************************************

* *
% (1) Detect side effect in which input argument is used by E
% its global name and assigned a value in called block, as well as E
% being associated with a formal input parameter. E
i********************************************************************:

IF argument is input argument

~IF argument e G (graph __;q.41

Output message ("Side effect condition - -actual input argu-
ment is used by its global name in (called block) and is de-

fined there.")
ENDIF

ENDIF

ek s dodedo e e dode do e e ke ok e e e e e de e ke ok v e ok e e e ok e ok ke o ket e sk ke e e e e ok ok o ok ke e ok ok ok ok o vk ek sk ok ok e e sk e ok

its global name in called block.

*
ol
(2) Detect side effect in which assign argument is used by ¥
ol
ol
*********************************************************************

Aok A A A%

IF argument is assign argument
IF argument ¢ AX’ BX’ CX’ DX’ FX or G for X = r, d, u for
nodes evAFTER(nO) n BEFORE(nexit) in called block
Output message (“Sidé effect condition - assign argument
is used by its global name in (called block).")
ENDIF
ENDIF

********************************************************************i

an input and an assign argument in the same call.

*

X

x (3) Detect side effect in which an argument appears both as

%

%
*********************************************************************

*
*
*
*
*
*
*
*

IF argument is assign argument and also appeared as an input argument
Output message ("Side effect condition - same data item appears
both as an input argument and an assign argument.")

ENDIF

Fdededodekkkdddedededododod e de sk e sk s sk ok ok ok ok ek o s sk e o o ok ok sk e vk e ok ok ok e e ok e de e sk ke ek ok e ok ok o ok ke ek ok

(4) Detect side effect in which an assign argument appears

Xk oo %

more than once in the list of assign arguments.
*
ek de ke dekek ok ke e ke ek Ak ke ke ok ok vk ke ke ke Ttk ke sk ok ok ek o vk v vk sk ok ok ok ok ok S ke ok ke ke e sk ok e ke ok ke ek ok

ok o % % ok

J—
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IF argument is assign argument and appears elsewhere in assign argu-
ment Tist

Qutput message ("Side effect cond1t1on - argument appears more
than once in assign list.")

ENDIF
END
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SEGMENT Pass path set membership of global variables over block boundary

‘QQ. for each variable var in 1ist of global variables for called block

DO for PATHSET = AX, By CX’ DX’ Evo Fys and T for x =r, d, u

IF var ¢ PATHSET (graph.ca]]edA)

Enter (var) in (PATHSET (node
ENDIF .
ENDDO
IF var ¢ G (graph ca]1ed)

))

caTTer

Enter (var) in (G(graph callep)) Path set
Enter (var) in (TEMPDEF) path set
ENDIF |
IF var e Cr (graph ca11ed) or Fr (graphcalled);
Enter (var) in (TEMPREF) path set
ENDIF ’
ENDDO
END
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SEGMENT Determine path sets (flow. graph)

Number flow graph in postorder

DO for each node in the flow graph
Set up and initialize sets: NULL, KILL, GEN, LIVE, AVAIL A (n-~>),
C (n-->) D (-->n), FX(-->n), x=r,d, u
ENDDO SR s e sk e T K K ok e ek e vk e ek vk ek e sk ke ke ke ke kek keok ok ke ke ko k ek
P The (graph) path sets are calculated
Set up and initialize path sets:
A (graph), B (graph), C, (graph),
(graph) (graph), F (graph),
=r, d, u

without considering concurrency
since they are primarily used for

single process analysis.

X Jdek sk kkdokdok ke kddkkkkkhdk kkEkkhokhkddkdok xk

Sk 5% b o o o o ok Aok o b bk
% bbb o b o 6 ok o o o o b

DO for x = r, d and u

DO Case of x
X=r
y =d
z=u
x=d:
y=r
z=u
x=u
y=r
Z = d P - e P
******************************k
ENDDO Determine A (graph) and

DO for each node in the flow graph A;(n-—>), A;(n~—>), Ay (n-->)

*********i
o4 o6 3 6 o oo o

Kk dkkhrrhkkkhkhhkhkhhkhkhkhkhkkkhkhkikhhkikk

IF Node type is not exit
NULL(node) = I(node) u Bx(node)

KILL(node) = Ax(node) |
GEN(node) ={all variables}- (KILL(node) u NULL(node))

