Topology Optimization of Flow Problems Modeled by the

Incompressible Navier-Stokes Equations
by
Sebastian Kreissl

Dipl.-Ing., Technische Universitdt Miinchen, 2007

A thesis submitted to the
Faculty of the Graduate School of the
University of Colorado in partial fulfillment
of the requirements for the degree of
Doctor of Philosophy
Department of Aerospace Engineering

2011



This thesis entitled:
Topology Optimization of Flow Problems Modeled by the Incompressible Navier-Stokes Equations
written by Sebastian Kreissl
has been approved for the Department of Aerospace Engineering

Dr. Kurt Maute

Dr. Carlos Felippa

Dr. Daven Henze

Dr. Mahmoud Hussein

Dr. Georg Pingen

Date

The final copy of this thesis has been examined by the signatories, and we find that both the content and the
form meet acceptable presentation standards of scholarly work in the above mentioned discipline.



iii
Kreissl, Sebastian (Ph.D., Aerospace Engineering)
Topology Optimization of Flow Problems Modeled by the Incompressible Navier-Stokes Equations
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This work is concerned with topology optimization of incompressible flow problems. While size and
shape optimization methods are limited to modifying existing boundaries, topology optimization allows for
merging boundaries as well as creating new ones. Since topology optimization methods do not require a
good initial guess, they are powerful tools for finding new and non-intuitive designs. The latter is partic-
ularly beneficial for flow problems which are typically nonlinear as well as transient. Depending on the
complexity of the flow problem, predicting a solution may be challenging. Determining an improved or
optimized design for complex flow problems is an even greater challenge as it not only requires a solution
to the flow problem for a given design, but also a prediction on how a design change will affect the flow.
Fluid topology optimization commonly uses a material interpolation approach for describing the geometry
during the optimization process: solid material is modeled via an artificial porosity that penalizes the flow
velocities. While this approach works well for simple steady-state problems aiming to minimize the dissi-
pated energy, the current study shows that using the porosity approach may cause issues for more complex
problems such as coupled fluid-structure-interaction (FSI) systems, unsteady flow problems or problems
aiming to match a target performance. To overcome these issues a geometric boundary description based on
level sets is developed. This geometric boundary description is applied to both, a steady-state hydrodynamic
lattice Boltzmann formulation and a stabilized finite element formulation of the steady-state Navier-Stokes
equations. The enforcement of the no-slip condition along the fluid-solid interface is handled via an im-
mersed boundary technique in case of the lattice Boltzmann method, while the Navier-Stokes formulation
uses an extended finite element method (XFEM). Through the research conducted in this work, the spectrum

of flow problems that can be solved by topology optimization techniques has been broadened significantly.
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Chapter 1

Introduction

1.1 Motivation

The origins of fluid mechanics can be traced back over 2000 years to the ancient Greeks, when
Aristotle developed the concept of the continuum and discovered the effect of aerodynamic resistance. How-
ever, it was not until the middle of the 19th century that two mathematicians/physicians - Claude Navier,
Fig. 1.1 and Sir George Stokes, Fig. 1.2 - independently of each other, laid the foundations of modern fluid
dynamics [46]. Since then the Navier-Stokes (NS) equations have been applied to solve a wide range of
flow problems. With the advent of computational fluid dynamics (CFD) in the late 1960s more complex
flow geometries could be simulated and analyzed numerically. The ever advancing computational capabili-
ties/technologies and the improvements of numerical methods for solving the NS equations now allows us
to solve flow around entire cars, planes, etc. with hundreds of millions of degrees of freedom. While further
research is necessary to solve even larger and more complex flows, CFD has reached a level of maturity
where standard mid-to-large scale engineering problems can be simulated in a reasonable amount of time.
The capability of analyzing an existing design often evokes the desire to use these simulation tools to also
improve the design. This is where the current thesis fits in: its goal is to apply topology optimization tech-
niques to flow problems in order to improve the performance of an existing design or to find a new design
that performs in the desired way.

The NS equations are described by a set of time-dependent nonlinear partial differential equations.
Their complexity makes both the computation of a flow solution (flow problem) and even more so the

prediction of an improving design change (optimization problem) a challenging task. Therefore, solving



Figure 1.1: Claude L. M. H. Navier Figure 1.2: Sir George G. Stokes
(1785-1836) [1]. (1819-1903) [1].

flow optimization problems with mere ‘engineering intuition’ can be difficult or even infeasible. Instead
of relying on intuition, black-box optimization modules can be employed: the design engineer formulates
the flow problem including boundary conditions and initial design, defines a design space and utilizes the
optimizer to find a better design. While this approach will simplify and speed up the design process, it
generally will still require an experienced design engineer to setup the optimization problem, monitor the
optimization process, and subsequently interpret the final design.

This thesis focuses on topology optimization as it is - compared to size and shape optimization - the
most general optimization technique: existing fluid-solid boundaries can be merged and new ones can be
created. Therefore, the results of topology optimization are far less sensitive to the initial design than results
obtained with size and shape optimization techniques. This feature makes topology optimization well suited
for complex flow problems, where a ‘good’ initial design might be difficult to find. Furthermore, due to its
flexibility topology optimization might facilitate finding new non-intuitive designs making it a powerful tool
for the design process.

Employing optimization techniques to flow problems will aid in the design of cars, planes, etc., further
advancing performance as well as efficiency. However, since topology optimization methods require tens to
hundreds of (flow) analyses, this technology is currently still limited to simple and relatively small problems.

This thesis focuses on the development of numerical methodologies to widen the range of flow problems



that can be solved by topology optimization techniques.

1.2 Thesis Structure

This document summarizes the work that has been conducted during the author’s Ph.D. study. The
bulk of this work has already been published or submitted for publication. Therefore, to minimize redun-
dancies, only the relevant fundamental aspects and basic concepts are presented. For thoroughness, the
publications [P1]-[P4] that stemmed from this Ph.D. study are included in the appendix of this document.
The thesis structure is outlined in the following , cp. Fig. 1.3.

Chapter 2 introduces the incompressible NS equations in non-dimensional variables. This is followed
by a section on the lattice Boltzmann method (LBM) which approximates the NS equations for low Mach
number flows. The LBM is employed for describing the flow field in publications [P1] and [P2]. Section 2.2
outlines the finite element formulation of the incompressible NS equations which is used for discretizing the
flow field in publications [P3] and [P4].

Chapter 3 focuses on design optimization. It starts with an overview of optimization techniques in
Section 3.1. This is followed by a section that briefly outlines different optimization strategies/algorithms.
Section 3.3 describes the sensitivity analysis and explains the difference between direct and adjoint methods.
Section 3.4 gives an overview of a set of optimality conditions commonly utilized in topology optimization.
In Section 3.5 the basics of structural topology optimization are outlined. The latter is employed in pub-
lication [P2]. Finally, Section 3.6 presents the concept of fluid topology optimization which is utilized in
publications [P1]-[P4].

The document is summarized in Chapter 4. A set of ideas for potential future work can be found in

Section 4.2.

1.3 Summary of Publications

This section briefly outlines the publications [P1]-[P4] that are included in the appendix of this docu-

ment.
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Figure 1.3: Thesis structure.
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Figure 1.4: [P1]: Level sets for geometric boundary description.

1.3.1 Summary of [P1]: An Explicit Level Set Approach for Generalized Shape Optimization of

Fluids with the Lattice Boltzmann Method

This study is concerned with a generalized shape optimization approach for finding the geometry
of fluidic devices and obstacles immersed in incompressible flows. The approach is based on a level set
representation of the fluid-solid interface and a hydrodynamic LBM to predict steady-state flow fields. An
explicit level set method is introduced that does not involve the solution of the Hamilton-Jacobi equation
and allows using standard nonlinear programming methods. In contrast to previous works on fluid topology
optimization, the boundary conditions along the fluid-structure interface are enforced by second-order accu-
rate interpolation schemes, cp. Fig. 1.4, avoiding shortcomings of flow penalization methods and Brinkman
formulations frequently used in topology optimization. To ensure smooth boundaries and mesh independent
results, a simple, computationally inexpensive filtering method is applied to regularize the level set field.

One drawback of the developed method is the fact that no new boundaries can be created which
limits the topological complexity of the final design. This disadvantage can be mitigated by choosing a
proper initial design that has a sufficient number of separated solid regions (‘islands’). Inclusions or holes
completely surrounded by solid, on the other hand, have no influence of the flow solution and are therefore
irrelevant for pure fluid topology optimization.

The employed approach has proved to produce results that are consistent with studies that used a

material interpolation approach.
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Figure 1.5: [P2]: One-way coupled fluid-structure systems.




1.3.2 Summary of [P2]: Topology Optimization of Flexible Micro-Fluidic Devices

A multi-objective topology optimization formulation for the design of dynamically tunable fluidic
devices is introduced. The flow is manipulated via external and internal mechanical actuation, leading to
elastic deformations of flow channels. The design objectives characterize the performance in the unde-
formed and deformed configuration. The layout of fluid channels is optimized using a material interpolation
approach, cp. Fig. 1.5. In addition, the thickness distribution, the distribution of active material for internal
actuation, and the support conditions are optimized. The coupled fluid-structure response is described by a
nonlinear finite element model and a hydrodynamic LBM. Focusing on applications with low flow velocities
and low pressure, structural deformations due to fluid-forces are neglected. A mapping scheme is defined
that couples the material distributions in the structural and fluid domain.

The study proved the applicability of topology optimization to fluid-structure systems. The developed
mapping method allows for a simple coupling between the two domains. While this approach leads to rea-
sonable results for the employed simplified fluid-structure model - the structural displacements affect the
fluid flow but the fluid does not affect the structure - it will cause issues when applied to a fully coupled sys-
tem. Modeling the effect of fluid pressure on the structural deformation of porous elements is a challenging
task. The proposed mapping procedure is based on the intersection of structural and fluid elements. There-
fore, its implementation is rather simple and computationally inexpensive for 2D. In 3D problems however,

this approach would be significantly more complex and expensive.

I Increasing unsteadiness >

Figure 1.6: [P3]: Optimized diffuser designs for various levels of unsteadiness.




1.3.3 Summary of [P3]: Topology Optimization for Unsteady Flow

This publication is concerned with optimizing the layout of devices for unsteady incompressible flow
at low Reynolds and Mach numbers. The flow is predicted by a stabilized finite element formulation of
the incompressible Navier-Stokes equations. A Brinkman penalization is used to enforce zero-velocities in
solid material allowing for overall topological changes in the geometry of the fluid-solid interface. A design-
dependent stabilization scheme is introduced to mitigate numerical instabilities in porous material. Unlike
previous studies on fluid topology optimization the study focuses on unsteady flows, since many engineering
applications involve time-dependent phenomena. The transient effects can be due to time-varying boundary
conditions - as considered in this study - or due to the fact that the flow field is inherently unstable: e.g. the
flow past a cylinder becomes unstable for Reynolds numbers Re > 40 [52].

The emergence of non-physical artifacts in the optimized material distribution is observed and linked
to an insufficient resolution of the flow field and an improper representation of the pressure field within
solid material by the Brinkman penalization. Numerical examples demonstrate that the designs optimized
for unsteady flow differ significantly from their steady-state counterparts, cp. Fig. 1.6. The performance of
steady-state designs deteriorates as the flow varies more rapidly in time. Several key issues regarding the
application of the Brinkman penalization to topology optimization are identified and addressed. While only
2D problems with Reynolds numbers up to Re = 1000 are studied, the proposed formulations and numerical
methods can be easily extended onto 3D problems and are applicable to flows with larger Reynolds numbers.
However, the stringent requirements on mesh refinement and the associated numerical costs for forward and
sensitivity analysis are expected to limit the range of optimization problems that can be solved with the

proposed method.

1.34 Summary of [P4]: Fluid Topology Optimization Based on the Extended Finite Element

Method

This study focuses on finding the optimal layout of fluidic devices subjected to incompressible flow

at low Reynolds and Mach numbers. The proposed approach uses a level set method to describe the fluid-
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solid interface geometry. The flow field is modeled by the incompressible Navier-Stokes equations and
discretized by the extended finite element method (XFEM), cp. Fig. 1.7. The no-slip condition along the
fluid-solid interface is enforced via a stabilized Lagrange multiplier method. Unlike the commonly used
porosity approach, the XFEM approach does not rely on a material interpolation, which allows for more
flexibility in formulating the design problems. Further, it mitigates shortcomings of the porosity approach,
such as: spurious pressure diffusion through solid material, large sensitivity of the accuracy of the bound-
ary enforcement with respect to the model parameters, which may affect the optimization results, and poor
boundary resolution. Numerical studies verify that the proposed method is able to recover optimization
results obtained with the porosity approach. Furthermore, it is demonstrated that the XFEM approach pro-
vides great flexibility in solving optimization problems with a broad range of objectives and constraints. The
proposed methodology yields physical results for problems that cannot be solved with the porosity approach.

However, since the sensitivities only differ from zero within a band around the interface, it is only
possible to systematically merge existing boundaries, but no new domains of solid can emerge. This li-
mitation can be mitigated by seeding the initial design with a sufficient number of separated solid areas.
Compared to the Brinkman penalization, the proposed approach is significantly more complex in regards of

implementation, potentially preventing the use of commercial software tools.



Chapter 2

Incompressible Navier-Stokes Equations

This chapter outlines the governing equations of motion employed for describing the fluid state. The

incompressible, temperature dependent, unsteady NS equations are given by:

d av; d6 A
Momentum equation: P <a‘;’ + 8x\jl-ﬁj) = 8;1-] + fz‘B ’ 2.1
J J

97
Incompressibility condition: a—‘il =0, (2.2)

Xi

of af ¥ v\ (99 \7 , 9T

E tion: — +Vi—=— (2= — or—, 2.3
nergy conservation 57 + 9% & ( ( 8)@) + < %, T 8)2,2 2.3)

where p,¥;, p,f,T describe the dimensional density, velocity, pressure, time and temperature respectively.
The scalars V, ¢, and @ are the dimensional kinematic viscosity, specific heat, and coefficient of thermal
conductivity. The subscripts i, j define the spatial directions. The external body forces are given by fiB . The

stress tensor 6;; is defined as:

A . 1 /a0 9
ij:—p6[j+2‘lli <8ﬁj+8£j~>' (2.4)

The current study focuses on isothermal cases, i.e. Eq. (2.3) is neglected in the following. For deriving the

non-dimensional form of the NS equations, the following definitions are used:

P =prp, Vi = Vpvi,

N > A A AD

% = Lox;, p=p92p, (2.5)
P i A A AD

li= 31, Oij = Prv, Oij,

A

where ‘[ and ‘[ describe dimensional and non-dimensional quantities. The subscript ‘7’ indicates di-

mensional reference quantities. Substituting the definitions from Egs. (2.4) and (2.5) in Egs. (2.1) and (2.2)
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yields the common form of the incompressible isothermal NS equations:

dv;  dv; dap 1/ d%v; 9%v;
Moment tion: p| = +=—vj | =—5-8;+2u= ‘ ! 526
omentum equation: p < Y +axjv]> o, i+ mo <8xj8xj + 8x,-8xj> +f5,  (2.6)
i
Incompressibility condition: 8;- =0, 2.7

where the scalar (t defines the non-dimensional dynamic viscosity:

p=t =

-V

(2.8)

>

1
Re’

~

with Re being the Reynolds number.

For solving partial differential equations (PDEs), like the NS equations, different discretization tech-
niques have been developed. The three most common are: (a) Finite Difference Method: while this approach
is well established and straightforward it is no longer an area of active research [43]. (b) Finite Volume
Method: first introduced by MacCormack and Paullay [57], this method has gained popularity for solving
flow problems. (c) Finite Element Method (FEM): this method was first developed for solving structural
problems [86]. Hughes and Tezduyar later extended it to fluid flows [44].

In this thesis both a finite difference and a finite element discretization are considered. In case of
the finite difference discretization a hydrodynamic LBM is chosen since previous theoretical and numerical

studies have shown promising results [29, 68, 69].

2.1 Lattice Boltzmann Method for Incompressible Flows

The LBM, which can be derived from the Boltzmann equation [3], approximates the NS equations
for low Mach number flows [17, 81, 88]. While it was originally intended for modeling gases, it can
be used to describe various particle-like quantities such as molecules, electrons, and photons making it a
flexible approach, see e.g. [16]. Further advantages are its simplicity and as a result its straightforward
implementation. The derivations in this section closely follow the work by Pingen and co-workers. For
more details the reader is referred to [68, 69].

The LBM models hydrodynamic flows based on kinetic theory. Yu et al. [89] derived the LBM from
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Figure 2.1: Velocity distribution for the D2Q09 lattice [68].

the Boltzmann equation with the Bhatnagar-Gross-Krook collision operator [10, 69]:
af 1
Vf=—=(f—f), 2.9
SV == (= ) 29)

where f, ¢4, &, A define the distribution function, the equilibrium distribution function, the velocity and
the relaxation time. The right hand side of Eq. (2.9) defines the collision operator [69].

Discretizing Eq. (2.9) in space, time and velocity, cp. Fig. 2.1, yields:

fo (Xi+eqbt,1+ 61) = fo (xi,1) — Ti (fo (Xist) = fo! (xi,1)) (2.10)
R

where e, is the velocity vector, fy is the distribution function in a-direction at the location x;; 07 is the time
step and Tg is the dimensionless relaxation time. Separating Eq. (2.10) into a local collision and a global

propagation step yields [69]:

Collision: 7 (xi,t) = fu(x,1) — TIR (faint) — F29(x01)) @.11)

Propagation: fy(x;+ Oteq,t+ 8t) = E(xi,t). (2.12)

For flows with low Mach numbers, the equilibrium distribution function fg’ in Eq. (2.11) can be derived by

a Taylor series expansion of the Maxwell-Boltzmann equilibrium distribution [41, 69]:

fl =wap <1+3(ea-v)+z(ea-v)2—;v2), (2.13)
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where p represents the macroscopic density, the vector v is the macroscopic velocity, and wq are lattice
weights that depend on the lattice geometry. The macroscopic parameters, density and velocity, are evaluated

by taking statistical moments of the distribution function fy, and are given by [69]:

8

px.1) =Y fa(x,1), (2.14)
o=0
8

pv(x,t) = Zeafa(x,t). (2.15)
a=0

2.2 Finite Element Method for Incompressible Flows

Analogous to structural problems, FEM for fluid flows employs a Galerkin discretization: the strong
form of the equations (2.6)-(2.7) are weighted with elemental test functions and integrated over the domain

which is divided into elements. The resulting weak form can be written as follows:

d dv; do;; d
R= /w( < iy a:l”) 7, = fl>d9+ /qa—:ldﬁ =0, (2.16)
J i
N—_——
momentum term incompressibility term

where R defines the residual, w; and g are a velocity and pressure test functions. Generally, the derivative of

the stress tensor do;;/dx; is integrated by parts:

8wl aw.,-
R= /w,p T dQ—l—/ wpa v;dQ— / <8x] BXi>p5,]dQ

mertla term convective term pressure term
+/ aw; 8wj 2/,Lf v av, o / &v,
ox; axi ox; 8x, 8x,
shear term 1ncompr6:551b1hty term

avl 8v(,- .
_/rwinj< PO+ 21~ <ax,-+3x,->>dr_o‘ 2.17)

boundary term

In this form the boundary term contains the traction #; explicitly:

dvi v
ti:nj< PO+ 20~ <8v.+a;{>>, (2.18)
Xj i

which allows for a convenient implementation of various boundary conditions: e.g. the common ‘traction-

free’ condition in which case the boundary term is simply set to zero.
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Figure 2.2: Shape functions.

The convective term in Eq. (2.17) causes major difficulties when standard Galerkin based finite ele-
ments are used for fluid problems: in practice the flow solution often shows spurious node-to-node oscil-
lations [23]. To eliminate these oscillations different stabilization techniques have been developed, such
as the Galerkin-Least-Squares method, e.g. [67], the Bubble method, e.g. [31] as well the Streamline-
Upwind/Pedrov-Galerkin (SUPG) method [85]. Due to the straightforwardness of the SUPG formulation,
the current study focuses on the latter. Figure 2.2 illustrates the motivation behind the SUPG stabilization:
the standard shape functions, Fig. 2.2(a), have equal weights for upstream and downstream direction. This
can lead to instabilities as the upstream information affects the solution at location P more than the down-
stream information, cp. Fig. 2.3. As a consequence, the upstream information needs to be weighted more
heavily. To accomplish this, the shape functions N; (x) are modified as depicted in Fig. 2.2(b): the weight
of the upstream direction is increased by TsypgVN; (x), where Tsypg is a scalar stabilization parameter.
Given the negative slope of N, (x), the term Tsypg VN, (x) reduces the weight of the downstream direction.
The challenge lies in finding a proper Tsypg value that adds an appropriate amount of diffusion preventing

instabilities without perturbing the solution too much.
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Figure 2.3: Importance of upstream information.
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Figure 2.4: Equal order velocity and pressure elements.

Besides the convective term, incompressible flow problems have another potential source for insta-
bilities: if an inappropriate combination of interpolation functions is used for the velocity and the pressure,
oscillations may occur in the pressure field [85]. For the sake of a simple implementation, equal order inter-
polation functions are chosen for pressure and velocities in this work, cp. Fig 2.4. However, since these equal
order elements violate the Ladyzhenskaya [53], Babuska [6] and Brezzi [13] (LBB) stability condition, the
pressure field needs to be stabilized as well. In the current work the Pressure-Stabilizing/Petrov-Galerkin
(PSPG) scheme is employed to prevent pressure oscillations. For more details on the stabilization used in
this work the reader is referred to [P3] and the references therein.

Figure 2.5 shows the flow around a cylinder at Reynolds number Re = 100 and the characteristic
Karman-vortex street. The flow domain is discretized by 576,000 SUPG/PSPG-stabilized v8p8-elements,

cp. Fig. 2.4b.
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Chapter 3

Design Optimization

Design optimization is the discipline that, starting from an initial design and a given design space,
aims at finding a geometry that improves an objective while satisfying a set of constraints. Mathematically,
this problem can be written as:

min z(s,(s)),

p

hi(s,f(s)) =0 satisfy the equality constraints Vi=1,...,Np,
t gj(s,f(s)) <0 satisfy the inequality constraints Vj=1,...,Ng, G.D
s.t.
R(s,f(s)) =0  f(s) solves the governing equations,
skmi“ s < s satisfy the design constraints  Vk=1,..., N,

where z, h;, g define the objective as well as equality and inequality constraints. The vectors s and f contain
the design and state variables; sf‘in and s;"** are the upper and lower bounds for the k-th design variable. R
is the residual vector of the underlying governing equations of motion. This formulation, (3.1) - where only
the design variables s are independent - is referred to as Nested Analysis and Design (NAND) approach. In

this case, the state vector f is computed, for a given design vector s, from solving R (s,f(s)) = 0.

If both the design and state variables, s and f, are independent and solved for simultaneously, the
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optimization problem (3.1) can be re-written as:

msin z(s,f),
hi(s,f) =0 satisfy the equality constraints Vi=1,...,Np,
t gj(s,f) <0 satisfy the inequality constraints Vj=1,...,N,, (3.2)
S.t.
R(s,f)=0 satisfy the governing equations,
skmin <sp < s satisfy the design constraints  Vk=1,...,N;.

Due to the simultaneous solution for design and state variables the optimization problem (3.2) is referred to
as Nested Analysis and Design (NAND) approach or one-shot method. The current study only employs the
NAND approach as it separates the physics and the optimization problem. This allows utilizing standard
flow solvers as well as standard nonlinear programming schemes. Further, the size of the problem the

nonlinear programming scheme is operating on is smaller when a NAND approach is used.

3.1 Geometry Variation in Design Optimization

Optimization methods can be categorized in numerous ways. In this section the focus lies on classi-
fying different types of geometry variations for optimization. Distinctions are made between size, shape and
topology optimization. The characteristics of each type as well as their applicability are briefly discussed in
the following:

Size optimization: this is the simplest form of design optimization. The design parameters define
the size of certain features, e.g. the radius of a cylinder, cp. Fig. 3.1. The advantage of a straightforward
parameterization comes with the restriction that the optimal geometry strongly resembles the initial one. Due
to the restrictive design space both initial and final design are cylinders in Fig. 3.1. The final optimization
result is therefore highly dependent on the initial guess. Generally, this approach is used to fine-tune an
existing design.

Shape optimization: compared to size optimization, this approach is more general. The design para-
meters define the shape of the geometry, cp. Fig. 3.2. The geometry can be described via splines or through

parameterizing an existing CAD model, allowing for changes in the shape of the geometry’s boundary. The
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Figure 3.1: Size optimization.

more general the boundary description, the more complex the parameterization becomes: in case of a CAD
parameterization it might be necessary to define constraints ensuring that features do not intersect. The
optimized results are still strongly dependent on the initial guess as well as the parameterization.

Topology optimization: is the most general optimization technique. The geometry is commonly de-
scribed via a material distribution function that interpolates the material on an elemental level between ‘void’
(white), ‘intermediate’ (gray), and ‘solid’ (black), Fig. 3.3. The design variables define the material distri-
bution and allow for merging of existing and creation of new boundaries, cp. Figs. 3.3 and 3.4. More details
on the material distribution are presented in Section 3.5 and 3.6. The ability to find an optimized geometry
without a ‘good’ initial guess makes topology optimization a powerful tool for finding a conceptual design.
The latter is particularly advantageous for complex, nonlinear and thus hard to predict problems such as flow
problems. To further improve the geometry obtained from topology optimization, shape/size optimization

techniques can be applied in a second stage.

3.2 Optimization Algorithms

Optimization algorithms can be grouped into two categories: gradient-free and gradient-based ones.
As the name implies, the former do not rely on gradient information and therefore have no requirement for
continuity/differentiability, cp. Fig. 3.5. This makes them well-suited for discrete problems, i.e. problems
where the design variable can only have discrete values such as the number of bolts in a structure. Common

gradient-free optimization algorithms are branch-and-bound methods [54], simulated annealing [77] and
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Figure 3.2: Shape optimization.

genetic algorithms [7]. While these methods are usually simple to implement, they are restrictive with
respect to the dimension of the design space that can be handled: a large number of design variables quickly
leads to unacceptably high computational costs. For example, genetic algorithms are unsuited for problems
with both many design variables and computationally expensive forward analysis, such as fluid topology
optimization problems. Generally a large number of design variables is necessary to sufficiently resolve
the design domain of topology optimization problems, which usually requires a large population size for
genetic algorithms. Since every individual within this population requires the solution of a forward problem,
it becomes evident that this quickly leads to exorbitant costs, cp. [79].

For topology optimization problems, gradient-based algorithms pose a more efficient alternative since
they employ derivative information to guide the search process. However in case of non-differentiable
problems, gradient-based optimizers cannot be used as the derivative is ambiguous or even meaningless
at discontinuities, Fig. 3.5b. To utilize the derivative information, gradient-based algorithms require the
computation of sensitivities, i.e. the derivative of the performance with respect to the design variables, which
often entails a cumbersome implementation. When applying gradient-based algorithms to optimization
problems with a large number of design variables, the implementation of (semi-) analytical sensitivities is
imperative. An approximation via finite difference techniques would lead to immense computational costs.
Generally, gradient-based optimization algorithms require less than a few hundred forward analyses even
for optimization problems with up to millions of design variables, while gradient-free approaches often

require orders of magnitude more forward analyses [79]. Since each forward analysis entails the solution of
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Figure 3.3: Material distribution for topology optimization, cp. Fig. 3.4.

a (costly) flow problem, only gradient-based optimization problems are considered in this study.

Common optimization algorithms for solving continuous nonlinear constrained problems as at hand
in nonlinear programming include interior point methods and sequential quadratic programming (SQP). For
more details on these algorithms, the reader is referred to Nocedal and Wright [64]. In the current study the
method of moving asymptotes (MMA) as well as a derivation thereof, the globally convergent method of

moving asymptotes (GCMMA) are employed. Both of which were developed by Svanberg [83, 84].

33 Sensitivity Analysis for Topology Optimization Problems

The following section outlines the computation of the sensitivities for a typical nonlinear program
3.1. For the sake of generality, the sensitivities are derived for a criterion ¢ which can describe either the

objective or a constraint:

de 9 ac\" of
a2 () 2 (3.3)
dsy  Jdsg of ) Jds
Assuming that the residual R equals zero, cp. Eq. (3.1), the derivative df/ds; is computed from:
dR JR IR of
—=—+—=—-—=0. 34
dSk 8sk + of 8sk ( )
Solving this equation for 9f/ds; yields:
of IR\ ' IR
—=—| = -—. (3.5)
8Sk of (9Sk

Substituting Eq. (3.5) into Eq. (3.3) results in:

T —1
de e (ae\ (R aR e
ds;  Jdsk of of sy
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At this point there are two options for calculating the sensitivity dc/ds:
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Examining the linear systems necessary for computing ¥ and A in Egs. (3.7) and (3.8) shows that the direct
method requires N linear solves, where N is the number of design variables s;. Contrary, the adjoint
method requires as many linear solves as there are criteria (1 + N, +N,). From this simple observation it

can be concluded:

if (1+Nj,+Ng) > N, : direct method is more efficient, 3.9

if (14N, +Ng) < N; : adjoint method is more efficient. (3.10)

For topology optimization problems where the number of design variables is generally orders of magnitude
larger than the number of criteria, the adjoint method should be chosen in order to reduce the computational
cost.

