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Nevin, Rebecca (Ph.D., Astrophysics)

Kinematic Signatures of Galaxy Evolution: The Energetics of AGN Outflows and the Accu-

rate Identification of Merging Galaxies

Thesis directed by Prof. Julia Comerford

Both galaxies and supermassive black holes grow and evolve over cosmic time. My work

utilizes the kinematics of the stars and gas in galaxies to investigate some key processes that

drive this evolution: Active galactic nucleus (AGN) feedback and galaxy mergers. I will

first present my work modeling AGN-driven biconical outflows and examine the potential

for these biconical outflows to drive feedback that regulates star formation in their host

galaxies. Then, I will focus on merging galaxies, and how progress in our understanding

of galaxy evolution is slowed by the difficulty of making accurate galaxy merger identifica-

tions. My approach to improving the accuracy of galaxy merger identification involves using

N-body/hydrodynamical simulations of merging galaxies to create mockup images and kine-

matic maps of galaxies that match the specifications of observational surveys. From these,

I create a classification tool that identifies merging galaxies of different gas fractions, mass

ratios, and merger stages. I will discuss the strengths and limitations of the classification

technique and then my plans to apply the classification to Sloan Digital Sky Survey imag-

ing as well as the >10,000 observed galaxies in the MaNGA (Mapping Nearby Galaxies at

Apache Point) integral field spectroscopy survey. Through accurate identification of merging

galaxies in the MaNGA survey, I will advance our understanding of supermassive black hole

growth in galaxy mergers and other open questions related to galaxy evolution.
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Chapter 1

Introduction

In this introductory chapter, I will cover some relevant motivation for my thesis work.

In Section 1.1, I will introduce and provide a framework for galaxy evolution. Then, I will

focus on the evolution of Active Galactic Nuclei (AGN) and the importance of AGN-driven

feedback (Section 1.2). I will also focus on the importance of galaxy mergers for driving

evolution (Section 1.3). I also incorporate an introduction to the kinematics of AGN and

galaxy mergers in Sections 1.2.1 and 1.3.1, respectively. I will then introduce the tools of

the trade; the observational techniques of optical longslit, integral field spectroscopy (IFS),

and imaging in Section 1.4. Finally, I will foreshadow how this thesis work contributes to

addressing some of the questions posed in this introduction in Section 1.5.

1.1 Galaxy Evolution

In the current Λ cold dark matter (ΛCDM) framework for structure formation in the

universe, galaxies form as gas cools at the center of dark matter halos (e.g., White & Rees

1978; White & Frenk 1991; Cole et al. 2008). These galaxies then grow through gas accretion

and mergers from small, irregular galaxies with high rates of star formation to large, quiescent

galaxies with lower rates of star formation in the local universe (e.g., Glazebrook et al. 1995;

Lilly et al. 1995; Giavalisco et al. 1996).

Observations of galaxy properties such as mass, star formation rate, and color find that

there is also a dichotomy in measured properties for galaxies in the local universe. Not only
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are galaxies evolving over cosmic time, but they are also actively undergoing evolutionary

processes in the local universe. Figure 1.1 illustrates this dichotomy for local SDSS galaxies

on the SFR-M (star formation rate and mass) parameter space. The galaxies are divided

into a population of large and red galaxies and a population of smaller and blue star-forming

galaxies. These two populations can also be described as different morphological types; the

larger redder galaxies are generally elliptical, or early-type galaxies, and the smaller, diskier,

and bluer galaxies are spiral, or late-type galaxies.

Here I use these trends to generally motivate galaxy evolution. However, these trends

do not always hold, and much work in recent years has found that there are very interesting

exceptions that offer clues into galaxy evolution. For instance, not all elliptical galaxies are

‘red and dead’ and not all disks are blue and actively star forming (e.g., Schawinski et al.

2014).

Over the lifetimes of galaxies, various processes are working to both transform the

morphological structures of galaxies while simultaneously shutting down star formation.

This cessation of star formation can take many forms, from violently expelling the gas from

the galaxy, to simply preventing cold molecular gas from forming stars through pressure

support; in all cases, I refer to the prevention or slowing of star formation as ‘quenching’ and

the processes that couple energy to the gas to drive quenching as ‘feedback’, which I discuss

in more detail in Section 1.2.

Many different processes can play a role in galaxy evolution, including both secular

and environmental processes. Secular processes operate over a variety of timescales and are

driven by the internal properties of a galaxy. For instance, morphological quenching, mass

quenching, and AGN feedback can be considered ‘secular’ or internal evolutionary processes.

Morphological quenching applies when the internal structure of a galaxy can affect its star

formation. For instance, Bluck et al. (2014) find that the gravitational potential of a galaxy’s

bulge can prevent the gas there from forming stars. Bars are also a form of morphological

quenching, since they provide a mechanism for molecular gas to migrate, funneling gas into
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Figure 1.1: Color-mass diagram adapted from Schawinski et al. (2014). Local SDSS galaxies
exhibit a dichotomy shown by the contours on this diagram. The color of each 0.1×0.1 dex panel
corresponds to the specific star formation rate (sSFR = SFR/M) of galaxies in that bin. The
bimodality shows a population of larger, red, relatively quenched galaxies (upper right) and a
population of smaller, blue, star forming galaxies (lower left).
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the central regions of a galaxy and leading to rapid and exhaustive star formation (Sheth

et al. 2004). Mass quenching is any process that is dependent on a galaxy’s mass; supernova

feedback could be a mass quenching mechanism (Peng et al. 2010, 2012). AGN feedback is

discussed in great detail in Section 1.2.

Environmental processes happen externally and include mergers, tidal disruption from

galaxy-galaxy gravitational interactions, and hydrodynamic interactions with the hot in-

tergalactic medium (IGM). As I discuss in much more detail in Section 1.3, galaxy-galaxy

mergers can transform the morphologies, kinematics, and star formation properties of galax-

ies (e.g., Toomre 1977; Mihos & Hernquist 1994, 1996; Hopkins et al. 2006). Mergers are

external evolutionary processes because they depend on the galaxy environment; they are

more likely to occur in high density regions. Likewise, galaxy ‘harassment’ events, which

I am renaming ‘encounters’, are more frequent in these busy environments, and can act to

drive or suppress star formation in galaxies. Hydrodynamic interactions like ram pressure

can remove the gas from a galaxy when the cold interstellar medium (ISM) of an infalling

galaxy in a cluster encounters the hot IGM (e.g., Gunn & Gott 1972; Abadi et al. 1999).

These evolutionary processes all operate on different timescales and spatial scales and

they can often interact in complicated ways to drive galaxy evolution. For instance, AGN

feedback can be both secular and external, occurring in isolated galaxies as well as recently

merged ones with fresh reservoirs of gas near the center (as a result of recent mergers, e.g.,

Hopkins et al. 2005). This picture with AGN feedback is quite complicated and I have

dedicated multiple chapters to it in this work. It illustrates the point that none of these

processes can be studied in isolation and it is therefore necessary to investigate the complex

interplay between these processes.

1.2 The Importance of AGN for Galaxy Evolution

Most if not all galaxies host a supermassive black hole (SMBH). SMBHs dwarf normal

‘stellar mass’ black holes, with masses ranging from 106 - 109 M�. While the masses of these



5

SMBHs are large, they are minuscule when compared to the masses of their host galaxies;

in fact, the mass of galaxy bulges alone far exceeds that of the SMBH (MBH ∼ 10−3 Mbul).

Therefore, the gravitational sphere of influence of the SMBH is relatively small compared to

that of the host galaxy.

However, the observational correlations between SMBH mass and stellar bulge proper-

ties such velocity dispersion (σ∗), the most famous of which is known as the MBH-σ∗ relation,

indicate that SMBHs and their host galaxies are evolutionarily intertwined (e.g., Magorrian

et al. 1998; Ferrarese & Merritt 2000; Gebhardt et al. 2000; Merritt 2000; McConnell & Ma

2013). One explanation for these correlations is that various evolutionary processes such as

repeated galaxy mergers grow the SMBH and the galaxy simultaneously (Jahnke & Macciò

2011). Another school of thought is that SMBHs are powerful drivers of galaxy evolution

and are influencing their host galaxies. As described in Chapter 1.1, galaxy evolution pro-

ceeds through many different processes and depends on the properties of the galaxy such as

the environment and redshift, meaning that a combination of different process may be at

work. For instance, SMBHs may be less important for explaining observational correlations

such as the MBH-σ∗ relationship for lower mass dwarf galaxies, where star formation driven

feedback dominates.

Since this section focuses on the role that SMBHs play in galaxy evolution, I discuss

the second explanation for the MBH-σ∗ relationship in more depth. The sphere of influence

of the SMBHs gravity is minuscule, so a physical coupling between the host galaxy and

the energy of active galactic nuclei (AGN, which are SMBHs that are actively accreting

gas) could explain these scaling relations. Assuming a radiative efficiency for the AGN

of 10%, the energy radiated by the AGN is then EBH = 0.1MBHc
2. The binding energy

of the bulge of the galaxy is Ebul = Mbulσ
2
∗, where σ is the pressure support, or velocity

dispersion of the stars in the bulge, which is typically less than 300 km s−1. Therefore,

while the mass of the bulge is much greater than that of the SMBH, the energy ratio is:

EBH/Ebul ∼ 10−4(c/σ)2 = 100. The energy of an AGN thus far exceeds the binding energy
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of the bulge of a galaxy. The coupling of the energy of the AGN to the galaxy is known as

‘AGN feedback’. If some fraction of this energy can be efficiently coupled to the host galaxy,

then AGN have the potential to have an important impact on galaxy evolution.

In this section, I define AGN feedback as a self-regulatory process that couples the

energy injected by an AGN into the galaxy to the gas of a galaxy; this can act to either

shut down or incite star formation. In this way, feedback can be either negative or positive,

respectively. Unless otherwise specified, when I refer to ‘feedback’, I am referring to negative

feedback. Also in terms of definitions, there are many different types of feedback, for exam-

ple, star formation driven feedback or AGN-driven feedback. Here, I focus on AGN-driven

feedback, since it is most relevant to the work in the first few chapters of this thesis.

AGN feedback is often referred to as the ‘F-word’ in astrophysics. This is because it is

often invoked as a vague term, without attention to the details of the energy coupling of the

AGN to the gas of the host galaxy. Feedback is also over utilized as a cure-all to disperse the

tension between large-scale cosmological simulations of the dark matter halo mass function

and the observational stellar mass function of galaxies in the universe. In this thesis, I strive

to remain specific about the details of the feedback processes and how they directly impact

the host galaxy.

Figure 1.2 introduces the theoretical origin of feedback from the tension between cos-

mological simulations and the observed stellar mass function. Here, Mutch et al. (2013)

compare a Schechter function fit to the redshift zero stellar mass function (in blue, from

Bell et al. 2003) to the dark matter halo mass function from the Millennium Simulation (in

red). These functions have been scaled using the baryon fraction, yet still differ on the high

and low mass ends. Supernova feedback is often invoked to explain this discrepancy at low

masses, where it can more efficiently operate (on low mass galaxies), ejecting gas from the

galaxies, and halting efficient formation of halos. At the high mass end, it is believed that

AGN feedback can shut down star formation and halt more stellar mass creation.

In addition to resolving tension between large-scale cosmological simulations and ob-
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servations of galaxies as well as providing an explanation for AGN-galaxy co-evolution, AGN

feedback may be important for explaining bulk properties of local galaxies. For instance, the

bimodal color distribution of galaxies in the local universe introduced in Section 1.1 requires

quenching of star formation in galaxies via a ‘feedback mechanism’ (e.g., Bell et al. 2004;

Brown et al. 2007; Faber et al. 2007; Silk 2011). In models, AGN-driven feedback provides

this mechanism to evacuate gas from a galaxy and quench star formation and the growth

of the SMBH (e.g., Di Matteo et al. 2005; Hopkins et al. 2005; Springel 2005; Croton et al.

2006).

Despite the utility of AGN feedback in regulating galaxy and SMBH growth, there is

limited direct evidence for feedback operating on host galaxies. There are many proposed

mechanisms to deliver energy from the AGN to the ISM of the host galaxy, but little is

known about the energy, geometry, and efficiency of these mechanisms.

There are two main modes of AGN feedback: quasar and radio mode. The quasar,

wind, or radiative mode applies to the AGN in this work; it is more radiatively efficient, and

operates for more luminous AGN, close to the Eddington limit, LEdd = 4πGMBHmpc/σT

(Combes 2014), where σT is the cross-section for Thomson scattering between charged parti-

cles and photons. The quasar mode of feedback mostly applies to pushing cold gas around in

galaxies (Fabian 2012). Radio mode feedback is also known as kinetic mode and operates for

AGN at a lower Eddington fraction (L < LEdd). This tends to apply to very large galaxies

with powerful jets and hot halos.

In this work, I focus on the quasar mode of AGN feedback, which operates for a larger

fraction of AGN host galaxies in the universe, since powerful radio galaxies are relatively

rare (they constitute ∼5-10% of AGN; Rafter et al. 2009). It is also more relevant to the

coupled growth of AGN and their host galaxies, since it releases more energy on scales that

are relevant to the bulge of the host galaxy. It is important to note that while radio and

quasar mode feedback are the two main modes, many AGN exist in an intermediate territory

where both modes of feedback could operate.
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Figure 1.2: The mass function for dark matter halos (from the Millenium simulation, red dashed
line) and the observed stellar mass function (from Bell et al. (2003), blue solid line), Figure from
Mutch et al. (2013). The halo mass function has been multiplied by the universal baryon fraction
in order to demonstrate the maximum possible stellar mass content as a function of halo mass. The
closer the stellar mass function is to this red dashed line, the more efficient star formation is in halos
of the corresponding mass. If galaxies were to form stars with a fixed efficiency at all halo masses,
then the slope of the stellar mass function would be identical to that of the halo mass function. The
differing slopes at both high and low masses indicates that star formation (as a function of halo
mass) is less efficient in these regimes. At low masses, this is commonly attributed to efficient gas
ejection due to supernova feedback, whereas at high masses energy from AGN feedback is thought
to be able to effectively reduce the efficiency of gas cooling. However, many other physical processes
may also contribute in both regimes.
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Quasar mode AGN feedback can drive powerful winds, which are also known as AGN

outflows (I use the two terms interchangeably throughout this thesis). I will now go into

some detail on the theory of AGN winds including their launching and driving mechanisms

in order to provide context for the investigation of AGN outflow kinematics and energetics

in Section 1.2.1 and Chapter 3. The theoretical models can shed light on the nature of AGN

winds, providing testable predictions for their energetics, momentum fluxes, multi-phase

nature, and how they might affect their host galaxies. However, due to the multi-phase

nature of AGN outflows and the different size scales they operate over, this picture is fairly

complicated. I first offer some background into the various observed phases of AGN outflows,

and then I will address the theory behind the nature (momentum vs energy-conserving) of

outflows as well as their driving mechanism.

Starting from the smallest spatial scales, and working our way up, warm absorbers

(WAs) and ultra-fast outflows (UFOs) are two classes of outflows that occur in UV/soft

X-ray and hard X-ray observations, respectively. WAs are observed in about half of local

Seyfert (low-luminosity) galaxies; they have outflow velocities on the order of ∼ 100 km s−1,

while UFOs are rarer and are observed to have relativistic speeds. Both are very wide-angle

outflows that occur on the sub-pc scale (∼10−4 - 10−2 pc; Reeves et al. 2009; Tombesi et al.

2011, 2012). This class of AGN outflows is extremely important for probing the launching

mechanism of the quasar mode of feedback; it is possible that this wind then continues on

to become the kpc-scale ionized narrow-line region (NLR) winds that are the focus for this

thesis (Morganti 2017). Therefore, while kpc-scale NLR winds are more relevant for directly

probing how the energy from the AGN outflow is coupled to the ISM on kpc-scales in a

galaxy, smaller-scale WAs or UFOs are critical for investigating the launching mechanism

for AGN winds.

Next, cold molecular gas outflows are also observed in both neutral atomic (HI) and

molecular (i.e., CO) gas phases, with velocities >1000 km s−1. They occur on pc scales. Of

additional interest is the fact that this type of outflow can have a very high mass. Cicone
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et al. (2014) find that the momentum of outflows of molecular gas are boosted by a factor

of 20 in comparison to the energy input by the AGN, LAGN/c. This is a key clue that this

phase of the outflow is an energy-driven outflow, as discussed below.

The phase of AGN outflows in this work (Chapter 3) is the NLR winds. I define

the NLR as a low density (nH < 106 cm−3) spatially extended region that extends from

hundreds of parsecs to ∼30 kpc surrounding the central AGN. It is characterized by the

forbidden narrow emission lines that I utilize to study the kinematics of the region (the

definition of narrow is ∆v < 1000 km s−1 in FWHM; e.g., Schmitt et al. 2003; Osterbrock &

Ferland 2006; Hainline et al. 2013). This type of outflow has velocities in the range 102 to

103 km s−1 and tends to have biconical geometry (e.g. Müller-Sánchez et al. 2011; Fischer

et al. 2013; Crenshaw et al. 2015; Müller-Sánchez et al. 2016; Fischer et al. 2017; Nevin et al.

2017).

A current question in the theory of AGN winds is if they conserve momentum or

energy. This is important because it affects the velocity and hence energetics of the wind

and therefore how it might impact the host galaxy. While observed outflows are probably

somewhere between the limits of energy- and momentum-conserving, the amount to which

they conserve energy is important. If a shocked wind cools inefficiently, then energy is

conserved, but momentum is not. For instance, very fast winds are energy-conserving because

radiative losses are low (Faucher-Giguère & Quataert 2012). In this limit, the momentum is

boosted with time due to shocks by hot gas. This predicts that AGN outflows could have a

measured momentum flux that is larger than that of the output momentum flux, which is

observed with the cold molecular gas outflows in Cicone et al. (2014).

However, AGN winds are multi-phase so this picture may be more complicated. For

instance, outflows may transition from momentum- to energy-conserving at ∼1 kpc, which

is the relevant scale for the kpc-scale outflowing winds in this work (King et al. 2011). Other

work such as King & Pounds (2015) indicates that the nature of the outflow may change with

time. For instance, outflows could begin as momentum conserving if they are able to cool
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efficiently, and then over time the SMBH will grow and enter an energy-conserving phase

that is more energetic and is able to boost the momentum at larger scales, having a larger

effect on the ISM during this phase. By measuring the kinematics of observed outflows

(Section 1.2.1), it is possible to link the theory to the observations and make predictions

about the potential for the outflow to drive feedback in the host galaxy.

AGN winds can be launched from the accretion disk via a variety of proposed launching

mechanisms including thermal heating, radiation pressure, and magnetic driving (Krolik &

Begelman 1986; Murray & Chiang 1995; Bottorff & Ferland 2000). It is somewhat unclear

which mechanisms dominate and a combination of these may explain the varied observations

of kinematics of different phases of AGN outflows. While these mechanisms are central to

the study of AGN outflows that occur on unresolvable or pc-scales, they are no less relevant

to the kpc-scale AGN in this work. Kpc-scale winds must still be driven by some mechanism,

although it is unclear where this acceleration takes place. They are located so far from the

nucleus that multiple different factors may be important.

Recent work has focused specifically on the NLR outflows and finds that they can be

credited to either radiative driving, where the AGN radiation acts as a heat source that can

also supply momentum (Fischer et al. 2017), or to the entrainment of clouds in a highly

ionized wind (Kraemer et al. 2007). Crenshaw et al. (2010) predict that at large radii, the

kinematics are dominated by deceleration due to interaction with the ambient medium. Some

work suggests that kpc-scale AGN winds are accelerating material in-situ (Revalski et al.

2018) as opposed to the material originating near the nucleus. Determining the kinematics

of the NLR outflows, as well as their geometries, sizes, and relationship with the luminosity

of the central AGN can address some of these questions about driving mechanisms as well as

energy vs momentum conservation in the outflow itself and can allow us to make conclusions

about the potential of the outflow to drive feedback in the host galaxy.

I will now transition into a discussion of feedback in the host galaxies of AGN outflows.

Since there are many different types/luminosities of AGN and AGN outflows in the universe,
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a relevant question is how AGN feedback operates in general for galaxies that host AGN;

this addresses the overall impact of AGN feedback on galaxy evolution. To address this, it is

necessary to examine the most commonly observed types of AGN outflows and to characterize

if this type of outflow drives positive or negative feedback processes in the host galaxy. Here

I carefully describe how best to determine if AGN feedback is operating in galaxies and I

introduce examples of positive and negative feedback in the literature in preparation for

Section 1.2.1, which introduces the kinematic approach to AGN feedback.

It is difficult to directly prove that AGN-driven outflows are driving feedback in the

host galaxy. Part of this difficulty stems from the fact that the timescales between the

outflow and the effect on star formation may be delayed. This means that making the causal

connection between the evidence for an outflow and the evidence for suppressed or enhanced

star formation is difficult. For instance, Woo et al. (2017) find that for a sample of ∼110,000

Type-2 AGN in SDSS the active galaxies that host strong outflows have similar specific star

formation rates (sSFRs) to inactive galaxies. However, the active galaxies without strong

outflows have much lower sSFRs relative to the inactive galaxies, indicating that there may

be a delay of dynamical time for the impact on star formation to appear. There could also

be other processes like merging galaxies that complicate this picture; for example, a merger

could trigger both AGN activity and star formation, also on different timescales (Hopkins

et al. 2008). Therefore, it is difficult to directly link a visible outflow to the cessation of star

formation; additionally, AGN are also known to operate on ‘duty-cycles’ meaning that they

can turn on and off.

While we do have to deal with problems of timing with AGN, one way to more directly

study feedback is to increase the number of careful observations from IFS or other spatially-

resolved tools. This has been done for z ∼ 1−3 galaxies and reveals that areas affected by the

outflow have lower star formation (e.g., Cresci et al. 2015; Carniani et al. 2016). However,

some galaxies with AGN-driven outflows can demonstrate positive feedback as well. For

instance, Cresci et al. (2015) find that an obscured z = 1.59 quasar has a cavity in its gas
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which surrounds a fast outflow (v = 1500km s−1). Simultaneously, there is triggered star

formation at the edges of this cavity. Therefore, AGN outflows may have a dual effect of

driving both positive and negative feedback.

Another option to investigate feedback is to study the cold molecular gas in galaxies

since this gas is directly responsible for star formation. Brusa et al. (2015) find that the gas

content of a z ∼ 1.5 obscured quasar with an AGN-driven outflow observed in the NIR is

significantly lower than expected for the stellar mass, sSFR, and redshift of the galaxy. This

suggests that in this case, the cold molecular gas phase is significantly depleted by the AGN

outflow.

Since the most direct evidence to date for AGN-driven feedback exists for only a small

handful of case studies, there are still several open questions such as if the type or scale

of feedback varies with properties like AGN luminosity. These case studies indicate that

feedback does not operate over the entire galaxy (it is not global in scale), at least from one

episode of AGN-driven outflow. However, the direct evidence for feedback listed above is

limited to higher luminosity and high energy AGN outflows that are localized to small areas

of the galaxy. It could be true that different types of AGN outflows or luminosities drive

different modes of feedback. In the past it was believed that in order to drive feedback, AGN

forcibly ejected all gas from the galaxy. However, perhaps AGN have the potential to drive

a ‘maintenance-mode’ form of feedback where they heat and ionize the gas, which prevents

star formation from proceeding from the existing gas.

In order to address some of the questions about the prevalence and overall effectiveness

of feedback, it becomes necessary to study a larger sample of galaxies. One way to do this is

to move away from the case studies of quasars, which are high luminosity AGN (we refer to

AGN with Lbol > 1045 erg s−1 as quasars in this thesis). We show an example of a quasar-

driven outflow from Greene et al. (2012) in Figure 1.3. This class of outflow, known as a

‘super-bubble’ has an extremely high velocity and large size, extending to ∼15 kpc from the

quasar. This type of AGN, while energetic, are rare and only constitute a small fraction
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Figure 1.3: A galaxy with a powerful quasar-driven outflow from Greene et al. (2012). The r−band
Magellan image of the galaxy is on the left, with the main galaxy in the south and the companion
galaxy in the north (N is up and E is to the left). The red scale bar indicates 10.′′0 (22 kpc) and
the blue lines are the positions of the spectroscopic slits, labeled ‘PA1’ and ‘PA2’. The longslit
spectrum from PA1 is shown in the panel on the right, where the spectral dimension is the x-axis
and the spatial dimension is the y-axis. The spatial scale is the same as in the image, and the
horizontal scale is 3842 km s−1. This slice of spectrum is centered on [OIII]λ5007; the bubble
feature associated with the southern galaxy is ionized and has a large velocity dispersion, meaning
that it is not gravitationally bound. It also has a large spatial extent (∼15 kpc from the galaxy
towards the companion galaxy). There is a tidal feature (TT) that connects the two merging
galaxies, shown by the vertical white line.
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(1%) of the AGN in the universe.

I include the AGN bolometric luminosity function in Figure 1.4, which shows the

fraction of radiatively efficient AGN found at various bolometric luminosities. Moderate-

luminosity AGN are defined as those with 43 < log Lbol erg s−1 < 45 (local moderate-

luminosity AGN are also known as Seyferts in this work). The AGN described in this thesis

are moderate-luminosity and account for 10% of the total AGN population at low redshifts

(z < 0.1) (e.g., Silverman et al. 2006; Ueda et al. 2014).

Figure 1.4: Bolometric luminosity function for all radiatively efficient AGN adapted from Weigel
et al. (2017). The vertical lines at 1043 and 1045 erg s−1 demarcate the moderate-luminosity AGN
range.

In addition to representing a larger fraction of the AGN population, the moderate-

luminosity outflows in this thesis also operate on kpc-scales, coincident with circumnuclear

star formation. This has the advantage of allowing me to more directly assess the effects of

outflows on the ISM of the host galaxies (Crenshaw et al. 2015). I can do this by investigating

the properties of the host galaxy in addition to the properties of the outflow such as its

orientation with respect to the star forming disk of the galaxy. If moderate-luminosity

AGN are capable of driving feedback, they are so common that they could contribute more
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significantly to galaxy evolution in the universe than the rarer high luminosity AGN outflows.

1.2.1 The Kinematics of AGN Outflows

Kinematics are key for studying NLR AGN outflows; they can reveal the energetics

and geometry of the outflow and therefore address some open questions in the area of AGN

feedback:

• What is the energy of AGN outflows?

• What is the geometry of AGN outflows and how might this affect the efficiency of

the coupling of the energy to the ISM?

• What are assumptions that are being made about these two quantities and how is

this affecting the conclusions about AGN-driven feedback?

By measuring the kinematics of AGN outflows in Chapters 2 and 3, I directly address these

questions in this thesis work.

Kinematics are necessary in order to quantify the energy from outflows, and to therefore

better understand the ability of outflows to drive feedback. The most common diagnostics to

do this are the mass outflow rate ( ˙Mout) and the kinetic luminosity (LKE = 1/2 ˙Moutv
2). The

kinetic luminosity is often compared to the bolometric luminosity (LKE/Lbol) of the AGN to

derive a fraction that describes the amount of accretion power that is present in the outflow.

Di Matteo et al. (2005) find that if this fraction is greater than 0.05-0.1, then the wind

can drive feedback in the host galaxy. Hopkins & Elvis (2010) lower this energy threshold

to 0.005 LKE/Lbol using a two stage feeedback model in which the outflow first disrupts a

cold cloud, which will expand in the perpendicular direction. This expansion alone may be

sufficient to prevent star formation. The disrupted cloud is more susceptible to ionization

and momentum coupling from the outflow, so it could also become part of the outflow. This
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ratio, LKE/Lbol, is useful in determining if an outflow has the theoretical potential to drive

feedback in its host galaxy.

But how is LKE measured? There are two basic methods, one of which relies upon

the geometry of the outflow, and one of which relies on the luminosity of the emitting

gas. The geometric approach uses the equation Ṁout = 2mpnevAf to measure the mass

outflow rate, where ne is the electron density, v is the outflow velocity, A is the surface area

of the outflow, and f is a volume filling factor which accounts for how ‘clumpy’ the gas

is. There are numerous uncertainties in this measurement including the electron density,

the velocity, the surface area, and the filling factor. Based on the assumptions made, the

measurement can vary by a couple dex, so it is critical to carefully consider each of the

assumptions and utilize physical motivations for each decision. In this work, we pursue

this first approach but are careful to analytically model the geometry of the outflow and

to measure the electron density. The luminosity-based approach to measuring mass outflow

rates converts an observed luminosity of emission lines such as Hβ or [OIII] to a mass using

a conversion factor. This method often assumes a spherical geometry. The luminosity-based

technique can be more stable, but has the disadvantage of making a global measurement,

meaning that it cannot probe the geometry or spatially-resolved energetics of the outflow.

Revalski et al. (2018) offers a detailed comparison of the two techniques for a single AGN

outflow and I additionally compare luminosity-based techniques with the geometric approach

used in Chapter 3.

An additional uncertainty in the determination of the outflow energetics is the measure-

ment of v, or the outflow velocity. This quantity can be measured from integrated spectra

(it is often used as a global offset velocity for blueshifted wings where a spherical geometry

of the outflow is assumed), or it can be measured using a spatially resolved methodology. I

utilize the spatially resolved data from longslit observations to measure v using a penalized

multi-Gaussian fitting technique to determine the velocity centroids of different Gaussian

components that are physically tied to walls of a biconical outflow. This method makes
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assumptions about the physical model but fits a spatially resolved velocity at each posi-

tion, which is a more careful approach than fitting a global velocity offset value, which can

overestimate the outflow energetics.

A key question in the energetics of AGN outflows is how efficiently they couple their

energy to the galaxy’s ISM. If an outflow has a narrow opening angle and is oriented per-

pendicular relative to the galaxy disk, it will have a minimal impact on the star-forming gas

in the disk of the host galaxy regardless of its energy content. It is therefore important to

determine both the geometry of the outflow and how the outflow is oriented with respect

to the star-forming disk of the host galaxy. The geometry of the outflow can either be as-

sumed, directly observed from images of the galaxy, or measured from the kinematics. For

instance, some authors assume a spherical geometry with a 180◦ opening angle, which can

overestimate the energetics of the outflow and always allows the outflow to deliver energy to

the galaxy disk.

Instead, theory predicts a bicone model for the NLR of an outflow. This is expected

from the unified model of AGN; a thick torus provides the collimation necessary to produce

a biconical outflow (Antonucci & Miller 1985). The outflow does not necessarily have to

be aligned perpendicular to the disk of the galaxy, in fact Fischer et al. (2013) find no

alignment between the inclinations of a sample of Seyfert galaxies with biconical outflows

and the photometric major axes of their host galaxies. The technique I use to measure the

geometry of the outflow and its orientation is to model the geometry of the outflow using the

spatially-resolved velocity centroids. This can provide the inclination, opening angle, size,

and orientation on the sky of the outflow.

The kinematics of ionized gas in NLR outflows allow for the careful determination of

the outflow energetics, which can help estimate if an outflow has the theoretical potential to

impact its host galaxy. Additionally, the kinematics can reveal the geometry of the outflow,

which can determine the efficacy of the outflow in delivering this energy to the ISM.
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1.3 The Importance of Galaxy Mergers for Galaxy Evolution

One key goal of extragalactic astronomy is quantifying the importance of galaxy-galaxy

mergers for driving galaxy evolution. Mergers can explain how galaxies form, grow, and

build up structure; mergers can fuel SMBHs as AGN, drive star formation, and lead to the

assembly of structure like bars or central bulges. In fact, the merging of dark matter halos is

one of the key predictions of the ΛCDM model of the universe, which is the central tenet of

how galaxy evolution proceeds throughout cosmic time. However, there is much tension on

how important different types of mergers are for evolutionary processes in the universe and

much of this contention stems from the difficulty of cleanly and unambiguously identifying

merging galaxies. Additionally, galaxy mergers can be extraordinarily long processes (they

last for ∼Gyrs) and they have different signatures at different moments in time. Here I

briefly outline some of the key findings surrounding how and if galaxy mergers can drive

evolution and touch on some of the leading methods to identify mergers. I will also describe

some of the history of using galaxy merger simulations to better understand the process of

merging.

I will begin by posing the question: Do major mergers drive evolution? It is clear

that major mergers, which are the most extreme form of merger (where the mass ratio

is greater than 1:4), do drive evolutionary processes. For example, simulations find that

tidal torques from major mergers can drive gas accretion and observations of ultra-luminous

infrared galaxies (ULIRGs), which are local major mergers, reveal that major mergers are

indeed responsible for driving both star formation and AGN activity (e.g., Joseph & Wright

1985; Sanders & Mirabel 1996). However, these galaxies are extreme cases of mergers.

If this same question is posed much more generally, asking instead if major mergers are

the primary drivers of evolution in the universe, the answer is unclear. Some work indicates

that major mergers are indeed primarily responsible for driving both star formation (Mihos

& Hernquist 1994, 1996) and fueling AGN (Di Matteo et al. 2005; Hopkins et al. 2005; Ellison
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et al. 2011; Koss et al. 2012; Treister et al. 2012; Satyapal et al. 2014). However, other work

suggests that minor mergers or continuous ‘cold flow’ gas accretion are the most important

mechanism for shaping the morphologies of galaxies, driving star formation, and contributing

to the mass growth of SMBHs (e.g., Noeske et al. 2007; Daddi et al. 2007; Cisternas et al.

2011; Kocevski et al. 2012; Kaviraj 2013; Villforth et al. 2014). Other studies find that

mergers are unimportant and that secular instabilities driven by disks and spiral arms in the

local universe can dominate galaxy evolution. These secular instabilities can grow pseudo-

bulges locally and contribute to significant gas inflows (e.g., Bournaud 2016).

It should be noted here that although this is beyond the scope of this thesis, the fraction

of galaxies that are merging is thought to depend on the redshift, increasing towards z ∼ 2

(e.g., Conselice et al. 2008). This is an interesting topic unto itself and very important

for understanding galaxy evolution. Here we focus on understanding mergers in the local

universe in the hope that we can extend the technique to higher redshift galaxies, where

mergers are more ubiquitous, using telescopes such as JWST.

One main reason that the relative import of different types of mergers is unknown is

that it is difficult to build a clean observational sample of galaxy mergers (major and minor).

Imaging studies that rely upon one or a couple of imaging predictors can fail to accurately

identify mergers, which leads to inconclusive results (e.g., Conselice 2014 and references

therein). One method to identify merging galaxies is pair studies, which identify merging

galaxies as those that have a low line of sight velocity difference such as 100-500 km s−1 (e.g.,

López-Sanjuan et al. 2012; Tasca et al. 2014). Methods such as this can be used to measure

the merger fraction, or relative number of galaxies that are merging for various epochs in the

universe. However, each individual method has various biases. For instance, the pair study

technique can identify false positives (galaxies that are superimposed along the line of sight

but not merging) and false negatives (it only identifies major mergers that are during their

early stages of merging and misses many different types and stages of mergers).

Recent work has relied increasingly upon non-parametric tools to identify merging
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galaxies from imaging surveys, such as the Gini-M20 method or the CAS (Concentration-

Asymmetry-Clumpiness) method (Lotz et al. 2004; Conselice et al. 2003). These methods

are each individually limited by different merger initial conditions, such as mass ratio and

gas fraction, and by merger stage. For instance, while identifying merging galaxies using

asymmetry tends to be more sensitive to early-stage mergers, Gini−M20 tends to identify

late-stage mergers. Additionally, Gini − M20 is slightly more sensitive to minor mergers

(Lotz et al. 2010a,b).

In Chapter 4, I develop an imaging classification tool to identify merging galaxies that

utilizes a combination of the above imaging tools (I introduce some of these imaging tech-

niques in more depth in Section 1.4.3). The goal of Chapter 4 is to combine the strengths of

these stand-alone methods to increase the precision and accuracy of the merger classification.

A key aspect of this technique is my use of simulated galaxy mergers to better characterize

the strengths and biases of the new identification tool.

Simulations of merging galaxies can be used to make predictions about the observabil-

ity of galaxy mergers using different predictors, the merger fraction over cosmic time, and

the importance of mergers to various evolutionary processes in galaxies. One approach is

cosmological merger tree simulations, which study the merger rate over cosmic time (e.g.,

Rodriguez-Gomez et al. 2015). This type of approach also incorporates the fact that galaxies

do not live in isolation; for instance, galaxies can be influenced by galaxy flybys (that do not

culminate in a merger) or non-binary mergers. Also in cosmological simulations, galaxies

can accrete gas from the inter-cluster medium. Cosmological simulations such as Illustris

(Vogelsberger et al. 2014) or the Millenium simulations (Springel 2005) capture the frequency

of false positives (galaxies that are passing by but not merging).

Another approach to simulating merging galaxies is binary mergers or ‘isolated’ merger

simulations. Some examples of isolated galaxy simulations are the GADGET-3/SUNRISE sim-

ulations (Jonsson 2006; Jonsson et al. 2010), which I utilize in Chapters 4 and 5, or the

FIRE simulations (Hopkins et al. 2014, 2018). This approach does have its limitations since
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it is unable to place galaxy mergers in a cosmological context and/or examine the variety

of morphologies that are available in a cosmological context. However, isolated simulations

have high temporal and spatial resolution and more closely track the physics of the ISM of

the merging galaxies. Both types of simulation are very useful in making different predic-

tions about merging galaxies. They both also provide the opportunity to calibrate merger

identification techniques since it is possible to know a priori if a galaxy is merging or not.

Here I focus primarily on past examples of work that has relied upon isolated merger

simulations to make key predictions about observations of merging galaxies, since this is

the direction pursued in Chapters 4 and 5 of this thesis. Lotz et al. (2008); Lotz et al.

(2010a,b) demonstrate that the timescale over which a binary merger is observable (known

in the field as the merger observability timescale) varies for different non-parametric tools.

The observability timescale also depends most strongly on the merger parameters of mass

ratio and gas fraction. Hung et al. (2016) also explore this in more depth for some kinematic

signatures of merging galaxies in the star-forming gas of the same type of GADGET-3/SUNRISE

simulations. They find that the observability timescale for the kinematic signatures of the

mergers is ∼ 0.2− 0.4 Gyr, which is much shorter than for imaging predictors, and that this

timescale is also sensitive to gas fraction and mass ratio.

I will introduce some of the kinematic signatures of mergers in Section 1.3.1 and will

further discuss some imaging tools that can identify galaxy mergers in the wider context of

galaxy morphology and structure in Section 1.4.3.

1.3.1 The Kinematics of Galaxy Mergers

In this section, I will go into detail about the observed kinematic characteristics of

galaxies in general in order to introduce kinematic tools that are useful for identifying merging

galaxies. This involves discussing the distinct kinematics of spiral and elliptical galaxies and

further subdividing elliptical galaxies into two interesting classes of ‘fast rotators’ and ‘slow

rotators’. I will mainly use the stellar velocity and velocity dispersion as tools to describe
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the kinematics of a galaxy, occasionally deviating to discuss gas kinematics, which can be

quite informative but are not covered as extensively in this thesis work (in the context of

mergers). The stars (stellar kinematics) are the target of this thesis since they offer a more

direct probe of the underlying gravitational potential of a galaxy and thus the assembly

history of galaxies. As I show in Chapters 2 and 3, the gas kinematics of galaxies can be

more affected by external processes such as outflows or inflows. Throughout this section, I

will also discuss some recent simulations that are useful for making predictions about the

kinematics of galaxies.

The kinematics of galaxies are primarily governed by the dark matter halos in which

they reside, which is best demonstrated in the flat rotation curves of spiral/disk galaxies (e.g.,

Rubin & Ford 1970; Rubin et al. 1978). This was initially surprising in observations, since

the light profiles of galaxies begin to fall off at ∼10 kpc. However, light does not trace the

overall mass of galaxies, which are dominated by the dark matter halos, so rotation curves

became a method to characterize the overall mass distribution of a galaxy (light and dark

matter). The rotation curves of spiral galaxies (Figure 1.5) tend to have ordered rotation,

where the velocity increases towards a turnover radius at ∼ 1 − 5 kpc. The maximum

rotational velocity is ∼300-400 km s−1 (Sparke & Gallagher 2000). Exterior to this turnover

radius, the velocity curves do not decay as quickly as predicted by the light alone (Figure

1.5). In combination with their relatively fast and ordered rotation, spiral/disk galaxies also

tend to have relatively small velocity dispersions, which is why they are commonly labeled

‘rotation-dominated’. They have large V/σ values, where V is the rotational velocity and σ

is the velocity dispersion of the stars.

The rotation curves of spiral galaxies in Figure 1.5 are measured using longslit spec-

troscopy. When galaxies are observed with IFS, the rotational velocity of the galaxy can be

modeled using full two-dimensional models. For instance, the motion of the stars in spiral

galaxies is well described by circular motion, and if the inclination is known (or can be fit),

the velocity profile can be described as:
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Figure 1.5: Rotation curves of spiral galaxies from Rubin et al. (1978), where the stellar disk
dominates the kinematics of the inner part of the rotation curve and the dark matter halo dominates
the outer regions, which explains why the rotational velocity does not rapidly decline with the light
profiles of these galaxies.
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V (R,ψ) = V0 + Vc(R) sin(i) cos(ψ)

where R is the radius, V0 is the systemic velocity, Vc is the circular velocity, i is the inclination,

and ψ is the azimuthal angle (Krajnovic et al. 2006).

In this thesis, I use numerous methods that measure how ‘disk-like’ a galaxy’s rotation

profile is. This includes kinemetry (Krajnovic et al. 2006), which is a disk-fitting code that

uses a harmonic decomposition to fit the rotation curves of galaxies and can be useful to

determine how an observed rotation field deviates from an ordered disk. I also utilize the

Radon Transform, which was developed by Stark et al. (2018) for use on MaNGA stellar

velocity maps. It is a non-parametric method that measures the kinematic position angle at

different points in a galaxy.

The velocity dispersion of spiral galaxies can be another useful tool in the kinematic

toolbox. The Milky Way is a spiral galaxy that has both a thick and thin disk, which are

distinct in their velocity dispersion; the thick disk is made of older stars, which have a larger

dispersion while the thin disk has a smaller dispersion. However, for most of the non-local

disk galaxies, the resolution does not exist to separate these two components. The general

picture is that spiral galaxies often have a bulge-like component towards the center, which

has a higher velocity dispersion since it is often dominated by older stars and a decreasing

velocity dispersion towards the exterior of the galaxy. Tools such as kinemetry can also

characterize the relative order or disorder of the velocity dispersion of galaxies.

The other main type of galaxy in the local universe are elliptical galaxies. Often el-

liptical galaxies are thought of as a separate class from spirals due to visual morphology.

However, they are also distinct in terms of their kinematics. Traditionally, before IFS and

longslit spectroscopy provided spatially resolved kinematic maps (for more details, see Sec-

tions 1.4.1 and 1.4.2), ellipticals were characterized as having a low V/σ value; they had

little rotation and were instead dominated by velocity dispersion (de Zeeuw & Franx 1991).
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Figure 1.6: Classification of fast and slow rotators on the λRe-ε parameter space, taken from
Cappellari (2017). The black line shows the empirical divide between the two populations, where
the individual galaxies are 340 ETGs from Emsellem et al. (2011) and Fogarty et al. (2015). The
galaxies are also color-coded by regular (blue) or non-regular (red) rotation.
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With the advent of IFS data it is now possible to more closely probe the angular

momentum in a spatially resolved manner using the specific angular momentum (measured

to the effective radius Re), λRe , as a stand-in for V/σ. By replacing V with the magnitude

of the luminosity-weighted average projected angular momentum, < ~L >=< ~R × ~V > and

normalizing by Vrms =
√
V 2 + σ2, we obtain the parameter λRe (Emsellem et al. 2007):

λR ≡
< R|V | >

< R
√
V 2 + σ2 >

=

∑N
n=1 FnRn|Vn|∑N

n=1 FnRn

√
V 2
n + σ2

n

where Fn is the flux in the nth spatial bin, Rn is the mean radius of the bin, Vn is the mean

stellar velocity, and σn is the mean stellar velocity dispersion of the bin.

