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ABSTRACT 

We present rigorous analysis of distributed intelligent systems, particularly through work 

on large-scale deep neural networks. We show how networks represent functions, and 

examine how all functions and physical systems can be learned by an infinite number of 

neural networks. Stressing dimensionality reduction as key to network optimization, we 

study encoding, energy minimization, and topographic independent components analysis. 

We explain how networks can be parallelized along local receptive fields by asynchronous 

stochastic gradient descent, and how robustness can increase with adaptive subgradients. 

We show how communication latency across an InfiniBand cluster grows linearly with 

number of computers, a positive result for large-scale parallelization of neural networks via 

message passing. We also present results of a topographic hierarchical network model of 

the human visual cortex on the NYU Object Recognition Benchmark.
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CHAPTER 1: INTELLIGENCE 

What is intelligence, how does it emerge, and how can it be engineered?  These questions have 

motivated ambitious research by cognitive and computer scientists for over half of a century.  

Meanwhile, society has embraced the Internet.  Systems for organizing, finding, and processing 

information from millions of computers increasingly exceed in efficiency beyond imagination.  

As a result, scientists can now increasingly find the best explanations on every topic instantly.  

The scope of pursuing a generally applicable theory of intelligence remains extremely humbling.  

But the opportunity to learn mathematical, statistical, physical, and computational principles that 

may lead to its development is increasingly greater than ever before in history. 

    This thesis focuses on deep neural networks as one dynamic substrate for intelligence with 

profound capabilities.  It is a theoretical analysis of deep neural network foundations and 

parallelization mechanics for large-scale computing; and a presentation of results of experiments 

seeking to parallelize deep neural networks modeled after the human visual cortex.  The overall 

goal of this work is to establish foundations for research and development in intelligent systems 

that can learn and control solutions to very complex and pervasive problems. 

1.1 Nature of Intelligence 

1.1.1 Sensing 

To define the nature of intelligence, we briefly start where intelligence starts: sensing.  

Organisms can sense through DNA encoding of organs that have evolved to provide information 

about environmental physics.  There seem to be few physical parameters not sensed by some 

living organism [1].  Each sensory organ responds to one physical parameter – e.g. chemical, 

mechanical, electromagnetic – within a finite space of elements.  For example, Figure 1.1 shows 
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how the human eye evolved to detect and differentiate the most common photon wavelengths 

generated by the Sun.  This highlights the key function of sensing in intelligent systems: 

statistical representation.  Intelligent systems that sense more data can internally represent a more 

accurate generative model for the data [2,3].  The human eye is thus a nearly optimal receptor for 

photons emitted by the Sun. 

   

 

 

 

 

 

 

 

 

 

 

 

Figure 1.1. Planck’s law of radiance for the Sun’s emissions of photons versus the range of 

photons visible to the human eye. 

 

1.1.2 Learning 

Intelligence starts with sensing and follows with internal representation of phenomena [4,5,6].  

This is considered as learning.  Organisms without brains can use various means to learn about 

their environment, like training oscillatory actuators in cells for optimal timing of action [7], and 

Escherichia coli cultures that evolve genetically to predict systematic environmental danger [8].  

Learning can mostly be explained in organisms with brains by changes in strength of synapses 

among many neurons as functions of experience [9,10,11,12], while chemical neurotransmitters 

like oxytocin and dopamine regulate learning in accordance with evolved instincts [13,14]. 
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    Weights of neural networks can encode “equations that evolve in time − dynamic problems”: 

network parameters are matrices that may be solved by eigenspectra optimization [15,16,17,18].  

The network parameters − e.g. neurons, synapses, layers, sparsity − functionally determine the 

space of equations that may be represented [19].  This equivalence of functions and neural 

network parameters leads to the following proposition, supported by mathematical derivations 

from [20,21,22]: 

Proposition 1.1. Any function can be learned by an infinite number of neural networks 

in an infinite dimensional space of parameter sets that define architecture. 

If all physics can be explained as transformations of energy from one state to another, and thus as 

systems of equations and statistical probability, then another proposition follows: 

Proposition 1.2. Any physical system can be learned by a neural network to the extent 

that data sensed about it completely represents its generative model. 

These propositions suggest an infinite capacity of neural networks to encode useful information.  

We will more formally address the foundations of these statements in the following chapter. 

    Whatever theoretical possibilities may exist for neural networks, it is also clear that there are 

learning limitations of biological neural networks, as their architectural plasticity is constrained.  

Humans develop 100 billion neurons in specialized regions of the brain with over 100 trillion 

synapses continuously changing to learn new phenomena [23].  But in human brains the quantity 

and location of neurons − and thus probability of synapses among them − are generally “hard 

wired” by genetic encoding [24].  The absolute limits of the unaided human brain are best 

revealed by physics that exhibit exponential complexity: e.g. we cannot possibly visualize the 

interaction of 10
23

 molecules − less than the number of molecules in a cup of tea − while even 
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ten dynamic objects may be too hard to visualize.  This obvious limitation is the inability of brain 

architecture to selectively create and destroy neurons (not just synapses among a roughly finite 

set of neurons); we cannot readily alter the “infrastructure” of our brains to represent greater 

complexity than the existing one allows for.  It should thus be clear that the common neural 

network architecture providing for “common sense” among humans is just a local optimization 

by genetic evolution to the limited patterns sensed on Earth throughout the evolution of life.  

Indeed, genetic evolution of life may be considered as one massive learning process of nature.  

Thus, evolution of data structures used for learning in intelligent systems seems essential to their 

ability to adaptively learn in the context of radical changes in environment [25,26,27].  We will 

revisit the relationship of architecture and functionality in the next chapter to conclude that a key 

capacity for learning complex functions is “semantic integration” of several simple neural 

networks each representing simple functions. 

1.1.3 Actuation 

Driven by goals, intelligent systems sense and learn to optimize interaction with environment.  

Just as all physics can be sensed, all physics can be acted upon, potentially.  The goals for action 

may be dynamic in space, time, energy forms, etc., but generally are defined as the “realization” 

(sensed expression) of a specific range of values within a finite space of physical dimensions.  

The actions are based on what has already been learned, and the outcomes of the actions are 

sensed in order to continue learning the best future actions for realizing goals.  This optimization 

of sensing, learning, and actuation toward goals is thus the nature of intelligence. 

