PDELAN: A MESH OPERATOR VARIANT OF FORTRAN
by
John Gary

Department of Computer Science
University of Colorado
Boulder, Colorado 80302

Report #CU-CS-049-74 August 1974

This design was performed under an ARPA Grant AF0S-74-~2732

1. Introduction. The objective of this language, which we call PDELAN,

is to facilitate the coding of finite difference schemes for partial differ-
ential equations. The aspect of these codes which we have emphasized is the
difference equations. An operator notation is provided so that the equations
can be written as the numerical analyst frequently invites them prior to

translation into a program. That is
U2 = Ul + DLT * DXX(U1)

where DXX represents the operator

(U

2
i+l 2Ui + Ui_l)/Ax

and DLT = At. Implicit difference schemes can also be written in this opera-
tor notation, The set up and solution of the resulting linear systems will
be handled automatically. This treatment of implicit schemes is the most
powerful facility within PDELAN.

The language is a dialect of Fortran rather than an extension. The
conditional and iteration commands are taken from PASCAL and thus allow a
better structured programming style than Fortran. These include

IF ... THEN ... ELSE ... ENDIF

REPEAT ... UNTIL ... ENDREPEAT
The language is coupled with a macro preprocessor which allows a topdown program-
ming style [4]. The language is implemented as a preprocessor to Fortran.
This is similar to the approach taken by Gear for a PL/I like language [5].

An earlier version of PDELAN was implemented at NCAR in 1971 [1]. The
finite difference language has received only light use; however, we feel this
may be due to deficiencies in the earlier version which we can eliminate.
Also, implicit schemes could not be treated with the previous version. In

any case a language like this is intended for a specialized use and will apply

to a small percentage of jobs even in a computing center which does much
continuous simulation.

Graphics and file management capability should be provided in a language
for PDE problems. The earlier version does contain a sophisticated set of
high level graphics commands, but no file management commands [2]. However,

our effort concentrates on the difference equations and the macro preprocessor.

2. The basic language. In this section we describe the basic set of

instructions available in PDELAN. The syntax is somewhat different than in
FORTRAN. The declarations are nested. For example, variable declarations
are placed within the scope of a COMMON block in order to declare them as
COMMON variables. The conditional statements are similar to those in PASCAL.
The I/0 statements are similar to FORTRAN. An end-of-card is an end-of-
statement unless the statement is continued. Our objective is to provide a
structured base for the mesh operator constructs, but with minimal departure
from FORTRAN. We proceed to a description of the features of the language.

2.1 The lexical scan. The PDELAN syntax is restricted so that a

compatable macro preprocessor can operate ahead of the PDELAN translator [4].
Therefore, blanks are delimiters. Furthermore, the PDELAN keywords such as
IF, DO, FORMAT, etc. are all reserved words and may not be used as variable
names. Long identifiers, up to 29 characters, may be used. Two continuation
modes are allowed. The first uses a column six punch as in FORTRAN. The
second uses the two characters ;+ to terminate reading of one card and indi-
cate that the statement is to be continued to the next card. Statements may
be separated by ";" which is an end-of-statement marker. A statement ends

in column 72 unless it is explicitly continued to the next card. We think

it better not to require that every statement be terminated by ";". An

occasional use of the continuation ";+" seems preferable to this hardened

FORTRAN programmer who tends to forget the ";" in PL/I and PASCAL. Blocks

are all terminated by special terminators such as ENDIF, ENDCOMMON, etc.
This is done for readibility and also to reduce doubt about when a ":"

is required. TIf a statement starts with an integer constant, then the inte-
ger is a statement label. A statement, including the label can start any-
where in columns 2 through 72. Names which start in column one are instruc-—
tions for the preprocessor.

Comments can be defined by a "C" in column one as in FORTRAN, or by the
"brackets" */ . . . /% as in PL/I. The "*/" delimiter is an end-of-statement
marker, so this type of comment cannot be imbedded within a statement. This
restriction allows all comments to be conveniently output to the object

FORTRAN program.