In case of transient topology optimization problems, the computation of the sensitivities quickly be-
comes expensive, both in terms of memory requirements and computational time. For a derivation of tran-
sient sensitivities and a more detailed discussion of this issue the reader is referred to [P3].

For optimizing structures that undergo a transient response, the approach of equivalent static loads

has been developed to reduce the computational cost [20, 21, 47]. It is based on the idea of transforming
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Figure 3.5: Categorization of functions.

dynamic forces into static loads that yield the same displacement field as the dynamic system. Similar
approaches have been developed for optimization of nonlinear (dynamic) systems [48, 63, 78]. Assuming a

nonlinear dynamic system, written in pseudo-linear form [48]:
M (s)ii™ (1,) + K (u”d (tn) ,s) u (1,) = £ (1,), G.11)

where M (s) is the mass matrix, K (u" (#,) ,s) the pseudo tangential stiffness matrix, £ (1,) the load vector,
and u" (1,) the displacement field that corresponds to this nonlinear, dynamic system. The vector s defines

the design variables. Given the displacement vector u™ (1,,), the equivalent loads can be computed from:
R (5,0 (1)) =K' (s)u" (1)~ £7 (5, (1)) =0, (3.12)

where R defines the residual, K/ is the linear stiffness matrix and 3! are the equivalent loads that lead
to the displacement field u"?. These equivalent forces can either be computed at every time step #, or at
dominant ones, e.g. the time of maximum amplitude. Subsequently, the equivalent loads are utilized as
multiple loading conditions [21].

Given the equivalent loads, the optimization process is split into two modules, one for the analysis
and one for the design [21]. The former computes the nonlinear response based on the system (3.11), the
latter employs the linearized system (3.12) for determining the search direction, i.e. for computing the sen-
sitivities in case of a gradient-based optimization algorithm, thus avoiding a transient/nonlinear sensitivity

analysis. The computation of the sensitivities in the linearized optimization module can be derived as fol-
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lows: employing Eq. (3.12), the derivative of a criterion ¢ with respect to a design variable sy is be defined

analogous to Eq. (3.6):

de(ty)  dc(ty) (dc\'. | 9R(t)
dsk - (9Sk _( > 1

) K T (3.13)

where R () is the residual corresponding to Eq. (3.12). From that, the adjoint sensitivity at time 7, can be

computed, cp. Eq. (3.8):

de(ty) _ 0c(tn) 7R (1)
dSk N 8sk 8Sk ’

(3.14)

While this approach appears to work reasonably well for structural systems, it is not further explored
in the current work as there is no adequate linear static equivalent of the NS equations. Neglecting the time
dependency, dv;/dt, and the nonlinear convective term (dv;/dx;)v; in the momentum equation (2.6) leads
to the linear Stokes equations. The latter however, only describe creeping flows, i.e. Re < 1. Therefore it
is assumed that the Stokes equations are unsuitable as a linear system to determine equivalent static loads
that yield the same states, v, p, as the nonlinear NS equations. Just neglecting the time dependent inertia
term dv;/dt would circumvent the need for a transient sensitivity analysis. However, as shown in [P3], the

optimization results are often sensitive to unsteady effects.

34 Optimality Conditions

Section 3.3 briefly outlines the derivation of sensitivities which determine the search direction for
gradient-based optimization algorithms. The following addresses at which point the algorithm should be
considered converged to an - at least local - optimum. For defining these optimality conditions the optimiza-
tion problem (3.1) is revisited. The solution to the latter can be expressed via the corresponding Lagrangian

function that is defined as:

Ni Ng
L(S,f(S)) = Z(S,f(S)) + Z.uihi (S,f(S)) + Z 2’jgj (S,f(S)) ) (3.15)
i=1 1

J:
where 11; and A; are the Lagrange multipliers for the equality constraints 4; and the inequality constraints
gj < 0. The Lagrange multipliers are also referred to as dual variables to distinguish them from the design

or primal variables. The Lagrangian, which is a saddle point problem, cp. Fig. 3.6, can be interpreted as a
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Figure 3.6: Saddle point of simplified Lagrangian L = 7+ Ag.

re-formulation of the constrained optimization problem (3.1) into an unconstrained min-max problem. For
Aj >0, the saddle point is a stationary point of L. Assuming a simplified case of Eq. (3.15) with only

inequality constraints this can be expressed as, cp. [12]:
L(s*,A) <L(s",A") <L(s,A"), (3.16)

where s* and A* characterize the design variables and Lagrange multipliers at the saddle point. Equation
(3.16) states that s minimizes while A maximizes L [12]. In order to determine whether a certain s* is a
(local) solution to the constrained optimization problem (3.1), the Karush-Kuhn-Tucker (KKT) conditions
can be employed: they define the saddle point of the Lagrangian, cp. Fig. 3.6, and are a necessary but not

sufficient condition for a (local) optimum. The KKT conditions can be written as follows [51, 64]:

JdL(s*,f(s*))

=0 (3.17)
hi(s*,f(s*)) =0 Vi=1,...,N, (3.18)
g (s, £(s) <0 Vji=1,...,N,, (3.19)

Ar>0 Vji=1,..,N, (3.20)

Argi(sB(s) =0 Vj=1,...,N,. (3.21)
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If the Hessian of L, kaL, is positive definite in the vicinity of the solution of Eqgs. (3.17)-(3.21), the KKT
conditions are a sufficient condition for a local optimum. In case of a convex optimization problem (3.1),
cp. Fig. 3.5a, - that is V?kL is positive definite in the entire solution space - a local solution is automatically
the global solution [64].

To determine the convergence based on the KKT conditions they are turned into a linear system,
e.g. [30]. The norm of the residual corresponding to this linear system HRK kT H is utilized as a measure of
how well the KKT conditions are satisfied, for example HRK KT H < ekKT <« 1.

Apart from the KKT conditions often times practical conditions are used to determine convergence
such as limits for the change of design variables, A(s) < & < 1 or limits for the change of the criteria

Ale) <e < 1.

3.5 Structural Topology Optimization

Structural topology optimization dates back to the beginning of the 20th century when Michell ap-
plied optimization techniques to truss structures [60]. It was not until the 1970s that researchers again
gained interested in Michell’s work [75]. With the advent of computers structural (topology) optimization
became more popular, cp. [18, 19, 42, 76]. Another leap in applicability and thus popularity of structural
topology optimization came with the material interpolation approach, first introduced in 1988 by Bendsge
and Kikuchi [9]. Since then, it has become a well established design tool. For more details on structural
topology optimization the reader is referred to [25, 38, 39, 40, 80, 82].

The following briefly outlines the most common approach to describe the material distribution in
structural topology optimization problems: the Solid Isotropic Material with Penalization (SIMP) approach
[8, 90]. It is based on the idea of penalizing intermediate porosities, i.e. design variable value between
57 and s°°'_ Given that the material interpolation approach is only a vehicle to describe the material
distribution, the final optimization result should ideally only consist of ‘black’ (100% solid) and ‘white’

(100% void) elements. Intermediate elements are an artifact of this interpolation approach.

The SIMP approach is tailored to problems that involve stiffness and mass as design criteria, e.g. max-
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imizing the stiffness subject to a mass constraint that limits the amount of solid material:
min z(s,u(s)) = / £’6dQ,
s Q
1 Nv
st. g(s)=—Y s <9, (3.22)
N &

s}(ni“ s <sp™* Vk=1,...,N;,
where the objective z is a measure for the compliance which is the inverse of the stiffness. The tensors € and
o define the strain and stress. The scalar 0 < ¢ < 1 limits maximum allowable amount of solid material.
The penalization of the intermediate porosities is achieved through two different interpolations for density

and stiffness:

Linear density interpolation: py (sx) = Pssk, (3.23)

Nonlinear stiffness interpolation: Ej (sx) = Empin +Essf with 0 < Epip < 1, (3.24)

where pg, E; are the density and stiffness of the k-th element; p; and E; are the density and stiffness of
a 100% solid element. E,;, is a minimum element stiffness to prevent singularities in the stiffness matrix
caused by void elements. For the sake of brevity Ep;, is set to zero in the following. An exponent 8 > 1
penalizes the stiffness interpolation as can seen in Fig. 3.7: for intermediate s-values, e.g. s = 0.5, the
relative stiffness E (s = 0.5) /E; = 0.25 while the relative mass p (s = 0.5) /p = 0.5. As the amount of solid
material is limited by a mass constraint, it is disadvantageous to ‘waste’ material for intermediate elements
that do not deliver a proportional amount of stiffness. It should be noted that the penalization only works for
problems as in Eq. (3.22) that involve stiffness and mass related criteria. Furthermore, an exact 0-1 material

distribution is only obtained for 8 — oo.

3.6 Fluid Topology Optimization

Due to limited computational resources, earlier works of fluid optimization were limited to simple
shape optimization problems, cp. [74]. Nowadays, with faster and more powerful computers, more complex
fluid shape optimization problems can be considered. For more details on the advancements in fluid shape

optimization the reader is referred to [4, 36, 37, 55, 61, 62].
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Figure 3.7: SIMP approach for 8 = 2.

With advancing computational power a second branch of fluid optimization evolved: fluid topo-
logy optimization. Inspired by the success of structural topology optimization, most approaches employ
a finite element discretization of the flow domain. As an alternative to finite elements, Pingen and co-
workers applied a finite difference based hydrodynamic LBM to solve fluid topology optimization pro-
blems [69, 70, 71, 72, 73]. Only recently, Evgrafov et al. have used a finite volume method for fluid topology
optimization [28].

In 2003 Klarbring et al. applied topology optimization to flow networks, where the flow was gov-
erned by the Hagen-Poiseuille equation [50]. In that same year, Borrvall and Peterson [11] proposed their
pioneering study for topology optimization of Stokes problems. It is based on a material interpolation ap-
proach - similar to the SIMP approach - which is still widely used and therefore will be discussed later
in this section. Evgrafov studied the limits of material porosity in Stokes flow [26]. Gersborg-Hansen et
al. applied topology optimization to Stokes flow to meet target flow rates [32]. Duan et al. [24] as well as
Challis and Guest [15] employed a level set approach to optimize Stokes flow problems. Large scale - 2D
and 3D - fluid topology optimization problems governed by Stokes flow have been solved by Aage et al. [2].
Guest and Prévost optimized unit cells for maximum permeability [35] as well as maximum permeability
and stiffness [34]. In both cases a Stokes flow model has been employed.

The above mentioned studies on fluid topology optimization are all limited to Stokes flow. Ev-
grafov [27], Okkels et al. [65] as well as Olesen et al. [66] extended fluid topology optimization to flow

problems described by the steady-state NS equations. Gersborg-Hansen et al. [33] applied fluid topology
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optimization to the steady-state NS equations using a new approach: instead of interpolating the mate-
rial/porosity, they varied the height of the flow channels, where zero-height means solid material. Liu et
al. analysed problems with flow rate constraints described by the steady-state NS equations [56]. Zhou and
Li [91] as well as Deng et al. [22] applied level set methods in combination with fluid topology optimiza-
tion of steady-state NS flows. Andreasen et al. employed fluid topology optimization for the design of micro
mixers [5]. Pingen and co-workers applied the LBM to solve steady-state flow problems [69, 70, 71, 72, 73].

Recently, the porosity approach has also been applied to the unsteady NS flow problems [22, P3].
Kirk et al. used an unsteady LBM to solve transient fluid topology optimization problems [49]. Further,
topology optimization has been employed to coupled fluid-structure systems [45, 58, 59, 87, P2].

Due to the large success of Borvall and Petersson’s approach for fluid topology optimization the basic
ideas of their work are outlined in the following, cp. [11]. Their study focused on Stokes flow discretized
by finite elements. The Stokes equations can be obtained from the NS equations by neglecting the inertia
and convection term, i.e. the left hand side in Eq. (2.6) is set to zero. Borrvall and Petersson augmented the

Stokes equations with a design dependent term that penalizes the velocity - often referred to as a Brinkman

term [14]:
. aG,'j B
Momentum equation: o (s)v; = +fi, (3.25)
N—— 8_Xj
Brinkman term

oy eqe .. 8v,~
Incompressibility condition: P 0. (3.26)

Xi

3.27)

Equations (3.25) and (3.26) describe the flow of a viscous fluid through a porous medium [68]. The porosity
is defined by the design dependent impermeability « (s) which is defined on an elemental level.

Borrvall and Peterson propose a convex interpolation function for the impermeability o (s) [11]:

— — 1+ pa
a(s)=oa+(ax—o)s
() =@+ (@)

with0<s <1, (3.28)

where o and @ define the minimum and maximum ¢-values. The parameter p, is a penalty factor that
affects the amount of gray elements, cp. Fig. 3.8. Note, that for this interpolation s = 0 defines ‘solid” and

s =1 ‘fluid’ material. To illustrate how the interpolation in Eq. (3.28) relates to the common SIMP approach



30

a ; 7
D T [ p.=10"
\‘ - = p=10
- . p=1
5 >
2
= =N >
B .
3 ~ . puut
e | : >
a { <
El i [
k= . R e
\ N
\
\ <
ol S S S e ~. /
solid intermediate flufd
(s=0) (s=0.5) (s=1)

Figure 3.9: Flow problem to illustrate impermea-

Figure 3.8: Impermeability interpolation. bility interpolation.

in structures, c.p Fig. 3.7, the flow problem in Fig. 3.9 is considered: the boundary conditions are a parabolic
inlet velocity profile, a pressure outlet condition and stick conditions at the top and bottom.
A typical example for optimizing this flow problem is to minimize the dissipation subject to a con-
straint that limits the amount of fluid material. Mathematically such a problem can be expressed as:
min z(s,f(s)) = (P’ (s,£(s)) — P (s:£(s))),

1 Nv
st g(s) =+~ Y se<o, (3.29)
S k=1

skmin s <sp™* Vk=1,...,N;,

where pi%f

tot
out

are the total inlet and outlet pressure. The difference z = pi? — p!? is a measure for the

and p
dissipation in the system. The scalar 0 < ¢ < 1 limits maximum allowable amount of fluid material. For
the remainder of this section, the design space s of dimension N; is reduced to a single design variable s,
i.e. Ny = 1 that controls the impermeability of all elements. Figure 3.10a shows that the relation between the
dissipation and the design variable becomes more nonlinear as the penalization p decreases.

Recalling that in structures, the compliance is a measure for the inverse of the stiffness E, cp. Section
3.5, we define an analogous relationship for the fluid problem in Eq. (3.29) — the efficiency 1 as the inverse

of the dissipation z:

(3.30)

tot tot °

< pin — Pout
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Figure 3.10: Material interpolation for fluid topology optimization.

After normalizing we obtain the relative efficiency 7:

n

()" (3.31)

n=
Figure 3.10b graphs the relative efficiency f] over the design variable s for two different penalty values pg,.
Comparing Fig. 3.7 with Fig. 3.10b reveals that in both cases intermediate material is penalized: since the
amount of solid (fluid) material is limited, it is disadvantageous to ‘waste’ material for intermediate elements
that do not deliver a proportional amount of stiffness (efficiency) .

While the overall relation between the design variable s and the inverse of the objective 1/z is same
for both solid and fluid, Figs. 3.7 and 3.10b, the effect of the material interpolation is different. In the
structural case, the more nonlinear the material interpolation E (s), Eq. (3.24), the higher the penalty for in-
termediate material, cp. Fig. 3.7. For the porosity interpolation of fluids the opposite holds: the penalization
of intermediate material decreases as « (s), Eq. (3.28), becomes more nonlinear, cp. Figs. 3.8 and 3.10b. In
other words, the nonlinearity between the porosity o and the efficiency can be compensated by a nonlinear
(convex) material interpolation « (s), Eq. (3.28).

Figure 3.11 shows an example of material interpolation based fluid topology optimization: the bound-
ary conditions are one inlet with a parabolic velocity and four traction-free outlets. The remaining surfaces
are described by a stick-condition, cp. Fig. 3.11a. The problem has 1,523,704 degrees of freedom and

364,500 design variables. The objective is to minimize the pressure drop from the inlet to the outlets subject
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Figure 3.11: 3D fluid topology optimization.

to a mass constraint that limits the amount of fluid to 15% of the design domain. The evolution of the design

is depicted in Figs. 3.11b-3.11e.

As an alternative to describing the layout via a material interpolation, the author has studied geometric

interface descriptions for both the LBM, [P1], and the NS equations, [P4].



Chapter 4

Summary

4.1 Concluding Remarks

This thesis aims at improving the capabilities of fluid topology optimization techniques, such that
a wider spectrum of flow problems can be optimized. The focus lies on incompressible flows at low to
intermediate Reynolds numbers. Different approaches are considered for describing the fluid flow: a finite
difference based LBM, cp. [P1] and [P2], as well as a finite element discretization of the NS equations,
cp. [P3] and [P4]. It is demonstrated that fluid topology optimization can be applied to transient flow pro-
blems, cp. [P3] and that the optimization results for unsteady flows may differ significantly from those of
steady-state flows. Furthermore, coupled fluid-structure problems are optimized in [P2]. While the com-
mon porosity interpolation approach is straightforward to implement it has a number of disadvantages and
shortcomings, such as the need for a material interpolation model, spurious pressure diffusion through solid
material, as well as requiring refined meshes. These shortcomings become obvious for both the coupled
fluid solid problems, [P2], and unsteady flows, [P3]. To avoid these issues, an alternative to the material
interpolation approach is developed. Based on a level set method a geometric description of the interface
is introduced. For the LBM it is shown in [P1] that this level set based geometric boundary description
produces results in good agreement with the material interpolation approach while circumventing the dis-
advantages of the porosity interpolation and yielding a higher spatial accuracy than the latter. In [P4] a
geometric boundary description based on level sets and an XFEM approach is introduced. This study shows
that the geometric boundary description allows for solving fluid topology optimization problems that cannot

easily be solved via the standard material interpolation approach.
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The overall conclusion from this study is that while the commonly used porous material interpolation
approach works well for flow simple problems, it shows shortcomings for more complex problems, such as
coupled fluid-solid systems and unsteady flows. Many of issues can be avoided by a geometric boundary
representation. Since the latter does not rely on a fictitious porous material it provides a greater flexibility
for solving (fluid) optimization problems with a broad range of objectives and constraints. However, the
geometric boundary representation is significantly more complex in terms of implementation, potentially
preventing the use of commercial software tools, cp. [P4]. When applying a geometric boundary repre-
sentation to fluid optimization, it generally requires a smoothing operation to avoid spatial oscillations of
the boundary, cp. [P1]. Finally, the proposed geometric boundary representation can only merge existing
boundaries but no new boundaries can emerge, cp. [P1] and [P4]. The latter is of less importance for fluid
topology optimization problems and can be circumvented by seeding the initial design with a sufficient
number of solid regions.

Through the work conducted in this study the knowledge about and the applicability of fluid topology
optimization techniques have been broadened significantly. However, more research is necessary to fully

establish fluid topology optimization as an efficient design tool in industry.

4.2 Future Work

With fluid topology optimization being a rather young discipline, there are still numerous open ques-
tions and problems which give rise to many ideas for future work. The list below gives suggestions for

potential future research:

* Further development of parallelized codes that allow for solving large scale fluid optimization pro-
blems efficiently: due to the high computational cost of (fluid) topology optimization parallelized
implementations are imperative for solving ‘non-academic’/realistic engineering problems, such as

large scale, 3D, unsteady flows at high Reynolds numbers.

» Further research on enforcing the boundary conditions along XFEM interfaces: the employed sta-

bilized Lagrange multiplier method in [P4] has proven to work sufficiently well for the considered
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simple, low Reynolds number flows; it would be interesting to investigate how this approach be-
haves at higher Reynolds numbers and how well the no-slip condition can be enforced, especially

for intersections that lead to very small fluid or solid areas.

* Extension of the XFEM-based geometric boundary representation to 3D problems: the current
implementation is limited to 2D problems. In 3D the number of possible cases for intersections of a
hex-element increases significantly compared to a quad-element in 2D. For the 3D implementation

it must be ensured that all relevant intersection cases are considered.

* Incorporation of coupled/multiphysics problems, such as fluid-structure-interaction, reacting flows,
multiphase flows: so far, most of the research on fluid topology optimization has been limited to
rather simple flows. A reason for this might be the commonly used porosity approach: defining
consistent interpolation models that capture the coupling between two domains is a challenging
task, especially for systems that are coupled via the interface, cp. [P2]. In case of a material inter-
polation approach no geometric boundary exists, instead the boundary is smeared out over several
elements via a fictitious porous material. Applying a geometric boundary representation, such as

XFEM, should mitigate this issue.
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SUMMARY

This study is concerned with a generalized shape optimization approach for finding the geometry of
fluidic devices and obstacles immersed in flows. Our approach is based on a level set representation
of the fluid-solid interface and a hydrodynamic lattice Boltzmann method to predict the flow field. We
present an explicit level set method that does not involve the solution of the Hamilton—Jacobi equation
and allows using standard nonlinear programming methods. In contrast to previous works, the boundary
conditions along the fluid—structure interface are enforced by second-order accurate interpolation schemes,
overcoming shortcomings of flow penalization methods and Brinkman formulations frequently used in
topology optimization. To ensure smooth boundaries and mesh-independent results, we introduce a simple,
computationally inexpensive filtering method to regularize the level set field. Furthermore, we define box
constraints for the design variables that guarantee a continuous evolution of the boundaries. The features of
the proposed method are studied by two numeric examples of two-dimensional steady-state flow problems.
Copyright © 2009 John Wiley & Sons, Ltd.
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1. INTRODUCTION

This study is concerned with a computational method for optimizing the geometry of fluidic devices
and obstacles immersed in low Mach and Reynolds number flows. We allow for variations in the
shape of boundaries as well as changes in the topological layout. In solid mechanics, numerical
methods for optimizing the shape and topology are well established [1-5]. Much less work has been
done on optimizing the layout of flow problems. Borrvall and Petersson [6] employed topology
optimization for Stokes-flows. Gersborg-Hansen et al. [7] extended this approach to Navier—Stokes
flows. Guest and Prévost [8] carried out fluid topology optimization using a Darcy—Stokes flow
model. Othmer er al. optimized the layout of 3D airduct manifolds for automotive applications
employing an incompressible Navier—Stokes model [9, 10]. Pingen et al. [11] introduced a lattice
Boltzmann method (LBM) approach to solve fluid topology optimization problems.

For topology optimization of fluids, the geometry of a body is typically described via a material
distribution function (see Figure 1 on the left). The material state is defined by the optimization

*Correspondence to: Kurt Maute, Department of Aerospace Engineering Sciences, Center for Aerospace Structures,
University of Colorado, Boulder, CO 80309-0429, U.S.A.
TE-mail: maute@colorado.edu

Contract/grant sponsor: National Science Foundation; contract/grant number: DMI-0348759

Copyright © 2009 John Wiley & Sons, Ltd.

43



AN EXPLICIT LEVEL SET APPROACH 497
1) Material distribution approach 2) Geometric approach
5 = Local: Non-local: Explicit: Implicit:
= é - Element based e.g. level-sets e.g. splines e.g. level-sets
3= - Node based
O
8
v
Brinkman-penaltization Remeshing: Geometric IBT:

Ersatz material approach):
i

LT
I
[
i1

Numerical treatment
of the boundaries
1

Navier-Stokes: ~ ILBM: |
XFEM IInterpolation-
Iboundaries

Figure 1. Boundary representation for fluid optimization.

variables s;: for example, s; =1 for solid material, and s; =0 for fluid. This approach leads to
an integer optimization problem. The solution of which quickly causes unacceptable computa-
tional cost as the number of optimization variables increases. To mitigate this issue the mate-
rial distribution function is relaxed [3], allowing a continuous transition between fluid and solid
material. This is referred to as the density or porosity approach as it interprets intermediate material
states between solid (p=1) and fluid (p =0) as porous material, with p being the porosity. For
optimization problems that involve, for example, the minimization of the total pressure drop across
the design domain, constraining the volume occupied by fluid leads to optimized material distri-
butions with no or only a small amount of porous material (O<p<1). To represent the desired,
spatially discontinuous material distribution, an element-wise constant discretization of the material
distribution is typically chosen.

In the flow model, the intermediate states (0<p<1) are commonly treated through a
Brinkman formulation [12], which scales down flow velocities through porous materials, yielding
zero-velocities in solid material. Although the Brinkman approach allows for a rather simple
representation of fluid—solid boundaries in fluid topology optimization, it leads to several issues
that can be grouped into the following two categories:

(I) Physical modeling: Describing the spatially discontinuous material distribution by an element-
wise constant discretization leads to a stair-step-like representation of the fluid—solid interface,
which may result in unrealistic flow field predictions, such as premature flow separation and
vortex shedding at higher Reynolds numbers. Furthermore, extending the porosity concept and
the Brinkman formulation to the multi-physics problems, such as fluid—structure interaction, is
problematic if multiple constitutive parameters need to be interpolated [13—15]. For LBM flow
models, in particular, the porosity approach leads to inaccuracies in the analysis of unsteady flows
due to an incorrect damping of pressure waves [16]. For the steady-state problems considered
in this study, the damping characteristic of the porous material may affect the convergence of
time-marching schemes toward the steady-state solution.

(IT) Geometric modeling: Representing the geometry by an element-wise constant discretization
of the material distribution requires highly refined grids to resolve curved surfaces [3], in particular,
for flows at higher Reynolds numbers. The perimeter of the fluid—structure interface, often used to
regularize the optimization problem, can only be determined approximately [3]. Local geometric
measures, such as the orientation and curvature of the interface, can only be computed indirectly
using some form of post-processing [17, 18]. The latter is, in particular, an issue for inviscid
flows, which require information about the local orientation of the surface to enforce slip boundary
conditions. Since the porosity value is typically constant in every element, the Brinkman approach

Copyright © 2009 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2011; 65:496-519
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Figure 3. Immersed boundary techniques: (a) material distribution and (b) boundary interpolation.

generally requires as many design variables as there are elements, leading to a ‘1:1’ coupling
between the computational domain and the geometry describing design variables [6, 19].

In order to overcome, in particular, the geometric modeling issues of the material approach, level
set methods have recently gained popularity for topology optimization (see right side of Figure 1).
In comparison with explicit boundary representations via line and surface interpolations, level set
methods describe the geometry implicitly by the zero-level of an auxiliary function, the level set
function, and allow for changes in the topology by merging boundaries of different geometrical
features. However, in contrast to topology methods based on the porosity approach, level set
methods do typically not allow for the emergence of new features. To account for this difference,
we refer to level set based approaches as generalized shape optimization methods in this paper.
Figure 2 illustrates the difference between shape, generalized shape and topology optimization for
an airfoil example.

Two classes of level set methods can be distinguished: (i) methods that satisfy the Hamilton—
Jacobi equation (HJE), which implicitly describes the evolution of the level set function and (ii)
explicit methods that do not consider the HJE. Given the interface geometry via level sets, the
boundary conditions can be enforced by: (a) conventional schemes that require adapting the mesh
to match the interface geometry, for example, via dynamic meshes or re-meshing, (b) so-called
Ersatz material methods [20, 21] that closely follow the material approach described above, and (c)
geometric immersed boundary techniques (IBTs). In contrast to the Brinkman approach, geometric
IBTs enforce the flow boundary conditions locally at the fluid—structure interface (see Figure 3).
Depending on the flow model and discretization method, different geometric IBTs are used [22].
For example, using a finite element formulation of a Navier—Stokes model the boundary conditions
can be enforced via an extended finite element method (XFEM) using Lagrange-multipliers [23].
Using an LBM-solver, stick and slip conditions can be imposed through interpolation bounce-back
schemes [24].

The majority of the work on level set-based optimization methods focuses on structural opti-
mization problems. Sethian and Wiegmann [25] introduced a Hamilton—Jacobi (HJ) approach in
combination with a geometric IBT. Wang et al. [26] and Allaire et al. [20] presented HJ level set

Copyright © 2009 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2011; 65:496-519
DOI: 10.1002/fid

45



AN EXPLICIT LEVEL SET APPROACH 499

methods using an Ersatz material approach. Xia et al. [27] proposed a semi-Lagrange scheme in
order to improve the efficiency of the HJ level set method. Wei and Wang [28] used radial basis
functions (RBFs) to parameterize the classical HJ level set function. Luo and Tong [29] applied
this parametric HJ level set method to the optimization of compliant mechanisms undergoing large
displacements. De Ruiter [13, 30] developed an explicit level set method that is not based on the
solution of the HJE. If not stated otherwise, all of the above methods employ an Ersatz material
approach and only few approaches have been presented based on geometric IBTs. Wang and Wang
[21] used the HJ level set method in combination with an S-FEM approach. Van Miegroet and
Duysinx [31] combined a level set method with XFEM to minimize stress concentrations.