1.2 Intelligent Systems 

The applications of intelligence vary widely in complexity and scope − e.g. industrial, 

biomedical, social, scientific, ecological − but Proposition 1.1 and Proposition 1.2 from the prior 
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section would predict that neural networks can be structured to learn whatever physics intelligent 

systems aim to sense and act about.  The structures of neural networks most effective for 

representing important problems has been an active area of research for several decades in many 

domains.  With no claim to completeness in this thesis on all types of structures for all types of 

important problems that neural networks can represent, we can still focus on common 

engineering challenges that all designers must overcome: 

 How do we acquire data that best represents the generative model of interest? 

 What is the best learning architecture for encoding the data structures? 

 How can we maximize the time and resource efficiency of learning implementations? 

 How can we optimize the interface between sensing, learning, and action? 

Each of these questions is a difficult research thrust, while together they comprise the curriculum 

of research into deep neural networks for intelligent systems.  The theoretical and experimental 

work of this thesis aims to provide an initial integrated response to these questions, especially 

with regard to learning architectures and efficiency of learning implementations.  
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CHAPTER 2: DEEP NEURAL NETWORKS 

With the motivations and introductory arguments for researching deep neural networks 

established, we will now give a more rigorous analysis of their foundations.  We will formally 

examine the hierarchical and functional nature of neural networks, and provide an example for 

clarifying this; along the way, we will show how pre-training is most likely essential to reaching 

global optima; we will examine data dimensionality reduction techniques through autoencoders 

and sparsity constraints; examine energy minimization through Boltzmann machines, which have 

proven very successful in pre-training neural networks; and finally we will examine the 

technique of topographic independent components analysis.  Throughout this chapter and the 

remainder of this thesis we will try to smash through diverse nomenclatures in favor of 

understanding how different techniques may be doing similar or identical things. 

2.1 Hierarchical and Functional Architecture 

Inspired by Yoshua Bengio’s Learning Deep Architectures for AI [19], we will now examine 

how neural networks, and graphical architectures more generally, can approximately and exactly 

represent functions.  We will first examine the concept of layers in a neural network.  Let’s begin 

with the simplest case of a directed acyclic graph where each node in the graph computes some 

basic function on its inputs.  The inputs of each node are the outputs of previous nodes, except 

for the first input layer of the network, which receives inputs from environmental stimuli.  

Remember, our network is designed to produce an overall desired target function, i.e. function of 

the generative model for the environment to be learned.  This target function is represented in the 

network as a composition of a set of computational elements (e.g. multiplication, division), with 

each node applying one computational element.  So the depth of architecture refers to the largest 
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combination of computational elements that the graph instructs.  In a neural network, depth 

intuitively translates into the number of layers in question.  The concept of depth as a 

combination of computational elements, and the nature of how network architecture can encode 

functions, will be best understood through example.  Consider the equation for the Bekenstein–

Hawking entropy (S) of a black hole, which depends on the area of the black hole (A): 

 
  

 

 

   

  
  

(2.1) 

This equation is represented by the graph in Figure 2.1, with computational elements {×, /} and 

input values {c, k,  ,  ,  , 4}.  The graph has a depth of 4 because the largest combination of 

elements is 4 computations.  Most revealing is how a seemingly complex equation breaks down 

into simple paths of real number values through simple processing units. 

 

Figure 2.1. Architecture of a neural network for a black hole’s entropy   This architecture has a 

depth of 4 and uses only the computational elements {×, /}. 
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Yet, we see in Figure 2.1 that while the network for the equation of entropy of a black hole is 

relatively simple, the choices of input values, connectivity, and computational element that each 

node represents are very specific.  This is the challenge for designers of deep neural networks: 

how can we efficiently explore the infinite space of possible architectural choices? 

2.1.1 Importance of Pre-Training 

The values in Figure 2.1 are not the result of “random” chance, but are based on the product of 

well-defined physical forces; they have been derived iteratively by hundreds of scientists over 

centuries of fundamental physics experiments.  This has an important lesson: we can 

substantially reduce the dimensionality of possible configuration space, and thus increase the 

likelihood of convergence to a global optimum configuration, by using pre-trained inputs, which 

have already been determined to represent some aspect of the input space.  Random iterative 

search of network architectures is computationally intractable, but with highly constrained 

guidance a configuration like Figure 2.1 can be reached.  This is why pre-training, prior 

knowledge, and culture are crucially important to the ability of neural networks to reach the best 

configurations and overcome local optima [28,29,30,31,32,33].   

    The specificity of the architecture in Figure 2.1 could not likely be achieved by any engineered 

intelligent system in existence today.  But ultimately this is a core goal of researchers in 

intelligence: develop systems that can reduce dimensionality of architecture space to be explored 

by integrating simple component architectures, which collectively describe complex functions to 

be learned.  The physicists who developed the equation for the entropy of a black hole knew that 

input values would need to be parameters relating to fundamental properties of gravity, quantum 

and statistical mechanics, and energy.  Deriving how these parameters (i.e. physical constants) 

integrate is a long sequential process based on structural transformations: deriving a physics 
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equation requires an analysis of how systems of energy (equations) transform from state to state.  

In mathematical and statistical terms, networks must be able to make transformations and 

establish relationships about different dimensions of one multidimensional generative model.  

Mammals on Earth have regions of their brains dedicated to analysis of space, time, and other 

dimensions of inputs they sense.  For example, humans have a region of the brain known as the 

parietal lobe, which enables them to establish spatial relationships across visual, audial, and their 

other senses.  Like all other parts of the human brain, the mechanics of this region may be largely 

described by the synaptic connections of neurons [34].  But this region does not accept inputs 

from senses directly; rather, it is able to do geometric and abstract analysis of other neural 

network regions, which we have argued here is essential to discovering a highly specific (and 

thus relatively complex) generative model like the entropy of a black hole.  Far from intuition 

that deep neural networks are “black boxes” suffering from “credit assignment inability” [35,36], 

we have established their concrete equality with functions.  Functional analysis of neural 

networks − especially with respect to physical dimensions − is thus a critical capacity for natural 

and artificial intelligence development and pursuit of global optima.  We may therefore venture 

to establish another proposition: 

Proposition 2.1. Representation of complex functions by deep neural networks requires 

semantic integration of simple networks that represent simple functions. 

    For Proposition 2.1, we define “semantic integration” as the meaningful extraction and 

combination of representations from network components.  Among other regions of the brain 

that achieve semantic integration in primates, the basal ganglia excel at this ability to parse 

several discrete inputs of network signals, commonly considered as “executive control”.  How it 

does this exactly is a very active and promising area of research [37,38].  But as we will make 
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clear in the next chapter that discusses the human visual cortex, complex functions are typically 

learned in a deep neural network as a hierarchy of increasing complexity. 