Some examples of statements are:

C SAMPLE DECK

IF X.LT.Y THEN

W(I) = X*A(I)
ELSE

W(I) = Y*A(I)
ENDIF
CASE K OF 2

1: I =13 20ACT) =1 %K ;3 I=1+1
IF I.LE.M THEN GO TO 20 ENDIF
2: FOR I =1 TO M DO A(I) = 0. ENDFOR
ENDCASE
U(1) = U(2) + A * (U(3) - U(2))* ;+
(C/B(M)) * (W(3) - W(2)) #/LEFT BOUNDARY/*

2.2 Declarations. The declarations are nested. A COMMON block of

declarations can be declared in whose scope variable declarations may be

placed. This same type of nesting can be used to declare mesh variables
and to declare groupings of variables for convenient I/0. For example,

consider the following declarations of blank and labeled COMMON

CUMMUN
REAL X, Y, T
INTEGER A, B, C
ENDCOMMON
COMMON LAB
DOUBLE XD, YD
ENDCOMMON
The arithmetic modes are INTEGER, REAL, DOUBLE, COMPLEX, LOGICAL. The
only variable structure is the ARRAY. Variables may be declared as having

array structure in two ways

REAL X, Y, U(20,30), Z, V(20,31)

REAL ARRAY T, P(20,30), W1, wW2(20,31)

In the first statement X, Y, and Z are scaler variables, and U and V are
arrays. In the second statement T and P are declared arrays of dimension 2
and extent (20,30). If more variable types were allowed, then the PASCAL
declaration style would be more appropriate. The declarations would then be

grouped together as follows

DECLAREVAR
COMMON LAB
X, Y, Z : REAL
U, T, P : ARRAY(20,30) OF REAL
V, W1, W2 : ARRAY(20,31) OF REAL
ENDCOMMON

ENDDECLARE

PASCAL permits the user to declare types and assign these types names. The
PASCAL record type and scaler type could be useful in finite difference codes.
It would sometimes be useful to pack flags and indices into a single word.
However, the CDC 6000 version of PASCAL is about a factor of two slower than
FORTRAN on matrix codes, and FORTRAN is of course more common than PASCAL.
Therefore we prefer to base the language on FORTRAN in spite of the superior
design of PASCAL.

2.3 Statement labels, If the first token of a statement is an integer,

that integer is a statement label. An optional colon can follow the label

to improve appearance. For example

10 : X =Y 3 20 W= A(1)

IF X.1LT.0. THEN GOTIO 10

The GOTO statement is included. There are some restrictions on the GOTO.
Jumps into the scope of a FOR loop from outside the loop are not allowed.

A second type of statement label uses an alphanumeric label, for example

LOOPA : ENDFOR

This is discussed below.

2.4 Control structure. We have taken our control statements from PASCAL.

These are

IF . . . THEN . . . ENDIF
IFP ... THEN . . . ELSE . . . ENDIF
REPEAT . . . OUNTIL . . . ENDREPEAT

WHILE . . . DO . . . ENDWHILE

Some examples are

IF X.LT.0. THEN X = -X ENDIF
IF A.LT.B THEN

REPEAT A = A + H UNTIL A.GE.B ENDREPEAT
ELSE

A=238

CALL SET

ENDIF

Use of matched end-of-blaock markers (ENDIF, etc.) provides redundancy
in the language which allows improved error diagnostics. This useage may
also produce more readable code.

As case statement of the following form is included

CASE K OF 2
1 : X = SIN(T)
2 : X = SINH(T)
ENDCASE

These statement labels are local to the CASE block. The following code will
probably be allowed (hopefully, no one writes this way, and perhaps it should

not be allowed)

CASE K OF 2
l1:X=1.
2 :Y=1, ; GOTO 1
ENDCASE

2.5 1Iteration and more on statement labels. The iteration statement

is illustrated by the following

FORK =M+ 1 TO NA(N)*%2 + 2 DO B(K) = K ENDFOR
FOR L = 1 STEP N - 3 TO 20 DO

B(L) = C(L)

F(L) = L#*%L

ENDFOR

The expression following STEP can be negative. If this expression is a posi-
tive integer constant such as STEP 2, then FOR will be translated into a DO
statement. Otherwise FOR becomes a loop terminated by an IF statement contain-
ing the test on the iteration parameter.