Only limited work has been done so far on level set methods for optimizing flow problems.
Cunha [32] used level sets to find the shape of obstacles that re-produces a given velocity field
for a stationary, viscous, incompressible fluid. Duan et al. [33] applied a modified HJ level set
method to solve fluid optimization problems for Stokes-flow and Navier—Stokes-flow. Mohammadi
and Pironneau [34] employed the HJ level set method for the shape optimization of supersonic
applications using an Euler flow model. Pingen et al. [35] have recently presented an explicit
level set method for the optimization of flow problems using a hydrodynamic LBM fluid solver.
While these level set implementations improve the smoothness of the boundaries and decouple
the parameterization of the material distribution from the discretization of the flow field, all of the
above approaches are based on an Ersatz material concept as well as a Brinkman formulation and
therefore suffer from the disadvantages of this formulation described previously.

The goal of this study is to develop an alternative approach that overcomes the disadvantages of
the Brinkman formulation. We therefore propose a geometrically accurate boundary representation.
We describe the geometry of the fluid—structure interface via an explicit level set method that
does not require solving the HJE but allows the use of standard nonlinear programming schemes.
Steady—steady flow fields are predicted by a hydrodynamic LBM and the boundary conditions are
enforced locally via a second order accurate interpolation bounce-back scheme [36]. LBM is well
suited for our optimization approach as it is inherently based on IBT and allows switching from
fluid to solid state and vice versa in a simple manner.

The current study introduces a geometric boundary representation for fluid optimization
problems. Numerical studies have shown that the geometric boundary representation requires a
smoothing operation, i.e. a filter, when applied to generalized shape optimization. In topology
optimization, filters are generally employed to eliminate the dependency of the optimum design on
the spatial discretization [1]. In the current study the filter also ensures smooth boundaries, which
are essential for the convergence of the flow solution. Furthermore, we introduce constraints for
the design variables that ensure a continuous evolution of the boundary. The design sensitivities
for the employed geometric boundary representation are computed by an adjoint method. The
proposed generalized shape optimization method is illustrated and the influence of key algorithmic
parameters is studied with two two-dimensional problems.

The remainder of this paper is structured as follows: In Section 2 we will give a short introduction
into LBM. This will be followed by a section on the level set method. There we outline the
classical and parametric HJ level set method, as well as explicit level set methods, including the
proposed approach. In Section 4 we describe the overall computational optimization procedure,
along with the sensitivity analysis for both level sets and LBM. Finally, we will demonstrate the
key features of the proposed approach with two numerical examples. The main results of this study
are summarized in Section 6.

2. LATTICE BOLTZMANN METHOD

In the recent years, the LBM has gained increasing popularity as an alternative to the incompressible
Navier—Stokes equations [16, 37]. Besides the previous work by the authors, that employed LBM
for solving fluid topology optimization problems [11, 19,35, 38,39], Geier et al. [40] used a
heuristics-based lattice Boltzmann topology optimization approach to solve the basic Stokes flow
problems introduced by Borrvall and Petersson [6].
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Figure 4. Velocity distribution for the D2Q9 lattice [19]: (a) velocity vector
e, and (b) distribution function f,.

The lattice Boltzmann equation models hydrodynamic flows based on kinetic theory and can be
derived from the Boltzmann equation, leading to a two-step computational process:

(1) Collision:  f(x;, 1) = fx(X, r)—%[fa(x,-,t)—ffq(xi,z)] (1)

(2) Propagation:  f,(x; +dte,, t+0t)= fa(xi 1) ?2)

where e, is the velocity vector, f, is the distribution function associated with the corresponding
velocity ey, X; represents the location in physical space, e,d7 is the lattice spacing, 7 is the time
step, and T=4/0¢ is the dimensionless relaxation time. For the current study, the D2Q9 lattice
model as illustrated in Figure 4 is used. For low Mach number flow conditions, the equilibrium
distribution function f® in Equation (1) can be derived by a Taylor series expansion of the
Maxwell-Boltzmann equilibrium distribution as:

fat=wapl1+3(e;-u)+ 3 (e;-u)* — 3u?] 3

where p represents the macroscopic density, the vector u is the macroscopic velocity, and wy,
are lattice weights that depend on the lattice geometry. The macroscopic parameters, density
and velocity, are evaluated by taking statistical moments of the distribution function f,, and are
given by:

8

p(x, )= Zofac(x,t) “
8

pu(x,1)= Zoeocfac(xa 1) (%)

The boundary conditions at the fluid—solid interfaces are imposed via a no-slip interpolation
bounce-back formulation. This approach allows for a continuous change in the position of the
fluid—solid interface by modeling the exact point of intersection between lattice link and boundary
location with second-order accuracy in the velocity and first-order accuracy in the pressure [41].
In this study we use the interpolation boundary condition introduced by Bouzidi et al. [42]. The
spatial location of the boundary along each lattice link is defined by

| —Xwl

Aoy = with 0<Ag o<1 6)

|%n — xp]
where xj, is the location of the closest fluid node, x,, is the location of the wall, x;, is the location of
the closest boundary node (see Figure 5). The subscripts & and o on A, ) define the index of the
node and the direction in which the boundary lies, according to Figure 4. To distinguish between
neighboring nodes, we introduce a second index it (that defines the node neighboring ).
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Figure 5. Illustration of interpolation boundary conditions [19].
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Figure 6. Convergence of boundary velocity: (a) channel with ‘no-slip’
boundaries and (b) convergence diagram.

The underlying concept behind the interpolation boundary conditions is illustrated in Figure 5,
showing that when A ) #0.5, the reflected distribution function, f;, ), must be interpolated.
Bouzidi et al. [42] recommend the following linear interpolations:

Finory =280 fin,oy + (1 =28,0) f+.y - YA, 0)<0.5 @)

1 ZA(h %) —
* _ s
f(hﬂ/) = D S+ 200

1
ooy YA@2=0.5 (8)

,0)

where the subscript ¢ indicates the opposite direction of o, the superscript * indicates the unknown
distribution function. The subscripts # and ht denote the first and second fluid node from the
boundary, as illustrated in Figure 5.

Figure 6 illustrates the convergence of the boundary velocity of a flow through a straight channel
with ‘no-slip’ boundaries as the mesh is refined. The plots show the velocities for porous and
geometric boundary representation. During the mesh refinement, the relative values for A and
porosity p are kept constant. In both cases, the velocities at the wall are computed based on
a second-order extrapolation from the nodal values [36]. As can be seen from the logarithmic
graphs, the porous approach converges linearly, whereas the geometric approach shows quadratic
convergence. Furthermore, the geometric boundary representation leads to a significantly smaller
error in the velocities; for example, for 8 nodes: u, ~ 1076 compared with up, ~3- 10~ for the
porosity-based approach.
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In this study, we consider only steady-state flows, which are described by the solution of the
following fixed-point problem:

R, A)=Mf,A)—f=0 ©)

where R denotes the residual vector. In Equation (9) the operator M performs a combination of
propagation (Equation (2)) for fluid nodes, denoted by I, and interpolation (Equations (7) and (8))
for boundary nodes, denoted by A, followed by one collision (Equation (1)) denoted by €. Thus,
the operator M = [I1+4 A](€2) advances the flow to the next time step. The fixed point problem (9)
is solved by advancing the transient solution in time until the difference between two consecutive
flow states is negligible (i.e. steady state is reached). For monitoring the convergence to steady
state we use the following criterion:

R
<107° (10)

ref

where R is the current residual vector and Ryt is the residual vector for the initial time step.

3. LEVEL SET METHOD

In this section we briefly discuss two formulations of the level set method, the HJE-based approach
and the explicit approach. To point out the differences/similarities between these two approaches
later, we start by discussing the main features of the classical Hamilton—Jacobi level set method.
Then, we describe the general characteristics of the explicit level set method used in the current
study.

3.1. Hamilton—Jacobi level set method

The level set method, first developed by Osher and Sethian [43], uses an (N + 1)-dimensional
function @ to describe the interface within an N-dimensional space (see Figure 7):

DRV N (11)
The interface is implicitly defined through the zero level set:
I'={x:®(x,1)=0} (12)

The value of the scalar function @ defines whether the domain belongs to material A (Q4, e.g.
fluid), to material B (Q5, e.g. solid) or to the fluid—structure interface I':

D(x,1)<0 VxeQA (13)
Ox,1)=0 Vxel =06Q (14)
D(x,1)>0 VxeQPf (15)

As the value of the level set function at the boundary is constant (cf. Equation (14)), the evolution
of @ can be described as follows:

do dx

—=0;+VD.-— =0 16

dr ! dt (16)
where dx/d¢ is the velocity of the boundary. In order to eliminate the undesired tangential compo-
nents of the boundary velocity, Equation (16) is rearranged in the following way:

0,410 2 X VD[ vy =0 (17)
—_— Vp =
! V@ dr "
—_——
Vn
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o

D(x)
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Figure 7. Three-dimensional level set function ®(x), cut-off at ®(x)=0 leads to 2-dimensional boundaries I".

where vy, is the normal velocity of the boundary. Substituting the normal velocity v, with a more
general speed function Fy, (in normal direction), leads to the Hamilton—Jacobi level set equation
given by Osher and Sethian:

O, +|VD|-Fp=0 (18)

This classical Hamilton—Jacobi level set method has become a popular approach in topology
optimization to describe the geometry of bodies as it allows a simple treatment of complex
geometrical changes [27]. During the optimization process the evolution of the level set function ®
is governed by the HJE (18) and the speed function Fy, is dependent on the Lagrangian function of
the underlying optimization problem. The steady-state solution of Equation (18) is equivalent to the
solution to the optimization problem [44]. As there is an infinite number of functions @ that have
the same zero level set, @ is usually re-initialized as a signed distance function every couple of time
steps [45]. This re-initialization is time consuming and tends to generate errors in the boundary
position, which might lead to accuracy-problems [46]. Furthermore, since for practical reasons
Equation (18) is typically solved with explicit schemes, the Courant—Friedrichs—Lewy condition
requires that the boundary only moves a maximum distance of d2 (d: gridsize) within each time
step At [27]. In the context of optimization, the time ¢ can be interpreted as a pseudo-time that
increases by Ar at every optimization step.

In the classical HJ level set approach the ®-function is generally discretized through a uniformly
structured finite element mesh and approximated on an element level by

(I)(x,t):ZQS,-(t)N,-(x) (19)

where ¢, () are the nodal level set values and N;(x) are the standard local shape functions [26]. The
level set mesh is typically the same as the one used to approximate the solution of the underlying
partial differential equation. The classical HJ level set method has one major drawback: the
optimization problem requires solving Equation (18) and thus cannot utilize standard nonlinear
programming methods.

Wang and Wang [47] introduced an alternative parametric level set method that avoids solving
the HJE explicitly. In contrast to the classical approach, the parametric HJ level set method uses
globally supported RBFs to discretize @ (cf. Equation (19)):

Ox, )=o) (x) (20)

where ¢;(x) is the ith RBF and ; (¢) is the corresponding weight for that RBF. Wang and Wang [47]
suggest multi-quadric splines as RBF:

$i 0=/ lIx—x;[12+¢} @2y

where Xx; describes the position of the center of the ith RBF and c; is a free shape parameter that
is commonly kept constant for all i [48]. By substituting the ®-function defined in Equation (20)
into Equation (18), the problem can be transformed into a parameter optimization problem in o; (¢)
that explicitly satisfies the HJE [28].
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3.2. Explicit level set method

De Ruiter [13,30] developed an alternative level set approach and applied it to structural opti-
mization problems. Similar to the approach developed by Wang and Wang [47] this method also
employs RBFs to discretize the ®-function:

w.\2
DX, = X (. 50) With (X, 51)=s; -exp (M) @)

w?

where ¢;(x, s;) are the Gaussian normal distribution RBFs. The parameter w determines the width
and s; the height of the RBF. However, in contrast to the previous techniques this method does
not satisfy the HJE but chooses a more straightforward approach: the heights of the RBFs (s;) are
treated as independent optimization variables and during the optimization process the evolution
of the level set function ®(x, s;) is explicitly controlled by the optimization algorithm. The linear
relation between the design variables s; and the ®-function simplifies the computation of the
sensitivities of the interface position with respect to the optimization variables. Standard gradient-
based optimization algorithms can be used to solve this optimization problem.

3.3. Comparison between level set methods

Table I shows a brief overview of the aforementioned level set formulations and their corresponding
features. When employing the classical HJ level set method for optimization purposes, it requires
solving Equation (18) using some form of stabilization methods, such as upwinding [50]. Explicitly
solving the HJE prevents the use of standard optimization algorithms. The parametric HJ level
set method circumvents solving the HJE directly, by transforming the HJE into a parameter
optimization problem (using globally supported RBFs). Finally, in the explicit level set method,
the interface motion is controlled by directly modifying the heights of the RBFs.

According to Mohammadi [34, 49] and Jameson et al. [51], regularity control (i.e. smoothing)
is essential for the success of the fluid optimization process when using level set methods. The
convective term in fluid problems transports perturbations only in the downstream direction, and
therefore localizes the effect of the perturbation. Structural systems are more well-behaved in this
regard, since according to Saint Venant’s principle the perturbation gets evenly distributed in the
surrounding domain [52].

As previously demonstrated by the authors [35,39], the explicit level set method works well
for fluid optimization problems when a Brinkman formulation is used to enforce the boundary
conditions. In this case, the level set function does not need to be smoothed explicitly. Numerical
studies [39] suggest that the blurred boundaries of the Brinkman formulation (see Figure 3(a)) add
regularity to the problem. Contrarily, as we will show later in this paper, using a geometric IBT
leads to regularity issues and requires explicit smoothing.

3.4. Explicit level set method for fluid optimization

The level set method in this paper follows the ideas of De Ruiter [13, 30] described in Section 3.2
and combines it with the concept of smoothness control, thus transforming the originally ill-posed
optimization problem into a well-posed one.

Table I. Overview over level set methods for general shape and topology optimization.

Classical HJ Parametric HJ Explicit
level set method level set method level set method
Spatial discretization Local shape functions RBFs RBFs
Dependence on design variables Implicit Explicit Explicit
Interface advancing governed by HIE Optim. algorithm Optim. algorithm
References [20, 25, 27, 33, 49] [28, 29, 35] [13, 30, 35, 39]
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Figure 8. Evaluation of every RBF at every node.

As basis functions we use multi-quadric RBFs, similar to the ones defined by Equation (21):

bi(x, ) =5i —/ IIX—x; |2 +¢2 (23)

This function describes a cone with a slightly flattened tip (due to the free shape parameter c)
whose position in the vertical direction is determined by the design variable s;. Figure 8 shows a
2D plot of RBFs as described in Equation (23).

If the box constraints for the design variables (smin, Smax) are chosen properly, it can be guaranteed
that the ®-function grows gradually around the zero-level. This is important because overshadowing
RBFs can potentially lead to holes that cannot be filled in subsequent iterations of the optimization
process (see Section 5.1), since the sensitivities of the overshadowed RBFs become negligible.
To prevent this constellation, the lower and upper limits for the design variables s; are chosen as
follows:

Smin> — (dLs — Smax) 24
0 <Smax<dLs (25)

The variable drs in Equations (24) and (25) defines the distance between the origins of two
neighboring RBFs (i.e. the gridsize of the level set mesh).

Owing to the global support of the RBFs there are n ¢ ;-values at every node, with 7 being the
number of RBFs:

()i forj=1,....n (26)

In order to obtain the level set value (i),- (at node i) from the n RBF values (¢ j )i, j=1,...,n, we
approximate the maximum by a Kreisselmeier—Steinhauser (KS) function [53]:

= 1 L k() .
mi:;m(Z(eU‘(‘l’ﬂ'))) Vi Ix;—xi| <Ry 27)
J=1

where k is the KS-factor. Unlike an exact maximum function, this KS-approximation effectively
prevents discontinuities when superposing the nodal ®; values. Additionally we only consider
¢ ;-values within a radius Ry of the ith node, which leads to a compact support of the RBFs.
This limitation of the support of the RBFs is essential for reducing the computational cost of the
sensitivity analysis (see Section 4.2). Figure 9 shows a comparison between the exact maximum
and the KS-approximated maximum ®-function. The bar below the plot shows the resulting design
when the ®-function is cut off at ®=0 (cf. Equations (13)—(15)).

To ensure smooth boundaries, which are essential when working with a geometric boundary
representation, we introduce a smoothing operator that regularizes the fluid shape optimization
problem. The geometric smoothing operator follows the idea of Sigmund and Petersson [54] as
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Figure 9. Comparison between the exact and the KS-approximated maximum nodal ®-values. The bar
shows the corresponding geometry for the KS-approximated maximum.

well as Daoud et al. [55], who used it to filter the gradients of the design criteria with respect to the
design variables in structural optimization. However, in this study the filter is applied to the nodal
® values. As this filtering operation is also considered in the sensitivity analysis the derivatives
with respect to the design variables are numerically consistent:

_(R—ri®
C (R =rin)

where r;; is the distance between the ith and the /th node, R, is the relative smoothing radius and
drs is the gridsize of the level set mesh. Equation (28) effectively limits the spatial oscillations of
the level set function, which results in a reduction of the total length of the perimeter.

Figure 10 shows a comparison between a ®-function based on Gaussian-normal-distribution-
functions (22) without smoothing and a ®-function based on cone-shaped RBFs (23) with
smoothing. The resulting designs, illustrated by bars below the plots in Figure 10, show that the
Gaussian-RBFs also require regularity control to prevent checkerboard-like designs.

Given the smoothened ®-function, we capture the geometry based on the nodal ®;-values as
illustrated in Figure 11. For example, the value A, 3y is calculated according to the following
formula:

Vi:ry<R=R,~2dLs (28)

D
v 4 V@, ,<0
Ap3y=1 Po—Pa 29)
0 VO, -Op>0
where d is the gridsize of the fluid-domain. All horizontal/vertical values, A, 1—4), are calculated in
the same manner. The values on the diagonal, A(; 5_g), are computed based on bilinear interpolation.

4. GENERALIZED SHAPE OPTIMIZATION FOR FLUIDS

In this study we consider nonlinear constrained optimization problems of the following form:
msin F (s, 1(s))
S satisfy the design constraints
f solves the governing equations for given s (30)
h(s,f)=0 satisfy the equality constraints
g(s,£)<0  satisfy the inequality constraints

where # is a particular performance (objective) functional, s is the vector of design variables,
f is the corresponding state vector (cf. Equation (9)) and h, g are equality, inequality constraints,
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Figure 10. Comparison between Gaussian-RBFs without geometric smoothing and multi-quadric

RBFs with geometric smoothing: (a) ¢-function based on Gaussian-normal-distribution-RBFs and

resulting design without geometric smoothing and (b) ¢-function based on cone-shaped RBFs and
resulting design with geometric smoothing.
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Figure 11. Determining the geometry, based on the nodal ®;-values.

respectively. Typical objectives and constraints include pressure drop, drag, flow rate, energy loss,
and volume. We solve Equation (30) by a nested loop approach using a gradient-based optimization
method. The computation of the gradients is outlined subsequently.

4.1. Sensitivity analysis

The following discussion focuses on the sensitivity analysis for the design objective %, but can
be analogously applied to design constraints. Owing to the large number of design variables, we
compute the sensitivity of the design objective & with respect to the design variables by an adjoint
method:

T
47 _0F oA R\ T 07 | R oA Gah
s O0A 0Os of of OA 0s
= — —_ | ===
A B ©) (D) (E) (B)
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Table II. Sensitivity terms for LBM (n: number of domain nodes).

Term Derivative of With respect to Matrix-size

(A) Objective F Geometry A, ) Geometry dependent
(B) Geometry A, ) Design variables sy Geometry dependent
©) Residual of flow solution R Fluid state variables f(y ) 9n x9n

(D) Objective .7 Fluid state variables f(j ) 9n x 1

(E) Residual of flow solution R Geometry A, 4 Geometry dependent

Table III. Sensitivity terms for the level sets (n: number of domain nodes, m: number of design variables).

Term Derivative of With respect to Matrix-size
(B1) Geometry A(;M) Smoothed nodal ®;-values Geometry dependent
(Bp) Smoothed nodal ®;-values Nodal ®;-values nxn

(B3) Nodal ®;-values RBFs ¢ ; nxm

(By) RBFs ¢ Design variables sy mxm

The terms (A), (B), (C) and (E) in the sensitivity equation (31) are dependent on the current
geometric boundary representation. The remaining term (D) is identical to the one from the material
distribution-based topology optimization and has been discussed in detail in the authors’ recent
work [38]. Therefore, only the terms unique to geometric shape optimization ((A), (B), (C) and
(E)) will be discussed here. Furthermore, it should be noted that while (A) is zero for the objectives
used in the present work (flow rate and pressure drop), objectives involving force calculations via
the LBM momentum exchange method [56] would lead to non-zero sensitivities, for example.
Table II briefly summarizes the terms in Equation (31).

4.2. Sensitivity analysis for level sets (B)

The level set method describes the geometry (i.e. the A ,)-values) based on the design variables s.
According to Equations (23) and (27)—(29), the sensitivities of the geometry with respect to the
design variables can be split up into the following four terms:
n_0a oo b 0 5
BT
(B)  (B1) (B (By (Ba)

Table III briefly lists the meaning and matrix-size for the four terms in Equation (32). Details
about the computational cost for each term are summarized in the following:

(B1) is geometry dependent and due to the small number of A-values (as the interface usually
only covers small areas of the design space) generally computationally inexpensive.

(B3) has a band-structure as the smoothing operator is only applied within the filter radius R
(cf. Equation (28)).

(B3) is computationally cheap as the support of the RBFs qSJ- is limited by the radius of influence
Ry in Equation (27).

(B4) is a unity matrix as the jth RBF ¢; is only (linearly) dependent on the jth design variable
sj (cf. Equation (23)).

Equation (32) also identifies one of the disadvantages of this IBT: the sensitivities 0A/0s=
0An,)/Osi only exist if A, ) exists. This means that the design can only grow across existing
boundaries, that is, no new domains of solid material completely surrounded by fluid (islands)
can emerge. Furthermore, it is not possible to create new holes within the solid domain. However,
the inability to create new islands can be compensated by an initial design that has a sufficient
number of separated solid regions. The creation of holes within the solid domain is insignificant
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for fluid optimization as this does not affect the flow solution. In structural optimization the issue
of creating holes is usually handled by topological derivatives [30].

4.3. Evaluation of the LBM Jacobian (C)

The Jacobian of the LBM fixed-point system (9), (0R/ N7, can be expanded as

T T
() (%) - &
o

where (0M/0f)T is a function of the operator M, which advances the flow to the next time step
and was introduced in Section 2. Analogously, ((M/df)T can be separated into its components:

oM\" som oA\ [o@\"

— ) = —=+—=) ol = 34)

of of of of
Here, the Jacobians of the propagation operator IT and the collision operator € have been described
in detail in the authors’ previous work [38]. At this point, only the Jacobian of the interpolation
operator A will be discussed.

Considering the first of the two boundary interpolation functions, Equation (7), for A, <0.5,
the Jacobian can be written as:

T T
oA _ af(h‘a/)*
fe.p fe.p

T
_ (a(ZA(h,x)f(h,x)"f‘(l —2A(h,o<))f(h+,o<))>

0fe.p)
2A0n,2) Y fig.pp=Sna
=120 Yfgp=Ffuntw (35)
0 otherwise

The Jacobian for A, 4)>0.5 can be obtained likewise.

As shown previously by the authors [39], the Jacobian of the propagation operator effectively
shifts rows in the Jacobian of the collision operator. In a similar fashion, the Jacobian of the
interpolation boundary condition (35) effectively shifts, scales, and adds rows in the Jacobian of
the collision operator.

4.4. Delta sensitivities of the LBM fixed-point residual (E)

Considering the definition M=[IT+A](2) and the involved operators, only the interpolation
boundary operator A (Equations (7) and (8)) depends on A, 4. Therefore, the derivative of the
residual of the fixed-point problem (9) with respect to the geometry, 0R/0A, is given for the first
interpolation function (7), that is, Ag,»)<0.5 by

( R )_( oA )_(af(;,w))
0Ag.p) 0. p) 0. p)

_ (a(ZA(h,oz)f(h,oz) +(1 —ZA(h,a))f(h+,a))>

0A.p)
2 fnoy—2fin+ Y(g=hnro=p)
_ (h,0) (h,0) (36)
0 otherwise

where g and f are subscripts to indicate the node location and velocity direction analogous to A
and «. The derivative for A ;)>0.5 can be obtained likewise.
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5. NUMERICAL EXAMPLES

To illustrate the utility and features of the current approach for generalized fluid shape optimization,
two numerical examples are studied. With the first example, the effect of algorithmic parameters
(box constraints for design variables, smoothing radius and level set mesh coarseness) is analyzed,
whereas the second example demonstrates the versatility of the current method. In both examples,
we use a globally-convergent method of moving asymptotes (GCMMA) by Svanberg [57] as the
optimization algorithm. The GCMMA is a dual algorithm that solves the optimization problem
iteratively in the space of the dual variables. At each iteration an approximate, explicit, separable
subproblem in the space of the primal variables is created and solved analytically. This algorithm
is specifically suited for problems with large numbers of design variables and few constraints as on
hand in the current study. Figure 12 illustrates the overall optimization process: based on the design
variables the heights of the RBFs are assigned. The superposition of the RBFs leads to the level set
function @, whose zero-level set defines the fluid—solid interface. Given the interface, the design
is evaluated and a sensitivity analysis is performed. Based on the results from the analysis and
sensitivity step the design variables are optimized, leading to new heights for the RBFs. If the
convergence criteria are met, the algorithm terminates.

5.1. Pipe bend

The pipe bend problem, introduced by Borrvall and Petersson [6], has become a standard example
for fluid topology optimization and was also studied in [11, 33]. The design domain is depicted in
Figure 13, the circle with the dotted grid illustrates the fluid mesh. The objective is to minimize
the difference in total pressure between the inlet and outlet, subject to a constraint that allows only
25% of the area to be fluid:

min  z=(Pin— Pout)
Sk

2 =

st. g=025— Al‘j”id >0 (37)

Smin <8k SSmax

The total inlet and outlet pressures, pi, and poy, are averaged over the inlet and outlet ports. The
boundary conditions are a parabolic inlet velocity and a constant static pressure at the outlet. The
domain boundaries are represented by ‘no-slip’ boundary conditions.

The optimization algorithm terminates, if constraints are satisfied and the absolute change in the
objective value is less than 0.01 or if the number of iterations exceeds 400. While this pedestrian

Superposition .
of RBFs Vi Cutoffat®=0 . O
Y .
Start: .
Initial Design RBFs Controlled by P
Variables s, Design Variables s, Level-Set function @

Gé(;mélry
w Update Design
Variables s, .
Optimization N\
of Design

Variables s,

Evaluation
of Design

Figure 12. Optimization process.
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Figure 14. Initialization for the pipe bend.
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Table IV. Parameters used for the pipe bend, if not stated differently.

Parameter type

Parameter

Standard value

Physical

Discretization

Algorithmic

Side length (L)

Reynolds number (RE)

Critical length (L i)
Dimensionless relaxation time (7)

Viscosity (v)
Inlet velocity (vip)
Outlet pressure (pout)

Fluid-domain mesh (n x n)
Level set mesh (m x m)
Fluid-domain gridsize (d)
Level set gridsize (drs)

Relative smoothing radius (R;)
RBF support radius (Ry)
KS-factor (k)

Lower/upper limit for s; (Smin, Smax)

Stepsize (As)
Number of subcycles

40

10

9

1

.0
t@r-1
IIQE'V/Lcrit

3

41 x 41
41 x 41
L/(n—1)
L/(m—1)

5

3drs

20

—0.4dyg, 0.5drs
0.05-(Smax — Smin)dLS
2

approach for monitoring the convergence does not guarantee that the optimality conditions are
satisfied, numerical studies have shown that it is practical and sufficient to obtain visually converged
results, that is, the geometry does not change noticeable even if more iterations are performed.
Figure 14 shows the initial design for the pipe bend optimization problem, the Reynolds number
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“|— @-function
- s-values

- *| skipped RBFs |

Figure 15. Influence of the limits for s (Smin, Smax) on the RBF-values: (a) ®-function and (b) slice
through ®-function and corresponding s-values.

overshadowed RBFs have
negliable sensitivities

Figure 16. Sensitivities for overshadowed RBFs.

and critical length are given in Table I'V. In the following we will study the effect of key algorithmic
parameters on the optimization results. If not stated differently the parameter values listed in
Table IV are used.