ELSE
NULL(node) = { }
KILL(node) = { 1}
GEN(node) ={all variables}
ENDIF
ENDDO

Execute LIVE on graph

Ax(graph) ={all variables}- LIVE(entry node)
DO for each node in the flow graph

A;(n——>) ={all variables} - LIVE(node)
ENDDO
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DO for each node n in flow graph except exit
DO for each node m e ALWAYS_CONCURRENT(n)

KILL(n) = KILL(n) u KILL(m)
GEN(n) = BEN(n) u GEN(m)
ENDDO

Execute LIVE on graph

DO for each node in flow graph

A;(n-->) = {all variables}-LIVE(node)

ENDDO

DO for each node n in flow graph except exit ‘
DO for each node m ¢ {CONCURRENT(n) - ALWAYS_CONCURRENT(n)}

KILL(n) = KILL(n) u KILL(m)
GEN(n) GEN(n) u GEN(m)
ENDDO |
ENDDO

Execute LIVE on graph

DO for each node in flow graph
A(n-->) = {all variables} - LI

ENDDO

DO for each node in the flow graph
GEN(node) = Cx(node)
KILL(node) = (Ay(node) LJAZ
NULL(node) ={all variables}

ENDDO

Execute LIVE on graph

C%(graph) = LIVE(entry node)

DO for each node in the flow graph
C;(n-->) = LIVE({node)

ENDDO

VE(node)

(node))
- (GEN(node) u KILL(node))
*******************************i
*
Determine Cx(graph), and *
*
C'X(n""?)a C;(n"">)a C;:(ﬂ"- >) E

*
*
*
*
*
*
*
*
*
*
*

*
Fodk kK kokokkdok ok kkkkkkhkkhdhkkhhkhkkkkk
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DO for each node n in flow graph
DO for each node m e ALWAYS CONCURRENT(n)
GEN(n) = GEN(n) u GEN(m)
KILL(n) = KILL(n) u KILL(m)
ENDDO

ENDDO

Execute LIVE on graph

DO for eachknode in flow graph
Ci(n—w>) = LIVE(node)
ENDDO

DO for each node n in flow graph
DO for each node m ¢ {CONCURRENT(n) - ALWAYS CONCURRENT(n)3
GEN(n) = GEN(n) u GEN(m)
KILL(n) = KILL(n) u KILL(m)
ENDDO
ENDDO

Execute LIVE on graph

DO for each node in flow graph
C;(n——>),= LIVE(node)

.MQ_ 3:******‘k****************i
% Determine BX(graph) %
99_» for each node in the flow gra ph *kkkkkk ok kk ok ok ke kkkkkkhkikkdkk

NULL(node) = I{node) tJBX(node)
KILL(node) = Ax(node)
GEN(node) ={all variables}- (KILL(node) u NULL(node))
ENDDO
Execute LIVE on graph
By (graph) = ({i11 variables}- LIVE(entry node)) n ({al1 variables}-
X(graph)) n Cy(graph)
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**********************************i

E_ " Determine D*(graph) and *
0’ (-- nol woy ) E
EDX( >n), DX‘( >n), DX ( >n)*

*
. . kkkkkhkkhkikhhhhkihhhkhkhkkhkkkkkkdkx
DO for each node in the flow graph

GEN(node) = Dx(node)
KILL(node) = (Fy(node) U Fz(node))

NULL(node) = {all variables}- (GEN(node)'tJKILL(node))
ENDDO o

Execute AVAIL on graph

Dx(graph) = AVAIL(exit node)

DO for each node in the flow graph
D;(-->n) = AVAIL(node)

ENDDO

DO for each node in flow graph
DO for each node me ALWAYS CONCURRENT(n)
GEN(n) = GEN(n) u GEN(m)
KILL(n) = KILL(n) u KILL(m)
ENDDO
ENDDO

Execute LIVE on flow graph
DO for each node in flow graph
Dk‘(——> n) = AVAIL(node)

ENDDO

DO for each node in flow graph
DO for each node me {CONCURRENT(n) - ALWAYS CONCURRENT(n)}
GEN(n) = GEN(n) u GEN(m)
KILL(n) = KILL(n) u KILL(m)

ENDDO
ENDDOQ

Execute LIVE on flow graph

DO for each node in flow graph
D;"(~->n) = AVAIL(node)