An alphanumeric label of the following form is allowed

LOOPA : FORK = 1 TO 10 DO
A(K)
B(K)

LOOPA : ENDFOR

]

1.

K

il

This permits use of the EXIT statement. A statement of the form

EXIT LAB
causes control to drop through the control block containing the EXIT LAB
statement until an END statement labeled by LAB is found. Execution then
starts immediately after this labeled END, It is not necessary to label the
beginning of the control block. The EXIT never refers to the beginning of
a control block. However, if the beginning is labeled, then the end must
also be labeled with the same label. Only alphanumeric labels can be used
with the EXIT. Alphanumeric labels may not be used with a GOTO. An alpha-
numeric label must be followed by a colon.

2.6 Subprogram headers. These are identical to those in FORTRAN. Namely,

PROGRAM NAM(INPUT, . . .)
SUBROUTINE NAM . . .
FUNCTION NAM . . .
BLOCKDATA . . .

ENDPROGRAM

ENDSUBROUTINE

The PROGRAM statement is a CDC variant of FORTRAN. The usual subroutine and
function calls are allowed. The ENTRY and EXTERNAL statements are also

included.

2.7 1I/0 statements. The preprocessor will allow the following five

statements which are identical with FORTRAN

READ(nc,nf)
WRITE (nc,nf)
READ nf,
PRINT

nf FORMAT(. . .)

2.8 PASSTHRU blocks. - These are blocks of statements which are passed

directly to the Fortran compiler which compiles the abject code produced by
the preprocessor. If a statement is not placed within such a block, then
the preprocessor will attempt to parse it as a statement in PDELAN and fail-
ure will produce an error diagnostic. Most such non PDELAN statements will
probably be I/0 commands such as BUFFERIN to do buffered I/0, or commands

to handle extended core. We could require the user to handle such commands
by means of a subroutine call, However, this would not allow addition of an

EQUIVALENCE statement, for example. An example of a PASSTHRU block is

PASSTHRU
EQUIVALENCE (A,X)
IMPLICIT REAL*8 (A - H, 0 - Z)

ENDPASSTHRU

3. Finite difference equations. The primary motivation for this prepro-

cessor, is the simplification of finite difference codes arising from the
solution of partial differential equations. For example consider the simple

heat equation

§E~§-2-u u = u(x,t)
st T ox uix,

A
M

in

!_.l

o O
in

u(0,t) = u(l,t) =0

The problem is made discrete by use of a mesh in x and t, Xj = jAx, 02 j g J,

Ax = 1/J. Using the notation U? %‘u(xj, tn)’ then the difference scheme

might be
n+l n n n n
U, - U, U, - 2U, + U,
J k| - j+1 N j-1
At Ax2
This can be written as a "marching' scheme which computes values U§+1 on the
new time level t o4l from the known values on level t s namely
n+l n , At ., mn n n
U, = U, +—, (U, - 2U, + U, 1 <35 J-1
N j sz(3+l 3050 .
n+l _ .o+l _
U0 = UJ =0

If Un+l is stored in the array U2 and U™ in the array Ul, then this algorithm

is written in Fortran as follows (U? stored in Ul(j+1), JT = J+1).
U2(1) = 0.
U2(J + 1) = 0.
DO 100K =1, J

100 U2(K) = U1(K) + (DLT/DLX*%2)%

X (U1(K + 1) - 2.%UL(K) + UL(K - 1))

Frequently the numerical analyst writes the difference scheme in operator
notation as follows

Un+l - E? + At D(E?)