First we analyze the influence of the lower and upper limit for the design variables (Smin, Smax)s
which control the minimum and maximum height of the RBFs. Figure 15 shows an intermediate
result where the upper and lower bounds are not chosen according to Equations (24) and (25) but
set to Smax =1, Smin=—1 (drs=1— Equations (24) and (25) are violated). The surface plot in
Figure 15(a) depicts the ®-function and a plane along which the surface is sliced. Figure 15(b)
shows the ®-function and s-values corresponding to the slice. As can be seen in Figure 15(b),
there are several design variables that still have the same s-value at which they were initialized
(s =s$min = —1), that is, they did not change their value during the optimization process although the
surrounding design variables have values s # —1. This problem occurs when RBFs are overshad-
owed by neighboring RBFs. As Figure 16 shows, overshadowed RBFs have negligible sensitivities.
Although in the example in Figure 15 the skipped RBFs do not yield holes, there is a possibility
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Figure 17. Overshadowed RBFs creating holes.

(

©
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d)

Figure 18. Different smoothing radii and the corresponding objective values of the optimum shape after
i iterations (* indicates that constraint is still violated after design has converged): (a) R, =0: i =71%;
z=11.55;(b) R, =2: i=51%;7z=6.91; (c) R, =5: i=56; z=6.50; and (d) R, =10: i =35; z=19.80.

that holes occur that cannot be closed anymore. Figure 17 illustrates this problem for the 2D
case: it is impossible to close the hole at the center, as the surrounding RBFs are already at their
maximum and the overshadowed RBF @, has a negligible sensitivity; therefore, the optimizer will
not modify ®,(s2). This issue can be avoided by choosing the upper and lower bounds according
to Equations (24) and (25).

As mentioned in Section 3.3, smoothing is crucial for the current approach. By modifying
the relative smoothing radius R, (see Equation (28)) the degree of smoothing can be controlled.
Figure 18 shows a comparison between the optimum shapes for different values of R,. Without
smoothing, that is, R, =0, the boundaries along the channel are jagged. Kinks created by a very
rough level set function hinder convergence to a feasible design. Increasing the radius to R, =2
improves the smoothness; however, the boundaries still show significant kinks. Further increasing
the radius to R, =5 prevents kinks and creates smooth boundaries along the channel. A smoothing
radius of R, =10 improves the local boundary smoothness even more; however, at the same time
also impacts the global boundary shape. It can be seen in Figure 18 that a sufficiently large
smoothing radius R, is essential to guarantee smoothness of the boundaries. However, if the radius
R, is chosen too large, smoothing affects the global shape of the boundaries negatively.

Finally, we consider the influence of the coarseness of the level set mesh. Figure 19 shows a
comparison between optimum (converged) designs for different refinements of the level set mesh.
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(a) (b) (©) (d)

Figure 19. Different level set mesh coarseness (level set mesh densities shown in circles) and the

corresponding objective values of the optimum shape after i iterations (* indicates that constraint is

still violated after design has converged): (a) 41 x41: i=56; z=6.50; (b) 21 x21: i=58; z=7.40;
(€) 15x15: i=66; z=7.03; and (d) 11x11: i =59*;, z="7.18.
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Din
Fluid grid 43333
12L [ )
\ ]
v, Design - I
domain
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.., o ... g JU,..

Figure 20. Design domain for the manifold.

Qou

In Figure 19(a) the level set mesh matches the fluid domain mesh, that is, one RBF in every LBM
node, whereas in Figure 19(b), (c) and (d) the level set mesh is approximately 2, 2.7, and 4 times
coarser than the fluid mesh, respectively. As the figure shows, it is possible to create reasonable
channel-designs with level set meshes that are significantly coarser than the fluid mesh. Yet, if the
level set mesh becomes too coarse, specific details cannot be described anymore. This issue can be
observed at the upper left and lower right corners in Figure 19(d). Comparing Figure 19(a) and (c)
shows that we can obtain very similar results when using only 225 (15 x 15) design variables instead
of 1681 (41 x41). This corresponds to a reduction of the design space dimension by over 86%.

5.2. Manifold

We study the optimal design of a manifold with one inlet and three outlets. Figure 20 shows
the design domain for this problem; the circle with the dotted grid illustrates the fluid mesh. The
objective is to minimize the difference in total pressure between the inlet and the outlets. The
optimization is subjected to two constraints: the first one limits the maximum allowable fluid
volume to 50% of the design domain and the second one requires the flow rate for each of the three
outlets gout,; to be % of the inlet flow rate, giy:

3
n}]icn = (Pin -2 Pout,i>
i=1

Agn
fluid >0

st. g1=0.5-— 227
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3 1
2= (Gouri — gfhn)z:o (38)
i=1

Smin <8k SSmax

The total inlet and outlet pressures, pin and pout,i, are averaged over the inlet and outlet ports. The
boundary conditions are a parabolic inlet velocity and a constant static pressure at the outlets. The
domain boundaries are represented by ‘no-slip’ boundary conditions.

The optimization algorithm terminates if constraints are satisfied and the absolute change in
the objective value is less than 0.01 or if the number of iterations exceeds 400. Figure 21 shows
the initial design for the manifold optimization problem. The algorithmic parameters are chosen
according to Table V. Figure 22 shows how the geometry evolves during the optimization process.
As can be seen when comparing Figure 22(d)—(f), the basic shape of the channel is already obtained
after 40 iterations. Until final convergence, however, 107 iterations are required. The evolution of
the slender fin at the top left is the most time-consuming feature, as in this region, the objective and
the mass constraint are strongly conflicting with each other. Note that the round shape of the fins
next to outlets is due to the low Reynolds number. Despite the smoothing of the level set function,
the current approach is still capable of creating sharp corners and cusps as is demonstrated by the
small island in Figure 22(d) and the slender fin at the top left in Figure 22(f).

The graphs in Figure 23 illustrate the optimization progress quantitatively. The GCMMA algo-
rithm performed one subcycle in about 90% of all iterations. The average number of fluid iterations

@ 0 6 o o
@ ¢ 0 o 0
@ 0 &6 o o

Figure 21. Initialization for the manifold.

Table V. Parameters used for the manifold.

Parameter type Parameter Standard value
Physical Side length (L) 30
Reynolds number (RE) 10
Critical length (L) 9
Dimensionless relaxation time (7) 1—19
Viscosity (v) %(2‘5— 1)
Inlet velocity (vip) RE -v/Lit
Outlet pressure (pout) 1/3
Discretization Fluid-domain mesh (nx xny) 61 x31
Level set mesh (my xmy) 61x31
Fluid-domain gridsize (d) L/(ny—1)
Level set gridsize (drs) L/(my—1)
Algorithmic Relative smoothing radius (R;) 35
RBF support radius (Rg) 3drs
KS-factor (k) 20
Lower/upper limit for sz (Spmin, Smax) —0.4dys, 0.5d; 5
Stepsize (As) 0.025- (Smax — Smin)
Number of subcycles 1
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—~

e) ()

Figure 22. Evolution of the manifold geometry: (a) after 10 iterations: z=11.09, g; =0.72, g»=0.05; (b)

after 20 iterations: z=18.88, g1 =0.21, g» =0.05; (c) after 30 iterations: z=11.88, g1 =0.00, g»=0.03;

(d) after 40 iterations: z=3.71, g1 =0.00, g» =0.01; (e) after 50 iterations: z=3.12, g1 =0.00, g»=0.01;
and (f) after 107 iterations: z=2.71, g; =0.00, g2 =0.00.

to reach steady state was approximately 7300. The computational cost of the sensitivities was
about 4 times higher than the cost for an analysis.

6. CONCLUSION

The present work has shown that the proposed geometric boundary representation, in combination
with an explicit level set method, is well suitable for solving generalized fluid shape optimization
problems. Our approach does not require finding appropriate porosity interpolation laws, it features
higher spatial as well as temporal accuracy, and is applicable to transient problems. On the other
hand, the proposed method has the disadvantage of not being capable of forming new domains
of solid material that are completely surrounded by fluid, limiting the topological complexity of
the final design. However, this problem can be mitigated by a proper initial design that has a
sufficient number of separated solid regions. By appropriately choosing the upper and lower limits
for the design variables it can be assured that the level set function evolves gradually past its
boundaries without skipping over RBFs, preventing non-optimal holes in the design. Furthermore,
it was shown that the geometric smoothing, which limits the spatial oscillations of the level set
function @, is essential for obtaining reasonable results. For the pipe bend example, the geometric
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Figure 23. Objective and constraint values for the manifold: (a) history of objective values for manifold

and (b) history of constraint violations for manifold.

boundary representation developed in this study yields the same results as the Brinkman approach.
The manifold example illustrates the versatility of our approach for generalized fluid optimization
problems.
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Abstract A multi-objective topology optimization formu-
lation for the design of dynamically tunable fluidic devices
is presented. The flow is manipulated via external and inter-
nal mechanical actuation, leading to elastic deformations of
flow channels. The design objectives characterize the per-
formance in the undeformed and deformed configurations.
The layout of fluid channels is determined by material
topology optimization. In addition, the thickness distribu-
tion, the distribution of active material for internal actuation,
and the support conditions are optimized. The coupled
fluid-structure response is predicted by a non-linear finite
element model and a hydrodynamic lattice Boltzmann
method. Focusing on applications with low flow veloci-
ties and pressures, structural deformations due to fluid-
forces are neglected. A mapping scheme is presented that
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couples the material distributions in the structural and fluid
mesh. The governing and the adjoint equations of the result-
ing fluid-structure interaction problem are derived. The
proposed method is illustrated with the design of tunable
manifolds.

Keywords Fluid-structure interaction -
Hydrodynamic lattice Boltzmann method -
Non-linear elasticity - Adjoint sensitivity analysis

1 Introduction

This study focuses on topology optimization of dynami-
cally tunable fluidic devices. The basic idea of the proposed
design concept is to embed flow channels into a flexible
structure that deforms in response to externally or internally
applied mechanical loads. The primary goal is to optimize
the layout of the elastically deforming fluid channels with
respect to multiple objectives, characterizing the device in
the deformed and undeformed configurations. To further
enhance the device performance, the stiffness distribution,
the layout of the actuation system, as well as the support
conditions of the device are also optimized.

Topology optimization is a well established method for
designing structural systems (Bendsge and Sigmund 2003;
Ramm et al. 1998a, b). For an overview of structural topol-
ogy optimization the reader is referred to the manuscript
by Bendsge and Sigmund (2003). Topology optimization
of flow problems was pioneered by Borrvall and Peters-
son (2003). In their initial study a Stokes flow model was
employed. This approach has further been generalized in a
number of ways (Andreasen et al. 2009; Gersborg-Hansen
et al. 2005; Evgrafov 2006; Aage et al. 2008; Klimetzek
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et al. 2006; Moos et al. 2004; Othmer et al. 2006; Oth-
mer 2008). As an alternative to the Navier-Stokes flow
model, Pingen et al. used the lattice Boltzmann method
(LBM) to solve fluid topology optimization problems
(Pingen 2008; Pingen et al. 2007a, b, 2009a, b).

Topology optimization of fluid-structure systems has
hardly been studied so far. Guest and Prévost (2006) max-
imized the stiffness while simultaneously maximizing the
fluid permeability of periodic materials. Although a fluid-
structure interaction system was considered, no interaction
between fluid and solid was taken into account in this
study. Maute and Allen (2004) and Maute and Reich (2006)
optimized the internal layout of structures accounting for
coupling between flow and structural deformation. How-
ever, this approach only allows for changes of the shape but
not the topology of the fluid—solid interface. Yoon (2009)
recently introduced a monolithic formulation for topology
optimization of fluid-structure interaction (FSI) problems.
While this approach considers a fully coupled FSI system,
it is limited to small structural deformations.

In this study we present a topology optimization method
for FSI problems undergoing large elastic deformations. We
focus on micro-fluidic devices with flow channels sand-
wiched between two elastically deforming structural layers.
Owing to the low flow velocity in micro channels, the fluid
pressure exerted on the structure is typically negligible in
comparison to the stiffness of the structure. However, large
deformations are needed to noticeably alter the flow due
to mechanical actuation. Therefore, we consider only the
effect of finite structural deformations on the flow field and
disregard the influence of the fluid forces on the structural
deformations, leading to a one-way structure-fluid coupling.
We will show quantitatively with a numerical example that
the fluid forces only have a negligible effect on the structural
solution for the class of micro-fluidic devices considered in
this study.

Following a standard material topology optimization
approach, the geometry of the flow channels is described
by a material distribution function. Additional optimization
parameters are used to control the thickness distribution,
the distribution of active material for internal actuation,
and the support conditions of the device. The structural
response is described by a non-linear finite element model
using a total Lagrangian formulation. The flow is pre-
dicted by a hydrodynamic LBM operating on a fixed grid.
The material distributions in the deforming structural mesh
and fixed fluid mesh are coupled by a geometric mapping
approach, as shown in Fig. 1. Contrary to a monolithic
approach (Yoon 2009), the separate treatment of the fluid
and structural domain allows to employ existing analysis
modules: in the current study, an LBM fluid solver and a geo-
metrically non-linear FEM structural solver. We consider
optimization problems involving the fluid and structural
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Fig. 1 Separate meshes for structural and fluid domain

behavior in the undeformed and deformed configuration at
steady-state. These problems are cast into a multi-objective
formulation and solved by a gradient based optimization
algorithm computing the design sensitivities by an adjoint
method.

In this paper we present an optimization method for a
one-way coupled FSI problem using a material distribution
approach to describe the geometry of the fluid and struc-
tural domains. We present details of the geometric mapping
method that couples the material distribution in the fluid
and structural meshes. We derive the adjoint of this sys-
tem and discuss its computational complexity. The utility
of the proposed approach is illustrated with three numeri-
cal examples. The remainder of the paper is organized as
follows. In Sections 2 and 3 we describe the design and
structural model. Section 4 outlines the basics of the LBM.
This is followed by a description of the geometrical map-
ping from the structural domain into the fluid domain in
Section 5. Section 6 describes the overall computational
optimization procedure along with the sensitivity analysis.
Finally, we demonstrate the key features of our approach
with three 2-D numerical examples in Section 7. The results
are summarized in Section 8.

2 Design models

Focusing on micro-fluidic devices, which are typically fab-
ricated by micro-surface, bulk machining or layer depo-
sition techniques, we consider structures that consist of
multiple layers. In this paper, we focus on a three-layer
design (see Fig. 2): the center layer houses the embedded
fluid channels and is sandwiched between two structural
layers, which provide structural support for the center layer
and prevent evaporation and leakage.

To manipulate the design we consider four sets of opti-
mization variables: (1) The layout of the flow channels
in the center layer is described by a material distribution
function. The material properties are defined via smooth
interpolation functions depending on the optimization
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Fig. 2 Structural system

structural layer v

fluid

< channel

A

variables s,in € [0, 1]. (2) The thickness distribution of the
structural layers is defined by the optimization variables
s,i € [0, 1]. (3) The locations where the structural layers
are attached to a ground structure are described by the dis-
tribution of the support stiffness which is defined by the
optimization variables si € [0, 1]. (4) The layout of active
material embedded into the structural layers is described via
the distribution of eigenstrains. In this study only isotropic
eigenstrains €, are considered which are defined by the
independent optimization variables s. € [—1, 1]. The four
sets of optimization variables are combined into the design
vector s = [S,, St Sg Se].

By controlling the thickness of the structural layers via
si we can tailor the stiffness independently from the lay-
out of the layer that houses the fluid channels. This allows,
for example, to stiffen areas beneath a flow channel or to
soften areas beneath a solid center layer. To illustrate this
issue, Fig. 3 shows the structural layout of a simple chan-
nel subject to a compressive load. The structure is fixed
along the left and right edges. As the stiffness in the cen-
ter layer along the channel is negligible, the pressure drop
across the channel in the deformed configuration depends
only on the stiffness of the structural layers, which can

channel: void

(a) Undeformed

(b) Deformed: thin structural layer

|—: > m Vo
| | :

structural layer

be controlled conveniently by the thickness. For practical
applications, these thickness variations could be fabricated
via layer deposition techniques (Kim et al. 2009) or 3D
printing methods (Dimitrov et al. 2006).

The basic concept of varying the support stiffness is
illustrated in Fig. 4. Imposing a large value for the sup-
port stiffness at a point, the structural displacements vanish
and the point can be considered fixed (Babuska 1973).
Manipulating the support stiffness has a similar but more
pronounced effect compared to varying the thickness of the
structural layers. While both alter the stiffness of the struc-
ture, their effect on the overall displacement field differs,
as illustrated in Fig. 5. For example, increasing the value
of the thickness variable s; primarily reduces the defor-
mation locally, within the stiffened region (b ~ b* in
Fig. 5b). Increasing the support stiffness has a global effect
and shields the left part of the structure from deforming
(a® ~ a* and b? ~ b" in Fig. 5¢). In practice this could be
realized, for example via adhesive bonding techniques
(Niklaus et al. 2006). Depending on the fabrication approach
used to vary the thickness of the structural layers, the sur-
face topography of the substrate may also have to be altered
to allow bonding of the structural layer to the substrate.

(c) Deformed: thick structural layer

Fig. 3 Influence of thickness of the structural layers on the stiffness (for visualization only the bottom structural layer is shown)
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supported areas

‘ §N§ Springs with stiffness:
K=K, SRR
Fig. 4 Support layout (cp. Buhl 2002)

In particular in micro-fluidic applications, forces are con-
veniently generated by active materials embedded into the
structural layers, such as piezo-ceramic or electro-active
polymers (Bar-Cohen 2004; Zhang et al. 2005). Optimizing
the layout of active materials in concert with the thick-
ness of the structural layers and the distribution of the
support stiffness allows fine-tuning of the structural defor-
mations. The effect of active materials on the overall device
is modeled by introducing eigenstrains into the constitutive
equations of the structural layers.

3 Structural model

To alter low-speed flows, large changes of the channel
geometry and thus large deformations of the structure are

Fig. 5 Effect of thickness u

required. Therefore, the structural response is described
by a geometrically non-linear finite element (FE) model.
For the sake of simplicity, we assume a linear stress—strain
relationship in this study. However, for a more realistic mod-
eling of the structural response, especially when dealing
with large strains, a non-linear stress—strain model would
be more appropriate. We further assume that the thickness
is much smaller than the in-plane dimensions of the struc-
ture and the structural response can be approximated by a
plane-stress model.

The four sets of optimization variables defined previ-
ously are introduced into the structural FE model via inter-
polation functions, the corresponding interpolation param-
eters are summarized in Table 1. Following the standard
notation in topology optimization, the density p’ and
Young’s modulus E lc of the center layer of the i-th element
are defined by:

pi — s£'1 solid (1)

EL =si En )

The total Young’s modulus of the layered structure is com-
puted by weighting the Young’s moduli of the layers with
their thickness fractions:

t t
E=Ec <TC> + Eg (%) with 1 = 1¢ + g 3)

where tc, ts and Eg define thicknesses of the center layer,
the structural layers and Young’s modulus of the structural

variation vs. support variation

on structural displacement field

L
(a) Undeformed

b=V ¢'>c"

L'=L"+u,
(b) Deformed: thickness variation

b'=b ¢'>c"
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L'L"+u,

(¢) Deformed: support stiffness variation
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Table 1 Parameters for structural interpolation functions

Interpolated quantity ~ Parameter ~ Meaning
Density ol Elemental density
psotid Density of completely solid
bulk material
Young’s modulus E ’C Elemental Young’s modulus
of center layer
ERY Maximum Young’s modulus
of center layer
Thickness tg Elemental thickness of
structural layers
tiin Minimum elemental thickness
of structural layers
g r Maximum elemental thickness
of structural layers
Support stiffness Kmin Minimum support stiffness
krex Maximum support stiffness
Eigenstrain GZQI Minimum eigenstrain
e;’;g“ Maximum eigenstrain

layers, respectively. The thickness of the structural layers
for the i-th element is given by:
tho=gin s (tg"“ - tsmi") “)
where t§"m and rg'® are the minimum and maximum
elemental thicknesses of the structural layer.

Following the work of Buhl (2002), a spring model with
variable stiffness is used to smoothly vary the support con-
ditions from ‘moving freely’ to ‘fully clamped’. The spring

stiffness k! associated with the nodes of the i-th element are
defined as:

ki = gmin g i (k - k;nf") . o)

where k™" and k™%¥ are the minimum and maximum sup-
port stiffnesses, respectively. A minimum support stiffness
larger than zero is chosen to prevent rigid body motions
and numerical ill-conditioning. For a value of sé = 1 the
support stiffness leads to negligible nodal displacements.
Note that this approach acts only as a vehicle for determin-
ing the optimal locations for the supports and therefore the
linear springs pose no inconsistency with the geometrically
non-linear structural description.
The eigenstrains are interpolated linearly as follows:

e, =s.ens” (6)
The elemental eigenstrain eé enters the non-linear plane-
stress formulation via the constitutive model assuming a

linear elastic material behavior and an additive decompo-
sition of the elastic and inelastic strains. The total nominal
stress is defined e.g. in Belytschko et al. (2005):

P=S.F with S=C:(E—E‘°’i<"’> )

where F is the deformation gradient and S denotes the sec-
ond Piola—Kirchhoft stress tensor. The stress depends on the
material tensor C, the total Green-Lagrange strain E and the
inelastic isotropic eigenstrains E¢¢. The latter are defined
as an explicit function of the optimization variables s, via
the interpolation (6):

eig _ €e 0
peaf5 0] .

From the total nominal stress we obtain the internal force
£, for example see Belytschko et al. (2005):

fin = / B} Pt dA, )
Ao

where Ag is the area and By is the differential operator in
the undeformed configuration.
The support stiffness leads to an additional force f ;f :
ff = Kou, with K, = k1 (10
where K is the stiffness matrix associated with the support
layout, u are the displacements, and I is an identity matrix.
Given the internal forces, f§" +f§ and the external loads,
£, the structural residual Rs governing the static response
is written as:
Ry (u,s) = f§" (u,8) + f§(u,5) — 5" =0, an
The above system of non-linear equations, (11), is solved by
Newton’s method.

4 Flow model

In this study we approximate the flow in the channels by a
two-dimensional model assuming a uniform flow across the
channel thickness. This approach neglects friction effects
along the bottom of the channels and leads to approxi-
mations in predicting drag and pressure drop values. To
capture the influence of no-slip conditions at the top and
bottom layers, Borrvall and Petersson (2003) introduced an
explicit approximation of the flow in thickness direction. As
previous work by the authors on fluid topology optimiza-
tion (Pingen et al. 2007a, b) has shown, the 2-D flow model
leads to optimization results equivalent to the ones presented
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in Borrvall and Petersson (2003). Therefore, the 2-D model
is considered sufficient for the present study. However, it
should be noted that in general the friction at the bottom/top
of the channel may influence the flow solution.

Motivated by previous theoretical and numerical stud-
ies (Pingen 2008; Pingen et al. 2007a; Evgrafov et al. 2008),
we choose a hydrodynamic LBM to predict the channel
flow. The hydrodynamic LBM approximates the Navier—
Stokes equations for low Mach number flows (Chen and
Doolen 1998; Succi 2001; Yu et al. 2003). It can be derived
from the Boltzmann transport equation which is typically
discretized by an explicit finite difference scheme in space
and time, constituting a two step time-marching process:

Collision: ﬁ;(x, t) = fu (Xiv f)

L a(si ) = £2 (i 0)]. (12)

T

Propagation: fy (xi + Otey, t + Bt) = ﬁ(xi, t), (13)

where e, is the velocity vector, f, is the distribution
function associated with the corresponding velocity ey, X;
represents the location in physical space, e, 8¢ is the lattice
spacing, &t is the time step, T = A/dt is the dimension-
less relaxation time, and ¢4 = f°4(p, w) is a Taylor series
approximation of the Maxwell-Boltzmann equilibrium dis-
tribution. The macroscopic parameters (fluid density p,
velocity w, pressure, and viscosity) can be evaluated via
statistical moments of the distribution function f. Approx-
imating the channel flows by a two-dimensional model, we
use the D2Q9 lattice scheme (see e.g. Yu et al. 2003) in the
current study.

To solve the topology optimization problem by gradient-

based schemes, the LBM is augmented with the porosity
model introduced by Spaid and Phelan (1997), providing
a continuous transition from fluid to solid and vice versa.
The macroscopic velocity w is rescaled during the collision
step (12), leading to:
Wit x) = (1 - pj(x)K) wi (1, ), (14)
where p/(x) is the impermeability that is related to the
porosity in the domain. The vector w(¢, x) defines the scaled
velocity through porous media, which is substituted into
the equilibrium distribution function f?(p, W) in place of
w. Note, that the interpolation of the impermeability p/
is defined analogously to the interpolation of the structural
density p': p/, p' = 1 corresponds to solid and p/, p' =0
corresponds to fluid, respectively void for the structure.
The impermeability distribution p(x) in the flow model is
a function of the material distribution p(x) in the structural
domain and the structural displacements, u.

@ Springer

Numerical studies show that this porosity approach con-
verges to a 0—1 distribution; best results were obtained for
an exponent k ~ 3 (Pingen et al. 2009a). Due to the ele-
ment wise constant impermeability values, this approach
results in stair-step boundaries. However, Pingen et al.
(2009a) have shown in numerical studies that this poros-
ity approach captures the flow characteristics—e.g. pressure
drop, drag, etc.—sufficiently well, especially for the low
Reynolds numbers considered in the current study.

In the current study we focus on steady-state flows which
are described by the solution of the following fixed-point
problem:

Re(f,s) = M(f,s) —f=0, (15)

where Ry denotes the fluid residual vector and f describes
the fluid state. The operator M performs one collision (12)
and one propagation (13), which corresponds to advancing
the flow solution one time step by an explicit time inte-
gration scheme. We solve the fixed-point problem (15) by
an explicit time-marching scheme advancing the flow until
convergence toward steady-state. While this approach is
memory efficient, it requires a relatively large number of
time-steps to reach steady-state convergence.

5 Coupling structural and fluid domains

To couple the structural domain with the fluid domain a sim-
ple geometric mapping that transforms structural densities
into fluid impermeabilities is employed. The basic concept
is illustrated in Figs. 1 and 6. The structural densities, pi,
are defined on a deforming mesh using a Lagrangian for-
mulation, whereas the impermeabilities, pf , of the fluid are
defined on a fixed mesh in an Eulerian formulation. The
mapping is given by:

n; .
. .. 1 J p’ . .
J i iy _ v i
p (p’“)'_ j 2:( manM<“>>'
Ay 1Y

i=1

(16)

The index i describes the structural elements that intersect
with the j-th fluid element, A;'Lt is the intersection area
between the i-th structural and the j-th fluid element, and
A{p defines the area of the fluid element.

The impermeability of a fluid element p/, (16), depends
on (I) the densities of the underlying structural mesh, p,
and (II) the deformation u’ of the Lagrangian mesh, as the
mesh-geometry of the structural mesh affects the intersec-
tion areas Ai.f”. Note, that p’ defines the elemental structural
density, cp. (1), in the undeformed configuration and is
therefore, unlike the impermeability p/, independent of the
displacements u’.
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structural densities, p'
mesh intersections, A”,

undeformed structural mesh

| | | [ T | density structural
! ! ; | 4% | 4u | distribution deformation
O R e R B o e e —>
| | | I A
i i i i A “‘r 1 A 21 i
impermeabilities P P 2

Fig. 6 Geometric mapping

6 Topology optimization of fluid-structure system

In this study we consider optimization problems of the
following form:

min z = z(s, u’(s). (), u!(s), f(s)),

s, satisfy the design constraints,

w4, solve (11) for given s,
(17)
s.t. 1899, solve (15) for given s,

h(s, f* ’d) =0, the equality constraints,

g(s. 'd) <0, the inequality constraints,

where z is a scalar performance functional constructed from
a multi-objective formulation of the design problem; s is
the vector of design variables, u is the displacement vec-
tor, f is the fluid state vector (cf. (12) and (13)) and h/g
are equality/inequality constraints, respectively. The super-
scripts ‘u’ and ‘d’ indicate the undeformed and deformed
structural configuration. Typical objectives and constraints
include pressure drop, drag, flow rate, energy loss, and
mass.

