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Modern software platforms feature digital distribution channels called marketplaces, which

have revolutionized the way applications are developed and delivered to users. As the number of

applications continues to proliferate in marketplaces, the need to fully understand them is ever

increasing. While researchers have recently started to observe the wealth of information in mar-

ketplaces, their efforts have been largely constrained to one view of analysis and a single snapshot

in time. As a result, the increasing number of application updates published to marketplaces has

largely gone unobserved. Such view misses the much larger opportunity of mining applications with

both a deep and longitudinal views and utilizing it to create innovative systems.

This dissertation introduces a new approach to analyzing large, ever-evolving marketplaces,

such as the official Android marketplace, by taking a deep and longitudinal perspectives. To make

this approach feasible, I designed and developed a scalable platform called Sieveable. Sieveable

provides efficient retrieval of hundreds of thousands of applications with the goal of enabling a deep

and longitudinal analysis of the design and development of mobile applications.

I demonstrate how Sieveable enables different types of analyses in three main areas that

would have been very difficult to perform otherwise. In user interface design, the release of official

design libraries enabled new applications to narrow the gap with the most downloaded ones in

adopting best design practices. In accessibility, results showed that accessibility is a problem for

many applications including the most downloaded ones. In privacy, the most added permissions in

each year are the ones often required by ad libraries, which raises privacy concerns. The findings

of this work offer insights to marketplace owners, platform engineers, and developers. I argue that

considering both a deep and a longitudinal views results in a more useful analysis to support the

design and development of mobile applications.
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Chapter 1

Introduction

Modern mobile platforms feature a distribution platform for applications called marketplaces

(or app stores). App marketplaces are online software distribution stores for developers to publish

their apps for free or sell them, and for users to discover, purchase, download, and update apps.

The popularity of mobile devices and the advances in their operating systems have led to significant

increase in the number of apps published in marketplaces. For example, as of October 2016, the

number of apps in the Google Play Store is over 2.4 million apps [14], which makes it the largest

digital marketplace. These apps have become a valuable data source to mine and extract insight

from in both academia and industry.

In the recent years, there has been a noticeable amount of research activities on how to extract

meaningful insights from apps data. The research in mining mobile apps has been dominated by

three single views. First, researchers have mined the meta-data or listing details data of apps

such as ratings and user reviews to perform sentiment analysis and help developers make informed

decisions supported by data [59, 47, 80]. Others have created tools and commercial services to assist

app developers and publishers in a better understanding of listing details data [13, 12, 11]. Second,

researchers have mined user interface data such as styles and layouts of thousands of apps to gain

insights into their design patterns [123, 31]. Third, researchers have also mined the source code of

apps to learn about malicious behavior and protect users’ privacy-sensitive data [146, 98, 32]. What

is missing in prior research is an approach that takes a deep, holistic view of the apps encompassing

these three views.
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This dissertation pursues a more deep search approach that takes a holistic view of the apps

over time and can potentially accomplish what is currently not possible in a single view approach.

In user interface (UI) design analysis, UI components are often created or modified at runtime.

When only analyzing the static layout files, this observation is missed because that behavior is

defined in the app source code. This shortcoming can be solved by combining both the design and

code views. In sentiment analysis of user reviews, it is often difficult to link opinions to specific app

features. By incorporating the visual view and code view, one can potentially establish a causal

relationship between a new feature (or a bug) and the onset of certain opinions. In security analysis,

a function could be determined, through program analysis, to be triggering a sensitive operation,

such as sending an SMS message or taking a photo. But it is often hard to judge if the sensitive

operation is warranted from the program view alone. By also taking a view of the design, one may

examine which button may be linked to this sensitive operation and whether the button’s label

legitimizes such use (e.g., a button labeled “Send” for sending an SMS message). Indexing apps to

support multi-view data mining of apps is always challenging because it requires an infrastructure

for integrating multiple heterogeneous data sources.

Mobile applications are always changing and increasingly updated at high rates. Most prior

work in this area focuses on a single snapshot approach that only tells us about the moment of

the observation. This single snapshot approach implies that all app updates and changes are gone

unobserved. Such view misses the benefits of observing the changes to the design and development

of mobile apps in response to major events. We cannot overlook the importance of the changes

happening to mobile apps that are producing larger patterns and interesting insights. To observe

and extract knowledge from these changes, one needs to track historical app releases. Collecting

and analyzing mobile apps over time is challenging and requires building a scalable infrastructure

to support analyzing a large amount of data. It is also hard if not impossible to collect the data and

observe all the changes that occurred to mobile apps. However, recognizing the dynamic nature

of mobile apps and the value of the generated historical data necessitates collecting it even if we

cannot observe all the changes.
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Over a short period of time, mobile user interface design has evolved to enhance the overall

user experience. We observe changes to UI design guidelines, tools, and patterns at different points

of time. A once popular design pattern may begin to decline in popularity. A new design pattern

may be introduced with a lot of hype and promises but never gets widely adopted. A little-known

design pattern may all of a sudden gains high popularity. These phenomena would have been missed,

had we considered a single snapshot of the app that only tells us about the current moment. In

mobile security, an app may start showing normal behavior and perhaps later in a new version

starts to exhibit malicious behavior. Considering a single snapshot of the app would make security

analysis less effective. In estimating the accessibility of mobile apps, it is also hard to gain useful

insights with great implications from a single snapshot approach. One may attempt to quantify

the prevalence of accessibility problems in mobile apps using the single snapshot approach. Such

attempt will only tell us about the moment of the observation and will fail to provide insights

on how did we get to this observation. When analyzing the same task but over time, we can

uncover critical insights that help us understand whether these observations represent a state of

improvement or deterioration. Unfortunately, the single snapshot view of analysis only tells us

about the “current moment” and that’s not enough in today’s ever-evolving mobile apps scene. A

longitudinal perspective that counts for all changes over time can tell us more than that and open

myriad opportunities for further research in multiple areas.

To this end, this dissertation makes two major contributions. First, it presents a novel

approach to mining large software marketplaces such as the official Android marketplace by taking

a deep and longitudinal perspectives, manifested in a scalable retrieval platform called Sieveable.

Sieveable indexed more than four hundred thousand Android applications at an unprecedented

level of depth (listing details, user interface, and code data). Second, it demonstrates the utility

of the approach taken by conducting diverse types of analyses that would have been difficult to

perform otherwise.
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1.1 Overview

This thesis is divided into 8 chapters. Chapter 2 discusses the main concepts and elements in

a digital marketplace that drive changes. It presents a conceptual framework for mining digital ar-

tifacts in marketplaces. Chapter 3 reviews prior related work in the area of mining the web, mobile

applications, and software repositories. Chapter 4 presents a pilot experiment for mining user inter-

face design pattern changes in a small-scale dataset of Android apps. The challenges encountered

during this pilot experiment led to the design of a scalable platform for mining mobile applications

over time called Sieveable. Chapter 5 introduces Sieveable, discusses the technical requirements

of designing the retrieval platform, and presents the process of indexing apps at multiple levels.

Chapter 6 presents several illustrative search queries across multiple levels that demonstrate Sie-

veable’s capabilities, and how it enables different types of deep analyses of mobile apps. Chapter 7

applies the presented approach to problems in mining mobile app design, accessibility, and privacy.

Finally, chapter 8 concludes with a discussion of the main contributions of this thesis and discusses

the future directions this work may take.



Chapter 2

Digital Marketplaces

To facilitate understanding the problem domain, it is necessary to briefly discuss the main

elements in a digital marketplace and the key events that drive changes. In this chapter, I draw

inspirations from the research in temporal data mining [29, 30] to better understand the phenomena

of marketplaces. I define the main concepts and terminologies in the context of digital marketplaces

and how various elements interact in this ecosystem generating multiple events. The goal is to

highlight the broader impact and applications of the work presented in this dissertation.

2.1 The Actions and the Changes

Modern software platforms and technologies feature an online digital distribution platform

called marketplace or store that allows users to discover and use digital artifacts made by third-

party creators. This platform created a thriving community of creators and users, which led to an

exponential growth over a relatively short period of time. In recent years, an increasing number of

marketplaces enabled direct access of digital content or artifacts (e.g., software, multimedia files)

to millions of users. Marketplaces often take the form of an online store for a specific platform

that allows creators to sell or distribute their products to users. Table 2.1 shows a list of popular

marketplaces for different platforms and the size of each marketplace [24, 26, 15].
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Marketplace Platform Size

Pinshape.com 3D-printable design files 70,000+ makers and designers

AWS marketplace Software and Cloud Services on
Amazon Web Services

2,200+ software systems and
services

Chrome Web Store Extensions and apps for the Chrome
web browser

18,000+ apps and thousands
of extensions

Windows Store Universal Apps on Microsoft Win-
dows

669,000+ apps

iOS App Store Mobile Apps on iOS 2,000,000+ apps

Google Play Mobile apps on Android 2,200,000+ apps

Amazon Appstore Mobile apps on Android 600,000+ apps

Table 2.1: Several popular digital marketplaces for different platforms.

Figure 2.1: The actions that a creator or a user may trigger to change the state of a single artifact.

The creator may trigger these actions once, while the user may trigger the actions multiple times.

Figure 2.2: A chain of actions that a creator (C) or a user (U) may trigger to change the state of

an artifact (A). The actions triggered by the creator result in a change to the state of an artifact

or in a totally new artifact.
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The popularity of marketplaces as a means of distributing and sharing digital mediums in

various platforms led to a growing community. I define the key elements in this community as

follows:

(1) Creator (C): The person who is involved in the design, implementation, testing, and main-

taining a digital artifact. A marketplace has a tuple of creators: C = {C0, C1, ..., Cn}

(2) User (U): The person who interacts with the digital artifact produced by the creator (C).

In a marketplace, we will have a tuple of users: U = {U0, U1, ..., Un}

(3) Artifact (A): Is a digital object made by a creator (C) to perform a task that benefits the

user (U). In a marketplace, we will have a list of artifacts: A = {A0, A1, ..., An}

In addition, each of these elements is associated with custom actions that result in important

events that describe or change the state of an artifact (depicted in figure 2.1). To understand the

actions that may change the state of an artifact in a marketplace, let’s consider a single artifact

published at a marketplace by a single creator and used by multiple users. This artifact can be

a simple calculator app released in a mobile marketplace at some point in time, downloaded by

multiple users, but never received an update. This app represents the simplest form of the single

snapshot view, where the time of observation is not considered important. Installing this app now

will almost match the exact same view taken in its first and only version with the exception of a

few properties (e.g., reviews and ratings). Thus, observing an artifact using the single snapshot

approach will almost match the observation at the time of its inception. While marketplaces contain

a considerable amount of artifacts that correspond to the single snapshot view, a significant amount

of artifacts are ever changing. Hence, we need a different model to describe them.

The nature of the marketplace is described as a dynamic sequence of events that results in

complex changes to a collection of artifacts. For instance, consider an app that was published in

a marketplace by a single creator, used by multiple users, reacted to multiple events, and evolved

over time receiving multiple changes. Figure 2.2 attempts to capture the factors and events that

may contribute to the dynamic nature of the artifacts in the marketplace. In this case, the creator’s
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actions will often result in either a new artifact or a change to the state of the existing artifact, while

the user’s actions only result in a change to the state of the artifact (e.g., seen, used, recommended,

etc.). The common between all of these actions is the fact that they are associated with a series

of time data that indicates when each action occurred. A creator C may observe the actions of

a tuple of users: {U0, U1, ..., Un} or react to external events which led to the changes or creation

of new artifacts {A0, A1, ..., An} at different times T = {T0, T1, ..., Tn}. These time events are key

to capturing and understanding the dynamic nature of marketplaces. There are various challenges

involved in capturing and analyzing the dynamic nature of the marketplace. Perhaps the most

difficult one is indicating which actions led to a change in the artifact. This stems from the

uncertainty in the events that led to a change in the state of the artifact, which is often caused

by the lack of data that convincingly interpret the event. The work and contributions presented

in this dissertation aim to address the lack of data issue and motivate the creation of data-driven

systems to answer complex analytical questions.

2.2 The Key Dimensions

Although Chapter 3 provides a detailed review of previous related work, it is worth noting

here that the vast majority of prior work in this area falls under the approach of studying the first

model I referred to as the “single snapshot” model. While prior work in analyzing the content of

marketplaces has yielded valuable results, it is often limited to the “current moment” of the finding.

The lack of investigating the dynamic and ephemeral nature of the artifacts in the marketplace

leaves us unable to answer critical questions. For instance, we may not be able to answer questions

like: How can we answer questions like: How did we get to this finding? Does this finding imply

better outcome compare to the past? Can we predict if a different outcome is most likely to happen

in the future?. By viewing the digital marketplace as a dynamic, ever-evolving system, it opens

up a new space for designing and conducting novel analyses to gain insights about this system,

insights that are not possible with a single-snapshot view. In this section, I describe the design

space for such analysis methods for dynamic digital marketplaces. To the best of my knowledge,
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this represents the first attempt to systematically map out this space. The major dimensions of

this space are time resolution, inclusion criteria, and depth.

2.2.1 Time Resolution

Given the large amount of artifacts in marketplaces, a large number of observations may be

made at different time points. The first step in analyzing time series data is the selection of a

specific frequency time span. The precision of selecting a measurement of time is highly specific

to the data analysis task. This comes from the fact that different measurements of time-frequency

result in different observations. In some cases, taking a longer measurement such as at each year

or quarter will reveal patterns about slow changes. This approach could be useful in observing

slow changes and reporting on trends over a relatively longer period of time. For example, when

analyzing a list of artifacts in a marketplace, we can ask questions after taking a measurement at

each year with respect to a specific design or development property. This could enable us to ask

questions like what is the most popular design property in a given year? How popular is it in a

different year? What was the increase in its popularity in another year? In some cases, adjusting

the measurement to a shorter period of time (e.g., monthly, weekly) may be considered a convenient

way to sharpen the observations. This short measurement is particularly useful in observing fast

changes to digital artifacts in a marketplace. For instance, we can ask questions like: what is the

most changing design or development property over a given period? what are the top artifacts

that made changes to this property? To conclude, it is important to remember that the precise

measurement of time may affect the outcome of the observations significantly.

2.2.2 Inclusion Criteria

This dimension is concerned with the selection of a subset of artifacts from a marketplace for

analysis. This problem has been studied extensively in statistics but it is worth to briefly discuss it

here in the context of digital marketplaces. One might begin by taking the approach of collecting

the entire artifacts in the marketplace (i.e. conducting a census). While it is obvious that this
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approach is expensive and requires lots of resources, there are reasons that his may not be the best

approach. The first reason is that access to the entire population is only possible to collect by the

owners of the marketplace. The second reason is that the population of artifacts changes constantly

in response to different actions and events, which means this approach will never result in a perfect

measure of the population. The more reasonable approach, however, is to collect a sample of the

entire population of artifacts. Sampling is easy to obtain and does not exhaust a lot of resources.

However, sampling is often subject to error and bias. For example, suppose that we attempt to

estimate the existence of a certain design property in the artifacts in a marketplace. If we collect a

sample based on the top 10 artifacts from each category in a marketplace, then this sample would

suffer from a selection bias because it is not a representative of the population. We cannot make

a valid conclusion about a collection of artifacts (i.e. statistical inference) when our sample suffers

from bias. Thus, it is important to conduct exploratory data analysis on the sample at hand to

estimate the validity of the chosen sampling method. There are a few sampling methods to consider

and ensure that our sample is a representative of the population. The commonly applied method

is to randomly select artifacts from the marketplace such that each case is likely to be selected.