2
where D(U), = (U, - 2U, + U, [Ax".
(_)J j+1 h| h| -l)

10

PDELAN permits the same type of subscript free, operator notation.
It is possible to declare meshes, variables on these meshes, and finite
difference operators which map variables or expressions from one mesh to
another. The above problem would be written in PDELAN as follows (assume

J = 128)

MESH MS(128)
REAL U1, U2
ENDMESH
OPERATOR DXX (W)
FROM MS TO MS(I = 2..127)
W(L + 1) - 2.%W(I) + W(I - 1))/ (DLX*%*2)
ENDOPERATOR
U2(1) = 0.
U2(128) = 0.
FORMESH MS(J = 2..127)
U2 = UL + DLT*DXX(UL)

ENDFORMESH

Note that the mesh variables need not be subscripted within the scope of a
FORMESH, we write U2 instead of U2(J). Mesh operators, such as DXX, can be
applied only within the scope of a FORMESH. The operators can be used in
a fairly complex way. For example, if DX and AX are mesh operators, then

the following expression involving mesh variables U and V might be used
DX(C * AX(U) * DX(U + V)).

An earlier version of PDELAN was implemented at NCAR in 1971 [1]. We
refer to the paper and documentation describing this version for a more com-
plete definition and explanation of these operators. The earlier version had

a different syntax and was rather awkward to use., The version described here

11

should be a considerable improvement over the first one. Also the new
version allows implicit difference schemes to be written in operator notation.
This is certainly its most powerful and useful feature. An example of an

implicit scheme is the Crank-Nicolson scheme for the heat equatiom

g?+l - EP + é%_D(E?+l + E?).
We regard this as an equation for the unknown vector E?+l. This is a tri-

diagonal system of equations for the unknown components of §F+l.

3.1 Mesh and variable declarations. This is a nested block of state-

ments which name a mesh and assign its extent. The block also contains
declarations of variables on this mesh. These variables are arrays with
the same extent as the mesh. No memory space is required for the mesh,

only for variables declared on the mesh. For example,

MESH UVTMESH(64,32)
REAL U, V, T

ENDMESH

In this case the variables U, V, T are arrays of extent (64,32). The mesh
name UVIMESH is entered into the symbol table and its associated information
stored with it.

A mesh variable may be in addition an array. For example,

MESH UVTIMESH(64,32)
REAL ARRAY U, V, T(3)

ENDMESH

In this case U, V, and T are arrays of extent (64,32,3). To each point in
the mesh (i,j) there are 3 values assigned. Each of these arrays can be

regarded as three mesh variables U, We will say

£,3,1 U1,3,27 * Yy

1’j 33‘

more about this later.

12

An additional type of mesh variable, a PROJECTION variable, can be

declared. For example,

MESH UVIMESH(6%,32)
REAL ARRAY U,V,T(3)
REAL PROJECTION CS(,*)

ENDMESH

In this case CS is an array of extent (32). At each point (i,j) the mesh
variable CS has the value CS(j). (Here 1 < i 5 64, 1 < j £ 32). The "*"
indicates the subscripts which are not removed.

3.2 The mesh operator declaration. An example of a mesh operator declar-

ation is the following

MESH MUV (64)
REAL U1,U2
ENDMESH
MESH M(63)
REAL SG
ENDMESH
OPERATOR DX (W)
FROM MUV TO M(I = 1..63)
W(I + 1) - w(I))/DLX
FROM M TO MUV(I = 2..63)
W(I) - W(I - 1))/DLX

ENDOPERATOR
A graphic representation of the meshes is

C X . X - « X .
112 2 3 63 63 64

The MUV points are ".'" and the M points "x". The meaning of the DX operator

13

is to difference values at the surrounding points on the MUV mesh to obtain
an approximate derivative at a point on the M mesh. If E is an expression
on the MUV mesh, then DX(E) can be thought of as an expression on the M mesh.

That is, DX(E) has a value at each point j on the M mesh, namely

DX(E)j = (E 1 - Ej)/DLX

j+
For example, if £ is U1+ U2, then

DX(U i+ U2)(I) = ((UL(I + 1)+U2(T + 1)) - (U1(I)+U2(I))/DLX

The expression on the right is evaluated on the MUV mesh.