This tool is able to more cleanly separate populations of galaxies by their angular mo-

mentum content, and thus more directly probe their assembly histories. It has been used to

huge success in IFS surveys of elliptical galaxies and shows that there are distinct popula-

tions of elliptical galaxies and that not all elliptical galaxies are ‘dispersion-dominated’. For

instance, Emsellem et al. (2007, 2011) define a cutoff in (λR,ε) space, where ε is a galaxy’s

ellipticity, and classify elliptical galaxies as fast or slow rotators based on a cut in this

parameter space:

λRe < 0.08 + εe/4 with εe < 0.4 (for slow rotators)

This classification of fast vs slow rotators was originally done using galaxies in the

ATLAS3D and SAURON surveys and later extended to surveys like CALIFA, SAMI, and

MaNGA. I show an example of this classification for a set of galaxies from SAMI and

ATLAS3D in Figure 1.6. When these kinematic classes of elliptical galaxies are coupled

with other properties from IFS surveys, it becomes clear that these two classes of elliptical

galaxies are distinct in their assembly histories. For instance, slow rotators tend to be more

massive and reside as the central galaxy in galaxy clusters (Cappellari et al. 2011; D’Eugenio

et al. 2013), whereas fast rotators are smaller. Distinct differences in their star formation

histories also point towards different assembly histories (e.g., Smethurst et al. 2018). There-
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fore, fast and slow rotators offer an example of how classifying by the kinematic properties

of galaxies can separate galaxies by their assembly histories. Naab et al. (2014) use cosmo-

logical simulations to assemble fast and slow rotators and find that slow rotators tend to

assemble at early times through more rapid evolutionary processes such as major mergers

and since then have been dominated by minor mergers. On the other hand, fast rotators

can assemble in a variety of ways including gas rich/gas poor minor/major mergers as well

as cold flow gas accretion.

There has recently been increased focus on the kinematics of high redshift merging

galaxies. The merger fraction is much higher in the high redshift universe, meaning that

mergers are more common. A host of issues accompany studying the kinematics of higher

redshift mergers: nonmerging high redshift galaxies are inherently more disorganized and

all high redshift galaxies suffer from lower spatial resolution, meaning that merging galaxies

could be mistaken for rotating disks (Simons et al. 2019). While high redshift merging

galaxies are inherently different from local mergers, the tools that are developed to study

these higher redshift mergers can still be applied to local galaxies. For instance, Shapiro et al.

(2008) and Hung et al. (2015) utilize the higher order kinematic moments from kinemetry

to characterize the disorder of the kinematics of merging galaxies. These techniques have

been extended to local ULIRGs and the kinematic tools show good agreement with imaging

tools when applied to identify these galaxies as mergers (e.g., Bellocchi et al. 2012).

The scarcity of local mergers coupled with the paucity of IFS surveys (until recently)

has led to a lack of work in the kinematics of local mergers. Given that the MaNGA survey

will observe >10,000 local galaxies, I am motivated to focus on the kinematics of local

mergers. The recent interest in high redshift systems further motivates this critical work

focusing on the local merger systems, which we have yet to fully explore in order to trace

the evolution of the kinematics of mergers over time.

Local, bright, major mergers are often studied individually in great detail and are

found to have significantly disturbed gas kinematics (e.g., Bellocchi et al. 2012). However,
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GADGET-3/SUNRISE simulations of merging galaxies have revealed that the kinematic tracers

are much weaker than imaging tracers of local mergers and have a much shorter observability

timescale (e.g., Hung et al. 2016). Additionally, the kinematic tracers change with the

properties of the merger such as mass ratio or gas fraction.

A number of studies have investigated the kinematic misalignments of the stars and

gas in galaxies. Many of these focus primarily on the kinematic misalignments of gas, which

are more frequently observed in galaxies than that of the stars (e.g., Stark et al. 2018).

The gas kinematics are sometimes found to be distinct from that of the stars, meaning that

they could trace recent gas accretion events from new gas acquisition from either inflows

or recent mergers (Jin et al. 2016). This is an interesting area, but this work focuses on

stellar kinematics since it is thought to more closely trace the assembly history of galaxies.

Stark et al. (2018) find that a significant fraction of galaxies in MaNGA show deviation from

a constant kinematic position angle for the stars. There are different types of kinematic

misalignments including warps (where the kinematic position angle is different in the outer

disk and the inner disk), kinematically decoupled cores (KDCs), or oval distortions. These

deviations from circular rotation can have a variety of physical origins and are much debated;

these can include bar instabilities, major mergers, minor mergers, and recent gas accretion

either by mergers or through ‘cold-mode’ accretion (e.g., Kereš et al. 2009; Masters et al.

2011; Tsatsi et al. 2015).

There are many promising avenues forward to characterize the kinematics of merging

galaxies. Here I focus on the 2D kinematics from IFS which allow us to apply kinematic tools

such as λRe , the higher order harmonic terms from kinemetry, and the position angle of the

kinematic axis. In order to clarify the origin of some of these interesting kinematic features of

galaxies and to fully understand the kinematic signatures of merging galaxies, it is necessary

to use simulations of merging galaxies alongside observations, which I do in Chapter 5,

where I create a classification technique for merging galaxies first using GADGET-3/SUNRISE

simulations of mergers. The stellar kinematics of mergers are an intriguing and underexplored
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path forward in identifying merging galaxies.

1.4 Tools of the Trade

The main focus of this thesis work is on the kinematics of galaxies and AGN. Therefore,

I dedicate a section to explore the instruments and techniques that measure kinematics,

focusing on longslit spectroscopy (Section 1.4.1) and integral field spectroscopy (Section

1.4.2). Additionally, Chapter 4 focuses exclusively on imaging techniques, so I explore some

of these in Section 1.4.3. In this section, I also introduce the surveys and instruments that

I use in this thesis.

1.4.1 Longslit Spectroscopy

The most basic form of astronomical spectroscopy is integrated spectroscopy, where a

single aperture observes a source on the sky. This is known as one dimensional spectroscopy

because there is only a spectral dimension and there is no spatial information. Longslit

spectroscopy is referred to as two dimensional spectroscopy because the aperture is now a

slit, which allows for two dimensions of information where one is spatial and one is spectral.

It is often known as the workhorse of the spectroscopic techniques; it is relatively fast and

efficient to use and provides an important dimension of spatial information. So while it is

not as fast as using an integrated fiber, in our case it is useful as a follow-up technique to

integrated fiber spectra, such as those from the Sloan Digital Sky Survey (SDSS).

I show an example of an observation I made of the central region of NGC6240 from

Müller-Sánchez et al. (2018), centered on the [OIII] emission line, in Figure 1.7. This obser-

vation was made using the Apache Point Observatory’s (APO) Dual Imaging Spectrograph

(DIS), which is mounted on the 3.5m ARC telescope. This instrument is a medium disper-

sion optical longslit spectrograph with a red and a blue channel. It has a spatial resolution

of 0.′′4 per pixel and a variable spectral resolution based on grating (we use the high reso-

lution blue channel B1200, which as has 1200 lines mm−1 or 0.62Å pix−1). APO/DIS is an
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instrument that I use frequently throughout this thesis and additionally for various other

papers I have collaborated on; it is extremely useful for follow-up of integrated fiber spectra

because it further reveals the kinematics of the galaxy at different spatial positions. For

example, in Figure 1.7, I line up the longslit along the position angle of an [OIII] prominence

in NGC6240. I can then place the extended and high velocity [OIII] at the position of a

biconical structure in HST imaging and additionally constrain the energetics of the [OIII]

outflow (Müller-Sánchez et al. 2018).

In this work, I utilize longslit spectroscopy as a follow-up to localize the double-peaked

emission lines in spectra of galaxies that host AGN (Chapter 2). I place two (long)slits at

orthogonal positions for each galaxy, which enables me to separate the stellar kinematics

from the ionized gas kinematics. I can then determine the kinematic nature of the ionized

gas based on position, velocity, and velocity dispersion. Integrated spectroscopy combines

all kinematic information into one profile, where the spatial details are washed out. I use

longslit spectroscopy to measure the velocities of smaller Gaussian components of the galaxy

kinematics at each position since they are not combined with emission lines from a different

spatial position.

In this work I use a variety of optical longslit spectrographs that have similar spec-

ifications: Lick/Kast, Palomar/Double Spectrograph, MMT/Blue Channel Spectrograph,

Keck/DEIMOS (Deep Imaging Multi-Object Spectrograph), and APO/DIS. All have a 1200

lines mm−1 grating that disperses the light in the spectral direction and all have similar

spatial resolution on the order 0.′′5.

1.4.2 Integral Field Spectroscopy

Longslit spectroscopy is limited by efficiency, meaning that it is useful for one or two

slit positions on a galaxy but would take too many slit positions to cover the entire face

of a galaxy. This is where integral field spectroscopy (IFS) comes in. It is the natural

extension of longslit to fully 3D spectroscopy, where every spaxel (spatial pixel) contains its
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Figure 1.7: APO/DIS longslit observation of NGC6240 from Müller-Sánchez et al. (2018), which
centers on the [OIII] emission at λ5007. It reveals a spatially-resolved outflow that extends to the
north (∼5 kpc) of the stellar continuum and has a high velocity dispersion.
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own spectrum. There are a couple of different techniques used to achieve IFS; this work

focuses on fiber IFS. A disadvantage of fiber bundles is that there are gaps between the

individual fibers, which must be filled in using techniques such as dithering.

IFS data can provide a wealth of information. For example, sampling galaxies at a

variety of spatial positions allows the construction of spatially-resolved quantities such as

the specific angular momentum of galaxies, which is a more informative tool than the rotation

curves from longslit data. However, IFS data is much more complicated to handle and comes

with a variety of challenges, such as practical limitations due to spatial sampling, dealing

with adaptive binning schemes, and/or modeling wavelength-dependent PSFs to name a few.

While some of these considerations are still relevant for integrated or longslit spectroscopy,

many are made much more complicated by the 3D nature of IFS datasets. Handling IFS

data requires a detailed knowledge of both spectroscopy and imaging simultaneously.

An example of the utility of IFS in comparison with longslit observations is shown

in Appendix B, where I construct a pseudo-IFS observation using two orthogonal longslit

position angles and then compare the kinematics from the pseudo-IFS to that of the full

velocity field from IFS observations. With the IFS follow-up I are more easily able to model

and constrain the position angle of the velocity field.

The field of IFS is changing rapidly due to many recent large IFS surveys of local galax-

ies. While there are exciting advances in higher redshift IFS surveys, I focus here on the local

counterparts. The early local IFS surveys explored one galaxy at a time and were limited in

the number of observed galaxies. They included the SAURON survey (de Zeeuw et al. 2002),

the DiskMass survey (Bershady et al. 2010), the ATLAS3D survey (Cappellari et al. 2011),

and the CALIFA (the Calar Alto Legacy Integral Field Area) survey (Sánchez et al. 2012).

The next generation of surveys have the ability to observe multiple galaxies simulatenously.

They include the SAMI (Sydney-AAO Multi-object IFS) survey (Bryant et al. 2015) and the

MaNGA (Mapping Nearby Galaxies at APO) survey (Bundy et al. 2015). Both SAMI and

MaNGA provide the spatially-resolved equivalent of the SDSS survey, allowing the study of
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spatially resolved galaxy properties for a wide variety of galaxies. MaNGA in particular is

a focus of this work, since it will survey >10,000 galaxies from a carefully selected set of

galaxies with a large dynamic range in galaxy properties, environment, and star formation

rate. This dataset offers the unique opportunity to carry out detailed statistical work on the

kinematics of galaxies.

The newest IFS surveys tackle many of the challenges of IFS data mentioned above

in their data reduction and processing pipelines. For instance, the MaNGA survey’s data

analysis pipeline (DAP) incorporates adaptive binning schemes that can be user-defined.

Much of Chapter 5 of this thesis focuses on the detailed considerations to IFS data that are

addressed by the DAP.

1.4.3 Imaging

Imaging is a very common tool in extragalactic astronomy and has been used for

decades to understand galaxy morphologies and structures. It has also been utilized in a

variety of ways to identify merging galaxies. Deep imaging surveys with CCDs have been

around for many years and in this work I use imaging from the Sloan Digital Sky Survey

(York et al. 2000). While imaging is not a new technique, the community continues to

develop new tools to extract sources from images and to measure various imaging properties

of galaxies (both parametric and non-parametric) that I will introduce in this section.

The individual imaging tools used to study galaxy evolution range from tools such as

the visual (by-eye) classifications of galaxies in GalaxyZoo (Lintott et al. 2011) into mor-

phological types by citizen scientists (these morphological types were originally identified

by Edwin Hubble in the 1920s; Hubble 1926), to the extraction and modeling of the light

profiles of galaxies using surface-brightness tools like GALFIT that rely upon parameterizing

the light of the galaxy using exponential profiles (Sérsic 1963), to non-parametric techniques

to determine the asymmetry of light in a galaxy (Conselice et al. 2003). Lately, it has

additionally become popular to use machine learning techniques that use the light in each



35

individual pixel to classify and make conclusions about galaxies, using techniques such as

random forests or convolution neural networks (CNN). These tools fall into four main cate-

gories: visual morphology, parametric tools to measure light profiles, non-parametric tools to

measure light, and machine-learning. In Chapter 4, I primarily utilize non-parametric tools

(and one parametric one), which I combine to identify merging galaxies under a machine

learning tool.

It has become clear over time that all of these techniques are susceptible to different

biases. For instance, many techniques are sensitive to the signal-to-noise (S/N) of a given

observation; the lower surface-brightness regions of a galaxy could become undetectable if a

galaxy is dimmer. Another concern is that galaxies look different in different wavelengths

of light; for instance a galaxy observed in redder light in may have dimmer spiral arms.

Yet another concern is that galaxies themselves as well as the imaging techniques change

with redshift. This is a function of resolution, dimmer surface brightness, as well as the

inherent evolution of galaxy properties over cosmic time. There are additional difficulties

that accompany the use of complex machine learning tools; these tools can still be sensitive

to S/N and require detailed attention to cleaning the input galaxy images. The results

of machine learning are also difficult to interpret. All of these techniques can be useful for

different applications and in order to use them correctly, it is necessary to consider the biases

associated with each technique. Chapter 5 focuses on utilizing a machine learning technique

that combines many different imaging tools (parametric and non-parametric), so I introduce

these here.

Galaxy surface brightness can be quantified using integrated light profiles, which mea-

sure the intensity of light and fit this as a function of radius. Sérsic (1963) defines the surface

brightness profile of a galaxy using the general exponential formula:

I(R) = I0 exp(−b(n)×R/R1/n
e − 1)
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where the surface brightness at radius R is parameterized using an exponentially decaying

profile with radius that depends on the effective radius (Re) and the Sérsic index, n. b(n)

is a function of the Sérsic index and is determined such that Re contains half of the light

within the galaxy. n = 1 describes a disk galaxy and n = 4 describes an elliptical galaxy.

This parameterization of the surface brightness of a galaxy has been widely used and

is also applied in the GALFIT code (Peng et al. 2002), which I use in this work. It models

the image of a galaxy using various different types of exponential profiles and/or PSFs.

Non-parametric methods aim to measure the light in galaxies without assuming an

underlying function. Challenges of this class of technique include that they can be sensitive

to the noise in the galaxy, so many of these measurements include corrections for noise.

One popular non-parametric technique is the CAS system (Conselice 2014), which includes

measurements of concentration, asymmetry, and the clumpiness of galaxies. Measuring these

quantities involves determining which spaxels belong to a galaxy which can be tricky in its

own right; I employ various tools to carry out detailed aperture photometry on images of

galaxies before measuring these quantities. This process is described in detail in Chapter

4, but in brief, tools such as Source Extractor are useful aperture photometry tools that

identify galaxies within an image and can help determine which pixels belong to a given

galaxy.

Other imaging tools include the Gini − M20 parameters, which have been used to

determine how light is distributed within a galaxy. The Gini coefficient is actually borrowed

from the field of economics to determine how wealth is distributed in a society. A higher

Gini value indicates that all wealth/light is concentrated in one person/pixel and a lower

Gini value means that the wealth/light is more spread out. M20 is the second order moment

of the brightest 20% of the light in a galaxy and probes how light is distributed relative to the

center of the galaxy. As with any statistical quantity, it is possible to invent other statistics

to quantify the distribution of light in galaxies. Shape asymmetry, AS, was invented with

the goal of creating an asymmetry measurement that was equally sensitive to fainter features
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of galaxies like tidal tails (Pawlik et al. 2016).

The imaging tools described above are used to study the structure and morphologies of

galaxies in many different applications. Here, I utilize these tools to identify merging galaxies.

There is precedent for using these specific imaging tools to identify merging galaxies, which

I describe in more detail in Chapter 4.

1.5 Summary of the Following Thesis Work

In this introductory chapter, I have introduced some processes that drive galaxy evolu-

tion and have specifically identified two processes, AGN feedback and galaxy mergers, which

are the primary focus of this thesis.

I have also identified some open questions about these two potential avenues for galaxy

evolution. For instance, while AGN-driven outflows are theoretically important for driving

feedback in galaxies, many details remain unclear such as:

• The size scale of the outflow

• The connections between different phases of observed outflows

• The amount of energy entrained in outflows

• How this energy couples to the ISM of the host galaxy

Additionally, since many outflows are observed only for the most luminous and extreme

AGN, it is unclear how important AGN feedback is for the overall population of galaxies.

The topic of galaxy mergers also has many open questions. On one hand, the theo-

retical foundation of our understanding of how the universe assembles itself points towards

the necessity of merging galaxy halos. However, observational studies of merging galaxies

disagree on their importance for driving galaxy evolutionary processes such as star formation

and AGN activity. Part of this difficulty stems from the fact that galaxy mergers come in a

surprising diversity. Also, the literature disagrees on the evolutionary role of galaxy mergers
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due to the many heterogeneous methodologies that have been employed to identify galaxy

mergers; these different techniques, coupled with the diversity of types of merging galaxies,

present a difficult problem.

I have presented a number of observational tools that are useful for addressing these

open questions in AGN feedback and galaxy mergers. I have specifically focused on the

kinematics of AGN outflows and of merging galaxies, introducing many different kinematic

tools that are used to study the energetics of outflows and to identify merging galaxies. The

kinematics of gas (for AGN outflows) and of the stellar component (for galaxy mergers)

are crucial for directly addressing some of the posed problems in the field. In this thesis, I

advance our understanding of galaxy evolution using a combination of these tools coupled

with rigorous statistical techniques.

The kinematic techniques in this thesis include spatially resolved longslit observations

of double-peaked AGN, which I use to resolve the nature of the double peaks by examining

them at different positions in the galaxy. The kinematic classification I develop from this

method is presented in Chapter 2. I then pair the longslit data with analytic Markov Chain

Monte Carlo modeling in order to constrain the energetics of the biconical outflows among

the sample of double-peaked AGN. I present this model and examine the potential for these

biconical outflows to drive feedback in their host galaxies in Chapter 3.

In Chapter 4 I create a statistical learning technique that utilizes images from sim-

ulations of merging galaxies to improve the identification of merging galaxies. Then, in

Chapter 5, I introduce another merger identification technique based on the kinematic maps

of these simulated galaxies. The goal of this type of approach is to increase the observability

timescale of galaxy mergers, to understand how different merger parameters like mass ratio

or gas fraction affect the observability of mergers, and to increase the accuracy and precision

(over that of existing merger identification techniques).

Finally, I summarize the main conclusions of this thesis and explore some future work

in Chapter 6.



Chapter 2

The Origin of Double-Peaked Narrow Lines in AGN II: Kinematic

Classifications for the Population at z < 0.1

We present optical longslit observations of the complete sample of 71 Type 2 active

galactic nuclei (AGNs) with double-peaked narrow emission lines at z < 0.1 in the Sloan

Digital Sky Survey. Double-peaked emission lines are produced by a variety of mechanisms

including disk rotation, kpc-scale dual AGNs, and NLR kinematics (outflows or inflows). We

develop a novel kinematic classification technique to determine the nature of these objects

using longslit spectroscopy alone. We determine that 86% of the double-peaked profiles are

produced by moderate luminosity AGN outflows, 6% are produced by rotation, and 8% are

ambiguous. While we are unable to directly identify dual AGNs with longslit data alone, we

explore their potential kinematic classifications with this method. We also find a positive

correlation between the narrow-line region (NLR) size and luminosity of the AGN NLRs

(RNLR ∝ L[OIII]
0.21±0.05), indicating a clumpy two-zone ionization model for the NLR.

This chapter reproduces Nevin et al. (2016). Reproduced with permission of the AAS.

2.1 Introduction

A primary goal of modern astrophysics is to investigate how galaxies and their super-

massive black holes (SMBHs) grow and coevolve. Correlations between the properties of

the SMBH and the host galaxy suggest that the growth of galaxies and SMBHs are closely

connected; for example, the M-σ? relation connects the mass of the SMBH to the velocity
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dispersion of the stars in the galactic bulge (e.g., Merritt 2000; McConnell & Ma 2013).

Active galactic nucleus (AGN) feedback and AGN feeding processes have been invoked by

theory as possible methods to maintain this relationship between SMBH and the host galaxy

(e.g., Croton et al. 2006; Di Matteo et al. 2005; Springel 2005).

‘Positive’ feedback, where the energy from the central AGN ignites star formation,

has reproduced some observed relationships between the central AGN and the host galaxy

(e.g., King 2005; Ishibashi & Fabian 2012; Silk 2013). The relative importance of positive or

negative AGN feedback on the host galaxy remains unknown, as does the relative importance

of different potential mechanisms for feedback (radiation, jets, or winds).

AGN-driven ‘negative’ feedback (henceforth, feedback) provides a method to evacuate

gas from a galaxy and regulate star formation and the growth of the SMBH (e.g., Croton

et al. 2006; Springel 2005; Hopkins et al. 2005). The bimodal color distribution of galaxies in

the nearby universe and the lack of massive galaxies in the mass function of galaxies require

quenching of massive galaxies via a feedback mechanism (e.g., Silk 2011; Faber et al. 2007;

Bell et al. 2004; Brown et al. 2007). AGN feedback operates through a variety of mechanisms

including relativistic plasma jets (e.g., Fabian 2012), direct radiation (e.g., Ciotti et al. 2010),

and mass outflows of ionized gas (e.g., Crenshaw & Kraemer 2003). These types of feedback

can impact material on different size scales from regions directly surrounding the central

SMBH (Tombesi et al. 2013) to the Mpc-scale intergalactic medium (Malarecki et al. 2013).

However, it is difficult to observe these different types of feedback in action. Additionally, the

details of the efficiency of energy and momentum transfer to the interstellar medium (ISM)

and how this feedback might affect the surrounding galaxy are largely unknown (Khalatyan

et al. 2008; Hopkins et al. 2005). Observational studies often focus on relativistic AGN jets

(e.g., Veilleux et al. 2005) or other highly energetic cases such as Broad Absorption Line QSO

outflows as examples of feedback (e.g., Arav et al. 2013). In this series of papers, we instead

focus on the much more numerous (but less luminous) AGN-driven ionized outflows in the

nearby universe. These types of galaxies account for 90-95% of the total AGN population
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(Rafter et al. 2009), and their ionized mass outflows, or AGN winds, operate on a spatial

scale coincident with circumnuclear star formation (Crenshaw et al. 2015).

In addition to feedback, AGN feeding through stochastic processes such as bar-driven

inflows (e.g., Coelho & Gadotti 2011; Ellison et al. 2011), or through merger-driven processes

is important in SMBH-galaxy coevolution. Simulations of galaxy mergers indicate that

during the merger, gas is driven to the center of the remnant galaxy (e.g., Hopkins et al.

2005; Springel 2005). These simulations predict AGN feeding and SMBH growth will occur in

this post-merger phase and observational studies have found that the AGN fraction increases

from separations of 100 kpc to 10 kpc between stellar bulges in a galaxy merger (e.g., Ellison

et al. 2011; Koss et al. 2012; Ellison et al. 2013). However, little is known about fueling at

kpc-scale separations of these active nuclei, which we refer to as ‘dual AGNs’.

Both feeding and feedback processes can be investigated using active galaxies that have

a narrow line region (NLR) with disturbed kinematics. The NLR is a low density (nH ≤ 106

cm−3) spatially extended region (from a few hundreds of parsecs to ∼ 30 kpc) surrounding

the central AGN that is characterized by forbidden narrow emission lines (∆v < 1000 km

s−1, e.g., Osterbrock & Ferland 2006; Schmitt et al. 2003; Hainline et al. 2013). Disturbed

kinematics manifest as double-peaked emission lines. These double-peaked narrow emission

line profiles can be produced by dual AGNs, outflows, inflows, and disk rotation. Inflows

and dual AGNs are associated with AGN feeding processes while outflows can probe AGN

feedback.

In this paper we present a uniform sample of 71 double-peaked narrow emission line

AGNs from the Sloan Digital Sky Survey (SDSS). Although this sample was originally se-

lected with the purpose of identifying dual AGNs, this work is mostly concerned with the

kinematics of single AGNs with disturbed NLRs. This sample of AGNs with disturbed NLR

kinematics enables us to investigate the origin of the disturbed NLR and probe both feeding

and feedback processes in these galaxies.

However, determining the origin of double-peaked emission lines has been historically
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challenging since it is difficult to determine the spatial location of the emission in inte-

grated spectra. For instance, ionized outflows have been identified based upon signatures in

integrated spectra such as blue wings (e.g., Whittle 1985). This is problematic since gas kine-

matics can shift across the spatial extent of the NLR, becoming impossible to disentangle in

an integrated spectrum. As a result, past work has associated double-peaked emission lines

with a variety of origins and often is unable to unambiguously identify the origin of these

double peaks. Double-peaked and asymmetric emission lines have long been associated with

an outflowing biconical structure; the blueshifted component is identified as the front-facing

wall of the bicone, and the redshifted peak of the double-peaked profile is the rear-facing

wall (e.g., Heckman et al. 1981; Das et al. 2006; Crenshaw et al. 2015). Other work has also

suggested that double-peaked NLR emission lines could also be associated with kinematic

dual AGNs (e.g., Comerford et al. 2009b; Comerford et al. 2013; Barrows et al. 2013). Smith

et al. (2012) suggest that equal flux double-peaked emission lines could be associated with

rotating disks.

Using spatially-resolved spectra we can now study the double-peaked profiles at each

spatial position. In this work we develop a longslit kinematic classification technique to

determine if the NLR kinematics are outflow-dominated or rotation-dominated. Here we

focus on the kinematic nature as well as the ionization structure of the NLR. We use our

observations of moderate luminosity AGNs to study the size-luminosity relationship for the

NLR. Although the exact ionization structure of the NLR is not well determined, there is an

observed positive correlation between the size of the NLR and the luminosity of the AGN,

which indicates that the NLR is photoionized by the central AGN (e.g., Hainline et al. 2014,

2013; Bennert et al. 2002; Schmitt et al. 2003; Liu et al. 2013b; Müller-Sánchez et al. 2015).

The slope of this relationship reveals the ionization structure of the NLR; a steeper slope

of RNLR ∝ L0.5
[OIII] corresponds to a simplistic NLR described by a constant density law and

a constant ionization parameter, while a shallower slope of 0.34 corresponds to a two-zone

clumpier ionization model (Baskin & Laor 2005; Dopita et al. 2002).
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In this paper (Part 2 of a multiple paper series) we address the kinematic nature of

the NLR for galaxies in the nearby universe for our sample of 71 Type 2 AGNs with double-

peaked narrow emission lines at z < 0.1. We describe the sample selection and data reduction

in Section 2.2. We describe our kinematic classification technique in Section 2.3.1, where

we classify galaxies as different subclasses of outflow- or rotation-dominated. We discuss

our results from the kinematic classification and the properties of each kinematic class of

galaxies in Section 2.4. In Section 2.5, we discuss the implications of the classification

method for identifying dual AGNs as well as our measurement of the size-luminosity relation

and its implications for the ionization structure of the NLR. We present our conclusions in

Section 2.6. A cosmology with Ωm = 0.3, ΩΛ = 0.7, and h = 0.7 is assumed throughout.

In this paper (Part 2 of a multiple paper

2.2 Methods

2.2.1 Sample Selection

The 71 galaxies in the uniform sample originate from a full sample of Type 2 AGNs

with double-peaked [OIII] emission lines in SDSS (York et al. 2000). Three groups selected

catalogues of double-peaked AGNs (Wang et al. 2009; Liu et al. 2010; Smith et al. 2010).

Wang et al. (2009) selected 87 Type 2 active galaxies using BPT emission-line di-

agnostics (Baldwin et al. 1981), then made a cut to eliminate galaxies with SDSS r-band

magnitude r > 17.7. They selected for similar intensity peaks of the double-peaked profiles

using a flux ratio cut of 1:10 between the intensity of each peak and required a wavelength

separation between these two peaks of ∆λ ≥ 1 Å. Smith et al. (2010) selected a sample vi-

sually for active galaxies that exhibit double peaks. However, the Type 1 and Type 2 AGNs

from Smith et al. (2010) are located at redshifts 0.1 < z < 0.7, so they are not included in

the sample selection for this paper. Since Smith et al. (2010) is the only catalog with Type

1 objects, by excluding these higher redshift objects we also restrict our sample to Type 2
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objects. This avoids the influence of broad lines (∆v > 1000 km s−1) on the [OIII] pro-

files. Liu et al. (2010) selected 167 Type 2 AGNs by making a S/N > 5 cut for [OIII]λ5007

and requiring that both [OIII]λ5007 and [OIII]λ4959 be best fit by two Gaussians. This

excludes AGNs with more complex profiles, wings, and > 2 Gaussian components. These

three groups selected 340 unique objects. We select the complete sample of 71 double-peaked

Type 2 AGNs that are at z < 0.1 to ensure sub-kpc spatial resolution on all optical longslit

instruments used in the follow-up observations.

To determine the nature of these objects and further characterize their properties, we

observe them using two complementary follow-up methods: optical longslit spectroscopy and

Jansky Very Large Array (VLA) radio observations.1 We use the longslit spectroscopy to

map the source of the double-peaked emission across the spatial extent of each galaxy; to do

so we observe each galaxy at two position angles in order to constrain the orientation and

spatial positioning of the NLR. For most galaxies, these two position angles are orthogonal

with the exception of galaxies that have an intriguing disturbed feature or companion galaxy

at a given position angle.

We choose one position angle to be the photometric major axis of the galaxy from

the SDSS r-band photometry. This is motivated by one of our science goals, which is to

determine if the NLR is rotational in origin. Galaxies in which the NLR is dominated by

rotation will demonstrate the most extended emission along the photometric major axis, in

the plane of the galaxy.

We use various spectrographs with similar pixelscales (Lick Kast Spectrograph,

0.78′′/pixel; Palomar Double Spectrograph, 0.39′′/pixel (Oke & Gunn 1982); MMT Blue

Channel Spectrograph, 0.29′′/pixel (Schmidt et al. 1989); APO Dual Imaging Spectrograph,

0.42′′/pixel in the blue channel, 0.4′′/pixel in the red channel; and Keck DEep Imaging Multi-

Object Spectrograph, 0.12′′/pixel (Faber et al. 2003). We use a 1200 lines mm−1 grating for

1 Spatially-resolved imaging of X-ray sources (e.g., Komossa et al. 2003; Mazzarella et al. 2012; Barrows
et al. 2016) that are coincident with emission-line peaks can also confirm the presence of dual AGNs. In this
paper series we focus on radio observations as a method for confirming dual AGNs.
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all spectrographs. Table A.1 lists the details of these observations.

The VLA observations are complementary to the optical longslit data and together

they can fully constrain the source of the double peaks for a given galaxy; Müller-Sánchez

et al. (2015) focus on this technique for a subsample of 18 double-peaked AGNs. In this

paper we develop a novel technique using only the longslit data to characterize the NLR of

this sample of 71 galaxies. In future work, we will combine our longslit observations with

the VLA data for the full sample of 71 galaxies (Müller-Sánchez et al. in prep.).

2.2.2 Data Reduction

We reduce and extract both the 2 and 1-dimensional spectra at both position an-

gles for each galaxy using the IRAF packages CCDPROC and APALL, respectively. The

Keck/DEIMOS data were reduced using the DEEP2 pipeline (Cooper et al. 2012; Newman

et al. 2013). We preserve the spatial information in the 2d spectra and use the aperture-

extracted 1d spectra for wavelength solutions, which we use to produce the velocity maps.

We obtain accurate systemic velocities using extinction corrected stellar absorption features

from the OSSY SDSS DR7 value-added catalog (Oh et al. 2011; Abazajian et al. 2009) and

the IDL code GANDALF (Sarzi et al. 2006).

2.2.3 Extracting and Characterizing OIII Profiles

With fully reduced data in hand, we use a variety of IDL and Python programs to fit

the [OIII]λ5007 line profiles at each spatial position along the slit and extract velocity and

dispersion information. We determine the spatial center of emission for each 2d spectrum

using the stellar continuum. We fit a one dimensional Gaussian across the continuum in

two 10 pixel cutouts on either side of the wavelength center of the [OIII]λ5007 profile, and

determine its average center and full width at half maximum (FWHMcont). We later apply

this spatial center and width (FWHMcont±1 row) when we refer to the ‘resolved center’ of

the emission. The positive spatial direction shown in all plots of the 2d spectra in this work
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Figure 2.1: The Akaike statistics demonstrated for the [OIII]λ5007
emission for the example galaxy J0009-0036. For each spatial row
of the example galaxy J0009-0036 (to the NE of the spatial center
of the galaxy) we report the spatial position (in arcseconds, upper
right). Each panel is spaced by angular distance 0.29′′, which is the
pixelscale of the MMT Blue Channel Spectrograph. We start the
figure at spatial position 0.0′′ to highlight the diminishing flux of the
emission line to one spatial extreme (the NE) of the galaxy spatial
center. Note that this is a symmetric NLR with flux also extending
to the SW of the spatial center. We show the Akaike statistic for
both a line (two parameter fit), plotted in blue, and a single Gaus-
sian with an underlying line (five parameter fit), plotted in red. If
AICline+Gaussian < AICline, then that spatial row is considered to
have significant emission and lies within the Akaike width. Here, the
2.02′′ row is the row of last significant emission, and the 2.3′′ row
no longer has significant emission. We repeat this process for both
observed position angles of each galaxy.
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corresponds to the NE direction on the sky.

We use an information criterion to determine both the extent of the emission and the

number of Gaussian components to fit at each spatial position. The Akaike Information Cri-

terion (AIC) is a least squares statistic that introduces a penalty for additional parameters,

defined by Akaike (1974). Numerically, AIC = χ2 +2k, where k is the number of parameters

and χ2 is the chi-square statistic:

χ2 =
n∑
i=1

(yi − f(xi; θ̂))
2

σ̂2
i

where n is the number of data points in the sample, yi is the measured flux, f(xi; θ̂) is the

Gaussian model for the emission line flux, xi is the input wavelength of the Gaussian model,

θ̂ are the parameter values of the Gaussians, and σ̂2
i is the measurement uncertainty on the

measured flux. We utilize the corrected AIC (AICc) due to our finite number of data points:

AICc = AIC + 2k(k + 1)/(n − k − 1) where n is the sample size and k is the number of

parameters. When comparing two models with a different number of parameters, the model

that produces the smallest value for the above statistic represents the better fit.

We apply this statistic to each row in the spatial direction to determine the extent of

the emission. We establish if the row is better fit with a two parameter linear fit or a five

parameter Gaussian + linear fit (Figure 2.1). This provides what we define as the ‘Akaike

width’ of the emission, which is measured in both arcseconds and pixels, and encompasses

all the rows that are best fit by a five parameter Gaussian + linear fit. We then derive errors

on this measurement from a Monte Carlo simulation. We construct 100 realizations of the

spectrum by adding Gaussian noise with flux according to the inverse variance error image,

and repeat the measurement of the Akaike width for each realization. The mean value of

the Akaike width and its standard deviation are derived from the properties of the resulting

distribution (Table A.2).

We also apply the Akaike statistic to determine the appropriate number of Gaussians
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Figure 2.2: Fitting multiple Gaussians across the spatial extent of
J0009-0036 to the [OIII]λ5007 profile. The galaxy and position angle
of the observation are the same as Figure 2.1 but now we change the
spatial coverage to 1.15′′ on either side of the spatial center of the
galaxy to highlight the fitting of multiple Gaussian components. The
data are shown as solid black lines. For each spatial row, we show
the integrated one, two, and three Gaussian fits in red solid, green
solid, and yellow dashed lines, respectively. We also display the in-
dividual Gaussians from the two Gaussian fit in blue and red dashed
lines, where the blue represents the blueshifted component and the
red is the redshifted component of the two Gaussian fit. The black
dashed vertical line is the systemic velocity of the galaxy. Intensity
is displayed in units of relative intensity. This plot demonstrates the
AICc applied to determining the number of Gaussians to fit to each
significant spatial row (‘significant’ implies that the emission line is
already better fit by one than zero Gaussians and is therefore within
the Akaike width, Figure 2.1).
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to fit to each spatial row (Figure 2.2). We use the AICc to determine how many Gaussians

are the best fit for each row within the resolved center of the galaxy (FWHMcont±1 row). We

classify a galaxy as having > 2 Gaussian components only if more than half of these interior

rows are better fit by three or more components. This approach is used in the kinematic

classification scheme.

We extract velocity information for each row within the Akaike width by fitting both

one and two Gaussians. The velocity offsets of each of the one and two Gaussian profiles

are calculated relative to the systemic velocity of the galaxy. The center of each of these

Gaussians in velocity space is mapped across the spatial extent of the galaxy. Similarly, we

map the dispersion of each of these Gaussian profiles across the galaxy (reported as σ for

the one Gaussian fit and σ1 and σ2 for the two Gaussian fit). We derive errors on these

calculations from the Monte Carlo method described above. The uncertainty on velocity

measurements increases as the distance from the galaxy center increases because the S/N

for these rows drops dramatically.

Outflows and NLRs with disturbed kinematics have asymmetric emission line profiles

and often blue wings. We utilize a nonparametric diagnostic for profile asymmetry. In

order to avoid excluding profiles that have low flux wings or other non-traditional types of

asymmetry, we choose not to assign parametric Gaussian metrics of asymmetry. Instead, we

employ the nonparametric measurement for line profile asymmetry from Liu et al. (2013c):

A ≡ (v90 − vmed)− (vmed − v10)

W80

where v10 and v90 are the velocities that encompass 10% and 90% of the integrated flux

across the profile, respectively, vmed is the velocity that corresponds to the median value of

the integrated flux profile, and W80 is defined as W80 ≡ v90 − v10. The sign of asymmetry is

negative if the profile has a blue wing and positive for red wings.

This statistic (Figure 2.3) is sensitive to double-peaked profiles that have unequal flux

ratios; specifically the absolute value of asymmetry is large if the profile has what can be
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Figure 2.3: The asymmetry measurement reveals a blue wing for
J0009-0036. Here, the [OIII]λ5007 profile of the central spatial row
is plotted in black for a 40 pixel cut (20 pixels on either side of the
systemic velocity). The red solid line represents the median veloc-
ity (vmed) for the profile; this is the velocity that corresponds to a
summed 50% of the integrated flux profile at this spatial position.
The left red dashed line is v10, or the velocity that corresponds to
10% of the integrated flux profile, and the right dashed line corre-
sponds to v90. For this galaxy, A = −0.146, indicating the presence
of a blue wing.
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Figure 2.4: Spatial centroiding technique for J1516+0517.
[OIII]λ5007 images centered vertically on the spatial center of
J1516+0517 for both position angles (top: PA=81◦ East of North,
and bottom: PA=171◦). The black lines show the fitted spatial posi-
tion for each of the two spectral components (λ > 5007 and λ < 5007
here). PA=81◦ displays a greater separation. Using both of these
individual PAs, we are able to reconstruct the separation on the sky
as well as the position angle on the sky of maximal separation of the
double emission components.
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better described as a shoulder as opposed to an equal flux double-peaked profile. We only

use the measurement to classify rotation-dominated profiles as disturbed or obscured. We

discuss this aspect of kinematic classification in Section 2.3.1.

In addition, we measure the position angle of the NLR [OIII]λ5007 emission (PA[OIII])

on the sky. This allows us to determine if the [OIII] emission is rotational in origin. We fit

position centroids at each peak of the double-peaked profile and calculate a separation in

spatial position (Figure 2.4). By iterating at each position angle while introducing Gaussian

noise from the inverse variance image, we calculate an angle of maximal separation of these

spatial centroids with an associated error.

Formally, the true position of maximal separation is given by PA[OIII]:

x1 cos(PA[OIII] − θ2) = x2 cos(PA[OIII] − θ1)

where x1 and x2 are the spatial separations at the observed position angles (Figure 2.4),

θ1 and θ2, respectively.

2.2.4 The Luminosity of the NLR

To investigate the ionization structure of the NLR, we measure both the size and the

[OIII]λ5007 luminosity of the region. To determine the radius (in parsecs) of the NLR, we

use half the Akaike width, defined in Section 2.2.3. We then convert to a physical distance

using the Python astropy.cosmology utility.

To determine the luminosity of the NLR, we use the SDSS DR7 OSSY value-added

catalogue (Oh et al. 2011). We use a dereddened luminosity, Lc[OIII], which is calculated from

the observed [OIII] luminosity, L[OIII], based upon a two component reddening correction

(Oh et al. 2011). This includes a galaxy-wide dust correction as well as a nebular correction

using the Hydrogen Balmer decrement:

Lc[OIII] = L[OIII]

((Hα/Hβ)obs

3.0

)2.94
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where Hα/Hβ is the line ratio for the Balmer lines (Osterbrock & Ferland 2006).

The bolometric luminosity is calculated from Lc[OIII]:

Lbol = CLc[OIII]

where the correction, C, depends upon the [OIII] luminosity. C is 87, 142, or 454 for Lc[OIII]

in the respective bins Lc[OIII] (erg s−1)< 1040, 1040 < Lc[OIII] (erg s−1)< 1042, and 1042 < Lc[OIII]

(erg s−1)< 1044 (Heckman et al. 2004; Lamastra et al. 2009). We report L[OIII], Lc[OIII], the

bolometric luminosity, and the radius of the NLR in parsecs in Table A.2 for all galaxies.

2.3 Analysis

2.3.1 Kinematic Classification

We develop a novel technique for quantitative classification of the double-peaked

[OIII]λ5007 profiles using the spatially-resolved kinematics of the NLR. Our primary goal

is to determine the nature of the double peaks and assess the relative importance of their

various spectral features in the kinematic classification scheme. This technique depends on

the longslit data alone. In future papers, the radio data will be independently analyzed and

the two data sets will be synthesized.

We design the classification method to isolate rotation-dominated spectra from outflow-

dominated spectra. Müller-Sánchez et al. (2015) use a subsample of 18 galaxies to demon-

strate that the majority (75%) of double-peaked NLR galaxies are caused by ‘gas kinematics’

(includes 70% outflows and 5% rotating NLR kinematics), 15% are caused by dual AGNs or

outflows produced by dual AGNs, and 10% are ambiguous. Shen et al. (2011) and Fu et al.

(2011) used resolved spectroscopy to show that the majority of double-peaked NLR galax-

ies are produced by ‘gas kinematics’ from a single AGN, including extended emission-line

nebulae, jet-cloud interactions, or peculiar narrow-line.

Since Müller-Sánchez et al. (2015), Shen et al. (2011), and Fu et al. (2011) identify a

statistical majority of outflow-dominated spectrum with the double-peaked selection tech-
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Figure 2.5: The spectrum of a toy model of a dual AGN that is char-
acterized by the rotation-dominated NLRs of the dual AGNs with no
outflow components. The x axis of the spatially-resolved spectrum
(left) is in velocity space (km s−1). On the right is the theoretical
galaxy that hosts a dual AGN. The magenta box is the slit position
(aligned SW to NE). We would expect to observe the longslit profiles
as two distinct rotation-dominated NLRs with only one shifted peak
at each spatial extremum and a double-peaked profile at the center.
Note that based on the relative luminosity of the dual AGNs, the
peaks may not be equal in flux as in this example. (Image taken
from Comerford et al. 2009a).
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Figure 2.6: Same as Figure 2.5 but for the orthogonal slit position.
At this PA we would observe the NLRs as overlapping because they
are spatially coincident at all slit positions. Note that based on the
relative luminosity of the dual AGNs, the peaks may not be equal
in flux. The NLRs would be located at velocities centered at the
relative velocities of the AGNs. (Image taken from Comerford et al.
2009a).
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nique, we create a classification technique that classifies a spectrum as outflow-dominated

or rotation-dominated and then focuses on the kinematic nature of each broad classification.