For example, one might start by taking a random sample of artifacts in a marketplace based on a

randomly selected search terms. If our sample does not suffer from sampling bias, we can generalize

the observation to the entire population of artifacts. The chosen inclusion criteria of our sample

must result in a representative sample of the population in order for the conclusion to be more

reasonably valid.

2.2.3 Depth

This dimension is concerned with the internal and external parts an artifact is composed

of. A digital artifact consists of intrinsic and extrinsic parts that make up the artifact as a whole

object. These properties are essential to understanding the changes to the state of the artifact. For

example, consider a single digital artifact in a marketplace that has three part types: a) Listing

information on the marketplace that promotes it and describes its purpose. b) Data that defines its



11

visual appearance and how a user may interact with. c) Data that describe its functional behavior.

An important characteristic of the changes in a digital marketplace is that a change at one of these

levels may trigger another change at a different level. For example, a developer may add changes

to the functionality of the artifact. This change may require changes to the data of the visual

appearance to make it visible to users. This change may also result in another change at the listing

information level to promote the addition to users. Therefore, we need to consider all the parts

that compose the artifact in order to understand the changes that occur to them over time and

gain useful insights.

2.3 Summary

In this chapter, I formally defined the digital marketplace, its key elements, and how changes

take place. I discussed the limitations and problems that may arise when considering a single

snapshot approach. I described how artifacts can be analyzed using a deep and longitudinal ap-

proaches.



Chapter 3

Related Work

This chapter provides a brief background on Android applications and an overview of the

technologies related to reverse engineering Android applications. It also discusses the relevant

work in the area of mining the web, mobile applications, and software repositories to motivate the

discussion on the work presented in this dissertation.

3.1 Android Applications

Android applications are often written using the Android software kit (SDK) in the Java

programming language. In addition, parts of the application code can be written in native lan-

guages such as C and C++ using the Native Development Kit (NDK). Android provides a rich

framework with various APIs for third party developers and a set of tools to build and compile the

application source code along with its resources into an Android package file (APK). The APK file

is an archive file in ZIP format with a .apk file extension. An application developer generates a cer-

tificate to digitally sign the application before releasing it on the marketplace for Android devices.

When publishing the app to the Google Play store, the official marketplace, the developer provides

information for the store listing to describe and promote the application. Users can search for

applications in the marketplace and install the APK file to their devices. Applications in the mar-

ketplace are uniquely identified using a package name field. Android uses the Java package naming

conventions to uniquely identify applications by their package names. In general, developers use

a package name that begins with their reversed Internet domain name (e.g., com.airbnb.android).
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Developers can update the APK file with a newer version and change the store listing details page

at any time. The Google Play store only offers the most recent version of the app and does not

keep previously submitted versions. However, some unofficial or third-party marketplaces main-

tain an archive for all versions of particular apps. In addition to package names, Android requires

applications to define version information, so it can be used when releasing or upgrading the APK

file. Android uses two version values. a) version name, which is a string value that represents the

application release version and is visible to users (e.g., 1.2.0), and b) version code, which is an

integer value that is not visible to the users but used by marketplaces including the Google Play

store to check for version updates.

3.1.1 User Interface Layout

The user interface (UI) of Android applications is built using two basic UI elements, View

and ViewGroup elements. Views represent a single UI component (e.g., input elements such as

text view, button, etc.), while ViewGroups are the invisible containers that group View elements

(e.g., LinearLayout, RelativeLayout, etc.). UI elements are usually defined in static XML layout

files. The app content (e.g., text, images, animations, etc.) is usually stored in XML files within

special directories and embedded using special XML tags and attributes. The Android framework

parses the layout XML files into a Document Object Model (DOM) tree, performs pre-processing

on the tree at build time, and inflates the screen with the visual rendering of the layout. The XML

layout files provide a complete specification for the Android framework engine to render the user

interface. The UI of Android applications can be constructed entirely at runtime; however, for

most applications the UI is implemented in static XML layout files, and Java code is used to add

content or enhance interactive UI elements. For example, to implement a navigation drawer, the

developer would need to define the drawer layout, initialize the drawer list, and handle navigation

click events (see listing 1).
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$ main_layout.xml

<android.support.v4.widget.DrawerLayout

xmlns:android="http://schemas.android.com/apk/res/android"

android:id="@+id/drawer_layout"

android:layout_width="match_parent"

android:layout_height="match_parent">

<FrameLayout

android:id="@+id/content_frame"

android:layout_width="match_parent"

android:layout_height="match_parent" />

<ListView android:id="@+id/main_drawer"

android:layout_width="match_parent"

android:layout_height="match_parent"

android:background="#111"/>

</android.support.v4.widget.DrawerLayout>

$ MainActivity.java

public class MainActivity extends Activity {

private String[] mMenuItems;

private DrawerLayout mDrawerLayout;

private ListView mDrawerList;

@Override

public void onCreate(Bundle savedInstanceState) {

super.onCreate(savedInstanceState);

setContentView(R.layout.activity_main);

mMenuItems = getResources().getStringArray(R.array.menu_items);

mDrawerLayout = (DrawerLayout) findViewById(R.id.main_layout);

mDrawerList = (ListView) findViewById(R.id.main_drawer);

mDrawerList.setAdapter(new ArrayAdapter<String>(this,

R.layout.drawer_list_item, mMenuItems));

mDrawerList.setOnItemClickListener(new DrawerItemClickListener());

}

}

Listing 1: A snippet of an Android drawer menu defined in an XML file and initialized in Java
code.

3.1.2 Reverse Engineering Android Applications

According to the taxonomy of Chikofsky and Cross [48], reverse engineering is defined as “the

process of analyzing a subject system to identify the system’s components and their interrelation-
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ships and create representation of the system in another form or at a higher level of abstraction.”

The analysis presented in this thesis is performed on third-party, closed-source, binary Android

applications. In order to expose the app’s structure, we make use of a reverse engineering tool

called apktool [10] to unpack APK files and decode their resources to their nearly original formats.

Running apktool on an APK file results in a directory tree that makes up the app. The tool disas-

sembles the bytecode into smali files, which uses an assembler-like syntax based on Jasmin [20], a

largely used assembly format for the Java Virtual Machine (JVM).

3.2 Data Mining

Data mining refers to the process of extracting previously unknown information from data

and discovering new patterns in the data [140]. Data mining techniques have been applied to

find structural patterns in large-scale data from various domains such as business intelligence,

fraud detection, and surveillance. This section describes the most relevant data mining application

domains to the work presented in this thesis: Web mining, mining mobile applications, and mining

software repositories.

3.2.1 Web Mining

Web mining is an area of research that involves the use of data mining techniques to automate

the discovery and extraction of information from the World Wide Web [55]. The use of data

mining techniques has proven to be a powerful approach for extracting knowledge and detecting

new patterns from large collections on the Web. The web mining research can be classified into

three main categories: content mining, structure mining, and usage mining [100, 81].

Web content mining involves the use of various techniques due to the different kinds of content

on the web (e.g., text, images, and videos). Research in mining text-based content such as news

articles often represents the unstructured text documents as a bag of words or vector representation,

n-gram, phrase based, or term-based representation [102]. The applications of mining text content

include text classification, clustering, and patterns discovery. The study of mining text-based
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content over time is called Temporal Text Mining (TTM). It is concerned with discovering patterns

in temporal documents and has many applications such as events tracking [63], summarizing [105],

and detecting [70]. The Web is regarded as the largest database of images and videos. Advances

in computer vision and image processing techniques have enabled data mining researchers to use

the extracted features to discover new patterns. [138, 141].

Structure mining research focuses on extracting information from the underlying hyperlinks

graph structure of the Web itself. Applications of web structure mining include Web pages ranking,

categorization, and community discovery. A number of algorithms have been proposed to model

the graph structure of hyperlinks and rate Web pages based on quality or importance factors.

Examples include the Hyperlink-Induced Topic Search (HITS) algorithm [78], PageRank [40], and

Clever [44].

Web usage mining involves collecting and analyzing server and browser logs data that result

from users interacting with Web pages. Researchers have used different kinds of data in Web usage

mining [129]. User’s registration data are used to provide demographic information about the users

interacting with Web pages. Click-stream data is a sequential series of page clicks and used to

provide insights into the path the user takes when navigating through Web pages. The applications

of mining usage data include modeling user profiles, collaborative filtering, recommender systems,

and discovering navigation patterns.

3.2.2 Mining Mobile Applications

Mining mobile apps started to be of interest to researchers ([53, 54, 99, 49, 58, 146, 144, 114,

107, 112, 61, 47, 96, 90, 116, 95, 125, 143, 34, 46, 94, 134, 113], see Table 3.1). Harman et al. [64]

conducted one of the earliest studies on mining and analyzing app store data. They mined app

meta-data (listing details data) of over 32,000 apps in the Blackberry app store to find patterns such

as a correlation between app rating and download count. Wei et al. [139] developed ProfileDroid, a

monitoring and profiling system for analyzing the behavior of Android apps. The system statically

analyzes APK files (bytecode only) and dynamically collects log data for system events and network
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traffic. They uncovered behavioral characteristics among apps such as most of the network traffic

is not encrypted and travel to third-party servers. Fu et al. [59] conducted a sentiment analysis on

the reviews of over 170,000 mobile apps to identify the common reasons why users like or hate an

app. They collected listing details data and analyzed the reviews at multiple granularities. They

found that the lack of attractive design was the largest cause of negative reviews. However, only

listing details data were considered and no design and code data were analyzed. Viennot et al. [136]

developed the largest scale crawler for Android apps, crawling over 1,000,000 apps and analyzing

a subset of their listing details and source code to identify library usages and detect dangerous

security practices. Despite the immense scale, they stored the listing details and source code files

as plain-text data and used a full-text search engine to query them. This greatly restricted the

applicability of their approach to keyword search and left structured data search unsupported (e.g.,

user interface layout data). Shirazi et al. [123] collected 400 Android apps to analyze the common

design patterns of these apps. They estimated the complexity of each app’s design by counting

the number of activities, layout files, and images. They computed descriptive statistics such as

the most frequent interface elements and the most common combination of widgets. Minelli and

Lanza introduced SAMOA [107], an analytic platform for mobile apps with the goal to understand

the complexity of mobile apps and third-party API usage. The platform was among the first

attempts to analyze apps at depth (source code structure and listing details) over time. However,

the platform does not utilize user interface data and used a small dataset of 20 open source apps.

In order to deal with the recent increase in the number of mobile apps, researchers have

studied them for various data mining and machine learning applications. Chen et al [46] presented

SimApp, a framework for detecting apps similarity based on listing details data using a kernel-

based learning algorithm. Lin et al. [91] proposed a framework to improve app recommendation by

incorporating version histories with standard recommendation techniques. Zhu et al. [147] proposed

a ranking fraud detection system based on historical app ranking data to detect fraudulent means

that could boost the app’s rating in the marketplace. AppJoy [142] is a personalized recommender

system for Android apps. The system computes a “usage score” based on the actual user’s usage and
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uses that as an input for a collaborative filtering algorithm to make personalized recommendations.

Finally, I note two recent research efforts that have investigated interesting changes in mobile

apps over time. First, McIlroy et al. [104] studied the update frequencies of mobile apps. They

tracked 10,713 apps over a period of 47 days. They found that 14% of the studied apps are updated

on a bi-weekly basis and around 45% of the top 100 most updated apps do not include a rationale

for the update in the ”What’s new” section of the listing details data. Second, Martin et al. [103]

tracked the releases of 26,339 apps over a year to find the releases with the most impact in ratings.

They found that releases that describe bug fixes or new features in their release note (the ”What’s

New” section) tend to have a more positive impact in ratings.
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Table 3.1: Summary of studies that involve mining of mobile application (continued on next page).

Domain Study/System Method/Purpose Depth Scale

P
ri

va
cy

TaintDroid by

Enck et al. [53]

An information flow tracking system

that provides realtime monitoring of

privacy sensitive data leaked by ap-

plications.

Code 30

PEDAL by Liu et

al. [95]

A system that enables users to con-

trol inherited permission to ad li-

braries, so they can grant a permis-

sion to the app to function but not

the ad component within the app it-

self.

Code 60,000

Seneviratne et al.

[125]

Extract listing detail features for a

list of user installed apps to predict

user’s gender.

Listing de-

tails

4,167

Lin et al. [90] A static code analysis approach

to analyzing requested permissions

and determining which ones are

needed for the app’s core function-

ality and the ones needed for shar-

ing sensitive information with ad

libraries. They leveraged crowd-

sourcing to collect privacy prefer-

ences and identified four user pri-

vacy profiles.

Code and

Listing

details

108,246
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SUSI by

Rasthofer et

al. [116]

An automated machine learning ap-

proach for classifying sources of sen-

sitive data (e.g., location) and sinks

of potential channels through which

data may leak to an adversary (e.g.,

a network connection) from Android

API methods.

Code 11,000
S

ec
u

ri
ty

DNADroid [49] A tool for computing similarities

between apps to detect illegitimate

app clones in multiple marketplaces.

Listing

details and

code

75,000

Pandita et al.

[112]

Use NLP techniques to detect

whether the app description indi-

cates the app needs to use a par-

ticular permission.

Description,

API usage,

and Mani-

fest file.

581

Gorla et al [61] Analyze and cluster apps by their

descriptions and API usages to de-

tect outliers.

Description

and API

usage

22,500

The ded decom-

piler by Enck, et

al. [54]

A decompiler to recover source code

from the binary file. They used

it to perform security analysis and

discovered suspicious behavior that

links to misuse of personal informa-

tion by the app and ad libraries.

Code 1,100

Zhou et al.[146] A classification of Android malwares

into 49 different families.

Code 1,260
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S
of

tw
ar

e
E

n
gi

n
ee

ri
n

g
Chen et al. [47] Analyze app user reviews to extract

valuable information for developers.

User re-

views

4

SAMOA [107] An analytic Platform for mobile

apps to analyze the structure of

source code over time.

Listing

details and

code.

20

Yang et al. [143] Control-flow analysis system for An-

droid. It generates a callback

control-flow graph that can be used

for analysis applications such as

software and GUI testing.

Code 20

PerfChecker by

Liu et al. [96]

A static code analyzer to detect per-

formance bugs

Listing

details and

code

29

M
ac

h
in

e
L

ea
rn

in
g

Baeza-Yates et al.

[34]

A model for predicting the next in-

stalled app the user is going to use.

The goal is to improve the usage of

home-screen/launcher applications.

Log usage

data

70,000

Chen et al [46] A framework for detecting similar

apps using an online kernel algo-

rithm.

Listing de-

tails

21,624

Liu et al.[94] App recommender system that in-

corporates both apps’ functionali-

ties and users’ privacy preferences.

User re-

views

6,157

Yin et al. [144] A recommender system for recom-

mending new apps to replace al-

ready installed ones.

Description 5,661
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D
a
ta

M
in

in
g

Park et al. [113] An information retrieval approach

that leverages user reviews with app

description for mobile app retrieval.