2.2 Data Dimensionality Reduction and Feature Invariance 

2.2.1 Regularization:    Normalization 

We have identified how dimensionality reduction of the configuration space for neural network 

architectures is an important step in reaching global optima.  It follows that reducing the 

dimensionality of the data is equally important.  The process of finding more general 

representations of an input space from specific data is regularization.  One powerful and popular 

regularization method is   -normalization in    space [39,40,41]: 

 

       √∑   
 

 

 

 

 
(2.2) 

In (2.2),        is the   -normalization of   vector of weights {  ,   , ...,   } that defines a 

neural network.  Minimizing the square root of the sum of squares is one way to pursue features 

that are invariant to location, rotation, size, and other transformations. 

2.2.2 Sparse Encoding 

Another powerful form of regularization is sparse autoencoding.  Autoencoding by itself is not 

very useful unless the initial weights of the autoencoder are close to a good solution [42].  Thus, 

after explaining how autoencoders work, we will describe an unsupervised statistical technique 

that has been used to find approximate pre-training solutions: stacks of Boltzmann machines.  

This approach is typical in that it restricts parameter space of exploration according to patterns 

identified in data.  After encoding the data into a lower dimensional space, standard supervised 

learning techniques can provide state-of-the-art results in diverse domains [43,44,45]. 
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    Autoencoder neural networks take as an input a set of unlabeled training images {x
(1)

, x
(2)

, ... } 

where x
(i)

     and apply backpropagation to equate outputs values {y
(1)

, y
(2)

, ...} to inputs [43].  

One benefit of setting the outputs equal to inputs is in using an intermediate layer of smaller 

dimensionality than the input layer that forces the network to find a compressed encoding for 

translating from x
(i)

 to y
(i)

.  An autoencoder with inputs {x
(1)

, ..., x
(10)

}, outputs {y
(1)

, ..., y
(10)

}, and 

hidden units {h
(1)

, ..., h
(5)

} is shown in Figure 2.2.  The 5 hidden units hold a lower dimensional 

encoding, and thus enable more tractable supervised learning toward global optima. 

    Autoencoders can learn useful structure from the input space even when the hidden layers are 

larger than the input and output layers, particularly with the added constraint of sparsity.  

Sparsity constraints place limits on the weights of individual neuron connections.  Neurons in the 

human brain are believed to be sparsely activated [47].  Sparsity is achieved by penalizing 

neurons that become too active (or inactive) according to some sparsity parameter  .  Values for 

  may be used to define the mean activation value (e.g. 0.05) for neurons with a specific 

distribution; statistical divergence metrics such as the Kullback-Leibler divergence can be used 

to penalize neurons that deviate too much [48].  Related methods of contrastive divergence have 

been applied very successfully in state-of-the-art deep neural networks to achieve desirable 

sparsity distributions [49,50]. 

    For a linear generative model of sparse encoding [51], each input vector x
(i)

     is 

represented using n basis vectors b1, ..., bn     and a sparse n-dimensional vector of 

coefficients s     .  Each input vector is then approximated as a linear combination of basis 

vectors and coefficients:      ∑      .  The aim of the sparse encoded system is to minimize 

the reconstruction error      ∑      .  Unlike principle components analysis, the basis set may 

be overcomplete (n > k), which translates to greater robustness of representation, and also the 
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capacity for discovering deeper patterns from the data.  Following we will go into depth about a 

special type of sparse-encoded system that has proven very powerful: Boltzmann machines. 

 

Figure 2.2. Autoencoder with 10 input and output units and 5 hidden units.  This network sets 

inputs equal to outputs to find a lower dimensional representation of the input space. 

2.2.3 Energy Minimization: Boltzmann Machines 

Because deep neural networks afford greater complexity in architecture configuration and 

synaptic optimization space, as we have discussed, they are correlatively more difficult to train: 

when weights are randomly initialized, deep networks will reach worse solutions than networks 

with 1 or 2 hidden layers [19,52,53].  Additionally, it seems that supervised methods alone are 

ineffective because the error gradient usually vanishes or blows up after propagating through 

several non-linear layers [19,54,55].  Thus, deep neural networks require “pre-training” in a way 

that is robust to many layers while still initializing the network roughly near a global optimum.  

A good solution in this regard is the use of energy-based Boltzmann machines trained on each 
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layer in isolation [42].  We will examine the fundamentals of Boltzmann machines to understand 

why they have proven so effective in pre-training deep neural networks. 

    Boltzmann machines learn large number of “weak” or “soft” constraints of input data, and 

form an internal generative model that produces examples within the same probability 

distribution as the examples it is shown [56].  The constraints may be violated but at a penalty; 

the solution with the least violations is the best.  Like a neural network, Boltzmann machines are 

made of neurons that have links among them; however, in addition to weighted links, each node 

has a binary on or off state probabilistically determined by the weights of its connections with 

neighboring nodes, and their current state.  Inspired by Hopfield [11], Hinton et al. introduced 

notation for describing the global state of the Boltzmann machine by its energy E [56]: 

    ∑       
   

 (2.3) 

In (2.3),     is the weight between units i and j and    and    are 1 or 0 (on or off).  Because the 

connections are symmetric, we can determine the difference of the energy of the whole system 

with and without the kth hypothesis, locally for the kth unit: 

    ∑     
 

 (2.4) 

The objective of the Boltzmann machine is to minimize this energy function.  Thus, we need to 

determine for each unit whether it is better to be in the on or off state.  Doing this best requires 

“shaking” the system: enabling temporary jumps to higher energy to avoid local minima.  We set 

the probability of the kth unit to be on based on the energy difference in (2.4): 

 
   

 

          
 

(2.5) 
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In thermal physics, a system of such probabilities will reach thermal equilibrium with a body of 

different temperature that it is in contact with, and the probability of finding a system in any 

global state will obey a Boltzmann distribution.  In precisely the same way, Boltzmann machines 

establish equilibrium with input stimuli, and the relative probability of two global states will 

follow a Boltzmann distribution: 

   
  

             
(2.6) 

Relation (2.6) states that for a temperature of 1, the log probability difference of two global states 

is precisely the difference in their energy.  This is the foundation of information theory [56]: 

information is a specific probability distribution of energy.  The measure of energy state 

differences is important to global optimization due to the following properties: 

 High T enables fast global search of states, i.e. discovery of regions near global optima 

 Low T enables slow local relaxation into states of lowest   , i.e. local minima 

Thus, starting with a high temperature and reducing to a low temperature enables the system to 

roughly find global optima, and then precisely zero in on it.  This was originally described as a 

process of physical annealing in [57].  