3.3 The FORMESH block. This is the means y which finite difference

expressions are evaluated. For example, consider the parabolic equation

Q2

u

9 ou
t 9x <03X) + £(u)

u(0,t) = u(l,t) =0

The difference scheme might be

vt gt Aes_(o8_(UM) + £(U7)

where the difference operator SX is

(U - Uj)/Ax

8@ ip1/0 = Wypg

cSX(U)j = (Uj+l/2 erj_llz)/Ax
Use the mesh, variable, and operator declarations given above in section 3.2,

Then this difference scheme is written:

U2(1) = 0.
U2(64) = 0.
FORMESH MUV(I = 2.,63)
U2 = Ul + DLT*DX(SG*DX(UL)) + F(U1)

ENDFORMESH

14

Here F is a Fortran function subprogram, Un+l and U" are stored in U2 and

Ul, and ¢ is stored in SG.

The replacement statements within the scope of a FORMESH are evaluated
for each value of I in the indicated range, in this case 2 through 63. The
evaluation is performed in "parallel" in order to be compatible with parallel
computers such as the Texas Instruments ASC or Seymour Cray's proposed new
machine. This means that the right side is evaluated for all values of I
before storage into the left side. Thus the evaluation is not the same as

a conventional Fortran DO loop. For example

FORMESH MUV(I = 2..63)
U2 = DX(DX(U2))

ENDFORMESH
is equivalent to

DO 100 I = 2,63
100 T(I) = (U2(I + 1) - 2,%U2(I) + U2(I - 1))/(DLX*%2)
DO 101 I = 2,63

101 U2(I) = T(I)

Here T is an array used for temporary storage of intermediate results. If
there are two statements within the scope of a FORMESH, the computation for
the first will be completed for all values of the index before computation
is started on the second statement. This is completely different than a DO
loop. The first version of PDELAN uses a DOMESH instead of this FORMESH. The
DOMESH scope is executed in the same manner as a DO loop. The DOMESH does
not execute in parallel. Also the syntax of the DOMESH resembles the DO. It
uses a statement number termination instead of the block structure.

Next consider a difference operator which does not have a uniform defini-

tion throughout the mesh. For example,

15

MESH MUV (128)
REAL U1,U2,U3
ENDMESH
OPERATOR DX (W)
FROM MUV TO MUV(I = 128)
W(T - 2) = 4.%W(T = 1) + 3.%W(I))/(2.%DLX)
FROM MUV TO MUV(I = 2..127)
W@ + 1) = W@ - 1))/(2.%#DLX)
ENDOPERATOR
U3(1) = 0.
FORMESH MUV(I = 2.
U3 = Ul - DLT*DX(U2)

ENDFORMESH

This operator has a different definition at I = 128 than it does in the
interior of the mesh, 2 £ I < 127. The evaluation of the FORMESH cannot use
DO loops from 2 to 128, the calculation must be broken down according to the
definition of the operator. Therefore the FORMESH can be translated as
follows (notethat U3 does not appear on the right side of the replacement

statement).

U3(128) = U1(128) - DLT*
(U2(126) - &4.%U2(127) + 3.%U2(128))/(2.*DLX)
DO 100 I = 2,127

100 U3(I) = UL(I) - DLT*(UZ(i + 1) - U2(I - 1))/2.*DLX)

The previous version of PDELAN cannot handle a mesh operator unless it has
a uniform definition within the range of a DOMESH. The removal of this
deficiency is an important improvement.

3.4 Implicit difference schemes. This allows the user to write

impliecit schemes about as easily as explicit ones. This is probably the most

16

useful and certainly the most powerful feature of PDELAN. To illustrate the

method consider an implicit scheme for the following equation:

bu_ B 0w
5t = 3x OG5y

u(0,t) = u(l,t) =0

u(x,0) = £(x)

The implicit scheme is

o/ Ch A
i i ; o (x " i+1 i - o(x)¥ i i-1 yAx
At (\ 14+1/2 A% i-1/22 \7 ix)
lgig ™
ntl _ o+l _
Up " = Upgyg = O

Ax = 1/(M + 1)

n+l}

This is a tridiagonal system in the unknown vector {Ui . We can write

this equation in operator form as follows
U2 = Ul + DLT*DX(SG*DX(U2))