ENDDO
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'***************** ***** ********

DO for each node in the flow graph x Determine F grap and %

5o (-->n), Fy (<20, FL" (=-on)E

*
ﬁ******************************

IF node type is —entry
GEN(node) = Qy(node) ubD (node
KILL(node) = Fx(node) |
NULL(node) = {all variables}- (KILL(node) u GEN(node))

ELSE

GEN(node) = {al
KILL(node) = {
NULL(node) = {

; variables}
}

ENDIF

ENDDO

Execute AVAIL on graph

Fx(graph) = {all variables}- AVAIL(exit node)
DO for each node in the flow graph
Fi(-->n) = {all variables}- AVAIL(node)

ENDDO

DO for each node n in flow graph except entry
DO for each node m ¢ ALWAYS_ CONCURRENT(n)
GEN(n) = GEN(n) u GEN(m)
KILL(n) = KILL(n) u KILL(m)

ENDDO
ENDDO
Execute AVAIL on flow graph

DO for each node in flow graph
F;‘(--> n) = {all variables}- AVAIL(node)

ENDDO

DO for each node n in flow graph- except entry
DO for each node m ¢ {CONCURRENT(n)- ALWAYS CONCURRENT(n)}
GEN(n) = GEN(n) u GEN(m)
KILL(n) = KILL(n) u KILL(m)

ENDDO
ENDDO
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Execute AVAIL on flow graph
DO for each node in flow graph

F;‘(—->n) = {all variables}- AVAIL(node)
ENDDO
ENDDO

END
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SEGMENT Number flow graph in postorder
*********************************************************************i

This segment performs a depth first search on a flow graph and num-
bers the nodes in postorder by invoking recursive segment "Search
and number",

**********************************************************************

2 o o o o ok
A o Aok o 3 b b

DO for all nodes n in flow graph
Indicate n "unmarked"

ENDDO
i=0
Search and number (entry node)

" SEGMENT Search and number (v)

***********************************************************************i
*

*

¥ This recursive segment numbers nodes ina directed graph in postorder. ¥

*
i***********************************************************************

DO for each node w on v's list of exit nodes
IF w is unmarked
Mark w
Search and number(w)
ENDIF
ENDDO

i=1+]
POSTORDER(v) = i

END
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SEGMENT Execute LIVE on graph

n = number of nodes in flow graph

:***********-k**********************;)C
%X Graph is numbered in postorder X
* *
kkdekkokkkkkokkkkkdkkkkkhkkkkkhikhkkkkdkkkk

ggtfor j=1ton
LIVE(3) = {}
ENDDO,
change = true
DO while change is true
change = false
DO for j =1 ton
PREVIOUS = LIVE(J)
LIVE() = { }
DO for all Ke {successors of node j!
LIVE(j) = LIVE(J) u ((LIVE(K) n {all variables}
- KILL(K))) u GEN(K))
ENDDO

DO for all Ke {successors of node j which are heads of
- precedence edges}

DO for all veLIVE(]) n LIVE(K)
DO for all me {descendants of j |ve GEN(m)}
IF 3 path from K to m
LIVE(J) = LIVE(]) - {v}
ENDIF
ENDDO
ENDDO
ENDDO

DO for all Ke {predecessors of node j which are tails of
precedence edges}

DO for all veLIVE(j) n LIVE(K)
D0 for all me {descendants of K'|veGEN(m)}
IF 3 path from j to m
LIVE(K) = LIVE(K) - {v}
ENDIF
ENDDO
ENDDO
ENDDO




IF PREVIOUS # LIVE(])
change = true
ENDIF

ENDDO

ENDDO
END
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SEGMENT Execute AVAIL on graph

n = number of nodeé in flow graph

;******************************************************:
* Assume graph is numbered from 1 to n in postorder. *
*
*

*
*
dkkkkkkkkkkkkkkkkhhkkkhkkkhhkhhkhkhhkkhikkhkkhkhhkhhkhikhkkkk

AVAIL(n) = { }
DO for j=n-1tol

AVAIL(j) = {all variables}
ENDDO

change = true
DO while change is true
change = false
DO for j=n-1tol
PREVIOUS = AVAIL(J)
AVAIL(j) = {all variables}