For instance, we further classify outflows as ‘Outflow Composite’ if they have more than

two Gaussian components or ‘Outflow’ if they are best fit by two components. The ‘Out-

flow Composite’ classification identifies outflows with complicated emission knots observed

moving at distinct velocities. We further classify rotation-dominated spectra as containing

a disturbance or an obscuration.

Note that dual AGNs may exist in our classification scheme but fall into multiple

different categories (Section 2.5.1)2 . In this work, we explore the kinematic classifications

for the complete sample of z < 0.1 double-peaked AGNs. Within this sample, there are no

confirmed dual AGNs from the combination of radio and longslit data yet.

In this work we will instead focus on the possible kinematic classifications of dual AGNs

that will be confirmed in future work in which we synthesize the VLA radio data and the

longslit kinematic data (Müller-Sánchez et al. in prep.). In Figures 2.5 and 2.6 we explore

the kinematic properties of a toy model of a dual AGN with no outflow components that is

instead dominated by rotating NLR components. Each dual AGN has a rotating disk and

both are orbiting in the potential of the host galaxy. We determine that one of the galaxies in

the sample matches this observational prediction of a spectral profile of a rotation-dominated

dual AGN. This galaxy, J1018+5127, is classified as ‘Rotation Dominated + Disturbance’.

Figure 2.7 shows the spatially-resolved profiles at both PAs for this candidate dual AGN.

However, since this candidate lacks confirmation of dual radio cores, we do not create a

separate kinematic classification for ‘dual AGNs’ and instead allow candidate dual AGNs

to fall under different kinematic classifications that describe the nature of the dual AGNs.

Additionally, other work has predicted that dual AGNs such as the toy model presented

2 The three dual AGNs from Müller-Sánchez et al. (2015) are classified as Outflow Composite and Outflow,
and are at higher redshifts (z > 0.1). They are classified as dual AGNs in Müller-Sánchez et al. (2015)
because they have two radio cores but these dual AGNs also have a powerful outflow component and their
double-peaked profiles are well described as outflow-dominated.
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Figure 2.7: Spatial profiles of emission for J1018+5127 at both PAs.
We plot the spatial profiles for PA 22◦ (left) and 112◦ (right). On the
left, the narrow components alternate in flux, matching the predic-
tions for an outflow-free dual AGN at maximum spatial separation
(Figure 2.5). On the right, the narrow components do not alter-
nate in flux, which is consistent with the prediction for a rotation-
dominated dual AGN in Figure 2.6.



58

here that are characterized purely by rotation-dominated NLRs are not as common as dual

AGNs with outflow components (Blecha et al. 2013).

We find that the most powerful quantitative properties for identifying the kinematic

nature of a spectral profile are the velocity dispersion of each of the individual Gaussians in

a two Gaussian fit (σ1 and σ2), the radial velocity of a one Gaussian fit (Vr), the number of

kinematic components, and the alignment of the [OIII]λ5007 emission with the major axis of

the galaxy. Figure 2.8 demonstrates the classification scheme based upon these parameters,

Table A.3 shows the values of these properties for both observed position angles of each

galaxy, and Table A.4 produces the final classification for the entire sample of 71 galaxies.

Using these four properties of the [OIII]λ5007 profiles, we first separate rotation-

dominated profiles from outflow-dominated profiles. This elimination-based technique is

useful because the observational properties of rotating structure have more stringent con-

straints. For instance, rotating structure behaves according to Keplerian physics, which

place limits on the line of sight velocity (Vr < 400 km s−1) and velocity dispersion (σ1 and

σ2 < 500 km s−1, Osterbrock & Ferland 2006). These observationally-defined velocity limits

are used to divide outflow-dominated from rotation-dominated kinematics.

We identify outflow-dominated profiles as galaxies with velocity dispersions and line of

sight velocities that are in excess of the limits given above for rotation-dominated profiles.

The presence of a broad component (σ1 or σ2 > 500 km s−1) demonstrates the presence of

an outflow (Müller-Sánchez et al. 2011). Likewise, line of sight velocities that exceed 400

km s−1 (Vr > 400 km s−1) for a single Gaussian fit identify an outflow because discrete

knots of emission have been observed at these velocities in outflows (e.g., Das et al. 2006,

Fischer et al. 2013, Crenshaw et al. 2015). These outflow-dominated galaxies are then

further classified into ‘Outflow’ or ‘Outflow Composite’ according to the number of kinematic

components. For instance, a profile with > 2 kinematic components is designated ‘Outflow

Composite’ (determined using Akaike statistics described in Section 2.2). Outflows can show

> 2 components because they have distinct clouds of gas that move at a variety of discrete
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Figure 2.8: Kinematic classification mapping scheme. We demon-
strate the sequence of classifications that occur for each galaxy. The
classification terminates in either an outflow-dominated classification
(Outflow Composite or Outflow), a rotation-dominated classification
(Rotation Dominated + Obscuration or Rotation Dominated + Dis-
turbance), or ‘Ambiguous’ (some combination of inflow, outflow, and
counter-rotating disk).
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velocities dominated by a central engine. For a diagram of an outflow-dominated galaxy, see

Figure 2.9.

Galaxies that are not classified as outflow-dominated continue along the quantitative

classification scheme; we next determine if a galaxy is rotation-dominated or ambiguous

according to the alignment. Alignment of the ionized gas with the stellar disk is a property of

rotation-dominated galaxies. We measure alignment by comparing PAgal, the position angle

of the photometric major axis of the galaxy from the SDSS r-band, to PA[OIII] (measured

in Section 2.2). As discussed in Comerford et al. (2012), a rotationally dominated double-

peaked NLR should be aligned with the plane of the galaxy because the galaxy’s potential

dominates the kinematics; thus for these galaxies, PA[OIII] ∼ PAgal within a 20◦ error (as

in Müller-Sánchez et al. 2015). If the [OIII]λ5007 emission is aligned with the plane of the

galaxy, the emission is classified as rotation-dominated.

If the emission is not aligned with the plane of the galaxy and the emission has not

already been classified as an outflow according to the value of radial velocity or the individual

velocity dispersions, the emission could be a counter-rotating disk, an outflow, an inflow, or

some combination of these kinematic origins. We could further tie the gas kinematics to

an inflow origin if the galaxy were undergoing a merger since mergers funnel gas to the

center of the galaxy (e.g., Hopkins et al. 2006). However, these gas kinematics could be

also be explained by an outflow or counter-rotating disk in a merger. If the galaxy is not

undergoing a merger, we can rule out merger-driven inflows for the kinematic origin of

the disturbed NLR kinematics. However, it would still be difficult to distinguish between an

outflow-dominated kinematic origin to the NLR or a counter-rotating disk. We classify these

galaxies as ‘Ambiguous’ since we do not have the ability to fully determine the presence of a

merger in these galaxies based upon SDSS imaging alone. Additionally, in either case, this

type of galaxy is still ambiguous in its classification.

We use alignment as a classification tool once we have already classified the outflow-

dominated galaxies; therefore, galaxies with outflows may also have emission that is aligned
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Rotation-Dominated 

+ Obscuration

Rotation-Dominated 

+ Disturbance

Figure 2.9: Cartoon diagrams of three of the main kinematic classi-
fications. Here we show the origin of the [OIII]λ5007 kinematics in
green for an outflow-dominated classification and the two rotation-
dominated classifications. We demonstrate the kinematic compo-
nents that are responsible for the velocity shifts in the [OIII]λ5007
profiles using black arrows. Top: An outflow-dominated galaxy,
‘Outflow’ or ‘Outflow Composite’, is characterized by outflowing
[OIII]λ5007 emission. Middle: A Rotation Dominated + Distur-
bance galaxy may have rotating spiral structure or a bar structure.
Bottom: A Rotation Dominated + Obscuration galaxy is character-
ized by a rotating disk that has a co-rotating obscuring structure
such as a dust lane that produces a double-peaked profile at each
spatial position.
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with the photometric major axis of the galaxy. This will be important in later work where

we discuss the implications of the geometry of the outflow-dominated galaxies (Nevin et

al. in prep.). Likewise, the number of Gaussian components is not used to further classify

rotation-dominated galaxies. A rotation-dominated galaxy may have more than two Gaus-

sian components, but we do not use this to further classify rotation-dominated galaxies into

subcategories.

Within the category of rotation-dominated spectra, we further classify galaxies as ‘Ro-

tation Dominated + Obscuration’ or ‘Rotation Dominated + Disturbance’ (such as a bar or

spiral). If a galaxy has all of the kinematic properties of a rotation-dominated galaxy, the

[OIII]λ5007 emission is aligned with the kinematic major axis of the galaxy, and the galaxy

has a symmetric profile (compared to both the full sample and the rotation-dominated

galaxies), we classify it as Rotation Dominated + Obscuration. Smith et al. (2012) suggest

that equal flux double-peaked symmetric profiles are rotating disks. We classify one galaxy

(J0736+4759) from the sample of 71 galaxies as Rotation Dominated + Obscuration due to

its high degree of symmetry. Radiative transfer effects from a central dust lane could ac-

count for a single peaked Gaussian with a decrease in flux at zero velocity at both observed

position angles, which would produce a double-peaked profile. Figure 2.9 shows a diagram

of this type of kinematic origin of a double-peaked profile.

Dynamic disturbances in the plane of the galaxy could also account for a rotation-

dominated spectrum with a double-peaked profile. We classify asymmetric rotation-

dominated profiles where the [OIII]λ5007 emission is aligned with the kinematic major axis

as ‘Rotation Dominated + Disturbance’. These galaxies could host nuclear bars, spiral

arms, or a kinematically disturbed dual AGN that causes asymmetric double-peaked profiles

(Davies et al. 2009; Hicks et al. 2009; Schoenmakers et al. 1997; Blecha et al. 2013). Bars or

spirals accelerate the zero velocity gas through infall or chaotic motion (Müller Sánchez et al.

2009). This enhances the wings of the single peaked rotation-dominated profile and produces

a double peaked profile that is asymmetric in flux. Again, Figure 2.9 shows a diagram of
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a disturbed rotation-dominated galaxy. Note that distinguishing between a disturbed and

obscured rotation-dominated NLR is the only category of classification that requires the

asymmetry parameter. We discuss the quantitative determination of relative asymmetry for

the rotation-dominated galaxies in Section 2.4.1.2.

For each position angle of each galaxy, we measure radial velocity, velocity dispersion,

number of kinematic components, and alignment for each spatial row within the Akaike

width (Table A.3, for PA 1 and PA 2). Then, we calculate the number of rows that have > 2

kinematic components within the spatial center (as measured by the stellar continuum) of

the galaxy. We classify a galaxy as having > 2 kinematic components if more than half of the

rows of the Akaike width are best fit with > 2 components (Table A.4). We record velocity

dispersion for both the one Gaussian fit (σ) and the individual components of the two Gaus-

sian fit (σ1 and σ2). In Table A.4 we determine if the dispersion of the single Gaussian fit is

less than or greater than 500 km s−1. We repeat this for each individual velocity dispersion of

the two Gaussian fit. Next, in Table A.3 we list the position angle of the galaxy (photomet-

ric major axis in SDSS r-band) and the position angle of the [OIII]λ5007. The photometric

major axis measurements are reported in Müller-Sánchez et al. (2015), originating from Com-

erford et al. (2012). These position angles each have an error of ∼ 7◦ associated with the

measurement, thus they are classified as aligned if these position angles are within 3σ (20◦).

After recording the quantitative measurements, we classify the galaxies in Table A.4. We

present a cartoon diagram of the kinematic origin of the [OIII]λ5007 double peaks for three

of the main classification categories (‘Outflow’, ‘Rotation Dominated + Disturbance’, and

‘Rotation Dominated + Obscuration’) in Figure 2.9. We show an example of the profiles of

the five main classifications, ‘Outflow’, ‘Outflow Composite’, ‘Rotation Dominated + Ob-

scuration’, ‘Rotation Dominated + Disturbance’, and ‘Ambiguous’ in Figures 2.10 and 2.11.

We show the SDSS images to demonstrate the power of the alignment classification tool to

separate ‘Ambiguous’ from rotation-dominated classifications in Figure 2.12.

We take the error on each measured quantity into consideration. We use a superscript
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Figure 2.10: Examples of galaxy profiles for galaxies classified as
‘Outflow’ (left) and ‘Outflow Composite’ (right). We plot the pro-
files for the nine central spatial rows, with the spatial position shown
in arcseconds in the upper left corner of each panel. The data are in
black and the integrated one Gaussian fit is a blue solid line. Here
we plot a two Gaussian fit for the galaxy classified as ‘Outflow’ (left),
where the red and blue dashed lines are the individual Gaussian com-
ponents and the solid magenta line is the integrated two Gaussian
fit. For the ‘Outflow Composite’ galaxy, if a given spatial row is
better fit by a three Gaussian fit, we plot the integrated fit for the
three Gaussian fit where the dashed red, green, and blue lines are
the individual Gaussian component fits and the solid magenta line
is the integrated three Gaussian fit. For rows where two Gaussians
are a better fit, we plot the individual and integrated profiles from
the two Gaussian fit. We plot the three Gaussian fits for the ‘Out-
flow Composite’ galaxy to demonstrate that three components are
sometimes necessary to fit the low flux wider wings of this type of
profile. Here, we identify these galaxies as outflow-dominated due to
the velocity dispersions (σ1 or σ2 > 500 km s−1) of the individual
components of the two Gaussian fit. We then further classify one
galaxy as ‘Outflow Composite’ because three Gaussian components
are a better fit for more than half the spatial rows. Conversely, the
‘Outflow’ galaxy is better fit with two Gaussian components.
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Figure 2.11: Same as Figure 2.10, but for the classifications of ‘Am-
biguous’, ‘Rotation Dominated + Obscuration’, and ‘Rotation Dom-
inated + Disturbance’. We show the individual Gaussian compo-
nents of the two Gaussian fits to demonstrate our classification tech-
nique’s ability to identify the velocity dispersion and velocity offset
of each of these components. All three galaxies are excluded from
our outflow-dominated classification because the individual velocity
dispersions are low (σ1 and σ2 < 500 km s−1) and the line of sight
velocity is low (Vr < 400 km s−1). These three galaxies are then
classified based upon their asymmetry or the alignment of the [OIII]
emission (Section 2.4.1.2). The galaxy classified as ‘Ambiguous’ has
profile characteristics that are consistent with a rotation-dominated
galaxy; the only characteristic that sets it apart is the fact that the
[OIII] emission is not aligned with the photometric major axis of the
galaxy. See Figure 2.12 for a visualization of the [OIII] alignment of
the galaxies classified here as ‘Ambiguous’ and ‘Rotation Dominated
+ Obscuration’. The galaxy classified as ‘Rotation Dominated +
Obscuration’ has [OIII] emission that is aligned with the photomet-
ric major axis of the galaxy and a symmetric profile. The galaxy
classified as ‘Rotation Dominated + Disturbance’ has aligned [OIII]
emission and an asymmetric profile.
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Figure 2.12: The SDSS images of the galaxies classified as ‘Ambigu-
ous’ (J0802+3046, left) and ‘Rotation Dominated + Obscuration’
(J0736+4759, right) in Figure 2.11. The pink dashed line marks
the photometric major axis of the galaxy as measured from SDSS
r-band photometry. The green dashed line marks the position angle
of the [OIII] emission as measured in this work. The [OIII] emis-
sion for J0802+3046 is not aligned with the photometric major axis
of the galaxy, so we classify it as ‘Ambiguous’ even though in this
case all other characteristics of the emission profiles are consistent
with a rotation-dominated NLR. Conversely, the [OIII] emission for
J0736+4759 is aligned with the photometric major axis, so we classify
it as rotation-dominated. Alignment is an important classification
tool in distinguishing between rotation-dominated and ambiguous
classifications.
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to identify galaxies that fall into a given category but based upon the error bars are on

the edge of this classification (within 1σ) in Table A.4. We include these galaxies in their

respective categories for later statistical analysis in Section 2.4.1.

This quantitative classification system allows us to use the spatial information from

longslit spectra to determine the origin of the disturbed kinematics that produce a double-

peaked profile. We track the emission lines across the spatial extent of the galaxy and use the

behavior of the ionized gas both at each individual position and across the galaxy as a whole

to determine the structure responsible for the integrated double peaks. For the first time, we

are able to make a distinction between rotation-dominated spectra and outflow-dominated

spectra. Additionally, we are able to separate rotation-dominated and outflow-dominated

spectra into further kinematically descriptive categories that explain the origin of the double

peaks. After classifying the full sample, we find 26/71 Outflow Composite galaxies, 35/71

Outflow galaxies, 4/71 Rotation Dominated galaxies (1/71 Rotation-Dominated + Obscura-

tion, 3/71 Rotation-Dominated + Disturbance), and 6/71 Ambiguous galaxies in this sample.

We comment on the distribution of properties and the success of the classification for our

kinematic classification technique in Section 2.4.1.

2.4 Results

2.4.1 Kinematic Classification

We are able to successfully classify 92% of the galaxies as either outflow- or rotation-

dominated using our stand-alone longslit classification technique. This technique utilizes

the spatially-resolved spectra to probe individual locations in the NLR and successfully

identifies the nature of the NLR based upon this spectral information alone. We find from

the 71 galaxy sample that 6% of the galaxies (4/71) are Rotation Dominated (1/71 has an

obscuration and 3/71 are disturbed), 49% (35/71) are Outflows, 37% (26/71) are Outflow

Composites, and 8% (6/71) are Ambiguous (having some combination of outflow, inflow, or
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rotation-dominated kinematic components).

Shen et al. (2011) conduct a similar classification with optical slit spectroscopy and

near-infrared (NIR) imaging of 31 double-peaked AGNs and find 50% of their sample are

classified as having a single NLR, 10% are candidate dual AGNs, and the remaining 40%

are ambiguous. Fu et al. (2011) use resolved spectroscopy to show that a single AGN

with disturbed ‘gas kinematics’ can produce 70% of the double-peaked profiles. Müller-

Sánchez et al. (2015) find that 75% of the double-peaked profiles are produced by ‘gas

kinematics’ (including 70% outflows and 5% rotating NLRs), 15% are dual AGNs, and 10%

are ambiguous. Blecha et al. (2013) find from their hydrodynamic simulations that only

a minority of double-peaked NLRs result directly from two distinct NLRs associated with

two AGNs orbiting a central potential. Most are associated with complex gas kinematics or

rotating gas disks.

Our results agree with these findings, produce fewer ambiguous cases, and further

separate complex gas kinematics into rotation-dominated and outflow-dominated categories.

The majority (86%) of our sample is dominated by outflow signatures and only a small

minority of the subsample is dominated by rotation. We conclude that selecting Type 2

AGNs by double peaks in integrated SDSS spectra is the most successful at selecting outflows.

We note that we are not fully able to confirm dual AGNs using this technique in

isolation without radio data. We discuss the placement of a candidate dual AGN in the

Rotation Dominated + Disturbance category in Section 2.5.1.

We discuss the properties of the galaxies classified as outflow-dominated in Sec-

tion 2.4.1.1 and the implications for NLR outflow theory. We analyze the properties of

the rotation-dominated galaxies in Section 2.4.1.2 and compare to predictions from the lit-

erature.
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2.4.1.1 Kinematic properties of the Outflow and Outflow Composite galaxies

We find that the majority (86%) of the uniform sample of double-peaked NLR galaxies

are dominated by outflows. Double-peaked emission lines in SDSS are far more successful at

selecting AGN outflows than two kinematically distinct rotating NLRs associated with a dual

AGN. Here we discuss the kinematic properties of Outflows and Outflow Composite galaxies

and we compare these findings to the current theory of the structure of NLR outflows.

Roughly half of the outflow-dominated galaxies are classified as Outflow. We add

the caveat that the classification of Outflow or Outflow Composite is sensitive to S/N; for

galaxies with lower S/N, we often do not have enough flux to distinguish the low flux wings

of the profiles from the background. We therefore find that these lower S/N galaxies are

often better fit with two Gaussians than three. To confirm that the number of Gaussian

components is sensitive to S/N, we perform an experiment. We introduce Gaussian noise at

a level equivalent to 10% of the flux to spectra that are best fit with a 3 Gaussian component

fit. We complete 100 iterations of this random noise introduction and find that 37% of the

time we recover a three component fit. The rest of the time we find that a 2 Gaussian

component fit is better. Figure 2.13 shows an example simulation of decreased S/N and its

effects on the number of Gaussian components that provide the optimal fit for a spatial row.

We note that although using the number of Gaussian components as a classification tool

is sensitive to S/N, we still find it useful as a method of constraining the number of emission

knots observed in an outflow. Although S/N can influence this classification, galaxies may

intrinsically have only two kinematic components and be true Outflows. However, due to the

S/N sensitivity, in some cases the number of components fit is a lower limit, so the galaxies

that are classified as Outflow could be classified as Outflow Composites if they were observed

with longer integration times. Due to these considerations, we choose to analyze Outflow

Composites and Outflows together and refer to this combined category as outflow-dominated

in our discussion.
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Figure 2.13: An example of introducing simulated Gaussian noise
into a spatial row of the spectrum of J0803+3926. The original spec-
trum (upper left) is best fit by three Gaussians. All other panels
list the S/N after adding different realizations of simulated and the
number of Gaussians that give the optimal fit. If three Gaussian com-
ponents are the best fit, the fit is shown in red, where the solid red
line is the integrated fit and the dashed red lines are the individual
component fits. If two Gaussian components provide the best fit, the
fit is shown in orange. This galaxy is classified as Outflow Compos-
ite. However, when Gaussian noise is introduced into the spectrum,
decreasing the S/N, we find that the spectrum is sometimes best fit
by two components. Thus, S/N affects the classification of Outflow
or Outflow Composite. Note that the effect shown here is not linear;
there is no S/N threshold above which a given galaxy will always be
classified as Outflow Composite.
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We present the kinematic properties of all of the classification categories in Table A.5.

We focus here on the properties of the outflow-dominated galaxies. We find that 18% of the

outflow-dominated galaxies have a single Gaussian radial velocity in excess of 400 km s−1,

77% have an overall velocity dispersion greater than 500 km s−1, and 100% have a single

component with a velocity dispersion in excess of 500 km s−1. Some profiles show the dis-

crepancy where a single Gaussian velocity dispersion is less than the two individual velocity

dispersions for the two Gaussian fit. This is because these are double-peaked profiles that are

often separated significantly in velocity space. When we fit a single Gaussian component, it

sometimes encompasses only one of the two components, while the two Gaussian fit is more

sensitive to underlying high velocity dispersion low flux wings.

We find that velocity dispersion of the individual components of the two Gaussian

fit, σ1 or σ2, is the most powerful tool in identifying outflow-dominated galaxies. In a few

galaxies, radial velocity is also important in identifying knots of emission moving at velocities

in excess of a rotation-dominated NLR. However, all of the outflow-dominated galaxies that

have a radial velocity in excess of 400 km s−1 also have individual components of the two

Gaussian fit with velocity dispersions in excess of 500 km s−1. We determine that σ1 and

σ2 are more useful as a probe of the bulk motion of the outflow than Vr. The knots of

emission that achieve velocities in excess of 400 km s−1 could be the faintest components

of the outflow, and remain unidentified in our Gaussian fitting and classification method

for galaxies with lower S/N. Velocity dispersion is a more consistent identifier of outflow-

dominated galaxies because it describes the bulk properties of the walls of the outflow as

opposed to being related to extremely low surface brightness knots of fast-moving gas.

We found that although we did not directly use the velocity dispersion of a single Gaus-

sian fit (σ) in our classification, 77% of the outflow-dominated galaxies had overall velocity

dispersions in excess of 500 km s−1. However, 75% of the rotation-dominated galaxies also

had this property. This is unsurprising since rotation-dominated galaxies with a disturbance

should have an overall velocity dispersion that exceeds the value for an undisturbed rotat-
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ing disk. The single velocity dispersion σ was not as useful as σ1 and σ2 in discriminating

between rotation-dominated and outflow-dominated galaxies.

2.4.1.2 Properties of the rotation-dominated galaxies

We identify four galaxies as rotation-dominated. The origin of the double peaks is dis-

turbed kinematics from a bar, spiral, or a possible dual AGN in 3/4 cases and an obscuration

in 1/4 cases. In other words, the category ‘disturbed’ accounts for all kinematic deviations

of a rotation-dominated profile from a single rotating disk. We distinguish between an

obscured rotation-dominated galaxy and a disturbed rotation-dominated galaxy using the

relative nonparametric asymmetry values of the profiles of each galaxy. Although we mea-

sure the relative asymmetry parameter for all galaxies, we only use it as a classification tool

to distinguish between different kinematic origins of rotation-dominated galaxies.

We use a statistical quantitative method to classify rotation-dominated galaxies as

asymmetric or symmetric. We determine the asymmetry values for each galaxy by measur-

ing an asymmetry value for all spatial positions of each position angle. We then take the

asymmetry value to be the maximum asymmetry value from either PA. We show this maxi-

mum asymmetry value for the four rotation-dominated galaxies in Figure 2.14. The rotation-

dominated galaxies have asymmetry values of 0.12 (J0736+4759), 0.57 (J1018+5127), -0.43

(J1250+0746), and -0.72 (J1516+0517). Note that we compare the absolute value of the

asymmetry value because a negative or positive value indicates if the profile has blue or red

wings, respectively. Using the values of asymmetry for the rotation-dominated galaxies, we

can compare the population mean of the entire sample of 71 galaxies (0.43). Given the sample

standard deviation (0.15) for this measurement, we can initially conclude that J0736+4759 is

about two standard deviations below the mean and the remaining three rotation-dominated

galaxies are consistent with the mean (J1250+0746), one standard deviation greater than

the mean asymmetry (J1018+5127) and about two standard deviations above the mean

(J1516+0517).
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Figure 2.14: The maximum nonparametric asymmetry values (A)
and their corresponding spatial row for each of the four rotation-
dominated galaxies. We classify the first as symmetric (J0736+4759)
and the final three (J1018+5127 , J1250+0746, and J1516+0517)
as asymmetric based upon a statistical analysis of the asymmetry
values.
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We build upon these initial conclusions using the Analysis of Means (ANOM) statistical

test. ANOM allows us to set a confidence interval and test for differences in means between

subsamples. We plan to group J1018+5127, J1250+0746, and J1516+0517 together and

prove that the mean asymmetry of this group is statistically different than the asymmetry of

the galaxy J0736+4759, which we have preliminarily demonstrated has a relatively symmetric

profile when compared to the other rotation-dominated galaxies. We define the confidence

interval and population mean used in ANOM as:

X̄ ± hc,nj

√
σ2
p(c− 1)

n

where X̄ is the mean of the full sample (71), c is the number of groups between which we

wish to compare means (2), nj is the sample size for group j, hc,nj
is the critical value for

Nelson’s h statistic with c groups and nj observations per group, σ2
p is the pooled variance

of the overall sample, and n is the total number of observations. Note that nj is set by the

smallest sample size of the groups (1). The smallest group sample size is set by J0736+4759

with one measurement. Thus, in our case, h2,1 = 12.7 for a 95% confidence value.

We obtain a 95% confidence interval around the sample mean of [0.19, 0.66]. We find

that the A value of J0736+4759 (0.12) is significantly less than the mean of the overall sam-

ple and that the mean of the A values for the group including J1018+5127, J1250+0746, and

J1516+0517 (0.58) is consistent with mean of the overall sample. J1018+5127, J1250+0746,

and J1516+0517 are classified as asymmetric rotation-dominated galaxies quantitatively ac-

cording to sample statistics. We classify them as Rotation Dominated + Disturbance. We

classify J0736+4759 as Rotation Dominated + Obscuration.

Liu et al. (2013c) use an identical definition of nonparametric asymmetry and find

values of asymmetry with a maximum around 0.4 for their energetic outflows. Therefore,

our quantitative asymmetry cut is even higher, meaning that our rotation-dominated galaxies

with a disturbance are even more asymmetric when compared to other work.
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We can also confirm that the three galaxies that we classify as asymmetric under our

nonparametric measurement would be classified as asymmetric by Smith et al. (2012) using

an alternate definition of asymmetry. Smith et al. (2012) use a ratio of the red and blue

flux components of their double-peaked profile fits to quantify asymmetry for their sample

of “equal-peaked” AGNs (EPAGNs). Specifically, they classify a symmetric EPAGN as one

with a value of 0.75 ≤ Fr/Fb ≤ 1.25, where Fr is the flux of the redder Gaussian component

and Fb is the flux of the bluer component. Their quantitative classification involves fitting

two Gaussians. We prefer the nonparametric method of asymmetry quantification because

it accounts for features such as low flux wings in complicated profiles that are best fit by

more than two Gaussians.

Smith et al. (2012) conclude that symmetric EPAGNs from the double-peaked sample

are most likely to originate from a single rotation-dominated NLR. Our clearest example

of this type of a rotation-dominated galaxy is the galaxy J0736+4759, which is rotation-

dominated with a central obscuration due to its high degree of symmetry. The peaks are

of equal flux for both position angles across the entire slit. This galaxy is consistent with

the EPAGNs discussed in (Smith et al. 2012). However, the results of our classification

reveal that rotation-dominated objects with double-peaked profiles are more likely to be

asymmetric due to disturbances such as spirals, bars, or dual AGNs. Three of our four

rotation-dominated galaxies have asymmetric peaks.

We also investigate the Hα kinematics of the four rotation-dominated galaxies. We

refrain from investigating the Hα kinematics of all the galaxies in this sample because it is

beyond the scope of this work. However, it is a useful exercise to compare the Hα kinematics

to the [OIII]λ5007 kinematics for the rotation-dominated profiles because ionized gas domi-

nated by rotation should exhibit gas kinematics that are identical to the stellar kinematics

of the stars in the disk. Note that although Hα traces both the NLR and stellar kinematics,

in the case of a rotation-dominated NLR both the stellar kinematics and gas ionized by the

AGN should be consistent with rotation. In other words, if the ionized gas is coincident with



77

the stellar disk, the Hα and [OIII]λ5007 kinematics should be identical.

We find for the four rotation-dominated galaxies that the Hα emission is aligned with

the [OIII]λ5007 emission and that the velocity offsets, velocity dispersions, and relative

asymmetry values of the profiles are consistent within the errors (to 3σ). We present velocity

separations (∆V) between the red and blue Gaussian components of each profile in Table A.6

and demonstrate the consistency of the profiles visually in Figure 2.15 for J1018+5127. The

results verify that the kinematics of these galaxies are indeed dominated by rotation.

2.5 Discussion

2.5.1 What are the expected kinematic classifications of dual AGNs?

This kinematic longslit technique was originally conceived as a method for positively

identifying candidate dual AGNs. We cannot exclude dual AGNs from any of the classifi-

cation categories with this work, but we can offer insight into which categories they could

fall.

A compelling candidate dual AGN could be classified as Outflow or Outflow Compos-

ite. Both NLRs will only be visible during the latest kpc and sub-kpc separation stages

of dual AGN evolution while both AGNs are accreting simultaneously (Blecha et al. 2013;

Van Wassenhove et al. 2012; Steinborn et al. 2016). Since observable dual AGNs are by

definition in an actively accreting phase of evolution, they can drive outflows and be clas-

sified as outflow-dominated. Observationally, past work has found that the optical spectra

of confirmed dual AGNs have signatures of disturbed kinematics (outflows and shocks, e.g.,

Mazzarella et al. 2012; Engel et al. 2010). Even if one or both distinct NLRs can be described

as rotation-dominated, the two AGNs might have unequal luminosities. We would observe

this type of galaxy as one narrow component with an associated outflow that dominates a

smaller flux second narrow rotation-dominated component from the second AGN. This case

of a fainter NLR would be categorized as Outflow Composite or Outflow based upon the
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Figure 2.15: The two dimensional longslit spectra for J1018+5127 for
each PA (PA 1, left, PA 2, right). The top row shows the [OIII]λ5007
profiles and the bottom row shows the Hα profiles. The dispersion
direction is the x axis in all spectra, with both a velocity axis in
km s−1 offset from systemic (bottom) and rest frame wavelength
axis in Å(top). The y axis is the spatial direction along the slit
reported in both arcseconds (left) and kiloparsecs (right) with the
spatial center defined as the center of the galaxy continuum. Note
that the line profiles of Hα and [OIII]λ5007 are similar and consistent
in orientation, velocity offset, and velocity dispersion with a gas disk
that is coincident with a rotating stellar disk.
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number of kinematic components in the outflow and the brightness of the dimmer AGN.

Blecha et al. (2013) demonstrate that either rotation-dominated NLR of the pair of

AGNs could be disturbed by the secondary AGN and appear rotation-dominated with a

disturbance. In fact, dual AGNs are more likely to appear observationally as NLRs char-

acterized by disturbed kinematics rather than kinematics dominated by the motion of two

SMBHs. We would classify this type of profile as Rotation Dominated + Disturbance. Re-

turning to the picture of the toy model of a dual AGN with two rotation-dominated NLRs,

recall that even a theoretical dual AGN with no disturbed kinematics would be classified as

Rotation Dominated + Disturbance (e.g., J1018+5127). This theoretical dual AGN would

have NLRs that alternate in flux at the position angle of maximum spatial separation (Fig-

ure 2.5). This causes the profile of this type of dual AGN to appear asymmetric for at least

one position angle. Lastly, dual AGNs could be classified as Ambiguous because they may

demonstrate a lower velocity offset or dispersion, which are properties that are consistent

with either an inflow or a less energetic outflow (σ1 or σ2 < 500 km s−1 or Vr < 400 km s−1).

Even if both rotation-dominated NLRs are visible, Blecha et al. (2013) show that

these NLRs would most likely demonstrate a large velocity separation between individual

components of order ∆V > 500 km s−1 due to enhanced velocity separation during pericentric

passage. These objects would most likely be classified as outflow-dominated by our kinematic

classification because the velocity offset between the individual components is so large. This

large velocity offset would cause the single Gaussian Vr to be greater than 400 km s−1

and this type of galaxy would be classified as an outflow. While the velocity offset limits

were derived with the purpose of identifying fast moving outflow components, narrower dual

components could also fall into this category. At present, we have no galaxies that fall into

this category of being classified as an Outflow due to the velocity offset of two narrow lines

with a large velocity separation.

The only category that is unlikely to include dual AGNs is Rotation Dominated +

Obscuration. The high degree of symmetry required for this classification is statistically
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unlikely to be associated with two NLRs producing an outflow or either rotating NLR being

disrupted by a secondary AGN. Blecha et al. (2013) predict that equal flux symmetric profiles

are most likely associated with an obscured rotating disk, and Smith et al. (2012) support

this prediction observationally.

None of the galaxies in this sample are yet confirmed as radio-detected dual AGN,

but one galaxy presents a compelling longslit spectrum where each NLR appears to be

rotation-dominated. This galaxy, J1018+5127, is undetected in the VLA radio data, so we

can place an upper limit on the radio luminosity but cannot reject the presence of a double

radio core (Müller-Sánchez et al. in prep.). The longslit [OIII]λ5007 profiles of J1018+5127

(Figure 2.16) are consistent with two distinct rotation-dominated NLRs, and this galaxy

is classified as Rotation Dominated + Disturbance. One of the rotation-dominated NLRs

is centered at zero velocity and one has a blueshift ∼ 450 km s−1 at all spatial positions.

The flux ratio of the NLRs switches along the first PA and the NLRs are roughly equal in

flux at the second PA. This is consistent with a dual NLR system with maximal separation

nearest the first PA; we measure PA[OIII] = 22◦, which is nearly aligned with PAgal = 27◦.

This object is most extended in the plane of the galaxy, and this is consistent with a dual

AGN interpretation (Comerford et al. 2012). Although we can conclude that the longslit

kinematic information is consistent with a dual AGN explanation, we stress that this is not

a confirmed dual AGN without the complementary double radio core confirmation.

2.5.2 A size-luminosity relationship for the NLR reveals the nature of the

photoionized region

In the study of the structure of AGNs, the nature of the NLR is still uncertain. In this

work, we investigate how the extent of the NLR scales with the luminosity of the central

source (RNLR ∝ Lα[OIII]). If we can investigate this relationship over a large range of AGN

luminosities (by combining our sample with other studies), we can use the strength of this

correlation to constrain the ionization structure (ionization parameter) and density structure
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Figure 2.16: The spectral profiles of J1018+5127 at both PAs. We
show the PA observed at 22◦ (left) and the PA observed at 112◦

(right). The spatial center of the galaxy (0.0′′) is the central panel,
and the spatial position is indicated in the upper right of each panel.
We plot the data in black and the two Gaussian fit in blue and red
lines for the blueshifted and redshifted Gaussian components of the
fit, respectively. Although this galaxy is not confirmed as a dual
AGN in the radio data, we demonstrate that the NLRs appear to
alternate in flux (left) as expected for the most spatially extended
PA of a rotation-dominated dual AGN. On the right, the NLRs could
be spatially coincident rotation-dominated NLRs. This galaxy is
kinematically classified as Rotation Dominated + Disturbance.
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of the NLR.

The [OIII] luminosity is an accurate probe of the ionization structure and density of

the NLR because it is a collisionally excited transition; the line emissivity of [OIII]λ5007

is set by the electron density ne and ionization state. Note that although [OIII]λ5007 can

also be produced by stars, BPT diagnostics suggest an AGN origin for the emission in this

sample. We use the observed [OIII] luminosity (L[OIII]; Section 2.2.4) in this work as a probe

of the intrinsic luminosity of the NLR.3

A positive slope is expected in the size-luminosity relationship if the AGN’s radiation is

responsible for the photoionization of the NLR. The slope of the relationship, α, is influenced

by the density structure of the NLR and the ionization parameter, U , which is defined as

the ratio of the number density of ionizing photons to the number density of electrons:

U =
nγ
ne

=
1

4πR2
NLRcne

∫ ∞
ν0

Lν
hν
dν

where nγ is the number density of ionizing photons, RNLR is the radius of illumination

by a central source (Section 2.2.4), Lν integrated is the bolometric luminosity of the central

source over all frequencies, ν is frequency, and ν0 is the ionization edge.

Therefore, the relationship between the estimated integrated ionizing luminosity (Lion,

in this work we use L[OIII] as a proxy for Lion) and radius can be written:

RNLR = KL[OIII]
0.5(Une)

−0.5

where K = (4πc < hν >)−0.5. Determining the slope of the size-luminosity relationship is

a direct investigation of both the ionization structure U and the density structure ne of the

NLR, both of which are poorly determined.

Our sample of 71 moderate-luminosity (40 < log L[OIII](erg s−1)< 43) AGNs represents

3 We have measured the size-luminosity relationship for our data for both the extinction corrected lu-
minosity (Lc

[OIII]) and the observed luminosity (L[OIII]) and find that the slope is identical within errors.
Note that since other work uses the observed luminosity, we also use L[OIII] of our sample of AGNs in the
discussion when we compare the luminosity range of our study to other work.
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a unique opportunity to investigate this size-luminosity relationship for a uniform sample of

moderate luminosity AGNs with resolved NLRs. Our measurement of RNLR (Section 2.2.4)

is a lower limit since we only have spatial data along two dimensions of the galaxy. If neither

position angle is exactly aligned with the position angle of maximal extent of the NLR,

we are unable to measure the true extent of the NLR (RNLR; Section 2.2.4). However, we

note that other studies of the size-luminosity relationship are also limited by resolution and

surface brightness considerations (Hainline et al. 2013; Schmitt et al. 2003; Bennert et al.

2002; Fraquelli et al. 2000; Liu et al. 2013b).

Here we review the slope of the size-luminosity relationship measured by other studies.

In a simplistic one-zone model of the NLR, the NLR is described by an isotropic distribution

of gas where ne and U are constant. In this case, the size-luminosity relationship will have

a positive correlation and slope of α = 0.5 (Baskin & Laor 2005). Bennert et al. (2002) find

a slope of α = 0.52 ± 0.06 for their sample of seven Seyfert 2 galaxies and seven quasars

(41 < log L[OIII](erg s−1)< 43) and conclude that a constant density law and a constant

value for the ionization parameter describe the NLR. Hainline et al. (2013) predict a limit

to the correlation at the higher luminosity extreme of AGNs (42 < log L[OIII](erg s−1) < 43).

This is confirmed by Hainline et al. (2014); they observe quasars at the high luminosity limit

of AGNs and observe a flattening in the size-luminosity relationship. They attribute this

flattening to a limit in the amount of gas in the gas reservoir of the NLR that is available

for ionization. Liu et al. (2013b) confirm this effect and find a flatter slope of 0.25± 0.02 for

a sample of 11 luminous obscured quasars (42 < log L[OIII](erg s−1)< 44).

However, the flattening at the high luminosity end of the relationship is not the only

interesting conclusion from previous work. Schmitt et al. (2003) find a slope of 0.33±0.04 for

their sample of moderate luminosity (39 < log L[OIII](erg s−1) < 42) Seyfert 1 and Seyfert 2

galaxies, which is much shallower than the slope of α = 0.5 predicted for a constant density

law and ionization parameter. They conclude that a single-zone model with a constant

density and ionization parameter is not an appropriate representation of the NLR and that
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Figure 2.17: Size-luminosity (L[OIII]) relationship for the NLR for
the observed luminosity. We plot the 71 galaxies from this sample in
black. We overplot the best fit line in solid black and find a value of
α = 0.21± 0.05 for the slope of the log-log relationship. We include
the confidence interval for this slope in the shaded region. We also
plot the predicted slope for a one-zone NLR model in red and a
two-zone NLR model in blue.
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a two-zone ionization model for the NLR is a better explanation (Baskin & Laor 2005; Dopita

et al. 2002).

In a two-zone ionization model, the NLR can be described by both a matter-bound

zone and an ionization-bound zone, where the ionizing photons are pre-processed by passing

through a ionization-bound zone. The ionization-bound zone is characterized by a lower

ionization parameter and a higher density. The ionization-bound regime is thus optically

thick to ionizing radiation. In the most simplistic two-zone models, the ionization-bound

zone is confined to a smaller radius and the matter-bound zone exists at spatial positions

exterior to this. We will also discuss a more complicated two-zone model where these two

zones exist in a clumpier and/or mixed state but note that Baskin & Laor (2005) model the

radially confined case where denser NLR clouds are confined to a smaller radii and all NLR

material is distributed continuously. Most work deals with this simplistic model. Baskin &

Laor (2005) assume that the majority of emission originates from the outer matter-bound

zone where the size-luminosity relationship can be modeled with a slope of α = 0.34. Thus,

a NLR with mixed matter-bound and ionization-bound zones could be described by a slope

between the extremes of α = 0.34 and α = 0.5. Likewise, a NLR with a clumpier distribution

of matter-bound material than the continuous assumption would have a slope shallower than

α = 0.34.

Observations support this idea of a changing ionization parameter; the ionization pa-

rameter can decrease with radius (e.g., Fraquelli et al. 2000), which could be a signature of

a matter-bound region at a larger radius of a galaxy. Liu et al. (2013b) confirm that beyond

7 kpc for their quasars sample, the ionization diagnostic [OIII]/Hβ declines. They argue

that the NLR is entering a matter-bound regime at these radii, which explains the shallower

slope they fit to their size-luminosity relationship (0.25 ± 0.02). Consequently, arguing for

a two-zone ionization model where an outer matter-bound zone is characterized by a lower

density is similar to arguing that the gas reservoir is depleted at these extreme radii.