Listing De-

tails

43,041

Frank et al.[58]. Cluster apps by permissions to find

patterns in high-reputation and low-

reputation apps.

Listing De-

tails

188,389

Ma et al.[99] Mining context logs of mobile app

users to identify similar patterns.

context logs logs

from 443

users

Petsas et al.

[114].

A study in apps’ popularity trends

and revenue strategies across four

third-party Android marketplaces.

Listing and

code.

300,000+

3.2.3 Mining Software Repositories

Software repositories such as version control, bug tracking, and team communication systems

have received a lot of attention in recent years. Mining software repositories (MSR) is an emerging

research area concerned with finding patterns in large software repositories. It has seen a wide

range of topics including detecting code redundancy [75, 42], finding relevant code examples [69,

124, 101, 131], bug-introducing changes [77], bug fixes [76, 111], mining software changes [148, 118],

identifying hard to change code (code decay [52]), and finding common idioms [56].

Maintaining large collections of open source software repositories and indexing them has

recently become an active research area (e.g., [35, 41, 88, 130]). For instance, Boa [51] is a domain

specific language for mining software repositories on a large-scale infrastructure with the goal of

reducing the efforts of writing analyses tasks and reproducing practical mining experiments.
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3.2.4 Mining User Interface Data

User Interface design is often considered hard and challenging. Designers use various methods

and techniques during the creative design process including: a) The use of paper prototypes [109,

79]. b) The use of storyboarding and wireframing [109, 137]. c) The use of reusable design solutions

(e.g., templates, design patterns) [73, 60, 122]. d) The use of interactive sketching tools [85, 89, 110,

126]. e) The use of inspirational curated examples [115, 67, 87, 122, 106]. Several lines of research

were developed around these methods and largely used small controlled studies to evaluate their

effectiveness.

Prior research has studied the use of examples to draw inspirations and aid designers in the

design process. The applications of using design examples include exploring alternative designs,

seeking creativity, and getting an inspiration [115, 67, 87, 122, 45, 106]. Herring et al. [67] studied

how designers use examples and the difficulties they faced when searching, sharing, and using design

examples. Miller et al. [106] studied how professional designers find design examples. They found

that designers had several difficulties to find what they are looking for and turning that into a

search query. This forces designers to use search terms that are not directly related to what they

are looking for. For instance, a search query for the term “large navbar” usually returns results to

question-and-answer websites or tutorials that describe the implementation details of “navbars”.

These findings suggested the need for better tools and retrieval systems to support designers in

retrieving example.

Attempting to address this pressing need, data-driven approaches have been applied to iden-

tifying design examples. HCI researchers have realized that in order to increase the usefulness of

design examples to designers, a new generation of design based search engines needs to be devel-

oped. This manifested from the limitations of existing search engines that are designed to deal

with text rather than visual structure.

Several tools have been developed to aid designers in finding and using a curation of design

examples. The Adaptive Ideas tool [87] is a browser extension that enables designers to view
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design examples of a manually curated corpus of 250 web design examples. It allows designers to

borrow design elements from multiple design examples while designing their websites. D.tour [122]

is a search tool for finding web design examples. The tool consists of a curated database of 300

web pages. Users can search for similar design examples or use textual design terms. WebCrystal

[45] is a tool that adds visualization and text to explain how design examples are constructed

allowing novice web designers to use them in their own web pages. Bricolage [84] is an algorithm

for retargeting content between web pages. It creates a mapping between the visual elements of

web pages allowing designers to transfer the style from one page to another page. Bricolage trains

a model on a corpus of design mapping of 50 web pages collected from crowdsourced workers to

automatically transfer the design between web pages. Webzeitgeist [83] is a retrieval system for

mining design data. It provides a custom JSON-like design query language (DQL) that can be used

to find design examples by the visual appearance and the DOM structure of web pages.

The HCI literature has also examples on the use of crowds to complement the data-driven

approaches in finding more relevant design examples [84, 128], understand aesthetic preferences

[121], and design demographics [120]. Reinecke et al. [121] collected 450 web pages and obtained

subjective ratings from 548 volunteers about the visual complexity and colorfulness of these pages.

They were able to develop computational models that accurately measure the perceived visual

complexity and colorfulness of website screenshots. Extending this work, Reinecke and Gajos

[120] collected 2.4 million ratings from 40,000 diverse participants for 430 websites to identify the

demographical factors that influence visual preferences. They developed a computational model

that predicts users perception of visual aesthetics for specific demographic group.

The web search and data mining literature had a different goal when dealing with design

data, removing design data to improve the accuracy of information retrieval systems. Design data

is often considered unclean data that pollutes the content; thus, research has been conducted to

detect and remove them to improve page ranking, indexing, and data mining algorithms [36, 60, 43].

Researchers have also developed algorithms to extract web page templates and understand their

evolution. These algorithms primarily target web browsers (e.g., template caching), search engines
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(e.g., improve indexing), and data mining applications (e.g., analytic tools). For instance, Gibson

et al. [60] extracted templates from web pages and measured their prevalence. They found that

templates are counted for 40-50% of the size of web pages. They further studied changes to the

number of templates for 183 websites over a period of 8 years and showed that it is growing by

6-8%.

3.3 Design Aesthetics

Early on, researchers realized the need to formally develop design guidelines to improve the

overall appealing of graphical user interfaces (GUIs) [62, 68]. Platform owners and organizations

also developed their own design guidelines with recommendations to solve problems like usability

and inconsistency in GUIs and promote a good visual design appealing [28, 25, 19, 16]. While

design guidelines are sometimes useful to designers, it is now acknowledged that design guidelines are

vague, conflicting, and difficult to apply [38, 50, 97, 72]. In addition, there is no common agreement

on what constitutes valid design guidelines [117]. Research efforts have moved to studying how

existing web design examples influence users in many ways: visual aesthetics preferences [119, 121,

120], perceived trustworthiness [37, 92], usability [62, 133, 82, 135], quality [66], and satisfaction

[132].

Researchers have conducted a series of controlled laboratory experiments with users and

professional experts to understand the qualitative factors that influence users when judging the

appearance of a website [132, 86, 66]. Lindgaard et al. [93] conducted three lab studies to find how

quickly users assess the attractiveness of website design and found that participants were able to

judge the design within 50 milliseconds. Hartmann et al [65] conducted a small controlled lab study

to evaluate the attractiveness of websites by applying the adaptive decision-making theory. They

collected subjective ratings from 43 participants for only 3 websites and found that participants

background influenced their rating of website design quality. Researchers have also applied different

techniques to measure web design aesthetics. For instance, Ivory et al. [72] used a quantitative

method to compute 11 web page attributes metrics (e.g., number of fonts, images, and words) for
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1,898 web pages from 163 websites. The web pages were manually obtained from a list of websites

awarded an award for excellence in web design. They achieved an accuracy of predicting 65% of the

award judgment ratings. Ivory et al. [71] expanded upon this work by adding more 146 attribute

metrics, increasing the number of samples to 5,300 web pages, achieving a higher accuracy of 94%,

and creating a profile of good and bad website design.

Advances in computer vision algorithms enabled researchers to apply pixel-based methods

to analyze the design of websites and develop computational models to predict users judgments.

Zheng et al. [145] computed low-level image statistics to predict users’ judgments for 30 web pages.

They computed layout structures and evaluated them with human ratings collected from a study

with 22 participants. Reinecke et al. [121] collected 450 web pages and obtained subjective ratings

from 548 volunteers for the visual complexity and colorfulness of these web pages. They were

able to develop computational models that accurately measure the perceived visual complexity and

colorfulness of website screenshots. Finally and most recently, Miniukovich and De Angeli [108]

developed a tool for GUI aesthetics evaluation based on eight metrics of GUI aesthetics.



Chapter 4

Mining User Interface Design Pattern Changes

Mobile user interface (UI) design patterns have been widely used across different mobile

platforms. UI design patterns have evolved and changed significantly as new trends emerge and

fade at different times. This chapter presents a pilot experiment for mining design pattern changes

in Android apps. Over a period of 18 months, I tracked 24,436 apps and collected their versions.

In total, the sample consists of 56,349 unique app versions, more than 5 million source files, and

more than 25 million UI elements. The work presented here is heavily dependent on custom scripts

to extract features to support the differential analyses regarding design pattern changes.

This work is the result of collaboration with Tom Yeh ([31]).

4.1 Introduction

UI design patterns are general, reusable solutions to common design problems. Take, for

example, the problem of organizing menu items on a small screen of a mobile device. A number

of design patterns have emerged as useful solutions to this problem. For instance, Android design

guidelines feature a number of design patterns such as the use of “Navigation Tabs” pattern [2]

and the “Navigation Drawer” pattern [23]. Design patterns are valuable to both third party app

developers and UI framework engineers. UI framework engineers invest a substantial amount of time

and effort in building new design patterns for their platforms to enable third-party app developers

to enhance the UIs of their applications. Third-party developers make difficult decisions when

choosing a particular design pattern to communicate their ideas in a way that pleases their users.
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A good design pattern often enjoys wide adoption by developers and acceptance by users. An

interface following good design patterns is familiar to users, consistent with users’ expectations,

and easy to learn. A bad design pattern would have the opposite effects.

Design patterns change, evolve, or in some cases, die out over time. A design pattern once

popular may begin to lose popularity to a better alternative. A once obsolete pattern may expe-

rience a resurgence in adoption. A new design pattern may be introduced with a lot of hype and

promises but never go on to wide adoption. A little-known design pattern may all of a sudden

explode in popularity. These phenomena may have important HCI implications. But there has not

been a large-scale comprehensive study on changes in design patterns.

The design guidelines of mobile applications have changed significantly with new design

patterns, UI elements, and styles to improve the overall visual design of mobile apps. UI framework

engineers add new widgets for complex UIs, implement new APIs for them, deprecate previous

widgets and UI related APIs, and add new visual design patterns to help developers build beautiful

applications. How do we know how many apps have made the switch to a particular design pattern

and maintained the usage across future releases? It is hard to quantify the adoption rate of these

design patterns using existing approaches.

This chapter presents a data-driven approach to studying design pattern changes on a large

scale. We applied this approach to the Android framework and present our findings here. Our

approach consists of five steps:

(1) Collect a large number of apps. Continue to download their subsequent updates.

(2) Decompile each app into code that can be analyzed to understand the app’s UI design (e.g.,

XML) and actual programmed behaviors (e.g., void onClick()).

(3) Extract a comprehensive set of features about each app from the app’s listing details web

page, user interface layout, and actual code.

(4) Stats: Compute statistics (e.g., distribution, min., max, mean, outliers) with respect to a

feature of interest.
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Listing
Details
Features

package name, title, description, reviews, store URL, category, price, date
published, version name, version code, target system version, ratings count,
rating, content rating, creator, creator URL, install size, downloads count,
permissions, what’s new.

Appearance
Features

layout directories, layout files, view group containers, view elements, relation-
ships, drawable resources, UI text resources.

Behavioral
Features

app framework invocations, manifest (AndroidManifest.xml), third-party li-
braries.

Table 4.1: List of features extracted from each app.

(5) Diff: Compare two versions of an app and compute their differences. Identify common and

unusual change patterns.

Our approach provides new insight into design pattern changes in Android apps. For example,

there are five common design patterns for navigation: Tab Layout, Fragments, Horizontal Paging,

Up Navigation, and Navigation Drawers. Which of these are more common? Have any apps made

a switch between two pattern versions? What are the most common switches? How prevalent are

they? What apps use an unusually large number of custom widgets? Are there apps switching

from custom widgets to built-in widgets? These are just a sample of questions our approach was

able to address.

We present our approach in detail, describe a system that supports our application of this

approach to the Android framework, and finally present eight analyses of design pattern changes

to demonstrate the usefulness of our approach.

4.2 Approach

Our approach consists of five steps: collect, decompile, extract, stats, and diff. We choose

the Android platform as an application and explain how we carry out each step to analyze design

pattern changes.
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4.2.1 Collect

The first step is to collect a large sample of apps and extract the visual structure of their

user interfaces. We download apps from the official marketplace, Google Play store, and crawl their

listing details web pages. Moreover, in order to analyze changes, we need to continue to monitor

these apps for updates and download them.

4.2.2 Decompile

The second step is to decompile the user interface program to expose its “code” portion so

that the actual programmed behaviors can be subject to analysis. This step involves running an

“unpack” tool to open each app’s Android Application Package (APK) file to obtain a set of design

layout files and a “dissembler” tool to obtain the app’s byte code.

4.2.3 Extract

The third step is to compute a rich set of features to describe each app at three levels. First,

at the listing details level, we find descriptive information about a GUI from where the GUI may

be listed, promoted, or reviewed. Second, at the appearance level, we gather data that defines

the look and feel, content, and structure of a GUI. Third, at the behavioral level, we examine the

decompiled code to gain insight into the actual programmed behaviors of a GUI. We mine the

Google Play store to obtain a comprehensive set of listing features, such as the title, price, ratings,

install size, and what is new. We parse the manifest file, the layout files, and the string definition

files to extract appearance features such as the use of custom components and the relationships

between components. Finally, we apply program analysis to the byte code to extract the behavioral

features such as the use of GUI related APIs that dynamically change the GUI. Table 5.1 gives a

comprehensive list of the features we considered on the three levels.
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4.2.4 Stats

After extracting a rich set of features about the apps in the corpus, the fourth step is to

conduct statistical analysis about them. The most common analyses would be to compute the

average, min, max, and histogram for quantitative features. For categorical features, counting and

distribution often yield useful insights. For text features, one can compute the most frequent words.

Complex analyses are possible at this step, such as correlations, clustering, detection of outliers,

and sentiment analysis. In the application of design pattern changes, we carry out a range of

statistical analyses like “what’s the percentage of apps using a given design pattern?” and “what’s

the percentage of apps that switch to a different design pattern?” Although computing descriptive

statistics on UI design pattern changes seems simple, it was not even possible before our approach.

4.2.5 Diff

The final step is to compare two subsequent versions of an app and identify the aspects

that have been updated. Usually an update contains changes to certain aspects of an app’s GUI

design. Sometimes changes are obvious, such as design overhaul. Sometimes changes are subtle,

such as rewording the caption of a button. We pay attention to changes that occur in the listing,

the appearance, and the behaviors. For instance, an app may add a new screen to support a new

feature. This change can be reflected at all levels, including description in the “what’s new” section

promoting the new feature, an extra layout file defining the new screen, and an extra function calls

in the app’s code to implement the new features. Moreover, we consider differences at the group

level, by asking, for example, what are the most common design patterns dropped in a collection

of apps?

4.3 System Implementation

On a small scale, the five steps in our approach are easy to carry out. But they quickly

become challenging when the scale goes up to a level of tens of millions of layout and program files.
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Figure 4.1: Architecture of the analytic system.

Table 4.2: The number of apps by release date grouped by quarters.

There is no off-the-shelf, ready-to-use system to support large-scale differential analyses to answer

our questions regarding design pattern changes. Therefore, we designed and implemented a system

dedicated to supporting our analyses. The technical detail of this system is presented here.

The system consists of five components (see Figure 4.1): Apps crawlers, feature extractors,

data stores, client drivers, and transformation (changes) trackers. The apps crawler downloads free

apps from the Google Play Store and saves them to the file system. Feature extractors are a rich

tool chain that decodes apps, extracts features, and stores them in the data stores. The client

drivers handle all interaction with the data stores. The change trackers are a rich tool chain that

tracks and computes statistics on changes to the extracted features.