    If the networks are only built from “clamping” visible units to input environmental stimuli, 

then they cannot learn very interesting features.  However, in a similar fashion that constructs 

basis vectors as described in the prior section on sparse encoding, Boltzmann machines introduce 

a second layer of “hidden” units that can learn deeper features.  Minimizing the energy of this 

two-layer network has been shown [56] to equal the minimization of information gain, G: 

 
  ∑          

     

      
 

 

 
(2.7) 
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In (2.7),       is the probability of the  th state of visible units, which are “clamped” by the 

inputs, and        is the same but for the network that learns without clamping.  The second 

variable for learning without clamping is achieved by having two phases of learning: first a 

“minus phase” where the two layers directly respond to input stimuli, and second a “plus phase” 

where the layers are updated independently according a rule like (2.4).  In (2.7), G will be zero if 

the distributions between the first phase and the second phase are identical, otherwise it will be 

positive.  Intuitively, we can think of this difference between the first and second phases as a 

measure of how well the network has achieved “thermal equilibrium”.  If the difference is very 

small with an additional update even after seeing new environmental stimuli, then that means the 

network does not feel like there is a much better state it can be in, and information gain is low.  

The minimization of information gain G is executed by changing the weights     between each i 

and j node, proportional to a difference of probabilities that the first and second phases will have 

units i and j both on (        ): 

             ∑           

   

 (2.8) 

The above learning rule (2.8) has the appealing property that all weight changes require 

information only about each neuron’s weights with local neighbors (i.e. changes do not emerge 

from propagation of some “artificial value” across multiple layers); this is considered to be one 

important principle of biological neural networks [58].  With G minimized the Boltzmann 

machine has successfully captured regularities of the environment in as low of a dimensional 

space (lowest energy) as possible [56].  Beyond being a part of a class of energy minimization 

methods, Boltzmann machines may be considered closely related to applications that minimize 

contrastive divergence, since the contrast between two phases is minimized here. 
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    The preceding explanation describes a single “restricted Boltzmann machine” (RBM), but 

recent breakthroughs in deep neural networks that use Boltzmann-like methods to reduce 

dimensionality take one step further in pre-training.  They recognize that a single binary RBM 

learns only “low level” features: edges, blobs, etc..  However, stacks of Boltzmann machines, as 

seen in Figure 2.3, have the ability to detect high level features [49,42].  The basic technique is to 

provide the output of one RBM as the input of another RBM, with each successive RBM 

recognizing higher level features composed as combinations of low-level features.  Each RBM is 

trained iteratively in a greedy fashion completely ignorant of layers that it is not connected to; it 

is therefore important to train the RBMs sequentially rather than in parallel or combination.  

Stacks of RBMs are a direct application of Proposition 2.1, which states that complex functions 

are best learned as integration of several simpler functions.  More generally, stacks of RBMs 

reflect the common hierarchical learning strategy of deep neural networks, with invariance to 

low-level transformations increasing at higher layers. 

    Boltzmann machines are a powerful means of pre-training an autoencoder to be near the 

global optimum for an input space.  After running stacks of RBMs to find high level features, we 

may then “unfold” (i.e. decode) these stacks back to the original parameter size of the input 

space, thus completing the autoencoder (see Figure 2.3).  We may then use a supervised learning 

algorithm to “fine-tune” the autoencoder according to whatever specific learning task is at hand.  

Large systems of this type can do the vast majority of learning with unlabeled data, prior to 

doing minor supervised learning to equate what has already been learned with labeled 

information [49].  Figure 2.3 is a simple 9-6-3 autoencoder with two stacked RBMs, but most 

successful deep neural networks recently reported use stacks of at least 3 RBM-like energy-

minimizers, each containing hundreds to thousands of neurons. 
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Figure 2.3. Autoencoder with two stacked restricted Boltzmann machines that are to be trained 

sequentially, with the output of energy-minimized RBM 1 feeding into the input of RBM 2.  The 

output of RBM 2 encodes higher-level features from low-level features determined by RBM 1.  

After RBM 2 is energy-minimized, the stack is “unfolded”, such that the architecture inverts 

itself with equal weights to the encoding.  Finally, supervised learning may be applied in 

traditional ways through error backpropagation across the entire autoencoder [42]. 
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2.2.4 Topographic Independent Components Analysis 

Humans can recognize objects observed with many rotations, scales, locations, shading, etc.  

Such robustness to variance is clearly a desired quality in object recognition systems.  There are 

many methods that succeed in achieving greater invariance in neural networks.  One technique 

for achieving feature invariance is topographic independent components analysis (TICA) [59].  

This technique was recently used to train deep neural network with one billion parameters; it is 

scalable to distributed parallel computing [49].  The basic idea is to pool many “simple cells” 

(i.e. early neurons that detect simple shapes) into “complex cells” that are invariant to various 

configurations of the simple cells − hierarchically, precisely like stacks of Boltzmann machines.  

This idea was inspired by the way that the natural visual cortex is organized, with location of 

neurons following topography to minimize wiring distance [60].  It uses “local receptive fields”: 

complex cells are only receptive to a local region of simple cells.   

    Like Boltzmann machines, TICA finds configurations of complex cells that minimize overall 

dimensionality of the system, while finding high-level patterns invariant to low-level changes; 

and they apply binary on or off states to each hidden node, such a neighborhood function        

is 1 or 0 as a function of the proximity of features with indices i and j.  The measure of proximity 

of features is like convolutional networks, which pool subspaces according to proximity [61,62]. 

The function        is 1 if the features are close enough, beyond a threshold.  However, TICA 

differs from convolutional networks in that not all weights are equal, and from Boltzmann 

machines in that the “complex cells” (i.e. hidden nodes) are only locally connected.  Thus, the 

determination of the threshold        in TICA is not based on energy as in Boltzmann machines, 

but distance.  For example, given an image of 200 by 200 pixels, TICA might check whether two 

features map within the same two-dimensional space of 25 by 25 pixels.  Components close to 
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each other in the topographic grid constructed have correlations of squares.  An important 

emergent property of TICA is that location, frequency, and orientation of input features comprise 

the topographic grid purely from the statistical nature of the input space [59].  The grid is able to 

achieve invariance to these parameters and pool objects that are actually the same without using 

labels as in supervised learning.  Because TICA is very close in structure to the visual cortex − 

based on local receptive fields in at least two dimensions and pooling of similar features − it is an 

attractive foundation for both computational neuroscience and large scale machine learning [49].  
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CHAPTER 3: PARALLEL DISTRIBUTED COMPUTING 

Training neural networks with more data and more parameters encodes more descriptive 

generative models [2,3,49,63,64], but the scale of computing needed to do so is a bottleneck: it 

can take several days to train big networks.  It follows that research in parallel computing of 

network parameters across multiple cores and hardware implementations on a single computer, 

and across multiple computers in large clusters, is an important frontier for general research and 

applications of deep neural networks.  Research in the natural manifestations and practical 

engineering approaches to parallel distributed processing of neural networks has been active for 

several decades.  Rumelhart and McClelland organized a prescient set of research in “Parallel 

Distributed Processing: Explorations in the Microstructure of Cognition” (1986), which 

provided benchmarks for a new generation of “connectionist” neural network models that aimed 

to encode distributed representations of information and support parallelization [65].  Indeed the 

human brain is one massive parallel system that computes independent and dependent 

components in and across regions like the basal ganglia, visual, and auditory cortices [66,67,68].  