Shocks may also influence the size-luminosity relationship for AGNs. Müller-Sánchez
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et al. (2015) find a steeper slope of 0.52 ± 0.14 for a sample of 18 double-peaked AGNs

that includes three confirmed dual AGNs. We note that shocks may steepen this slope by

introducing higher-ionization zones. Dual AGNs, which host two interacting NLRs, are most

likely to produce shocks that are enhancing this relationship, thus enhancing the [OIII]λ5007

emissivity.

From our sample of moderate luminosity AGNs, we confirm a linear correlation with a

Pearson correlation coefficient of 0.48 and find a log-log slope of 0.21± 0.05 (Figure 2.17).4

Our results for a fitted slope are inconsistent with the predicted slope of α = 0.5 for a

one-zone ionization model to 3σ confidence. Our results cannot be explained by a constant

density profile with a constant ionization parameter. Our slope is closer to the predicted

slope of 0.34 (within 3σ confidence) for the two-zone ionization model of the NLR (Baskin

& Laor 2005). However, our slope is still shallower than α = 0.34 at a confidence level of

1σ. We suggest two possible explanations for this discrepancy.

First, the filling factor of the NLR is not well determined, so if the clouds are sparsely

distributed, this would flatten the relationship to values less than the α = 0.34 slope derived

for a simple two-zone ionization model. This simple model assumes a smooth density dis-

tribution of the NLR gas and a radial distribution of the two zones. This implies that the

simplistic two-zone model may not be adequate to explain our data and we may a require a

clumpier or mixed NLR that is not well described by a simplistic radial density profile as in

Baskin & Laor (2005).

Alternatively, we measure larger than average NLR extents when compared to NLR

size measurements for AGNs with a similar luminosity range (40 < log L[OIII](erg s−1)< 43);

see Hainline et al. (2013) and references therein. We find a mean RNLR of 4.3 kpc, which

4 We also fit this relationship for the intrinsic (corrected) [OIII] luminosity, Lc
[OIII], and find a slope of 0.24

±0.05. Our two measurements are consistent within error. We choose to use the observed luminosity value
of slope in our discussion to compare with other work (Bennert et al. 2002; Schmitt et al. 2003; Hainline
et al. 2013, 2014; Liu et al. 2013b). We can reject the null hypothesis that α = 0 to a 1% confidence level.
We plot the results of our linear fit in Figure 2.17 with the slopes of the one-zone and two-zone ionization
models for comparison. We discuss our linear correlation coefficient, fitted slope, and confidence interval on
this value both in the context of the one and two-zone ionization models.



87

is comparable to studies of more luminous AGNs (e.g., Bennert et al. (2002) find a mean

RNLR of 4.3 kpc for their 41 < log L[OIII](erg s−1)< 43 AGNs and Hainline et al. (2013) find

a mean RNLR of 3.8 kpc for their 42 < log L[OIII](erg s−1)< 43 AGNs) and our value of RNLR

is greater than studies of AGNs with a similar luminosity range (e.g., Schmitt et al. (2003)

find a maximum RNLR of 1.6 kpc for their 39 < log L[OIII](erg s−1)< 42 AGNs).

Although we refer to our sample as moderate luminosity AGNs, note that some of them

have observed luminosities in a range described as higher luminosity (42 < log L[OIII](erg

s−1)< 43). We may be probing regions of the NLR where the gas reservoirs available for

ionization are limited and the material is better characterized as matter-bound. Baskin &

Laor (2005) derive the expected slope of 0.34 for a two-zone ionization model for galaxies

with a maximum spatial extent of the NLR of 1.3-1.7 kpc and a constant density. Our sample

of galaxies may have a relatively larger and/or sparsely populated (less dense) matter-bound

region. These effects could lead to a shallower slope for the relationship. We note that while

we cannot fully distinguish between these two scenarios, our results are more consistent with

a two-zone rather than a one-zone picture of the NLR. We refer to some combination of a

non-constant density or non-radially distributed matter-bound region as a ‘clumpy two-zone

model’.

The positive correlation of this relationship indicates that the AGN itself is the mech-

anism responsible for ionization of the NLR. The Pearson correlation coefficient for the data

(0.48) reflects scatter in the data. This could be a consequence of the lower limit nature of

the RNLR measurement. The error bars show significant uncertainty in both the luminosity

measurement and the spatial extent measurement for some galaxies in the sample. Another

source of the scatter in our data could be the nature of a two-zone ionizing model for the

NLR. While studies mostly describe the matter-bound zone as the outer zone of a galaxy,

the matter-bound and ionization-bound zones could exist at different locations in a galaxy,

forming a “clumpier” picture of an intermixed two-zone NLR. Therefore, individual galaxies

in our large sample could have different ionization structures and this could intrinsically
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produce the scatter.

2.6 Conclusions

Based on optical longslit spectroscopy of the complete sample of 71 double-peaked

AGNs at z < 0.1 in SDSS, we create and implement a classification system for double-

peaked NLR emission lines. Our method determines the kinematic origin of the emission at

different spatial positions for each galaxy. We present the following conclusions based upon

this technique:

• Of the sample of 71 galaxies, 6% have kinematics dominated by rotation, 86% of the

galaxies are dominated by outflows, and 8% of the galaxies are dominated by some

combination of outflows, inflows, and rotation. Our kinematic classification deter-

mines that the majority of double-peaked emission lines originate from outflows and

succeeds at further determining the properties of the gas outflows and the rotating

disks.

• While we cannot confirm (or exclude) dual AGNs using the kinematic classification

method in isolation, we find that dual AGNs can be classified under any category

other than rotation-dominated with an obscuration.

• We find that the 71 AGNs in this sample demonstrate a positive correlation between

NLR size and luminosity (RNLR ∝ L[OIII]
0.21±0.05). This suggests a two-zone clumpy

ionization model for the NLR.

The full sample of double-peaked AGNs at z < 0.1 have been observed in the radio.

Future work will combine the optical and radio data to investigate the orientation of the radio

emission and its relationship to the ionized gas. To further investigate the direct effects of

feedback on the host galaxies in this sample, we will also introduce an analytic model for

the structure of the biconical outflow for the galaxies classified kinematically as outflow-

dominated galaxies. Using these models, we will constrain the energetics and momentum
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entrained in these ionized outflows and discuss their effect on star formation in the host

galaxies.



Chapter 3

The Origin of Double-Peaked Narrow Lines in Active Galactic Nuclei III:

Feedback from Biconical AGN Outflows

We apply an analytic Markov Chain Monte Carlo model to a sample of 18 AGN-driven

biconical outflows that we identified from a sample of active galaxies with double-peaked

narrow emission lines at z < 0.1 in the Sloan Digital Sky Survey. We find that 8/18 are best

described as asymmetric bicones, 8/18 are nested bicones, and 2/18 are symmetric bicones.

From the geometry and kinematics of the models, we find that these moderate-luminosity

AGN outflows are large and energetic. The biconical outflows axes are randomly oriented

with respect to the photometric major axis of the galaxy, implying a randomly oriented and

clumpier torus to collimate the outflow, but the torus also allows some radiation to escape

equatorially. We find that 16/18 (89%) outflows are energetic enough to drive a two-staged

feedback process in their host galaxies. All of these outflows geometrically intersect the

photometric major axis of the galaxy, and 23% of outflow host galaxies are significantly

redder or have significantly lower specific star formation rates when compared to a matched

sample of active galaxies.

This chapter reproduces Nevin et al. (2018). Reproduced with permission of the AAS.

3.1 Introduction

The tight observational correlations between stellar bulge properties such as mass and

velocity dispersion and supermassive black hole (SMBH) mass indicate that SMBHs can be
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powerful drivers of galaxy evolution (e.g., Merritt 2000; McConnell & Ma 2013). Since the

sphere of influence of the SMBH’s gravity is minuscule, a physical coupling between the

host galaxy and the energy of active galactic nuclei (AGNs), which are the active phase of

SMBHs, must explain these scaling relations. This coupling is known as AGN feedback.

Both theoretical models and observations have investigated the role of AGN feedback

in galaxy evolution. Observationally, the bimodal color distribution of galaxies in the nearby

universe and the lack of massive galaxies in the galaxy mass function require quenching of star

formation in galaxies via a feedback mechanism (e.g., Bell et al. 2004; Brown et al. 2007;

Faber et al. 2007; Silk 2011). In models, AGN-driven feedback provides a mechanism to

evacuate gas from a galaxy and quench star formation and the growth of the SMBH (e.g., Di

Matteo et al. 2005; Hopkins et al. 2005; Springel 2005; Croton et al. 2006). Despite the utility

of AGN feedback in regulating galaxy and SMBH growth, there is limited direct evidence

for feedback operating on host galaxies. Additionally, despite many proposed mechanisms

to deliver energy from the AGN to the interstellar medium (ISM) of the host galaxy, little

is known about the energy, geometry, and efficiency of these mechanisms.

Recent work has focused on a handful of very energetic AGN-driven outflows and

winds, such as UV and X-ray Broad Absorption Line (BAL) QSO outflows (e.g., Crenshaw

& Kraemer 2012; Arav et al. 2013; Crenshaw et al. 2015) as well as narrow line region (NLR)

outflows (e.g., Müller-Sánchez et al. 2011; Fischer et al. 2013; Crenshaw et al. 2015; Müller-

Sánchez et al. 2016; Fischer et al. 2017). This work has carefully measured the outflow

velocity, and therefore, kinetic energy, of these objects. Theoretical studies predict a 0.5%

threshold as the ratio of kinetic luminosity, or LKE, associated with an outflow to the AGN

bolometric luminosity, or Lbol, of the AGN outflows necessary to drive a powerful two-staged

feedback process (Hopkins & Elvis 2010). Some high energy outflows exceed this energy

threshold (e.g., Crenshaw & Kraemer 2012; Arav et al. 2013; Borguet et al. 2013; Liu et al.

2016).

While some energetic outflows have the potential to disrupt the molecular gas in the
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disk of the host galaxy, these are extreme cases, and it remains difficult to find direct evidence

for feedback in most of these galaxies. To fully address how the overall population of AGNs

drive feedback in their host galaxies, it is necessary to characterize the amount of energy

entrained in outflows, determine the efficiency of energy delivery using the geometry of the

outflow, and find direct evidence for the effects of feedback on the host galaxy.

It is important to determine both the geometry of the outflow and how the outflow

is oriented with respect to the star forming disk of the galaxy to establish how and where

the energy is delivered to the ISM. Some authors find that a spherical geometry with a

180◦ opening angle describes NLR outflows while others measure narrower opening angles

associated with a biconical outflow (e.g., Müller-Sánchez et al. 2011; Liu et al. 2013a). A

bicone model for the NLR of an outflow is expected from the unified model of AGNs; a

thick torus provides the collimation necessary to produce a biconical outflow (Antonucci &

Miller 1985). Fischer et al. (2013) find a homogeneous distribution of orientations for their

sample of Seyfert galaxies with ionized outflows, suggesting that AGN outflows may have

a random orientation with respect to the star forming disk of the galaxy. The AGNIFS

group also finds that ionized gas outflows are oriented at random angles to the galactic plane

(Storchi-Bergmann et al. 2010; Riffel & Storchi-Bergmann 2011a,b; Riffel et al. 2013, 2015;

Schönell et al. 2014). Other observational studies of ionized outflows suggest outflows that

are aligned with the photometric major axis of the galaxy (e.g., Elitzur 2012).

Our sample of AGN outflows from Nevin et al. (2016) are moderate-luminosity (42 <

log Lbol (erg s−1) < 46) AGN outflows in the local universe. They were originally selected

from the Sloan Digital Sky Survey (SDSS) as z < 0.1 Type 2 AGNs with double-peaked

narrow emission lines. Moderate-luminosity AGNs such as these account for 10% of the total

AGN population at low redshifts (z < 0.1) (e.g., Silverman et al. 2006; Ueda et al. 2014);

they are more ubiquitous than high-luminosity AGNs (1% of the total AGN population),

which includes the BAL QSO population. In addition to representing a larger fraction of

the AGN population, moderate-luminosity outflows also operate on kpc-scales, coincident
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with circumnuclear star formation. This enables us to directly assess the effects of outflows

on the ISM of the host galaxies (Crenshaw et al. 2015). If moderate-luminosity AGNs are

capable of driving feedback, they are so common that they could contribute significantly to

the explanation for observed galaxy-SMBH scaling relations.

The remainder of this paper is organized as follows. We describe the sample selection,

biconical models, and Markov Chain Monte Carlo analytic modeling technique in Section

3.2. In Section 3.3 we calculate sample statistics for orientation of the outflows and energy

diagnostics of the outflows. We discuss the implications of the best fit biconical outflow

models, energy diagnostics, and geometry in Section 3.4. We present our conclusions in

Section 3.5. A cosmology with Ωm = 0.3, ΩΛ = 0.7, and h = 0.7 is assumed throughout.

3.2 Methods

The 71 Type 2 AGNs with double-peaked narrow emission lines at z < 0.1 in the

SDSS were introduced and classified in Nevin et al. (2016). We observed each galaxy at

two position angles with optical longslit spectroscopy (Comerford et al. 2012; Nevin et al.

2016). For each galaxy, we reduced the 2d spectra and extracted the [OIII]λ5007 profiles. We

calculated the velocity offset of the [OIII]λ5007 emission line relative to the systemic velocity

derived in the SDSS DR7 value-added catalogues (OSSY) from absorption lines (Oh et al.

2011). The 71 galaxies were classified as Outflow, Outflow Composite, Rotation-Dominated

+ Obscuration, Rotation-Dominated + Disturbance, or Ambiguous. Here we focus only on

the 61 galaxies that were classified under the outflow-dominated classifications of Outflow

and Outflow Composite.

3.2.1 Selection Criteria for Analytic Modeling

We initially model all of the 61 outflow-dominated AGNs as biconical outflows. We are

motivated to use a biconical outflow model because each of the double-peaked emission lines

are kinematically described as outflows on all spatial scales (Nevin et al. 2016). We apply
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the kinematic classification method from Nevin et al. (2016) to the velocity dispersions and

velocity offsets of both components on all spatial scales. We find that unlike in some nearby

Seyfert galaxies, where the NLR kinematics are best described by a small-scale outflows

and large-scale illuminated disk rotation (Fischer et al. 2017), both components can only be

described by outflow kinematics for our sample. We analyze the lack of rotation-dominated

structure further in Appendix B.1. Therefore, we rule out illuminated rotating structure as

the origin for the double peaks at all positions observed along the slit and ensure that we

are physically motivated to model the two components as the walls of a biconical outflow.

Then, we establish selection criteria to determine which galaxies are well-modeled, and

identify 18 galaxies for further analysis in this paper. We present these 18 galaxies with

their PAs, spatial apertures, spatial resolution, and spectral resolution in Table A.7. We

select these 18 galaxies based upon three requirements for the spatially resolved spectra as

described in the following paragraphs.

First, we include only rows in the longslit spectra in which the Akaike statistic from

Nevin et al. (2016) demonstrates that a two Gaussian fit is significantly better than a one

Gaussian fit. This ensures that our goal of producing an analytic model of a cone for a two

Gaussian profile is met. Second, we require that the kinematic model directly model the

two Gaussian centroids as the two walls of a cone. We assign a joint velocity and dispersion

tracking method to associate each single Gaussian component of the two Gaussian fit with

a physical wall of the cone.

Second, in previous work, groups have used a dispersion association method to track

components that belong to a given wall of a bicone. In Westmoquette et al. (2011), the

component with the larger dispersion always corresponds to the same wall of the bicone. For

example, one wall of the bicone has a larger velocity dispersion and is the redder emission

component at one spatial position. If at a different spatial position, the emission components

switch relative velocity dispersions, where the bluer component now has a larger dispersion,

suddenly the bluer component is now associated with the wall with the larger velocity dis-
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persion.

We choose to use a stricter tracking method than Westmoquette et al. (2011). In

addition to the dispersion tracking method, we restrict our modeling to galaxies where

the components with similar dispersion across the slit are also related in velocity. This

combination of velocity and dispersion tracking restricts our physical model to a model

of bulk motion of the biconical outflow. For instance, the dispersion tracking method in

Westmoquette et al. (2011) allows material from a given wall of the bicone to suddenly move

at a new velocity that may be ∼1000 km s−1 different from the bulk motion of that wall.

In contrast, we require that both of the walls of the cone move at the velocity set by the

velocity law (Section 3.2.2), and we choose to model only galaxies whose spectra match this

physical explanation.

We eliminate rows of data that violate the velocity and dispersion association require-

ments. For example, if a narrower emission component is the blueshifted component in one

row but then in a subsequent row becomes the redshifted component, we eliminate the exte-

rior rows by truncating the data at the last row of dispersion association. The justification

is that the flux in these exterior rows is low enough to confuse emission components, and we

may not be associating components with their proper physical wall of the cone.

An additional motivation for eliminating rows of data based upon the Akaike statistic

and the velocity and dispersion tracking method is to ensure model convergence. Since we

use a likelihood maximization technique, rows with large error bars on the velocity centroids

do not lead to the convergence of the best-fit model. Spatial rows that do not pass the two

requirements discussed above often have very low S/N and therefore large error bars.

Third, we select only the galaxies with n > 2k, where k is the number of parameters

in the bicone fit and n is the number of spatial rows of data (from each individual PA) that

satisfy the other two requirements described above. Typical values for k and n are 5-6 and

10-20, respectively. Given an average pixelscale of 0.′′3 pix−1 and an average redshift of 0.05,

this corresponds to emission profiles with a typical radius of 1.5-3 kpc.



96

This last requirement discourages false convergence for data sets that are too small

to truly constrain the geometry of a cone. We find that 18 galaxies meet these criteria.

Therefore, the biconical outflows discussed in this work represent the best quality data (top

30%) from the full sample of 61 outflow-dominated galaxies. We discuss the implications of

our selection criteria in Section 3.4.1, but in general we find that by requiring these three

selection criteria, we select for galaxies that are nearby, more luminous, and more extended

from the full sample of 61 outflows-dominated galaxies.

3.2.2 Analytic Outflow Models

We model the 18 galaxies selected in Section 3.2.1 as biconical outflows. A biconical

model for AGN outflows is well motivated by observations and theory. From theory, a bicone

model for the NLR of an outflow is expected from the unified model of AGNs; a thick torus

provides the collimation necessary to produce a biconical outflow (Antonucci & Miller 1985).

Observationally, Schmitt & Kinney (1996) found biconical geometry in Seyfert 2 galaxies.

Barbosa et al. (2014) confirm this biconical geometry for NGC 1068 with IFS. Crenshaw &

Kraemer (2000) also find that the NLR kinematics of NGC 1068 observed with STIS longslit

data are well-described by a radial biconical outflow. Other work followed to model biconical

outflows with kinematic longslit and IFS data (e.g., Crenshaw et al. 2000; Das et al. 2006,

2007; Müller-Sánchez et al. 2011; Fischer et al. 2013; Crenshaw et al. 2015; Müller-Sánchez

et al. 2016). Although some groups model AGN outflows using a quasi-spherical geometry

(e.g., Liu et al. 2013a; Harrison et al. 2014), our double-peaked velocity centroids are not

consistent with a spherical geometry and instead suggest the inclined geometry of a bicone.

Additionally, spherical shell models for bicones tend to overestimate the surface area of the

outflow, and one of our main goals is to provide an accurate estimate of this parameter since

it is used to estimate the kinetic energy of the outflow.

The bicone model builds off of the evacuated two-walled bicone with a front and rear

wall where material begins to decelerate at a given turnover radius from Das et al. (2006).
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Figure 3.1: The integrated [OIII]λ5007 SDSS profiles of the 18 galax-
ies modeled as biconical outflows in this work. The velocity offsets
are measured relative to the host galaxy stars. Here we separate the
galaxies according to the biconical outflow model that is the best fit.
The symmetric bicone model with symmetric velocity centroids is
the best fit model for the two galaxies in the top panel. The asym-
metric bicone is the best model to describe the eight galaxies in the
middle row. The nested bicone is the best model for the eight galax-
ies in the bottom row. Note that outflows possess distinct knots of
emission that move at random velocities; therefore, profiles such as
J0959+2619 (bottom left, nested bicone) may be best modeled as
a nested bicone even though the redder velocity centroid is shifted
redward of zero velocity in the integrated profiles. These types of
profiles are better explored using spatially-resolved longslit spectra.
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In Das et al. (2006), the two-walled structure is filled in between the walls. In this work, we

evacuate the volume between the walls (Section 3.4.3 presents the motivation for this fully

evacuated bicone). The parameters for the bicone are inclination (i), position angle on the

sky (PAbicone), turnover radius for the velocity law of the outflow (rt), the maximum velocity

of the outflow at this turnover radius (Vmax), the inner half opening angle of the bicone

(θ1,half), and the outer half opening angle (θ2,half). The height of the bicone is determined by

the turnover radius (rt), specifically h = 2rt. We measure the kinetic energy at rt to capture

the bulk of the energy since the outflow decelerates beyond rt.

The velocity law for the material along the wall of a biconical outflow has two phases.

Exterior to rt, the material decelerates linearly due to drag forces associated with the ISM

(e.g., Das et al. 2006, 2007). Interior to rt, the bicone velocity law can be modeled with

either an accelerating or constant velocity law.

In nearby Seyferts with pc-scale resolution, observations have revealed the linear accel-

eration phase of AGN outflows with a turnover radius around 100 pc (e.g., Crenshaw et al.

2000, 2003; Das et al. 2006; Müller-Sánchez et al. 2011; Fischer et al. 2013; Crenshaw et al.

2015). In contrast, other work with pc-scale resolution fails to find this acceleration (e.g.,

Storchi-Bergmann et al. 2010). Yet other work with larger resolution (kpc-scale) fails to find

an accelerating phase and uses a constant velocity law to describe the outflowing gas (e.g.,

Liu et al. 2013a; Harrison et al. 2014).

Since we are probing AGN outflows with kpc-scale resolution and also fail to observe

an accelerating phase to the wind, we are well motivated to use a constant-velocity law to

describe the interior regions of the outflow (prior to the deceleration phase). We note that we

cannot distinguish between being unable to resolve this small-scale acceleration phase and

the non-existence of this phase. We now turn to the theory of the accelerating mechanism

for an outflow and how it fails to explain this acceleration phase.

It is unclear how and where NLR winds are produced and accelerated to their observed

maximum velocities of 100 to 1000 km s−1 (Crenshaw & Kraemer 2005; Fischer et al. 2013;
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Figure 3.2: The general structure and variations of the symmetric
bicone. Only observed walls are shown, where darker colors indicate
larger line of sight velocities. Here we make no distinction between
illumination, obscuration, or selection effects leading to the absence
of walls relative to the two-walled symmetric bicone. The general
structure (left) has four total walls, all of which are aligned and
described by two different opening angles. The symmetric bicone
(second from left) has two cones of the same opening angle that
touch apex to apex. The asymmetric bicone (second from right) has
two cones of different opening angles, where the larger opening angle
cone illustrates the receding emission component. We find that a
larger opening angle receding cone is the case for all of the galaxies
that are best modeled as an asymmetric bicone. The nested bicone
(far right) has two cones, both of which are blueshifted.
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Fischer et al. 2014). Possible proposed mechanisms for accelerating an AGN wind include

thermal winds, magnetic fields, and radiative pressure (e.g., Matzner & McKee 1999; Lada &

Fich 1996; Das et al. 2007). However, these mechanisms fail to explain the acceleration phase

out to 100 pc observed by some work (e.g., Everett 2005; Das et al. 2007). Everett & Murray

(2007) demonstrate that Parker winds (thermal winds) cannot reproduce the observed range

of velocities observed. They also find that radiative pressure and magnetic fields can launch

powerful winds, but these are small-scale winds that reach their terminal velocities ∼10 pc

from the central source, the 100 pc distance as observed.

Everett & Murray (2007) propose that since the various wind models fail to reproduce

the observation, an already accelerated wind could be interacting with the surrounding

medium. Storchi-Bergmann et al. (2010) investigate the accelerating velocity profile of the

outflow in NGC 4151 observed by Das et al. (2006) and explain that since the velocity

centroids probe the brightest emission, the observed accelerating structure could be produced

by bright lower velocity gas entrained in the disk closer to the nucleus. Then, at greater radii

in the outflow in NGC 4151, the outflowing component dominates the flux and produces the

observed deceleration phase. Therefore, the observed acceleration could be attributed to a

rotation-dominated component at small spatial scales.

We model the 18 AGN outflows using three biconical outflow models: the symmetric

bicone, the asymmetric bicone, and the nested bicone. We are motivated to expand our

models beyond that of the classical symmetric bicone due to asymmetries in the measured

velocity centroids for the bluer and redder components of the two Gaussian fits to the spectra.

This is apparent in both the SDSS integrated profiles (Figure 3.1) and the spatially resolved

longslit profiles. We find that 15/18 outflows have integrated profiles that have a blueshifted

overall velocity centroid. When we fit two Gaussians to the profile, 15/18 also have a mean

velocity (averaging the two centroids) that is blueshifted. Motivated by the failure of a

symmetric bicone model to uniformly describe the velocity centroids of all of the galaxies,

we introduced the two additional analytic models.
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Figure 3.3: Three variations of bicone models (left) with associated velocity profiles for example
galaxies that are best fit by each model (right). We plot the velocity data in points and the best fit
models with stars. The positive spatial direction corresponds to the NE direction of the slit. We
plot a horizontal dashed line at zero velocity to fully demonstrate the origin of the names of the
bicone models. For instance, the asymmetric bicone has velocity centroids in the spectrum that
are asymmetric about zero velocity.
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Each of the three bicone models can be described as a variation of a two-walled sym-

metric bicone; each model a total of two cone structures that are aligned with one another

and produce double-peaked emission lines. We refer to a one-walled structure when there

is one wall on either side of the galaxy (the one-walled symmetric bicone and one-walled

asymmetric bicone). The two-walled bicones have two walls on one or both sides (the nested

bicone and the general two-walled symmetric bicone, respectively). We use the same physical

structure in all three model variations of the bicone, and the distinct models simply select

different walls of a two-walled symmetric bicone structure. Figure 3.2 shows diagrams of

these three models.

In addition to the simple case of the symmetric bicone, the asymmetric bicone and

nested bicone are also motivated by observations. In a sample of SDSS Type 2 AGNs,

Woo et al. (2016) find that inclination, dust obscuration, and velocity are the dominant

parameters that control the modeled velocity and velocity dispersion profiles of AGNs. Their

flux-weighted models demonstrate that dust can obscure the receding cone entirely when the

inclination of the bicone is high, producing an observed profile similar to that of the nested

bicone.

Additionally, if the receding side of the bicone is larger than the dust plane, Woo et al.

(2016) find that an asymmetric biconical structure can appear in the integrated spectrum

because a wider opening angle receding cone is more favored in the flux-weighted profile.

Storchi-Bergmann et al. (2010) observe very weak emission from the more inclined walls

(relative to the disk) of the AGN outflow in NGC 4151. They explain that more gas is

entrained at low angles to the galactic disk; an asymmetric bicone profile could originate

from a wider opening angle receding cone that is close to the disk of the galaxy. Müller-

Sánchez et al. (2013) find that an asymmetric bicone model is the best fit for the outflow in

the Seyfert galaxy NGC 3081 with a wider opening angle receding cone.

The general symmetric two-walled bicone has a total of four cones (two receding and

two approaching along the line of sight; Figure 3.2). For each of the three models, we select
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two cones from the symmetric two-walled bicone. Here we do not make a distinction between

the existence and non-existence of various walls, obscuration effects, or illumination effects.

We discuss obscuration effects, illumination effects, and lack of gas effects that may lead to

these different models in Section 3.4.3.

The symmetric one-walled bicone has two symmetric conical structures that can be

described with the same opening angle on either side of the galaxy. A symmetric biconical

model is constrained by five parameters (i, PAbicone, rt, θ1,half , and Vmax) and produces two

velocity centroids that are symmetric about zero velocity. The asymmetric bicone consists of

two cones that are aligned. However, these cones can be described by two different opening

angles. This model is constrained by six parameters (i, PAbicone, rt, θ1,half , θ2,half , and Vmax).

Likewise, the nested bicone has six parameters (i, PAbicone, rt, θ1,half , θ2,half , and Vmax). It

consists of two cones that are aligned but nested inside one another. The velocity centroids

of the nested cone are both blueshifted. We show an example of a velocity profile from each

of the three types of bicones in Figure 3.3.

Due to our n > 2k constraint, we are unable to assign 10 free parameters (i, PAbicone,

rt, θ1,half , Vmax, i2, PA2,bicone, r2,t, θ2,half , and V2,max) for the nested and asymmetric bicone

models. However, past observations and asymmetric bicones in this work justify allowing

just six free parameters in the nested and asymmetric bicone models, where we allow the

opening angles of the two cones to vary.

First, either two different intrinsic velocities or two different opening angles could

explain the asymmetric velocity centroids in the asymmetric bicone model. Observations

of asymmetric bicones indicate that the redshifted wall often has a larger opening angle

(e.g., Müller-Sánchez et al. 2013; Woo et al. 2016). Additionally, all the velocity centroids of

galaxies in this work that can be described as asymmetric have a higher velocity blueshifted

component and a lower velocity redshifted component. There is no physical motivation for

100% of AGN outflows having an intrinsically lower velocity to the redshifted cone, so we

favor the geometry explanation for this effect.
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We find in Section 3.2.3 that the choice of two distinct opening angles was merited,

since the models converge on two different opening angles that are unique. Additionally,

after completing the modeling, we assess the sensitivity of the parameters in Section 3.2.3

and find that the opening angles are the best-determined parameters. We find that the

other parameters have large error bars and fitting two separate parameters for each model

yields two values that are consistent with one another and therefore meaningless as separate

parameters. For instance, when we fit two inclinations for each of the two sides of the

asymmetric bicone, we find two values for each cone’s inclination that are consistent with

one another within errors. Therefore, our choice of the six free parameters for the asymmetric

and nested bicones is justified by past observations of bicones as well as the limitations of

our data and the sensitivity of our model (Section 3.2.3 and 3.2.4).

We create a three dimensional model of each of these three cone structures. We project

the velocities of our three dimensional models onto the plane of the sky and extract a line of

sight velocity for all points along the observed PAs of the two slits (Figure 3.4). The model

accounts for the pixelscale and the slitwidth of each observation. We use a Markov Chain

Monte Carlo process (described in Section 3.2.3) to model all 18 galaxies using each of these

three models. We find that 2/18 galaxies are best modeled as a symmetric bicone, 8/18

galaxies are best modeled as an asymmetric bicone, and 8/18 galaxies are best modeled as

a nested bicone.

3.2.3 Markov Chain Monte Carlo parameter estimation

For each of the three outflow models for each galaxy, we perform a multi-parameter

Markov Chain Monte Carlo (MCMC) iterative modeling process to determine the best fit

model and combination of parameters for the velocity data. In this section, we briefly outline

the MCMC sampling, present the results of our modeling, discuss the methods we use to

verify convergence, and discuss implications of the parameters using practical identifiability

and sensitivity analysis.
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Figure 3.4: The best fit asymmetric bicone model for the galaxy
J0930+3430. Spacing on all axes corresponds to pixels (here, the
pixelscale is 0.′′389pix−1). Left: model of the bicone. The bicone is
very inclined and the two colorbars show the line of sight velocities for
both the redshifted (wider opening angle) cone and the blueshifted
(smaller opening angle cone). Right: the cuts we make to the model
(left) along the two observed PAs of the longslits on the sky (PA1 =
21◦, PA2 = 111◦). This takes pixelscale and slitwidth into account.
We extract modeled velocity centroids for the blueshifted cone (top)
and redshifted cone (bottom). Velocity color bars are in units of km
s−1.
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We utilize the affine-invariant MCMC Ensemble sampler from Goodman & Weare

(2010), conveniently packaged in the Python code emcee (Foreman-Mackey et al. 2013).

The MCMC method takes advantage of parallel processing to sample the posterior prob-

ability density function (PDF) for a multi-parameter space efficiently on multiple cores.

Computing the PDF of a biconical outflow is computationally expensive, so we run our par-

allel sampling for the bicone models on the University of Colorado supercomputer JANUS.

An affine-invariant sampler also performs well under all linear transformations; the sampler

is insensitive to covariance between parameters. Parameters demonstrate covariance within

our parameter set, so this is an advantage.

In the case of uniform priors (which applies here), the MCMC technique maximizes

the log-likelihood of the parameter space. Gaussian log-likelihood is defined as:

log L = −0.5

(∑
ln(2πσ2

i ) +

∑
(yi − xi)2

σ2
i

)
where yi is the data, xi is the model, and σi is the associated error with each data point.

Here, σi includes both error on the measurement of the Gaussian centroid of each velocity

component and the error inherent to the instrumental dispersion (e.g., for the instruments

used in this sample, the typical error is 2.5 km s−1). The Gaussian log L is related to

a χ2 value, since in the Gaussian case with a normal error assumption, they are directly

proportional. To compare goodness of fit between different models, we use a reduced chi-

square defined as:

χ2
ν = χ2/(n− k − 1)

where n is the number of data points and k is the number of free parameters.

Due to the simplistic nature of the outflow model, the χ2
ν values are relatively high.

Although we could add more parameters to make a more realistic model, the number of data

points do not justify it. These models assume a continuous distribution of NLR emission

along the walls of the outflow and are too simplistic for a structure with many complicated

discrete knots of emission, but model the overall morphology well. Therefore, we do not
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expect χ2
ν values to be ∼ 1 for these models, and we are unable to assess the absolute

“goodness of fit” of a given model in isolation. Instead, we use the χ2
ν values only to compare

between different models for an individual galaxy; the χ2
ν values are not intended to be used

to compare the outflows of two different galaxies.

We find that 2/18 (11.1%) galaxies are best modeled as a symmetric bicone, 8/18

(44.4%) galaxies are best modeled as an asymmetric bicone, and 8/18 (44.4%) galaxies

are best modeled as a nested bicone. The χ2
ν values are reported in Table A.8 and the

parameters for the best fit model along with 1σ error bars are reported in Table A.9, A.10,

and A.11 for the galaxies that are best fit by a symmetric bicone, asymmetric bicone, and

nested bicone, respectively. We also include the mean modulus of the residuals between the

observed velocities and the modeled velocities to quantify the goodness of fit. We find that

this quantity is comparable to the uncertainty of the observed velocities, which indicates

that the models are a good fit.

We confirm convergence of the MCMC fit to the global maximum by assessing the

acceptance fraction of the walkers and the autocorrelation function. We use the acceptance

fraction of the walkers as one method to assess if the walkers have fallen into a local maxi-

mum. We ensure that the walkers are in the range of acceptance fraction (0.2-0.5) suggested

by Foreman-Mackey et al. (2013). If the acceptance fraction is less than 0.2, this implies

that the walkers have fallen into a local maximum and are unable to walk their way out,

and instead reject every step. An acceptance fraction that is too high would imply that the

PDF is featureless, and walkers are accepting random steps across the entirety of parameter

space. Our average acceptance fraction is in the 0.2-0.5 range due to our careful selection of

data that are high enough in quality and quantity as discussed in Section 3.2.1.

Another method for quality assurance of the fit is to determine the “burn-in” period

and ensure that the MCMC process iterates for at least this long. The code emcee provides

an estimation of the autocorrelation time, which is defined as the time lag that drives the

value of the autocovariance function of a time series to zero. When the autocovariance is
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zero, the chain has fully sampled the probability space. For our parameters, the typical

autocorrelation time is 50-60 steps, indicating that it takes 50-60 steps for the walkers to

converge upon the true value. We run all chains for 200 steps to ensure that the runs extend

for at least twice the maximum autocorrelation time. On average, our chains run for four

autocorrelation times.

We next investigate the relative sensitivity of the six outflow parameters and their

practical identifiability. We determine the best fit parameter values and their associated

1σ errors from the marginalized distributions (Figure 3.5). The PDF of each parameter is

constructed from the final position of all 100 walkers in parameter space. One advantage of

MCMC sampling is that the final parameter distributions are not restricted to symmetric

errors. Instead, we use the shape and width of these distributions to determine how the

various parameters affect the modeling process.

The first parameter-related check that we perform is a test of practical identifiability.

Rothenberg (1971) define lack of identification as the lack of sufficient information to dis-

tinguish between alternative structures or models based upon the data. There are different

types of identifiability; here we discuss practical identifiability. Lack of identifiability where

the data may not uniquely identify a model could either be a structural problem with the

model itself or a problem that arises due to noisy data (Campbell & Lele 2013). We assess

the practical identifiability of the model by constructing a synthetic data set based upon

the symmetric bicone model with a pixelscale and spectral resolution typical of the longslit

data for the 18 galaxies. We then create two different realizations of this synthetic data; one

where the error is equal to that of the data (σ ≈ 10%) and one where the error is inflated

(σ ≈ 100%).

The synthetic bicone has parameters typical of the galaxies we model here: i = 0;

PAbicone = 15◦; rt = 5 (pixels); θ1,half = 55◦; and Vmax = 500 km s−1. We run the synthetic

model through emcee starting at an intentionally incorrect starting point for the parameters.

The goal is to determine if the emcee process returns the correct set of parameters and
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Figure 3.5: Triangle plot for the best fit model parameters for the
symmetric bicone model for the galaxy J0803+3926. Each column
and row represents one of the five parameters for which the MCMC
method estimates a best value. From left to right these parameters
are: Inclination i, position angle on the sky (PAbicone), turnover
radius rt, half opening angle of the cone (θ1,half), and maximum
velocity (Vmax). The top plot of each column gives the histogram
of final values for each parameter, where the red line represents the
median value. We demonstrate that our method successfully returns
normally-distributed histograms for the value of each parameter. In
the interior plots, walker final locations are colored according to point
density on each plot, where red represents the densest clustering of
points. The black star illustrates the best fit values provided by the
median value of each parameter histogram.
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examine the posterior probability of the output.

When examining the walkers from both runs, it becomes apparent that the walkers

better converge upon the true parameter values for the run with smaller, more representative

error bars. This is unsurprising, as it indicates that the probability space is well-defined

for the smaller errors. For the larger errors the likelihood is smooth and featureless (less

conducive to convergence). We have demonstrated practical identifiability for our data,

which has errors of order 10%. However, extreme caution should be taken when attempting

to identify models with velocity measurement errors on the order of 100% of the value of the

velocity.

We also assess the sensitivity of the six parameters involved in the biconical outflow

models. For instance, from the parameter error bars reported in Tables A.9, A.10, and A.11,

it is apparent that PAbicone is not well determined; the modeling process is not particularly

sensitive to this parameter. We use one-factor-at-a-time (OFAT) sensitivity analysis to

investigate the relative sensitivity of all parameters. We keep all parameters but the one in

question at their baseline (nominal) values and compute the change in likelihood produced

by varying the parameter in question through the full range of allowed values. For example,

for an OFAT sensitivity analysis of the inclination, we vary the inclination between 0 and

90◦. We quantify the change in likelihood by computing ∆χ2
ν between the best fit χ2

ν value

and the largest χ2
ν value within this parameter range.

As an example, we discuss the OFAT sensitivity analysis for J0930+3430, which is best

fit by an asymmetric bicone. We find the following ∆χ2
ν values for the parameters listed in

order of increasing sensitivity: (1.2, 256.2, 262.3, 613.2, 1051.1, 1335.3) for (PAbicone, Vmax,

rt, i, θ1,half , θ2,half). As expected from the large error bars on PAbicone, PAbicone is the least

sensitive parameter. This is explained by our finding that the AGN outflows are biased to

have large inclinations in Section 3.4.1. A large inclination outflow is face-on, which causes

the line of sight velocities to only change slightly over a range of values of PAbicone. We

calculate energy diagnostics for each outflow (Section 3.3.2) using Vmax, rt, θ1,half , and θ2,half ,
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which are among the most well-determined parameters in our models.

3.2.4 Verifying the Models

We note that we are limited to two PAs of longslit data, with a limited number of data

points for each. Therefore, we use two tests to verify that the models are converging and

that we have enough longslit data points to converge upon the parameters of the bicone.

For the first test, in this section we examine a galaxy for which we have obtained additional

longslit data. We are motivated by Fischer et al. (2017), who find that their original longslit

observations of the biconical outflow in Mrk 573 (Fischer et al. 2010) were insufficient to

return the correct parameters for their bicone and disk models for the kinematics of the

galaxy. Returning to gather IFS observations in Fischer et al. (2017), they find a different

model for Mrk 573 that indicates an outflow is occurring on small scales and that rotation-

dominated kinematics dominate at large scales. We will address the concern of rotation-

dominated kinematics in Appendix B.1. Here, we examine the limitations of our longslit

data.

To address this concern for the longslit observations in this paper, we present additional

observations for the galaxy J0930+3430. We choose to further investigate this galaxy because

the best-fit PA for the bicone is between the two originally observed PAs. Additionally, the

original best-fit model was one of the largest and most energetic of the 18 galaxies. The

original two PAs observed and presented in Nevin et al. (2016) are 21 and 111 degrees, and

we found that the best-fit bicone model is oriented along PA 75. These two position angles

were observed with the Palomar Blue Channel Spectrograph (pixelscale 0.′′389 pixel−1). We

obtain two new PAs at 66 and 156 degrees with the Dual Imaging Spectrograph at APO

(pixelscale 0.′′42 pixel−1). In Figure 3.6 we overplot all of the observed PAs.

We have modified our bicone modeling code to incorporate four PAs. We have rerun

the the emcee code for all possible combinations of two PAs as well as the four PA run

(pseudo-IFS) in Table A.12. We use the asymmetric bicone model for J0930+3430, and we
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Figure 3.6: Four observed PAs for J0930+3430 overplotted on the
SDSS gri image. We combine them to construct a pseudo-IFS map.
The PAs are E of N: 21, 66, 111, and 156 degrees. PA 66 and 156
are the new observations, shown in orange, obtained from APO. The
original two PAs of 21 and 111 degrees, shown in red, were obtained
from Palomar (Nevin et al. 2016). The slitwidth is 1.5′′.
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find that all parameters agree within the 1σ error interval for each run. Additionally, the

model with four PAs does not significantly reduce the error interval although it provides

better spatial coverage (Figure 3.6).

For the second test, in Appendix B.1 we examine a galaxy for which we have IFS data.

This galaxy was not included in the 18 galaxy sample for this work. It was classified as an

‘Outflow Composite’ in Nevin et al. (2016) but excluded from the modeling in this paper

due to a third component at small scales and the lack of data points at one PA.

3.3 Results

3.3.1 Bicone and Disk Orientation

For each of the 18 galaxies, we compare the orientation of the bicone with the orienta-

tion of the photometric major axis of the galaxy. The orientation statistics for this sample

of modeled outflows enable us to comment both on biconical outflow theory with the orien-

tation of a theoretical collimating structure and on how the ionized outflows may affect the

ISM and therefore drive feedback in the host galaxy; Section 3.4.4 and Section 3.4.6.

The position angle of the photometric major axis of the galaxy (PAgal) is the photomet-

ric major axis of the galaxy in the SDSS r-band. In this work, we determine the alignment

of the bicone axis and the opening angle of the bicone structure from the analytic models

(PAbicone and θ2,half , respectively). We use θ1,half for the galaxies that are best fit with a

symmetric bicone. We report these two position angles and the half opening angles in Table

A.13 and determine if the biconical structure is aligned with the photometric major axis, if

it intersects the photometric major axis, and if it is perpendicular to the photometric major

axis for all 18 galaxies. Alignment is defined as PAgal = PAbicone within a 1σ error margin.

We find that a significant portion of outflows are aligned with the photometric major

axis of their host galaxy (10/18, 55.6%). However, we also find that a significant portion of

outflows are aligned with a position angle that is perpendicular to the photometric major
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axis of the galaxy (10/18, 55.6%). We find that six galaxies are included in both of these

groups and that this is a reflection of the uncertainty of the PAbicone parameter. When we

remove these overlapping galaxies we find that 4/18, or 22.2% of the outflows are aligned

with the photometric major axis of the galaxy. The 95% binomial confidence interval on the

measured alignment fraction is 3.0% to 41.4%.