4.3.1 Apps Crawlers

Our system utilizes two custom crawlers we built: the apps crawler and the listing details web

crawler. The apps crawler maintains a list of keywords, crawls the Google Play Store, and returns

a list of package names for free apps. We used Google-Play-Crawler 1 , an unofficial open-source

1 http://github.com/Akdeniz/google-play-crawler
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Java API for the Google Play Store, to retrieve package names and download APK files. Prior

releases of apps are not available on the Google Play Store. Thus, the apps crawler obtains the

version code value for each retrieved package name and queries the data store to check if it exists.

If it does not already exist in the repository, the crawler downloads and saves the APK file in the

data store.

Once the APK file is downloaded, the apps crawler notifies the listing details web crawler to

download the most recent app listing details web page. The listing details web crawler is written

in Ruby. It generates a URL using the package name and downloads both the HTML page and

the resources of the listing details web page. Finally, another process runs to decode the APK file

using Apktool [10], an open-source reverse-engineering tool. When the APK file is decoded, we get

a directory tree of app files that make up the app.

4.3.2 Feature Extractors

Once an APK file and its listing details web page have been downloaded, a set of feature

extractors is run. The feature extractors comprise three main tools: Listing details extractor, UI

extractor, and source code extractor. The listing details extractor parses the listing details HTML

file, extracts the features, and stores them in the document data store. The UI extractor traverses

the unpacked APK file, extracts UI features from layout files and resources, and stores them in

the graph data store. The source code extractor computes features from the smali files, a human

readable assembly like language for the disassembled byte code. It uses string pattern matching

techniques (e.g., grep, regular expressions) to extract features available in the app’s byte code and

stores them in the document data store.

4.3.3 Data Stores

Our data store is built on top of two database technologies: a NoSQL document-oriented

database for storing apps listing detail features, code features, and APK files. The second database

is a graph database for storing the XML elements of layout files. The document-oriented database
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Figure 4.2: The distribution of apps by versions.

is a MongoDB instance, an open-source document- oriented database scalable to accommodate

large and complex data. Our MongoDB instance comprises five collections: listing details, the

AndroidManifest features, code features, and two GridFS collections to store the binary APK files

and additional metadata. The MongoDB instance contains collections for over 56,349 APK files

for 24,436 unique apps with multiple releases. The total size of the database is 501 GB hosted

on a 24-core server with 47 GB RAM running Ubuntu 12.04. Over the observation period of our

analysis (from January 2013 to June 2014), we collected a minimum number of versions per app in

two versions in our dataset, which represents 80.1% of the dataset (Figure 4.2). Table 4.2 shows

the number of apps by release date, and Figure 4.3 shows the download count distribution by their

ratings.

The graph database is a Neo4j server. Graph databases are well suited to model hierarchical

connected data like UI structure. Neo4j uses the property-graph model, which allows storing

XML elements with their attributes (key-value-pairs) in graph nodes. In android, developers can

reuse multiple layouts using the “<include >” tag to embed layouts to the current element in the

hierarchy. Our UI feature extractors attach the included layout to the current UI tree element,
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Figure 4.3: The download distribution of the apps by rating stars. Colors show details about the
rating.

connecting layouts to one app tree. Queries like “find a specific ViewGroup element with two

specific children” run faster than the traditional many JOIN queries in Relational DBs. In our

database model, each UI element (e.g., a view like ImageView or a view group like LinearLayout)

corresponds to a graph node connected with one relationship (e.g., has view, has view group). The

number of graph nodes in our database is 29,733,591 nodes.

4.3.4 Database Client Drivers

A set of MongoDB drivers is running to query and retrieve data from the database. The

complexity of the executed queries varies from finding fields in multiple collections to running

multiple-pass mapReduce tasks. The graph database clients execute transaction queries on the

graph database using Cypher language, a graph query language for querying Neo4j graphs. These

clients output the results as CSV files to be processed by the transformation trackers.
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4.3.5 Transformation Trackers

To interpret the results generated by the client drivers, another set of tools are running to

compute statistics on the generated results. These are data analysis tools written in Python using

the Pandas library, an open-source library for high-performance data analysis. The data store client

drivers output the results as CSV files, which are passed as input to the transformation trackers.

The transformation trackers load each CSV file into a Data Frame, a tabular data structure with

labeled axes. The Data Frame is indexed by an array of tuples where each tuple is a unique value of

the app’s package name and version code values. This makes it easier to track changes and perform

sophisticated data analysis on multiple versions.

4.4 Design Pattern Changes

The system we developed has enabled us to conduct many analyses on design pattern changes.

Here we chose eight of the most illustrative ones to present: custom UI components, home screen

widgets, as well as various ways of navigating: Tab Layouts, Fragments, Horizontal Paging, Ac-

tion Bar with Tabs, Up Navigation, and Navigation Drawers. For each analysis, we discuss the

motivation, method, results, and implications.

4.4.1 Custom UI Components

4.4.1.1 Motivation

A GUI framework typically provides a rich set of standard UI widget classes with the goal

to ease the GUI development effort. Developers often can meet their needs using these widget

classes. If not, they may need to define custom UI widget classes. Some custom components

are provided by third-party libraries to provide custom widgets or backward-compatibility of the

standard components. Others are developer-customized components. How prevalent is the use of

custom widgets? We are interested in this question because extensive uses of custom widgets may

be a sign that the standard UI widget classes are inadequate.
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4.4.1.2 Method

A custom component is declared in layout files using the full qualified class name of the

component’s class file which starts with a package name, such as

<com.android.notepad.MyEditText id="@+id/note" />

rather than using the name of one of the default widget classes such as EditText, TextView, and

Button. Thus, to find evidence of use of custom UI components in an app, we queried the graph

database for apps with views that start with a package name and counted the number of declarations

of this form in all of the app’s layout files.

4.4.1.3 Results

We found 15,808 (64.7%) apps used at least one custom component, which is more than

half of the apps in our corpus. Among them, 818 (5.2%) apps initially did not use any custom

component and began using it after an update. 410 (2.6%) apps did the opposite, reverting to

use only standard components in subsequent updates. We looked at the listing details of these

apps to find if the developers described any information related to this change in the listing details

section “What’s New”. We searched for UI related keywords and discovered apps that report

enhancements to tablets and large screens. For example, one app stated, “App is optimized for

tablets and many UI enhancements” and another app stated “Improved layout and graphics for

larger screen”. We also looked for unusual change patterns. For example, we were interested

in whether there were apps that had introduced a large number of custom components after an

update. We found 58 apps added more than 500 custom components after updates. We identified

234 unique custom components in these apps by the first three parts of the custom component name

(e.g., com.airbnb.android). The top three added custom libraries are: android.support.v4 (18.8%),

com.facebook.widget (11.5%), and com.actionbarsherlock (5.1%). Interestingly, we observed a high

concentration of these apps in the Finance category. To dig further, we examined the “what’s new”

section of these apps and found mentions of “tablets” and “large screens” that coincide with this
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sudden increase in the use of custom components. For example, one app stated “Accept payment

on Tablets” and another one stated “Resolved login crashes on multiple Tablets.”

4.4.1.4 Discussion

Even though most of the standard Android UI components provide built-in support for

automatic scaling to fit content on large screens, getting these components to work properly may

require a tremendous amount of effort by developers. We speculate that the 818 (5.2%) apps we

found that had begun to use custom components may be to achieve better large screen support that

is not offered by standard components. We found there were more apps adding custom components

than those removing custom components. This suggests an increased level of reliance on custom

components over our sample of Android apps. One could interpret this as a sign that default

components are gradually becoming inadequate.

4.4.2 Home Screen Widgets

4.4.2.1 Motivation

Home screen widgets are shown on the user’s home screen to provide immediate access to

useful information (e.g., today’s weather) or control of commonly used functionalities (skipping to

the next song). By choosing which app’s home screen widget to display, a user may implicitly

indicate her preference for the app. Since there is limited area on the home screen, the size of a

home screen widget matters. An app widget may provide a set of predefined dimensions (e.g., 1x1

or 2x2). Some apps may allow the users to adjust or stretch the dimensions of its home screen

widgets freely.

4.4.2.2 Method

To find apps that use widgets, we queried the document database for apps that declare

widgets in the apps AndroidManifest.xml file. In this file, the <receiver> element has a child

element named <meta-data> that has an attribute named android:name whose value is set to
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Figure 4.4: Two versions of an app titled “Business Insider” before (left) and after (right) adding
the resizing functionality to its home screen widget.

“android.appwidget.provider”. To support resizable widgets, Android developers need to declare

the resize mode to be horizontal, vertical, or both by setting the value of the attribute resizeMode

of the <appwidget-provider> element located at res/xml/. To find resizable widgets, we queried

the UI graph database to a find a widget layout file whose root element is <appwidget-provider>

with the attribute resizeMode.

4.4.2.3 Results

We found 2,639 apps (10.8%) support home widgets. Among them, 255 (9.6%) added home

widgets for the first time, and 80 (3%) later dropped home widgets altogether. 1,118 (42%) apps

allow home widgets to be resizable. Among these, 295 (26.4%) were not resizable before and became

resizable only in the most recent release. 24 (2.1%) apps had resizable home screen widgets but later

on disabled the resizing functionality. In all cases, we did not find any information in the listing

(i.e., description and what’s new sections) mentioning changes in home widget support. Figure 4.4

shows an example of a home screen widget of an app before and after making it resizable.
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4.4.2.4 Discussion

We found more apps adding support for home screen widgets than those dropping the support

(255 vs. 80). This suggests an increased adoption of home screen design pattern. Among those

already providing home screen widgets, a similar trend of increased adoption of the “resizable”

pattern is observed. This suggests apps are increasingly competing for the limited home screen

space. Apps that did not provide home screen widgets would lose out because users are unable to

place them on their home screen and may use them less frequently as a result.

4.4.3 Tab Layout with TabHost

4.4.3.1 Motivation

Tab layouts are used to hold a set of tab labels to allow users to navigate between different

content. One way to implement this design pattern is through the TabHost API. We chose this API

for two reasons. First, this API was included in the initial release of the Android GUI framework

(level 1). Second, it was later deprecated (level 11) in favor of new navigation patterns, such as

the Fragment and the Action Bar patterns. We were interested in whether most or only a small

percentage of apps had made this transition.

4.4.3.2 Method

In order to create a tabbed UI, developers need to use a ViewGroup element named TabHost

and a View element named TabWidget. We queried the UI database for a GroupView named

TabHost with a child View named TabWidget.

4.4.3.3 Results

We found 3,809 (15.6%) apps used TabHost in their UIs. Among them, 666 (17.5%) apps

used TabHost for the first time and 413 (10.8%) apps stopped using it and shifted to other types of

navigations. We further inspected their listing details to see if it includes reasons that describe the
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Figure 4.5: Two versions of an app titled “DDLive”. The version on the left uses TabHost and the
version on the right uses a Fragment that contains a list of items.

migration. We found 106 (25.58%) of these apps provided explanations in their listings. DDLive is

an example of an app that has undergone this change. In the “what’s new” section of its listing on

Google Play, the phrase “UI Changes for better experience” can be found. Figure 4.5 shows two

screenshots of the app before and after the migration from the TabHost pattern to the Fragment

pattern.

4.4.3.4 Discussion

The migration rate of this design pattern is very slow. Even though the TabHost pattern

has been deprecated for at least three years, some new apps continued to use it. Existing apps

using them slowly dropped the use of the TabHost pattern but not at a very fast rate. This raises

the question of why deprecated APIs and design patterns enabled by them are so “sticky” among

Android apps.
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4.4.4 Fragment

4.4.4.1 Motivation

Fragments are used to create a multi-pane view and a responsive UI that works on a variety

of screen sizes and devices. It is a relatively new design pattern that was introduced in API level 11

to allow developers to add multiple independent UI components and reuse them in different parts

of the UI with its own lifecycle. We were interested in how widely this design pattern was adopted.

4.4.4.2 Method

Fragments can be statically added to the layout files or dynamically added in the source code.

Thus, our analysis needs to look at both the UI and code. In the UI, we query the UI database

for apps with the <fragment > element and obtain the value of the android:name attribute that

references a class in the source code. In the code, we search for the class to see if it extends the

Fragment class or any of its subclasses.

4.4.4.3 Results

We found 3,963 (16.2%) apps used the Fragments pattern. Among them, 1,814 (45.8%) used

Fragment for the first time and only 139 (3.5%) apps stopped using it in recent releases. Figure 4.6

shows an example of a shopping list app before and after using Fragment pattern.

4.4.4.4 Discussion

It had been four years since the Fragment pattern was introduced. We initially anticipated

to observe a broad adoption of the Fragment pattern by apps to take advantage of the benefit

this pattern offers. We instead found a lower than expected adoption rate. Only 3,963 (16.2%)

of the apps use it. Among them, almost half were recent adoption during our observation period.

We speculate that the Fragment pattern is a lot more complicated to implement. For example,

StackOverflow, a popular online community for developers to ask and answer questions about
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Figure 4.6: Two versions of an app titled “Shopping List” before (left) and after (right) adopting
the Fragment design pattern.

coding, has over 16,100 questions tagged with “android-fragments”. Some developers may rather

stick to what they are familiar with rather than risking implementing the switch to the Fragment

pattern incorrectly.

4.4.5 Horizontal Paging

4.4.5.1 Motivation

Horizontal paging is a navigation pattern that allows users to navigate between screens using

left and right swipes. We explore this design pattern to find how wide this type of interaction is

and how preferable it is over multiple releases.

4.4.5.2 Method

To implement this pattern, the most common approach is to use a ViewPager view group,

which is a container that can hold multiple child view elements, each of which represents a distinct

screen. Child views can be populated using PagerAdapters in the source code. To find apps with

this pattern, we queried the UI graph database for apps that use the ViewPager element as a
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Figure 4.7: Example of an app titled “JEFIT Workout Exercise Trainer” before (left) and after
(right) adopting the Horizontal Paging design pattern.

ViewGroup container and make use of any PagerAdapters subclasses in the source code.

4.4.5.3 Results

We found 4,524 (18.51%) apps used the Horizontal Paging pattern. Among them, 941 (20.8%)

added this pattern for the first time. 149 (3.3%) apps dropped this pattern. Figure 4.7 shows an

example of an app before and after using the horizontal paging design pattern.

4.4.5.4 Discussion

We observed a lower first-time adoption rate of the Horizontal Paging pattern than that of

the Fragment pattern. This suggests that Horizontal Paging pattern has a longer history than the

Fragment pattern. Apps still continue to migrate to these two patterns but more of them chose

the more general Fragment pattern.
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4.4.6 Action Bar with Tabs

4.4.6.1 Motivation

Action Bar provides several functions to an app including the screen title, action buttons, and

a navigation view with two modes of navigations: navigation tabs or drop-down lists. It was first

introduced in Android 3.0 (API level 11) but also available for lower API levels through additional

support libraries. We explore the use of the Action Bar with navigation tabs, and how apps have

maintained the use of this pattern in their recent versions.