Yet it has been found that there are serial bottlenecks that coexist with parallelization, 

particularly in executive decision making [69].   

    It follows that understanding how the brain integrates asynchronous parallel computation is 

both a wonderful scientific endeavor and desiderata for designers of deep neural networks and 

next-generation neuromorphic computing hardware.  This venture has inspired commitments of 

billions of dollars into research around large-scale deep neural networks in the United States via 

the Brain Research through Advancing Innovative Neurotechnologies (BRAIN) Initiative [70], 

and in the European Union via the Human Brain Project [71].  The U.S. project is led by the 

National Institutes of Health, DARPA, and NSF.  Its motivation is the integration of 
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breakthrough machine learning and computing capabilities with the potential for new neural 

imaging systems that can map the “functional connectome” of the brain: it seeks to collect data 

on individual firing activity of all of the billions of neurons in a single brain to precisely 

understand how that translates into emergent behavior [72].  This research will lead the science 

of parallelizing neural networks to become an increasingly important and rewarding focus, which 

will be applied through development of intelligent systems that solve big problems for humanity. 

3.1 Single Model Parallelism 

3.1.1 Parallelizing Columns of Local Receptive Fields 

One key enabler of single model parallelization in deep neural networks is local connectivity, 

where computation is parallelized in vertical columns of local receptive fields, as in Figure 2.4.  

The basic premise is that locally-connected networks have vertical cross-sections spanning 

multiple layers, where the weights of certain regions are relatively independent from those of 

other regions, and therefore those regions may be computed simultaneously.  Figure 3.1 shows a 

model with 3 layers that is parallelized on 4 machines; this approach was recently used to 

parallelize a single model with 9 layers on 32 machines, with each machine using an average of 

16 cores, before network communication costs dominated [73].  The killer for parallelization of 

large networks is communication latency.  To minimize communication across machines, it is 

therefore important to send only one parameter update between machines with the minimum 

required information at the smallest interval acceptable.  In models where computation is not 

well localized, this minimum possible communication may still be too high to make it possible 

for the single model to be parallelized. 
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Figure 3.1. Neural network of 3 layers parallelized across 4 machines, with each machine 

denoted by color: red, green, purple, or blue.  Each of the 9 neurons in the 2
nd

 layer has a 

receptive field of 4x4 neurons in the first layer; each of the 4 neurons in the 3
rd

 layer has a 

receptive field of 2x2 neurons in the second layer.  Local receptive fields enable independent 

simultaneous computation of regions that do not depend on each other.  Communication across 

machines is minimized to single messages containing all relevant parameter updates needed 

from one machine to another, sent at a periodic interval. 

3.2 Multiple Model Parallelism 

3.2.1 Asynchronous Stochastic Gradient Descent 

Deep neural networks may also have multi-model parallelism, with several “model replicas” 

(complete networks) trained in parallel.  At regular intervals parameters from each of the 

equivalent architectures are integrated into master parameters that are then used to “rewire” each 

architecture.  In [73] an “intelligent version” of asynchronous stochastic gradient descent is 
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introduced for training very large deep neural networks.  It starts by dividing the training set into 

r batches, where r equals the number of model replicas.  Each replica then splits its one batch 

into µ mini-batches, and updates its parameters with a central parameter server after each mini-

batch is finished.  We set µ to ensure that updates occur frequently enough to avoid divergence 

of multiple asynchronous models beyond some threshold.  But since update frequency   
 

 
, we 

set µ small enough so that models can achieve uniquely useful explorations of input space.  

Because models may be so large that the computation of all combined model parameters in the 

“central parameter server” cannot fit neatly into the fast input/output operations of a single 

machine, we may also split the parameter server into separate asynchronous “shards” that are 

spread across multiple machines. 

    This protocol, known as downpour stochastic gradient descent, is asynchronous in two ways: 

model replicas run independently of each other, as do the central parameter shards [73].  Beyond 

the fact that models will be computing with “out of date” global parameters at each moment, 

there is also asynchrony in the central parameter shards as they compute with different update 

speeds. Communication costs are minimized with minimization of synchronization, so studies of 

probabilistic divergence of models are a key foundation for optimizing parallelization of multiple 

instances of one neural network architecture.  The approach described here features high 

robustness to failure or slowness of individual models, because all other models continue 

pushing and updating their parameters through the central parameter server, regardless of the 

activity of other models; individual model(s) struggling need not force all other models to wait. 

    We can prevent systemically slower models with more outdated parameters from dragging the 

global optimization led by faster models by devising and implementing a simple rule that we 

may call slow exclusion, with pseudocode as follows in Figure 3.2. 
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Figure 3.2. Pseudocode for rule that ensures global parameters are only updated by models that 

are not too outdated, i.e. not too slow.  This rule prevents models that suddenly become slower 

than a fine-tuned value max_delay from “dragging” the global parameter space back into older 

optima; and it makes sure that slower models that suddenly become faster can contribute again 

by updating their model parameters to global parameters. 

 

The algorithm in Figure 3.2 makes sure that only models that have been recently updated with 

global parameters are allowed to contribute to global optimization.  It assumes that the rate of 

updating local and global parameters is the same, while this need not be true to implement the 

core of the algorithm: exclusion of slow models. 

    The promise of parallelizing multiple models of the same architecture by integrating their 

parameters iteratively depends on the extent that the architecture will follow optimization paths 

of a well-constrained probability distribution.  If for each iteration the architecture makes the 

parameter space to be stochastically explored too large dimensionally, then the models will not 

converge cooperatively, and the system will get stuck in local optima unique to the architecture’s 

general evolutionary probability distribution, specified by the data.  Proposition 3.1 thus follows. 