The typical 1σ error margin on the measurement of the position angle of the bicone is

∼20◦. If the bicone axes were randomly oriented, 22.2% of all outflows should be measured

to be within 20◦ of the photometric major axis. We derive the 22.2% random orientation

percentage from the total error margin, 40◦, divided by the total possibility of orientations

on the sky (180◦). As a result, the percentage of outflows that have a biconical outflow

axis that is aligned with the photometric major axis of the host galaxy is consistent with

the percentage expected for a randomly oriented bicone. We discuss the implications of this

result in Section 3.4.4.

3.3.2 Energy Diagnostics

After constraining the geometry of the NLR outflows in the analytic modeling process,

we derive energy diagnostics for the biconical outflows. By constraining the kinetic luminosity

of the momentum-driven outflows, we can determine the ratio of the kinetic luminosity to

the total radiated luminosity. This diagnostic enables us to make observational comparisons

to the theoretically predicted 0.5% threshold, which has been quoted as the ratio of LKE/Lbol

necessary to evacuate cold molecular gas from the inner regions of a galaxy and suppress

star formation in the ISM (Hopkins & Elvis 2010).

To determine the mass outflow rate of the wind and the kinetic luminosity, we use the

best fit parameters from our biconical models as well as density and temperature diagnostics

from emission line ratios in the integrated SDSS spectra. We use the SDSS DR7 value-added

catalogues (OSSY) to obtain information on integrated spectral lines (Oh et al. 2011).

The mass outflow rate is defined as:
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Ṁ = mpneVmaxf(A1 + A2)

where mp is the proton mass, ne is the electron density of the NLR, Vmax is the maximum

velocity of the outflow, f is the filling factor, and A1 and A2 are the lateral surface areas of

each cone in the bicone. A1 is the smaller opening angle cone and A2 is the larger opening

angle cone.

To calculate the electron density, ne, we calculate the intensity ratios of

[OII]λ3729/[OII]λ3726 and [SII]λ6716/[SII]λ6731, which are sensitive to density (Osterbrock

& Ferland 2006). We find mean values of ∼ 0.82 and ∼ 1.18, respectively, for these intensity

ratios for the 18 galaxy sample. Typical temperatures are in the range (1−2)×104 K in the

NLRs of AGNs (Osterbrock & Ferland 2006), and thus the corresponding electron density is

∼ (1− 5)× 102 cm−3. Thus, we verify that 102 < ne (cm−3) < 103, which is typical for the

NLR (Taylor et al. 2003). We use a density of 100 cm−3 in our calculations. This assumption

is consistent with previous work that finds an electron density of 100 cm−3 exterior to 1 kpc

from the AGN (Karouzos et al. 2016). With our spatial resolution, we always resolve gas at

> 1 kpc.

The filling factor represents the proportion of the bicone surface that contains ionized

NLR clouds. It scales inversely with the electron density, ne: ne ∝ f−1/2 (Oliva 1997) and

has values in the range of 0.01 < f < 0.1 for the NLR (Storchi-Bergmann et al. 2010). We

adopt a value of 0.01, which is a conservative lower limit based upon the literature. Some

authors choose to adopt f = 0.1, but we choose to be conservative in our calculation of

outflowing energy and adopt f = 0.01, representing a bicone in which 1/100 of the bicone

surface contains ionized NLR clouds.

The lateral surface area, A, which is the generalized form of A1 and A2, is:

A = πr
√
h2 + r2

where h is the height, which we define as the turnover radius for energy calculation purposes,
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and r is the deprojected radius, determined by the half opening angle of the cone:

r = rt sin(θhalf)

where rt is the turnover radius.

We determine the turnover radius, the opening angle, and the maximum velocity for

the 18 galaxies using the best fit analytic models (Section 3.2.3). As we discuss in Section

3.4.3, various additional walls of these three biconical outflow models could be obscured or

not illuminated so this calculation is a lower limit for energy outflow rate.

Once we have derived the mass outflow rate of the biconical outflows, we calculate the

kinetic luminosity:

LKE =
1

2
ṀV2

max

We compare the kinetic luminosity to the AGN bolometric luminosity, which is cal-

culated from the dereddened [OIII]λ5007 luminosity from the SDSS DR7 value-added cata-

logues in Nevin et al. (2016).

We report the lateral surface area, mass outflow rate, kinetic luminosity, maximum

outflow velocity, half opening angle, turnover radius, AGN bolometric luminosity, and ratio

of kinetic to AGN bolometric luminosity for the 18 galaxies in Table A.14.

We find that 16/18 (88.9%) of the galaxies have a LKE/Lbol ratio that is above the

0.5% threshold value to drive two-staged feedback. Of these galaxies, 100% have a bicone

that intersects the photometric major axis of the host galaxy. We discuss the implications

of these results in Section 3.4.6.
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3.4 Discussion

3.4.1 This sample of biconical outflows is biased to be very large and ener-

getic

Before we analyze the energetics of our outflows, we first must understand the observa-

tional biases. In this section, we discuss the selection criteria that bias our sample towards

larger and more energetic outflows. We also discuss a theoretical ‘minimum energy bicone’

that corresponds to a bicone with the smallest possible surface area that it is possible to

recover from our sample given the sample biases.

First, the galaxies in this sample were selected from the SDSS for their double-peaked

emission lines. The average velocity separation of the double peaked narrow lines of the

integrated spectra of the 18 galaxy sample is ∼300 km s−1. Second, these 18 galaxies

also have large spatial extents of emission (the average extent of emission is 6.8 kpc) by our

selection criteria that requires that the number of rows of statistically significant emission be

greater than twice the number of parameters. Third, the average pixelscale of the instruments

in this sample is 0.′′3 pix−1 which biases our sample towards larger (kpc-scale) outflows.

These three factors have several effects on the best fitting bicone models. First, the

large separation in velocity space produces biconical outflows with preferentially large open-

ing angles and higher intrinsic velocities. A higher intrinsic velocity along the walls of the

cone produces a larger observed velocity separation between the velocity centroids, regardless

of the orientation of the structure, while a larger opening angle cone’s geometry can produce

this same effect.

Second, the requirement of many statistically significant rows of emission produces

bicone structures with larger turnover radii, larger inclinations, and/or larger opening angles.

The average pixelscale of the instruments (0.′′3 pix−1) corresponds to a physical distance of

∼0.3 kpc at z = 0.05, which is the typical redshift. If we require that the observed bicone

structure cover 5 spatial rows from the center of the galaxy (10 total; n = 2k where k = 5
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for the symmetric bicone) at each PA, for example, the bicone structure will extend out to a

radius of 1.5 kpc. This distance is the full extent of the measured bicone in our data and the

turnover radius is interior to this point. However, for our sample the turnover radius is close

to the full extent because we observe very little deceleration in the bicones modeled here.

Therefore, we are biased towards finding larger bicone structures that tend to also have a

larger turnover radius. The spatial row selection also ensures that we observe double peaked

emission at both position angles. This selects for more inclined bicones with larger opening

angles that can open up along both position angles, producing the full spatial coverage of

both orthogonal position angles.

We are therefore selecting for AGN outflows that are more energetic (larger sizes,

opening angles, and velocities) and that have a greater chance of intersecting the photometric

major axis of their host galaxies with their larger opening angles.

We create a theoretical minimum energy bicone using the limitations of the sample to

characterize the selection biases towards higher energy bicones. This helps us place a lower

limit on the mass outflow rates of the galaxies in this sample. To produce the minimum

energy bicone, we minimize the turnover radius, opening angle, and maximum velocity. We

first use the smallest resolvable turnover radius of one pixel at a representative pixelscale

of 0.′′3pix−1 (the average pixelscale of the collection of instruments used here). We use the

typical redshift for this sample of 0.05 which corresponds to a conversion factor of ∼1 kpc/′′.

This yields a turnover radius of 0.3 kpc. This is slightly smaller than the smallest modeled

turnover radius in the sample, which is 0.48 kpc for J1630+1649.

We use the representative separation of double peaks of 300 km s−1 from our sample.

This is an observed velocity and does not directly correspond to intrinsic velocity. However,

for a randomly oriented sample of outflows where inclinations and half opening angles are

distributed between 0 and 90◦, the observed velocity could range between 0 and 600 km

s−1 for an intrinsic velocity of 300 km s−1. Therefore, 300 km s−1 is a fair average intrinsic

velocity. It is also slightly larger than the smallest measured intrinsic velocity from our
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sample, which is 281.5 km s−1 for J0959+2619.

The fact that we observe velocity separations at both observed orthogonal PAs places

limits on the possible range of values for the combination of opening angles and inclination.

For example, if the inclination is zero, the half opening angles are constrained to be at least

45◦ so that the bicone is observable at both orthogonal PAs. For the nested bicone, the

inclination must be high so that the bicone walls are observed across the plane of the sky.

When we consider inclination and opening angle at the same time, this requires that the

combination of inclination and θ1,half be greater than 90◦. For instance, if the nested bicone

axis is inclined at 45◦, the half opening angle of the inner cone must be at least 45◦ so we

observe it at all spatial positions. For the asymmetric bicone, the same rules apply.

For all three models it is possible that the bicone structure is inclined exactly 90◦

relative to the line of sight with a small opening angle bicone. However, this is very unlikely

given that our sample selects for high inclinations but few are greater than 80◦. We choose

to use the average inclination of 66◦, which requires that the half opening angle be > 24◦ for

the bicone to intersect both observed PAs at all spatial positions. We use an inclination of

66◦ and a half opening angle of 24◦.

Using the combination of these minimized parameters, we find a kinetic luminosity

of 5.1 × 1040 erg s−1 for our minimum energy bicone case. This is roughly an order of

magnitude below our lowest measured kinetic luminosity (2.7×1041 erg s−1 for J1630+1649).

The corresponding minimum mass outflow rate is 1.8 M� yr−1. We use a horizontal line in

Figure 3.7 to compare the mass outflow rate of the minimum energy bicone to the rest of

our sample.

3.4.2 The biconical outflows in this sample are large and energetic

For the 18 galaxies we model, we find that the average intrinsic maximum velocity is

370 ± 146 km s−1, the average inner half opening angle is 44.5 ± 11.8◦, the average outer

half opening angle (for those galaxies that were best fit as nested bicones or asymmetric
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bicones) is 69.5 ± 12.4◦, and the average turnover radius is 3.4 ± 1.8 kpc. Our sample of

moderate-luminosity AGNs (42 < log Lbol (erg s−1) < 46) have large surface geometries due

to their large half opening angles and turnover radii. This leads to large mass outflow rates

(1 < log Ṁ (M� yr−1) < 3), large kinetic luminosities (41 < log LKE (erg s−1) < 45), and

therefore large kinetic to total AGN bolometric luminosity ratios (0.001 < LKE/Lbol < 1.0).

In this section we compare these findings to previous work and examine assumptions made

in mass outflow rate estimates in the literature.

In Figure 3.7, we plot the mass outflow rates and AGN bolometric luminosities of the

galaxies in this sample against other estimated mass outflow rates from AGN-driven outflows

in the literature. We also compile the mass outflow rates from the literature in Table A.15.

Our galaxies span a wide range of AGN bolometric luminosities, overlapping with low-

luminosity local Seyfert galaxies (e.g., Müller-Sánchez et al. 2011; Schnorr-Müller et al. 2014)

as well as high-luminosity quasars (e.g., Liu et al. 2013a; Mcelroy et al. 2015). The average

mass outflow rate for the 18 galaxies modeled in this work is ∼102.7 M� yr−1. The mass

outflow rates we derive agree with the mass outflow rates of high-luminosity AGNs and have

some overlap with the mass outflow rates of moderate-luminosity AGNs. They are greater

than that of samples of low-luminosity AGN outflows.

Liu et al. (2013a) and Mcelroy et al. (2015) measure the mass outflow rates of samples

of high-luminosity AGN outflows and find averages of 103.2 and 102.5 M� yr−1, respectively.

Both of these studies use non-kinematic estimation techniques; they use a spherical shell

assumption and Hβ and Hα luminosities to estimate a total mass outflow rate. Although

they assume similar number densities for the NLR (∼100 cm−3), the non-kinematic technique

can underestimate the mass entrained in the outflow. However, the use of Hβ and Hα

could lead to an overestimate of the mass outflow rate, since Hα and Hβ can also trace gas

associated with the disk of the galaxy. Karouzos et al. (2016) find that 60% of the kinetic

energy calculated using Hα may be unrelated to the outflow. It is unclear if the combined

effect of hydrogen tracers and a luminosity-based technique result in an overestimate or an
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Figure 3.7: The measured mass outflow rates for AGN outflows in the
literature and this work plotted against AGN bolometric luminosity.
The filled circles utilize biconical kinematic models to constrain the
parameters to measure mass outflow rate. The open circles assume
either a spherical geometry or a biconical geometry for their outflow
and emission line fluxes to estimate the material swept up in the
shell. These geometries for the open circles are not kinematically
constrained. We include arrows to indicate underestimation of the
mass outflow rates according to the discussion in Section 3.4.2. We
plot a horizontal line representing the mass outflow rate (∼ 1.8 M�
yr−1) associated with the minimum energy bicone discussed in Sec-
tion 3.4.1. We plot a black line (α = 0.47) and a green line (α = 0.50)
for the best fit slopes associated with this sample and all data points
plotted, respectively. We overplot the confidence intervals on both
lines. References include: AGNIFS (Storchi-Bergmann et al. 2010;
Riffel & Storchi-Bergmann 2011a,b; Riffel et al. 2013, 2015; Schönell
et al. 2014); Liu et al. 2013b,a; Brusa et al. 2015; Karouzos et al.
2016; Harrison et al. 2014; Mcelroy et al. 2015; Schnorr-Müller et al.
2014; Schnorr-Müller et al. 2016; Müller-Sánchez et al. 2011, 2016.
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underestimate of the mass outflow rate.

Harrison et al. (2014), Brusa et al. (2015), Karouzos et al. (2016), and Müller-Sánchez

et al. (2016) measure the mass outflow rates for moderate-luminosity AGN outflows and find

averages of 101.4, 101.1, 10−1.4, and 102.4 M� yr−1, respectively. Again, the majority of these

samples (Harrison et al. 2014; Brusa et al. 2015; Karouzos et al. 2016) use non-kinematic

models. Müller-Sánchez et al. (2016) use the same kinematic technique as this work and

therefore agrees most closely with the mass outflow rates estimated here. Harrison et al.

(2014), Brusa et al. (2015), and Karouzos et al. (2016) use a spherical geometry and the

luminosity of the Hβ, [OIII], and [OIII] emission lines, respectively. Again, a luminosity-

based technique in combination with a hydrogen tracer as in Harrison et al. (2014) has

an unknown effect on the estimate mass outflow rate. Karouzos et al. (2016) and Brusa

et al. (2015) use a luminosity-based technique with [OIII] as a tracer. This significantly

underestimates the mass outflow rate of the outflow. Additionally, Karouzos et al. (2016)

use an electron density of 200-800 cm−3, which further drives down the estimate of the mass

outflow rate. We calculate a mass outflow rate using the [OIII] luminosities of the galaxies

in our sample as in Karouzos et al. (2016) and find a rate that is a large underestimate of

the mass outflow rate.

The AGNIFS group (Storchi-Bergmann et al. 2010; Riffel & Storchi-Bergmann 2011a,b;

Riffel et al. 2013, 2015; Schönell et al. 2014), Schnorr-Müller et al. (2016), and Müller-Sánchez

et al. (2011) find mass outflow rates for their samples of low-luminosity AGN outflows of

100.5, 10−0.3, and 101.4 M� yr−1, respectively. Schnorr-Müller et al. (2016) use a biconical

geometry, a higher electron density of 1350 cm−3, and Hα tracers, which have an unknown

combined effect on the estimate of the mass outflow rate. Müller-Sánchez et al. (2011) use

lines with higher ionization potential in the CLR to trace a fast outflow in a higher ionization

phase. They also find the same ionization cones for the NLR outflows. The AGNIFS group

use an electron density of 500 cm−3 and a similar biconical geometry to this work with HII

gas to trace the outflow. This has an unknown effect on the mass outflow rate.
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Interestingly, some of the AGN outflows in other work with high mass outflow rates

also have double-peaked narrow emission line profiles. For instance, 19% of the galaxies

in Harrison et al. (2014) and 41% of the galaxies in Mcelroy et al. (2015) have double-

peaked profiles. Additionally, Liu et al. (2013a) fit multiple Gaussian components to their

[OIII]λ5007 profiles. Müller-Sánchez et al. (2016) also find significant velocity offsets in the

emission lines of the three AGN outflows in their sample, so while these profiles cannot be

characterized as double-peaked, they are also selected to be highly energetic outflows by

selecting for a significant velocity offset in the spectral lines. While these AGN outflows are

selected in a variety of ways, double-peaked or offset line profiles indicate a wide separation

in velocity space and select for highly energetic outflows with large mass outflow rates as

discussed in Section 3.4.1.

Despite the potpourri of different estimation techniques and therefore the large scatter

in mass outflow estimates, overall, the mass outflow rate of AGN outflows increases with

AGN bolometric luminosity. Therefore, the ratio of LKE/Lbol remains constant over a large

range of AGN luminosities. We fit a line to all the data and find a log-log slope of α =

0.50±0.12. When we fit a line to only the 18 galaxies from this work, we find a consistent

slope of α = 0.47±0.23. We confirm that this relationship is statistically significant using

the t-statistic. We find a p-value for this statistic of 0.05, which indicates that we can reject

the null hypothesis that the slope is equal to zero at 95% confidence.

This positive slope indicates a trend of increased mass outflow rate with increased AGN

bolometric luminosities. An additional danger of using a non-kinematic AGN outflow model

to measure mass outflow rate is that this creates an artificial positive correlation for this

relationship if L[OIII] is included in both the calculation of mass outflow rate and Lbol. We

repeat the slope measurement by excluding the two studies from the sample that use this

technique and find a consistent slope of α = 0.50±0.10. Therefore, since only two studies

included in Figure 3.7 use [OIII] as a probe of mass outflow rate, the measured positive

correlation is real and unrelated to artificial correlations from this technique.
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Overall, while we find that the mass outflow rates of the galaxies in our sample are

biased towards larger values (Section 3.4.1), they are broadly consistent with other AGN

outflows in the literature and follow the same trend of increased mass outflow rates with

increased AGN bolometric luminosities. An implication of this trend is that lower luminosity

AGNs still have the potential to exceed the critical value of the energy ratio required to expel

gas. This is reflected in this work; we find that the majority of biconical outflows in our

work, regardless of AGN bolometric luminosity, exceed the 0.5% threshold.

3.4.3 Selection, illumination, and obscuration effects explain the best fit

models

We find that 2/18 (11.1%) galaxies are best modeled as a symmetric bicone, 8/18

(44.4%) galaxies are best modeled as an asymmetric bicone, and 8/18 (44.4%) galaxies are

best modeled as a nested bicone. The relative percentages of best fit models as well as

the nature of the bicone walls in each model can be explained by invoking a combination

of obscuration, illumination, lack of gas, and selection effects. First, we discuss that very

few biconical outflows are best fit by the symmetric bicone model. Second, we consider the

nature of the observed walls in the asymmetric and nested models and the implications for

the structure of the general bicone model.

Only two of the 18 total galaxies are best fit by a symmetric bicone model. The lack of

symmetric bicone models in this work could be explained by a more general interpretation

of biconical outflows as four-walled structures with two opening angles. Some studies model

a biconical outflow using a four-wall filled structure where the outer and inner walls can

be described by distinct opening angles (e.g., Das et al. 2006; Müller-Sánchez et al. 2011;

Crenshaw et al. 2015). Our bicones may be better described with a four-walled evacuated

structure with different amounts of gas and/or illumination on various walls. We first describe

the evidence for an evacuated general model of a bicone in this work. Then, we discuss other

work that provides evidence of illumination and/or obscuration effects that could explain
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the lack of symmetric bicone models in this work.

Das et al. (2006), Müller-Sánchez et al. (2011), and Crenshaw et al. (2015) model the

bicone using an averaging process to approximate the velocity of material between the two

different opening angle walls. In other words, they use a filled bicone structure. This is

an acceptable approximation because the outer and inner opening angles seldom differ by

more than ∼ 10-15◦, so the average velocity is always close to the velocity of material along

the walls of the bicone. However, in our case, θ1,half and θ2,half often differ by > 20◦, so

this approximation is no longer valid. Instead, although the four-walled structure may exist,

the selection bias that leads to large opening angle outflows and the double-peaked profiles

that trace two walls necessitate a different overall model of a bicone. Therefore, we created

individual models to describe bicones that have illuminated material along distinct opening

angle walls. It is no longer adequate to describe a ‘filled bicone’ structure by averaging the

velocity of the two opening angles because the opening angles now differ considerably.

The location of the filled material within the walls has never been investigated, although

it has been hypothesized that it is very clumpy and sparsely distributed (e.g., Nenkova et al.

2008; Mor et al. 2009). Our models indicate that although the material still has a large

velocity dispersion, the material is not evenly distributed between the two walls (Nevin

et al. 2016). Instead, it seems to be clumped in distinct velocities around various walls of

the more general four-walled structure. Additionally, since this sample includes large opening

angle cones, the material is positioned at distinct lines of sight from the ionizing source (the

AGN) and therefore can experience different amounts of illumination. These effects can lead

to alternate bicone structures such as an asymmetric or nested bicone.

In many studies, a symmetric geometry has been preferred for kinematic modeling

(e.g., Das et al. 2006; Müller-Sánchez et al. 2011; Crenshaw et al. 2015). However, other

work indicates that the canonical symmetric biconical outflow structure may not be the best

description for all AGN-driven outflows. For instance, Müller-Sánchez et al. (2013) find that

an asymmetric bicone model is the best fit for the outflow in NGC 3081. Storchi-Bergmann
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et al. (2010) model NGC 4151 using a two-walled cone structure with weaker emission from

the steeply inclined wall of the cone and stronger emission from the walls that are closer

to the photometric major axis. This produces an asymmetric bicone structure if the wider

opening angle posterior wall is brighter. Woo et al. (2016) use a larger sample of 39,000 Type

2 AGN outflows and find that the amount of dust extinction is a main driver of the observed

velocity profile. They use models of outflows with obscuration effects in the photometric

major axis of the galaxy and produce a large fraction of nested and asymmetric types of

biconical outflows with asymmetric integrated line profiles.

The illuminated walls in the asymmetric and nested biconical outflows can be explained

by selection effects, different amounts of illumination, lack of gas, and obscuration effects.

First, by selecting for double-peaked narrow emission line profiles in the SDSS spectra, we

are selecting for two walls of illumination at two distinct velocities in our bicone structure.

Although the general structure of a symmetric biconical outflow (Figure 3.2) has four illu-

minated surfaces, we are only able to select for cones in which two of these are illuminated

and/or not obscured. This selection effect does not eliminate the possibility of a structure

inherently having more than two walls. For instance, the third and fourth walls could be

much fainter due to illumination or obscuration effects. These lower flux components are

much harder to detect and could be swamped out by the emission of the brighter walls. We

are therefore limited to a model of a two-walled structure due to the flux limit of the longslit

data.

Second, we can analyze the best fit models to make conclusions about the obscuration

of walls in our biconical outflows. Since we observe only nested cones with blueshifted walls

(we observe no nested cones with two redshifted walls), this indicates that obscuration plays

a key role in the observed walls of the bicone. Obscuring dust in the disk of the galaxy could

be preferentially allowing us to observe the anterior walls while obscuring the two posterior

walls. While it is difficult to distinguish between this obscuration scenario and a complete

absence of the posterior two-walled structure associated with the general structure of a
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bicone (four total walls), we find evidence that the obscuration scenario is most likely. If the

absence of a side of the bicone is the better explanation, then we would expect to see equal

numbers of redshifted and blueshifted nested bicones. Since we see only blueshifted bicones,

obscuration is a likelier explanation than preferential illumination or lack of structure in one

direction.

Third, we observe asymmetric bicones with a preferential orientation. The posterior

cone always has a larger opening angle; we observe this for all eight asymmetric bicones.

We can rule out obscuration effects as solely responsible for this observation. If obscuration

effects were involved, we would expect to see the anterior wider opening angle wall and not

the posterior wider opening angle wall.

Illumination effects explain the relative brightnesses of the velocity components of our

biconical outflows but they are not the complete explanation. We expect the material in

walls with lower inclinations relative to the galaxy to be brighter. Storchi-Bergmann et al.

(2010) witness this illumination effect in the outflow in NGC 4151 and hypothesize that the

bicone walls with high inclination relative to the line of sight are fainter. By examining the

relative fluxes of the two emission components in our asymmetric bicones, we find that the

majority (7/8) have a brighter integrated redshifted component. Additionally, 7/8 of the

nested bicones have a brighter velocity component nearer to zero velocity (the wall with a

lower inclination relative to the line of sight). Therefore, since the blueshifted wider opening

angle wall has a low inclination relative to the line of sight, it is expected to be very bright.

However, since we do not observe this to be the case, different illumination of various walls

relative to the line of sight is not the full explanation for the lack of a blueshifted wider

opening angle wall.

We can also rule out a lack of material in this blueshifted wall as the sole explanation

since it is unlikely that the material is preferentially more clumpy on the side of the galaxy

facing us. Therefore, the most probable explanation is a combination of an obscuration

effect, an illumination effect, a lack of material effect, and a selection effect. First, the lower
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inclination walls are the brightest. Second, the faint high inclination redshifted wall is most

likely to be totally obscured by dust in the plane of the galaxy. Third, we select for galaxies

with only two velocity peaks. This explains why we observe equal numbers of asymmetric

and nested bicones. Fourth and finally, the anterior and posterior low inclination walls must

be absent to observe both nested and asymmetric bicones.

Overall, by selecting for double-peaked narrow emission line profiles, we eliminated the

possibility of observing more than two distinct velocity peaks corresponding to more than

two walls. The presence of various walls of a general four-walled structure can be explained

by obscuration effects, illumination effects, and/or lack of material in various walls.

3.4.4 The outflows have random orientations

We determine that 4/18 (22.2%) of the galaxies have a bicone axis that is aligned with

the photometric major axis of the galaxy in Table A.13. The bicones are randomly oriented

with respect to the photometric major axis of the galaxy. We also determine that 100% of

galaxies have a bicone structure that intersects the photometric major axis of the galaxy;

this measurement takes into account the large half opening angles of the bicones, which is

on average 68◦. A bicone with a half opening angle of 68◦ will cover 272◦, which is 76% of

the plane of the sky. Therefore, the 100% intersection percentage is unsurprising and we

discuss its effect on feedback in Section 3.4.6. Here we focus instead on the implications of

the orientations of the bicones in this sample both in terms of previous observations and the

theory of a collimating torus.

Observations of biconical NLRs necessitate an optically thick, collimating torus that

exists at parsec scales (e.g., Antonucci & Miller 1985; Mulchaey et al. 1996), but the orien-

tation and structure of this theoretical torus remain uncertain. If Type 1 and Type 2 AGNs

are to be explained by the orientation of the torus alone, the relative fraction of observed

Type 1 and Type 2 AGNs require that the torus be geometrically thick (H/R ∼ 1, H is the

height and R is the radius of the torus), covering an angle of 65◦ as seen from the central
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source (Risaliti et al. 1999). However, theory has shown that it is difficult to maintain a

geometrically thick cold rotating structure even if the torus is clumpier (e.g., Krolik & Begel-

man 1988; Krolik 2007). Alternately, Ramos Almeida et al. (2011) fit a model of a clumpy

torus to the spectral energy distributions (SEDs) of seven Seyfert galaxies and find that the

torus has no preferential orientation with respect to Seyfert 1s and Seyfert 2s. Additionally,

they find that a clumpy, or somewhat transparent torus is the only explanation for the ob-

servations of a BLR in NGC 7469, which has an edge-on torus. The parsec extent of the

torus makes it difficult to resolve, but we can probe both the degree of clumpiness and the

orientation of the torus using the alignment and opening angles of our large-scale outflows.

Observational and theoretical work has found a range of NLR outflow alignments; they

are not preferentially aligned with the photometric major axis, aligned with the photometric

major axis, and aligned perpendicular to the photometric major axis. For instance, some

theoretical work has shown that AGN-driven outflows tend to follow the ‘path of least

resistance’, emerging perpendicular to the photometric major axis of the host galaxy (e.g.,

Gabor & Bournaud 2014). However, other work finds no preferential orientation. Müller-

Sánchez et al. (2011) and Fischer et al. (2013) find no alignment between the inclinations

of a sample of Seyfert galaxies with biconical outflows and the photometric major axes of

their host galaxies. Other work finds equatorial outflows that are aligned parallel to the

photometric major axis of the host galaxy (e.g., Elitzur & Shlosman 2006; Riffel et al. 2014;

Ricci et al. 2015).

Our findings agree with Müller-Sánchez et al. (2011) and Fischer et al. (2013), which is

one of the only other large statistical studies of AGN outflows. A randomly oriented bicone

structure has important implications for the theory of a collimating torus. If the torus is

fully collimating and optically thick, this implies that the torus is randomly oriented with

respect to the photometric major axis of the galaxy. We cannot rule out this possibility.

However, since our biconical outflows have such large opening angles, this would imply a

very wide opening angle for the thick molecular torus. The widest half opening angle is 82◦
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which implies H/R ∼ 1/7. This is an unphysically thin torus or a torus with an unphysically

large radius, so this implies that it is more likely that the torus is clumpy as opposed to thin.

3.4.5 Type 1 vs Type 2 AGNs

In addition to the orientation of the bicones with relation to the plane of the host

galaxies, we also discuss the orientation of the bicone structures with relation to the line of

sight (LOS) and the implications for the unification of Type 1 and Type 2 AGNs. Since the

18 bicones modeled in this sample have large inclinations and opening angles (Section 3.4.1),

100% satisfy the condition |i|+θ1,half > 90◦. We choose θ1,half as opposed to the larger θ2,half

because the walls of the smaller inner cone more tightly constrain the LOS to the BLR.

If the classification of Type 1 and Type 2 AGNs depends only on the orientation of the

collimating torus, and therefore the bicone inclination and opening angle, this would imply

that these are all Type 1 objects with a direct view to the BLR. However, these objects

are all classified as Type 2 AGNs in SDSS and have no observed BLRs. We discuss three

possible explanations for this apparent discrepancy.

If we account for the large errors on the half opening angles and inclinations measured

for these bicones (the uncertainties of the parameters are discussed in Section 3.2.3), within

a 3σ error margin, 50% of the bicones are consistent with |i|+θ1,half < 90◦, and therefore the

bicone and/or collimating torus obscure the BLR from view. The entire sample is consistent

with |i|+θ1,half < 106◦, which means that the bicone walls are consistent with being within

∼ 10◦ of the LOS (90◦) for the entire sample. Since we assume optically thick walls for the

bicone that have a finite thickness, a LOS along the edge of a wall could obscure the BLR.

It is realistic to assume that both of these parameters (i and θ1,half) are overestimated in the

modeling for 76% and 60% of galaxies, respectively, due to asymmetric error bars. The lower

limit is larger for the inclination for 76% of the 18 galaxies and 60% of the inner opening

angle. However, it is unrealistic to assume that the large error bars are solely responsible

for the lack of visible BLRs for all of the galaxies, so we turn towards physical explanations.
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The classification of Type 1 or Type 2 objects may depend more on the intrinsic

properties of the torus rather than on orientation effects related just to inclination and

opening angle. Ramos Almeida et al. (2009) do not find a clear trend in the inclination of

the torus with Seyfert 1s and Seyfert 2s with their SED models and find that the intrinsic

properties of the torus for Type 1 and Type 2 AGNs may be different. Ramos Almeida et al.

(2011) find that the Type 2 torii in their sample have larger geometric covering factors, and

therefore a smaller probability of having a direct view of the BLR. They also find that Type

2 torii are intrinsically clumpier with a higher density of clouds closer to the nucleus. The

clumpy torus model is supported by other work (e.g., Krolik & Begelman 1988; Krolik 2007)

as well as our finding that a clumpy torus is required for the large opening angles of the

bicones in this work. With a clumpy torus model, there is a finite possibility of seeing the

central source at any inclination through the clumpy material (Netzer 2015). As a result,

some Type 1 AGNs might have high inclination angles (edge-on line of sight to the central

source), while obscuration by a large cloud could lead to a Type 2 AGN classification (e.g.,

Ramos Almeida et al. 2011).

Some work finds that different areas of the torus require different physical models for

their structure. Davies et al. (2015) find that the inner boundary of the geometrically thick

torus may be decoupled from the outer regions. The region that provides collimation of

the outflow may be distinct from the region that allows a direct LOS to the BLR. This is

similar to the findings of Ramos Almeida et al. (2011) that there is a higher density of clouds

towards the center of the torus structure.

Finally, obscuration of the BLR can occur at a variety of spatial scales. The obscuration

of the BLR need not come only from pc-scale structures such as the torus. Bianchi et al.

(2012) and references therein discuss that obscuration on ∼100 pc scales in a host galaxy

can contribute to AGN obscuration. For instance, optically selected AGN samples are biased

against edge-on galaxies due to dust in the plane of the galaxy (e.g., Maiolino & Rieke 1995;

Lagos et al. 2011). Additionally, interferometric maps of molecular gas show evidence of a
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large amount of dense gas in the 100 pc regions surrounding the AGN (e.g., Schinnerer et al.

2000; Boone et al. 2011; Krips et al. 2011). Other work has confirmed larger-scale obscuring

structures that are aligned with the host galaxy plane (e.g., Gelbord et al. 2004).

While it is beyond the scope of this work to fully explore AGN unification by delving

into physical modeling of the torus, BLR variability, and/or intrinsic Type 2 AGNs, it is

apparent that the large half opening angles and inclinations of the biconical outflows in the

sample are not consistent with a thick fully collimating torus alone (e.g., Antonucci & Miller

1985). Instead, we find that a combination of large uncertainties on our modeled parameters

as well as physical structures (a clumpier torus with obscuring material on a variety of spatial

scales) can explain why our galaxies are classified as Type 2 AGNs.

3.4.6 The outflows are energetic enough to drive feedback

We find that 16/18 of the biconical outflows in this sample are above the 0.5% energy

threshold necessary to drive a two-staged feedback process in their host galaxy (Section

3.3.2). To investigate the implications of this further, we first discuss their outflow geometry

and how they may interact with the ISM, and then we discuss indications of positive or

negative feedback in the host galaxies.

As discussed in Section 3.4.4, 100% of the galaxies have a biconical structure that

intersects the photometric major axis of the host galaxy. This has important implications

for outflow interactions with the ISM and feedback in the host galaxy. Since these outflows

have the geometrical alignment to interact with the gas in the galactic disk, the Hopkins

& Elvis (2010) threshold has more physical implications. To determine if these outflows

actually affect star formation in the host galaxies, we examine the star formation rates and

colors of the host galaxies.

To place these galaxies in the context of AGNs in the local universe, we compare each

outflow host galaxy to a control sample of SDSS galaxies that are matched in stellar mass,

redshift, and AGN bolometric luminosity using the MPA-JHU (Kauffmann et al. 2003) and
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Figure 3.8: sSFR compared to kinetic to AGN bolometric luminosity
ratio for 13 outflow host galaxies that have >10 comparison galaxies
matched in stellar mass, redshift, and AGN bolometric luminosity
(Table A.16). Filled stars denote galaxies that are quenched ac-
cording to g − r color, while filled circles denote galaxies that are
quenched according to sSFR. Open triangles represent galaxies that
are not quenched. The colorbar is the g − r color index. The verti-
cal dashed line is the 0.5% energy threshold from Hopkins & Elvis
(2010) that is required to drive a two-stage feedback process.
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OSSY (Oh et al. 2011) value-added catalogs. To build statistically significant (>10) control

samples for most of our AGNs, we use thresholds of 20%, 20% and 50%, respectively, for stel-

lar mass, redshift, and AGN bolometric luminosity matching. We remove four outflow host

galaxies (J0009-0036, J0803+3926, J1352+0525, and J1526+4140) from this analysis due to

matching control samples that were too small (<10 matches) and one galaxy (J1720+3106),

for which the specific star formation rate (sSFR) could not be measured, due to artifacts in

the SDSS spectrum. When we adjust the comparison thresholds by 10% in either direction

to test for consistency with changing sample sizes of the comparison sample, we find the same

results. Only when we increase all thresholds by more than 10% do we find that a single

galaxy changes its classification from not quenched to quenched. We list the 13 galaxies that

we use for the matched sample comparison of sSFR and g-r color index in Table A.16.

We define a galaxy as quenched if its g − r color is more than one standard deviation

above the mean g − r color of the comparison sample, and/or if its sSFR is more than

one standard deviation below the mean sSFR of the comparison sample. We find that 3/13

(23.1%) galaxies are quenched according to either g−r color or sSFR. One of these galaxies is

also quenched according to both of these criteria. Of the 13 galaxies, 12 have an energy ratio

that exceeds 0.5%, so 3/12 of the galaxies with an energy ratio that exceeds the threshold

value are quenched in this sample. We plot the energy ratio and sSFR of these 13 galaxies

in Figure 3.8 and find that there is no correlation between energy ratio and quenching. Nine

galaxies have a high energy ratio but have colors and sSFRs that are consistent (within 1σ)

with those of the comparison samples. Importantly, none of the galaxies in this sample have

enhanced sSFR or bluer color indices relative to their comparison samples. Therefore, our

analysis favors the negative feedback scenario over the positive feedback scenario for these

galaxies.

For comparison, Wylezalek et al. (2016) find a negative correlation between outflow

strength and sSFR for a sample of 132 AGN. This is consistent with AGN feedback operating

on the host galaxies in the sample, and is most apparent for galaxies that are gas rich with
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high SFRs. None of the galaxies in this work have a SFR > 100 M� yr−1, which is the cutoff

for the galaxies with the most detectable negative correlation in Wylezalek et al. (2016).

Since the galaxies in this work have less star formation and therefore less gas to couple with

the AGN outflow, the effects of feedback may be less pronounced for the galaxies in this

sample.

Overall, we find preliminary evidence for negative feedback in the galaxies in this

sample. However, to fully confirm the negative feedback in these galaxies, we require detailed

star formation histories or maps of the gas, e.g., with ALMA.

3.5 Conclusion

We model 18 SDSS galaxies with double-peaked narrow emission lines as AGN-driven

biconical outflows using three models: a symmetric bicone, an asymmetric bicone, and a

nested bicone. We find that 8/18 are best fit as asymmetric bicones, 8/18 are best fit as

nested bicones, and 2/18 are best fit as symmetric bicones. These results inform us that

obscuration, illumination, and our sample selection of double-peaked NLR profiles dictate

the type of bicone structure observed. The results of the analytic modeling also yield the

geometry and energetics associated with the ionized outflows. Based upon these results, we

find that:

(1) Our bicones have large opening angles (average θ1,half = 44.5◦ and average θ2,half =

69.5◦), large turnover radii (average 3.4 kpc), and fast intrinsic velocities (average

370 km s−1). Since these galaxies have double-peaked narrow emission lines, they

are biased to have larger opening angles than similar moderate-luminosity AGN

outflows, and as a result they also have larger kinetic energies.

(2) Using the geometry of the bicone structures, we find that the bicone axes have

random orientations with respect to the photometric major axis of the galaxy. This

implies that the torus responsible for producing the bicone structure is randomly
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oriented and clumpy, where clumpiness enables radiation to escape along the plane

of the torus.

(3) We find that 16/18 (88.9%) of galaxies exceed the kinetic luminosity to AGN bolo-

metric luminosity threshold value from Hopkins & Elvis (2010) of 0.5%, which means

that they have the potential to drive a two-staged feedback process.

(4) Of the outflows that exceed the 0.5% energy threshold, 100% intersect the photo-

metric major axis of the galaxy on kpc-scales coincident with the location of cir-

cumnuclear star formation. They have the potential to directly deliver energy to the

ISM of the galaxy.

While we can make tentative conclusions that these galaxies are quenched and thus

potentially experiencing negative feedback as a result of the AGN-driven outflows, we cannot

make any definitive conclusions without observations of the molecular gas. In the future, we

could pursue ALMA as a means to observe the direct effect of feedback in these galaxies.

The sample of AGN outflows in this work demonstrates that moderate luminosity

AGNs have the potential to drive feedback in their host galaxies. Since moderate luminos-

ity AGNs are common in the local universe (10% of the AGN population, whereas high-

luminosity AGNs are only 1% of the population), this indicates that they may play an

important role in driving galaxy-SMBH co-evolution as well.



Chapter 4

Accurate Identification of Galaxy Mergers with Imaging

Merging galaxies play a key role in galaxy evolution, and progress in our understanding

of galaxy evolution is slowed by the difficulty of making accurate galaxy merger identifica-

tions. We use GADGET-3 hydrodynamical simulations of merging galaxies with the dust

radiative transfer code SUNRISE to produce a suite of merging galaxies that span a range of

initial conditions. This includes simulated mergers that are gas poor and gas rich and that

have a range of mass ratios (minor and major). We adapt the simulated images to the speci-

fications of the SDSS imaging survey and develop a merging galaxy classification scheme that

is based on this imaging. We leverage the strengths of seven individual imaging predictors

(Gini, M20, concentration, asymmetry, clumpiness, Sérsic index, and shape asymmetry) by

combining them into one classifier that utilizes Linear Discriminant Analysis. It outperforms

individual imaging predictors in accuracy, precision, and merger observability timescale (> 2

Gyr for all merger simulations). We find that the classification depends strongly on mass

ratio and depends weakly on the gas fraction of the simulated mergers; asymmetry is more

important for the major mergers, while concentration is more important for the minor merg-

ers. This is a result of the relatively disturbed morphology of major mergers and the steadier

growth of stellar bulges during minor mergers. Since mass ratio has the largest effect on the

classification, we create separate classification approaches for minor and major mergers that

can be applied to SDSS imaging or adapted for other imaging surveys.

This chapter reproduces Nevin et al. (2019). Reproduced with permission of the AAS.
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4.1 Introduction

In the current Λ cold dark matter (ΛCDM) framework for structure formation in the

universe, galaxies form as gas cools at the center of dark matter halos (e.g., White & Rees

1978; White & Frenk 1991; Cole et al. 2008). These galaxies then grow through gas accretion

and mergers from small, irregular galaxies with high rates of star formation to large, quiescent

galaxies with lower rates of star formation in the local universe (e.g., Glazebrook et al. 1995;

Lilly et al. 1995; Giavalisco et al. 1996).

Simultaneously, supermassive black holes (SMBHs), which are found at the centers of

all massive galaxies, have accumulated mass over time. Both SMBHs and galaxies grow

through the accretion of gas; SMBHs that are actively accreting gas are known as active

galactic nuclei (AGNs) and can be among the most luminous objects in the universe. Obser-

vational correlations suggest a co-evolution between SMBHs and their host galaxies (Magor-

rian et al. 1998; Ferrarese & Merritt 2000; Gebhardt et al. 2000), but it remains unclear

which processes are most important for triggering AGNs and star formation.

Observational work has identified three main processes that drive evolution, but dis-

agrees on the relative import of each process. Tidal torques from major mergers (where

the mass ratio of the galaxies is less than 1:4) can drive gas accretion; some work indicates

that these tidal torques from major mergers are primarily responsible for fueling both star

formation (Mihos & Hernquist 1994, 1996) and rapid SMBH growth (Di Matteo et al. 2005;

Hopkins et al. 2005; Ellison et al. 2011; Koss et al. 2012; Treister et al. 2012; Satyapal et al.

2014). Other work suggests that minor mergers or continuous ‘cold flow’ gas accretion are the

most important mechanism for shaping the morphologies of galaxies, driving star formation,

and contributing to the mass growth of SMBHs (e.g., Noeske et al. 2007; Daddi et al. 2007;

Cisternas et al. 2011; Kocevski et al. 2012; Kaviraj 2013; Villforth et al. 2014). Yet other

studies find that secular instabilities driven by disks and spiral arms in the local universe,

as well as highly irregular morphologies and high gas fractions in the high redshift universe,
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can dominate galaxy evolution. These secular instabilities can grow pseudo-bulges locally

and contribute to significant gas inflows and disk and bulge growth in high redshift galaxies

(e.g., Bournaud 2016 and references therein). Many details of these processes that could

drive evolution remain unclear, such as when and how these processes operate on AGNs and

galaxies.