Here the declarations are given in section 3.2 above. The meshes are MUV
and M. The variable SG is on mesh M. DX is defined on both meshes. If

U2 is regarded as a vector Unknown, then this equation defines a linear
system of equations for the unknown U2, Because difference schemes are
frequently nonlinear we will not attempt to solve the linear system directly.
Instead we will allow the user to write out a linear difference equation in
an unknown W and use this system to define a Jacobian matrix. Then this
Jacobian matrix is used to solve a possibly nonlinear system by iteratiom.
In order to illustrate the definition of this Jacobian we use this same
linear parabolic problem. The following block defines the Jacobian for this

example

17

SETJACOB AJ(W) ON MUV(I = 2..63)
W = Ul - DLT*DX(SG*DX(W))

ENDSETJACOB

The unknown wvector is'{Wi} with components in the range 2 < i g 63.

The expression defines a linear system of equations for Wi of the following

form
B,
i
; ci,v w1+k + fl =0
v=1
For this example the system is
¢i,1%i-1 T oy, oMy t ey Wiy TE S0
That is, kl = -1, k2 = 0, k3 = 1., This can be written as a matrix equation
AW = £

Where A is given by

—‘{6 i# i+ kv

3 zc. i=1i+k
i,V v
The SETJACOB block generates code to compute the entries in the matrix A.
This matrix is stored in the mesh array AJ. The user must declare the array

AJ and it must be large enough to accomodate the matrix A. In this case

the declaration
REAL ARRAY AJ(3)

must be added to the MUV mesh block. The SETJACOB block will also generate

a subroutine call to perform the LU decomposition of the matrix A. The result
will be stored in AJ and the original matrix A will be lost. If pivoting

is desired, then the command SETJACOB(PIVOT) should be used. 1In this case

a larger AJ array must be declared.

18

The Jacobian is used according to the following example.

SOLVE JACOB AJ ON MUV (I = 2..63)
F(U2) = U2 - ULl -~ DLT*DX(SG *DX(U2))
ENDSOLVE
The expression in the SOLVE block defines a function of U2. The SOLVE
block generates code to perform a single step of a Newton iteration using

the Jacobian AJ. That is, the following equation is solved for SW
ASW = -F(U2)

Here F must be a mesh variable declared on MUV by the user. The value of the
expression within the SOLVE block is stored in F. Code to obtain an updated

value of U2 from the solution SW of the Jacobian system,

2=02+§

is generated by the SOLVE command. Since the Jacobian AJ was defined for
2 < i< 63, the vector U2 is updated over the same range.

We only allow difference schemes which are implicit in one dimension.
This means that the mesh subscript list in the SETJACOB statement can have
only one vector subscript. A scheme which is implicit in two dimensions is
usually two expensive because the bandwidth of the Jacobian matrix is too
large. However, the Jacobian could be defined on a two dimensional array.

For example

MESH M(128,64)
REAL U2,U1
REAL ARRAY AJ(3)
ENDMESH

OPERATOR DXX (W)

19

FROM M TO M(I = 2..127, J = %)
(W(T + 1,3) - 2.%W(I,J) + W(I - 1,J)/(DLX**2)
ENDOPERATOR
OPERATOR DYY (W)
FROM M TO M(I = *, J = 2..127)
(W(L,J + 1) = 2.*W(I,J) + W(I, J - 1))/ (DLY**2)

ENDOPERATOR

SETJACOB AJ(W) ON M(I = 2. .127, J = %)
W - Ul - DLT*(DXX(W) + DYY(UL))

ENDSETJACOB

The Jacobian is still a tridiagonal matrix, but it is defined over a two
dimensienal mesh and thus has order 127 x 64, The array AJ has extent
(128,64,3). The term AJ(W) (I) indicates a scheme implicit in I.