DO for all Ke {predecessors of node j which are not tails
of IPPE's}

AVAIL(3) = AVAIL(3) n ((AVAIL

(K) n ({all-variables}
- KILL(K))) u GEN(K)

)
ENDDO
TEMP = {all variables}
DO for all Ke{predecessors of node j which are tails of IPPE's}
TEMP = TEMP n AVAIL(K)
ENDDO
AVAIL(j) = AVAIL(j) u TEMP
IF PREVIOUS # AVAIL(J)
change = true
ENDIF
ENDDO

ENDDO

END
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SEGMENT Report anomalies (flow graph)

3:*******************-k***********************'k************‘k****3\;
% Flow graph may be for one code block or for entire program z
ek ke ke ke e sk ke ke ke ek ke ke ok ke ke ke sk ke e vk ke vk e ke ke vk ke ke e ok e e ke ke sk ke e e vk e ok e vk e vk vk e ke ke e ke ok ke e ke ok ok
DO for each block in flowgraph
IF block is main program

DO for each COMPOOL variable in I{(graph__. )

Output message ("COMPOOL variable (variable name)

main

unused in entire program.")
ENDDO '
ENDIF

DO for each local variable in I (graphb]ock)
Qutput message ("Variable (variable name) declared in block
(block name) is never used.™) :
ENDDO
IF block is function block
Get entry nodes for block's exit node
DO for each entry node n

IF n is not a RETURN node and 3 a path from start node of
function to n

Output message ("Execution of function block possibly
ends on statement (number corresponding to node) which

is not a RETURN statement.")
ENDIF

ENDDOQ

ENDIF

IF flowgraph is for entire program
Report invocation anomalies (block)

ENDIF

Determine anomalous paths of type ur, dd, du, r-d (flow graph)

END
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SEGMENT ~Determine anomalous sequences of type ur, dd, du, r-d (flow graph)

DO for FORM =1, 2, and 3
DO case of FORM

FORM = 1:
X = u
y=r

FORM = 2:
x =d
y =d

FORM = 3:
x = d
y=u

ENDDO

DO for each node n in flow graph
Get path sets for n
Report concurrent references and definitions (r-d) at (n) .
ANOM = Fx(n) n C&(n-+)
IF ANOM — empty
DO for each variable in ANOM

IF variable is simple variable
or FORM is ur

Find a path that contains anomaly (leaving,
Xy, some, node) for (variable)

Output message ("On one or more paths leaving
(node) anomaly of type (FORM) occurs for
(variable). One such path is ...")

ENDIF

ENDDO
ENDIF

1

ANOM = F, (n) n C/(N>) o Cy
IF ANOM =1 empty
DO for each variable in ANOM
IF variable is simple variable or FORM is ur

(n>)

Find a path that contains anomaly (leaving,
Xy, some, node) for (variable)

Output message ("On one or more paths lTeaving
(nodg) anomaly of type (FORM) occurs for
(variable). This anomaly involves nodes which

will always execute concurrently with nodes on
the path. One such path is ...")
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ANOM = Fy (+n) n Cy(n) 0 Pyl n) F}'/‘ (+ n)

IF ANOM =7 empty
DO for each variable in ANOM
IF variable is simple variable or FORM is ur

Find a path that contains anomaly (entering,
xy, some, node) for (variable)

Output message ("On one or more paths entering
(node), anomaly of type (FORM) occurs for
(variable). This anomaly involves nodes which
may execute concurrently with nodes on the
path. One such path is ...")

ENDIF
ENDDO
ENDDO

ANOM = DX(+v1)n Ay(n)

IF ANOM 7 empty
DO for each variable in ANOM
IF variable is simple variable or FORM IS = dd

Find a path that contains anomaly (entering
xy, all, node) for (variable)

Output message ("On all paths entering (node),
anomaly of type (FORM) occurs for (variable).
One such path is ...") ‘

ENDIF

ENDDO
ENDIF

ANOM = DX (+n) n Ay(n) n DX(+n)
IF ANOM — empty
DQ for each variable in ANOM

IF variable is simple variable or FORM IS — dd

Find a path that contains anomaly (entering,
xy, all, node) for (variable)

Output message ("On all paths entering (node),
anomaly of type (FORM) occurs for (variable).
This anomaly involves nodes which will always
execute concurrently with nodes on the paths.
One such path is ...")