One main reason these details are unknown is that it is difficult to build a clean

observational sample of galaxy mergers (major and minor). Imaging studies that rely upon

one or a couple of imaging predictors can fail to accurately identify mergers, which leads

to inconclusive results (e.g., Conselice 2014 and references therein). Recent work has relied

increasingly upon non-parametric tools to identify merging galaxies from imaging surveys,

such as the Gini-M20 method or the CAS (Concentration-Asymmetry-Clumpiness) method

(Lotz et al. 2004; Conselice et al. 2003). These methods are each individually limited by

different merger initial conditions, such as mass ratio and gas fraction, and by merger stage.

For instance, while identifying merging galaxies using asymmetry tends to be more sensitive

to early-stage mergers, Gini−M20 tends to identify late-stage mergers. Additionally, previous

simulations of galaxy mergers have demonstrated that the merger observability timescale

varies strongly for different non-parametric tools (e.g., Lotz et al. 2008; Lotz et al. 2010a,b).

We combine the sensitivities of different imaging predictors to create an imaging classi-

fication method that is better able to identify merging galaxies over a larger range of merger

initial conditions and merger stages. In Nevin et al. (2019, in prep), we will incorporate

kinematic predictors as well.

It is challenging to identify galaxy mergers directly from observations because each

merger is observed at only a single viewing angle and moment in time, whereas the full

duration of a merging event is several Gyr. Since the observational signatures of a merger

depend so heavily on the merger initial conditions and stage of the merger, we create our

classification scheme from hydrodynamics simulations that cover a range of merger initial

conditions. In this way, we determine the fundamental capabilities of different imaging
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predictors. We utilize the GADGET-3 smooth-particle hydrodynamical code coupled with

the SUNRISE dust radiative transfer code to construct mock observations of the simulated

galaxies. From these mock observations, we create the imaging classification and determine

its accuracy and precision for identifying galaxy mergers of different gas fractions, mass

ratios, and merger stages. We tailor our classification for SDSS imaging, although the code

will be publicly available and can be easily modified for different imaging surveys.

The remainder of this paper is organized as follows. We describe the hydrodynamics

and radiative transfer simulations, techniques for matching the simulated galaxies to SDSS’s

specifications, and merger classification scheme in Section 4.2. In Section 4.3 we describe

the performance of the classification scheme and the sensitivities of the individual imaging

predictors. We compare the technique to previous imaging methods for merger identification

and discuss the implications for merging galaxy identification in imaging surveys in Section

4.4. We present our conclusions in Section 4.5. A cosmology with Ωm = 0.3, ΩΛ = 0.7, and

h = 0.7 is assumed throughout.

4.2 Methods

We create the imaging classification scheme from simulated galaxy mergers, which we

introduce in Section 4.2.1 and 4.2.2. In order to develop the classification for SDSS imaging

data, we ‘SDSS-ize’ the simulations to create mockup images matching SDSS specifications

in Section 4.2.3. Next, we determine the separation of the stellar bulges to assign galaxy

merger stage in Section 4.2.4. Finally, we develop the imaging classification scheme using

LDA (Linear Discriminant Analysis) in Section 4.2.5.

4.2.1 N-body/Hydrodynamics Merger Simulations

To develop our imaging classification scheme, we begin with a suite of simulated merg-

ing and isolated galaxies. Specifically, we use two of the high-resolution simulations from

Blecha et al. (2018), to which we have added three new simulations to cover a larger param-
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eter space of initial conditions. We also have a set of isolated galaxies that is matched by

stellar mass and gas fraction to each merger simulation.

These simulations were carried out with GADGET-3 (Springel & Hernquist, 2003; Springel,

2005), a smoothed-particle hydrodynamical (SPH) and N-body code that conserves energy

and entropy and includes sub-resolution models for physical processes such as radiative

heating and cooling, star formation and supernova feedback, and a multi-phase interstellar

medium (ISM). All simulations have a baryonic mass resolution of 2.8×104 M� and a gravi-

tational softening length of 23 pc. SMBHs are modeled as gravitational ”sink” particles that

accrete via an Eddington-limited Bondi-Hoyle (Bondi & Hoyle, 1944) prescription. AGN

feedback is also incorporated by coupling 5% of the accretion luminosity (Lbol = εradṀc2)

to the gas as thermal energy. We assume a radiative efficiency εrad = 0.1 for accretion rates

Ṁ > 0.01ṀEdd (where ṀEdd is the Eddington limit); below this we assume radiatively in-

efficient accretion following Narayan & McClintock (2008). GADGET has been used for many

studies concerning merging galaxies (e.g., Di Matteo et al. 2005; Snyder et al. 2013; Blecha

et al. 2011; Blecha et al. 2013).

The merger progenitor galaxies include a dark matter halo, a disk of gas and stars, a

stellar bulge in some cases, and a central SMBH. The initial conditions for each simulated

galaxy merger are given in Table A.18, and the initial conditions for the matched isolated

galaxy simulations are given in Table A.19. In this work, we focus primarily on the ef-

fects of varying the merger mass ratio and initial gas fraction, since these two parameters

have been shown to have the largest effect on the morphology and star formation rates of

merging galaxies in previous work (Cox et al. 2008; Lotz et al. 2008; Lotz et al. 2010a,b;

Blecha et al. 2013). We include three major merger simulations (q0.5 fg0.3, q0.333 fg0.3,

and q0.333 fg0.1) with mass ratios 1:2, 1:3, and 1:3, respectively. The initial progenitor gas

fractions in these simulations (defined as Mgas,disk/(Mgas,disk + M∗,disk)), which are identical

for both merging galaxies in a given simulation, are 0.3, 0.3, and 0.1. These major merger

simulations have a bulge-to-total mass (B/T) ratio of 0. We design the two 1:3 major merger
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simulations to have different gas fractions but identical mass ratios to investigate the effects

of varying gas fractions on the morphology of mergers. We also create two minor merger

simulations (q0.2 fg0.3 BT0.2 and q0.1 fg0.3 BT0.2), both of which have a B/T ratio of 0.2.

These two minor mergers have initial gas fractions of 0.3 and mass ratios of 1:5 and 1:10,

respectively. We design these two minor mergers to have a gas fraction of 0.3 so that we can

directly compare mass ratios of 1:2, 1:3, 1:5, and 1:10 across simulations with identical gas

fractions. We further justify our choice of initial conditions in Appendix B.3.

4.2.2 Radiative Transfer Simulations

In order to directly compare the simulated galaxies with observations, we use the 3D,

polychromatic, Monte-Carlo dust radiative transfer code SUNRISE (Jonsson 2006; Jonsson

et al. 2010) to produce resolved UV to IR spectra and broadband images.

It has been used extensively in combination with GADGET galaxy merger simulations

(e.g., Lotz et al. 2008; Lotz et al. 2010b,a; Wuyts et al. 2010; Narayanan et al. 2010).

Age- and metallicity-dependent spectral energy distributions for each star particle are

calculated using the STARBURST99 stellar population synthesis models (Leitherer et al.

1999). Emission from HII regions (including dusty photodissociation regions) around young

stars is calculated by applying MAPPINGSIII models (Groves et al. 2008) to newly formed

star particles, based on their age, metallicity, and surrounding gas pressure. The AGN spec-

trum is determined using the SMBH accretion rate and the luminosity-dependent templates

of Hopkins et al. (2007).

To calculate the dust distribution, we use the Draine & Li (2007) Milky Way dust

model with RV = 3.1 and assume that 40% of gas-phase metals are in dust (Dwek 1998). A

3D adaptively-refined grid is placed on the simulation domain to map the gas-phase metal

distribution. Following Snyder et al. (2013) and Blecha et al. (2018), we assume that gas in

the cold phase of the GADGET-3 multi-phase ISM model has a negligible volume filling factor

and therefore does not contribute to the attenuation of radiation. While this may not be
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an appropriate choice for extremely gas-rich, high-redshift galaxies that produce extreme IR

and sub-mm luminosities (e.g., Hayward et al., 2011; Snyder et al., 2013), it is a reasonable

assumption for the low-redshift analog galaxy simulations in our suite.

SUNRISE performs Monte Carlo radiative transfer through this grid, computing emis-

sion from stars, HII regions, and AGN, as well as energy absorption (including dust self-

absorption) to obtain the emergent, attenuated resolved SEDs for seven different isotropically

distributed viewing angles.

For each merger simulation, we perform SUNRISE calculations on snapshots at ∼ 50−

100 Myr intervals during the merger. The spatial resolution of all images and resolved spectra

is 167 pc, which exceeds the resolution of the SDSS survey (see Section 4.2.3). We divide

each merger simulation into early-stage, late-stage, and post-coalescence snapshots based on

the projected separations of the stellar bulges in the images. We describe this process in

more depth in Section 4.2.4. Briefly, early-stage mergers are defined as the snapshots with

average stellar bulge separations ∆x ≥ 10 kpc. Late-stage mergers are defined to have stellar

bulges with separations of 1 kpc < ∆x < 10 kpc. Post-coalescence snapshots are those in

which two stellar bulges are no longer resolvable in SDSS (∆x ≤ 1 kpc) since the spatial

resolution of SDSS is 1-2 kpc. For each merger simulation, we run SUNRISE at ∼ 100 Myr

intervals in the early stage of the merging galaxies, at ∼ 50 Myr intervals in the late stage,

and at ∼ 100 Myr intervals for the post-coalescence stage. This creates a roughly equal

number of ∼ 5 − 10 SUNRISE snapshots per merger stage. In Figure 4.2, we show r-band

images for early-stage, late-stage, and post-coalescence snapshots from the 1:2 major merger

gas-rich simulation q0.5 fg0.3.

We also simulate isolated galaxies with matched stellar mass and gas fraction for each

merger simulation (Table A.19). Additionally, because the progenitor galaxies are still iso-

lated and undisturbed in the very early stages of the merger simulations, we include snap-

shots prior to first pericentric passage in our sample of isolated galaxy snapshots as well.

We confirm, using the supplemental outputs of SUNRISE, that the star formation rate and
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AGN luminosity have yet to be affected by the merger in these snapshots. Additionally, the

imaging predictors are not yet significantly different than the matched sample of isolated

galaxies.

We also include merger snapshots at times > 0.5 Gyr after final coalescence as isolated

galaxies. Our motivation for this is twofold. First, after > 0.5 Gyr following final coalescence,

the simulated galaxies begin to lose tidal features but remain centrally concentrated when

compared to the isolated matched sample of galaxies. If we include these post-coalescence

galaxies in the analysis as mergers, the technique becomes overly sensitive to the central

concentration of galaxies and is most efficient at identifying early-type galaxies. Second,

since we wish to develop a tool that best identifies galaxy mergers in the early, late, and

beginning of the post-coalescence stage, we terminate the merger period at 0.5 Gyr after final

coalescence for all simulations. We find that this choice of cutoff time allows the sensitivity

of our merger detection technique to decay smoothly during the post-coalescence stage. We

include an isolated galaxy snapshot in Figure 4.2 as well as several isolated snapshots prior

to first pericentric passage and 0.5 Gyr following final coalescence.

Broadband images for each snapshot are produced for seven isotropically-distributed

viewpoints. We focus on the SDSS r−band filter, since the r−band is a good tracer of stellar

populations in low redshift galaxies. Since we next plan to incorporate kinematic predictors

into the analysis (Nevin et al. (2019, in prep)), we will apply the classification technique to

the MaNGA (Mapping Nearby Galaxies at Apache Point) survey, which is an integral field

spectrograph (IFS) survey of a subsample of ∼10,000 SDSS galaxies. We therefore place the

simulated galaxies at the average redshift of the MaNGA survey (〈z〉 ∼ 0.03) and extract

the r−band images, which we process further to match the specifications of the SDSS survey

in Section 4.2.3.

To understand the range of redshift and surface brightness for which our merger clas-

sification can return consistent classifications, we experiment with adjusting the surface

brightness and redshift of the simulated images. The consistency of the classification is
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closely tied to the behavior of the imaging predictors, which are sensitive to both resolution

and the average S/N per pixel ( <S/N>). For instance, Lotz et al. (2004) find that Gini,

M20, C, A, and S are reliable to 10% for <S/N> ≥ 2 and systematically decrease with

<S/N> below this level. We implement a <S/N> cutoff of 2.5 (which is calculated for all

pixels within the segmentation mask) because the measurements of the imaging predictors

(especially A and S) from statmorph are unreliable below this threshold (Vicente Rodriguez-

Gomez, private communication). For instance, A systematically decreases to negative values

below this threshold. We also use this <S/N> cutoff value to assess the magnitude limit of

the method (described below).

We find that the surface brightness of the simulated galaxies changes over the course of

each simulation. This happens as the galaxies brighten and dim with star formation and AGN

activity as the merger proceeds. This corresponds to a range in r−band apparent magnitude

from 14− 16 (at z = 0.03). We convert from surface brightness to r−band magnitude using

the conversion in Section 4.2.3 to convert to units of nanomaggies, which we then convert

to apparent magnitude using the Petrosian radius as the aperture. We experiment with

dimming the images to determine how the r−band Petrosian magnitude of a mock image

relates to the S/N per pixel. The classification becomes significantly different (since the mock

images begin to drop below a <S/N> value of 2.5) when the r−band Petrosian magnitudes

are ≥17. In other words, the classification only works for r−band magnitudes ≥17 and it

should not be used for fainter galaxies. For context, typical SDSS galaxies from this paper

(in Section 4.13) have <S/N> values between 5-10, which corresponds roughly to r−band

magnitudes of ∼16. Since SDSS imaging has flux limit of 17.77 in the r−band, the LDA

classification technique applies to the majority of galaxies in the SDSS photometric catalog

(Strauss et al. 2002).

Likewise, we move the simulated galaxies to higher redshifts while maintaining the

same surface brightness and find that the predictor coefficients in the classification change

significantly at z ∼ 0.5. The average redshift of the SDSS photometric survey is z ∼ 0.4,
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so the LDA technique should still function well for the majority of SDSS galaxies (Sheldon

et al. 2012).

4.2.3 SDSS-izing images from the simulations

In order to construct a classification scheme that can be applied directly to SDSS

galaxies, we first ‘SDSS-ize’ or degrade the simulated images to match the specifications of

the SDSS survey. In this section, we describe the relevant SDSS imaging properties and data

products. Then, we provide a detailed description of the process of SDSS-izing the simulated

images. Finally, we detail how we determine the stage of the merger snapshots.

The process of SDSS-izing the simulated images to create mock images that match the

specifications of the SDSS imaging involves the following steps (Figure 4.1):

(1) Clip the images.

(2) Convolve and rebin to the spatial resolution and pixelscale of SDSS imaging.

(3) Introduce residual background noise.

(4) Create an error image.

To complete these steps, we utilize the imaging properties (i.e., noise, instrumental

gain, sky levels, etc) of SDSS imaging, which are described in Albareti et al. (2017) and

Blanton et al. (2011). The SDSS imaging procedure involves producing large field images

that are composed of six long rectangular images of the sky called ‘camcols’. The camcols

are then further split into individual filters (u, g, r, i, and z) and six smaller ‘frame’ images.

Frame images are the basic data product of SDSS; these images are background subtracted

and include an extension with background sky levels, instrumental gain, dark variance, and

a calibration factor to convert between flux and photoelectrons. The frame images can be

further cut to postage stamp images (in our case, with a field of view of 80.′′0× 80.′′0). The

most recent SDSS data release (DR13) uses a specific NASA-Sloan Atlas (NSA) reprocessing
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Figure 4.1: Steps of the process to create mock images from the
simulated images (1-3). We first clip the simulated image to the
80.′′0 field of view (1). We then convolve the image with the 1.′′43
FWHM PSF and rebin to the 0.′′396 pixelscale of SDSS imaging (2).
Finally, we add residual background noise that is characteristic of
SDSS imaging (3) to create a mock image (upper right panel). We
compare to a SDSS image (lower right panel) that has been centered
on a galaxy and cut to the same 80.′′0 field of view as the mock image.
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Figure 4.2: Time series of r−band ‘SDSS-ized’ images from the q0.5 fg0.3 merger simulation (mass
ratio 1:2, gas fraction 0.3). To SDSS-ize simulated images, we convert to counts, convolve to the
seeing limit of the survey, rebin to the SDSS imaging pixelscale, and add background noise typical
of SDSS imaging. All images are centered on the brightest Source Extractor selected source and
cut to the 80.′′0 (∼50 kpc) SDSS imaging camera field of view. The merger images at t = 0.05,
0.2, and 3.62 Gyr are included as isolated galaxies in the analysis. The merger images at t = 0.39,
0.78, 1.17, and 1.56 Gyr are early-stage mergers, the images at t = 1.81 and 2.05 Gyr are late-stage
mergers, and the images at t = 2.2, 2.35, and 2.54 Gyr are post-coalescence mergers. The bottom
middle image is an isolated galaxy snapshot that is matched to the q0.5 fg0.3 simulation for mass
and gas fraction.
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of the original SDSS DR7 imaging data, which includes a new background subtraction that

improves the photometry of large galaxies (Blanton et al. 2011). We use DR13 imaging

properties to compare to SDSS-ized images below. The median seeing, which is the effective

width (FWHM) of the PSF, for SDSS imaging is 1.′′43 and the pixel scale is 0.′′396 pix−1

(Ivezić et al. 2004; Blanton et al. 2011).

We start with the imaging output of SUNRISE for the five broadband SDSS filters (u,

g, r, i, z). Here, we focus on the SDSS r−band images since they best capture light from

stellar bulges for nearby galaxies. To best mimic the placement of the imaging camera from

SDSS, we use aperture photometry to identify the brightest pixels over which to center

the camera. We identify the brightest source using Source Extractor, which is a useful

tool to extract sources through aperture photometry on astronomical images (Bertin &

Arnouts 1996). Source Extractor separates an object from the background noise, applies

a convolution filter to separate low surface brightness sources from spurious detections, and

deblends sources. We use a detection threshold of 1.5σ above the local sky background and

a minimum group number of two pixels to trigger a detection. We use a normal convolution

kernel with size 3× 3 pixels, a FWHM of two pixels, and a deblending threshold of 32 (the

recommended value for Source Extractor). The output from Source Extractor includes

x and y positions of sources and aperture photometry, which includes Petrosian radii and

corresponding fluxes. We determine the brightest source from these fluxes and then clip

the image in a 80.′′0 square around this source. We select an 80.′′0 square cutout because it

allows us to accurately determine the image background for the extraction of the imaging

predictors. Some of our simulations snapshots have smaller fields of view (down to 50.′′0)

since the simulated galaxies are in the edge of the simulation field of view. We include these

smaller snapshots in interest of maximizing the temporal resolution of our method. We find

that very few mock images have a smaller field of view than 80.′′0 and that this does not

affect the imaging predictors for these snapshots.

After clipping the mock images, we convolve them with a PSF with FWHM 1.′′43, which
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is the median PSF for the r−band (Ivezić et al. 2004). Then, we rebin the images to the

pixelscale of SDSS (0.′′396 pixel−1).

We then convert to flux units typical of SDSS, introduce residual background noise,

and produce an error image, as outlined below. The units of the simulated image are surface

brightness (W/m/m2/sr). We convert to flux density in nanomaggies:

nanomaggy = Janskys× 3.631× 106

where we first convert to Janskys using the pixelscale and angular diameter distance of a

simulated galaxy at the average redshift of the MaNGA survey, z ∼ 0.03. Again, we use

the average redshift of the MaNGA survey since we plan to further develop the kinematic

technique for MaNGA IFS in Nevin et al. (2019, in prep).

Then, we extract a nanomaggy to data number (dn) conversion rate from each frame

image (c). This conversion rate is used to produce a mock image in units of counts (from

here on dn is synonymous with counts). We find an average c value of 0.005 with a standard

deviation of 0.0002. The conversion rate varies little across the frames and camcols.

In order to introduce background noise to the mock images, we characterize the resid-

ual background of the SDSS frame images using bilinear interpolation. We also determine

other imaging properties such as background sky levels (prior to background subtraction),

instrumental gain, and dark variance from the frame images. Since the gain and background

sky levels vary in complicated ways across the frames and camcols (Michael Blanton, private

communication), we characterize these values based upon several locations from the larger

frame images.

For instance, we use 50 postage stamps (from the frame images) that are selected to

belong to all six camcols and locations on the frame images. We extract a region from the

background and characterize its mean and standard deviation. The postage stamp images

have already been background-subtracted, so this region is characteristic of the residual

background of SDSS images following the sky subtraction step. We find that the typical
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residual background has a mean of 0.33 dn (counts) with a standard deviation of 5.63 dn.

After conducting an improved background subtraction for the SDSS-III DR8 imaging data

(which is the same imaging reduction used for DR13), Blanton et al. (2011) find a residual

standard deviation of 0.02 nanomaggies in the r−band photometry. This is ∼ 4 dn, so our

standard deviation of 5.63 dn is a good approximation of the residual noise.

We reintroduce this background into our images by adding a standard normal with a

mean of 0.33 and a standard deviation of 5.63 dn to each pixel. This mock image is used in the

calculation of the imaging predictors in Section 4.2.5.1. We use both the conversion factor,

c, and the residual background value, bgresid, to produce an image that is representative of

a SDSS image (in counts):

dn = nanomaggies/c+ bgresid

We use the images in units of dn for display purposes and for the extraction of the

imaging predictors.

Finally, we create an error image. To calculate the photometric uncertainty, we use

the average gain and dark variance from the r-band frame images (4.7 photoelectrons per

dn and 1.2 dn2, respectively) in combination with the simulated galaxy image to produce an

error image in dn:

σdn =
√

(dn + bgsky)/gain + darkvar

where we also include the background counts prior to background subtraction (bgsky). The

photometric uncertainty is dominated by the galaxy flux except for low surface brightness

features such as tidal tails, where the background sky dominates. To determine the back-

ground sky level, we extract a region from each sky image and measure the average value.

We find that this value varies between frame images and that the mean background value is

121.2 dn with a standard deviation of 37.4.

Figures 4.1 and 4.2 show examples of simulated images after the image has been spa-
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tially convolved, rebinned, and the residual background has been introduced to match the

specifications of the SDSS survey.

4.2.4 Measuring Stellar Bulge Separations

We use Source Extractor and GALFIT (Bertin & Arnouts 1996; Peng et al. 2002) to

identify, pinpoint, and measure the separation of stellar bulges from the SDSS-ized r−band

images. Using Source Extractor, we first determine if there are one or two stellar bulges

within the field of view and pinpoint their locations. We eliminate spurious detections from

Source Extractor using the above prescription for a detection threshold (1.5σ above sky)

combined with a normal convolution kernel (a 3× 3 pixel mask with a FWHM of 2 pixels).

We avoid the detection of star forming regions by requiring that the flux within the measured

Petrosian radius of the secondary source be greater than 10% of the primary source.

Under these prescriptions Source Extractor performs well, detecting the primary and

secondary stellar bulges for four of the merger simulations without spurious detections or

detections of star forming regions. To ensure that Source Extractor is not detecting star

forming regions, we require that the location of the regions identified by Source Extractor

correspond to the locations of the SMBHs tracked by GADGET.

Source Extractor fails to accurately identify the secondary source for the

q0.1 fg0.3 BT0.2 simulation. Since we require that the flux of the secondary source de-

tected by Source Extractor be greater than 10% of the flux of the primary source, the 1:10

minor merger often falls below this level. We do not lower the 10% detection cutoff since we

wish to avoid star forming region detection, so we use the locations of the SMBHs for the

q0.1 fg0.3 BT0.2 simulation to identify the secondary sources in order to determine merger

stage.

Then, we use GALFIT, which is a two-dimensional fitting algorithm that extracts struc-

tural components from images of galaxies. It can fit one or more two-dimensional models

such as exponential disks, Sérsic profiles, Gaussian profiles, or Moffat functions to the light
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profile of a galaxy. We use GALFIT to fit a Sérsic profiles to each source identified by Source

Extractor and extract the projected separations of the stellar bulges (if there are two).

With the GALFIT output in hand, we average the projected separation of the stellar bulges

for all viewpoints of a given snapshot of a merger and use this average to determine the

merger stage. Again, if the average separation is ∆x ≥ 10 kpc the merger is early-stage, if

the separation is 1 kpc < ∆x < 10 kpc the merger is late-stage, and separations ∆x ≤ 1 kpc

are post-coalescence.

4.2.5 Creating the Classification Scheme

Using the simulated galaxies, we know a priori whether a galaxy is a merging or non-

merging galaxy. In this section, we discuss the preparation of the imaging parameters that

we use as an input to a supervised Linear Decomposition Analysis (LDA). We refer to these

imaging parameters as ‘predictors’ from here on because they help predict whether a galaxy

is undergoing a merger. We also describe the LDA technique, which allows us to deter-

mine which imaging predictors are critical for best separating the classes of merging and

nonmerging galaxies for each simulation.

4.2.5.1 Imaging Predictors

In this section, we first describe the imaging predictors and then the methods used to

extract them from the SDSS-ized galaxy images. We discuss their weaknesses and strengths;

no one imaging predictor is the best determination of a merging galaxy. Instead they are

sensitive to different orientations, merger stages, and mass ratios. The statistical power of

the LDA methodology allows us to select the most successful predictors for various types of

merging systems. We discuss these results in Section 4.3.

There are two main approaches to identifying a galaxy merger from imaging: para-

metric and nonparametric modeling of the surface brightness of the galaxy image. The

parametric approach requires modeling the surface brightness of the galaxy using integrated
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light profiles such as bulges, disks, or Sérsic profiles. Since parametric modeling tends to

assume a symmetric profile for the surface brightness of a galaxy, it fails for irregular galax-

ies as well as those with structures such as compact nuclei, spiral arms, or bars (Lotz et al.

2004). More recent work on merger identification has focused on nonparametric modeling of

the surface brightness of galaxies. Nonparametric tools can be applied to irregular galaxies

as well as the more standard early or late Hubble-type galaxies. We employ two widely used

nonparametric approaches as imaging predictors: the CAS (concentration (C), asymmetry

(A), and clumpiness/smoothness (S)) morphological classification technique and the Gini -

M20 method. We also use a binary variation of A, shape asymmetry (AS) from Pawlik et al.

(2016). Finally, we incorporate one parametric approach, the Sérsic index (n). Overall, we

utilize seven different imaging predictors, defined below: Gini, M20, C, A, S, n, and AS.

Concentration is defined by Lotz et al. (2004) as the ratio of light within circular radii

containing 80% and 20% of the total flux of the galaxy:

C = 5 log
(r80

r20

)
where r80 is the circular radius that contains 80% of the total flux, and r20 is the circular

radius that contains 20% of the total flux. We use the approach from Conselice et al. (2003)

that defines the total flux as that within 1.5 Petrosian radii (rp) of the galaxy’s center. We

measure the Petrosian radius using Source Extractor.

A galaxy with a higher value for C has more light contained within the central regions

of the galaxy and is therefore more likely to be an early-type galaxy.

The imaging rotational symmetry predictor, A, is from Conselice et al. (2000):

A =
∑
ij

|I(i, j)− I180(i, j)|
|I(i, j)|

−
∑
ij

|B(i, j)−B180(i, j)|
|I(i, j)|

where asymmetry is summed over all pixels (i,j), I(i, j) is the image, I180(i, j) is the image

rotated by 180◦ about the center, B(i, j) is the background image (the background image is

described in Section 4.2.3 and includes only the residual background typical of SDSS imaging
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following background subtraction), and B180 is the background image rotated by 180◦ about

the same center. We define the center of the galaxy as the location that minimizes the value

of asymmetry as in Lotz et al. (2008). Again, the galaxy image and background image are

both masked to 1.5 rp.

A galaxy with a higher value of A has disturbed structure and/or bright tidal tails

and is therefore more likely to be a galaxy undergoing a merger. A is particularly good

at identifying early-stage merging galaxies (following first pericentric passage) when the

structure of a merging galaxy is most disturbed and tidal tails are most prominent.

The shape asymmetry, AS is measured using the same procedure as the asymmetry,

but with a binary detection mask. The technique is described in detail in Pawlik et al. (2016)

and Rodriguez-Gomez et al. (2018). Since it is measured using a binary mask, AS is more

sensitive to low surface brightness tidal features than A.

Clumpiness or smoothness (S) is defined by Conselice et al. (2003) and Lotz et al.

(2004) to be the fraction of light within clumpy distributions in a galaxy:

S =

∑
ij |I(i, j)− IS(i, j)|
|I(i, j)|

−BS

where I(i, j) is the image and IS(i, j) is the smoothed image which is smoothed using a

boxcar of width 0.25 rp. BS is the average smoothness of the background calculated in a

10×10 pixel box using the same 0.25 rp boxcar. S is summed over all pixels (i, j) within 1.5

rp of the galaxy’s center. However, the pixels within 0.25 rp of the galaxy center are excluded

for the calculation of S because the central regions of galaxies are highly concentrated and

this elevates the value of S (see Conselice et al. 2003).

Since S measures the fraction of light from a galaxy that can be found in clumpy

distributions, it identifies merging galaxies that have recently undergone star formation (e.g.,

Conselice et al. 2003). For instance, galaxies with a low value of S tend to be elliptical galaxies

and galaxies with a high value of S are either undergoing mergers (with star formation) or
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undergoing bursty star formation without experiencing a merger event.

The CAS morphological classification system was put forth as a method for cleanly

separating galaxies based on their morphologies using their location in CAS space. However,

it is limited in several ways. First, concentration assumes circular symmetry and therefore

fails for some irregular galaxies (Lotz et al. 2004). For instance, Conselice et al. (2003) find

that the average value of C for ULIRGs (ultraluminous infrared galaxies; LIR > 1012 L�)

is not significantly different from that of Hubble sequence galaxies. This is problematic for

merger identification since a significant fraction of ULIRGs (at least in the local universe)

are gas rich major mergers (e.g., Veilleux et al. 2002; Draper & Ballantyne 2012). Second,

not all mergers are asymmetric, and not all asymmetric galaxies are mergers (Thompson

et al. 2015). Third, clumpiness is very dependent on the choice of boxcar width (smoothing

length) used to smooth the image (Andrae et al. 2011), which has not been studied in detail.

In this work, we find that clumpiness is most sensitive to viewing angle and therefore a poor

merger predictor, so while we include it in the analysis, we focus more on concentration and

asymmetry. This decision is supported by previous findings that focus on C and A alone

from the CAS morphology (e.g., Lotz et al. 2008).

The Gini coefficient is used to describe the relative concentration of light in a galaxy

and is insensitive to whether the light lies at the center of the galaxy. Gini is sensitive to

major and minor mergers and is most sensitive for face-on systems (Thompson et al. 2015).

Gini is defined by Abraham et al. (2003) and Lotz et al. (2004) as:

Gini =
1

|f̄ |n(n− 1)

n∑
i

(2i− n− 1)|fi|

where f̄ is the average flux value, n is the number of total pixels in the image, and fi is the

flux value for each pixel where the n pixels are ordered by brightness in the summation.

Gini is high for galaxies with very bright single or multiple nuclei and low for galaxies

with more distributed light, such as late-type disk galaxies. Therefore, a higher value of
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Gini will select for merging galaxies during late stage mergers (with multiple bright nuclei)

as well as post-coalescence merging galaxies.

The M20 coefficient is often combined with Gini to identify merging galaxies. It mea-

sures the relative concentration of the light in a galaxy and also does not assume a central

concentration. The second-order moment of the light in a galaxy (Mtot) is the sum of the

flux in each pixel, fi, multiplied by the distance squared to the center of the galaxy:

Mtot =
n∑
i

Mi =
n∑
i

fi[(xi − xc)2 + (yi − yc)2]

where Mi is the flux in a single pixel multiplied by the distance squared to the center of

the galaxy. The center (xc, yc) is chosen to minimize the value of Mtot. Mtot is a tracer

for the spatial distribution of any bright areas in the galaxy. Mtot is then used to compute

M20, which is defined by Lotz et al. (2004) to be the normalized second order moment of the

brightest 20% of the galaxy’s flux:

M20 = log10

(∑
iMi

Mtot

)
, while

∑
i

fi < 0.2ftot

where ftot is the total flux of all of the pixels that are identified by the segmentation map

(defined below), and fi are the fluxes rank ordered from brightest to faintest. The division

by Mtot removes all dependence on the total galaxy flux.

M20 is similar to C but the center of the galaxy is a free parameter, allowing it to be

more sensitive to spatial variations of light. Also, M20 is always a negative value due to the

logarithm. Clear mergers with multiple bright nuclei have higher values of M20 (M20 > −1)

and early-type galaxies have lower values (M20 ≤ −2; Lotz et al. 2008). Therefore, higher

values of M20 select for merging galaxies.

Since Gini and M20 are sensitive to the ratio of low surface brightness pixels to high

surface brightness pixels, we use a segmentation map to measure both of these predictors,

as in Lotz et al. (2008). The segmentation map assigns pixels to the galaxy that are above

the threshold value given by the surface brightness at the Petrosian radius. We use a seg-
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mentation map instead of making S/N cuts, because galaxies with the same morphologies

but different intrinsic luminosities will have different Gini values if the cut is made based on

S/N.

In addition to the CAS andGini−M20 nonparametric predictors, we measure the shape

asymmetry (AS) for each galaxy. Shape asymmetry is similar to the imaging asymmetry we

also describe above; it is calculated using the same method, but with a binary detection

mask instead of the image itself. This weights all parts of the galaxy equally regardless of

relative brightness, making it a useful probe of morphological asymmetry (as opposed to the

asymmetry of the light distribution). It has proven useful for detecting faint asymmetric

tidal features that are suggestive of a merger (Pawlik et al. 2016).

Our final imaging predictor is the Sérsic index, which is used to define the exponential

surface brightness profile of a galaxy:

I(R) = Ie exp
(
− bn

[( R
Re

)1/n

− 1
])

where I(R) is the intensity within a given circular radius, Ie is the intensity at the effective

radius (Re), which is the radius that contains half of the total light, and bn is a constant

that depends on the Sérsic index, n (Sérsic 1963).

A Sérsic index of n = 1 denotes an exponential disk, indicative of a spiral galaxy, while

n = 4 denotes a de Vaucouleurs profile, indicative of an elliptical galaxy. In general, higher

n indicates light that is more centrally concentrated. A division between morphologies has

been standardized as n . 2.5 for spirals and n & 2.5 for ellipticals (van der Wel et al. 2008).

Fisher & Drory (2008) predict that values of n > 2 (steeper surface brightness profiles) are

produced by major mergers.

To extract the values of Gini, M20, C, A, S, and AS for each galaxy, we utilize the

galaxy morphology tool statmorph (Rodriguez-Gomez et al. 2018). Within this tool, we

invoke the segmentation map defined from the surface brightness at 1.5rp, which is measured

using Source Extractor. We measure the value of n for each galaxy with GALFIT.
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4.2.5.2 Identifying Mergers with Imaging Predictors

We seek a classifier that can separate merging and nonmerging galaxies of various

merger mass ratios, gas fractions, viewing angles, and merger stages. We also need to

incorporate multiple different imaging predictors. LDA is uniquely suited for these purposes.

LDA is able to maximize the separation between multiple classes (in our case, we only need

to separate two classes, ‘merging’ vs ‘nonmerging’ galaxies). In this work, we use LDA as

a classifier. Here, we train LDA on our SDSS-ized simulation data to determine the most

important imaging predictors for each simulation. Then, we combine all simulated galaxies

to prepare an LDA classifier. In a subsequent paper, we will apply the LDA classifier to the

SDSS galaxies.

Past work on simulated galaxies has shown that the effectiveness of the imaging pre-

dictors depends strongly on merger stage, the initial mass ratio, and the gas fraction of the

merging galaxies (Lotz et al. 2008; Lotz et al. 2010a,b). We therefore run LDA for each sim-

ulation individually so that we can compare the LDA outputs from different merger initial

conditions. In this way, we are able to compare the sensitivity of different imaging predictors

for minor and major mergers with low and high gas fractions at three different merger stages

(early, late, post-coalescence). For each iterative LDA run, we use simulated nonmerging

galaxies that are matched for gas fraction and stellar mass to the merging galaxies, since Lotz

et al. (2010b) find that gas fraction can alter the performance of CAS and Gini−M20. We

therefore approach the LDA classification with a set of galaxies for which we know a priori if

a galaxy belongs to the nonmerging (0) or merging (1) class. We include enough nonmerging

galaxies to roughly balance the number of merging galaxies. Our motivation is to achieve

an accurate LDA classification by ensuring that the isolated galaxies cover a realistic range

of imaging predictor space and roughly balance the number of galaxies in the merging class.

We later account for the lack of merging galaxies in nature with a prior (described below).

We use disk-dominated simulated galaxies to create the LDA, so it is important to note that
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this classification technique is most applicable to galaxies with similar properties.

The purpose of LDA is to use Bayesian likelihood to calculate a posterior probability

that a galaxy belongs to a given class (for a review of LDA, see James et al. 2013):

p(π0|x) =
eδ̂0(x)

eδ̂0(x) + eδ̂1(x)
(4.1)

where π0 is the prior probability of the nonmerging class (described below), δ̂0 is the score

of the nonmerging class, and δ̂1 is the score of the merging class. The score is the relative

probability that the galaxy belongs to a class, so a galaxy will be classified into the class

that has the maximum score. This classifier is nonbinary; instead of classifying galaxies as

simply nonmerging or merging, we will assign a probability that a galaxy belongs to each

class.

When there is only one input predictor, the discriminant score for the nonmerging class

is defined as:

δ̂0(x) = x · µ̂0

σ̂2
− µ̂2

0

2σ̂2
+ log(π̂0)

where δ̂0(x) is the discriminant score for class 0 (the nonmerging class) for a set of

galaxies, x is the list of the one measured predictor value for all simulated galaxies, µ̂0 is the

mean vector for the predictor for the nonmerging class, σ̂2 is the variance of the predictor for

the nonmerging class, log(π̂0) is the prior probability of belonging to the nonmerging class,

and δ̂1(x) is defined the same way but for mergers.

For the priors of the two classes for the major mergers, we use π̂0 = fnonmerg = 0.9 and

π̂1 = fmerg = 0.1 based on the fraction of nonmerging and merging galaxies from observations

and simulations (e.g., Rodriguez-Gomez et al. 2015; Lotz et al. 2011; Conselice et al. 2009;

López-Sanjuan et al. 2009; Shi et al. 2009). We use π̂0 = fnonmerg = 0.7 and π̂1 = fmerg = 0.3

for the minor mergers since minor mergers are 3-5 times more frequent in the local universe

(e.g., Bertone & Conselice 2009; Lotz et al. 2011). We find that the LDA analysis is relatively

insensitive to the chosen priors within a range of values (0.1 < fnonmerg < 0.9). For a full

discussion of priors see Appendix B.4.
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For multiple predictor variables (seven in our case), the LDA score can be generalized:

δ̂0(x) = xTΣ−1µ̂0 −
1

2
µ̂T0 Σ−1µ̂0 + log(π̂0)

where x, Σ, and µ̂0 are now vectors for the values of the predictors, covariance matrix,

and mean value of each predictor, respectively. LDA assumes that the data are normally

distributed, that the input predictors are independent, and that each class has identical

covariance matrices. The homogeneity of covariance matrices assumption leads to the sim-

plification: Σ0 = Σ1 = Σ. We examine these statistical assumptions in more detail in

Appendix B.5.

We classify a galaxy as ‘nonmerging’ if δ̂0 > δ̂1 and ‘merging’ if δ̂1 > δ̂0. Since we

are working in a multi-dimensional space, this is equivalent to searching for the dividing

hyperplane that satisfies:

xTΣ−1
0 µ̂0 −

1

2
µ̂T0 Σ−1

0 µ̂0 + log(π̂0) = xTΣ−1
1 µ̂1 −

1

2
µ̂T1 Σ−1

1 µ̂1 + log(π̂1)

The terms with the covariance matrices can be expanded fully out to yield a quadratic

classifier, as is done in Quadratic Discriminant Analysis (QDA). We assume the equality of

covariance matrices, which means the covariances between predictors are roughly equivalent

for the nonmerging and merging class (Σ0 = Σ1). This assumption yields a linear classifier

(LDA):

Σ−1(µ0 − µ1) +
1

2
µT0 Σ−1µ0 +

1

2
µT1 Σ−1µ1 + log(

π̂0

π̂1

) = 0

We solve for the hyperplane that satisfies the above equation, LD1:

LD1 = ~̂wT~x+ ŵ0 = 0

where the slope, ~̂w, is the weight vector:

~̂w = Σ−1(µ0 − µ1)
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and the intercept is given by ŵ0:

ŵ0 =
1

2
µT0 Σ−1µ0 +

1

2
µT1 Σ−1µ1 + log(

π̂0

π̂1

)

LD1 is also known as the first discriminant axis. Since we have only two classes (merg-

ing and nonmerging) to separate in this analysis, the second, third, and so on discriminant

axes are unnecessary. Instead, we are able to focus only on one hyperplane to separate the

populations.

We run the LDA on the imaging input predictors, which are the Gini, M20, C, A, S, n,

and AS. We specifically utilize the python package sklearn for this analysis. By focusing on

the imaging predictors, our goal is to produce a result that is useful for observational samples

of galaxies with imaging only. Since the imaging predictors are cross-correlated, meaning

that combinations of two of the predictors have a linear relationship with one another (Ap-

pendix B.5), we also include ‘interaction’ terms which are multiples of all combinations of

the imaging predictors (e.g., Gini ∗ M20, Gini ∗ C, Gini ∗ A, etc). We refer to these as

‘interaction’ terms, but they can be better thought of as multiplicative terms that allow us

to explore the synergistic effects of combining predictors. These interaction terms allow us

to remove cross-correlation effects from the original ‘primary’ (Gini, M20, C, A, S, n, and

AS) imaging predictors. We can then directly explore how these primary imaging predictors

affect the classifier in Section 4.3.1.

Including the interaction terms, we have 34 input terms for each run of LDA. Therefore,

we first use forward stepwise selection with k−fold cross-validation to select the best input

variables for each simulation. In brief, forward stepwise selection proceeds by introducing

one predictor at a time; we choose the number of predictors that minimizes the number of

misclassifications determined with cross-validation. We specifically implement k−fold cross-

validation, which is a method to divide the full sample of merging and nonmerging galaxies

(for each run) into k equally sized subsamples, where k = 10. We then train the LDA on

nine of the subsamples, and test on the tenth sample. We repeat this procedure ten times,
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and the mean number of misclassifications all ten test samples allows us to decide which set

of input predictors to select. We proceed, adding one predictor at a time, until the minima

of the misclassifications is determined. We describe this process in more detail in Appendix

B.6.

The input predictors that are selected by the forward stepwise selection are given in

Tables A.20 and A.21, along with their coefficient values and standard errors from the LDA

run. The standard errors are obtained using k−fold cross-validation (Appendix B.6). If a

predictor is selected by the forward stepwise selection but the 3σ standard error indicates

that it is consistent with zero, we eliminate it from the selected predictors. We refer to the

remaining imaging predictors and imaging predictor interaction terms as ‘required’ predictors

henceforth because they are necessary to separate the merging galaxies from the nonmerging

galaxies along LD1 for each simulation. LD1 is a linear combination of the selected input

imaging predictors and interaction terms, with weights ~̂w and intercept term ŵ0. Each

element of ~̂w corresponds to an imaging predictor or interaction term, and their relative

absolute values represent their degree of importance to the classification. We report and

interpret these coefficients, their relative signs, and their order of importance in Section 4.3.

After running LDA on each simulation individually, we assess their differences in Sec-

tion 4.4.3 and 4.4.4. Since the major and minor merger LDA runs are significantly different,

we caution against combining all runs into one overall classifier. We do attempt, however,

to combine all simulations into one classifier and find that it does not adequately separate

merging from nonmerging galaxies for all merger simulations. Instead, we create two clas-

sifiers, one from the combined major merger simulations and one from the combined minor

merger simulations, that will be used to classify the SDSS galaxies. They could also function

as a diagnostic tool to determine the mass ratio of the merging galaxies.