6.1 Sensitivity analysis

The following discussion focuses on the sensitivity analysis
of the design objective z, but can be applied analogously

—————— /r————f———, B e P
| |
. . change in

to design constraints. The derivative of the objective with
respect to the design variables can be written as:

ds vz (0z\Tdu _(0\" ar
ds ~ 9s du/ ds af ) ds’

The derivative of the displacements with respect to the
design variables is computed from the derivative of the
structural residual equation (11):

18

dRS _ BRS 3RS du -0

= — = 19
ds as ou ds (19
Solving (19) for du/ds yields:
du _ (9Rs\ " 9Rg
ds ou as
N’
Kr
= —Ky! iém % — ig'm (20)
s s s |’
—
=0

where K7 is the tangential stiffness matrix. Assuming that
the external forces do not depend on the design variables,
the term 9f§*'/ds vanishes. The partial derivative of the
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X4 X3
undeformed
« structural
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v, v,
A,
v, \/
Lo i
Xl XZ
\ﬂuid element

(a) Undeformed configuration

Fig. 7 Intersection of structure and fluid mesh

internal force with respect to the design variables, of g"’ /0s,
is computed as (cp. (9)):

as

) 5

Bfém _ affgm afgnl afgnt afénl
s, 0s; | Osg

oP aP at

= /BT—tdA, /BT —t+P— ) dA,
A S, A 0s; 0s;
P

0, /BT—tdA].
A s,

For the term aﬂg /s only the derivative with respect to the
support design variables, sy, does not vanish (cp. (10)):

0S8,

@n

o 9K
= u,
s s

(22)

where Kg is the global support-stiffness matrix.
Owing to the large number of optimization variables
needed to resolve the geometry via a material distribution

Table 2 Parameters for the interpolated quantities

Parameter Value
Maximum Young’s modulus of center layer (E¢*) 5.108
Young’s modulus of structural layers (E's) 5.1010
Thickness of center layer (z¢) 0.5
Minimum thickness of structural layer (tg"i”) 0.1
Maximum thickness of structural layer (£5'"*) 2
Exponent for support stiffness interpolation () 3
Minimum support stiffness (k") 11074
Maximum support stiffness (k}'“*) 1.10'0
Maximum eigenstrain (e'**) 0.1

@ Springer

deformed
structural element
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undeformed
| — structural
1 element

\ﬂuid element

(b) Deformed configuration

approach, we solve the above optimization problem using
gradient based methods and compute the design sensitivities
via an adjoint approach.

The derivative of the fluid state with respect to the
design variables, df/ds, is computed from the fluid residual
equation (15):

(23)

dRF _ BRF 3RF df 3RF du -0
ds ~— 3s of ds u ds
Substituting (20) into (23) yields:
df ORF\ ' (0RF  ORp _, [OF  ofk
- = — - 7KT — 4+ 2
ds of as ou as as
———
Jr
with p = p(u,s),
ORp (0p 9 afint ofk
-1 F P P -1 S S
—J; —|——-=—K —— 4+ —11].,24
JF8p<Bs BuT<8s+Bs @9
where the matrix Jr is the Jacobian of the fluid problem
and the vector p defines the impermeabilities. Due to the
large number of design variables, we employ the adjoint
method in the following. Substituting (20) and (24) into the
sensitivity equation (18) results in:

T i k
dz_ vz (o) afénl+%
ds 0s ou as as

ORp (op op, _[of" of§
- —| —+ —K —— 4+ —].(25
anx op (Bs+3u g as +Bs 25

where a; is the solution of the following adjoint equation:

dz\T _1
a; = <E> Jr.

(26)
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Fig. 8 Lumping two structural structural layer top layer
layers into one
""" fluid fluid
/ channel ::> channel
\ center layer
| A + /2 \ :¢
A f

structural layer

The evaluation of dRp/dp and dz/df in (25) and (26)
has been described in Pingen et al. (2009a), the partial
derivatives of the impermeabilities, dp/ds and dp/du, are
discussed in Section 6.1.1. Rearranging (25) we get:

d 9 Ry 0 ofint  pfk
fo X ale+a2(S+S, 27)

ds  os ap 0s as as

where ap is the solution to the second adjoint problem
defined by:

(28)

In the current study we do not consider objectives that
depend directly on the design variables or the displace-
ments. Therefore, the terms dz/ds in (27) and dz/du in (28)
vanish.

6.1.1 Sensitivities of the fluid porosities

lumped structural layer

impermeabilities with respect to the design variables is
given by:

ij

A i
——n_ 92 if j-th fluid element
3 j A’ psolid s .
D r and i-th structural (29)
- =
ds element intersect,
0 otherwise,

where for the term dp' /ds' only the derivatives with respect

to the material design variables, si,, do not vanish:

dp' ol
pi — psolld' (30)
dst,

The derivative of the impermeability with respect to the
displacements is defined as follows:

pl dAint

T if j-th fluid element
AFp:olld du

f'\s outllnefi in (1§), the 1mpermeab111t.165 c‘lep.end-expllq— wl and i-th structural 31
itly on variations in the structural density distribution, p’, P (€2))
and the structural deformations, as the displacements u element intersect,
affect the intersection areas Amt The derivative of the 0 otherwise.
Fig. 9 Boundary conditions for L P
the three-port manifold 2
0.3L ST 0.7L
e
0.2L
13/30H 11/30H
L LN /8 |
K| 7 Astructural a30H| —— 8/30H fluid H
mesh L= = mesh.
ya ya
Y 13/30H 11/30H G

(a) Structural problem

e

(b) Fluid problem
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Fig. 10 Initial structural Outlet 2
density distribution for the
three-port manifold
=
Outlet 1

(a) Undeformed state

The term d A;{n /du' can be expanded in the following way
(cp. Fig. 7):
dul dvy d%; dul’
— N
T, T T3

where Ty defines the dependency of the intersection area
A;{H on the vertices v of the polygon determining A;i”; T,
characterizes the dependency of the polygon vertices on the
position of the structural nodes X;; T3 describes the depen-
dency of the nodes X; on the displacements u’ of the i-th
structural element. Due to the definition of X;, T3 is simply
a unity matrix in the deformed case and a zero-matrix in the
undeformed case, respectively.

The adjoint sensitivity analysis has been validated

through comparison with finite difference results.

7 Numerical examples

To illustrate the utility of the current approach we study
the design of three tunable manifolds. The optimization
problems are solved by the Globally-Convergent Method of
Moving Asymptotes (GCMMA) of Svanberg (1995).

At each iteration in the optimization process we first
solve the structural equilibrium equations for the deformed
configuration. Then both, undeformed and deformed, mate-
rial distributions are mapped onto the fluid mesh, lead-
ing to an undeformed and deformed fluid impermeability

Table 3 Objectives for the three-port manifold problem

Structural Outlet 1 Outlet 2

state

Undeformed Maximize the mass Minimize the mass
flow, qi‘ flow, qé‘

Deformed Minimize the mass Maximize the mass

flow, q’ll flow, qg

p=1 = p=1
p=05s 2 p=05
p=0 = p=0

(b) Deformed state

distribution. The flow solutions for both impermeability
distributions are computed by advancing the flow in time
until steady state convergence. The design criteria in the
undeformed and deformed configurations are evaluated to
obtain values of the objective function and constraints. The
sensitivities are evaluated by the adjoint method using a
direct solver for the linear systems, (26) and (28). The

Table 4 Parameters for the three-port manifold

Parameter type Parameter Value
Physical Length (L) 36
Height (H) 30
Reynolds number (RE) 10
Critical length (L) 9
Dimensionless relaxation 1/1.9
time (t)
Viscosity (Vr) é 2t -1
Inlet velocity (vi,) RE -vp/L.
Outlet pressure (pour) 1/3
Prescribed external L/6
displacement (1)
Poisson ratio (v) 0.4
Discretization  Fluid-domain mesh 45x31
(ny x ny)
Fluid-domain grid size L/(ny —1)
Structural-domain mesh 37x31
(my x my)
Structural-domain grid size L/(my —1)
Algorithmic Lower, upper limit for s’ 0,1
(s™in gmaxy
Step size (As) 0.1(s™max — gminy
Number of GCMMA 2
subcycles
Convergence Tolerance for KKT 1-1072
conditions (€xx;)
Tolerance for design change (¢;) 2-1074
Tolerance for constraint 5.1073

violation (e.)
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(a) Undeformed state

Fig. 11 Optimized impermeability distribution for the three-port manifold

convergence of the optimization process is monitored via
the residual of the Karush—Kuhn-Tucker conditions Ry,
the design change || As||, and the constraint violations. The
following convergence criteria are defined:

IRie | < €krr lIRkke llos (33)
| As|l < €5 Ns, (34)
gj < € (35)

where ||Riitllo is the norm of the residual of the initial
design and Nj is the number of optimization variables. The
tolerances €xk;, €5 and €. for the three examples are defined
in Tables 4, 8, and 9. For all three examples, we use the same
interpolations linking abstract and physical design variables.
The interpolation parameters are listed in Table 2. All values
related to the flow solution in the following examples are in
dimensionless lattice-units.

Using a 2-D approximation for the structural response
and the flow allows us to simplify the three-layer model
and lump the two structural layers into one. For this sim-
plified model the center layer that houses the fluid channels
becomes the top layer, which is connected to a single
lumped structural layer. Figure 8 illustrates this simplified
model.

7.1 Three-port manifold

In the first example, we consider a manifold that routes
the flow from one inlet into two outlet ports. The goal of
the design problem is to find the layout of the fluid chan-
nels and the thickness distribution of the structural layers
such that the mass flow through the outlet ports can be
controlled through an elastic deformation in response to a
prescribed external displacement. In this example, internal
actuation via eigenstrains is not considered and the supports
are not altered in the optimization process. The boundary

(b) Deformed state

conditions for both the structural and the fluid problems are
depicted in Fig. 9. The gridded circles illustrate the struc-
tural and fluid mesh, respectively. The structure is clamped
along all edges except for the right one. The center of the
latter is subjected to horizontal displacements u, = L/6.
The boundary conditions for the fluid model, Fig. 9b, are a
parabolic inlet velocity distribution and a prescribed static
pressure at both outlets. Note, that the fluid domain is 20%
longer than the structural mesh. This ensures that the fixed
fluid mesh covers the entire structural domain when the
structure expands during deformation.

The initial density distributions in the undeformed and
deformed configuration are illustrated in Fig. 10. We initial-
ize the density distribution with p = 1 at the boundaries
that are neither inlet nor outlet and p = 0 elsewhere. The
thickness of the structural layer is uniformly initialized with
si=05Vi.

x 10
3 T . : .
N initial
[ optimium ~f

25l — opt
g
L 2r e ]
‘5‘ Zopz
o
-
=
3 157 < 1
é oy
v
v
Z2 4} : : : : ]
g

05F 8

0 i i i i
u u d d
q, q> 4q, 4>

Fig. 12 Comparison between initial and optimized dynamic pressures
at outlet 1 and 2 for the three-port manifold
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Fig. 15 Material layout after 274 iterations for refined fluid mesh
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Fig. 16 Lumping of intermediate impermeabilities and its effect

The design of a tunable manifold is formulated as a
multi-criteria optimization problem. The goal is to find the
layout of a flow-switch that guides the flow to one outlet
in the undeformed configuration and to a second outlet in
the deformed configuration. Specifically, the objective is
to maximize the mass flow at the lower outlet in the unde-
formed state and minimize it in the deformed configuration.
For the outlet at the top the goal is opposite: minimize the
mass flow in the undeformed state and maximize it in the
deformed configuration. These four objectives are listed in
Table 3. The multiple objectives are treated via a bound
formulation (Stadler 1988), which seeks a compromise
between all objectives while avoiding that one objective
is improved whereas another objective deteriorates signifi-
cantly. The optimization problem can be written as follows:

min 7z = o — 3,
S

st. g1 =¢q7 —B =0,

oo
o
o
N

1 1 1
0.3 0.4 0.5 0.6 0.7 0.8 0.9
Impermeability threshold p*

(b) Relative change for Aqg¢{ due to lumping of impermeabilities
(rectangles show the lumped impermeability distributions for a given p*)

for the lower port and ‘2’ for the upper port. The super-
scripts ‘u#’ and ‘d’ refer to the undeformed and deformed
configurations. The constraints gs, ge¢ ensure that the total
inlet pressure is equal or less than 100.5% of the inlet pres-
sure of the initial design (cf. Fig. 10). The mass constraint
g7 requires that at least 75% of the design domain is solid
where N, is the number of structural elements. The parame-
ters for the three-port manifold example are summarized in
Table 4. Due to the structure of (36), at every locally optimal
solution the following equalities are satisfied:

o = max (qg qf) , 37

; d
B = min (ql" ‘12) , (38)
The optimization process converged in 418 iterations. While
the thickness distribution converged rather fast, the den-
sity distribution showed a much slower convergence rate
and hence required a large number of optimization steps.

=a—qg5>0 . o .
2= Figure 11 shows the optimized fluid channel. In the unde-
gG=a— qif >0, formed configuration, the bulk of the fluid flows through
4 the lower outlet, as this flow path has a smaller pres-
g4=q — B =0, sure drop than the flow path to the upper port. In the
1.005 (pin)" =0 deformed configuration the channel to the lower outlet port
8 =1 N ( 0 )” -7 (36) is stretched significantly. The additional length and cur-
" vature increases the pressure drop of the lower channel,
Pin)? p P
g6 = 1.005 — P > g,
( p?n) Table 5 Flow rates and objective for design with and without plug
N (cp. (37) and (38))
I & o . o
g1 =— Z g~ 0.75 > 0, With island Without island
N, i 1%
. q 2.58 x 1077 233x 107~ B
min < sl < smax _s 5
m —"m—"m ° a5 127 x 107 ~ o 1.74 x 107> ~ «
smin < gf < gmax qf 9.34 % 107° 7.79 x 1076
b d i ables. Th < flow is ad 248 x 1075 ~ 8 3.15 x 1075
where o and § are auxiliary variables. The mass flow is —a—B 121 % 105 —0.59 x 105

denoted by g. The subscripts indicate the outlet ports: ‘1’
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Table 6 Norm of fluid forces, relative errors for solution with and
without fluid forces

ez =93-10°
ey =3.7-10712%
ep=17-1072%
e;=—17-107%

Norm of fluid forces
Relative error in displacements
Relative error in impermeabilities

Relative error in dynamic pressure

reducing the mass flow, qf], at the lower outlet. More-
over, Fig. 11b illustrates that the channel to the upper outlet
widens under the structural deformation, increasing qg .

A quantitative comparison between initial and optimized
mass flows is shown in Fig. 12: three of the four mass
flow rates are improved significantly compared to the ini-
tial design (cf. Table 3). However, the mass flow through
the upper outlet in the undeformed configuration, g5, hardly
changed during the optimization.

Figure 13 displays the relative thickness of the struc-
tural layer. It shows that there are two regions in which
the thickness of the structural layer is maximized, resulting
in a stiffening of the corresponding structure. One is in the
top left corner of the design domain (Region A), effectively
stiffening the left edge of the channel to outlet 2. The region
of the channel to outlet 2 (Region B) on the other hand has
a minimum thickness. This thickness layout amplifies the
widening of the channel to outlet 2 under deformation. The
second region of high thickness values (Region C) connects
the point of load incidence with the apex of the channel to
outlet 1. Since the lower left of the design domain is weak-
ened, this allows to further increase the length and curvature
of this channel.

7.1.1 Influence of small features on the performance

The undeformed material distribution shows a small solid
feature in front of the upper outlet, Fig. 11a. In the deformed
configuration this feature is stretched. However, in the fluid
model, the stretched feature is represented by intermediate
impermeabilities. This brings up two questions: (I) is this
feature an artifact that occurs owing to the chosen numerical
representation? and (II) what are its benefits?

Fig. 17 Fluid forces acting of
structure f}

@ Springer

To answer (I) the mapping procedure is examined: in the
undeformed configuration, the fluid and solid meshes are
almost aligned, resulting in a mapping p/ ~ p’, which
leads to a mostly black and white impermeability distri-
bution, see Fig. 11a. However, as the structure stretches,
the Lagrangian solid mesh deforms while the Eulerian fluid
mesh stays fixed, leading to a mismatch between the two
meshes. This results in smeared-out and thus lower interface
impermeabilities in the deformed state, Fig. 11b. Figure 14
illustrates this issue. The magnification depicts the density
distribution on the Lagrangian mesh overlaid with the Eule-
rian fluid mesh. Figure 11b shows that in the deformed case
two ‘solid’ densities, i.e. p &~ 1, get distributed over six
fluid elements, hence the smearing.

In order to mitigate the smearing effect, the same prob-
lem was optimized using a twice as fine fluid mesh. Figure
15 shows both the density as well as the impermeabil-
ity distribution for the refined fluid mesh after 274 itera-
tions. As can be seen from Fig. 15, the finer fluid mesh
effectively reduces the smearing effect, but does not prevent
the formation of a solid feature in front of outlet 2.

To analyze the effect of the smeared out impermeabilities
in the deformed configuration we lumped the intermediate
impermeabilities into a discrete 0-1 distribution which is
shown in Fig. 16. The intermediate impermeability distribu-
tion in Fig. 16a is compared with a lumped one, where the
values for lumped impermeabilities, p;, are obtained from
the following:

0 ifp/ <p* VjelL,
pl] =11 ifp/>p* Vjel, (39
p! Vj¢L,

where L is the list of 18 elements to be lumped. The relative
change of the flow rate, Aqg due to the lumping is defined
as:

4 _ 95 ®)— a5 @

A (40)
© a4 (p)

where p and p; define regular and the lumped imper-
meability distribution, respectively. Figure 16b shows the

—_—
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Fig. 18 Boundary conditions for the four-port manifold with external actuation

underlying density distribution (ellipse) as well as the cor-
responding lumped impermeabilities for different threshold
values p* (rectangles). As can be seen in the figure, an
intermediate impermeability threshold of 0.3 < px < 0.5
leads to a small, ~ 7%, change in the flow rate qg . The
lumped impermeability distribution for thresholds 0.3 <
p* < 0.4 resemble the underlying densities the closest
(two solid elements). Since the smeared impermeability
distribution only differs by ~ 7% from the discrete, and
thus physically more meaningful distribution, we conclude
that the geometric mapping produces physically consistent
flow solutions/results for fluid problems with low Reynolds
numbers as considered in this work.

After having demonstrated that the island is not an arti-
fact, we analyze the benefits of this small feature. We
compare the results from the original optimized design, as
depicted in Fig. 11, with a design where the solid feature is
removed, i.e. a lumped impermeability with a threshold of
p* > 0.6, cp. Fig. 16b. The quantitative results are listed in
Table 5. The values show that the design without the island
has twice as large of an objective value compared to the one
with the island. The reason for this lies in the fact that with-
out island, the flow rate for outlet 2 increases while at the
same time the flow rate for outlet 1 decreases. This results
ingf < qg — B = q{. Additionally, @ ~ ¢4 is increased
significantly due to the lower pressure drop when the island
is removed. The combination of these effects results in an

Table 7 Constraints for the four-port manifold problem

Structural state @ Outlet 1 @ Outlet 2 @ Outlet 3
Undeformed qf =4q},/2 a5 =q}, /4 a5 =q}, /4
Deformed q’{ = qi‘il/3 qg = qi‘i/3 qg = qi‘ﬁq/?)

overall worsened objective when the feature is not present.
This analysis shows that the performance of the optimized
topology is due to both the geometry of the flow channels
and the feature in front of the upper outlet.

7.1.2 Influence of the fluid forces on the structure

The current study neglects the effect of the fluid forces on
the structure, leading to a one-way structure-fluid coupling.
In this subsection we demonstrate that the error resulting
from this simplification is negligible for problems in which
the structural displacements due to the fluid pressure are
sufficiently small such that they do not affect the flow. This
assumption holds for flows with low velocities and pres-
sures and for bulky structures. As topology optimization
methods may lead to slender features that might deform sig-
nificantly even under low fluid pressures, this assumption
needs to be verified for the resulting optimized design.

To analyze the influence of the fluid pressure on the
structural deformation, we extend our approach described
previously. Following a staggered coupling scheme, we
compute the fluid pressure in the fluid model and map it
onto the structural model leading to an additional exter-
nal force term. The resulting structural deformations are
imposed onto the fluid model as described in Section 5.
To ensure proper convergence to steady state, the staggered
scheme is repeated until the relative error in displacements,
ek, satisfies the following condition:

o Ll

e, =

<107
’ ]

(41

where k is the iteration index of the staggered scheme.

@ Springer

82



510 S. Kreissl et al.
p=1
T
IENRNNREER
|IENERENRENA]
O
p=1 ] T
] | |
N | |
|
E p=0.5
£ p=05 2 |
T i
jRuEanni
ARNARRENY —
ERRRARRNAN]
IARENRARRRN
ENEENRRREEANAY
Outlet Outlet 2 Outlet 3 —p=0 Outlet 1 Outlet 2 Outlet 3 p=0

(a) Undeformed state

(b) Deformed state

Fig. 19 Initial structural density distribution for the four-port manifold (material and thickness optimization)

Table 6 lists the relative errors of the fluid-structure
response when the influence of the fluid forces on the struc-
tural deformations is ignored. The relative errors arising
from the omission of the fluid forces is negligible as in the
present example the fluid forces are insignificant in com-
parison to the structural stiffness. However, in cases where
the structure is more flexible (e.g. long slender components)
and/or the fluid velocities are higher, i.e. larger fluid forces,
the effect of the fluid pressure on the structure may have to
be considered.

Remark I The porosity model described in Section 4 can
be employed to predict fluid forces fr (where the subscript
‘E” indicates that the force vector is defined on the Eule-
rian mesh). However, this approach results in forces not
only at the fluid—solid interface but also within the solid
domain. These non-physical forces occur due to the fact
that porous material permits pressure gradients throughout
the material. These pressure gradients in the porous mate-
rial are still allowed to develop when p = 1 (solid), thus
leading to forces within solid regions. To ensure that fluid
forces only occur in the vicinity of the fluid—solid interface
a scaled bounce-back boundary method is employed. For
details on this method, the reader is referred to the work by
Pingen et al. (2006).

Remark 2 Given the fluid forces, f£, the mapping described
in Section 5 is used to transform fz from the Eulerian mesh
onto the Lagrangian mesh. This results in a fluid force vec-
tor fz, where the force acting on the i-th structural element
is defined as:

fi= 3 (rkal).

S j=1

(42)

This force is equally distributed to the nodes of the i-th
structural element, which finally results in the vector of
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Table 8 Parameters for the four-port manifold (material and thickness

optimization)
Parameter type  Parameter Value
Physical Length (L) 48
Height of fluid domain (HFr) 31
Height of structural 24
domain (Hy)
Reynolds number (RE) 10
Critical length (L.) 9
Dimensionless relaxation 1/1.9
time ()
Viscosity (VF) é 2t —-1)
Inlet velocity (vj,) RE -vp /L,
Outlet pressure (Pour) 1/3
Prescribed external 0.25Hg
displacement (uy)
Poisson ratio (v) 0.4
Discretization Fluid-domain mesh (n, x ny) 49x32
Fluid-domain grid size L/(ny —1)
Structural-domain mesh 53%x27
(myx xmy)
Structural-domain grid size L/(my —1)
Algorithmic Lower, upper limit for s’ 0,1
(s™in | gmax)
Step size (As) 0.05(s™max — gminy
Number of GCMMA 1
subcycles
Convergence Tolerance for KKT 1-1077
conditions (€xx;)
Tolerance for design 5.1073
change (€5)
Tolerance for constraint 5.107*

violation (e.)
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Fig. 20 Optimized impermeability distribution for the four-port manifold with external actuation

nodal fluid forces f7 . This force vector f; leads to structural
deformations. The latter in return affects the intersection
areas Afr’” (cp. (42)), resulting in slightly different fluid
forces f i Figure 17 shows the fluid forces, f'i, in the struc-
tural domain. Note that the forces within the structural solid
domain occur due to the mapping in (42).

7.2 Four-port manifold with external actuation

In the second example we optimize a system with one inlet
and three outlet ports. As before, the goal of the design
problem is to find the layout of the fluid channels and
the thickness distribution of the structural layer such that
the mass flow through the outlet ports can be controlled
through an elastic deformation in response to an external
prescribed displacement. Again, internal actuation and vary-
ing the support stiffness are not considered. The boundary
conditions for both the structural and the fluid problem are
depicted in Fig. 18. The gridded circles illustrate the struc-
tural and fluid mesh, respectively. The height of the fluid

3 s, =1
5: ! _
2 = . s,=0.5
=
H I
T
T aa
T | s =O

Outlet 1 Outlet 2 Outlet 3 !

(a) Undeformed state

domain is approximately 25% higher than that of the struc-
tural domain. This ensures that the fixed fluid mesh covers
the entire structural domain, even when the latter expands
during deformation.

We minimize the difference in total pressure between the
inlet and the outlets. Furthermore, we require for the unde-
formed configuration that the flow rate through outlet 1 (¢{')
is 1/2 of the inlet flow rate, g;,. The flow rates through
the remaining two outlets, g5 and g5, are required to be
1/4 of the inlet flow rate. In the deformed configuration all
three outlets, q?’, for j = 1,..., 3, should have the same
flow rate, i.e. 1/3 of the inlet flow rate in the deformed
configuration, qf{l. Table 7 lists the flow rate constraints for
the four-port manifold.

The structure is clamped on the left and lower edges. The
upper edge is subjected to a prescribed displacement u, =
0.25H5 in the vertical direction. The boundary conditions
for the fluid model, Fig. 18b, are a parabolic inlet velocity
and a prescribed static pressure of p,,; = 1/3 at all three
outlets.

Inlet

W W .
LW W W
AT

Outlet 1 Outlet 2 Outlet 3 !

(b) Deformed state

Fig. 21 Optimized relative substrate thickness for the four-port manifold with external actuation
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The initial density distributions in the undeformed and
deformed configurations are illustrated in Fig. 19. We ini-
tialize the density distribution with p = 1 at the boundary
that is neither inlet nor outlet and p = 0 elsewhere. The
substrate thickness is uniformly initialized with s/ = 0.5V i.

The optimization problem is defined by the following set
of equations:

3
. d d
min z=p§‘,,+p,«,,—Z(P?+Pj),
j=1
1 \? 1 \?
s.t. g1 = 0.005 — <q,-“n - Eqi‘) - (q;‘n - Zqé‘)
>0,
2 2
g = 0.005 — (q;‘ﬁ, - gq‘{) - ( 4 _ §q§’> (43)
>0,
N
I << P
83 = N Z pmltd 0.6 >0,
i
s,'n”i'l < s;'n < spar
Srmin < S; < s[max7

where, g1 and g describe the flow rate constraints and g3
requires that at least 60% of the design domain has to be
solid. Table 8 lists the parameters used for the four-port
manifold example.

Figure 20 shows the optimized fluid channel, converged
after 137 iterations. All three constraints are satisfied. In the
undeformed configuration, the mass flow to the output ports
2 and 3 is limited by height of the horizontal main channel.
When the structure undergoes deformation, the main chan-
nel widens, increasing the mass flow through outlet ports 2
and 3. Furthermore, the fin between outlet 2 and 3 deforms
such that the channel to outlet 2 is widened and more flow is
directed toward outlet 2. The increased mass flow through
outlet 2 and 3 simultaneously leads to a decrease of the mass
flow through outlet port 1.

Figure 21 illustrates the optimized relative substrate
thickness. The thickness is mostly minimized in areas where
the channel is located (cp. Fig. 20). This weakens the struc-
ture, allowing for a greater widening of the channel when
deformed. The link slightly to the right of the center of the
design domain stiffens the connection between the upper
half of the design domain and the fin between outlet 2 and
3. When the structure is deformed, this link pulls the tip of
the fin up and to the right, redirection the flow.

@ Springer

Table 9 Parameters for the four-port manifold (material, eigenstrain
and support-layout optimization)

Parameter type ~ Parameter Value
Physical Length (L) 48
Height of fluid domain (HFr) 24
Height of structural 24
domain (Hs)
Reynolds number (RE) 10
Critical length (L) 9
Dimensionless relaxation 1/1.9
time (t)
Viscosity (vr) é 2t -1
Inlet velocity (vi,) RE -vp/L.
Outlet pressure (pour) 1/3
Prescribed external 0
displacement
Poisson ratio (v) 0.4
Discretization Fluid-domain mesh (ny x ny)  49x25
Fluid-domain grid size L/(ny —1)
Structural-domain mesh 53%x27
(my X my)
Structural-domain grid size L/(my — 1)
Algorithmic Lower, upper limit for 0,1
sj,z, si (s™min | gmaxy
Lower, upper limit for —1,1
S(i» (s;""", sPr)
Step size (As) 0.05(s™max — gminy
Number of GCMMA 1
subcycles
Convergence Tolerance for KKT 1-1073
conditions (€xx;)
Tolerance for design 1-1072
change (€5)
Tolerance for constraint 1-107°
violation (e.)
TFEH T ,0:]
p=0.5
—p=0

Outlet 1 Outlet 2 Outlet 3

Fig. 22 Initial structural density distribution for the four-port manifold
(material with internal actuation)
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Fig. 23 Optimized impermeability distribution for the four-port manifold with internal actuation
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Fig. 24 Optimized eigenstrain for the four-port manifold with internal actuation
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Fig. 26 Detail of optimized support layout in deformed configuration
(cf. Figs. 24b and 25b)

7.3 Four-port manifold with internal actuation

The third example considers the same problem as in Section
7.2. However in this example we consider internal instead
of external actuation and vary the eigenstrain distribution
along with the support stiffness. The thickness is not altered.
When employing eigenstrains, an adjustable support-layout
is crucial to achieve large local deformations without requir-
ing excessive eigenstrains. Since the system is no longer
subjected to an external displacement and the displacements
along the structural design domain are fixed, the dimen-
sions of the fluid mesh are chosen such that they match
the structural mesh. Table 9 lists the algorithmic parame-
ters. To demonstrate the robustness of the current approach
with respect to the initial design, we choose a different ini-
tialization for the density distribution, depicted in Fig. 22.
The optimization problem is identical to the one defined in
(43), but with box constraints on s% and s! instead of s;.
The eigenstrain design variables are uniformly initialized
with sé = 10~* and the support design with vﬁ = 0.3. The
substrate thickness is fixed at t = 1.05, i.e. 5| = 0.5.