ENDIF

ENDDO
ENDIF
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ANOM = D, (n) n A(n>) n /—\}'/(n->) n Al(n-)
IF ANOM —1 empty
Qg.?or each variable in ANOM
IF variable is simple variable or FORM IS = dd

Find a path that contains anomaly (leaving,
xy, all, node) for (variable)

Output message ("On all paths leaving (node)
anomaly of type (FORM) occurs for {variable).
This anomaly involves nodes which may execute
concurrently with nodes on the paths. One
such path is ...")

ENDIF
ENDDO
ENDIF
ANOM = F_(+n) n Cy(n)
IF ANOM -t empty
DO for each variable in ANOM
IF variable is simple variable or FORM is ur

Find a path that contains anomaly (entering,
xy, some, node) for (variable)

Output message ("on one or more paths enter-
ing (node), anomaly of type (FORM) occurs for
(variable). One such path is ...")

ENDIF
ENDDO
ENDIF

ANOM = F' (+n) n cy(n) 7 Fo(+n)

IF ANOM =1 empty
DO for each variable in ANOM
IF variable is simple variable or FORM is ur

Find a path that contains anomaly (entering,
xy, some, node) for (variable)

Output message ("On one or more paths entering
(node), anomaly of type (FORM) occurs for
(variable). This anomaly involves nodes which
will always execute concurrently with nodes on
the path. One such path is ...")

ENDIF

ENDDQ

ENDIF
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ANOM = F,(n) n C\/(n=) o € (n=) n ¢, (n=)
IF ANOM 1 empty
DO for each variable in ANOM
IF variable is simple variable or FORM is ur

Find a path that contains anomaly (leaving,
Xy, some, node) for (variable)

Output message ("On one or more paths leaving
(node) anomaly of type (FORM) occurs for
(variable). This anomaly involves nodes
which may execute concurrently with nodes on
the path. One such path is ...")

ENDIF
ENDDO
ENDIF

ANOM = Dx(n) n Ay(nﬁd

IF ANOM = empty
DO for each variable in ANOM
IF variable is simple variable or FORM is -1 dd

Find a path that contains anomaly (leaving
xy, all, node) for (variable)

Output message ("On all paths Teaving (node),
~anomaly of type (FORM) occurs for (variable).
(One such path is ...")

ENDIF
ENDDO
ENDIF

ANOM = D, (n) n A;(n-*) n Kj‘,(nﬂ

IF ANOM — empty
DO for each variable in ANOM ’
IF variable is simple variable or FORM IS — dd

Find a path that contains anomaly (leaving,
xy, all, node) for (variable) .

Output message "On all paths leaving node,
anomaly of type (FORM) occurs for (variable).
This anomaly invovles nodes which will always
execute concurrently with nodes on the paths.
One such path is ...")

ENDIF
ENDDO

ENDIF



(31

ANOM = DX (=n)
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n Ay(n) n D;C*n) n D;0+n)

IF ANOM =1 empty

DO for eac
IF va

h variable in ANOM
riable is simple variable or FORM IS — dd

Find a path that contains anomaly (entering,
xy, all, node) for (variable)

Output message ("On all paths entering (node),
anomaly of type (FORM) occurs for (variable).

This anomaly involves nodes which may execute

concurrently with nodes on the path. One such
path is ...") :
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SEGMENT Report concurrent references and definitions (r-d) at (n)

]

REFN Ar(n) u Dr(n)
Ad(n) u Dyln)

DO  For SET = CONCURRENT(n), ALWAYS CONCURRENT(n), POSSIBLY CONCURRENT(n)

DEFN

DO for all m e SET

REFM = Ar(m) U Dr(m)
DEFM = Ad(m) LJDd(m)
ANOM = REFN n DEFM

DO for all variables ¢ ANOM

Qutput message ("(Variable) is referenced at node(n) and
defined at node (m). Node (m) is a member of (SET(n)).")

ENDDO

ANOM = DEFN n REFM

DO for all variables e ANOM
Output message ("(Variable) is referenced at node (m)
and defined at node (n). Node (m) is a member of
(SET(n)).")