In subsequent work, we will calculate the value of LD1, or the score of a given galaxy,

using the linear combination of the terms from ~̂w and the input predictors and ŵ0 given in

Section 4.3. For example, LD1 for the combined overall run for major mergers is:
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LD1major = 0.69 Gini+ 3.84 C + 5.78 A+ 13.14 AS

− 3.68 Gini ∗ AS − 6.5 C ∗ AS − 6.12 A ∗ AS

− 0.81

(4.2)

where all predictor inputs must be standardized before using this equation. To stan-

dardize, we subtract the mean and divide by the standard deviation of the set of all predictor

values.

Likewise, LD1 for the minor merger combined simulation is:

LD1minor = 8.64 Gini+ 14.22 C + 5.21 A+ 2.53 AS

− 20.33 Gini ∗ C − 4.32 A ∗ AS

− 0.87

(4.3)

The decision boundary for LD1 for the major merger combined run is 1.16 and 0.42 for

the combined minor merger run; all galaxies with values of LD1 greater than this value will

be classified as merging. This decision boundary is the halfway mark between the mean of

the merging and nonmerging galaxy distributions. From here on, we use ‘LD1’ to describe

the linear combination of predictor coefficients for each run of LDA.

LD1 is a hyperplane, so it is unable to capture complicated non-linearities in the

imaging predictors. For instance, there is some migration for different merger stages that

occurs for predictors such asM20, where merging galaxies occupy different regions of predictor

space for different phases of the merger. Since the LDA captures the bulk behavior of each

imaging predictor, it searches for the overall trend for all stages within each merger simulation

and is unable to describe these non-linearities.

LDA adequately separates nonmerging from merging galaxies. For instance, Figure 4.3

presents the histograms for the imaging predictors for all simulations, and it is clear that

the imaging predictors are each individually unable to separate the populations of merging

and nonmerging galaxies. After performing LDA, we find that we are able to more cleanly
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Figure 4.3: Individual histograms for each imaging predictor for
the combined major merger simulations (left) and combined minor
merger simulations (right). We show for all the simulations com-
bined that we are unable to cleanly separate the nonmerging (blue)
and merging (pink and purple for major and minor mergers, respec-
tively) galaxies using any individual imaging predictor. The y-axis
is the ‘Count’ or number of merger simulation snapshots in each bin.
The x-axis of each subplot is the standardized predictor value for the
seven imaging predictors, where the mean of the combined merging
and nonmerging populations for each predictor is 0 and the stan-
dard deviation is 1. Standardizing the input predictor values acts
to stabilize the LDA but has no effect on the relative value of each
predictor; for example, a greater value of Gini corresponds to an
increased likelihood that a given galaxy is a merger. This statement
is valid both for the measured Gini value and the standardized Gini
value given here.
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Figure 4.4: Histograms of the distribution of score values for galaxies
in the nonmerging and merging class for all of the major merger
simulations and the combined major merger run (top). The vertical
black line marks the decision boundary - the halfway mark between
the mean of the nonmerging and merging distributions. A galaxy
with a score above (to the right) of this value has a higher probability
of being a merging galaxy and a galaxy with a score to the left of
this value has a higher probability of being a nonmerging galaxy.
The decision boundaries are in similar locations for all major merger
runs of LDA because the separation of the merging and nonmerging
populations is so similar. The histograms have different colors to
distinguish different LDA runs and the blue bars are the matched
nonmerger sample for each run.
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Figure 4.5: Same as Figure 4.4 but for all of the minor merger runs
of LDA and the combined minor merger run (top). The decision
boundaries for these simulations are lower than for the major merger
runs because the separation between classes is not as extreme for the
minor mergers.
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separate the two classes using the first discriminant axis LD1 (Figures 4.4 and 4.5).

While it is possible to classify a galaxy as merging or nonmerging given a decision

boundary and a value of LD1, we use the posterior probability that a galaxy belongs to a

given class from Equation 4.1. Since we standardize the input predictors to train the LDA,

classifying galaxies after the determination of LD1 is complicated. Instead of simply plugging

in measured values of predictors into LD1, it is necessary to apply the same standardization

used in this work prior to classification.

We discuss the statistical assumptions made by LDA in Appendix B.5. We discuss

the coefficients of LD1 in Section 4.3.1 and the implications for each run and the combined

run. Finally, we demonstrate in Appendix B.7 that LDA classification is able to accurately

separate the classes of merging and nonmerging galaxies.

4.3 Results

After running LDA for each galaxy merger, we compare the results. We describe

our methodology to compare the LDA classifications from different simulations in Section

4.3.1. Finally, we compute the observability timescales for Gini−M20, A, AS, and the LDA

technique in Section 4.3.2. We describe the LDA classification in more statistical detail in

Appendices B.4, B.5, B.6, and B.7, where we include an investigation of the merging galaxy

priors used, a multivariate analysis of the assumptions of LDA, a description of the k-fold

error estimation, and an examination of the accuracy and precision of the tool, respectively.

4.3.1 Analyzing the LD1 Coefficients

Since we run LDA on each merger simulation individually, and LD1 is a vector, we

produce different values for each coefficient of LD1. An advantage of LDA is that we are able

to directly interpret the relative weights of each individual predictor (Tables A.20 and A.21)

for each simulation. We focus on the primary predictors, which are in Table A.20, since they

are a more straightforward way to interpret the influence of the imaging predictors than the
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interaction terms in Table A.21. We compare the values of these primary coefficients of LD1

for each simulation. The coefficients have positive or negative values; since a larger value

of LD1 indicates that a galaxy is a merger, a positive coefficient indicates that increasing

the corresponding predictor increases the likelihood that the galaxy is a merger. Our goal

is to determine if the classification is significantly different for different simulations and if it

differs for different merger initial conditions.

We use stratified k-fold cross-validation (Appendix B.6) to determine the standard

error on the coefficients of LD1 that are selected by forward stepwise selection. Briefly, we

randomly split the sample into ten parts, where nine parts are the training sample and the

tenth part is the test sample. Stratified k−fold cross-validation ensures that the percentage

of merging and nonmerging galaxies in the test set matches that of the full sample. We

perform this operation ten times and then calculate the mean value and standard deviation

(standard error) for the LD1 coefficients and intercept ( ~̂w and ŵ0) from the ten iterations of

training and test sets.

For both Table A.20 and Table A.21, include the predictors that are selected by the

forward stepwise selection. Additionally, we bold the input predictors that are significant

(to 3σ above zero) according to their errors provided by k−fold cross-validation. We use

both of these predictor selection techniques to determine which predictors are selected and

significant (we exclude all other predictors from our analysis and discussion). We show a

visualization in Figure 4.6 of the order of importance of the individual primary imaging

predictors for each simulation. Overall, we can only discard the clumpiness (S) primary

predictor from our analysis; it is always either excluded by the forward stepwise selection of

predictors or < 3σ above zero.

There are significant differences between the rankings of imaging predictors for each

simulation. For instance, we find that the major merger simulations (q0.5 fg0.3, q0.333 fg0.3,

and q0.333 fg0.1) have different rankings of predictor importance; AS and A are more im-

portant for the major mergers. For minor mergers, AS is unimportant, while C and Gini
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become very important.

We interpret the sign of each coefficient individually for each simulation in Section 4.4,

comparing to previous work. We further interpret the relative importance of the coefficients

for different merger initial conditions and discuss that the value of the predictors evolve as

the merger progresses in Section 4.4.

4.3.2 Observability Timescales

To compare our new LDA technique to previous work that identifies merging galaxies,

we calculate the observability timescales of Gini − M20, A, AS, and the LDA technique

for the simulated galaxies. We focus on these particular predictors because past work has

defined cuts for Gini−M20, A, and AS, and classified galaxies lying above these thresholds

as merging. Likewise, the observability timescale of Gini −M20, A, and AS are measured

from these cuts in predictor space, where a simulated galaxy is ‘identifiable’ as a merger for

the duration of the time it spends above these thresholds. For Gini−M20, Lotz et al. (2008)

use:

Gini > −0.14 M20 + 0.33

where everything above the line is defined as a merger. The asymmetry cut is defined by

Conselice et al. (2003):

A > 0.35

where galaxies with A values above 0.35 are mergers. The shape asymmetry cut is from

Pawlik et al. (2016):

AS > 0.2

where galaxies with AS values above this cut are mergers.

We show these cuts in predictor space in Figures 4.7, 4.8, and 4.9, respectively, for the

combined major and minor merger simulations. We plot C with A in Figure 4.8 to include
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the evolution of C although there are is no formal cut in predictor space for this predictor.

For the same reason, we plot n against AS in Figure 4.9. In these three predictor space plots,

we are able to show all of the predictors (we only exclude S because it is unimportant to the

analysis).

For each snapshot in each merger simulation, we determine the viewpoint-averaged

value for Gini−M20, A, and AS. If a given snapshot exceeds the cut threshold for a merging

galaxy, we designate that snapshot as ‘identifiable’. By combining all identified snapshots,

we determine the observability timescale, which we list in Table A.22. If zero snapshots were

successfully identified, the observability timescale is less than the time resolution (i.e., < 0.1

Gyr). The timescale of observability from the LDA technique is shown in Figure 4.10; we

label a snapshot of a merger as identifiable if the viewpoint-averaged mean of LD1 is above

the decision boundary (shown with a horizontal black line).

For all simulations, we find that the timescale of observability for the LDA technique

is longer than the individual Gini−M20, A, and AS timescales of observability. The overall

trend is ∼ 0.2 − 0.8 Gyr observability timescales in Gini −M20, very short timescales of

observability for A (< 0.1 Gyr), and longer observability timescales in AS that are > 1 Gyr.

The observability window for LDA comprises ∼ 80− 90% of the total length of the merger

event, which translates to 2.0− 2.5 Gyr timescales for the major mergers and 3.5− 8.8 Gyr

timescales for the minor mergers.

Overall, the LDA observability timescale dominates because it relies upon multiple

different imaging predictors that are sensitive to the merging galaxies at different stages of

the merger. However, for the major mergers, the AS timescale is comparable to the LDA

observability timescale. We discuss these trends, how observability timescales scale with

the merger initial conditions, and how these timescales compare to previous work in Section

4.4.2.
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4.4 Discussion

We explore the behavior of the individual predictors in the LDA technique. Since we

remove correlations between predictors with the interaction terms, we are able to discuss

the positive or negative signs of the primary predictors (we refer to Gini, M20, C, A, S,

n, and AS as the ‘primary predictors’) in Section 4.4.1. We also compare these results to

past work with these imaging predictors and discuss how their values change for merging

and nonmerging galaxies. Then, we discuss the strengths of the LDA technique. First, we

focus on the increased observability timescale of the LDA technique in Section 4.4.2 and

how it is sensitive to different stages of the merger. We also discuss how different imaging

predictors change in sensitivity throughout the timeline of a merger. Second, we focus on

how the classification changes for different mass ratios and gas fractions in Section 4.4.3 and

Section 4.4.4, respectively. Finally, we assess the overall accuracy and precision of the LDA

technique in Section 4.4.5 and test it on a subsample of SDSS galaxies in Section 4.4.6.

4.4.1 The signs of the LD1 coefficients are consistent with previous work

One of the strengths of LDA is that we can independently interpret the behavior of

each predictor. We compare the primary coefficients of LD1 to previous work by Conselice

et al. (2003), Lotz et al. (2008), and Lotz et al. (2010a,b) in terms of the signs (positive or

negative) of the predictor coefficients.

In Figures 4.4 and 4.5, a higher value of LD1 indicates that a galaxy is more likely to

be identified as a merger. Since LD1 is linear, we can interpret the individual signs of the

coefficients in a similar way. If a coefficient is positive, this indicates that a higher value of

the coefficient will increase the probability that a galaxy is classified as a merger and vice

versa. We provide Figures 4.7, 4.8, and 4.9 to visually compare the location in predictor

space of the population of merging galaxies relative to the population of nonmerging galaxies.

Figures 4.11 and 4.12 examine the time evolution of the values of individual predictors for the
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Figure 4.10: Average value of LD1 (mean for all viewpoints) of each snapshot of a merger for all
galaxy merger simulations with confidence intervals 1σ above and below the mean. The horizontal
black line is the decision boundary; galaxies above this line are classified as mergers and galaxies
below this line are nonmergers. The blue line and confidence intervals are for the matched sam-
ples of nonmerging galaxies for each simulation. LD1 provides sensitive identification of merger
morphology at many stages throughout the merger.
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q0.5 fg0.3 and q0.2 fg0.3 BT0.2 runs, respectively. We select these two runs since they are

representative of the predictor evolution for a typical major and minor merger simulation.

Since this discussion relies upon the time evolution of predictors, we quickly recap

the definitions of merger stage. A merger begins at first pericentric passage and ends 0.5

Gyr following the final coalescence of the nuclei. An early-stage merger is one where the

separation of the stellar bulges is ∆x ≥ 10 kpc, a late-stage merger is 1 kpc < ∆x < 10 kpc,

and a post-coalescence merger is ∆x ≤ 1 kpc.

Overall, we conclude that the positive/negative signs of the individual predictor coef-

ficients are as expected from past studies of merger identification. We discuss the predictor

coefficients in more detail and how they change for different mass ratios and gas fractions in

Sections 4.4.3 and 4.4.4.

4.4.1.1 Gini

The Gini coefficients are significant and positive for the combined major and minor

merger simulations, as well as q0.333 fg0.3, q0.2 fg0.3 BT0.2, and q0.1 fg0.3 BT0.2, which is

unsurprising because a higher Gini index has been shown to identify merging galaxies with

one or more bright nuclei (e.g., Conselice 2014 and references therein).

4.4.1.2 M20

The M20 coefficient is insignificant for all runs. Interestingly, the value of M20 for

the mergers evolves with time; this behavior can be examined in Figure 4.11, which shows

the evolution of all the imaging predictors with time for the q0.5 fg0.3 simulation. This

time evolution is especially apparent for the major merger simulations. Early stage mergers

evolve to the left towards the merger region of the Gini−M20 diagram as their concentration

decreases early in the merger (recall, M20 is similar to C but does not depend on the location

of the center of the galaxy). This leftward migration towards the merger domain would

correspond to a negative value for the M20 coefficient.
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Then, in the post-coalescence stages, the merging galaxies evolve away from the merger

region on the Gini −M20 diagram, to the right. Lotz et al. (2008) also find this trend in

which galaxies evolve away from the merger region of the Gini−M20 diagram for the later

stages of a merger. This rightward migration makes sense because post-coalescence galaxies

begin to lose visually disturbed features such as tidal tails and appear more concentrated in

their light distributions. This evolution of M20 in both directions for major mergers leads to

a washing out of any dominant trend of M20 for the major merger simulations.

4.4.1.3 Concentration

The central concentration of light, C, is important for all LDA runs except q0.333 fg0.3,

where it is insignificant. The value of the C coefficient is positive for all runs except q0.5 fg0.3,

where it is negative. A positive C coefficient indicates that mergers tend to have a higher

value of C. We first discuss the overall behavior of C and then focus on the nuances of C,

such as the decrease of C during the early stages of major mergers.

Since C is positive for the majority of merger simulations, we can conclude that, in

general, merging galaxies have more centrally concentrated light than isolated galaxies. Lotz

et al. (2008) find that concentration is not a strong predictor of a merger but that it is higher

for the later stages of a merger. This is expected given that mergers tend to build elliptical

galaxies, which has been shown in detail for major mergers (e.g., Bendo & Barnes 2000;

Bournaud et al. 2005). It has additionally been shown that minor mergers can contribute

to stellar bulge growth and drive a less dramatic transformation of galaxy morphology (e.g.,

Walker et al. 1996; Cox et al. 2008). We discuss C in more detail for different mass ratios

in Section 4.4.3.

We observe a gradual increase of C with the progression of the merger from the be-

ginning of the early stage to the end of the post-coalescence stage. We examine Figure

4.11 for the time evolution of the C predictor for the q0.5 fg0.3 run. The value of C for

q0.5 fg0.3 demonstrates an increase with a slight decrease during the early and late stages of
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the merger. It remains heightened for the nonmerging snapshots following final coalescence.

This overall increase is typical behavior for the rest of the merger simulations and happens

for the minor merger simulations, without the dip during the end of the early and beginning

of the late stages (Figure 4.12). The increase of C throughout the lifetime of each individual

merger simulation leads to positive coefficients of the C predictor in the LDA technique.

However, the dip in C values for q0.5 fg0.3 is pronounced during the early stages and results

in a negative coefficient of C in the LDA.

4.4.1.4 Asymmetry and shape asymmetry

The LD1 coefficients for the asymmetry (A) and shape asymmetry (AS) predictors

both have positive values for all simulations (AS is insignificant only for q0.1 fg0.3 BT0.2).

This indicates that the more asymmetric a galaxy, the more likely we are to identify it as a

merger. Asymmetry shows this same relationship in Lotz et al. (2008) and Conselice et al.

(2003), where the value increases for mergers.

4.4.1.5 Clumpiness

Clumpiness (S) is insignificant for LD1 for all simulations. This result is anticipated

given that Lotz et al. (2008) find clumpiness to be a less powerful predictor, but disagrees with

Conselice et al. (2003), who find that clumpiness is higher for merging galaxies. However,

the sample of merging galaxies from Conselice et al. (2003) is built from local luminous and

ultraluminous infrared galaxies (LIRGs and ULIRGs), both of which are inherently very

high in clumpiness. Thus, it is expected that we do not see the same importance of S for

the merging galaxies in this work.

4.4.1.6 Sérsic index

The Sérsic index, n, is also unimportant for all simulations. If n is higher for merging

galaxies, this indicates that merging galaxies have steeper light profiles. The evolution of n
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is closely tied to that of C, which is unsurprising given that these predictors are correlated

(Appendix B.5). n evolves towards higher values for later stages in the merger, where only

a single nucleus is present. The key difference between C and n is that n has a smaller

separation in value between merging and nonmerging galaxies for most simulations, so it is

an unimportant coefficient for the classification.

4.4.2 LDA lengthens the timescale of observability of merging galaxies

The various LDA predictors evolve with time over the course of a galaxy merger. By

incorporating seven different imaging predictors, we are able to capture a longer timeline for

merging galaxies with the LDA technique than with individual predictors. In this section

we discuss the time evolution of the imaging predictors and how this limits their observ-

ability timescales. We also compare the estimates of observability time of different imaging

predictors to past work.

We show the time evolution of the individual predictors (and LD1) in Figures 4.11

and 4.12 for the q0.5 fg0.3 and q0.2 fg0.3 BT0.2 simulations, respectively. We include the

cutoff values of A and AS; if a galaxy exceeds these values it is ‘identifiable’ as a merger as

in Section 4.3.2. We show one major and one minor merger simulation to demonstrate the

main differences between the time evolution of the predictors for different mass ratios.

Using the Gini−M20 cut in predictor space from Section 4.3.2, most of the simulated

merging galaxies would be identified as merging by the cut in Gini −M20 during the early

and late stages of merging, but for a shorter total time than with the LDA technique. The

Gini −M20 0.59 Gyr timeframe (indicated by the spike in M20 values) for the q0.5 fg0.3

major merger is shown in Figure 4.11. The q0.333 fg0.3 and q0.333 fg0.1 simulations are

also identified by this cut during the early and late stages of merging for a similar timeframe.

However, as the mass ratio begins to increase for minor mergers, the observability timescale

of the merger from the Gini−M20 technique decreases. For instance, the q0.2 fg0.3 BT0.2

merger is identified by this cut during the early and late stages of merging, but only for a
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Figure 4.11: Time evolution of the imaging predictors for the
q0.5 fg0.3 simulation. The LD1 sensitivity is shown in the bottom
right panel for comparison; the dashed vertical lines mark the begin-
ning of the late stage, beginning of the post-coalescence stage, and
end of the merger. We plot the nonmerging galaxies in dark blue for
comparison purposes. We also plot horizontal lines for the AS and
A cutoffs in the literature (0.2 and 0.35, respectively) and for the
decision boundary for LD1. The dark blue lines are for the matched
sample of isolated galaxies. The most powerful predictors for the
q0.5 fg0.3 simulation are AS , A, and C.



183

1 2 3 4
Merger Timeline [Gyr]

2.5

0.0

2.5

LD
1

1 2 3 4

0.5

0.6

G
in

i

1 2 3 4
2.0

1.5

1.0

M
20

Merging
Nonmerging

1 2 3 4

2.5

3.0

3.5

C
on

ce
nt

ra
tio

n

1 2 3 4

0.0

0.2

0.4

A
sy

m
m

et
ry

1 2 3 4

0.00

0.05

C
lu

m
pi

ne
ss

1 2 3 4

1.0

1.5

S
er

si
c 

N

1 2 3 4
Merger Timeline [Gyr]

0.25

0.50

0.75

S
ha

pe
 A

sy
m

m
et

ry

Figure 4.12: Same as Figure 4.11 but for the q0.2 fg0.3 BT0.2 sim-
ulation. The most powerful predictors for the q0.2 fg0.3 BT0.2 sim-
ulation are C, Gini, A, and AS .
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0.19 Gyr timeframe (also indicated by a spike in M20 values in Figure 4.12). These results

are consistent with previous work; Lotz et al. (2008) find that Gini−M20 is most sensitive

to mergers during the first pass (early stage) and the final coalescence of the nuclei (late

stage), and Lotz et al. (2010a) show that Gini−M20 is sensitive to merger mass ratios less

than 1:9. Also, our 0.2− 0.8 Gyr Gini−M20 timescale of observability for the simulations

with a mass ratio > 1:9 is consistent with the 0.2− 0.6 Gyr timescale of observability from

Lotz et al. (2008).

The A cutoff identifies some of the early and late stages of the major mergers, but

has an even shorter timescale of observability than Gini −M20. This behavior is apparent

in Figure 4.11 when the A value exceeds the 0.35 cutoff value during the beginning of the

early stage and in a spike during the late stage of the merger. This is consistent with Lotz

et al. (2008), where the first passage and final coalescence (during the late stage) show the

largest asymmetries. While the A value exceeds 0.35 for more snapshots in the major merger

simulations, we find a < 0.1 Gyr timescale for both major and minor mergers. This < 0.1 Gyr

timescale for minor mergers can be seen in Figure 4.12, where the A value only approaches

the cutoff value for one snapshot. Lotz et al. (2010a) find an A timescale of 0.2 − 0.4 Gyr

for major mergers and then less than 0.06 Gyr for minor mergers. While we have a shorter

timescale of continuously heightened A values for the major merger simulations, we find

that the major mergers result in more snapshots where the value of A exceeds 0.35, which

is consistent with the longer observability timescale of A for major mergers from Lotz et al.

(2010a).

AS has a longer timescale of observability than A and Gini − M20 for both major

and minor mergers. The merging galaxies evolve to have large values of AS at various times

throughout the early, late, and post-coalescence stages of the merger. AS identifies the major

mergers at nearly all points throughout the simulation, expanding the sensitivity of the LDA

technique in time. It only fails to identify the major mergers at some post-coalescence stages.

AS is notably much better at identifying the minor mergers as mergers than both A and
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Gini−M20 and it is most sensitive to the early and late stages of these mergers. Overall, AS

shows less dependence on time in the merger and is a more consistent identifier of merging

galaxies during the early, late, and early post-coalescence stages. This makes sense because

AS is sensitive to faint tidal features; it should therefore be more successful than A at

identifying disturbed structures at all times.

Finally, we focus on the time evolution of C, which is not assigned a cutoff value in

the literature but which has significant importance within the LDA technique. We find that

all mergers show elevated values of C, especially for the post-coalescence stages, meaning

that C is critical within the LDA technique for capturing the post-coalescence snapshots in

time. Gini exhibits a similar behavior to C for the minor mergers, becoming most enhanced

during the late and post-coalescence stages.

Snyder et al. (2018) apply a random forest classifier to the Illustris galaxies and find

that features that rely on concentration are more important for selecting recent mergers

while features that rely on asymmetries are more important for selecting galaxies that are

about to merge. While the Illustris simulation is a cosmological merger tree simulation, it

is informative that the results are consistent with the time sensitivities of various imaging

predictors in this work.

Unlike the individual imaging predictors, we find that the sensitivity of the LDA de-

pends only minimally on merger stage. It is slightly less sensitive for the very early stages

and very late post coalescence stages of the merger; this is expected since the galaxies often

appear visually to be isolated galaxies prior to first pericentric passage and after coalescence.

As discussed in Section 4.2.1, we use the very early and very late stages of the merger (prior

to first passage and > 0.5 Gyr following final coalescence) as isolated galaxies in this analysis,

so these galaxies are very similar in imaging to galaxies at an adjacent point in time. This

explains why the 1σ confidence intervals overlap with the decision boundary for many of

these very early-stage and very late-stage snapshots in Figure 4.10.

The individual imaging classification techniques are sensitive to different stages of a
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merger. For instance, A and Gini −M20 identify early and late-stage mergers, AS identi-

fies early-stage, late-stage, and some post-coalescence mergers, and C is most sensitive to

post-coalescence mergers. LDA is able to combine these imaging techniques into one more

complete classifier that maintains sensitivity throughout the lifetime of a merger.

4.4.3 The coefficients of LD1 change with mass ratio

When we examine the relative importance of various predictors for merger simulations

with varying mass ratios, we determine that AS and A are relatively more important for the

major mergers and that C and Gini are relatively more important for the minor mergers. A

is important for all merger simulations.

First, we address the major mergers, where AS and A are both important coefficients

and indicators of disturbed visual morphology. The A coefficient has a normalized value

of 0.28 − 1.0 for the three major mergers and the combined major merger runs, indicating

that it is one of the most important primary predictors. It is less important for the minor

mergers and the combined minor merger simulation, but its relative importance is still high

∼ 0.24 − 0.89 (Figure 4.6). This result agrees with Lotz et al. (2010a), who finds that A

is a good probe of major mergers with mass ratios between 1:1 and 1:4. This is because

the major mergers have more disturbed morphologies, especially during the early stages of

the merger. However, the A predictor remains important for the minor mergers, where the

visual morphology is less disturbed.

AS is more sensitive (than A) to faint tidal tails in galaxies. The AS coefficient ranges

in normalized values from 0.25 − 1.0 for the major mergers and 0.16 − 0.18 for the minor

mergers. Since both A and AS track visual morphology, it is significant that while A is

important for all runs, AS is less important for the minor mergers. This suggests that the

more disturbed visual morphology of major mergers is best identified with both measures of

asymmetry. On the other hand, minor mergers rely more on measures of concentration like

C and Gini, so while A is still an important predictor for them, it is less dominant.
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Next we address C and Gini, where the importance to the minor mergers can be

attributed to two main factors: scatter and necessity. The major mergers show more scatter

in C values while the minor mergers show a general trend of C enhancement as the mergers

progress. In Figure 4.8, the major mergers range from values of 1 − 5.5 while the minor

mergers only span 2− 4 in C. Upon examination of the predictor values with time (Figures

4.11 and 4.12), we verify that C increases steadily with time for the minor mergers and

reaches a peak value of ∼ 3− 3.5. For major mergers, C shows a general increase with time

but also decreases during the most visually disturbed epochs of the merger (early and late

stage). However, the major mergers do ultimately build more concentrated remnants than

the minor mergers, with C values peaking at 4− 4.5.

Gini is heightened for both major and minor mergers in Figures 4.11 and 4.12. The

LDA for the major mergers was able to rely upon stronger predictors such as A and AS

to fully separate the populations of merging and nonmerging galaxies. However, the minor

mergers are less distinguishable from nonmerging galaxies using these predictors. Therefore,

Gini becomes more important for the minor mergers. This result is consistent with Lotz

et al. (2010a), who find that Gini−M20 remains effective for identifying minor mergers down

to mass ratios of 1:9.

Figure 4.6 also shows an important difference between the 1:2 major merger and the

1:3 major mergers. Between the two mass ratios, measurements of concentration (C and

Gini) become slightly more important in the 1:3 major mergers, initiating the trend towards

minor mergers.

Our findings regarding C make sense given the current understanding of galaxy mor-

phological evolution. To first order, equal mass ratio major mergers build large elliptical

galaxies (e.g., Bendo & Barnes 2000; Bournaud et al. 2005) while intermediate mass ratio

mergers (down to 1:10) are predicted to build galaxies with spiral-like morphologies and

elliptical-like kinematics (e.g., Jog & Chitre 2002; Bournaud et al. 2004). Very high mass

ratio mergers (minor mergers, ≥ 1:10) build disturbed spiral-like galaxies (e.g., Naab et al.
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2014 and references therein). However, some work has found that multiple minor mergers

can still build elliptical surface brightness profiles in the remnant galaxy (Bournaud et al.

2007; Jesseit et al. 2009; Bois et al. 2011) and that even one merger of a very minor mass

ratio can build stellar bulges in the remnant (Cox et al. 2008).

Statistically, minor mergers are much more common than major mergers, accounting

for three times as many mergers (e.g., Bertone & Conselice 2009; Lotz et al. 2011). The

ubiquitous nature of minor mergers increases their relative importance for galaxy evolution.

For example, Ownsworth et al. (2014) find that the majority of stellar mass is added to

galaxies by star formation (24% of stellar mass) and minor mergers (34% of stellar mass),

whereas major mergers only account for 17% of the total galaxy stellar mass at z = 0.3.

Other observations of local elliptical galaxies and the dearth of major mergers indicates that

minor mergers may be more important than previously thought for building local elliptical

galaxies with more concentrated light profiles (Trujillo et al. 2009; Taylor et al. 2010).

The above picture of galaxy morphological evolution is consistent with the differences

between C for the major and minor merger simulations. C is more important for the minor

mergers because it exhibits less scatter than for the major mergers, where the dip in C

weakens the overall strength of the coefficient in the LDA technique. The major merger

remnants show a greater overall enhancement of C by the end of the merger, building galaxies

with C ∼ 4− 5 that are more consistent with the classical picture of large elliptical galaxies.

Visually, the galaxy remnants for major and minor mergers still have disk profiles with a

more concentrated center, indicative of an enhancement of the stellar bulge. This means that

by the end of the merger, minor and major mergers have both enhanced the concentration

of the light profile of the galaxy and therefore contributed to the morphological evolution of

galaxies.
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4.4.4 The coefficients of LD1 do not change (significantly) with gas fraction

Next, we examine differences between the gas rich and gas poor simulations. We specif-

ically compare q0.333 fg0.3 to q0.333 fg0.1, which are both 1:3 mass ratio major mergers

matched for all properties except gas fraction. The important predictors for the gas poor

merger are AS, A, and C, while AS, A, and Gini are important for the gas rich merger.

Overall, these coefficients are very similar between the gas rich and gas poor simulations.

Both rely upon measurements of asymmetry (A and AS). Both simulations also rely upon

measurements of concentration (Gini and C). While C is more important for the gas poor

merger, Gini is more important for the gas rich merger.

Lotz et al. (2010b) establish that Gini − M20 is weakly dependent on gas fraction

whereas A is relatively enhanced for gas rich mergers. Since A and AS are relatively im-

portant for both gas rich and gas poor simulations, we conclude that the dominant initial

condition must be mass ratio for A to remain important for the gas poor major merger.

While there is little difference in AS in terms of the coefficients for the gas rich and

gas poor simulations, there is a small difference in the observability timescales for AS and

Gini−M20. The observability times for AS is shorter for the gas poor major merger in Table

A.22. The timescale of observability for AS for q0.333 fg0.1 is 2.34 Gyr while it is 2.64 Gyr

for q0.333 fg0.3. Since the overall merger timescales are so similar for these two simulations,

the AS observability timescale is significantly longer for the gas rich major merger. The

Gini−M20 timescale is also significantly different for the gas rich and gas poor simulations;

it is longer for the gas poor major merger (0.78 Gyr) and shorter for the gas rich major

merger (0.34 Gyr). This result is consistent with Lotz et al. (2010b), where the result is that

the Gini−M20 observability timescale decreases slightly with increasing gas fraction while

the A observability timescale increases with gas fraction. The Gini−M20 timescale may be

decreasing slightly with gas fraction here for similar reasons as stated in Lotz et al. (2010b),

that the increased dust obscuration at the central nuclei lowers the Gini values for gas rich
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simulations. The gas poor simulation has the longest Gini−M20 observability timescale of

all the simulations.

Kormendy et al. (2009) suggest that both dry and wet mergers (gas poor and gas rich,

respectively) build up the bulge mass of a galaxy, contributing to its elliptical morphology

(or an increased value of C). Overall, dry mergers are more important for building elliptical

galaxies but wet mergers can also increase the central concentration of a galaxy since they

drive starbursts that contribute to bulge growth. The C value for the gas rich major merger

increases with time to a peak value of ∼ 4.3 while the gas poor major merger increase to a

peak value of∼ 4.7. The gas poor major merger seems to have a slightly higher concentration,

possibly reflecting the tendency for dry mergers to build galaxies with elliptical morphologies.

However, these values are not significantly different when we take into consideration the

viewpoint-averaged standard deviation for these snapshots. Therefore, the difference in gas

fraction is not producing a significant difference in the concentration of the remnant.

Overall, while the timescale of observability for AS is longer for the gas rich major

merger and the timescale of observability of Gini −M20 is longer for the gas poor major

merger (which is consistent with Lotz et al. (2010b)), the differences in LDA coefficients are

most pronounced for mergers of different mass ratios (Section 4.4.3). This is why we choose

to separate the combined runs by mass ratio as opposed to gas fraction.

4.4.5 The LDA technique is accurate and precise at identifying merging

galaxies

The accuracy and precision of the LDA technique are very high (the accuracy is 85%

and 81% and precision is 97% and 94% for the major merger and minor merger combined

simulations, respectively; Table A.23 in Appendix B.7). We use accuracy to determine

the relative number of true detections (TP, true positives, and TN, true negatives) to all

detections (includes FP, false positives, and FN, false negatives); the accuracy is defined as

(TP + TN)/(TP + TN + FP + FN). If the accuracy is high, this means that our method
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does a good job of minimizing the number of false positives and false negatives. We use

precision to determine the relative number of true positives (TP) to all positive detections,

including false positives (FP); the precision is defined as (TP/(TP+FP)). If the precision

is high, then there are a low percentage of false positives, which is desirable because false

positives are nonmerging galaxies that are incorrectly included as mergers. We want to

avoid contamination in the sample of merging galaxies when we apply the technique to real

imaging.

In this section we compare the accuracy and precision of the LDA technique to that

of past work, which utilizes pair studies or cuts in Gini −M20 space, A, or AS. We also

compare to other work that has utilized machine learning tools to identify merging galaxies.

First we compare the LDA accuracy and precision to that of close pair studies with

SDSS. Darg et al. (2010) compare Galaxy Zoo classifications of major mergers to all SDSS

galaxy pairs with a projected separation of < 30 kpc and a line of sight velocity offset < 500

km s−1. After visually examining all 2308 close pair objects, they find that 28% of objects

are chance superpositions and/or have no signs of interaction. While this is an imperfect

comparison to our work since close pair studies only capture a brief snapshot of a merger,

the overall result is that 28% of the close pairs are false positives. Darg et al. (2010) also

estimate than only 20% of advanced mergers identified in Galaxy Zoo are pairs in SDSS,

which is a small fraction of true positives. In comparison to the LDA technique, pair studies

have low accuracy since many mergers are missed by the technique and low precision since

there is also a significant fraction of false positives.

Next, we directly compare the accuracy and precision of the LDA technique to that

of the cuts in predictor space introduced in Section 4.3.2. We measure the accuracy and

precision of the Gini − M20, A, and AS cuts for the simulations and find that precision

remains high. This means that these methods do not incorrectly identify nonmergers as

mergers. In fact, they have the opposite problem and fail to identify merging galaxies as

such, leading to low accuracies. We find that Gini−M20 has accuracies from 60% to 70%, A
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has accuracies from 40% to 60%, and AS has accuracies from 70% to 90%. The low accuracy

of the A predictor agrees with Conselice et al. (2003) who find that the fraction of mergers

(defined to be a sample of ULIRGs) that are correctly identified by A is ∼ 50%.

We also find that there is a difference in accuracy for different mass ratios. For example,

the minor mergers fall at the bottom of the accuracy ranges given above. This is worrisome

because the cuts in predictor space are preferentially selecting major mergers, which are

much less numerous than minor mergers. In contrast, the LDA accuracy changes by less

than 10% between all simulations, ranging from ∼ 85 − 90% accuracy for all simulations.

Using Gini−M20, A, or AS in isolation is not sensitive enough to correctly and consistently

identify mergers of all mass ratios at all merger stages.

Our LDA technique is more accurate and precise than individual imaging predictor

classifiers and is comparable to other techniques that combine many different imaging pre-

dictors. For instance, Snyder et al. (2018) and Goulding et al. (2018) use random forest

classifiers with a collection of similar parametric and nonparametric imaging predictors to

classify merging and nonmerging galaxies and find similar accuracies and precisions.

Snyder et al. (2018) use the Illustris cosmological simulation to produce synthetic deep

Hubble Space Telescope images of merging galaxies at 12 timesteps over a range of redshifts

(0.5 < z < 5). While Snyder et al. (2018) work with dissimilar galaxies to our low redshift

SDSS galaxies, we are able to roughly compare the two methods because both rely upon

similar imaging predictors. For instance, Snyder et al. (2018) use a binary classification

that relies upon Gini, M20, A, and C as inputs (among other imaging predictors). They

find a similar accuracy and precision of their classifier when they test it using the simulated

Illustris galaxies. The result is a classifier that relies on different imaging predictors for

different merger stages, similar to the LDA technique in our work. The random forest has a

completeness of ∼70% and a purity of 10% at z = 0.5 and 60% at z = 3. Completeness is

defined as TP/(TP+FN), which is defined as recall in our work, and purity is TP/(TP+FP),

which is defined as precision here.
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Since the isolated galaxy sample in Snyder et al. (2018) is different than the sample

of isolated disks used in this work, we are unable to directly compare the false positive and

false negative rates. We instead discuss one relative strength of the LDA technique. Some

of the false negatives in Snyder et al. (2018) result from the failure of the method to detect

some minor mergers and some of the false positives result from a narrow temporal definition

of the duration of the merger, which is restricted to 500 Myr. One relative strength of the

LDA technique is that it is built from high temporal resolution simulations and is therefore

able to use a more complete definition of merging galaxies. It also extends the definition

of merging galaxies beyond the 500 Myr timeframe used in Snyder et al. (2018). This is

a general strength of high temporal resolution isolated simulations over large cosmological

simulations.

Goulding et al. (2018) use a random forest to create a non-binary classifier that sepa-

rates their sample of Hyper Suprime-Cam (HSC) galaxies into subsamples of major mergers,

minor mergers and irregulars, and non-interacting galaxies. The input imaging predictors

include Gini, C, A, S, and n for the galaxy images as well as the residual images after

subtracting a GALFIT surface brightness model. They visually classify galaxies in the HSC

sample to test the performance of the classifier and find that the major mergers suffer from

mild contamination (∼10%) with an overall completeness for the merger samples of 75%.

The LDA technique has a comparable result with 4% contamination and 79% completeness

for major mergers. The minor mergers are more difficult to distinguish from isolated and

major mergers in Goulding et al. (2018) and therefore have increased contamination and

decreased completeness. The LDA technique on the other hand only suffers from 6% con-

tamination and 66% completeness for minor mergers. It should be noted that Goulding et al.

(2018) create and test the random forest method on real galaxy images, so this is an imper-

fect comparison, simply meant to roughly compare the accuracy and precision of different

imaging merger identification methods. Additionally, since the LDA technique is developed

from disk-dominated galaxies, its accuracy and precision apply best to galaxy samples that
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match the properties of the simulated galaxies used to construct the technique.

4.4.6 Testing the Technique on SDSS Galaxies

To preliminarily test the performance of the LDA technique on real images of galaxies,

we apply the major and minor merger classification techniques to a sample of SDSS galaxies

that have been identified as mergers, spirals, and ellipticals in GalaxyZoo (Lintott et al. 2008,

2011). We randomly select 50 galaxies from each galaxy morphology classification (merger,

spiral, and elliptical) using a ‘superclean’ cutoff value of pmerg, pel, pCS > 0.95, where pmerg is

the probability that the galaxy is a merger, pel is the probability that the galaxy is classified

as elliptical, and pCS is the probability that the galaxy is classified under the umbrella

classification of ‘combined spirals’. The probabilities are the percentage of GalaxyZoo users

that selected a given morphology type. We require that these galaxies exceed the <S/N>

cutoff value of 2.5.

We apply the major and minor merger combined LDA techniques to each of the three

subsamples of galaxy types and determine the fraction of galaxies that are classified by

the LDA technique as merging and nonmerging. We show some example classifications for

the major merger classification tool in Figure 4.13. For the major merger classification

tool, we find that 86% of the GalaxyZoo mergers are identified as mergers, 73% of the

GalaxyZoo elliptical galaxies are identified as mergers, and 14% of the Galaxy Zoo spirals

are classified as mergers. We show images of these classification categories in Figure 4.13 for

the major merger classifier. For the minor merger classification, 93% of GalaxyZoo mergers

are classified as mergers, 61% of the GalaxyZoo ellipticals are classified as mergers, and 43%

of the GalaxyZoo spirals are classified as mergers.

The difficulty in using the GalaxyZoo sample as a test sample is that we do not know

a priori which galaxies are merging. We are able to use the GalaxyZoo merger sample as

‘true’ mergers since they are obvious visual mergers (classified as such by GalaxyZoo users),

so the fraction of true positives and false negatives is reliable. The GalaxyZoo users were
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conservative, only reluctantly classifying the most obvious mergers as such (Darg et al. 2010).

However, we are unable to adequately establish the relative fractions of false positives and

true negatives since the samples of GalaxyZoo ellipticals and spirals may be contaminated

by merging galaxies that lack the obvious visual signs of clear major mergers such as tidal

tails. Therefore, our discussion mainly relies upon the fraction of true positives and false

negatives from the classification of the GalaxyZoo mergers and only briefly discusses true

negatives and false positives from the GalaxyZoo ellipticals and spirals population. We plan

to delve into this discussion in more depth in future work that presents the classification of

real galaxies (Nevin et al. (2019, in prep)).

The major merger classifier recovers ∼86% of the GalaxyZoo mergers. This fraction

agrees with the fraction of true positives and false negatives from the simulation measured in

Appendix B.7, where 82% of true mergers are identified as such. Figure 4.13 shows a failure

mode of the major merger classifier. The classifier fails to identify the GalaxyZoo merger in

the top right of the figure as a merger because while it appears to be two separate galaxies

by eye, the two galaxies are symmetrically aligned in such a way that A and AS are low. We

plan to investigate the failure modes of the technique in more detail in Nevin et al. (2019,

in prep).

The minor merger classification identifies 93% of the GalaxyZoo mergers as such which

is more than predicted (62%) when testing on simulated galaxies. It is important to note

that the GalaxyZoo mergers are more likely to be major mergers in their early phases with

clear visual disturbances. Therefore, the minor merger tool performs better than expected

since it is applied to galaxies that are more easily identified than most minor mergers in the

simulated galaxy sample.

The fraction of nonmergers (according to GalaxyZoo) that are identified as mergers

by the LDA technique is low for the spiral galaxies and high for the elliptical galaxies. For

instance, the major merger classifier tool identifies 73% (14%) of the GalaxyZoo elliptical

(spiral) galaxies as mergers. The spiral galaxy false positive rate is closer to the 3% false
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positive rate from the major merger classifier when it is tested on simulated galaxies. How-

ever, there are an excess of galaxies identified as mergers in the GalaxyZoo elliptical galaxy

population. It is not obvious that these galaxies have undergone mergers recently from visual

inspection. While it is possible that some of these galaxies have recently merged, many of

them may be false positives. It is important to note that the galaxies that are classified as

mergers among the GalaxyZoo elliptical galaxies have pmerg values that are barely above the

0.5 threshold we define here for the LDA classification. In future work, we plan to set multi-

ple probability thresholds to eliminate false positives amongst our merger samples. Finally,

since the LDA technique was constructed from disk-dominated galaxies, it is most accurate

and precise at classifying galaxies that most closely match the specifications of the simulated

sample. Therefore, it may not be as accurate for elliptical galaxies. We plan to address this

concern in future work (Nevin et al. (2019, in prep)) when we apply the classification to

SDSS galaxies.