Proposition 3.1. In asynchronous stochastic gradient descent, the marginal increase in 

global optimization efficiency per new model is a function of the probability distribution 

of evolutionary paths that model parameters may follow. 



25 

Consequently, methods like voting, perhaps by maximum entropy selection, have proven to be 

one way to combat the implications of Proposition 3.1 for multi-model parallelism [74].  Further, 

it is possible to measure convergence constraints of a network’s architecture [75], and to 

guarantee minimum acceleration bounds from parallelizing additional model replicas [76]. 

3.2.2 Adaptive Subgradient Algorithm 

    As explained above, robustness of global optimization in the face of local asynchrony is the 

greatest challenge of multi-model parallelism.  One very potent technique used by [46,70] is 

adaptive subgradient learning rates (“AdaGrad”) for each parameter, as opposed to a single 

learning rate for all parameters [77].  The learning rate      of the i-th parameter at the K-th 

iteration is defined by its gradient      as follows [70]: 

      
 

       
   

 (3.1) 

The denominator in (3.1) is the    normalization, defined by equation (2.2) in the prior chapter, 

with the i-th parameter held constant in the summation from j = 1 to j = K.  Further,   is a 

constant scaling factor that is usually at least two times larger than the best learning rate used 

without AdaGrad [78].  The use of AdaGrad is feasible in an asynchronous system with 

parameters of a model distributed across several machines because      only considers the i-th 

parameter.  This technique enables more model replicas r to differentially search global structure 

of the input space in ways that are more sensitive to each parameter’s feature space.  Two 

conditions must be met for AdaGrad to lead to convergence of a solution [79,80]: 

(a)   is below a maximum scaling value 

(b) regularization exceeds a minimum threshold 
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If (a) is not met, then the learning rate will be too large to explore smaller convex subspaces.  

Conversely, if (b) is not met then the space of exploration will be too non-linear for parameters 

to linearly settle into a global optimum.  Thus, learning rate and dimensionality reduction need to 

be tuned against representational accuracy of encoding.  We can ensure γ is not too large through 

custom learning rate schedules [79], and we can ensure our input space is made convex enough 

through an adaptive regularization function derived directly from our loss function [81].  If (a) 

and (b) are met, then the following condition holds: 

    
   

              (3.2) 

The relation (3.2) indicates that the learning rate in a network that converges to an optimum will 

change less and less as the number of iterations goes to infinity.  This simply means that 

AdaGrad will enable the system to reach an equilibrium.  
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CHAPTER 4: PARALLELIZING DEEP NEURAL NETWORKS 

We organized parallelization experiments with computational models of the human visual cortex 

in order to explore the principles explained in the previous chapters.  In this chapter we will 

review the mechanical and architectural foundations of a deep model for the human visual cortex 

before presenting results of experiments to parallelize it.  We will include a progressive outlook 

on experiments testing message passing benchmarks, network tolerance of communication delay, 

and “warmstarting” of networks to reduce likelihood of undesired asynchronous divergence.  

Our model is statistically and mathematically very similar to the best deep neural networks 

reported in literature in the following respects: adaptive learning rates, sparse encoding, 

bidirectional connectivity across layers, integration of unsupervised and supervised learning, and 

hierarchical architecture for topographically invariant high-level features of low-level features. 

4.1 Leabra Vision Model 

The first layer of neurons in our vision model, modeled as the primary visual cortex (V1), 

receives energy from environmental stimuli (e.g. eyes) that, like Boltzmann machines, 

propagates through deeper layers of the network.  This propagation manifests through “firing”: 

when each neuron’s membrane voltage potential    exceeds an action potential threshold   then 

it sends energy to neighboring neurons.  The threshold   is smooth like a sigmoid function, and 

due to added noise in our models, identical energy inputs near   may or may not push the neuron 

through the threshold.  Firing in our networks is dynamically inhibited to enforce sparsity (and 

thus reduce data dimensionality, as previously described), and to maintain network sensitivity to 

radical changes in input energy, e.g. be robust to large changes in lighting and size.  The timing 

of neuron firing has been shown to encode neural functionality, such as evolution of inhibitory 
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competition, receptive fields, and directionality of weight changes [82,83,84].  Yet our networks 

do not directly model “spike timing dependent plasticity”.  Instead they follow equations that 

provide for “firing rate approximation” (i.e. average firing per unit time).  But in practice, our 

models do implement an adaptive exponential firing rate for each neuron (“AdEx”) [85], which 

is strikingly similar to the AdaGrad algorithm described in the previous chapter.  One constraint 

of AdEx is that there is a single adaptation time constant      while real neurons adapt at 

various rates [86].  This constraint is partially addressed by customizations in our model that 

change the activation value      dynamically according to its convolution       and prior 

activation value       : 

                                   (4.1) 

Equation (4.1) enables our model’s neurons to exhibit gradual changes in firing rate over time as 

a probabilistic function of excitatory net input [58]. 

    The human primary visual cortex (V1) has on the order of 140 million neurons [87], while all 

of the object recognition parallelization experiments contained herein model the V1 with only 

about 3,600 neurons.  Our full visual model is typically run with about 7,000 neurons connected 

by local receptive fields across four layers: V1, V2/V4, IT, and Output.  There are on average 

about a few million synaptic connections to tune among all of the neurons in the vision model.  

The limit on neurons, and thus tunable parameters, generally exists to reduce the computation 

time and increase the simplicity of architecture design.  Yet we have argued here that more 

parameters leads to the capacity for representation of more complex functions (e.g. see 

[49,63,64]); therefore, we hope that developments in deep neural network parallelization science, 

along with large scale computing and processor efficiency, will lead to larger models with more 

parameters.  This would serve a harmonious dual purpose of potentially achieving better 
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generative representations of input spaces when built properly, and a more granular model of real 

brain architecture. 