4.4.6.2 Method

While there are multiple ways to create an Action Bar with navigation tabs, they all require

implementing the ActionBar.TabListener interface that provides the required callbacks to respond

to user’s actions. To explore the use of Action Bar with tabs, our analysis needs to look at the

code. We search the source code for apps that implement the TabListener interface.

4.4.6.3 Results

We found 8,483 (34.7%) apps used the Action Bar with Tabs. Among them, 2,729 (32.2%)

were first-time adopters of this pattern. 330 (3.9%) stopped using it. Figure 4.8 shows an example

of an app before and after using the Action Bar with Tabs.

4.4.6.4 Discussion

The Action bar with navigation tabs design pattern is the most commonly used new naviga-

tion design pattern in our dataset of apps. 34.7% of the apps used it. We suspect the reason is that

this pattern has been considered mainstream over the past couple years. An app would look out

of date without adopting this pattern. Moreover, the Action Bar API is one of the easier APIs for

developers to implement and add additional functionalities such as title, icon, and view controls.

Yet, 330 still decided to remove the Action Bar pattern.
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Figure 4.8: Two versions of an app titled “PicsArt” before (left) and after (right) adopting the
Action Bar pattern with Tabs.

4.4.7 Up Navigation

4.4.7.1 Motivation

Apps can use the app icon as an Up button to support navigation between screens based

on their hierarchal relationships. We study the use of this pattern because it provides a new way

of navigation based on the app’s hierarchy rather than navigating through the history of visited

screens, a feature already provided by the physical Back button. Unlike the physical Back button,

the Up button always ensures that the user navigates through the parent of the current screen and

does not exit the app while navigation. The Up button usually appears as a left-facing caret to the

left of the app icon in the Action Bar. When a user taps on the Up button, the app navigates to

the parent screen in the activity hierarchy.

4.4.7.2 Method

In order to use Up buttons, developers need to call the setDisplayHomeAsUpEnabled of the

ActionBar class. To find this navigation mechanism, our analysis searches the app’s code for the

fully qualified name of this method.
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Figure 4.9: Two versions of an app titled “Buscape” before (left) and after (right) adopting the
Up Navigation pattern. The Up navigation button is shown at the top left corner as a left-facing
caret next to the app icon.

4.4.7.3 Results

We found 4,431 apps (18%) used this navigation pattern. Among them, 1,257 (28.4%) added

it for the first time and only 98 (2.2%) of the app’s stopped using it. Figure 4.9 shows an example

of an app before and after using it.

4.4.7.4 Discussion

The Up navigation pattern is less common than navigating with a physical back button. Only

18% of the apps adopt this pattern. The reason behind the Up navigation pattern’s low adoption

rate could be that apps have relied on the back button for navigation since the initial release of

Android, which is already implemented by default. The Up navigation button was common in apps

that have several sibling activities in the hierarchy (e.g., email clients, shopping apps), which may

not be the case for most apps.
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4.4.8 Navigation Drawers

4.4.8.1 Motivation

Navigation Drawer is a hidden panel that displays the app’s main navigation menu. It helps

users quickly navigate through the structure of the app. When the user taps on the top-left app’s

icon or swipes from the left to the right of the screen, the Navigation Drawer expands to cover part

of the screen and shows a list of items.

4.4.8.2 Method

In order to use the Navigation Drawer, developers need to create a layout with a DrawerLayout

as the root ViewGroup element with two children elements. The first child is the Layout element

that represents the content when the drawer is hidden and the second is the actual drawer that

slides in the Navigation Drawer panel. We queried the graph database to find apps that have

layouts that starts with a DrawerLayout element as a root element with two child views.

4.4.8.3 Results

We found 1,183 apps used the Navigation Drawer. Among them, 771 (65.2%) added it for

the first time and only 37 (3.1%) of the apps stopped using this pattern. Figure 4.10 shows an

example of an app before and after using this pattern.

4.4.8.4 Discussion

Navigation drawer is relatively less common than other navigation patterns. We speculate

the reason is two-folds. First, implementing this pattern requires a high degree of customization by

developers to fit their needs. Second, an app may not have a deep hierarchical navigation structure

to make use of this pattern. We also found that the majority of the apps using the Navigation

Drawer were recent adopters (771 out of 1183), which suggests Navigation Drawer a relatively new

design pattern.
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Figure 4.10: Example of an app titled “Carango - Car Management” that shows two versions before
(left) and after (right) using the Navigation Drawer pattern.

4.5 Summary

This chapter presented a large-scale data-mining approach to analyzing design pattern changes.

I discussed its implementation and illustrated a subset of analyses regarding the changes in the use

of design patterns (see table 4.3). This work demonstrated the value of using data-driven approaches

to discovering design pattern changes on a large-scale.
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Design Pattern Usage
First
Time

Changes
No
Changes

Custom UI Components 15,808 818 410 15,398

Home Screen Widgets 2,639 255 80 2,559

Resizable Home Screen Widgets 1,118 295 24 1,094

Tab Layout with TabHost 3,809 666 413 3,396

Fragment 3,963 1,814 139 3,824

Horizontal Paging 4,524 941 149 4,375

Action Bar with Tabs 8,483 2,729 330 8,153

Up Navigation 4,431 1,257 98 4,333

Navigation Drawers 1,183 771 37 11,46

Table 4.3: The changes to the presented design patterns. The columns show the name of the design
pattern, the number of apps that used this pattern in the dataset, the number of apps that used
it for the first time in a recent release, the number of apps that used it but later switched to a
different design pattern, and the number of apps that maintained using it in future releases.



Chapter 5

Sieveable: A Scalable Platform for Mining Mobile Applications

As the number of mobile apps continues to proliferate in marketplaces, the need to study

them at large-scale has begun to receive increased attention. Most of the prior work in this area is

limited to a single view of the data and lacks a holistic view of the apps. In addition, data-driven

systems are largely constrained by the availability of samples and efficient indexing. This chapter

presents Sieveable, a multi-view search engine for Android apps. Sieveable enables deep searching

and filtering across multiple levels: (a) Listing Details, (b) User Interface structure, (c) Manifest

structure, and (d) API calls. Sieveable crawled and indexed more than 450,000 apps. It provides a

query by example language to specify deep search queries. I discuss the key challenges in designing

and developing a scalable retrieval system to enable the deep and longitudinal approach presented

in this dissertation.

5.1 Introduction

Mobile software platforms feature a distribution platform for applications called marketplaces

(or app stores). App marketplaces have become the largest platform for distributing mobile appli-

cations, where users can search for apps, browse through different categories, rate or review apps,

and install free and paid apps. The popularity of mobile devices and the advances in their operating

systems have led to a significant increase in the number of apps published in marketplaces. For

example, as of April 2016, the number of apps in the Google Play Store has exceeded two million

apps [14]. These apps have become a valuable data source to mine and extract insight from in both
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academia and industry.

In the recent years, there has been a noticeable amount of research activities on how to extract

meaningful insights from apps data. The research in mining mobile apps has been dominated by

three single views. First, researchers have mined the listing details data (metadata) of apps such as

ratings and user reviews to perform sentiment analysis and help developers make informed decisions

supported by data [59, 47, 80]. Others have created tools and commercial services to assist app

developers and publishers in a better understanding of listing details data [13, 12, 11]. Second,

researchers have mined user interface (UI) design data such as styles and layouts of thousands of

apps to gain insights into their design patterns [123] and my work in chapter 4. Third researchers

have also mined the source code of apps to learn about malicious behavior and protect users’

privacy-sensitive data [146, 98, 32]. What is missing in prior research is an approach that takes

both a holistic view (design and development) and temporal view (multiple versions) of the apps.

There are multiple benefits for considering a holistic view that involves both design and development

views in mobile app analysis.

App design analysis focuses on UI related data (e.g.,) layout and style files) while develop-

ment analysis focuses on code and configuration data (e.g., Manifest files). In design analysis, UI

components are often created or modified at runtime. When only analyzing the static layout files,

this observation is missed because that behavior is defined in the app source code. This shortcoming

can be solved by combining both the design and development views. In sentiment analysis of user

reviews, it is often difficult to link opinions to specific features. By incorporating the design view

and development view, one can potentially establish a causal relationship between a new feature

(or a bug) and the onset of certain opinions. In security analysis, a function could be determined,

through program analysis, to be triggering a sensitive operation, such as sending an SMS message

or taking a photo. But it is often hard to judge if the sensitive operation is warranted from the

program view alone. By also taking a view of the design, one may examine which button may be

linked to this sensitive operation and whether the button’s label legitimizes such use: for example,

“Send” for sending an SMS message. Furthermore, the increasing number of app updates published
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to marketplaces has largely gone unobserved. By only considering a single version of the app, one

cannot form a deep understanding of the emerging trends in mobile design and development. Sup-

porting multi-view temporal analysis of apps is always challenging because it requires a scalable

infrastructure for integrating multiple heterogeneous data sources. The store listing details data is

document-oriented where every app shares a number of common fields such as the title, ratings,

and category, which can be mined from app marketplaces. Design data is hierarchical; the layout

files specify the relationship between various UI components in a tree structure. Program data is

highly structural as it involves a large number of names of classes, methods, and variables. Mining

apps in multiple views would require an integrated infrastructure that supports document-oriented,

hierarchical, and structural data, and provides an easy interface to store, index, mine and analyze

such data.

In this chapter, I pursue a more general analysis approach that takes a holistic view of the

apps over time and can potentially accomplish what is currently not possible in a single-view,

single-version approach. I present Sieveable, a novel retrieval platform for multi-view data mining

of apps on a large scale to address the needs mentioned above. I discuss a new query language

with a declarative, “example-based” syntax. Using this language, analysts could quickly retrieve

a sample from a large corpus of apps that meet certain criteria with respect to the listing view,

design view, and program view in an integrated manner. Prior to Sieveable, each of these analyses

would take days of effort in writing custom scripts and running them on a cluster of servers (my

work in chapter 4). With Sieveable, each analysis task can be expressed as a search query and

results can be obtained in a matter of minutes. The chapter continues as follows. An overview of

our system, detail description of its implementation to enable a new, multi-view analytical queries.

5.2 System Overview

In this section, we describe the key requirements of our system and its core components at a

high level.
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Listing
Details
Features

package name, title, description, reviews, store URL, category, price, date
published, version name, version code, target system version, ratings count,
rating, content rating, creator, creator URL, install size, downloads count,
permissions, what’s new.

User
Interface
Features

layout directories, XML layout file DOM structure, drawable resources,
string resources.

Manifest
Features

Manifest File XML DOM structure, which includes elements such as activ-
ities, permissions, services, etc.

Code
Features

Framework API invocations, dependency libraries.

Table 5.1: Sieveable’s main extracted features.

5.2.1 Requirements

We identify four main requirements that drive the technical development of our system:

• Generalizable: Given the large and diverse ecosystem of the Android platform, our search

engine must be general enough to meet diverse user search goals. One may use the system

to search for user interface design examples, API usage examples, or security permissions

that protect sensitive resources. In order to meet various search goals, Sieveable captures

powerful app’s features and uses an example-based search.

• Scalable: Given the large volume of apps updated frequently, it is essential to design a

scalable search engine. The system must be designed to be highly scalable to index billions

of files. We address this goal by building a distributed search engine that can be scaled

horizontally when an index becomes too large to fit a single machine.

• Deep: The search must be comprehensive and deep, taking into account features intrinsic

to the app, such as code and UI data, as well as extrinsic features that describe the app,

such as the marketplace listing details information.
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• Extensible: The system must be designed to be modular and extensible to easily extend

its search capabilities. To achieve this goal, Sieveable uses a modular plug-in architecture

where each search level (e.g., UI search, code search) is a separate module that can be

incorporated into the search system. By delegating search tasks into modules, a developer

may add a new plug-in to extend the search system. For example, a developer may create

a search plug-in for finding open source Android apps hosted on GitHub.

5.2.2 Approach

We present a novel approach that supports searching apps across multiple levels. Our ap-

proach consists of four main steps: data collection, features extraction, features indexing, and a

language specification for performing search queries.

5.2.2.1 Data Collection

We download the Android Application Package (APK) file for apps from the official market-

place, Google Play Store. For each APK file we download and add to the dataset, a web crawler

is run to obtain its listing details web page. Next, we parsed the listing details HTML page to

extract store listing values. In order to expose the app’s UI and code structure, we run a reverse-

engineering tool to decompile it, which results in a directory tree of app files that make up the

app. With more than one year effort, we managed to collect 452,775 apps with multiple versions.

Note that sometimes the crawler was down, so it may have missed a number of updates. Figure 5.1

shows the number of app versions in our dataset, and figure 5.2 shows the total apps by release

date and download count.

5.2.2.2 Features Extraction

Once an app is downloaded and decoded, we run a set of tools to extract features at four

levels: a) Listing details level: it includes information defined in the app’s marketplace listing web

page. b) User interface level: it includes all layout related files. c) Manifest level: it includes
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Figure 5.1: The total number of app versions in the collected dataset.

Figure 5.2: The total number of apps (multiple versions) in the dataset grouped by download count
and the calendar quarter in which they are released. Three download count groups are used: top
(1M downloads or more), middle (100K or more and less than 1M downloads), bottom (less than
100K downloads).
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additional internal information that describes the app. d) Source code level: it includes all API

calls invoked by the app. All extracted features are listed in Table 5.1.

5.2.2.3 Features Indexing

When app features are extracted, we store and index them in scalable data stores to support

efficient execution of search queries. Sieveable comprises four main data collections: APK files,

listing details, user interface, Manifest, and source code. 1) APK files: The binary APK files are

saved on disk across multiple locations and their paths are stored in a document-oriented database

along with their name and version values to facilitate quick retrieval. 2) Listing details features are

stored in a document-oriented database. We use text indices on specific fields (description, what’s

new section, reviews, and title). 3) User interface: we use a structural index that keeps track of

all DOM elements’ relationships (parent/child and ancestor/descendant). 4) Manifest features: we

index DOM element names and their attribute values. 5) Code: we use a text index to support

search of invoked API classes and methods.

5.2.2.4 Query Language Specification

Query Syntax: Sieveable uses an SQL-like declarative query syntax. The syntax is com-

posed of three main clauses:

• MATCH The app to match.

• WHERE The search condition.

• RETURN The results to return.

Example:

MATCH app

WHERE

<LinearLayout>
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<Button/>

</LinearLayout>

RETURN app

The MATCH clause defines the apps to match the given search conditions. The WHERE clause

defines specific search conditions. A search condition in its simplest form is an example of a single

listing details field, UI element, manifest element, or an API call. Multiple search conditions can be

combined together allowing for a deep search across multiple levels. The RETURN clause defines

the subset of fields to include in the results. Multiple levels search conditions can be added to the

WHERE clause. For example, a search query for apps developed by Google, have a LinearLayout

with a child Button, use the SEND SMS permission, and call the takePicture API call, will look

like:

MATCH app(latest=true)

WHERE

<developer>Google Inc.</developer>

<LinearLayout>

<Button/>

</LinearLayout>

<uses-permission android:name="android.permission.SEND_SMS"/>

<code class="android.hardware.Camera" method="takePicture"/>

RETURN app

Listing 2: Sieveable query example.