ENDDO

ENDDO
ENDDO

END
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SEGMENT Find a path that contains anomaly (direction, xy, frequency,
node) for (variable)

......................................................................

direction = "entering" or "leaving"

xy = "ur', "dd", "du", depending upon the type of the anomaly
frequency = "some paths" or "all paths"

node = node where anomaly was detected

%

*

*

*

*

*

*

*

*

*

*

*

x

¥ variable = variable for which anomaly was detected
*

*

¥ Although one solution for finding a path containing an anomaly is
*

}¥ to perform a restricted depth first search for one variable at a
*

¥ time, this segment will not be specified here as work is in pro-
*

¥ gress to find more efficient algorithms for localizing anoma-

*
*
*

lous path expressions.

*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
)(.
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*
*
*
*
*
*
*
*
*
*
*
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*
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*
*
*
*
*
*
*
*
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*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
E
528 o o 2 o o o ok 3 26 326 o 56 8 o 3 36 ko 5 S o 36 b o 345 o o o8

END
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SEGMENT Report invocation anomalies (unit flow graph)

DO for each subprogram invocation in unit
DO for each argument in invocation

Report non-usage of (argument) corresponding

to parameter

Report side effects involving (argument)
ENDDO

ENDDO
Enp



APPENDIX F

Pseudo-code for
Synchronization Anomaly
- Detection

The pseudo-code in this appendix
uses the syntax defined in Caine
and Gordon, "PDL - A tool for soft-
ware Design," Proc, 1975 National
Computer Conference, June 1975,

pp. 271-276.
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Tree of Inter-Segment References

Page Segment
107 find potentially infinite waits
109 find instances of p process being scheduled while

still running

110 find‘potential'premature terminations
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SEGMENT find potentially infinite waits

D0

for each waif node w in the graph
POSSIBLY INFINITE = FALSE

D0

for each conjunct ¢ in w )
CONJUNCT_POSSIBLY INFINITE = TRUE

DO for each term t in ¢
TERM POSSIBLY INFINITE = TRUE

DO for each node Ny mékihg t true belonging to
ALWAYS (w) minus POSSIBLY AFTER (w)
NODE_POSSIBLY NEGATED = FALSE

DO  for each node ne making t false belonging to
{al1l nodes minus {BEFORE(nt) union NEVER(nt)}}
intersection {all nodes minus{NEVER({w) union
AFTER (w)}} '

IF  there does not exist a node ny making t
true belonging to {ALWAYS AFTER(w)}
intersection fall nodes minus {NEVER (w)
union POSSIBLY AFTER (w)}}

NODE _POSSIBLY NEGATED = TRUE

ENDIF

ENDDO

IF  NODE_POSSIBLY NEGATED = FALSE
TERM_POSSIBLY INFINITE = FALSE
ENDIF

ENDDO
IF  TERM_POSSIBLY INFINITE = FALSE

CONJUNCT_POSSIBLY INFINITE = FALSE
ENDIF

ENDDO

IF  CONJUNCT POSSIBLY INFINITE = TRUE
POSSIBLY INFINITE = TRUE
ENDIF

ENDDO
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IF  POSSIBLY_INFINITE = TRUE
WRITE error message
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SEGMENT find instances of p process being scheduled while still running

DO  for each SCHEDULE (p) in the flow graph

IF  there exists a different SCHEDULE (p) or CLOSE (p) belonging
to {all nodes minus {BEFORE union AFTER union NEVER for
this SCHEDULE (p)}}
WRITE error message ;

ENDIF -

IF  there exists a different SCHEDULE (p) belonging to

BEFORE (this SCHEDULE(p))
AND the corresponding CLOSE (p) does not belong to

BEFORE (this SCHEDULE(p))
WRITE error message
ENDIF

ENDDO
END
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SEGMENT find potential premature. terminations
QQ for each TERMINATE statement
IF  TERMINATE statement is followed by process name list
DO  for each process p on process name list

IF  the TERMINATE does not belong to AFTER (CLOSE node of p)
WRITE error message

DO for each process g dependent on p

IF  the terminate does not belong to AFTER
(CLOSE node of q)
WRITE error meééage,

ENDIF

ENDDO
ENDIF

ENDDO

ELSE DO  for each process p dependent on process containing
TERMINATE statement
IF  the TERMINATE does not belong to AFTER (CLOSE node of P)
WRITE error message
ENDIF,

ENDDO

ENDIF

ENDDO
END