Figure 23 shows the optimized impermeability distribu-
tion after 179 iterations (converged) in the undeformed and
deformed configuration. As can be seen from these figures,
the channels to the outlet ports 2 and 3 (center and right)
expand significantly in the deformed configuration, increas-
ing the flow rates through these ports. On the other hand the
channel to outlet port 1 contracts, which reduces the flow for
outlet 1. The optimized eigenstrain distribution is illustrated
in Fig. 24. Tt shows positive strains (s; = 1: expansion)
along the channels to the outlet ports 2 and 3 and negative
strains (sé = —1: contraction) around these channels, lead-
ing to a significant widening of the channels to the outlet
ports 2 and 3. The area of the domain that coincides with the
channel to outlet 1 shows negative strains, i.e. the channel
to outlet 1 contracts.

@ Springer

The optimized support layout is depicted in Fig. 25. It
shows that mainly the boundaries on the right and top edges
are fixed, while the main bulk of the design space is unsup-
ported. The small areas of high support stiffness within the
interior of the domain are beneficial for the development of
local areas of contraction/expansion, as depicted in Fig. 26.
The elements with high support stiffness in between the
two ellipses help to separate the area of contraction and
expansion by bracing the structure.

8 Conclusions

An approach to topology optimization of FSI problems has
been presented and applied to the multi-objective design
optimization of dynamically tunable, elastically deforming
micro fluidic devices. The proposed design method allows
for optimizing the topology of the fluid channels in multi-
layered structures, the thickness distribution of the structural
layers, the layout of the active material, and the location of
supports.

It was shown that for the class of problems considered in
this paper, the structural deformations due to fluid forces are
negligible in comparison to the deformations due to exter-
nal and internal actuation. This allows considering only a
one-sided structure-fluid coupling. As topology optimiza-
tion gives only limited control over the resulting geometric
features, the validity of this simplification should be verified
for the resulting optimized design.

In order to alter the flow noticeably, large deformations
are needed. Therefore, the structural response was mod-
eled by a geometrically non-linear finite element model. To
avoid issues due to large compressive loading, such as buck-
ling, predominantly tensile loads have been considered in
this study. However, compressive external and internal loads
are expected to be particularly efficient in altering channel
flows and remain to be studied in the future. The current
study employs a linear stress—strain relation. To account
for large strains a non-linear constitutive model such as a
hyper-elastic model should be used. Due to the separate
treatment of fluid and structural domain this could be easily
incorporated in the existing framework.

In this study, a simple 2-D flow model has been consid-
ered. To capture the influence of bottom and top structural
layers on the flow, refined fluid models need to be applied.
Again this could be implemented without changing the
overall computational framework. The fluid—solid interfaces
are described via a porosity approach, which approximates
the flow characteristics sufficiently well for low Reynolds
number flows. However, for high Reynolds numbers, the
stair-step interface geometry will likely cause problems.

The proposed method describes the structural deforma-
tions on a Lagrangian mesh and the flow is predicted on a
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fixed Eulerian mesh. While in this paper a hydrodynamic
lattice Boltzmann method was used, any finite element or
finite volume flow solvers can be integrated into the pro-
posed computational framework. The separation of struc-
ture and flow solver allows the use of standard analysis
tools. In particular, it circumvents the need for fluid analysis
methods capable of operating on moving meshes. However,
a mapping method is needed to transform the structural den-
sity distribution into a impermeability distribution defining
the layout in the undeformed and deformed configurations.
In numerical studies the proposed simple geometric map-
ping approach was shown to be robust and computationally
inexpensive.

Three numerical studies on the design of tunable mani-
folds have demonstrated that the proposed method is well
suited for topology optimization of fluid-structure sys-
tems. While most micro-fluidic applications are dominated
by low Reynolds number flows allowing for a one-sided
FSI model, two-way coupling needs to be considered in
general.
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SUMMARY

A computational methodology for optimizing the conceptual layout of unsteady flow problems at low
Reynolds numbers is presented. The geometry of the design is described by the spatial distribution
of a fictitious material with continuously varying porosity. The flow is predicted by a stabilized finite
element formulation of the incompressible Navier—Stokes equations. A Brinkman penalization is used to
enforce zero-velocities in solid material. The resulting parameter optimization problem is solved by a
non-linear programming method. The paper studies the feasibility of the material interpolation approach
for optimizing the topology of unsteady flow problems. The derivation of the governing equations and
the adjoint sensitivity analysis are presented. A design-dependent stabilization scheme is introduced
to mitigate numerical instabilities in porous material. The emergence of non-physical artifacts in the
optimized material distribution is observed and linked to an insufficient resolution of the flow field and
an improper representation of the pressure field within solid material by the Brinkman penalization. Two
numerical examples demonstrate that the designs optimized for unsteady flow differ significantly from
their steady-state counterparts. Copyright © 2011 John Wiley & Sons, Ltd.
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KEY WORDS: Navier—Stokes flow; Brinkman penalization; finite element formulation; stabilization;
adjoint sensitivity analysis; non-linear programming

1. INTRODUCTION

A broad class of fluidic systems is dominated by unsteady flows, such as systems involving
accelerating/decelerating flows, time-varying boundary conditions, and dynamic instabilities.
Specific examples include unsteady flows due to the opening/closing of valves, pulsating flows
due oscillatory inflow conditions in pumps, and vortex shedding [1-4]. In such cases, using
steady-state flow models in the design process may lead to sub-optimal solutions; instead the
unsteady nature of the flow needs to be considered. In this paper, we present a methodology to
optimally design the layout and shape for unsteady flow problems.

In contrast to the large body of work on optimizing flow problems under steady-state conditions
[5, 6], there are only few studies on design optimization methods considering unsteady flows. For
example, Mani and Mavriplis [7] considered unsteady effects of compressible flows for design
optimization. Homescu et al. [8] applied optimization strategies to suppress vortex shedding of a
flow around a cylinder. Rumpfkeil and Zingg [9, 10] optimized the shape of an airfoil along with
control parameters for unsteady external flows.

*Correspondence to: Kurt Maute, Center for Aerospace Structures, University of Colorado at Boulder, Boulder, CO,
U.S.A.
TE-mail: maute@colorado.edu

Copyright © 2011 John Wiley & Sons, Ltd.
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(a) (b) (©)

Figure 1. Shape vs topology optimization of a channel: (a) initial design;
(b) shape-optimized design; and (c) topology-optimized design.

The above-mentioned studies all focus on shape optimization problems that are limited to
changes in the shape of boundaries present in the initial design, as shown in Figure 1. Shape
optimization is well suited to fine-tune an existing close-to-optimal design. To find conceptually
novel designs without the need for a well-defined initial guess, topology optimization has shown
great promise as an engineering design tool [11]. The underlying idea of topology optimization is
to describe the geometry of a body via its material distribution. By varying the material distribution
the geometry of the design can be altered conceptually, i.e. fluid/solid interfaces can be created or
merged, see Figure 1(c). To allow for a smooth transition between fluid and solid states, a fictitious
material with continuously varying porosity is typically introduced.

Fluid topology optimization was pioneered by Borrvall and Petersson [12] for Stokes flows.
Guest and Prévost [13] conducted fluid topology optimization using a Darcy—Stokes flow model.
Challis and Guest [14] used a level set parameterization of the material distribution to solve Stokes
flow problems. The work on Stokes models was extended to Navier—Stokes (NS) models [15-18].
Othmer et al. optimized the layout of 3D airduct manifolds for automotive applications employing
an incompressible NS model [19, 20]. As an alternative to the NS flow model, Pingen et al. used
the lattice Boltzmann method (LBM) for solving fluid topology optimization problems [21, 22].
Kreissl et al. [23] employed the LBM in combination with a level set-based geometric interface
representation for generalized shape optimization of fluids.

So far topology optimization has only been applied to steady-state fluid problems, although a
wide range of engineering applications involves unsteady flows. Furthermore, optimization strate-
gies based on steady-state flow models are generally limited to small Reynolds numbers. At higher
Reynolds numbers, even if a steady-state flow solution exists for the initial and optimum design,
unsteady flow may be present in intermediate designs that are generated in the course of the opti-
mization process. In this case, the inability of describing unsteady flows by steady-state models
often prevents the optimization process to converge [22]. To consider a broader class of flow
problems, unsteady flow models need to be integrated into optimization methods.

The current study focuses on the topology optimization of fluidic devices with unsteady flows,
i.e. the flow is assumed to vary over time and is not necessarily limited to oscillatory varia-
tions. The flow response is predicted by a streamline-upwind/Pedrov—Galerkin (SUPG), pressure-
stabilizing/Pedrov—Galerkin (PSPG) finite element (FE) formulation of the incompressible NS
equations [24] and an implicit time integration scheme. Following a fictitious material approach
the elemental porosities are treated as design variables. Flow through porous material is modeled
via a Brinkman penalization, which enforces zero-velocities in solid material [25].

The optimization problems of interest can be written in time-discrete form as follows:

Ny
min  Z{°,....tN.s) = Q”(Z z”(t",t”,s)>,

n=0
N

st Hi(@®, ..tV )=, X 1" 89 ) =0 Vji=1,...,Ny, (1)
n=0

Ny
G, ... tNs=9; (Z g;?(z",f",s)> >0 Vj=1,...,Ng,
n=0
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where s is the vector of design variables and " is the vector of fluid-state variables satisfying
the discretized governing equations Rﬁyn at the time steps n=0, ..., N;. The objective Z is a
differentiable function 2 that depends on the sum of the contributions, z”, from all time steps.
The equality and inequality constraints are denoted by H; and G}, respectively, and have the
same functional form as Z. The above parameter optimization problem (1) is solved by a non-
linear programming method. The gradients of objective and constraints are computed by an adjoint
method.

The key challenges of the optimization approach outlined above include (a) the accuracy and
stability of the numerical fluid model in dependence of the material layout and (b) the costs of
computing the flow and adjoint solutions accumulated over the optimization process. While the latter
aspect deserves attention especially for large numerical models, this study focuses on the interplay
between describing the geometry via a Brinkman penalization and the flow prediction. Usually,
the Brinkman penalization is used to approximate flow through porous material. In topology
optimization, we seek to enforce zero-velocities in solid material, i.e. in regions where the solid
volume fraction is one. For optimization problems at steady-state conditions and very low Reynolds
numbers (Re~1), using a Brinkman approach has shown satisfying results. In this study, we
consider unsteady flows at Reynolds numbers between 100 and 1000. For such problems we
will show that the Brinkman approach can suffer from numerical instabilities and may lead to
non-physical artifacts in the optimized material layout. These issues are due to (a) a detrimental
interaction between the SUPG-stabilization technique and the Brinkman term, (b) an insufficient
spatial resolution of the flow fields, in particular within porous regions, and (c) the improper
representation of pressure fields in solid material by the Brinkman approach.

In this paper, we will discuss these numerical issues and propose methods to mitigate them. In
Section 2 the stabilized FE formulation of the incompressible NS equations with Brinkman penal-
ization is outlined. The features of the Brinkman approach in the context of topology optimization
are studied in Section 3. Section 4 presents the adjoint sensitivity analysis. In Section 5 the key
features of the proposed approach are demonstrated with two 2D numerical examples. The main
results are summarized in Section 6.

2. FINITE ELEMENT-BASED INCOMPRESSIBLE NAVIER-STOKES FORMULATION

For a given design, the unsteady flow field is predicted by an FE formulation of the incompressible
NS equations:

0v: O 065 -
Momentum equation: p ((/—Uf + # ﬁj> +ad=—2+ fiB, ?2)
ot 0% 0Xj
- L. 0b
Incompressibility condition: R =0, 3)
Xi

where p, D,  describe the dimensional density, velocity, and time, respectively. The subscripts
i, j define the spatial directions. The external body forces are denoted by fiB; for the sake of

brevity fiB is assumed to be zero and dropped in the following derivations. The stress tensor G;;
is defined as

R . 1 (b 0D;
Gij=—poy+2fi3 (a)el» + a)e{)’ (4)
j i

where p and [t describe the dimensional pressure and dynamic viscosity. The Brinkman term, &9,
scales the velocities based on the design-dependent scalar & that characterizes the local porosity.
Details on the Brinkman method will be presented in Section 3.
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After integration by parts of 06;;/0%; and transformation to non-dimensional variables, the weak
form of the governing Equations (2) and (3) can be written as follows:

ov; ow;  Owj .
/w,p dQ+/w,p v dQ— / Wi C00) poydo
0 ot 0x Ox;  Ox;
[

inertia convective pressure
1 [ ow; awj> 1 <6v, ov]) ov;
+ 1 = + 2u— dQ—i—/ wiav;Q+ | g—dQ
./92 <0x/ 0x; 3 Oxj  Ox; o axl
. : —_——— _,_/
shear Brinkman continuity
1/ 0vi Ovj ))
— [ win; 0ij+2 + dr=o, 5
/l; o ( POy ) <ﬁ)€j 6x[ ( )
boundary

where w; is a velocity test function and g a pressure test function. The non-dimensional dynamic
viscosity is defined as

L : 6)
= =5
Liefvp Re

where Ly, 9, p are the dimensional reference length, reference velocity, reference density and Re
is the Reynolds number. The nodal static residual vector of the volume terms is defined as:

ov; 1 /0w, OJw;
/(w,'p<,\—vlvj>+_<(w’+ﬂ>6ij+wiavi>dg
o Q 0xj 2\0x; Ox

R®= A en>1, (7
/ Wi 40
Q é;xt
The contribution from the boundary term to the nodal static residual is given by:
ov; Ov;
nj | —pdy+2 +—2L))dr
R = /rw’n’ ( Pyt ((%c, ox; )) end*!, ®)
0

Based on Equations (7) and (8), the elemental static residual can be written as
=ARE+RY), ©)

where 2 defines an assembly operator. The contribution from the inertia term will be considered
later. In this study, the velocity and pressure fields are approximated piecewise linearly by a bilinear,
equal-order-interpolation, four-node velocity—pressure Q1Q1-element [24].

2.1. Stabilization

The standard Galerkin FE formulation of the incompressible flow equations suffers from two forms
of numerical instabilities [26]: (I) velocity oscillations due to the advective term in the NS equation,
and (II) pressure oscillations in the case of an inappropriate combination of interpolation functions
for the velocity and the pressure [24]. Since the Q1Q1-element uses the same interpolation order
for velocity and pressure, both instabilities have to be addressed. We employ the SUPG formulation
to prevent spurious node-to-node oscillations in the velocity field (I) [24]. To inhibit pressure
oscillations (II), the PSPG scheme is used.

Copyright © 2011 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2011; 87:1229-1253
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The SUPG and PSPG stabilization parameters are computed following the work by Tezduyar
et al. [24]

TSUPG = M’(Rev)v (10)
. (Rel)) (11)

T = r(Rrey),

PSPG 2||V|| 174

where v is the local velocity, defined at every Gauss-integration-point, || V|| is the norm of the
so-called ‘global scaling velocity’ [24] which is set to a constant value of 107°. Based on those
local velocities, the elemental Reynolds numbers Re, and Ref/ are defined as

V&P 1A

=5 (12)
Ivn*
Rel = Sy (13)

where v describes the kinematic viscosity. The ‘element lengths’, & and h*, are computed by:

4 a -1

h=2 — .VN, ; (14)
El vl
A

=222, (15)
T

In Equations (14) and (15), N, is the shape function associated with node a and A, is the area of
the element. The function »(Re) used in Equations (10) and (11) is defined as:

Re/3  if 0K Re<3,
1 if Re>3.

r(Re):{ (16)

The graph in Figure 2 illustrates the dependency of the SUPG-stabilization parameter tsypg on
the velocity for a given streamline element length &, cp. Equation (10). Owing to the structure
of the function r(Re), Equation (16), the velocity cancels out for elemental Reynolds numbers

W/12v 4

SUPG-Stabilization parameter 7.

=R 2

<0< Re<3

10 20 30 40 50 60 70 80 90 100
Velocity norm ||v”|

Figure 2. SUPG-stabilization parameter TsypG-.
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less than three, hence tsupg = h2 /12v for O Re, <3. For elemental Reynolds numbers larger than
three, r(Re,)=1 and therefore tsypg =h/(2||v&||) for Re,>3.

Given the stabilization parameters tsypg and tpspg, Equation (5) is modified by adding a
stabilization term:

51),‘ 51),‘ ) 1 <6w[ 6w]'> (71),')

wip| =—+—vj)+5 +—=—)ojtwiavi+qg-— dQ—/ w;njo;dl
/Q< ’p<at ox; ) T2\, e )T T Gy, AL

Nel 1 w; 0q ov; Ov; Jojj
+ -\ —vi+7 — —4+—v; |- +ov; |dQ=0. (17
e;l o, p< SUPGP ox, i s 6x,-> (P( o o) o i a7
The elemental static residual vector of the stabilized system can be derived analogous to
Equations (5)—(9) and the contribution from the stabilized inertia term will be discussed below.

2.2. Time integration

The temporal evolution of the flow fields is predicted by an implicit time-marching scheme. For

the sake of simplicity, a standard backward Euler scheme is considered here. The time derivative

of the fluid-state vector f is approximated as follows:

i -l
Y,

where the superscript # indicates the time step, At is the time step size, and f is the initial condition.

The dynamic residual is computed as

with 0 =f, (18)

. _
R}, =f—f,

: o (19)
R}, =M'f+R! Vn=1... N,

where R is the static residual. The mass matrix collects the contributions of the inertia terms in
Equations (5) and (17), respectively.

3. BRINKMAN PENALIZATION FOR NAVIER-STOKES FLOW

In topology optimization the geometry of a body is typically defined via its material distribution.
For fluid topology optimization, the most common approach is to enforce the boundary conditions
along the fluid—solid interface and within the solid via a Brinkman penalization. In contrast to
methods using the Brinkman approach to approximate flow through real porous material, here a
fictitious porous material is used as a vehicle for continuously interpolating between fluid and
solid states in the course of the optimization process. For flow problems, the optimization process
converges typically to material distributions composed of mostly fluid and solid states. Thus, the
Brinkman penalization should (a) represent the correct flow fields in the fluid and solid regions
and (b) lead to a smooth transition of flow fields as the porosity is changing.

The porosity of the material is represented by the scalar « in the non-dimensional form of the
NS equations, Equation (5), and can be thought of as a measure of the impermeability of the
material: for a value of o>> 1, i.e. high impermeability (solid material), the velocity v; vanishes in
order for Equation (5) to be satisfied. Contrary, for a value of «=0, i.e. zero impermeability (fluid
material), the Brinkman term vanishes, leading to the standard incompressible NS formulation.

Gersborg-Hansen et al. [15] employed an analogous velocity penalization. However, in their
study the scalar « is based on the lubrication approximation and controls the distance between two
plates separated by fluid. In addition to the Brinkman term, Seo [27] also used an impermeability-
dependent viscosity for the material interpolation. Following the work by Borrvall and Peterson
[12], the current study chooses a convex interpolation function o

1+ py
S+ Py

a(s) =T+ (e —a0)s with 0<s<1, (20)
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Figure 3. Impermeability interpolation.
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Figure 4. Example configurations considered in the following studies (dashed lines
indicate fluid—solid interfaces): (a) step [28, 29] and (b) necking.

where o, o are the lower and upper limits, s defines the optimization variable, and p, is a penalty
parameter that allows to control the amount of elements with intermediate impermeabilities in the
optimal design. For large p,-values the interpolation becomes more linear cp. Figure 3, leading to
less intermediate impermeabilities (‘gray’ elements) [12].

In the following subsection, we will discuss the suitability of the Brinkman approach for topology
optimization of unsteady flows. We will illustrate various aspects with two examples shown in
Figure 4. The dashed lines indicate the fluid—solid interface. The gray areas, indicating solid
material, will be represented either by a Brinkman approach or by a body-fitted mesh; in the
latter case, the gray areas are not part of the computational domain. The inflow conditions for

Copyright © 2011 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2011; 87:1229-1253
DOI: 10.1002/nme

97



1236 S. KREISSL, G. PINGEN AND K. MAUTE

T T T
Re=10

_ — — —Re=100 | 7]
> — - — Re=1000| |
£
s i
=
2 |
E
s il

O il il il il i \\:H\.\‘_'"—FO—WA Il L 1

10° 102 10" 10° 10’ 10? 10° 10* 10° 10° 10’

Maximum impermeability @

Figure 5. Velocity penalization, with =0 and varying o (based on configuration in Figure 4(a)).

the step problem in Figure 4(a) are a plug flow in the x-direction at the left edge and prescribed
velocities along the top edge. For this example, we only consider one mesh with 55 elements in
the x-direction and 10 elements in the y-direction. The inflow condition for the necking example
in Figure 4(b) is a parabolic velocity profile. We will consider constant and time-varying inlet
velocities. For this example different levels of mesh refinement are considered, indicated by the
gridded circles in Figure 4(b). Both problems have traction-free outlet conditions [30].

3.1. Velocity penalization

The flow velocities within solid material and along the fluid/solid interface need to vanish. To study
the ability of the Brinkman approach to enforce these conditions, we consider the step example
depicted in Figure 4(a) and compute the flow solution for Re =10, Re=100, and Re =1000 after
three time steps with vi,=1 and Ar=0.1 . We vary the impermeability «, which is uniform in
the porous domain, i.e. within the step. The velocity norm at the center of the gray area is plotted
over the impermeability o in Figure 5. Note that the results are presented in non-dimensional form.
The graphs illustrate that values of «~10* are necessary to drive the velocity norm ||v||<1073.
Borrvall and Petersson [12] as well as Khadra et al. [31] propose a maximum impermeability o that
is dependent on the Reynolds number. However, the graphs in Figure 5 suggest that for all three
Reynolds numbers a maximum impermeability of o> 10* is sufficient to enforce the zero-velocity
condition. Therefore, we choose a Reynolds number-independent maximum impermeability of
%=2.5x10* for the examples studied in this paper; the lower limit is set to ¢ =0.

3.2. Treatment of pressure field in solid material

As can be seen from the momentum equation (2), the Brinkman approach only penalizes velocities
but does not explicitly control the pressure. Therefore, the pressure is continuous across the solid
material, cp. [28]. We revisit the example problem in Figure 4(b) to illustrate this issue and compare
the pressure for a body-fitted and for a Brinkman-based configuration. The graphs in Figure 6
plot the pressure along y=1/2 and y=3/4 for two levels of mesh refinement. The graphs for the
body-fitted and Brinkman-based configuration show a qualitative agreement. Note that no pressure
values are computed in solid domain when using a body-fitted mesh. Comparing Figure 6(a) and
(b) indicates that the difference between the Brinkman and the body-fitted configuration decreases
as the mesh is refined. Furthermore, the figures illustrate that within the (porous) solid domain,
the Brinkman approach leads to a continuous pressure distribution.

For modeling flow through porous material with a solid volume fraction of less than one the
pressure field in the porous region can be considered physical. However, the current study uses the
porosity approach only as a vehicle. Ideally, the solid material should be completely impermeable
for both convective mass transport and pressure diffusion. The inability of the Brinkman approach
to prevent pressure diffusion may lead to errors in the flow prediction. In the context of topology
optimization and depending on the setup of the optimization problem, we observed that erroneous
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Figure 6. Pressure gradient in solid material (based on configuration in Figure 4(b)):
(a) 60x40 mesh and (b) 90x60 mesh.
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Figure 7. Error between porous boundary representation and body-fitted mesh (based
on configuration in Figure 4(b)): (a) inlet velocity ramp (here N; =20) and (b) error.

pressure fields within the solid domains may lead to non-physical artifacts in the final design,
especially if the computational mesh is coarse. This issue will be revisited in Section 5.3.

3.3. Temporal and spatial refinement

For topology optimization of steady-state flows at very low Reynolds numbers, Re & 1, the accuracy
of the Brinkman penalization has been verified in numerous studies [12, 13,21]. Here, we study
the spatial and temporal accuracy of the Brinkman penalization for unsteady flow problems. We
compare the results of a porosity-based geometry representation with those of a body-fitted mesh
for different time step sizes Ar and grid sizes Ax.

We consider the necking problem depicted in Figure 4(b). The inlet velocity is ramped up from
vy =0.1 to vy =1 over a period of T =1, see Figure 7(a). The maximum inlet velocity corresponds
to a Reynolds number of Re=100. For the porosity-based design, we set the impermeability of
the solid elements to o=0 and the remainder to «. We study three levels of mesh refinement:
nx xny=30x 20, 60 x40, and 90 x 60, where nx, ny is the number of elements in the x-direction
and y-direction, respectively. Keeping the overall simulation time constant, T =N;-At=1, we
consider different time step sizes At =1/N; by changing the number of time steps N;. We monitor
the x-velocity of the porosity-based configurations, v N’, at all N, time steps and compute the error
relative to the solution using a body-fitted mesh with highest temporal resolution (N, = 1000), v2'*:

T T
(1)~ )
Ny N;
T
Ni
zu e (o)

Copyright © 2011 John Wiley & Sons, Ltd.

N,
Zntzl

ex(Ny)= ‘ 100 for N;=2,3,4,5,10,50, 100,200, 1000. (21)
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The relative error e, is plotted over the number of time steps N; for different spatial resolutions in
Figure 7(b). As the number of time steps N; increases, i.e. At decreases, the relative error between
the porous and the body-fitted representation decreases. The graphs further illustrate that relative
error decreases as the mesh is refined. The reduction in the error due to the spatial refinement
becomes more pronounced when smaller time steps are used.

This study suggests that in the context of topology optimization the employed Brinkman approach
is well suited to predict the flow fields of unsteady flow problems. However, small time steps and
a refined mesh are necessary to obtain accurate results. Note that the (porous) solid domain in the
present example is rather bulky and therefore the inability of the Brinkman approach to prevent
pressure diffusion through solid material does not lead to noticeable errors.

3.4. Brinkman penalization and SUPG stabilization

The presence of the Brinkman term in the stabilized FE formulation of the incompressible NS
equations leads to two interesting numerical phenomena: (a) a ‘stabilizing’ effect that unlike
e.g. SUPG stabilization leads to incorrect flow predictions and (b) the occurrence of numerical
instabilities in porous regions for which we present a remedy.

In numerical studies, we have observed that the contribution from a Brinkman term with >0
can be sufficient for suppressing velocity oscillations even when no SUPG stabilization is applied.
However, we will show with an example that this, unlike the SUPG stabilization, may drastically
change the physics of the system. We revisit the step example depicted in Figure 4(a) considering
a steady-state flow at a Reynolds number of Re =250, cp. [29, 32]. A comparison between the x-
velocities (I) without SUPG stabilization and without Brinkman penalization (tsypg =0, «=0), (I)
without SUPG stabilization and with Brinkman penalization (tsypg =0, 2 =1) as well as (IIT) with
SUPG stabilization and without Brinkman penalization (tsypg #0, «=0) is depicted in Figure 8.

The graph for case (I) shows velocity oscillations in the area in front of the step. These oscillations
can be suppressed by adding a Brinkman penalization with «=1 for all elements, case (II). Finally,
the graph for case (III) shows the x-velocity for a SUPG-stabilized system without Brinkman
penalization. Comparing the velocities for (I) and (III) demonstrates that velocity oscillations can
be suppressed by a Brinkman term; however, the resulting solution differs significantly from the
actual physical solution, case (III). Therefore, the Brinkman penalization should not be used to
‘stabilize’ the flow equations, for example by choosing a large value for the lower limit, o, in
Equation (20).

According to Seo [27], who conducted topology optimization for steady-state flows, large
impermeabilities can result in localized velocity oscillation at the fluid—solid interface. Numerical
studies conducted by the authors confirmed these issues: for a non-zero Brinkman term the flow
solution diverges if the stabilization parameters are computed according to Equations (10) and (11).
To investigate this phenomenon we revisit the porosity-based configuration depicted in Figure 4(b),

15 : :
Tare= 0,00=0
- — = Tw=0,a=1
oy — = Tu*0,a=0 ||
o =

o
o

o

Velocity v, at y

Figure 8. Stabilizing effect of tsypg and «; the results are computed for configuration in Figure 4(a).
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Figure 9. Contours of horizontal velocity v, with and without SUPG stabilization
of the Brinkman term, cp. Figure 4(b) with 60 x 40 mesh.

for a steady-state flow with Re=100. The solution diverges if the stabilization is computed
according to Equation (17). However, the solution converges if the Brinkman term is not SUPG-
stabilized, cp. Figure 9. This observation suggests that the divergence is related to the SUPG
stabilization of the Brinkman term.