Query Parser When a query is submitted to Sieveable, it parses the search condition parts

to determine their query levels (listing, UI, manifest, and code). Sieveable maintains a set of

dictionaries to lookup and extract search condition parts by their levels. In particular, it maintains

three dictionaries: a predefined set of listing details fields, and a set of manifest XML elements,

and a single XML element named code for code related queries. If an XML element in the query

condition is not defined in any of the dictionaries, we consider it as a UI search element. For

example, Sieveable interprets the query in Listing 2 as follows. It parses the WHERE clause part

and groups the query parts by their levels. This results in four query parts: a) listing details query
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Figure 5.3: The execution sequence for a query that includes multiple level search conditions.

for the <developer> tag, b) manifest query for the <uses-permissions> tag, c) code query for the

<code> tag, and UI query for the remaining elements (<LinearLayout> and its child). Sieveable

sends these query parts to the query executor.

Query Executor The query executor creates a plan for executing the received query parts.

The plan is an order of steps to query each index and data store (listing, UI, manifest, and code).

Query parts are executed by collection finder plug-ins (e.g., find by UI Index, find by UI DOM, find

by code, etc.). Collection finders return a set of app ids that matched the given query. Sieveable

computes the intersection of app ids to avoid scanning entire collections. This also ensures that

the final query results only include apps’ Ids that met all query part conditions.

Figure 5.3 shows the execution sequence of the query in Listing 2 and the number of apps

scanned by each collection. The entire dataset contains over 400,000 apps. The listing details

query part is executed by the findByListing module, which returns 249 apps developed by Google

and filtered by the latest version of each app. Next, the findByCode module executes the code

query part only on those 249 apps and returns 66 apps. The findByManifestIndex module searches

the Manifest index for the Manifest query part only on those 66 apps and returns 21 apps. The

Manifest query part is sent to the findByManifestDOM module to match the DOM tree for those



60

21 apps. Since the query part contains no hierarchical structure, the DOM matcher returns the

21 apps found by the index. Next the UI query part is sent to the UI index to search for apps

with LinearLayout and child Button. The findByUIIndex searches the UI index for those 21 apps

and finds that 15 of them have that UI structure. The UI query part is sent to the findByUIDOM

module to match the DOM tree for those 15 apps which returns the final query results (15 apps).

Finally, Sieveable returns any field defined in the return clause for the matched app ids. The return

clause in the submitted query includes only a single app field, so Sieveable will return an array of

objects where each object contains key-value pairs for the app id, package name, and version code.

Below is part of the final query result:

[{ "app": {

"id": "com.google.android.talk-21224130",

"packageName": "com.google.android.talk",

"version": "21224130"

}

}]

5.3 System Implementation

In this section, we discuss the technical details of designing and implementing our system.

The system consists of six main components: app crawlers, feature extractors, data indexers, data

store servers, DOM matchers, and a restful API (see Figure 5.4).

5.3.1 App Crawlers

Sieveable features two crawlers that collect our dataset of apps: apps crawler and listing

details web page crawler. The app crawler is responsible for downloading APK files from the

Google Play store. We feed a dictionary of popular Android search keywords into the crawler.

Google has no official API for downloading APK files. We used an unofficial API1 to collect APK

files. When an APK file is downloaded we run the Android Asset Packaging Tool (aapt) on the

1 http://github.com/Akdeniz/google-play-crawler
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Figure 5.4: Sieveable system architecture.

file to obtain its package name and version code. We use a combination of the package name and

version code as a unique identifier for each app. APK files are stored in the file system while their

Ids and disk paths are stored in a MongoDB collection for fast retrieval. Once an APK file is

downloaded, we run a web crawler to fetch the most recent listing details web page of the app. We

parse the listing details fields and save them in another MongoDB collection.

5.3.2 Feature Extractors

We built a set of command line tools to extract features from the APK files. First, we use

apktool [10], an open-source tool for reverse engineering binary Android applications. Second, we

run a custom UI parser that parses layout files and resolves any references to external resources

(e.g., android:text="@string/variable") or embedded layouts (using <include/> and <merge/>

tags). The parser produces a single XML file that contains the entire app UI tree, including all

files. This is especially important when performing DOM matching queries since it eliminates the
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need to load multiple layout files into memory when performing such queries. Below is a snippet

from an XML file generated for the YouTube app.

<App name="com.google.android.youtube" version_code="5021">

<Directory directory_name="layout">

<File file_name="activity_feed_item.xml">

<RelativeLayout>

<ImageView android:id="@id/channel_avatar"/>

</RelativeLayout>

...

</File>

</Directory>

</App>

Third, we extract all API calls from the smali files, a human readable assembly-like language for

the disassembled byte code. We save the extracted API calls in one text file per app.

5.3.3 Data Indexers

Sieveable indexes the extracted features in Solr collections for fast data access. A collection

is a complete logical index. We use five Solr logical indexes to index our dataset: listing index, UI

tag index, UI structural index, manifest tag index, and code index.

Indexing Listing Details: It contains all listing detail fields. Four fields are indexed as

generic text fields (description, title, “what’s new”, and reviews) to support text based search.

Indexing UI Data: The extracted UI files are indexed in two Solr indices: 1) Tag Index:

We extract all tag names and attributes and store them in one index document. This index holds

all tag names and their attributes. 2) Structural Index: a suffix tree based index that stores the

XML tree in a suffix array format [127]. This index holds values that indicate the parent-child

relationship of nodes in the XML tree. (e.g., LinerLayout->Button). We parse the single XML
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UI tree file we extracted for each app and generate two text documents. The first text document

contains the tag and attribute names for all UI elements (e.g., EditText(android:layout_width=

"fill_parent")). We add this document to Solr and use it as the tag index. The second generated

document describes the UI tree in a suffix-tree format where each line corresponds to a root-to-leaf

path for all XML elements (e.g., RelativeLayout->LinearLayout->ImageButton). We add this

document to Solr and use it as the structural index.

Indexing Manifest Data: The extracted manifest files are indexed by their tag names

and attribute values. Unlike UI queries, Manifest queries are less structural (e.g., find "android.

permission.CAMERA"). Therefore, we use the same UI tag index method to add manifest files to

the Solr index.

Indexing Code Files, we add the extracted invoked API calls from the smali source code

files to Solr.

5.3.4 Data Store Servers

Sieveable uses two main NoSQL database servers: a) MongoDB [22]: is a document-oriented

NoSQL database. It contains a collection for storing information about the downloaded APK files.

b) Apache Solr [8]: is a document-oriented NoSQL Search Platform. We use Solr to store distributed

collections for listing detail fields, UI tags and attributes, UI structural index, Manifest attributes,

and code files. Due to the large size of our data sets (over 8TB), we found that a single machine

is not sufficient to store this large data sets. Thus, we shard and replicate the collections across a

cluster of multiple nodes to improve the system performance and availability. We use an external

Zookeeper [9] cluster of five nodes to synchronize Solr’s configuration and elect leaders.

5.3.5 DOM Matchers

Sieveable UI and Manifest search queries are written in “example-based” syntax. We imple-

ment a custom DOM matchers module to navigate the XML DOM tree and select DOM elements

with a particular DOM structure. The DOM matchers perform a jQuery like DOM manipulation.
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While loading DOM files for complex queries is often considered expensive, the use of hierarchical

indices reduces the number of false candidates significantly. However, parsing the DOM for a large

number of files has an inevitable memory and system resources overhead. Therefore, Sieveable uses

a configurable default limit of 50 results per a given search query and return an inalterable cursor

to the client to receive the entire query results.

5.3.6 RESTful API

Client applications can access Sieveable through a RESTful API. The API provides an HTTP

GET request mechanism allowing client applications to submit queries and receive the result as

a JSON document. For an easy query access, Sieveable has both a command line and web client

applications that interact with the RESTful API.

5.4 Summary

This chapter presented Sieveable, a multi-view search engine for apps on a large-scale. It

discussed the importance of searching and mining apps across multiple views. For the first time,

Sieveable can help users execute deep search queries (illustrated in Chapter 7) and apply data-driven

approaches with a holistic view of apps at large-scale that could yield valuable results. Sieveable has

been deployed into a distributed computing infrastructure. For more information on using Sieveable

including source code access, please visit: http://github.com/sikuli/sieveable.
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Deep Search Queries

6.1 Introduction

Sieveable enables users to perform queries across multiple levels to meet diverse search goals.

It can find apps with specific listing fields, UI structures, manifest attributes, and API calls. Sieve-

able can produce results beneficial to several stakeholder groups: a) User interface design researchers

can use Sieveable to find apps with specific design structures. b) Accessibility researchers can use

it to find answers to accessibility questions. c) Privacy and security researchers can use it to find

apps that request an unusual number of permissions or use vulnerable APIs. d) Program ana-

lysts can use Sieveable to reduce the time to find examples of interest to apply defect analysis. e)

Data mining researchers can mine applications efficiently and build machine-learning applications

at large scale without incurring the overhead of collecting and indexing large datasets. In a prior

work (discussed in chapter 4), these types of analyses would require custom scripts to be written

and executed on a cluster, which would require several days of work. In contrast, Sieveable is able

to reduce the problem to a simple search query, which takes an analyst only seconds to specify and

minutes to run.

In this chapter, I discuss Sieveable’s capabilities, how queries can be formulated, and present

several illustrative search queries to show that Sieveable enables users to conduct many types of

analyses.
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6.2 Search Queries

In the previous chapter, I briefly described the syntax of the search queries. In this section,

I describe the syntax in more detail and highlight important search features. Sieveable uses an

SQL-like declarative query syntax. The syntax is composed of three main clauses:

• MATCH The app to match.

• WHERE The search condition.

• RETURN The results to return.

The MATCH clause defines the apps to match the given search conditions. One can retrieve all

app versions by simply writing:

MATCH app

Conditional statements can be added to the match clause to limit the search to an app version.

For example, below is the syntax of the match clause to restrict the search to the latest app

version.

MATCH app(latest=true)

Or to narrow the search to the latest version of a specific app:

MATCH app(package=com.google.android.music, latest=true)

The WHERE clause defines specific search conditions. A search condition in its simplest

form is an example of a single listing details field, UI element, manifest element, or an API call.

Multiple search conditions can be combined together allowing for a deep search across multiple

levels. The syntax used here is an example of UI, manifest elements, or listing details fields. For

code queries, Sieveable using a specific XML element in the where clause to recognize code queries.

For example, the where clause for a code query will be specified as follows:

<code class="fully-qualified-class-name" method="method-name">
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Multi-level search conditions can be added to the WHERE clause. Sieveable also supports multiple

character wildcard searches in the WHERE clause. This is in particular useful when the value

of a specific XML element or attribute is unknown. For example, when searching for custom UI

components in a specific app: <com.whatsapp.*>. Another example is when searching for an

unknown XML element, we can use the underscore character as the tag name:

<TabHost>

<_></_>

<_></_>

</TabHost>

The RETURN clause defines the subset of fields to include in the results. Projection fields

can be added to the RETURN clause to indicate which fields to include in the search result. For

example, below is a query to retrieve the download count for all apps in the dataset.

MATCH app

WHERE

<downloads>(*)</downloads>

RETURN app, l$1

Note that, we specified “(*)” as the text value of the downloads tag because we do not know what

the actual value is, and we want to retrieve that value and include it with the results. The above

return clause contains the app info object (package name, version name, and version code), and the

listing details projection field l$1 which represents the retrieved download count. Listing 3 shows

a query that combines all these features together.

In the next sections, I describe how Sieveable can be used in different scenarios to answer

analysis questions in three areas: UI design, security, and program analysis. The goal is to highlight

the utility of Sieveable and how it simplifies the analysis task to a simple search query.
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MATCH app(latest=true)

WHERE

<store-category>Lifestyle</store-category>

<downloads>(*)</downloads>

<Button android:text="(*)"/>

<uses-permission android:name="(android.permission.*)"/>

<code class="android.hardware.Camera" method="takePicture"/>

RETURN app, l$1 AS downloads, u$1 AS button_label, m$1 AS permissions

Listing 3: Sieveable query to find apps in the Lifestyle category, have a Button with a text label, use
one or more system permissions, and call the takePicture API call. The query result will include
the app info object (package name, version code, and version name), the download count of the
apps, the text labels of all the buttons, and the list of system permissions they required.

6.3 The Retrieval Task and Formulating Search Queries

Sieveable inherits the limitations that exist in information retrieval (IR) systems. It is a well-

known limitation of any IR system that the user has to know ahead of time what she is looking for

and translates that into a search query. Query formulation is an essential part of any IR system;

unfortunately, it is not a transparent process to an analyst or a researcher whose search goal is

to find examples of visual design or development concepts. The retrieval task is a complex task

that consists of identifying an example of interest, translating that into a search query, submitting

the query into an IR system, and examining the results for validation [74]. Generally, domain

expertise plays an important factor that could result in a successful retrieval task. The process of

translating a high-level design or development concept into a search query is a complex, manual

process. For instance, in UI design analysis, this task can be initiated when an analyst observes an

interesting visual design in an app. The hierarchal structure of this visual design can be revealed

by dynamically inspecting the UI of the running app [7] or by statically reverse engineering the

app [10]. Once the hierarchal structure is revealed (i.e., which combination of views are used), it

can be used as an example UI syntax in the Sieveable’s search query. Similarly, in code analysis,

an analyst may identify a problem associated with a specific API by reading the documentation or

posts on question-and-answer websites. The next step is to articulate the problem and translate it

into a search query in Sieveable:
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MATCH app

WHERE

<code class="the_fully_qualified_class_name" method="method_name" />

RETURN app

It is important to emphasize here that Sieveable does not attempt to address the difficult task of

turning a high-level design concept into a search query. It builds on the assumption that a user

has the knowledge and expertise to overcome this inherent limitation, so she can focus on turning

the more complex analysis task into a search query problem.

6.4 Design Queries

6.4.0.1 UI Screen

In mobile app design, designers and developers tend to create a set of UI screens that serve a

common purpose. We can use Sieveable to find common screens and search for design alternatives.

We can also aggregate the results and find trends in implementing one design over the other.

Sign In: Many apps allow users to sign into their accounts to enable them to use certain

features. Some apps use the sign in screen as the first screen that welcomes new users to their

applications. Sign in screens usually take the form of a single sign in button. To find such examples,

we can write a query in Sieveable to find apps that use a Button with the phrase “Sign In”. We can

also include the number of downloads in the result fields to reflect on how popular they are:

MATCH app

WHERE

<Button android:text="Sign In"/>

<downloads>(*)</downloads>

RETURN app, $1

We can also use Sieveable to find alternative ways of designing a sign in screen. For example, we

can also search for apps that use a TextView as a sign in button and obtain their download count
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to compare it with the previous results:

MATCH app

WHERE

<TextView android:text="Sign In"/>

<downloads>(*)</downloads>

RETURN app, $1

6.4.0.2 Design Interactions

Mobile apps feature unique interactions allowing users to navigate within the app using

various touch gestures and UI controls. We can use Sieveable to explore real-world examples of

apps that use a combination of gestures and UI controls and identify common patterns among

them.