    The organization of neurons into networks in our model achieves a distributed sparse encoding 

precisely as described in §2.2.2.  Each layer affects all other layers above and below during each 

exposure to input stimuli (i.e. each image trial), as opposed to simple supervised training of 

neural networks where a single error signal is backpropagated down a network.  Error-driven 

learning in our model means minimizing the contrastive divergence between two phases − 

“minus” during exposure to new stimuli, and “plus” during a following adjustment − precisely 

like the energy-minimizing Boltzmann machines described in §2.2.3.  Additionally, our model is 

close in mathematical nature to topographic independent components analysis as described in 

§2.2.4, as it achieves topography in V1 and spatial invariance at higher layers.  In addition to 

error-driven learning, the model uses “self-organizing” (i.e. unsupervised) associative learning 

rules based on chemical rate parameters from experiments of Urakubo et al. [88].  Our “self-

organizing” learning rule is a function   based on Hebbian learning, where weight change        

is determined by the product of the activities of the sending neuron     and receiving neuron (   

over short (S) and long (L) periods of time: 

                 〈  〉   (4.2) 

In (4.2), 〈  〉 is the average activity of the receiving neuron over a long time.  It acts as a 

“floating threshold” to regulate weight increases and decreases.  If 〈  〉 is low then weights are 

more likely to increase to a corresponding degree; if it is high then weights are more likely to 

decrease to a corresponding degree.  Determination of actual weight changes depends upon the 

product of short term activities      .  If the product is very high, then it can still push weight 

increases even if an already large 〈  〉 would otherwise discourage it.  Thus, the self-organizing 
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associative rule has the property of seeking “homeostasis”, where neurons are neither likely to 

completely dominate nor to completely disappear from action [58].  It follows that the only 

major difference between the error-driven and self-organizing learning elements of our network 

is timescales: error-minimization enables faster weight changes according to short-term 

activities, while unsupervised learning favors deeper and statistically richer features.  The 

combined weight change         ultimately is parameterized by a weighted-average   that is 

tuned to make the best trade-offs from short, medium, and long-term learning: 

                             (4.3) 

It has been shown that the physical manifestation of a parameter like   in the brain is regulated 

by phasic bursts of neuromodulators like dopamine [89]: learning rate and focus change 

dynamically each moment according to recognition of surprise, fear, and other emotions. 

4.2 Three-Dimensional Data Set For Invariance Testing 

Our data set for experiments presented here is the CU3D-100, which has 100 object classes, each 

with about 10 different forms (“exemplars”) [90]; these objects are rotated in three dimensions, 

rescaled, and subjected to lighting and shading changes in random ways to make object 

recognition difficult.  Our data set is similar to the NORB data set [91], which has become a 

benchmark in machine learning tests of invariance [92,93,94], while our data is more complex: 

CU3D-100 variations are applied randomly along a continuous spectrum (e.g. any number of 

elevations of any value), while variations in NORB are deterministic and discrete (e.g. 9 

elevations from 30 to 70 degrees with 5 degree intervals); additionally, CU3D-100 has size 

changes, and over 20 times as many objects as NORB.  Both data sets are similar in their purpose 

of testing invariance to transformations and rotations. 
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4.3 Message Passing Interface Benchmarks 

Our overall goal is to develop an asynchronous stochastic gradient descent protocol (as described 

in §3.2.1) that uses a slow model exclusion rule like Figure 3.2 to ensure the fastest overall 

parameter search by multiple models in parallel.  To do this we acquired metrics with standard 

Message Passing Interface (MPI) implementations in our local cluster.  Our local computing 

cluster has 26 nodes, each with two Intel Nehalem 2.53 GHz quad-core processors and 24 GB of 

memory; all nodes are networked via an InfiniBand high-speed low-latency network.  We needed 

to determine the communication costs that would ultimately constrain the capacity for single 

model parallelism as well as asynchrony tolerance in multiple models.  In Figures 4.1 and 4.2 we 

see our initial results using Qperf  [90] for one-way latency between two nodes in TCP. 

 

Figure 4.1. One-way latency in microseconds between two nodes in our computer cluster using 

TCP for message sizes ranging from 1 byte to 64 kilobytes.  We see that latency is almost 

negligible up to messages of 1kB, and stays at 0.3 milliseconds for messages between 4-16 kB. 
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Figure 4.2. Same measure as Figure 4.1 but in milliseconds versus kilobytes. We see that latency 

is under 5 milliseconds up to 0.5 MB. 

The results of Figure 4.1 and 4.2 were helpful but there was concern that they did not reflect the 

time it takes for nodes to write new data delivered to it by the network, and that they were too 

“low level” because they were not computed using MPI.  To confirm these results we used 

functionality from Intel’s MPI Benchmarks [91].  First we ran 100,000 tests of the latency for 

each of   nodes in a cluster to send a message of   bytes to all other     nodes.    was tested 

for 1 to 25 and   for 32 kB, 64 kB, 128 kB.  The message sizes tested are within the range of 

actual neuron activation messages our networks send.  In combination with the test results in 

Figure 4.3, we wanted to be sure that the write time of saving new data from another node in an 

MPI framework was carefully measured.  Thus, we acquired the data on the parallel write time of 

  nodes in a cluster, where each node opens and saves a private file, for file sizes of   bytes.  

The node and byte size ranges are the same in Figure 4.3 and Figure 4.4. 
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Figure 4.3. Latency for all-to-all communications in a cluster with 1-25 computer nodes, as a 

function of the number of cluster nodes communicating, tested for three different message sizes. 

 

Figure 4.4. Parallel write time of separate files in MPI framework.  We see basically no 

correlation between file sizes and write time; and write time is weakly correlated with number of 

nodes writing in parallel. 
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In Figure 4.3, we see that in the worst case scenario of 128 kB messages being simultaneously 

sent and received by all 25 nodes, latency is 7 milliseconds.  We also see that for clusters less 

than 7 nodes latency costs for increasing message sizes is relatively negligible. But the drag from 

larger message sizes becomes exponentially pronounced beyond clusters of 10 nodes.  The all-to-

all test is an exaggeration of communications needed in a network like [73] where 

communications are minimized between central parameter servers.   

    The results of Figures 4.3 and 4.4 indicate that in a network with 25 nodes we can expect in 

the absolute worst case (all-to-all roundtrip communications rather than all-to-one one-way; 

maximum write times rather than average) for a file size of 128 kB, the total latency adds up to 

about 9 milliseconds.  But there are many optimizations that apparently can decrease this latency 

down to order of 3 milliseconds.  The first is to implement a central parameter server instead of 

having models communicate directly to each other.  This would make the latencies more closely 

resemble Figures 4.1 and 4.2 rather than Figure 4.3.  The second is to decrease the message size 

by removing “overhead” from the messages and decreasing the size of data types. 

4.4 Synaptic Firing Delay 

With an idea of the communication costs of parallelizing across machines, it is useful to consider 

experiments that test the tolerance of communication delay.  We used code that delays the firing 

of neurons by   number of cycles [92], where we tested for   {1, ... , 5}.  A cycle in our 

network corresponds to weight changes that occur following a stimulus (i.e. image presentation); 

many cycles take place until “settling” from a single image, e.g. 50-100.  The question is how 

robust the network may still train if it is effectively paralyzed in cycle computations.  Figure 4.5 

shows that the network can withstand a delay of one cycle per neuron with almost no cost to 

learning efficiency, but for 2 or more cycles learning performance degrades, earlier and earlier.     
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Figure 4.5. Learning efficiency of networks that have been “paralyzed” by neuronal firing 

ranging from 1 to 5 cycles.  Networks can learn with one cycle of communication delay, but are 

increasingly suppressed beyond that threshold: networks with 5 cycles of delay learn nothing. 