As an alternative to simply removing the Brinkman term from the SUPG-residual, which leads
to a mathematically inconsistent formulation, we introduce an impermeability-dependent ‘SUPG-
switch’, csypg(a). This switch cancels the SUPG stabilization if the impermeability exceeds a
threshold while ensuring a mathematically consistent system. Replacing tsypg in Equation (17)
with the product

TSuPG = CSUPG(9)TSUPG (22)

effectively mitigates the convergence issues due to velocity oscillations. This ‘SUPG-switch’,
csupg(a), should not be confused with the switch r(Re) in Equation (16): both are necessary for
the solution to converge. To guarantee the differentiability of the ‘SUPG-switch’ with respect to
the design variables, a smoothened Heaviside-function is employed for csupg(c)

1 if a<oy,
csupG(0)={ 0.5+0.5sin ((“’ — +o.5> n) i oy <oy + oy (23)
Upw
0 if o> o0 + otpw,

where o, defines the impermeability threshold and ay,, the bandwidth of the smoothened Heaviside-
function, cp. Figure 10. We achieved the best results with small values for both o; and opy:
o = oy = 1074,

To illustrate the effect of the impermeability-dependent ‘SUPG-switch’, csupg(a), we analyze
the step problem depicted in Figure 4(a) considering a steady-state flow at a Reynolds number
of Re=250 [32]. The solid domain in Figure 4(a) is assigned an intermediate impermeability of
=100, the remainder of the domain is 100% fluid, i.e. x=x=0. The graphs in Figure 11 show
a comparison of the velocity in the x-direction, vy, for (I) the body-fitted mesh, (II) a porosity-
based configuration with a constant csypg =1, i.e. Tsupg is not rescaled and (III) a porosity-based
configuration with an impermeability-dependent csypg = csupg(2). As can be seen from the graphs,
vy oscillates when tsypg is not adjusted to the impermeability. Contrary, if tsypg is scaled
down with an impermeability-dependent csypg(e) according to Equation (22), the oscillations are
mitigated significantly.
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Figure 11. Comparison between velocities with constant csypg and impermeability-dependent
csupg(a) (based on configuration in Figure 4(a)).

4. ADJOINT SENSITIVITY ANALYSIS

The gradients of objective and constraints with respect to the design variables are computed by
an adjoint sensitivity analysis. In the following we specifically consider the functional form of
the objectives and constraints, defined in the optimization problem, Equation (1). For the sake of
brevity, the adjoint formulation of the sensitivity equation will be derived only for the objective, Z.
The sensitivity equations for the constraints can be developed analogously.

For compactness, we combine the quantities at discrete times to column vectors:

i=1[2"....,2"",
Rayn = [RY,. ...,Rf}gn]T, (24)
=1, ... T

Using this notation, the derivative of the objective Z, cp. Equation (1), with respect to the design
variable s; can be written as:

daz oz (ox\' (o (oz\ df
—=—+(—=) [—+=) ) (25)
dsp  Os 0z 0sy of ) dsi
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The derivative of the fluid state with respect to the design variables, df'/dsk is computed from the
total derivative of the residual equation:

dRgyn _ ORgyn n ORgyn d_f _o

= =0. 26
dsy sy of dsg (26)
Solving Equation (26) for df/dsk and substituting the result into Equation (25) yields
~ -1 _~
dz _or (o "oz [oz\[Ran) ORayn o7
dse  dsp  \ 07 osk. \of/\ of G
where we can identify the following adjoint problem:
Ry ) oi\" oz
0 ~ g,
) G (—Z> 2 (28)
of of 0Z

For the zeroth step, n =0, the derivatives of the dynamic residual vector with respect to the state
vectors 0ngn /0t are given by:

) I Vj=0,
UL (29)
ot 0 Vj=1,....N,.
For the nth step, n>0, the derivatives é‘ngn /0f7 yield:
M =C" Viji=n—1
u At J=n=n
aRd n
wij - EjLaR? =D" V j=n 30)
¢ A =
0 Vijef{l,..., N\{n—1,n}.
Rewriting Equations (28)—(30) in matrix notation, leads to the following adjoint system:
1’ 120 @2/ (02 /02%)
1" ¢’ Al (071 /otYT (07 /07
DT . 2=—| @ ez [ @
[ch—1yT : :
YT | \A" @z jot™)" (@2 /02N
L J
AT 2

As the matrix AT is band structured with a single block at the end of the diagonal this system can
be solved conveniently backwards in time starting from time step N;. Given the adjoint solution
A, the derivative of the objective with respect to the design variable s; can be determined as
follows:

(32

dz o7 (6_J>T g 7+ ORayn

dse s \ 0z ) Ose dsi
For solving the optimization problems presented in Section 5 we store the fluid states in-core at
all time steps when solving the forward problem. The sub-matrices C" and D" are recomputed for

every time step in the adjoint sensitivity analysis. Strategies for reducing the memory requirements

Copyright © 2011 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2011; 87:1229-1253
DOI: 10.1002/nme

103



1242 S. KREISSL, G. PINGEN AND K. MAUTE

and for lowering the computational costs for the adjoint sensitivity analysis were studied, for
example, by Rumpfkeil and Zingg [9, 10] and Hinze ef al. [33].

5. NUMERICAL EXAMPLE: DIFFUSER FOR UNSTEADY INLET CONDITIONS

The utility and key features of the proposed topology optimization approach for unsteady flow
problems are illustrated with two numerical examples. In both examples the system is subjected
to an unsteady inflow condition with the fluid initially being at rest, i.e. the initial conditions are
design independent.

The parameter optimization problem is solved using the Globally Convergent Method of Moving
Asymptotes (GCMMA) of Svanberg [34]. The GCMMA is a dual algorithm that solves the
optimization problem iteratively in the space of the dual variables. At each iteration an approximate,
explicit, separable subproblem in the space of the primal variables is created and solved analytically.
This algorithm is specifically suited for problems with large numbers of design variables and few
constraints. In the following, the GCMMA is considered converged, if the constraints are satisfied
and the relative change in the design variables, Ay, is sufficiently small, i.e.

Is” ! —s™|

<A, 33)
lls™ =1

where the superscript m defines the iteration number of the optimization process. The parameter
settings for the GCMMA used in the following are listed in Table I. The initial design domain is
set to 100% fluid, i.e. sy=1 Vk=1, ..., N;.

5.1. Diffuser design for steady-state and unsteady flows

The diffuser problem, shown in Figure 12, was introduced by Borrvall and Petersson [12] and has
been studied frequently for steady-state flow conditions [14, 21]. The objective is to minimize the

Table I. GCMMA parameters.

Parameter Value
Step size (As) 0.1
Initial adaptation of asymptotes 0.5
Adaptation of asymptotes 0.7
Scaling factor for constraint violation 102
Maximum number of sub-cycles 1
Relative change in optimization variables As=1077

L/3

L/3

e \ L/3

N

L, L

Figure 12. Computational domain for diffuser problem (design domain is highlighted by gray elements).
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difference in total pressure between the inlet and outlet, i.e. minimize the dissipation, subject to a
constraint that limits the maximum area of the design space that can be occupied by fluid to 50%

: tot tot
Hlsln L =(pin — Pout)>

1 Ns
st. g=05—— > 5.0, (34)
Ns k=1

Smin<8k<Smax  Vk=1,..., Ny,

where Nj; is the number of design variables.

In the original problem formulation, inlet and outlet pressure are computed at steady state.
Considering an unsteady flow, we define the objective as the difference in total pressure, averaged
over all time steps:

. 1 N
min Zus = 2 (Pin' (") = pay ™). (35)

t n=1

In both formulations, the total inlet and outlet pressures, p'®

the inlet and outlet ports. "

In Figure 12, the design domain is highlighted in gray. In order to resolve the unsteady flow
close to the inlet, we add five layers of fluid elements to the computational domain, which are not
part of the design domain. At the domain boundaries no-slip boundary conditions are imposed.
The outlet is modeled as traction-free. At the inlet a time-varying parabolic velocity distribution is
enforced. Figure 13 shows the evolution of the maximum inlet velocity, vi,, over time. The signal
contains two components, a sinusoidal-shaped ramp and a constant plateau:

and pl%, are averaged spatially over

2
T
sin [ —1, Vig<t, <Tg,
Vin= <2TR ) ORIk (36)

1 VTr<ty<Tp+Tp,

Smaller values for the times Tk and Tp will lead to more rapid signal changes, resulting in an
increased flow unsteadiness.

In the following, we study the diffuser problem for increasing inlet velocities. The maximum inlet
velocities correspond to Reynolds numbers Re=100 and Re=1000. The model and algorithmic

Maximum inlet velocity v,,
© 0o 2 9 o o o
w S (%)} (o2} ~ o] ©

o
S

o
-

o

Figure 13. General inlet velocity signal for diffuser problem (here: Tg =30Atz, Tp =15A¢).
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Table II. Non-dimensional flow parameters for diffuser example (with Re= Lvinp/p).

Flow parameter Value
Inlet length (L) 1
Reference length (Lef) L
Inlet clearance (L;) 5/47
Maximum inlet velocity (max(vjy)) 1
Dynamic viscosity () 1/Re
Density (p) 1
Time step for transient analysis (Af) 10~4
Time step for steady-state analysis (Atxo) 104

()

(d)

Figure 14. Optimized diffuser designs for various inlet velocity signals (m indi-

cates the number of iterations until convergence): (a) steady-state, m =31, Tg =0,

Tp =3Ats; (b) unsteady, m=29, Tgr=30Ar, Tp=30At; (c) unsteady, m =28,

Tr =30At, Tp =15At¢; (d) unsteady, m =29, Tg =60Az, Tp =0; (e) unsteady, m =60,
Tr =30At, Tp =0; and (f) unsteady, m =55, Tg =15A¢t, Tp =0.

parameters for these studies are listed in Table II. The penalty for intermediate impermeabilities,
Pas is set to 0.1.

5.2. Optimization results for Re =100

First, we compare the optimization results for unsteady flow conditions with the steady-state design.
Here, the computational domain is discretized by 47 x 42 elements with 42 x 42 elements within
the design domain. We vary the time period T over which the inlet velocity is ramped up and Tp
during which the velocity is held constant.

The optimized diffuser designs for steady-state conditions and for different unsteady input signals
are depicted in Figure 14. As Tg and Tp decrease, i.e. the problem becomes more unsteady, the
optimized designs differ increasingly from the steady-state solution in Figure 14(a). In the most
unsteady case, Figure 14(f), the channel walls are almost horizontal with a pronounced necking
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Table III. Quantitative results for diffuser problem.

Time signal Design Objective for Objective for Relative
for inlet velocity in steady-state unsteady improvement
(vin(#;)) Figure 14 design (Zss) design (Zys) (Zus—Zss)/ Zss)
Tr =0, Tp=3At00 () 95.95 100.70 —

Tr =30At, Tp =30At (b) 10.63 x 103 10.58 x 103 —0.47%
Tr =0, Tp=3At00 (a) 95.95 104.21 —
Tr=30At, Tp=15At (c) 14.07 x 103 14.00 x 10° —0.47%
Tr =0, Tp=3At00 (a) 95.95 103.93 —
Tr=60At, Tp =0 () 10.48 x 103 10.42x10° —0.64%
Tr =0, Tp=3At00 (@) 95.95 112.67 —
Tr=30At, Tp=0 (e 20.33x 10° 20.67 x 10° ~131%
Tr =0, Tp=3At00 () 95.95 246.80 —
Tr=15At, Tp =0 10) 37.87x 103 36.40 x 103 —3.87%

() (b)

Figure 15. Body-fitted meshes for optimized diffuser designs: (a) steady-state design, cp. Figure 14(a)
(886 elements/4296 elements) and (b) unsteady design, cp. Figure 14(f) (903 elements/4044 elements).

at the outlet. We compare the performance of the steady-state design for unsteady flow conditions
against the performance of the unsteady solutions in Table III. The objective values confirm that
a design performs better when subject to the inlet signal that it was optimized for. Furthermore,
Table III shows that the performance of the steady-state design deteriorates as the flow conditions
become more unsteady.

To verify the accuracy of the performance predictions, we compare the results of the uniform
mesh using the Brinkman penalization against the ones of body-fitted meshes. We analyze the
transient response of the steady-state design, Figure 14(a), and the unsteady design, Figure 14(f),
for Tr =15A¢, Tp =0. Body-fitted meshes with two different levels of mesh refinement are shown
in Figure 15. The mesh density of the coarse meshes, which contain about 900 elements, is compa-
rable to the uniform mesh used in combination with the Brinkman approach. The fine body-fitted
meshes contain about 4000 elements. A transient flow analysis with the coarse body-fitted
meshes leads to an objective of Z=37.33x103 for the steady-state design and Z=36.67x103
for the unsteady design, both results agreeing well with the Brinkman-based prediction, listed in
Table III. The refined body-fitted meshes yield slightly increased objective values: Z=41.73x 103
for the steady-state design and Z=40.47x10> for the unsteady design. However, these results
confirm that the unsteady design outperforms the steady-state design under unsteady flow
conditions.
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(a)

Figure 16. Optimized design for Re =1000: (a) 47 x42 mesh, N =422, m =100 and (b) 52x42, N; =422,
m =45 additional non-design layer around outlet.

5.3. Optimization results for Re=1000

Focusing on the most unsteady inlet velocity signal considered above, Figure 14(f), we consider
the diffuser problem for a Reynolds number of Re=1000. Using the same discretization of the
computational domain as previously, i.e. 47 x42 elements, the material distribution after 100
iterations is depicted in Figure 16(a). Although the objective has dropped significantly at this point
in the optimization process, the material distribution contains many unexpected features, such as
the plug in front of the outlet. In the following subsections, we will show that the emergence of
these non-physical design features is partially due to the setup of the optimization problem but
predominantly caused by an insufficiently refined mesh.

5.3.1. Influence of setup of optimization problem. As pointed out earlier, the Brinkman approach
does not prevent pressure diffusion through solid areas and predicts a non-physical pressure field
within solid regions. In the design of Figure 16(a) solid material is placed in front of the outlet where
the average (non-physical) pressure contributes to the objective. To ensure that the outlet pressure is
measured within a reasonably developed flow we add an additional layer of elements next to the outlet.
In the fluid region of this layer the impermeability is set to « =0, in the solid region o« ="0.

For a mesh with an identical grid size but with an additional layer of non-design domain next to
the outlet, 52 x 42 elements, the optimized material distribution is shown in Figure 16(b). While
adding a non-design layer leads to a more reasonable design the material distributions still exhibit
unexpected artifacts.

5.3.2. Influence of mesh refinement. In the following we will show that as the Reynolds number
increases finer meshes are needed to discretize the flow field. While this requirement is rather
typical for flow problems we will illustrate that the level of refinement is mainly driven by the
need to capture the flow fields of intermediate designs characterized by material distributions with
spatially varying porosities.

First, we compare the total pressure for the designs in Figures 14(f), which is optimized for
Re=100, and 16(a), that is the material distribution with many artifacts, after the last time step.
The inlet velocity signal is the same as for the problem shown in Figure 14(f). We consider two
Reynolds numbers: Re=100 and Re=1000, and different levels of mesh refinement. The results
are depicted in Figure 17: the top half of the figures shows the material distribution and the bottom
half shows the total pressure fields. The total pressure in the horizontal direction at the center of
the domain is plotted in the diagrams below the contour plots.

Using a 47 x 42 mesh, the pressure field for the design in Figure 14(f) is qualitatively very similar
for both Reynolds numbers, cp. Figures 17(a) and (d). As expected the pressure decreases from
inlet to outlet port. For Re=100 and a 47 x 42 mesh, the total pressure field for the non-physical
design is depicted in Figure 17(b): again the maximum total pressure occurs at the inlet, the
minimum at the outlet. However, for Re =1000 the 47 x 42 mesh predicts a completely different,
incorrect pressure field, Figure 17(c): the total pressure at the outlet is higher than at the inlet,
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(d) (e) ®

Figure 17. Total pressure contours for designs in Figures 14(f) and 16(a): (a) Re=100, 47x42 mesh;
(b) Re=100, 47x42 mesh; (¢) Re=1000, 47x42 mesh; (d) Re=1000, 47x42 mesh; (e¢) Re=1000,
94 x84 mesh; and (f) Re=1000, 188x 168 mesh.
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Figure 18. Influence of Reynolds number on objective on designs depicted in Figures 14(f) and 16(a).

leading to an improved, negative objective. Refining the mesh cures the incorrect flow prediction,
cp. Figures 17(e) and (f).

To understand the influence of Reynolds number and mesh refinement on the prediction of flow
field and objective, we compare the objectives of: (I) the diffuser optimized for Re=100, cp.
Figure 14(f), and (II) the non-physical design of Figure 16(a). Both designs are studied for different
Reynolds numbers, 1 <<Re<1000, and for different levels of mesh refinement. Note, we only refine
the mesh to improve the approximation of the flow field but leave the resolution of the material
distributions unchanged. For each Reynolds number the objective is normalized 7=27 /Zoy, where
Zy is the objective of case (I) for a Reynolds number of Re=1 and a 47 x 42 mesh.

Figure 18 illustrates that for low Reynolds numbers, the design (I) has a lower objective than design
(II). However, as the Reynolds number increases, predictions based on the 47 x 42 mesh suggest that

Copyright © 2011 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2011; 87:1229-1253
DOI: 10.1002/nme

109



1248 S. KREISSL, G. PINGEN AND K. MAUTE

design (II) has a lower objective than design (I). At Re>800 the objective of design (II) even becomes
negative, clearly indicating that the flow prediction is incorrect. As the meshes are refined, design (I)
outperforms (II) over the entire Reynolds number range considered which is consistent with what one
would expect given the material layout. This study demonstrates that higher Reynolds numbers require
refined meshes in order to predict the flow fields correctly. If the mesh is too coarse the optimizer
‘utilizes’ the deficiency of the model, which might lead to artifacts.

Note that even a coarse mesh predicts the objective well for the design (I), cp. Figure 17(a),
over the entire range of Reynolds numbers considered above. Thus, a refined mesh for higher
Reynolds numbers is not necessarily warranted by the near-optimum design. The following numer-
ical experiment will show that refined meshes are needed to accurately predict the flow fields
for material distributions with strongly varying porosities, i.e. large differences in impermeability
between neighboring elements.

Starting from a homogeneous porosity distribution, we gradually increase the contrast in imper-
meability variation until we recover the non-physical design of Figure 16(a). The design variables
are interpolated as follows:

Sk=0.54+ f(sx —0.5) Vk=1,...,Ns;, 0<f;<]1, (37)

where §; is the value of the optimization variables corresponding to the non-physical design and
fs is a blending factor that controls the variation of sz. We compute the objective values as the
blending factor is increased for two levels of mesh refinement at Re =1000.

The results of this study are depicted in Figure 19 and show the dependency of the scaled
objective 2=Z/Z*, where Z*=Z(f;=0) for the 47 x42 mesh. Using the 47 x42 mesh, the
objective decreases for increasing impermeability variation while for the fine mesh the trend is
opposite. These results show that an insufficiently refined mesh is not able to capture the correct flow
characteristic as the porosity variation increases. This may cause the emergence of non-physical
artifacts in the optimized material distributions.

To demonstrate that mesh refinement remedies the emergence of non-physical artifacts, the
diffuser design problem is solved for increasingly fine meshes. The optimized material distributions
are shown in Figures 20(a) and (b). Even without adding an additional non-design layer along the
outlet the material distribution converges to intuitively reasonable designs as the mesh is refined.

In the above mesh refinement study we simultaneously increased the resolution of the material
distribution and the flow field. To show that the formation of artifacts is due to insufficient resolution
of the flow field, we optimize the 94 x 84 mesh with a four times coarser approximation of the
material distribution, i.e. one design variable controls the impermeability of four fluid elements.
The optimized design is shown in Figure 20(c), which agrees well with the one in Figure 20(b).

1
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Figure 19. Influence of impermeability variation on objective at
Re=1000 for design depicted in Figure 16(a).
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(a) (b) (c)

Figure 20. Optimized diffuser designs for Re=1000 (N, defines the number of design variables, m the
number of iterations until convergence): (a) 70x63 mesh, N; =632, m=112; (b) 94x 84 mesh, Ny =842,
m=41; and (c) 94x84 mesh, N; =422 m=51.

L7 L7 L7

Figure 21. Design domain for manifold.

This comparison suggests that most importantly a sufficient resolution of the flow field is necessary
to prevent the formation of non-physical design features.

5.4. Manifold for oscillating inlet velocities

The second example is concerned with the design of a manifold connecting three inlet ports and
one outlet port. The inlet velocities are defined by phase shifted, sinusoidal half-waves. The goal
is to minimize the maximum total pressure drop between the inlet and outlet ports.

The computational domain is depicted in Figure 21. The gray area indicates the design domain.
The initial design domain is set to 100% fluid, i.e. sy =1V k=1, ..., N;. The domain boundaries
are represented by a stick condition. The outlet is modeled as traction-free. A parabolic velocity
profile is prescribed along the inlet ports. The evolution of the three inlet velocities is graphed
in Figure 22. As in the previous example, each signal consists of two components, a non-linear
sinusoidal half-wave and a constant part:

o [a=vosin@r)? v, if 1"<27x1074,
Vin,1(1") = (33)
else,
[ =vo)sin(@r™)? v, if 18x107H<"<44x 1077,
Vin2(t") = (39)
else,
Copyright © 2011 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2011; 87:1229-1253
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Figure 22. Inlet velocity signals for manifold problem.

(1—vp)sin(wt™)?> v if 35x1074<#"<61x 1074,
vin3(t") = (40)
0 else,

where v; is a small minimum velocity, which was set to 5x10™> and w=m/27, defines the
frequency of the sine-waves.

The objective is to minimize the maximum total pressure drop from the inlets to the outlet over
the entire simulation time, 7 = N;Ar. To guarantee differentiability of the objective function with
respect to the design variables, a Kreisselmeier—Steinhauser (KS) function is used to extract the
maximum [35]. The optimization problem is subject to a constraint that allows 50% of the design
domain to be fluid

] NL n
min  Z=1log (21 ekt >> . with z(t") = pit(™) — L™,
n=

1 N 41
st. g=0.5—— Y 5>0,
Ns =1

Smin<Sk<Smax YV k=1, ..., Ny,

where the KS-factor £ is set to 3. Numerical studies have shown that the results are insensitive to
the value of the KS-factor for 3<k<10. The total inlet and outlet pressures, p>'(1") and pio\(t"),
are averaged over the inlet and outlet ports.

The computational domain is discretized with 145 x 65 elements, including five layers of
elements at the bottom and right that are not part of the design domain. The Reynolds number is
set to Re =100 with respect to the outlet width. The flow and algorithmic parameters are listed in
Table IV. The penalty for intermediate impermeabilities, py is set to 0.2.

In Figure 23, we show the optimized designs for steady-state conditions, i.e. all three inlet
velocities are kept constant, at vj, = 1, and for pulsating inlet flows. While the overall layout is the
same for both designs, the shape of the channels differs significantly: in the steady-state design,
Figure 23(a), the channel connecting inlet 1 (bottom left) and the outlet is the longest and therefore
has a high pressure drop. Similarly, the channel connecting inlet 3 (bottom right) and the outlet has
a low pressure drop. Since the objective of the unsteady optimization is to minimize the maximum
pressure drop, the unsteady design has a widened channel from inlet 1 to the outlet. In order to
satisfy the area constraint, the remaining two channels have to be narrowed.

Note that optimizing the manifold over two repeating cycles of pulsating inflows leads to the
same geometry for the single cycle design shown in Figure 23(b).
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Table IV. Non-dimensional flow parameters for manifold
example (with Re = Lvinp/ ).

Flow parameter Value
Manifold length (L) 1
Manifold height (H) 3L/7
Reference length (L ef) H/3
Maximum inlet velocity (max(vig,;)) 1
Dynamic viscosity () 1/Re
Density (p) 1
Time step for transient analysis (Af) 1074
Time step for steady-state analysis (Atxo) 104

{a)

(h)

Figure 23. Optimized manifold designs: (a) steady-state design,
m=200 and (b) unsteady-state design, m=97.

To compare the performance of the two designs under unsteady flow conditions, we perform
a transient flow simulation for the steady-state design. In Figure 24, we plot the total pressure
drop over time, for both steady-state and unsteady design. The comparison shows that through the
unsteady optimization, the maximum pressure drop could be reduced from a value of ~15.83 to
~14.93 which corresponds to an improvement of ~5.7%.

6. CONCLUSIONS

This study has presented a computational approach for optimizing the layout and shape of unsteady
flow problems governed by the incompressible NS equations. A material distribution approach
was used to describe the geometry. The boundary conditions at the fluid—solid interface were
imposed via a Brinkman penalization. An impermeability-dependent SUPG-stabilization technique
was introduced that effectively prevents velocity oscillations in porous material.

The emergence of non-physical artifacts was observed for unsteady flows at higher Reynolds
numbers. This issue was linked to insufficient resolutions of the flow field and erroneous pressure
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Figure 24. Comparison of pressure drop history for optimal designs, both
for unsteady input signals, cp. Equations (38)—(40).

field predictions within solid regions. Physically meaningful designs were obtained by using
sufficiently refined meshes. As the Brinkman approach does not prevent pressure diffusion through
solid material, a non-physical pressure field is predicted within solid regions. Therefore, design
criteria that are functions of the fluid pressure should be evaluated only over non-design regions
guaranteed not to contain solid material. The inability of the Brinkman approach to prevent pressure
diffusion through solid areas may also affect the overall accuracy of the flow predictions and thus
the optimization results. Issues due to this deficiency were not observed in the examples considered
in this study but may occur in other design problems. To avoid the difficulties caused by the
Brinkman approach, a geometric boundary representation and immersed boundary techniques may
be considered [23].

With two numerical examples we have illustrated that optimum unsteady designs differ increas-
ingly from the corresponding steady-state designs as the problem becomes more unsteady. The
performance of steady-state designs deteriorates as the flow varies more rapidly in time. While
we have identified and addressed several key issues regarding the application of the Brinkman
penalization to topology optimization, only 2D problems with Reynolds numbers up to Re=1000
were studied. The proposed formulations and numerical methods can be easily extended onto
3D problems and are applicable to flows with larger Reynolds numbers. However, the stringent
requirements on mesh refinement and the associated numerical cost for forward and sensitivity
analysis are expected to limit the range of optimization problems that can be solved with the
proposed method. Techniques for reducing the computational costs of both forward and sensitivity
analysis need to be considered for 3D problems and higher Reynolds number flows.
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Fluid Topology Optimization Based on the Extended Finite
Element Method

Sebastian Kreissl*, and Kurt Mautef

Abstract

This study focuses on finding the optimal layout of fluidic devices subjected to incompress-
ible flow at low Reynolds numbers. The proposed approach uses a levelset method to describe
the fluid-solid interface geometry. The flow field is modeled by the incompressible Navier-Stokes
equations and discretized by the extended finite element method (XFEM). The no-slip condition
along the fluid-solid interface is enforced via a stabilized Lagrange multiplier method. Unlike
the commonly used porosity approach, the XFEM approach does not rely on a material in-
terpolation, which allows for more flexibility in formulating the design problems. Further, it
mitigates shortcomings of the porosity approach, such as: spurious pressure diffusion through
solid material, large sensitivity of the accuracy of the boundary enforcement with respect to the
model parameters - which may affect the optimization results, and poor boundary resolution.
Numerical studies verify that the proposed method is able to recover optimization results ob-
tained with the porosity approach. Further, it is demonstrated that the XFEM approach yields

physical results for problems that cannot be solved with the porosity approach.

KEY WORDS: Extended finite element method, levelset method, Navier-Stokes, stabilized Lagrange multi-

plier method, adjoint sensitivity analysis, nonlinear programming.

1 Introduction

This study focuses on a methodology for optimizing the geometry of fluidic devices.

The flow

field is described via the incompressible Navier-Stokes equations at low Reynolds numbers. The

commonly used material interpolation approach [1], which introduces a fictitious porous material
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has proven to work well for simple fluid optimization problems, such as problems involving steady-
state flow [2] and problems aiming to minimize the dissipated energy. However, for more complex
problems, e.g. coupled fluid-structure systems [3, 4] or transient flow problems [5, 6] the material
interpolation approach has shown shortcomings. These shortcomings include the need for a tailored
interpolation model in combination with an adequate objective as well as mass constraint for driving
the design to a 0-1 material distribution. Further, the interpolation approach may yield erroneous
flow fields, caused by pressure diffusing through ‘solid’ material if the mesh is not sufficiently fine [5].
To overcome these issues, this study introduces a geometric boundary representation combining a
parametric levelset method to capture the evolution of the interface during the optimization process
and an extended finite element method (XFEM) for predicting the flow field.