Pull Down to Refresh: In mobile app design, there is a common UI interaction gesture

called “Pull down to refresh” [39]. It is used for in-app content updates, allowing users to see

new content by scrolling a view vertically. Some apps use this mechanism to push content updates

to the UI view when it is requested by the user as an alternative to auto-updates, which may

consume critical mobile device resources such as battery and network. In Android, this interaction

gesture is not built into the standard UI widgets, so developers need to use additional library

APIs to implement this gesture. One commonly used library is the Android Support Library,

which includes a layout view called SwipeRefreshLayout that enables developers to implement this

gesture. In addition to declaring this view in the UI layout file, developers need to register event

listeners in the code to respond to the gesture and refresh the content. We are also interested

in finding the top three categories of the apps that use this interaction mechanism. To find such

examples, we can use Sieveable to search for apps by three levels search criteria (UI, code, and

listing details).

MATCH app
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WHERE

<android.support.v4.widget.SwipeRefreshLayout>

<ListView/>

</android.support.v4.widget.SwipeRefreshLayout>

<code class="android.support.v4.widget.SwipeRefreshLayout" method="setOnRefreshListener" />

<store-category>(*)</stroe-category>

RETURN app, $1

6.5 Security Queries

The popularity of mobile apps resulted in an increase in the number of exploited vulner-

abilities. Security researchers and mobile apps security analysts use sophisticated techniques to

detect software vulnerabilities. However, their techniques are largely constrained by the availabil-

ity of samples of apps that are vulnerable to attacks. Sieveable can be used to perform code search

queries for apps that are vulnerable to attacks as a result of weak API implementations. The search

query can be combined with multiple search criteria to restrict the search to specific API versions.

WebView: A webView is a UI component that displays web pages. This component is

widely used in mobile apps to display web pages or display banner ads. While the webView

is a great feature that helps developers deliver rich content to their users, it can also become

the most dangerous component in an app. For example, developers can enable JavaScript in a

webView and expose the Java object’s methods to the JavaScript interface. This allows untrusted

content viewed in the webView to use reflection to access all public and inherited methods like

Class.forName(”java.lang.Runtime”). An attacker may send a link to the user of a vulnerable app

and gain access to all device resources or wipe the entire device content. This vulnerability was

fixed in Android 4.2 but the fix is not effective unless the app targets the API level 17 or higher

[27]. Sieveable can be used to find apps that are possible candidates for this vulnerability. We can

search for apps that set the Manifest attribute targetSdkVersion to a value less than 17. Below is

an example query.
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MATCH app

WHERE

<code class="android.webkit.WebView" method="addJavascriptInterface" />

<uses-sdk android:targetSdkVersion="12" />

RETURN app

Permissions: The security permissions system is the core component of Android security.

Apps have no access to any sensitive operations, hardware resources, or user’s data without explic-

itly asking for permissions. These permissions are granted at install time by the user. Apps may

also declare custom permissions to protect access to certain app features. To distinguish between

custom app permissions and system permissions, the name of system permissions start with ”an-

droid.permission.*” Malicious apps tend to request an unusual number of permissions with more

frequently on SMS-related permissions [146]. We can use Sieveable to find apps that request a

large number of system permissions. For example, we can use the following query to find apps that

request 11 or more system permissions and at least an SMS related permission.

MATCH app

WHERE

<uses-permission android:name= "android.permission.*" __min="11" />

<uses-permission android:name= "*_SMS" />

RETURN app

6.6 Program Analysis Queries

Static program analysis tools are used to examine the source code statically to detect vul-

nerabilities and possible runtime errors. Perhaps the most common approach applied in static

analysis is searching plain text source files for lines matching a string. Opening a large number of

files, scanning them for matches and combining the results with other parsing tools (e.g., UI and

Manifest) is a frustrating process. In addition, finding a sample of apps that match a given crite-
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rion (e.g., permissions, UI structure) along with the source code text search is a challenging search

task. Static analysis researchers are still constrained by the lack of a large-scale comprehensive

search systems to work with. Sieveable’s complete view of the app helps researchers find samples

by multiple search criteria and focus their efforts on designing more rigorous static analysis tools.

This is in particular valuable for static analysis tools because it reduces the overhead of obtaining

samples and increases the sample size.

Overprivilege Analysis: In Android, application developers may require a number of per-

missions in the AndroidManifest file without actually using permission protected API calls. Such

apps are considered overprivileged. Researchers have developed tools that perform overprivilege

analysis on apps’ source code [57, 33]. These tools work on the decompiled code by constructing

a call graph over the entire app and performing traversal to identify API calls that are unreach-

able. Their tools could be scaled by using our search system. Sieveable can be used to find apps

that request a particular permission and declare permission protected API calls. Static tools can

be used to analyze the results to determine whether these API calls are unreachable. For exam-

ple, below is a query that searches for apps that request the Camera permission and declare the

android.hardware.Camera open() API method.

MATCH app

WHERE

<code class="android.hardware.Camera" method="open"/>

<uses-permission android:name="android.permission.CAMERA"/>

RETURN app

Bug Fixes: Mobile apps are updated regularly to improve stability and fix bugs. Updates

that include bug fixes are especially interesting to bug finding tool builders. Android allows devel-

opers to list the log of changes for the recent app update in a listing details section named “What’s

New”. This information might be valuable to a program analyst who is interested in understanding

various attempts to fix bugs and evaluating them. We can use Sieveable to find apps with potential
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bug fixes to common developer errors. For example, Android uses the Service API for running long

operations in the background. However, the Service API might be confusing to new developers

since the Service is not necessarily running in a background thread. Instead, it runs in the app’s

main thread by default which causes the app to crash in “Application Not Responding” (ANR)

error. We can use Sieveable to get a set of apps that might be candidates for bug fixes related to

the use of background services. The query below searches for apps that use the Service API and

mention the phrase “bug fixes” in the “What’s new” listing details field.

MATCH app

WHERE

<code class="android.app.Service" method="onStartCommand"/>

<whats-new>bug fixes</whats-new>

RETURN app

6.7 Summary

This chapter described Sieveable search queries and how a complex analysis task can be

expressed in a simple search query. I explained how one could use Sieveable to answer analysis

questions in three areas: UI design, security, and program analysis. I presented a set of illustrative

query examples that spanned across multiple levels and met diverse search goals. These queries

illustrate the powerful approach Sieveable uses, which can open up a wide opportunity to apply

an in-depth analysis of mobile apps across multiple levels to investigate emergent trends in mobile

apps development.



Chapter 7

Temporal Analysis of the Design and Development of Mobile Applications

The trends in designing and developing mobile applications are always changing and evolving

over time. Platform owners regularly introduce new features, remove previous ones, and change

their best practices and guidelines. Since all of these changes are observed at some points in time,

it is necessary to apply a temporal (time series) based analysis to capture interesting events and

draw more meaningful statistical insights. Temporal analysis enables us to ask new questions and

understand the changes in the design and development of mobile applications. The lack of effective

retrieval systems and resources that provide access to the temporal nature of applications have

limited the questions we might ask and led to studies that focus on a single snapshot in time.

Sieveable is what gives us access to the temporal nature of mobile applications and helps us to

answer diverse analysis questions. In this chapter, I present some illustrative temporal analysis

examples to understand how apps are evolved over time in three areas: UI design, accessibility, and

privacy1 .

7.1 Visual Design Mining

Mobile UI design guidelines are constantly updated to provide a better and consistent user

experience across the platform. For instance, in June 2014, Google introduced material design, a

design specification language that makes use of elements from print design, responsive transitions,

and depth effects [21]. Since the concepts were announced, several third-party implementations

1 The raw data, source code, additional analyses, and interactive data visualizations are available at
https://github.com/sieveable/sieveable-mining
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have been built and used by developers. A year after the announcement, Google introduced an

official library called the Android Design Support Library, which allows developers to implement

a number of material design components that are backward compatible with old devices. Now, it

has been over two years of efforts invested in creating concepts and tools to promote the use of this

design language. We can use Sieveable to understand how these concepts are adopted over time

and ask questions like: What is the state of adopting material design patterns? Did these concepts

get adopted immediately by developers or at a slow pace? Are there any factors that may have

contributed to a sudden increase or decrease in adoption?

7.1.1 Material Design Components

In this section, I present a set of analyses on the adoption rate of two major material design

components: the floating action button and the navigation drawer. The floating action button is

arguably the most recognizable material design component and represents the primary action in an

app. The navigation drawer is perhaps the first design pattern that was introduced before material

design and later was added to the design language. To identify the possible implementation options

and formulate search queries, I manually inspected the UI structure of a number of applications

that implemented material design concepts. This was done using the UI hierarchy viewer tool [7],

which can inspect the app’s UI layout dynamically. It is important, however, to note that these are

not a complete, comprehensive list of implementation alternatives due to the inherent limitation

and challenges of formulating search queries, which I discussed in the previous chapter.
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7.1.1.1 Floating Action Button

Figure 7.1: The Floating Action Button (FAB) shown at the bottom right corner of two apps,

Gmail and Lifesum

The Floating Action Button (FAB) is a circled button floating above the UI to promote the

primary action in the app (Figure 7.1). While developers can create a custom FAB with material

design style, there are a few libraries that simplify adding this widget. To find apps that have this

UI component, one will write custom scripts to parse a large number of UI layout files and count

for all possible implementation options. This task is achieved by writing a simple search query

in Sieveable. We can use Sieveable to evaluate implementation alternatives and help developers

make an informed decision of using a specific library over others. With Sieveable, one can examine

the popularity of a specific UI library within any time window. This can also provide insightful

feedback to UI framework engineers on how well their efforts are received by developers. We can

find the trends of adopting the FAB as a design pattern over time using different alternatives. At

the time of writing, there are four common alternative ways to implement the FAB in Android:
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the official design support library [4], and three other additional third-party libraries [6, 18, 17]. I

use the following Sieveable search queries to retrieve a set of apps that implement the FAB using

the previously mentioned libraries:
MATCH app

WHERE

<android.support.design.widget.FloatingActionButton />

<date-published>(*)</date-published>

<rating>(*)</rating>

<downloads>(*)</downloads>

RETURN app, l$1 AS rDate, l$2 as rating, l$3 as downloads

MATCH app

WHERE

<com.getbase.floatingactionbutton.FloatingActionButton />

<date-published>(*)</date-published>

<rating>(*)</rating>

<downloads>(*)</downloads>

RETURN app, l$1 AS rDate, l$2 as rating, l$3 as downloads

MATCH app

WHERE

<com.melnykov.fab.FloatingActionButton />

<date-published>(*)</date-published>

<rating>(*)</rating>

<downloads>(*)</downloads>

RETURN app, l$1 AS rDate, l$2 as rating, l$3 as downloads

MATCH app

WHERE

<com.software.shell.fab.ActionButton />

<date-published>(*)</date-published>

<rating>(*)</rating>

<downloads>(*)</downloads>

RETURN app, l$1 AS rDate, l$2 as rating, l$3 as downloads

When we combine all the results together and aggregate by the release year in which the first

adoption is observed, we can get a sense of the adoption rate of the FAB over the last years as

shown in figure 7.2. This shows that the adoption rate of this design pattern is growing slowly

since it was first introduced in June 2014. We can also analyze the adoption rate of the different

implementation or library options over time. In Figure 7.3, we can see that apps started adopted this

pattern before the official release. Once the official library was introduced by Google in May 2015
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Figure 7.2: The adoption rate of the Floating Action Button (FAB) over the years.

[5], the adoption rate started to increase noticeably. This shows that a small number developers

tend to use third-party libraries to implement a new design that is not yet officially supported.

The larger number of developers, however, are much quicker to use a consistent implementation

by an official library. Finally, I analyzed the group of apps that started adding FAB earlier using

a third-party library before the existence of the official library. I found that the majority of these

apps have a low number of downloads (89.81% with 100,000 download times or less compared to

10.19% with more than 100,000 download times).
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Figure 7.3: The percentage of apps that started adopting the Floating Action Button (FAB) using
four popular libraries by calendar quarter.

7.1.1.2 Navigation Drawer

Figure 7.4: An example of an app with a closed navigation drawer (left) and an open navigation

drawer (right).
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The navigation drawer is a hidden menu panel that can be revealed by tapping on the

app icon menu (also known as the hamburger icon), which causes the panel to slide from left

to right (figure 7.4). The navigation drawer has existed before the concepts of material design

were introduced and was later added to the list of material design patterns with minor styling

recommendation. In order to create a navigation drawer, a developer needs to add a root ele-

ment to the layout file with two children. The root element must be a specific view called an-

droid.support.v4.widget.DrawerLayout, which holds two children. The first child can be any view

group element to hold the content of the app. The second child is a view that contains the content

of the navigation drawer, which can be populated statically or dynamically with the drawer’s list

of items (e.g., ListView or android.support.design.widget.NavigationView). To find apps with a

navigation drawer, I use the following Sieveable search queries:
MATCH app

WHERE

<android.support.v4.widget.DrawerLayout>

<android.support.design.widget.NavigationView />

</android.support.v4.widget.DrawerLayout>

<date-published>(*)</date-published>

<rating>(*)</rating>

<downloads>(*)</downloads>

RETURN app, l$1 AS rDate, l$2 as rating, l$3 as downloads

MATCH app

WHERE

<android.support.v4.widget.DrawerLayout>

<_/>

<_/>

</android.support.v4.widget.DrawerLayout>

<date-published>(*)</date-published>

<rating>(*)</rating>

<downloads>(*)</downloads>

RETURN app, l$1 AS rDate, l$2 as rating, l$3 as downloads

These two search queries returned 20,165 unique apps in total. To find the adoption rate of this

design pattern over the years, I remove the duplicate apps from the results, keep the first version in

which the adoption is observed, and group the remaining results by year. Below, figure 7.5 shows

the adoption rate of the navigation drawer over the years from 2013 to 2016. We can see an increase
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over the years but at a relatively slow rate (6.95% is the average annual adoption increase). We can

Figure 7.5: The adoption rate of the Navigation Drawer over the years.

group the results by the release date quarterly and download count to see the trends in adopting

this design pattern among most and less downloaded apps. To better approximate the popularity

of Android apps, I group the apps by download count into three main groups: a) most downloaded

apps for apps with one million or more download times, b) middle downloaded apps for apps with

100,000 and fewer than 1,000,000 download counts, and c) least download apps for apps with fewer

than 100,000 download counts. Figure 7.6 shows that the adoption rate of the navigation drawer

is more prevalent in apps with the most download count than others with the exception of the first

two quarters of 2015. The analysis shows how the adoption of this design is changing after multiple

major platform events. We can see that this design is more adopted in top downloaded apps. It

is also noticeable that it experienced a period of low popularity at some points in time but later

gained a resurgence of interest after the release of an official library.

Analyzing apps over time enabled us to capture a correlation between design changes and

major platform events. UI design patterns may become more or less popular over time, but they

may react positively to a related platform event. This phenomenon would have been missed had

we considered a single version of the app. Our finding suggests that the release of an official library

(the design support library in this case) caused the adoption rate of the navigation drawer for apps

that are less popular to soar. We observed that apps with fewer download counts maintained an

adoption rate below 10% before the release of the official library, and that adoption doubled to

over 20% after the release of the library. This event allowed developers of the less popular apps to

reduce the gap with top apps in design adoption.
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Figure 7.6: The percentage of apps that started adopting the navigation drawer grouped by three

download count groups: most, middle, and least downloaded apps. The x-axis shows the calendar

quarter of the release date in which the adoption is observed, and the y-axis shows the percentage

of apps that adopted it. The percentage value is computed by dividing the number of adopted apps

in each quarter over the total of apps released in each quarter. The time of major platform events

is also marked in the chart.