The Jacobian matrix should allow for difference schemes which have the
same number of points in the stencil throughout the mesh but may be shifted
near the boundary due to one sided difference approximations. For example,

if the one sided approximation
(-~3Ul + 4U2 - U3)/(2Ax)
is used along with the centered formula

(W, - Uy p)/ 28

i+l

then the Jacobian matrix would have the following structure

20

The AJ mesh array containing the Jacobian should have extent 3 in this case
(assume no pivoting).
The language should also handle implicit systems of equations. For

example, consider

u 3 Su. d(utv)
5t = 3x W) +oage
du _ 3 du. d(utv)
5t = 3x W) 5p) +oage

In this case the Jacobian might be block tridiagonal with 2x2 blocks.
Here we are not using the true Jacobian because we are not using the deriva-

tive of the function o(w). We assume SGF is a function subprogram.

MESH MUV (64)
REAL U1,U2,V1,V2, AJ(7)
ENDMESH
MESH M(63)
ENDMESH
OPERATOR DX (W)
FROM M TO MUV(I = 2..63)

(W(I) - wW(I - 1))/DIX

21

FROM MUV TO M(I = 1..63)
(W(I + 1) - W(I))/DLX
ENDOPERATOR
OPERATOR AX (W)
FROM MUV TO M(I = 1..63)
(W(I + 1) + W(I))*.5
ENDOPERATOR
SET JACOB AJ(U,V) ON MUV(I = 2..63)
U~U1-DLT#DX (SGF (AX (U1)) *DX(U)) + AL*ALP#EXP(UL + V1)*U
V-V1-DLT#DX (SGF (AX(V1))*DX(V)) + A2%ALP*EXP (UL + V1)*V

ENDSETJACOB

The SOLVE command is similar, except that the mesh function F required to

hold intermediate results is an array of extent 2.

4, Extensions. These are features that we would like to add after we
get the language described in the previous two sections running. For dif-
ference schemes which will not fit in fast memory, the following memory
allocation scheme is useful. The data for such schemes is usually transmit-
ted by blocks which consist of a "section" of a mesh. For example, in a
three dimensional problem such a section would be all points (i, j, k) with
k fixed and i and j ranging through all possible values. If the data for the
scheme consists of three variables U, V, W each of dimension (50, 50, 40),
then only a few sections will be in fast memory, perhaps four sections, the
rest will be located in bulk storage of some kind. The bulk store should be
accessed in large blocks. In this case the block would consist of one section
containing 7500 words. That is U(*, *, K), V(*, *, K), W(*, *, K). Note that

U(*, *, K) represents 2500 words.

U(I, J,) for 1 < T ¢ 50, 1. J < 50.

22

The Fortran dimension statement
DIMENSION U(50,50,4), V(50,50,4), W(50,50,4)

will not group this data properly. The variables in the section are not

stored contiguously. The following declaration will rearrange the data allocation

ARRAYBLOCK NAM(4,LEN)
REAL ARRAY U,V,W(50,50,%), ;+
CS,SN(50,%), TH(*)

ENDARRAYBLOCK

The "*" is replaced by the 4. The variable LEN must be an integer variable.
It will be set equal to the length of each of the 4 sections in a DATA state-
ment in the Fortran object code. 1In this case the section length is 7601.

The output will contain a DIMENSION statement of the form

DIMENSION U(200,50), V(200,50), W(200,50)

X , CS(200), SN(200), TH(4)

If these variables are not within a COMMON block they will all be placed
in a labeled COMMON in order to be sure that they will be stored together.

That is
COMMON/TL0001/U,V,W,CS, SN, TH
Then U(I,J,K) where 1 < K< 4 is accessed by
U(I + K*LEN - LEN,J)
where LEN is replaced by its constant equivalent to yield
U(T + 7601%K - 7601,J)
A block I/0 transmission can then be given in the form (on the CIC system)

BUFFERIN(7,1) (U(1,1,K),TH(K))

23

Data initialization. This performs the same function as the Fortran DATA

statement and is implemented by means of a DATA statement in the output object
code. However, the syntax is more consistent with the repetition used in
FORMAT statements and avoids the use of * as a repetition indicator. This
permits the use of expressions involving macro time variables [4] in the

initialization. An example is
REAL ARRAY U(50,50) = (50(0.),50(1.),48(0.))