When we examine the network guesses closely in Table 4.1, we see that 2-3 of 100 possible 

objects completely dominate. 

delay accuracy #1 choice (%) #2 choice (%)  #3 choice (%) 

0 cycles 93% - - - 

1 cycles 91% - -  - 

2 cycles 1% car (61%) helicopters (37%)  - 

3 cycles 2% telephone (69%) person (26%) motorcycle (4%) 

4 cycles 2% airplane (49%) hotairballoon (46%) person (3%) 

5 cycles 2% telephone (56%) pliers (39%)  - 

Table 4.1. Training experiments show that networks with 2 or more cycles of delay are able to 

learn only 2-3 objects among 100 possible objects supposedly introduced. 
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    The results in Table 4.1 imply that 2 or more cycles of delay per neuron firing completely 

paralyzes the ability of the network to learn more than a few objects, if those few objects are 

even represented faithfully.  This makes sense because of the fact that every single neuron is 

forced to learn from increasingly old parameters as training continues.  Asynchrony increasingly 

emerges among all of the neurons as they try exploring paths that locally seem useful, but are 

globally confused.  It should also make sense then that parallelizing the firing delay of a single 

model across multiple models does not affect learning efficiency, as demonstrated in Figure 4.6. 

 

Figure 4.6. Parallelization of multiple models, all with neuron firing delay of 2 cycles. 

    Forthcoming experiments of single model communication tolerance should explore 

communication delay only across regions of local receptive fields, as in Figure 3.1, so that we 

can intelligently explore parallelization of a single model across multiple machines.  In terms of 

multiple model parallelization, future experiments should be done with the recognition that each 

network does not need to be tolerant of delay within the network; even if we seek to exclude 

slower models from dragging the global parameter search as explained by the rule in Figure 3.2, 

we should recognize that each model should receive updates from at least some other models.  
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We should thus explore asynchrony tolerance of complete networks with relation to each other, 

rather than all individual neurons in a single network, which amounts to paralyzing it. 

4.5 Warmstarting 

Inspired by [73] parallelizing up to 2000 model replicas to achieve awesome learning efficiency, 

we pursued their use of “warmstarting”: launching a single model for several hours before 

splitting those initial “pre-trained” weights into asynchronous stochastic gradient descent with 

many models.  Recent limited analysis of this technique indicates that it constrains the 

dimensionality of space to be explored by many models based upon one model carving out 

“roles” for neurons [98,99,100].  To begin experiments with warmstarting we first established 

baseline metrics of learning efficiency of many models parallelized (Figure 4.7). 

 

Figure 4.7. Baseline metrics for training time efficiency of parallelizing multiple models 

according to a MPI-based scheme of asynchronous stochastic gradient descent like in §3.2.1. 
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We then explored several sequences of warmstarting experiments to identify if this technique can 

provide a foundation for robustly scaling to larger clusters.  Out of curiosity, we tested 

transitions from one-to-many computers and many-to-one computers.  Figure 4.8 shows that 

surprisingly this technique did not prove useful for our networks, as presently constructed. 

 

Figure 4.8. Results of warmstarting experiments. (1) The first type of experiment in green colors 

is the transition from many-to-one computers.  We see two of these transitions in green: (1.1) 20 

computers trained for 3 hours (hazel green), prior to 1 computer for 41 hours (bright green), and 

(1.2) 20 computers for 12 hours (hazel green), prior to 1 computer for 32 hours (lime green).  

The first transition at 3 hours merely slows down pace of learning, but does not disrupt it, while 

the second transition at 12 hours severely disorients the network optimization for several hours 

before it begins to recover. (2) The second type of experiment in blue/purple colors is the one-to-

many transitions, which have better theoretical justification: 1 computer (light blue) is trained 

for 32 hours, and then used to initialize (2.1) 10 computers (purple) and (2.2) 20 computers 

(dark blue).  We do see small performance improvements relative to each other in this second 

group, but we know from Figure 4.7 that this improvement is negligible. 
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Beyond the high-level trends in Figure 4.7, one may still ask: regardless of learning efficiency, 

what about impact on reaching global optima?  Figure 4.9 suggests that warmstarting does not 

improve the search for global optima, either. 

 

Figure 4.8. Count of the number of training epochs (500 trials per epoch) that recognize over 

99% of training samples correctly for networks with and without warmstarting.  The similar 

distributions suggest that warmstarting does not improve global optimization in our networks.   

Our results on warmstarting are all from training, while it is possible − however not implied − 

that testing our network with objects held out from training could produce different results.  

Additionally, we have considered and intend to explore in future experiments the possibility that 

warmstarting defined by different parameters could yet prove useful, such as warmstarting as a 

function of accuracy, trials, or learning rate schedules, instead of hours; and experimentation 

with much larger cluster sizes such as those explored in [73]. 
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4.6 Experiments on NYU Object Recognition Benchmark Dataset 

We ran the Leabra Vision Model (LVis) on the NYU Object Recognition Benchmark (NORB) 

dataset, which is a standard for measuring recognition that is invariant to transformations.  Our 

initial results follow in Figure 4.9. 

 

Figure 4.9. Training accuracy of our model of the human visual cortex in recognizing objects 

contained in the NYU Object Recognition Benchmark, using parameters published in [101]. 

 

After analyzing the above results and the configurations behind its implementations, we 

concluded that our learning rate schedule was too slow for this dataset.  The schedule details a 

logarithmic decline in the magnitude of weight changes by some rate.  After optimizing the rate, 

we get the training results in Figure 4.10, slightly better than the 5% misclassification threshold. 
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Figure 4.10. Training accuracy on the NORB data with learning rate declines every 75 epochs.  

These results show that our model can successfully learn complex datasets with above 95% 

discriminative accuracy.  

 

After running the weights from the above network on the NORB testing set, which is equally 

large as the training set, and then doing a majority vote on 7 repeated presentations of the same 

images, we receive a misclassification error rate of 16.5%.  This is in comparison to 10.8% 

achieved in 2012 by deep Boltzmann machines [102], as well as 18.4% by k-nearest neighbors 

and 22.4% by logistic regression by LeCun in 2004 [103].  Further optimization of our network 

on NORB will be presented in future publications.  
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