7.2 Accessibility Mining Analysis

The users of mobile devices are diverse with different physical capabilities including people

with disabilities. Some users may not be able to touch or see the screen, distinguish between its

colors, hear a sound from the app, or speak back to the app. Apps that are inaccessible to users with

disabilities may exclude them from using important services and social activities. Android features a

set of accessibility APIs that help developers build accessible apps for users who have special needs.

Many research and development efforts are invested in addressing various accessibility issues and

enhance existing system-wide accessibility services. Platform owners provide accessibility services,

APIs, and guidelines to help developers improve the accessibility of their apps and increase their

audiences. But what is the impact of these efforts? Are these guidelines effective? Over the past
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few years since these APIs were released, have developers (collectively as a community) been doing

a better or worse job in making their apps more accessible? If there’s an improvement, has the

improvement been steady, accelerating, or plateauing? As a research community, should we be

satisfied with our progress or should we do more? Data collection and analysis of apps for the

presence of accessibility problems can help us answer these questions and bring more attention to

this area.

Advancement in accessibility tools have wide range of benefits and applications to all users

including users with no special needs. For instance, some of the technologies that we use on a

daily basis started as an accessibility tools and evolved to benefit all users (e.g., speech recognition

and word completion). Even a user with no disability may experience accessibility restrictions in

certain environments, i.e., when someone is not able to touch the device while driving, or distinguish

between colors in a sunny environment. Therefore, an app that is more accessible can benefit all

users. In the following section, I demonstrate how Sieveable can be used to answer some of the

questions described above and quantify the prevalence of accessibility violations over time.

7.2.1 Accessibility Violation: Labeling Visual UI controls

Modern mobile platform features accessibility guidelines that serve as a living document that

is always updated with changes to the platform. In android, the accessibility guidelines [1] provide

developers with a checklist of accessibility requirements to help developers build more accessible

applications [3]. The first item of this list is labeling visual user interface controls that do not

have visible text. This is a common accessibility violation in UI elements such as ImageButton

and ImageView. In many applications, UI controls use visual images to indicate the usage (e.g.,

a camera icon on an ImageButton to take a picture). A UI control with no descriptive text (also

known as alternate text) is simply inaccessible to users with visual impairments. It is worth noting

that not all ImageView elements should be labeled since some are used for aesthetic purposes

or visual spacing. However, it is particularly important to label all ImageButton elements since

they meant to represent an action in the app. Thus, analyzing apps for the presence of labels in



85

ImageButton elements tend to produce more accurate results than other UI elements.

One can use Sieveable to investigate the extent of this bug and whether developers pay

attention to it over the years. Below are the search queries I use in this analysis:
<!-- Find all apps that have an ImageButton -->

MATCH app

WHERE

<ImageButton />

<date-published>(*)</date-published>

<downloads>(*)</downloads>

RETURN app, l$1 AS rDate, l$2 as downloads

<!-- Find all apps that set the contentDescription statically in layout files-->

MATCH app

WHERE

<ImageButton android:contentDescription="*" />

<date-published>(*)</date-published>

<downloads>(*)</downloads>

RETURN app, l$1 AS rDate, l$2 as downloads

<!-- Find all apps that set the contentDescription dynamically in source code files-->

MATCH app

WHERE

<code class="ImageButton" method="setContentDescription" />

<date-published>(*)</date-published>

<downloads>(*)</downloads>

RETURN app, l$1 AS rDate, l$2 as downloads

The first query is for finding apps that have an image button, while the last two queries are for

finding apps that added a text label to an image button statically in layout files or dynamically

in the source code. We can analyze the results of these search queries and compute the ratio of

labeled image buttons in each app. We compute the percentage of accessible image buttons in each

app as follows: coverage = image buttons with labels
total image buttons . Then, we compute the weighted mean for all

apps in each year, the standard deviation as a measure of variability, and the standard error of the

mean as follows:

x̄ =

∑N
i=1 wixi∑N
i=1 wi

, SDx̄ =

√∑n
i=1 wi(xi − x̄∗)2

N−1
N

∑n
i=1 wi

, and SEx̄ =
SDx̄√
N

where wi is the number of image buttons, xi is the coverage, and N is the total number of ob-

servations (apps with image buttons). Figure 7.7 shows the weighted mean of accessible image
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button elements with text labels in all apps released from 2010 to 2016. We observed, on average,

around 5% increase of accessible image buttons from 2012 to 2014 but that improvement growth

rate reached a plateau at a lower level in 2015 and 2016.

Figure 7.7: The average of accessible image buttons in apps over the release years. The error bars

represent the standard error of the mean.

We can also sample the apps with no accessible image buttons (i.e. an app that has no label

in all of its image buttons) and group them by download count. Sieveable enables us to count for

cases where text labels are added dynamically in the source code. Thus, the results of the previous

queries are more accurate and can be used to quantify apps that do not label image buttons at all.

Figure 7.8 shows the percentage of apps in three download count groups (top, middle, and bottom)

that had no text labels in all the image buttons they used. This result shows that this accessibility

bug is common across all apps of different download times. It was even more common in the top

downloaded apps in the years from 2011 to 2014. However, it dropped in the following two years

to become relatively common in all three download count groups.
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Figure 7.8: The percentage of apps that have no accessible ImageButton elements grouped by
download count and release year.

The results of this analysis show a mixed view of accessibility improvements in Android apps

over the years. While we have seen a small yet noticeable improvement in the years before 2015 but

that growth rate plateaued in 2016. These findings suggest that accessibility is still a problem for

all apps including the most downloaded apps and bring to light the prevalence of this accessibility

problem across all apps regardless of their popularity levels. The results presented here highlight

the potential of using Sieveable in future work to estimate the accessibility of mobile apps over

time and identify areas where accessibility violations are more severe.

7.3 Privacy Mining Analysis

Android uses a permission system to protect privacy- and security-sensitive resources. An-

droid has recently changed its permission’s model from install-time (pre 6.0) to a runtime permission

system (6.0 and above). In the install-time model, users are prompted with a list of permissions

an app requires when they try to install the app. In the runtime model, instead of showing per-

missions at install-time, Android gives users the choice of granting or denying a permission while

running the app. Many research efforts have studied several privacy and security problems in the



88

permission’s model of Android (discussed in detail in chapter 3). However, previous studies have

been limited in their understanding of permission changes over time. It is valuable to ask how

permission usage changes in Android apps. Do apps tend to request fewer or more permissions over

time? Are developers becoming privacy-conscious or non-privacy-conscious over the years? Did

they ask for more permissions to use in new features or included libraries? In this section, through

an analysis of permission usage changes, I demonstrate how easy it is to use Sieveable to perform

these analyses. The analysis presented here uses the following Sieveable query:
MATCH app

WHERE

<uses-permission android:name="(android.permission.*)" />

<date-published>(*)</date-published>

<rating>(*)</rating>

<downloads>(*)</downloads>

RETURN app, l$1 AS rDate, l$2 as rating, l$3 as downloads, m$1 as permissions

This query returns the system permissions, release date, rating, and download count for all

apps in the dataset. Since the goal of this analysis is to study permission changes over time, I

removed all apps that had only one version in the dataset. This narrowed the sample of apps to

50,618 unique apps. The analysis of the search results is presented in two subsections: added and

dropped permissions.

7.3.1 Analyzing Permission Usage

The average number of requested permissions is 7.33 permissions (standard deviation is 5.30).

Figure 7.9 shows the distribution of the total requested permissions in apps. It shows that the ma-

jority of apps requested two permissions in total. These apps appeared to be less popular (79.12%

with less than 100,000 downloads). This raises the question what are these two permissions that

these apps depend on? To answer this question, I aggregated the list permissions for these apps

and found that the top three permissions they requested to be: android.permission.INTERNET, an-

droid.permission.ACCESS NETWORK STATE, android.permission.WRITE EXTERNAL STORAGE.

The first two permissions are found to be among the most frequently used permissions in ad li-

braries [95]. In addition, I analyzed the apps that had an unusual total of requested permissions
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Figure 7.9: The total number of requested permissions.

(a sum total that falls within the most 10 requested permission counts). I found that 90% of these

apps have a download count of 100,000 or less and only one app (the T-Mobile official app) that

has requested 86 permissions and had 10 million downloads. The app with the highest requested

permission (122 permissions) is called Webkey (package name is com.webkey). This app is listed

under the tools category, had 100,000 downloads, 4.44 star-rating, and claims that it provides a

remote control of the device from any browser. Finally, I discovered that the average number of

requested permission keeps increasing over the years (see table 7.1). This suggest that developers

tend to add more permissions over the years which make users more susceptible to privacy and

security problems over time.

7.3.2 Analyzing Added Permissions

This analysis seeks to discover the trends in adding permissions throughout the apps’ release

history. In the entire dataset, I found that 13,976 apps (27.61%) asked for more permissions in

their updates. On average, they added 2.28 permissions (standard deviation is 2.57).
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Year Average Standard Deviation Total apps

2010 2.82 2.79 547

2011 3.62 2.85 2,718

2012 4.95 4.17 7,518

2013 6.56 4.77 50,190

2014 6.71 4.99 55,242

2015 7.72 5.35 120,840

2016 8.72 5.97 40,435

Table 7.1: Summary statistics on the total number of permissions requested by apps over the years.

Figure 7.10: The total number of added permissions in apps grouped by download count.



91

Figure 7.11: The five most added permissions in each year. The x-axis shows how many times the

permission was added in each year.

Figure 7.10 shows the number of added permissions for apps by three download count groups

(top, middle, bottom). It shows that the addition of one to five permissions seemed to be normal

and relatively similar among the three download groups. But as the number of added permissions

increases to 15 or more, all the observations appear as outliers.

Adding these permissions may have happened as a result of a framework upgrade, library

adoption, or added features throughout the time of releasing a new app version. To explore the

trends in adding permissions over time, I obtain a list of the five most added permissions in each year

( see figure 7.11). This graph shows that the most added permissions are always among the most

frequently used permissions in ad libraries [95] The android.permission.GET TASKS appeared as

the fifth most added permission in 2013, which is used to get the user’s most recent tasks. De-

spite that APIs that depend on this permission could leak personal information, it can be granted
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without the user’s approval at install time. It has been later deprecated (in Android 5.0), how-

ever, to protect user’s privacy. The permission named android.permission.USE CREDENTIALS

appeared as the third most added permissions in 2015. This permission along with the an-

droid.permission.GET ACCOUNTS usually get added automatically during the build process when

the developer adds the Google Play services library to the dependencies list in the app’s gradle.build

file. It was later deprecated in API 23 (Android 6.0), so it was not seen among the five most added

permissions in 2016. These findings suggest that apps tend to add more permissions related to

either dependency or ad libraries rather than core app features.

7.4 Summary

This chapter has demonstrated how Sieveable simplified the task of analyzing apps over time

at an unprecedented levels of analyses. I presented a number of analyses in three main areas:

design, accessibility, and privacy. In design, the release of official design helper libraries enabled

apps that had few downloads to reduce the gap with the top downloaded apps in adopting best

design practices. In accessibility, all apps including the most downloaded ones had significant

accessibility problems. In privacy, I uncovered that apps with few downloads tend to request either

a small number of permissions, which are common in ad libraries, or a rather large and unusual

number of permissions compared to the apps with high download counts. Furthermore, the most

added permissions in each year are the ones often required by ad libraries, which raises privacy

concerns. These analyses provided insights on how apps changed at an unprecedented level than

previous research, both in terms of the depth of analysis (i.e. listing details, design, and code data)

and the time studied (over multiple app versions).



Chapter 8

Conclusion and Future Work

8.1 Conclusion

This dissertation introduced a deep and longitudinal approach to mining mobile applications.

I used the term “deep” to refer to the deep and structural indexing of apps across multiple levels,

and the term “longitudinal” to refer to observing them over multiple points of time. The ultimate

contribution of this dissertation research is the advancement of understanding mobile apps at deep

and longitudinal levels. The work proposed here sought to gain insights into mobile apps by enabling

the analysis at unprecedented depth over time. Specifically, this dissertation aimed to answer the

following two research questions:

(1) How can we enable deep searching and mining of mobile apps over time?

(2) What are the benefits of the deep and longitudinal approach to mining mobile apps?

In answering the first question, a large dataset has been collected and led to the development and

deployment of a large-scale retrieval platform called Sieveable (discussed in chapter 5). In answering

the second question, I used Sieveable to present several types of analyses that would have been

difficult to perform otherwise (discussed in chapter 7). Some highlights of my findings include: 1)

In user interface design, the release of official design libraries enabled new applications to reduce

the gap with the most downloaded ones in adopting best design practices. 2) In accessibility, results

showed that accessibility is a problem for many applications including the most downloaded ones.
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3) In privacy, the most added permissions in each year are the ones often required by ad libraries,

which raises privacy concerns.

8.2 Future Work

There are a number of promising future directions for the work presented in this dissertation.

Leveraging Dynamic Analysis

A key inherent limitation of Sieveable is the fact that an analyst needs to know what she is

looking for and translates that into a search query. This limitation can be overcome by leveraging

dynamic analysis tools. The dynamic or runtime-based analysis involves running the app and

analyzing its visual design or behavior. This can be applied by creating a dynamic analysis platform

that uses a collection of virtual mobile devices and paid crowds that are capable of translating visual

design examples into search queries. However, not all visual design concepts can be translated into

search queries that can be submitted into a static-analysis-based retrieval system. For instance,

UI screen transitions and animations are hard to capture because they involve complex dynamic,

event-based changes. Exploring this area and the possibility of combining the strengths of both

static and dynamic analysis could result in novel systems and new kind of applications.

Systematic Evaluation Studies

I demonstrated the benefits of the deep and longitudinal approach by conducting a diverse

number of analyses in three domains: visual design, mobile accessibility, and privacy. This ex-

ploration highlights the potential in going beyond that and applying comprehensive studies to

identifying key problems in these areas. For instance, accessibility assessment involves many com-

plex considerations for multiple situations to deem an app accessible. A systematic investigation

that applies advanced static and dynamic analysis techniques could provide us with insights to

address serious problems in this area.
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Ranking Algorithms

The number of apps has increased dramatically in mobile marketplaces. As a result, find-

ing a new and well-designed app is becoming an exercise in frustration. Most if not all existing

search ranking algorithms do not take into account apps’ internal data when ranking search results.

Search systems miss a great opportunity in creating novel ranking algorithms based on apps’ data.

Employing new ranking factors such as accessibility, design, privacy, etc. could lead to significant

benefits to users.

Personalized Recommender Systems

The existing recommender systems in marketplaces do not recommend apps based on user’s

preferences. It will be useful to recommend an app to a user if it matches her preferences. Users

have different visual aesthetic or privacy preferences. One promising example of personalized rec-

ommender systems is a visual design recommender system. By extracting visual design features

of each app and learning the preferences of each user, we can recommend apps that match users’

design preferences.

8.3 Summary

This dissertation introduced an approach to mining large and ever-changing marketplaces by

taking a deep and longitudinal perspectives. I presented several analyses that encompassed this

approach and uncovered new findings. I believe that additional efforts in this research area could

result in innovative systems that could empower mobile developers and users. I hope this work

inspires others to apply an approach with a deep and longitudinal perspectives to new problems.
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