General array extent. We would prefer to have array declarations in

the form
REAL ARRAY U(-10..10,5)

This is equivalent to U(-10..10,1..5). The output for a reference of the
form U(I,J) would be translated to U(I + 11,J) and the dimension statement

would be of the form
DIMENSION U(21,5)

Since the CDC compilers only allow three subscripts, it would be desir-
able to allow motre than three dimensions in PDELAN and reduce to three in

the output. TFor example if
COMPLEX €S(10,20,5,2)

then the reference CS(I,J,K,L) would become
cs(I,J,K + 5% - 5).

We assume it is preferable to reduce to three subscripts rather than
one because some compilers will not optimize the complex one dimensional sub-
scripts-as well as the three dimensional especially if the inner DO lowop

is over one of the first two subscripts.

Recursive procedures and dynamic storage allocation. Within a given

24

subprogram a set of procedures can be defined. These can contain variable
declarations which are local to the procedure. These procedures allow

recursive calls and are implemented by means of a stack which is simply an
array in the containing Fortran subprogram. This provides dynamic storage
allocation, at least within the containing subprogram. The procedures can

be called only within this subprogram.

A format free I/0 statement in the NAMELIST style. This would differ
from NAMELIST in that the variable list would appear in the I/0 command
rather than in a separate declaration. A macro can be used to place the same
list in several different commands. Also, the input command can work in
two modes. If there are no identifiers of the form "ID=" on the input card,
only a list of numbers, then these numbers are input according to the I/0
list. If an identifier "ID=" appears, then the input will be governed by
the identifiers. These identifiers must appear in the I/0 list within the

I/0 command. For example

INLIST(7,NAM) X,Y,A(1..10,5..10),;+

B(*,3,2.
The input card might appear in the form

gNAM 1.2,3.7,B(1,1,2) = 37. 8

or it might have the form

GNAM 1,7.,2L, v « v o « .« .

or
gNAM A(1,7) = -21. ¢
A format free output is also included. For example

OUTLIST(6,NAM) 'CASE21',X,Y,B(1,1..20,7)

25

The output is labeled. That is, the values are printed in the form

OUTLIST NAM CASE 21 X ='1.2 Y = 3.7
B(1,1..20,7)
31.2 -21.7 8.1E+5

END OUTLIST NAM

A means to set the number of significant figures printed is provided. For

example
OUTLIST(6,NAM,SIGNIF(E10.3,16,D13.6)) . . .

File management and graphiecs. A very important aspect of a language for

PDE is the I/0 facilities within the language. This should include an easy
way to generate graphs and contour plots from arrays. Such a facility is
included in the first version of PDELAN [2]. The graphics in this earlier
version should be improved in various ways. For example, the syntax of
these graphics commands should be improved. Also the graphics commands should
be organized into a hierarchy most of which is machine independent. It should
be possible to output the graphs and plots in a form suitable for efficient
transmission over phone lines and output on a variety of graphics devices [6].
However, this is a large problem in its own right, and we have decided to
concentrate on the finite difference aspects of the language.

The design of a file management system and data structures suitable
for PDE codes is an important problem and should be a part of the language.

However, we have not put any effort into this part of the problem.

REFERENCES

J. Gary and R. Helgason, "An Extension of FORTRAN Containing Finite
Difference Operators', Software-Practice and Experience, 2, pp. 321-336
(1972)

G. Locs and J. Gary, "A FORTRAN Extension for Data Display" to appear in
IEEE Transactions on Computers

H. Mills, "Topdown Programming in Large Systems", in '"Debugging
Techniques in Large Systems'", Rustin(ed), Prentice Hall, Inglewood
Cliffs, N.J. (1971)

J. Gary, "A macro preprocessor for a FORTRAN variant', Computer
Science Department, University of Colorado (1974)

W. Gear, "What do we need in programming languages', Proceed. Math
Software Conference, Purdue, (1974)

J. Adams and J. Gary, '"Compact Representation of Contour Plots for Phone
Line Transmission", Comm. ACM, Vol. 17, No. 6, 333-337 (1974)