The common approach for both structural and fluid topology optimization is to employ a material
distribution function, where the material properties - typically constant within one element - are
controlled directly by the design variables [1, 7]. In this case, the material distribution is usually
relaxed: instead of only allowing for discrete materials such as fluid or solid, intermediate material
states - described by an interpolation model are introduced [7]. This continuous transition facilitates

the use of gradient based optimization algorithms.

As an alternative to the elemental parameterization of the material distribution, levelset methods
have recently gained popularity [8, 9]. The levelset field can either be mapped onto material
properties [10] or into a geometric interface description [11]. In levelset-based optimization schemes,
the levelset field is typically advanced by solving the Hamilton-Jacobi equation (HJE), where the
steady-state solution of the HJE defines the solution of the optimization problem [12]. Alternatively,
the levelset field can directly be controlled by the design variables [13], which allows the resulting

parameter optimization problem to be solved by nonlinear programming methods.

The levelset method has recently become popular for fluid optimization problems: Cunha [14]
used levelsets for solving inverse problems involving a stationary, viscous, incompressible flow.
Mohammadi [15] employed levelsets for shape optimization of supersonic applications using an
Euler flow model. Pingen et al. [16] have presented a levelset method for the optimization of
flow problems using a hydrodynamic Lattice Boltzmann (LB) fluid solver. Challis and Guest have
applied a levelset method [9] to solve Stokes flow optimization problems. Duan et al. [17, 18, 19]

applied a levelset method to solve fluid optimization problems for Stokes- and Navier-Stokes-flows.

The common approach for using levelsets for fluid optimization is to map the levelset field into a
porosity distribution: either a discrete [9] or a continuous one [10], see Figs. 1la and b. Note that
in these cases, the ‘solid’ elements are still considered in the computational analysis. Alternatively,
Zhou and Li remeshed the fluid domain based on the interface location [20], Fig. lc. In a previous
study, the authors have employed a levelset method in combination with an LB solver and a geo-
metric boundary representation that enforces no-slip conditions along the fluid-solid interface [11].

The non-matching interface intersects the mesh, dividing the design domain into a solid and a fluid
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Figure 1: Boundary enforcement in levelset based fluid topology optimization.

part, bypassing the need for a fictitious material model, Fig. 1d. In this case, non-intersected solid

elements are omitted from the computational analysis.

The approach presented here follows a similar idea as [11], but instead of using an LB method a
more common finite element formulation of the steady-state incompressible Navier-Stokes equations

is chosen. The latter are given by:

N 3@1 N 8&1-]- ’B

M t tion: = : 1
omentum equation: p 2%, 0 9%, l (1)
. 00
Incompressibility condition: % = 0, (2)
X

where p and 0; describe the dimensional density and velocity, respectively. The subscripts i, j define

the spatial directions. The external body forces are denoted by fiB . The stress tensor &;; is defined

. R e 00;
0ij = _péij + 2#5 <8i‘] + 83’;1) , (3)

where p and [i describe the dimensional pressure and dynamic viscosity, respectively.

as:

For fluid topology optimization, the force term fiB in the momentum equation (1) is commonly
augmented with a Brinkman term, «w;, penalizing the velocities [21]. The scalar « can be in-
terpreted as an impermeability measure, with the velocity v; vanishing for increasing a-values.
The Brinkman approach is commonly used to model flow through porous media and adequately
predicts flow and pressure fields for impermeabilities @« > 0. However, in material interpolation
based fluid topology optimization, the porosity is only a vehicle. Ideally, the solid material should
be completely impermeable for both convective mass transport and pressure diffusion. Since the
Brinkman approach cannot prevent pressure diffusion for practical model parameters, cp. [5, 22], it
may lead to errors in the flow prediction. As we will demonstrate below, erroneous pressure fields

may lead to non-physical results during the optimization process.

In structural as well as fluid optimization, using fictitious porous material models requires penaliz-

ing intermediate densities such that the material distribution converges to a 0-1 solution. However,
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in most cases a suitable combination of material interpolation scheme, objective function, and con-
straints are needed to obtain an adequate penalization effect. For structural topology optimization
problems, a volume constraint is typically needed to penalize intermediate densities when opti-
mizing the stiffness using the Solid Isotropic Material with Penalisation (SIMP) approach [7]. In
fluid topology optimization, most often the dissipated energy in the system is minimized and the
impermeability is interpolated as a nonlinear function of the optimization variables. Similar to
structural problems, the formulation of the optimization problem needs to be augmented by an
auxiliary volume constraint, such that the optimization process converges to a 0-1 solution. Fur-
thermore, for optimization problems aiming at improving multiple functionalities and/or involving
multiple physical phenomena it becomes increasingly difficult to define consistent interpolation

models.

To avoid the disadvantages of the Brinkman penalization approach, we present a topology opti-
mization method that combines a levelset description of the fluid-solid interface geometry and an
extended finite element formulation of the flow problem. The basic concept of XFEM is to capture
discontinuities in the solution within an intersected element by enriching the shape functions and
enforcing the interface conditions along the intersection. XFEM was originally developed to model
discontinuous displacement fields in crack propagation problems in solid mechanics [23, 24, 25, 26].
Miegroet and Duysinx [27] as well as Wei et al. [28] have applied levelsets based XFEM for opti-
mizing linear elastic structures. Wang and Wang [29] applied a superimposed FEM (SFEM) for
structural topology optimization which employs a locally refined mesh around the interface that is
mapped onto a coarser global mesh. Recently, XFEM has also been applied to flow problems involv-
ing discontinuities: Chessa and Belytschko [30] as well as Sauerland and Fries [31] studied two phase
flows using XFEM. Gerstenberger and Wall have applied XFEM to solve fluid-structure-interaction
problems [32, 33].

For flow topology optimization, XFEM allows to model and optimize the flow field on a fixed
grid, bypassing the need for a material interpolation scheme. The boundary condition can be
enforced along the fluid-solid interface with great accuracy, effectively improving the resolution
of the interface geometry and overcoming the stair-step approximation of material distribution
approaches c.p. Fig. 1la and b. As the governing equations are only evaluated over the flow domain,
the XFEM approach does not suffer from spurious pressure diffusion through solid, and reduces
the computational cost since non-intersected solid elements are automatically omitted from the
analysis process. Despite these interesting features, XFEM has not yet been integrated into a fluid

topology optimization method.

The remainder of this paper is structured as follows: In Section 2, we outline the finite element for-
mulation of the incompressible Navier-Stokes equations, in Section 3 the levelset method employed
in this study is described. Section 4 details the extended finite element method with particular

focus on the enforcement of boundary conditions along the fluid-structure interface. In Section 5 we
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describe the class of optimization problems considered in this study. The properties of the proposed
approach are demonstrated by three numerical examples in Section 6. The paper is summarized in

Section 7.

2 Finite Element Formulation of the Incompressible Navier-Stokes

Equations

The weak form of the steady-state incompressible Navier-Stokes equations (1)-(2) can be written

with non-dimensional variables as follows:

R= /wng v;dQ — ;(awz 8“’3) P69

Oz, x;
1 8wj 1 /0v;  Ovy 0v;
5 (830] 8@-)2 2 (8xj +8xi)d9+ 8xzdg

dv;  Ov;
— [ win; [ —pdi; +2 < L4+ ]>>dF:O, 4
[y (=0 + 205 (5 + 52 (1)

where R is a residual, w; a velocity test function and g a pressure test function. Note, the divergence

of the stress tensor, 06,;/0%; in Eq. (1), has been integrated by parts. The non-dimensional dynamic
viscosity can be defined as:
I 1
P= =75 5
Lrerp Re ( )
where L,. 7, U, p are the dimensional reference length, reference velocity, reference density and Re

is the Reynolds number.

In this study, the weak form of the incompressible Navier-Stokes equations (4) is discretized by
four-node finite elements, i.e. the velocity and pressure fields are approximated piecewise by bi-
linear, equal-order interpolations. To avoid numerical instabilities we employ an SUPG/PSPG-

stabilization scheme [34].

3 Levelset method

The levelset method, first developed by Osher and Sethian [35], uses a 3-dimensional function ® to
describe the interface within a 2-dimensional space, Fig. 2. The interface I'; is implicitly defined

through the zero levelset:
I ={x: ®(x)=0}. (6)

121



SERIKISKSN
SIS

Figure 2: Interface T'; implicitly defined through ®(x) = 0.

The value of the scalar function ® defines whether a point at x is fluid (Qy), solid () or located

on the fluid-structure interface I';:

O(x) <0 VxeQy, (7)
P(x)=0 VxedQ=T, (8)
B(x) >0 VxeQ, (9)

In the proposed approach, the levelset field is discretized by finite elements with the same resolution
as the flow solution. As we have shown in a previous study on fluid optimization, smoothing is
necessary to limit the spatial oscillations of the interface [11]. Therefore each nodal levelset value

®; is defined as function of a set of nodal design variables s;:
D, =, (Si),With S; = [Sj,Sk,...]. (10)

The levelset field is smoothed by a distance based filter following the ideas of Sigmund and Peters-
son [36] as well as Daoud et al. [37]:

_ 2 (rPh—dij) s
Zz‘,j (roh — dij)

where d;; is the distance between the i-th and the j-th node, 7° is the relative smoothing radius

(I%' A ] : di]' < Tsh, (11)

and h denotes the edge length of one element. The nodal levelset values, ®;, define the interface

I'; as shown in Fig. 3.

For the optimization problems considered in this study, the interface geometry is varied by manip-
ulating the levelset field in the optimization process. The interface geometry is only dependent on
the design variables that lie within a band of width 27° around the interface, c.p. Eq. (11). Design
variables outside of this band have zero sensitivities. Therefore the design can only grow across
existing boundaries, i.e. boundaries can merge, but no new domains of solid material completely
surrounded by fluid (islands) can develop. Likewise it is not possible to create new holes in the
solid domain. However, the inability to create new islands can be compensated by an initial de-

sign that has a sufficient number of separated solid regions. The creation of holes within the solid
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Figure 4: Regular bilinear shape function and Heaviside enrichment function.

domain is insignificant for fluid optimization as these do not affect the flow solution. In structural

optimization the issue of creating holes is usually handled by topological derivatives [38, 39].

4 Extended Finite Element Method

The basic concept of XFEM is to enrich the shape functions which allows to model discontinuities in
the solution within an intersected element across the interface I';. In the current study, a Heaviside
function is chosen for the enrichment, such that the velocity and pressure fields can be set to zero

in the solid, c.p. Fig. 4:

1VX€QJ0,
0V x € Q,

£ = DTN () (i () 4 () fi(x)) - with o () = (12)

where N; (x) is the standard shape function and v (x) is the enrichment function; f; denotes regular

and f; enriched degrees of freedom; ¢ and ) distinguish the fluid and the solid domain.

To enforce the stick condition along the fluid-solid interface,

vix)=v=0 Vx e I, (13)
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we follow the idea of Gerstenberger and Wall who introduced an additional stress field as the

Lagrange multiplier for enforcing the boundary condition along the fluid-solid interface [33].

Starting from the weak form of the incompressible Navier-Stokes equations (4), the residual R is

augmented as follows:

1
R - / %jnj (1}7; - f)l) dl‘l - / wiaiLjndei 7]41/ 'Yij < (O'ij + p(sij) - €5> de = 0, (14)
r, r; Q; 2p

constraint term Lagrange multiplier term consistency term

where aiLj is the assumed stress field which - multiplied with the normal n; - functions as a Lagrange
multiplier. The test function corresponding to aiLj is denoted by 7;;. The tensor GiLj is the strain

rate based on UiLj, defined as:

1
i = 5y, (0% + 0ip) (15)

In Eq. (14), the first term enforces the constraint, the second one corresponds to the Lagrange
multiplier, \; = o4;n;, and the third term couples the Lagrange multiplier with the flow solution.
Choosing a discontinuous Lagrange multiplier space allows for eliminating the Lagrange multi-
plier degrees of freedom on an elemental level. Thus the interface condition is enforced without

introducing additional unknowns.

In this study we chose constant shape function for both ~;; and UZ-L]-. In addition we introduce the
scaling factor k in the compatibility term in Eq. (14). Setting & to zero, leads to a classical Lagrange
multiplier formulation, which would either require finding an appropriate Lagrange multiplier space
or stabilizing the Lagrange multipliers, both of which are challenging tasks [33]. While increasing k
improves the numerical stability, it leads to a less accurate enforcement of the boundary condition.
In the original work of Gerstenberger and Wall k is set to one. Due to the structure of the compat-
ibility term, boundary conditions are less strongly enforced as the Reynolds number, c.p. Eq. (5),
and the elemental fluid area increase. Therefore, we define the scaling parameter k as follows:
Q° - Q5%

—— (16)

k=mn

where Q% defines the fluid area and Q¢ the total area of one element. The scalar 1) depends on the
Reynolds number and the spatial discretization. For further details on this XFEM approach, the

reader is referred to [33].
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5 Optimization Problem

The optimization problems of interest can be written as follows:
min z(s,f(s)),
S

s, satisfy the design constraints,

f, solves the governing equations for given s, (17)
s.t.
h(s,f) =0, satisfy the equality constraints,

g(s,f) <0, satisfy the inequality constraints,

where z is a particular performance (objective) functional, s is the vector of design variables, f is the
vector of fluid states and h, g are equality, inequality constraints, respectively. Typical objectives
and constraints include pressure drop, drag, flow rate, energy loss, and volume. The geometry, and
thus the performance, of the current design is given via the zero levelset, which is controlled via
the design variables, c.p. Egs. (10)—(11). The parameter optimization problem (17) is solved by a

nested loop approach using a gradient-based optimization method.

Due to the large number of design variables defining the nodal levelset values, the gradients of

objective (and constraints) are computed by an adjoint formulation:

dz 0z T 87R

- 18
dsk 8$k (98/197 ( )
where A is the solution to the adjoint problem:
OR 0z

6 Numerical Examples

To demonstrate the utility of the proposed approach for optimizing the geometry of two-dimensional
incompressible flow problems at steady-state, three numerical examples are studied. The first
example shows the ability of the proposed approach to reproduce results found by the Brinkman
penalization method. Examples two and three illustrate the advantage of the proposed XFEM

approach over the Brinkman penalization method.

All examples are solved by the Globally-Convergent Method of Moving Asymptotes (GCMMA) [40].
The GCMMA is a dual algorithm that solves the optimization problem iteratively in the space of
the dual variables. At each iteration an approximate, explicit, separable subproblem in the space
of the primal variables is constructed and solved analytically. This algorithm is specifically suited
for problems with large numbers of design variables and few constraints as it is the case in the

current study. For all examples we use the GCMMA parameters listed in Tab. 1. The step size
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Parameter Value

initial adaptation of asymptotes 0.5
adaptation of asymptotes 0.7

maximum number of sub-cycles 0

Table 1: GCMMA parameters used for all examples.

for the optimization variables, As and the constraint penalty, p,y, are specified for every example
separately. We monitor the convergence of the optimization process by (a) the norm of the residual
of the Karush-Kuhn-Tucker (KKT) conditions RXX7 [41] and (b) the change in the design variables
d® between two consecutive design iterations:

sn — Sn—1]

|
& = (20)
I$n—1ll

Depending on the optimization problem, we use one or both of the following criteria for determining

convergence:

RKKT < 6KKT (21)

o< el (22)

The nonlinear flow problem (14) is solved via Newton’s method. The latter is considered converged
if:

IRl 3
<1077, (23)
I Ro

where ||Ryg| and ||R|| define the norm of the total initial and total current residual vector, respec-

tively. For all problems studied in the following, the scalar n in Eq. (16) is set to 1.

6.1 Pipe-bend

The pipe-bend problem, studied in [1, 17, 42] is a standard example for fluid topology optimization.
The design domain as well as the initial design are depicted in Figs. 5a and 5b. The objective is to
minimize the difference in total pressure, p'* = 1/2p Hv||2 -+ p, between the inlet and outlet, subject

to a constraint that allows only 25% of the area to be fluid:

: o tot tot
min 2 = (Pin ~ Pout),

A .
st g =025~ >0 (24)

- )

Smin S Sk S Smax-
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Figure 5: Pipe-bend example.

The total inlet and outlet pressures, p!o!

and p'%%, are averaged over the inlet and outlet ports. The

boundary conditions, depicted in Fig. ba, are a parabolic inlet velocity, v;,, and a constant static
pressure at the outlet, poy:. The domain boundaries are represented by a 'no-slip’ condition. The
computational domain is discretized by 40 x 40 elements. The initial design is given as four circular

regions of solid, Fig. 5b. The parameter settings for this example are listed in Tab. 2.

In order to guarantee proper flow through the inlet and outlet ports, the levelset values coinciding
with the nodes on the inlet and outlet are fixed at ®; = —1 and are omitted from the smoothing
operation defined in Eq. (11). The same treatment of inlet and outlet ports is applied to the

examples below.

The optimized geometry is depicted in Fig. 6a. For comparison we optimize the problem (24) using
the porosity approach for two different levels of mesh refinement: 40 x 40 and 80 x 80 elements. In
case of the porosity approach, the material distribution defines the impermeability in the Brinkman
term. Following the work by Borrvall and Peterson [1], a convex interpolation function is chosen

for the impermeability o:

1+
(6% (3) = Qmax + (amin - O‘ma\x) SS +Z;z

with 0 < s < 1, (25)

where apmin, = 0 is the lower, am,ax the upper limit and s defines the optimization variable. The
scalar p, is a penalty parameter that allows controlling the amount of elements with intermediate

impermeabilities in the optimal design [1].

Figures 6b and 6¢ show the zero-levelset of the optimized XFEM geometry on top of the optimized
porosity distribution. Both designs agree well with the one obtained from the XFEM based opti-
mization. Figure 6b illustrates that - for the same mesh density - the proposed XFEM approach
has higher boundary resolution compared to the porosity approach. When employing the porosity
approach, we observed that both the constraint penalty p, and the interpolation penalty p, have

a strong influence on the resulting optimized geometry.

11
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Parameter type Parameter Value
nondim. flow parameters max. inlet velocity, max (vjy,) 1.5
outlet pressure, poy: 1
density, p 1
reference length, L 1
Reynolds number, Re 100
optimization parameters optimizer step size, As 0.04
(XFEM approach) constraint penalty, p, 50
relative smoothing radius, r* 4.5
KKT threshold, eX&7T 3-1073
optimization parameters optimizer step size, As 0.05
(porosity approach 40 x 40)  constraint penalty, p, 2
interpolation penalty, pq, 0.001
KKT threshold, K7 2
design change threshold, e? 107
max. impermeability, amax 2.5 - 10*
optimization parameters optimizer step size, As 0.05
(porosity approach 80 x 80) constraint penalty, py 5
interpolation penalty, p, 0.001
KKT threshold, K7 0.5
design change threshold, e? 10~
max. impermeability, amax 2.5 - 10

Table 2: Parameter settings for pipe-bend.

6.2 U-bend

Drawbacks of the porosity approach are its inability to prevent pressure diffusion through solid
material [5, 22] and its high sensitivity of the accuracy of the boundary enforcement with respect
to model parameters. To investigate these phenomena we define the problem depicted in Fig. 7a.
It includes a solid region (black) and a fluid region (white) both of which are not part of the design
domain that is highlighted in grey color. The inlet has a prescribed parabolic velocity profile,
Vin, and the outlet a prescribed static pressure, py,:. The computational domain is discretized by

40 x 60 elements. Table 3 lists the parameters defining this problem.

The goal of this optimization problem is to minimize the pressure drop from the inlet to the outlet

12
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(a) XFEM (40 x 40 mesh) (b) Zero levelset on 40 x 40 porosity (c) Zero levelset on 80 x 80 porosity
distribution distribution

Figure 6: Optimized pipe-bend geometries.

subjected to a volume constraint:

: __ ([ tot tot
H;}cn Z = (pzn _pout))

A .
s.t. g:=(15-—-7§%§£ > 0, (26)

Smin < Sk < Smaz-

The total inlet and outlet pressures, p!o’

and p'%,, are averaged over the inlet and outlet ports. We

consider two different Reynolds numbers: Re = 0.1 and Re = 10. Using the porosity approach, the
fluid non-design-domain is modeled via perfectly permeable material, i.e. & = 0 and the solid non-
design-domain by an impermeable material with o = .. Note that for the porosity approach
even elements that are 100% solid, i.e. @ = a4, are part of the computational domain, whereas in
the XFEM case non-intersected solid elements are not considered in the computation of the flow
field.

The initial design for both the XFEM and the porosity based optimization are depicted in Fig. 7a.
To assess the accuracy of the pressure fields of these two initial geometries, we create a body-
fitted mesh by excluding the solid regions. The body-fitted mesh is considered converged at about
160 x 240 elements. We compare the error of the XFEM and the porosity approach relative to the
body-fitted mesh:

o max (p) — max (p°)

e, = 7

max (p?)

- 100, (27)

where p? is the pressure field based on the body-fitted mesh; p™ refers to pressure field of the
porosity based approach (O = p) or the XFEM approach (O = z), respectively. We consider
three levels of mesh refinement for both the porosity and the XFEM approach: nz X ny €
[40 x 60,80 x 120,160 x 240], where nz and ny are the number of elements along the edges in

z- and y-direction. Furthermore, we consider three values for the maximum impermeability:

13
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Figure 7: U-bend example.

Omax € [2.5-10%,2.5-10%,2.5-10°]. Since the derivative do/ds is proportional to the negative
of aunax, the absolute value of the sensitivities becomes large for amax > 1. As a result, even small
changes in the design variable, As, yield large changes in the impermeability A«a. As observed in
a previous study by the authors [5], large differences in the impermeability between neighboring

elements lead to non-physical flow fields if the mesh is not sufficiently fine.

The corresponding error values for Re = 0.1 are listed in Tab. 4. The results indicate that increasing
the maximum impermeability improves the accuracy of the pressure field. However, even the finest
considered mesh with amax = 2.5 - 108 still yields an error of e = —18.53%. Contrary, the error of
the XFEM approach converges towards zero as the mesh is refined: e* = 0.35% for the finest mesh

resolution.

Using the XFEM approach for solving the optimization problem (26) yields the geometries depicted

in Fig. 8: for both considered Reynolds numbers an intuitive design is obtained.

Figure 9 shows the optimized geometries when a porosity approach is used to solve the optimization
problem (26). Using a maximum porosity of apax = 2.5-10* for the low Reynolds number Re = 0.1,
diffusion dominated case, yields the design depicted in Fig. 9a. The velocity streamlines indicate
a mass flow through the slender solid member caused by pressure diffusion through solid material.
Comparing the pressure field along a horizontal line at y = 0.9H for both the initial and the
optimized geometry in Fig. 10 illustrates the error in the pressure field predicted by the porosity
approach. As the solid member does not prevent pressure diffusion, the pressure on the inlet side is
significantly lower for porous case than for the XFEM one. Increasing the maximum impermeability,
Figs. 9b and 9c, remedies this issue. For the convection dominated case, Re = 10, a maximum

impermeability of amax = 2.5 - 10* is sufficient to prevent pressure diffusion, Fig, 9d. As cunax
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Parameter type Parameter Value

nondim. flow parameters height, H 1
width, W 2W/3
reference length, L 0.35W
width of solid, A 0.025W

width non design domain, B 0.06W

max. inlet velocity, max (v;,)  1.5/L

outlet pressure, Py 1
density, p 1
Reynolds number, Re 0.1, 10
optimization parameters (common) KKT threshold, X7 1073
optimization parameters optimizer step size, As 0.05
(XFEM approach) constraint penalty, py 10
relative smoothing radius, r* 3.5
optimization parameters optimizer step size, As 0.05
(porosity approach) constraint penalty, py 10
interpolation penalty, p, 0.1

Table 3: Parameter settings for U-bend.

increases, the obtained material distributions become more erratic, c.p. Figs. 9e and 9f. While Fig. 9
shows that the porosity approach can reproduce results similar to the XFEM approach, c.p. Fig. §,
it also reveals that the Brinkman penalization is very sensitive to the material interpolation « (s).
A Reynolds number dependent material interpolation o = « (s, Re) as proposed by Borrvall and

Petersson [1] as well as Khadra et al. [43] may improve the robustness of the porosity approach.

6.3 Nozzle with target total pressure ratio

The proposed XFEM approach does not rely on a material interpolation scheme and therefore
does not require a tailored combination of objective and constraint to converge to a 0-1 material
distribution. This feature is illustrated with the example depicted in Fig. 11a. Again, we are

comparing the results of the XFEM and the porosity approach.

The goal of this optimization problem is to find a design that matches a specified total pressure

ratio between inlet and outlet:

. _ tot tot \2
min 2 = (Pin — 4Pour)”

(28)
St.  Smin < Sk < Smaz»
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discretization: 40 x 60 80 x 120 160 x 240

error porosity approach (omax = 2.5-10%): el 63.83%  63.30% 63.02%
error porosity approach (amax = 2.5-10%): el 33.60%  31.24% 31.18%
error porosity approach (amax = 2.5-10%): el 2.08% -19.08% -18.53%
error XFEM approach: e? 7.30% -0.73% 0.35%

Table 4: Error comparison between porosity and XFEM approach for Re = 0.1.

)

(a) Re=0.1 (b) Re =10

Figure 8: XFEM based optimized geometries for U-bend, with velocity streamlines.

i.e. we want to find a design for which the total pressure at the inlet is four times the total pressure

at the outlet, subject to box constraints on the design variables.

The initial design for the XFEM case is shown in Fig. 11b, the porosity distribution is initialized as
100% fluid; both cases are discretized by 60 x 30 elements. The parameters defining this problem
are listed in Tab. 5. The XFEM based optimization problem converges to the design depicted in
Fig. 12a. The geometry has an objective of z = 7.95 x 10™*. Solving the optimization problem
with the porosity approach leads to the porosity distribution in Fig. 12b which is of little value for

identifying a reasonable geometry.

While the XFEM approach leads to an somewhat intuitive design that generates the desired pressure
drop, we point out that the solution of the optimization problem (28) depends on the initial levelset
field. For example, initializing the levelset fields with small circular solid areas at the bottom and
top corner either at the inlet (case A) or the outlet (case B), as shown in Fig. 13a leads to the designs
depicted in Fig. 13b. In case A the objective is z = 1.48 x 1073 and in case B z = 2.37 x 1073,

thus both designs match the desired total pressure ratio well.
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Figure 9: Porosity based optimized geometries for U-bend, with velocity streamlines.

7 Conclusion

This study has presented a topology optimization approach for flow problems combining a levelset
description of the geometry and an XFEM formulation of the incompressible Navier-Stokes equa-
tions. As the proposed work does not rely on fictitious porous material, no material interpolation
model has to be defined nor does it require particular objectives and constraints for driving the
design to a 0-1 material distribution. Thus, the proposed topology optimization method provides
great flexibility in solving optimization problems with a broad range of objectives and constraints.
Further, the XFEM approach prevents spurious pressure diffusion through solid material as it oc-
curs in the Brinkman formulation. Finally, it was shown for the Brinkman penalization that the
accuracy of the flow field is very sensitive to material interpolation parameters, which may affect

the optimization results.
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Figure 10: Pressure in z-direction at constant y = 0.9H for Re = 0.1 and 41 x 61 discretization

(for porosity approach: amax = 2.5 - 104).
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Figure 11: Nozzle example.

However, since the sensitivities only differ from zero within a band around the interface, it is only
possible to systematically merge existing boundaries, but no new domains of solid can emerge.
However, this limitation can be mitigated by seeding the initial design with a sufficient number of
separated solid areas. Compared to the Brinkman penalization, the proposed approach is signif-

icantly more complex in regards of implementation, potentially preventing the use of commercial
software tools.
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Parameter type Parameter Value
nondim. flow parameters reference length, L 1
max. inlet velocity, max (v;p) 1.5
outlet pressure, pout 1
density, p 1
Reynolds number, Re 10
optimization parameters KKT threshold, &7 0.2
(common) design change threshold, e? 107°
optimization parameters optimizer step size, As 0.02
interpolation penalty, p, 0.001
(XFEM approach) constraint penalty, p, n/a
relative smoothing radius, r* 4.5
optimization parameters optimizer step size, As 10~*
(porosity approach) constraint penalty, pg n/a
interpolation penalty, p, 0.1
max. impermeability, amax 2.5-10*

Table 5: Parameter settings for nozzle.

(a) XFEM

(b) Porosity approach

Figure 12: Optimized nozzle geometries.

~" N
Case A Case B

(a) Initial designs

(b) Optimized geometries

Figure 13: Influence of initial design.
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