There is an interesting discrepancy between the false positive rate of the major and

minor merger technique for the sample of GalaxyZoo spirals. The major merger technique

identifies 14% of the sample as merging whereas the minor merger technique identifies 43%

of the sample as merging. Of the GalaxyZoo spirals, there are 16 galaxies that are classified

as merging by the minor merger technique that are classified as nonmerging by the major

merger technique. We visually inspect these galaxies, and find that ∼50% could be classified

as spirals with disturbed structure while∼40% have a secondary point source component that

could either be a star forming region or a stellar bulge. More followup work is required here,

but preliminarily, it appears that the minor merger technique is identifying some possible

minor mergers that have been missed by GalaxyZoo users. It is possible that it could also

be identifying star forming regions because while we prescribe a 10% flux threshold for

the fitting of n, it could be fitting bright star forming regions that exceed this threshold.

More work is required to distinguish between these two possibilities. It is expected that the

major merger technique also misses some of these minor mergers. We show an example of
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a possible minor merger that was detected by the minor merger technique but not by the

major merger technique in Figure 4.14. This galaxy has disturbed spiral structure and some

possible secondary point sources that could be star forming regions.



198

GalaxyZoo Merger
pmerg, major = 0.98
LDA Merger

GalaxyZoo Merger
pmerg, major = 0.12
LDA Nonmerger

GalaxyZoo Elliptical
pmerg, major = 0.69
LDA Merger

GalaxyZoo Elliptical
pmerg, major = 0.34
LDA Nonmerger

GalaxyZoo Spiral
pmerg, major = 0.55
LDA Merger

GalaxyZoo Spiral
pmerg, major = 0.23
LDA Nonmerger

Figure 4.13: r−band images of GalaxyZoo mergers (top), elliptical galaxies (middle), and spiral
galaxies (bottom) that are classified as mergers (left column) and nonmergers (right column) by the
major merger classification technique. For each case, the probability that the galaxy is a merger
as classified by the major merger technique (pmerg,major) is given.
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GalaxyZoo Spiral
pmerg, minor = 0.68
LDA Merger

GalaxyZoo Spiral
pmerg, major = 0.01
LDA Nonmerger

Figure 4.14: r−band images of a GalaxyZoo spiral galaxy that is
identified as a merger by the minor merger technique (left) and a
nonmerger by the major merger technique (right). The probabilities
that the galaxy is a merger are listed.
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4.5 Conclusion

We create a suite of merging and nonmerging disk-dominated galaxies with different gas

fractions, mass ratios, and bulge-to-total mass ratios using GADGET-3 hydrodynamics simula-

tions. We use the dust radiative transfer code SUNRISE to produce resolved dust-attenuated

optical spectra from the simulations, from which we extract SDSS r−band images at ∼ 0.1

Gyr intervals. These snapshots cover the early, late, and post-coalescence stages of the sim-

ulated mergers. We then ‘SDSS-ize’ the simulated images of galaxies, introducing residual

noise and convolving to the seeing limit of the SDSS survey. We use these ‘SDSS-ized’

images to measure seven different imaging predictors (Gini, M20, concentration (C), asym-

metry (A), clumpiness (S), Sérsic index (n), and shape asymmetry (AS)), which we combine

to create a Linear Discriminant Analysis (LDA) classification scheme. This classification

technique is able to accurately identify merging galaxies over a range of mass ratios, gas

fractions, viewing angles, and merger stages. We create two overall classifications, one for

major mergers and one for minor mergers, that we will apply to classify SDSS galaxies, as-

signing each galaxy a posterior probability of being a merging galaxy. Based on these results

we make the following conclusions:

• The LDA technique outperforms previous merger identification methods such as

Gini−M20, A, and AS in terms of accuracy and precision. While the precisions of

Gini−M20, A, and AS are high with few false positives, the accuracies vary between

40 − 90%, and change with merger mass ratio. The LDA technique improves upon

this with accuracies of 85% (81%) and precisions of 97% (94%) for the combined

major (minor) merger simulations. The LDA accuracy and precision varies little

with merger initial conditions (< 10%), indicating that the LDA technique is more

stable and accurate than individual predictor merger identification techniques.

• The LDA technique lengthens the timescale of observability of merging galaxies

(>2 Gyr) and the galaxy mergers are identified at all stages (early, late, and post-
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coalescence) of a merger. The observability timescales for Gini−M20, A, and AS are

0.2 − 0.8, < 0.1, and 2.2 − 7.8 Gyr, respectively. The LDA technique incorporates

many imaging predictors and is therefore able to combine the strengths of all these

imaging predictors to be sensitive to all stages of the galaxy mergers.

• The predictor coefficients of LD1 change little with gas fraction and are most affected

by the mass ratio of the merging galaxies. For instance, A and AS are important

for major mergers due to their visually disturbed morphology while C and Gini are

more important for minor mergers, since they show consistent enhancement in light

concentration as the merger progresses. This supports the idea that even minor

mergers can build stellar bulges. A is an important coefficient for a range of mass

ratios, identifying major and minor mergers alike.

We plan to apply this imaging LDA technique to the SDSS galaxies (Nevin et al.

(2019, in prep)). Additionally, since the MaNGA survey is an imaging and IFS survey,

we will incorporate several kinematic predictors based on the stellar velocity and stellar

velocity dispersion maps from the hydrodynamics simulations into this analysis to improve

the classification.



Chapter 5

Accurate Identification of Galaxy Mergers with Kinematics

Merging galaxies are an important driver of galaxy evolution yet due to heterogeneous

samples of merging galaxies, current work disagrees on the relative importance of mergers

for evolutionary processes such as star formation and AGN activity in the universe. Previ-

ously, we used GADGET-3/SUNRISE simulations of merging galaxies and a linear discriminant

analysis (LDA) to create a precise and accurate merging galaxy classifier from a number of

different imaging predictors. Here, we build upon our previous work and develop a comple-

mentary tool that is based on kinematic predictors, which trace the disorder of the stellar

kinematics in galaxies observed with integral field spectroscopy (IFS). This tool utilizes eight

kinematic predictors (the difference between the kinematic and imaging PAs, the asymmetry

in the velocity map, the asymmetry in the velocity dispersion map, the kinemetry residuals,

the specific angular momentum, the ellipticity, the weighted asymmetry in the Radon profile,

and the asymmetry in the Radon profile) to create a merging galaxy classifier. The classi-

fier differs significantly with mass ratio but not with gas fraction, so we create a combined

major and minor merger classification. We find the minor mergers to be more reliant on the

difference between the kinematic and imaging PA, while the major mergers rely more on the

asymmetry in the Radon profile, which is more sensitive to warps in the stellar kinematics.

By combining all of the kinematic predictors into one classifier, we find that the observability

timescale for the LDA classification is ∼60% of the duration of the merger. The classification

has an accuracy of ∼60% and a precision of ∼90%, meaning that there are few false positives
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in the technique while a significant number of mergers are missed. This kinematic technique

is currently a stand-alone identification method but our goal is to combine and compare this

tool with the imaging technique in future work.

5.1 Introduction

Observations of galaxies reveal that they evolve over cosmic time from smaller, bluer,

more irregular star-forming galaxies at higher redshifts to larger, redder, more elliptical

galaxies in the local universe (Glazebrook et al. 1995; Lilly et al. 1995; Giavalisco et al. 1996).

Additionally, the bimodality of galaxy properties such as color, mass, or star formation rate

at low redshift implies that galaxies are quenching, or shutting down their star formation,

in the local universe as well (e.g., Schawinski et al. 2009; Masters et al. 2010; Weigel et al.

2017). Galaxy evolution, or changes in the size, structures, and star formation properties

of galaxies, is largely driven by the accretion of gas and/or the prevention of this gas from

forming stars. Many different processes can drive this evolution, ranging from those that

operate over short timescales like feedback from active galactic nuclei (AGNs) and/or galaxy

mergers (Silk & Rees 1998; Di Matteo et al. 2005; Kaviraj 2013) to longer-lived processes like

‘cold flow’ accretion from the cosmic web (Dekel et al. 2009), mass quenching (Peng et al.

2010, 2012), or morphological quenching (due to structures such as bars or stellar bulges;

Sheth et al. 2005).

While the current ΛCDM framework for structural formation in the universe points to

the import of mergers for assembling dark matter halos (White & Rees 1978; White & Frenk

1991; Cole et al. 2008), the relative contribution of mergers to galaxy evolution through pro-

cesses such as star formation, AGN activity, and/or morphological transformation remains

unclear. This disagreement stems from the difficulty of building large, unambiguous samples

of merging galaxies. Galaxy mergers are inherently difficult to identify; they persist for ∼Gyr

and they have a diversity of identifying characteristics based on the merger stage and the

parameters of the merger. The difficulty of identifying merging galaxies is responsible for the
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uncertainty in the observed merger fraction (fmerg, the fraction of mergers in a sample) at

high and low redshifts (e.g., López-Sanjuan et al. 2008). It is known, however, that the frac-

tion of merging galaxies evolves over time, peaking at redshifts z ∼ 2 (e.g., Conselice et al.

2008); this has contributed to a relative wealth of studies of higher-redshift merging galaxies

which are the target of the next generation of large telescopes (JWST, TMT). Currently,

there is a paucity of understanding of local mergers, which are relatively less frequent. In

order to build an understanding of mergers at all epochs, it is important to construct tech-

niques that can aid in the understanding of local mergers and their contribution to evolution

in the nearby universe. This is the main goal of this work.

A variety of imaging techniques exist to identify merging galaxies, all of which are

susceptible to their own individual biases. These often rely upon individual imaging tools,

or predictors, such as galaxy pair studies, the Gini−M20 methodology, or the asymmetry of

the galaxy light in imaging. One approach to overcome these biases is to utilize simulations

of merging galaxies to better understand the shortcomings of individual tools and to charac-

terize the observability timescales of these methods. For example, the length of time that a

major merger is observable by the Gini−M20 and asymmetry metric is 0.5 Gyr and 0.3 Gyr,

respectively, meaning that merging galaxies are visible as mergers using these techniques for

only a short time during the ∼Gyr duration of the merger (e.g., Lotz et al. 2008; Lotz et al.

2010b,a). Another strategy is to combine the predictors to create a single classification tool

that dramatically lengthens the observability timescale by capitalizing on the strengths of

the individual methods (e.g., Goulding et al. 2018; Snyder et al. 2019).

In Nevin et al. (2019) (henceforth N19), we pursue both of these approaches and

utilize GADGET-3/SUNRISE simulated galaxies to build a merger identification technique that

combines seven imaging predictors to create one more accurate and precise classifier that

incorporates the strength of all of these predictors, lengthening the observability timescale

to >2 Gyr. The simulated sample of galaxies that we use in this approach are vital for

constructing a more complete picture of the different stages of a merger as well as providing
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an a priori sample of which galaxies are merging or not to hone the identification technique

before it is applied to actual galaxies.

Kinematic predictors provide a promising addition to imaging predictors since they

are capable of probing stages of mergers that are ‘invisible’ in imaging. For instance, some

morphological disturbances like tidal tails can fade on a ∼500 Myr timescale following final

coalescence and are faint compared to the light of the galaxy (e.g., Hung et al. 2014; Wen

& Zheng 2016). This means that they fade at large distances due to surface brightness

dimming. Kinematic disturbance in the stars of a galaxy can persist for longer (up to

∼Gyr after final coalescence; Hung et al. 2016). Additionally, they more directly track the

dynamical history of the galaxies by probing baryonic matter and dark matter, which can

trace the interaction and growth histories of galaxies (Glazebrook 2013). It is also possible

that kinematic predictors may clear up ambiguities from imaging; for instance, some clumpy

star forming galaxies appear to be mergers in imaging due to their disturbed morphologies

(Miralles-Caballero et al. 2011; Petty et al. 2014), yet some appear to be nonmerging spiral

galaxies that simply have clumps of star formation in their centers or in their spiral arms

(Alonso-Herrero et al. 2006; Haan et al. 2011). This type of clumpy star-forming galaxy is

even more abundant at intermediate and high redshifts, where a higher fraction of galaxies are

expected to be actively merging, yet many isolated (non-merging) galaxies are also inherently

clumpy (e.g., Guo et al. 2015). Since high-redshift galaxies present a host of additional

complications, in this work we focus on local galaxies in order to develop the groundwork

for a method that could eventually be extended to the more distant universe.

However, like every other merger identification tools, kinematic predictors also come

with their own set of ambiguities and limitations. For instance, in gas-rich mergers, disks are

able to survive the merger and these recently-merged galaxies can masquerade as isolated

disk galaxies. Hung et al. (2015) find that relying upon kinematics alone to classify a

sample of ULIRGs identifies many merging galaxies as isolated disks and would provide a

false negative merger identification for up to 50% of ULIRGs. Additionally, the identification



206

technique depends strongly on the merger stage and the choice of kinematic predictor. Other

work confirms that some mergers with highly disturbed visual morphology exhibit a distinct

lack of disturbance in the stellar kinematics (Bellocchi et al. 2013; Hung et al. 2016). It is

therefore important to probe the kinematics of merging galaxies using simulations in order

to understand the biases and limitations of these tools before applying them to real galaxies.

There is currently a wealth of work dedicated to the imaging approach to identifying

merging galaxies from large surveys. While there are many detailed case studies of the

kinematics of individual local mergers (e.g., Dasyra et al. 2006; Piqueras López et al. 2012),

there is a lack of detailed statistical-sized kinematic studies of local mergers. Recent years

have brought a revolution in more and more capable integral field spectroscopy (IFS) surveys,

creating opportunities to identify merging galaxies using kinematic signatures. Surveys such

as CALIFA (Sánchez et al. 2012), SAMI (Bryant et al. 2015), MaNGA (Bundy et al. 2015),

and HECTOR (Bryant et al. 2016) offer a promising avenue to study the spatially-resolved

properties of an astounding number of galaxies. Here, we focus on the nearing-completion

Mapping Nearby Galaxies at Apache Point Observatory (MaNGA) survey. MaNGA is an IFS

survey of >10,000 local galaxies (with a median redshift z ∼ 0.03) with a spectral resolution

of R ∼ 2000 and a spatial sampling of 1 − 2 kpc (Bundy et al. 2015). One of MaNGA’s

primary scientific goals is to help disentangle the evolutionary pathways of galaxies and to

focus on incorporating simulations of merging galaxies with observations. It is thus uniquely

well-suited for this project, where the goal is to create a merger classification technique from

the kinematics of simulated galaxies, which we will then apply to the kinematics of the

>10,000 galaxies in the MaNGA survey in order to identify mergers.

This paper is organized as follows: Section 5.2 reviews the GADGET-3/SUNRISE simula-

tions from N19, describes the process of creating mock stellar kinematic maps from the SEDs

of the galaxy merger simulations, introduces the kinematic predictors, and reviews the linear

discriminant analysis (LDA) technique used in N19 and in this work. Section 5.3 describes

the results of the LDA classification, including the coefficients of the LDA, the observability
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timescales, and the accuracy and precision of the method. Section 5.4 describes the behavior

of the LDA coefficients in the context of previous work on mergers, how the classification

changes with mass ratio and gas fraction, and examines the accuracy and precision of the

kinematic classification in the context of other tools and statistical methods. We present our

conclusions in Section 5.5. A cosmology with Ωm = 0.3, ΩΛ = 0.7, and h = 0.7 is assumed

throughout.

5.2 Methods

In order to construct a merger identification framework from the kinematics of simu-

lated galaxies, we follow a detailed procedure to best mimic observations from the MaNGA

survey. We first describe the relevant details of the galaxy merger simulations in Section

5.2.1. Then, we describe the process for preparing mock kinematic maps from the simulated

galaxies in Section 5.2.2 and discuss how we address AGN contamination in the galaxies

in Section 5.2.3. We make the deliberate choice to extract the stellar kinematics from the

SEDs produced by SUNRISE, as opposed to relying directly on particle velocities. We discuss

the implications of this choice and compare the extracted stellar velocity maps and stellar

velocity dispersion maps to the inherent velocity of the simulation particles in Section 5.2.4.

Finally, we introduce the kinematic predictors that we utilize in the kinematic classification

in Section 5.2.5 and briefly introduce the relevant details of the Linear Discriminant Analysis

(LDA) technique (from N19) in Section 5.2.6.

5.2.1 GADGET-3/SUNRISE Overview

As in N19, we utilize GADGET-3/SUNRISE simulations of merging galaxies. GADGET-3

(Springel & Hernquist 2003; Springel 2005) is a smoothed particle hydrodynamical (SPH)

and N-body code that models processes such as radiative heating, radiative cooling, star

formation, supernova feedback, and the multi-phase interstellar medium (ISM) using sub-

resolution models. GADGET-3 also includes SMBH accretion as well as AGN feedback (this is
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achieved by coupling 5% of the accreted luminosity to the gas as thermal energy). GADGET

has been used for many different astrophysical applications, including wide use in studies of

merging galaxies (e.g., Di Matteo et al. 2005; Blecha et al. 2011; Snyder et al. 2013; Blecha

et al. 2013).

We present the five galaxy merger simulations and the matched isolated merger sim-

ulations in Table A.24. These simulations are identical to those used in N19. Three of the

simulations are major mergers (where the mass ratio of the progenitors is less than 1:4) and

two of the simulations are minor mergers. The major mergers have mass ratios of 1:2, 1:3,

and 1:3. The gas fraction of these simulations is fgas = Mgas,disk/(Mgas,disk + M∗,disk). The

1:2 and 1:3 mass ratio major mergers have a relatively high gas fraction of 0.3 and one of

the 1:3 mass ratio major mergers has a relatively low gas fraction of 0.1.

We verify that the different gas fractions of the simulations (0.1 and 0.3) are repre-

sentative of the sample of MaNGA galaxies. The mean gas fraction in MaNGA is defined

as:

µgas =
Σgas

Σgas + Σ∗

where Σ∗ is the stellar mass density and Σgas is the gas mass density.

Barrera-Ballesteros et al. (2018) find that the mean gas fraction for the MaNGA galax-

ies has a range of −1.2 < log(µgas) < 0 and a mean value ranging from log(µgas) = −0.5 to

log(µgas) = −0.8, which corresponds to gas fractions of 0.16 to 0.32. This means that

fgas = 0.1 is below the mean for MaNGA galaxies and thus relatively gas poor, while

fgas = 0.3 is at the top of the range of mean values for the sample and relatively gas

rich.

These simulations are named for their mass ratio and gas fraction; for instance, the

gas rich 1:2 mass ratio major merger is q0.5 fg0.3, the gas rich 1:3 mass ratio major merger

is q0.333 fg0.3, and the gas poor 1:3 mass ratio major merger is q0.333 fg0.1. All of the

major mergers have a bulge-to-total mass (B/T) ratio of zero. The minor mergers have a
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B/T ratio of 0.2, meaning that they are slightly less disky than the major mergers and both

are gas rich. These simulations are named q0.2 fg0.3 BT0.2 (the 1:5 mass minor merger)

and q0.1 fg0.3 BT0.2 (the 1:10 minor merger). The isolated galaxies are matched for mass

and gas fraction to each of the simulations. Some simulations have more than one matched

isolated galaxy, but for the case where there is only one isolated galaxy, it is matched to the

mass of the larger merging galaxy from the corresponding merger simulation. We additionally

define snapshots of each simulated merger that fall before first pericentric passage or > 0.5

Gyr after final coalescence as isolated galaxies.

We couple GADGET-3 with SUNRISE in order to directly compare the simulated galaxies

with observations. SUNRISE is a 3D polychromatic Monte-Carlo dust radiative transfer code

(Jonsson 2006; Jonsson et al. 2010). We utilize the same SUNRISE snapshots from N19 along

with the full SEDs from the seven isotropically positioned viewpoints from each merger

snapshot to produce the mock datacubes. In N19, we refer to the images produced from

the SEDs as ‘snapshots’; in this work, we use the term ‘snapshot’ to refer to the datacube

belonging to a single epoch of a merger. These snapshots occur at 50-100 Myr intervals

during each merger, and we divide them into early-stage, late-stage, and post-coalescence

stage snapshots. We define these stages using the r−band images from N19 where the early-

stage mergers have average stellar bulge separations ∆x ≥ 10 kpc, late-stage mergers have

separations 1 kpc < ∆x < 10 kpc, and post-coalescence mergers are no longer resolvable

with separations ∆x ≤ 1 kpc. With a 50-100 Myr cadence for snapshots, we find that we

have 5-10 snapshots for each of these stages.

We utilize the full SEDs from SUNRISE to construct the mock datacubes. However, we

find that there is an error in the SUNRISE approach to computing the shapes of the emis-

sion and absorption lines (private communication, Chris Hayward and Raymond Simons).

This error applies to the ‘SCATTER’ extensions of the SEDs, which are produced when the

dust radiative transfer is turned on, but does not happen for the ‘NONSCATTER’ exten-

sions. The result is artificially broadened emission and absorption lines in the SCATTER
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SEDs. To avoid this problem, we utilize only the NONSCATTER extensions. However, the

NONSCATTER snapshots do not incorporate the effects of dust on the radiative transfer

calculation, and therefore may have a significant effect on our analysis of merging galaxies.

Previous work has investigated the effects of dust in SUNRISE SEDs in depth. For in-

stance, Stickley & Canalizo (2016) compare measurements of the stellar velocity dispersion,

specifically mσ∗ (from the GADGET-3 particle velocity dispersion) to fσ∗ (from the SUNRISE

SEDs, which more closely mimic observations) and find that the offset between the two mea-

surements can be as large as 20-30% for isolated galaxies and as large as 100% for extreme

cases such as actively merging systems with disturbed morphologies. When comparing obser-

vations to simulations, it is important to incorporate dust, since dust tends to preferentially

obscure younger stars, elevating measurements of fσ∗ relative to mσ∗. Stickley & Canalizo

(2016) find that the distribution of the dust is more important than the total attenuation

due to dust in this offset.

By incorporating radiative transfer calculations from everything except dust in our

mock datacubes, we predict that we are underestimating the velocity dispersion relative to

that of the SCATTER SEDs. We plan to investigate the difference between SCATTER and

NONSCATTER in more detail in the future to determine the effects of excluding dust in

the current analysis.

5.2.2 Preparing Mock MaNGA Kinematic Maps

To produce stellar kinematics for our sample of simulated galaxies, we mimic the pro-

cedure of MaNGA to create a datacube of spectra and then we mimic the MaNGA Data

Analysis Pipeline (DAP) to extract stellar kinematics to use in our kinematic classifica-

tion. Examples of finalized MaNGA-ized stellar velocity maps are presented in Figure 5.1

alongslide the r−band flux maps. In this section, we describe how we mimic the observational

techniques of MaNGA to degrade the spatial and spectral resolution of the simulations to

create a MaNGA-ized datacube, place an appropriately sized fiber bundle over each galaxy,
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Figure 5.1: Snapshots of images and stellar velocity maps from the
q0.5 fg0.3 simulation. We include snapshots that are used as isolated
galaxies (before first pericentric passage; top row), early-stage merg-
ers (second row), late-stage mergers (third row), and post-coalescence
mergers (bottom row). The colorbar for the left column is in units
of counts while the velocity bar for the right column is in km s−1.
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and fit each spaxel with ppxf (a penalized pixel-fitting method from Cappellari & Emsellem

2004; Cappellari 2017) to obtain the velocity and velocity dispersion of the stars at each

spatial position.

We first describe the specifications of the MaNGA survey, which are key for producing

mock kinematic maps. MaNGA is an imaging and IFS survey. It has a spectroscopic channel

spatial resolution of 1-2 kpc; the primary sample of galaxies (which is 2/3 of the full sample)

has coverage out to 1.5 times the effective radius of the galaxy (Bundy et al. 2015; Drory

et al. 2015). The average redshift of the MaNGA survey is z ∼ 0.03, and the full range is

0.01 ≤ z ≤ 0.15.

To create the mock datacubes, we begin with the 3D SUNRISE SEDs, which we extract

at the median redshift of the MaNGA survey (z = 0.03). To prepare the mock datacubes,

we follow this procedure (which mirrors the MaNGA DAP):

(1) Convolve the SEDs in the spatial and spectral dimensions.

(2) Rebin in the spatial and spectral dimensions.

(3) From the g−band imaging, find the average g−band S/N per spaxel and mask all

spaxels that fall below a S/N cutoff value of 1.

(4) Mask the datacube using the appropriate size of the MaNGA hexagonal fiber bundle

based on the effective radius measured from the r−band imaging.

(5) Introduce noise to each remaining spaxel that is characteristic of the typical inverse

variance of the MaNGA data.

(6) Rebin spatially using a Voronoi binning scheme with g−band S/N of 10.

In more detail, we first convolve the simulated galaxy SEDs to match the spatial and

spectral resolution of MaNGA. The spatial resolution of MaNGA is 2.′′5, so we convolve

the spectral cubes with a 2.′′5 FWHM PSF in the spatial direction. Then, we convolve
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the extracted spectra to match the spectral resolution of the BOSS spectrographs used by

MaNGA (λ/∆λ ∼ 2000) using an adaptive rebinning procedure.

After convolving the spectra spatially and spectrally, we rebin to match the wavelength

and spatial sampling of MaNGA, which involves creating 0.′′5 sized spatial pixels (known as

spaxels). The next step is to utilize the SUNRISE g−band and r−band images to determine

which spaxels to include in the subsequent steps. We follow the procedure in N19 to convolve,

rebin, and introduce noise characteristic of SDSS g− and r−band images. The spatial

convolution uses a 1.′′61/1.′′43 FWHM PSF and the noise has a mean value of 0.77/0.33 dn

and a standard deviation of 3.73/5.23 for the g−band/r−band imaging. We rebin the images

to match the spatial binning of the mock cubes (0.′′5). Then, we mask all spaxels that have

a g−band S/N less than one (Westfall et al. 2019).

From the r−band imaging, we use statmorph (Rodriguez-Gomez et al. 2019) to mea-

sure the imaging position angle (PAimg), which we will later use to compare to the kinematic

position angle. We also measure the half light radius using statmorph and use this value to

determine which sized hexagonal fiber bundle to use to mask the mock datacube. MaNGA

has five different fiber bundles, equipped with 19, 37, 61, 91, and 127 fibers (the largest

fiber bundle is known as the ‘frankenbundle’); each fiber has a 2.′′0 diameter with 2.′′5 spacing

between fibers (Yan et al. 2016a; Wake et al. 2017). These fiber bundles range from 7.′′5 to

32.′′5 in diameter. The primary MaNGA sample is covered to 1.5 effective radii (Re) and the

secondary sample is covered to 2.5 Re. We cover our galaxies to 1.5 Re since the majority

of galaxies are included in the primary sample and select the appropriate fiber bundle to

obtain this coverage. We select the smallest fiber bundle if the angular extent of the galaxy

is smaller than 7.′′5 and the largest fiber bundle if the angular size exceeds 32.′′5. We mask

each datacube using the appropriate hexagonal size and the following steps apply to the

unmasked spaxels.

Next, we introduce noise to each spaxel using the typical inverse variance (ivar) of the

MaNGA datacubes. We average the median inverse variance trend for the central spaxel of
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20 MaNGA galaxies and convert to a median S/N value (Figure 5.2). These 20 galaxies are

randomly selected from each fiber bundle (we choose four galaxies per fiber bundle). We

test how this trend changes for the location of the spaxel with relation to the center of the

galaxy and find that there is less variation with location in the galaxy than between different

MaNGA galaxies. We utilize this median S/N trend with wavelength to introduce fake noise

to each spaxel at each wavelength bin. We multiply the noise value by a random normal

Gaussian with a mean of zero and a standard deviation of one. We find that the noise level

is very low relative to the signal (Figure 5.3) and has a minimal effect on the ppxf fit and

subsequent errors on the kinematic maps.

Our final step prior to fitting for the stellar velocity and velocity dispersion is to

introduce a Voronoi binning scheme to the datacubes (Cappellari & Copin 2003). We create

spatial bins that have a g−band S/N of 10, reproducing the procedure described in Westfall

et al. (2019). When a Voronoi bin contains more than one spaxel, the new spectrum is the

masked average of all constituent spectra while the error spectrum for that bin is determined

by co-adding the percent error spectra in quadrature. We account for covariance between

neighboring spaxels in our Voronoi bin calculation. In order to avoid the computational cost

of incorporating the covariance matrix for all spaxels, we instead use the correction from

Law et al. (2016) for the Voronoi bins that have more than one spaxel. The correction is a

factor of the number of spaxels in a bin (Nbins):

nmeasured/nno covar = 1 + 1.62× log(Nbins)

where nmeasured is the corrected noise level after the correction is applied to the co-added

error where covariance is not considered (nno covar).

We have now completed the steps that prepare the mock datacubes for fitting with

ppxf. We summarize the steps of this procedure visually in Figure 5.3.

The final step of the creation of mock kinematic maps is to pass the Voronoi binned

spectra through ppxf (Cappellari & Emsellem 2004; Cappellari 2017). ppxf is a penal-
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Figure 5.2: Normalized median trend of the S/N with wavelength
for the central spaxel of 20 MaNGA galaxies. The largest variation
happens galaxy to galaxy as opposed to spaxel to spaxel, so we take
the average S/N spectrum (black) to use as our characteristic S/N,
which we scale to the flux of each simulated spaxel to produce an
error spectrum.
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Figure 5.3: An illustration of the process of creating MaNGA-ized
datacubes from the simulated datacubes. All images are 32′′ by 32′′.
We first convolve the cubes spatially and spectrally using a spatial
kernel with a FWHM of 2.′′5 and convolving to a spectral resolution
of R∼2000 (top middle). We then rebin to 0.′′5 spaxels and the spec-
tral sampling of MaNGA and mask using a g−band S/N value of
one (top right). Next, we choose the appropriately sized hexagonal
footprint based on the half light radius in the r−band imaging and
use this to further mask the datacube (middle left). Then, we add
noise that is characteristic of the typical inverse variance of MaNGA
datacubes (middle middle). We introduce this noise using a Gaussian
randomization for every wavelength unit. Finally, we rebin using a
Voronoi binning scheme, with an assigned S/N per Voronoi bin of 10
(middle right). The average spectra for each step are shown in the
bottom panel, where we scale the flux to be offset for each step for
display purposes.
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ized pixel-fitting method which assumes that a galaxy spectrum is a combination of stellar

templates that are convolved with the line-of-sight velocity distribution (LOSVD) function.

In order to prepare the datacube for ppxf, we follow these steps from the DAP:

• Normalize the flux data so that the mean over all templates is unity.

• Mask the spectra to match the wavelength range of the MILES-HC library (3600-7400

Å).

• Mask the emission lines using the DAP module StellarContinuumBitMask().

After the preparatory steps are completed, we run ppxf in two fit iterations, as in

Westfall et al. (2019). Using the same techniques as the MaNGA DAP, we utilize the

MILES-HC spectral library to globally fit each datacube and then individually fit each spatial

bin using the templates that are selected by the global fit. The final product of our MaNGA-

izing procedure is a stellar velocity map and a stellar dispersion map, both with associated

error maps from the fit to the stellar continuum. We show the example maps in the right

hand column of Figure 5.1.

5.2.3 AGN Contamination

We find that the AGNs that turn on during the gas rich major merger simulations are

major contaminants to fitting the stellar kinematics. In other words, ppxf and the MaNGA

DAP are not equipped to fit broad AGN emission lines and regions with elevated continuum

from the AGNs. This AGN-dominated emission swamps out the stellar absorption lines;

MaNGA active galaxies are plagued by this same problem, and the AGNs are often masked

by the DAP fitting procedure. An example of this failure to fit the stellar kinematics is shown

in Figure 5.4, in the stellar velocity and stellar velocity dispersion maps for a snapshot the

q0.5 fg0.3 simulation with strong AGN emission.

The simulation suite was originally created in Blecha et al. (2013) to determine the

timeline of the activation and fueling of AGNs during mergers. However, most MaNGA
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Figure 5.4: Stellar velocity (top) and stellar velocity dispersion (bot-
tom) maps for a snapshot of the q0.5 fg0.3 simulation without an
AGN (left) and with the AGN (middle). We also show an additional
viewpoint of the same snapshot with the AGN (right). When the
AGN is not removed, ppxf is unable to fit the absorption lines and
the values of stellar velocity and stellar velocity dispersion converge
at the bounds of ppxf, which are 1000 km s−1 for both velocity and
velocity dispersion. These snapshots are not reliable for the extrac-
tion of the kinematic predictors. In the middle case, the AGN is
bright enough from this viewpoint to contaminate the entire dat-
acube; at the right, the AGN simply leaves a ‘hole’ with a 1000 km
s−1 velocity and velocity dispersion of size 2.′′5 in the center of the
galaxy, which is the size of the spatial resolution of MaNGA.
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galaxies do not host AGNs, and it is therefore unrealistic to use a simulation suite that is

dominated by AGNs to classify MaNGA galaxies. The other side of this problem is that

it is very difficult to measure the values of kinematic predictors when there is a hole in

the datacube. We explore multiple different options for removing the AGN contamination.

The simplest approach is to rerun the simulations without AGNs. Another approach is to

determine the PSF of the AGN emission and subtract this from the datacube and then fit

the stellar kinematics.

We take the first approach. We rerun the q0.5 fg0.3 and q0.333 fg0.3 snapshots that

have AGN contamination (quantified as those where any spaxel converges to a value >1000

km s−1, which indicates that ppxf failed to fit the spatial bin due to continuum contamination

from an AGN). In Nevin et al. (2019, in prep) we plan to return to this issue and explore

the option of fitting the wavelength-dependent AGN PSF to remove the contamination for

future work. In this way, when we apply the imaging + kinematic identification to real

MaNGA galaxies, we can also apply it to active galaxies.

In N19, we did not consider AGN contamination, meaning that the imaging side of

the technique is developed with the AGNs present. Since we did not remove the AGNs from

the N19 analysis, they could be enhancing the r−band concentration of the gas rich major

mergers. However, we find that the AGNs are active during the majority of the mergers, and

remain active for >0.5 Gyr following the final coalescence. This means that the concentration

of the light in the postmerger isolated galaxies is also enhanced, so the AGNs are not only

affecting the merger snapshots.

Additionally, the most important predictors for the gas rich major mergers are

asymmetry-based, which indicates that the classification relies more on the lower surface

brightness features of the major mergers and is not dominated by the central AGN light.

We plan to readdress the AGN contamination concern in both kinematics and imaging in

Nevin et al. (2019, in prep).
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5.2.4 Comparing Velocity Maps

To verify our methodology of creating the kinematic maps, we compare the extracted

stellar kinematics (from the MaNGA-ized NONSCATTER SUNRISE SEDs) to the particle

velocity and velocity dispersion (directly from GADGET-3) in Figure 5.5.

We find that the velocity maps extracted from the SEDs match the particle velocities

within 1σ errors (upper row). We also find that the stellar velocity error increases with de-

creased S/N as expected. We find a larger difference between the particle velocity dispersions

(mass-weighted) and the stellar velocity dispersions from the MaNGA-ized NONSCATTER

SEDs (flux-weighted). The stellar velocity dispersion from the NONSCATTER SEDs is

slightly elevated relative to the particle velocities. Although we do not include the effects of

dust since these are the NONSCATTER SEDs, the velocity dispersion could still be affected

by the location of the stellar populations in the merger. This effect is another motivation

for more directly investigating the difference between the inclusion and exclusion of dust on

the SEDs.

5.2.5 Preparing Kinematic Predictors

Next, we describe the predictors extracted from the stellar kinematic maps. We specif-

ically focus on the stellar kinematics, as opposed to the gas kinematics, since the stellar

kinematics more directly trace the assembly histories of galaxies while the gas kinematics

can also trace gas inflows and outflows.

The kinematic predictors are based on previous work to identify merging galaxies

from the stellar kinematics of observed and simulated galaxies. All of these predictors are

sensitive to different orientations, merger stages, and/or merger mass ratios and gas fractions

of merging galaxies. Our goal is to combine them into one LDA classification to best identify

a variety of different types and epochs of merging galaxies.

We use multiple kinematic predictors from galactic disk fitting codes as well as indepen-
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Figure 5.5: A comparison of the stellar velocity and velocity disper-
sion maps for a galaxy snapshot. We show the summed broadband
flux over all wavelength channels (left top). We include a compar-
ison between velocities in the top row and velocity dispersions in
the bottom row, where the GADGET-3 particle velocities and velocity
dispersions are in the middle left column, the velocity and velocity
dispersions measured from the MaNGA-ized SUNRISE SEDs are in
the middle right column, and the error maps for the MaNGA-ized
SUNRISE SEDs are in the rightmost column.
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dent kinematic predictors such as λRe , which is a measurement of the angular momentum.

We first describe the kinematic predictors that we extract from the disk fitting codes.

We utilize the Radon Transform from Stark et al. (2018). It is a simple, non-parametric

tool for characterizing velocity fields. To measure the Radon Transform, we first transform

the velocity maps into circular coordinates. The velocity maps are paramaterized using ρ

and θ. Given some spaxel on the velocity map, ρ is the distance between the spaxel and

the center of the velocity map, which is also known as the kinematic center of the galaxy

(defined below), and θ is the angle between the positive x-axis and the line segment from

the kinematic center to the spaxel. θ ranges from 0 to 180 in the CCW direction and ρ is

from −∞ to ∞, where negative values of ρ describe the portion of the velocity map below

the positive x-axis. The Radon Transform is defined as:

R(ρ, θ) =

∫ L

0

v(x, y)dl

where the velocity is summed over a line integral, where the line is perpendicular to the

kinematic center of the galaxy, and defined by the point (ρ, θ). L is the length of a line

segment that extends to the edge of the velocity map.

The Radon Transform is calculated at all values of ρ and θ. We additionally calculate

the Absolute Radon Transform, RA, and the bounded Absolute Radon Transform, RAB. The

Absolute Radon Transform is instead integrated over the absolute value of the difference

between the velocity at each point and the mean value along the line segment, and the

bounded Absolute Radon Transform is only integrated over a limited distance, which is

often defined in terms of the effective radius of the galaxy. Both are described in more detail

in Stark et al. (2018). As in Stark et al. (2018) we follow the procedure to integrate RAB over

an aperture distance of rap = Re where Re is the effective radius in the r−band imaging.

We present the bounded Absolute Radon Transform in Figure 5.6, where we also com-

pute the Radon profile. The Radon profile is the best fit value of θ (θ̂), or the estimated
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Figure 5.6: Stellar velocity map (left top), bounded Absolute Radon Transform (right top), and
Radon Profile (bottom). The velocity field can be transformed into θ and ρ coordinates, where
θ ⊆ [0,180] and ρ ⊆ [-ρ,+ρ], where the location (θ=35, ρ=10) is indicated by the upward left
pointing arrow. θ is measured CCW from the top of the map. The bounded Absolute Radon
Transform is then calculated by creating line integrals over a grid of (ρ,θ) positions, where the line
is perpendicular to the kinematic center of the map. It is bounded, since the line integral is limited
to the length Re. The units on the colorbar are km s−1. We find the minima (shown in lighter
yellow) of RAB at each ρ, to measure the Radon Profile (bottom). In this case, θ̂ is ∼ 35, which is
the axis of maximal rotation, or the kinematic PA.
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kinematic position angle, for each value of ρ from the bounded Absolute Radon Transform.

In other words, it is the minimum (in lighter yellow in Figure 5.6) at each value of ρ of

the RAB map. Since the kinematic position angle is determined at each value of ρ, it is

not global. The estimated value Θ̂ follows the direction of maximal rotation in the stellar

velocity maps and is therefore the kinematic PA. The deviation of θ̂ from a straight line can

reveal how much the velocity map of a galaxy deviates from ordered rotation.

We also follow the procedure from Stark et al. (2018) to determine the galaxy’s kine-

matic center. We use the photometric center as the initial input, but find that the photomet-

ric center is not always the same as the kinematic center. Since an incorrect kinematic center

can cause variations in the calculation of the Radon Transform, we directly determine the

kinematic center using the Radon profile and then utilize the kinematic predictors extracted

using this kinematic center. The kinematic center is the location where the weighted kine-

matic asymmetry (A) is minimized, which is the asymmetry in the Radon profile or θ̂ values,

which are measured from the bounded Absolute Radon Transform. A is also a kinematic

predictor that we utilize in our classification scheme, which is defined as:

A =

∑
|θ̂ − θ̂flip|
2Ni,j

wi,j

where θ̂ is reversed to make θ̂flip and Ni,j is the number of values in the θ̂ array at the current

‘center’, and wi,j is a weight factor:

wi,j =
N0,0

Ni,j

where N0,0 is the number of values at the photometric center.

We iteratively measure A in a 3 × 3 spaxel grid centered on the photometric center, and

select the spaxel with the lowest value as the kinematic center, while taking the minimized

A value as our A predictor for each snapshot. If the spaxel with the lowest value of A is

consistent within errors with the photometric center, we select the photometric center as the

kinematic center. If the spaxel with the lowest value is on the edge of the spaxel grid, we
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expand the grid by a factor of two and rerun the determination of the kinematic center.

If the kinematic center is again at the edge of the grid, we do not expand the grid, but

take the photometric center as the kinematic center. In this case, the kinematic center is

not well-determined, often due to a disorganized velocity map, so the photometric center is

a fair guess for the kinematic center. In Stark et al. (2018), the galaxies where the kinematic

center is not well-determined are eliminated from the analysis, but in this case, there are a

large fraction of galaxies that have disordered kinematics, so we include them in the analysis,

using photometric center as the kinematic center.

We also quantify the asymmetry of the Radon profiles using the kinematic predictor

A2, also from Stark et al. (2018):

A2 =
∑
i

δθ̂

σδθ̂,i

where δθ̂ is the absolute magnitude of the difference between θi on one side of the

Radon profile to the other (same ρ, different sign), σδθ̂ is the uncertainty on δθ̂, and the

expression is summed over the i values of θ̂.

We use both A and A2 as kinematic predictors in this analysis; both terms incorporate

the absolute magnitude of the difference between the measured kinematic PA on one side of

the galaxy to the other. We therefore expect that A and A2 will be enhanced for merging

galaxies, since mergers can introduce warps in the stars in a galaxy (e.g., Shapiro et al.

2008), which cause the kinematic position angle to change with radius.

When we extract the kinematic predictors from the Radon Transform, we do not prop-

erly treat the uncertainty; we ignore covariance in this calculation. We do so in the interest

of computational time, since Stark et al. (2018) utilizes a Monte Carlo process to iteratively

compute the Radon profile, or θ̂. This calculation incorporates the covariance between spax-

els. By ignoring covariance, we estimate that we underestimate the error on θ̂ by a factor of

∼5. While this has an effect on the predictor A2, one of the strengths of an LDA analysis is
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that it is a relative classification that does not rely upon absolute numbers. We use this to

our advantage in this instance. However, this means that we cannot use the A2 > 3 cutoff

from Stark et al. (2018) as a direct indication of an asymmetric galaxy.

We next use the LOSVD (line of sight velocity distribution) fitting program kinemetry

to extract the velocity and velocity dispersion moments from the stellar velocity maps. Our

goal is to quantify the chaotic velocity patterns expected for interacting systems in the

velocity and velocity dispersion maps using the degree of kinematic asymmetries from the

kinemetry output. Specifically, we utilize the technique from Shapiro et al. (2008) and

Hung et al. (2016), which uses the higher order terms of the LOSVD to define kinematic

asymmetry. We also use kinemetry to measure the global kinematic position angle (PAkin),

which is the major axis of the best fit model of a rotating disk. We describe kinemetry in

this section and how we apply it to the stellar kinematics.

Functionally, kinemetry fits the line of sight velocity and velocity dispersion maps by

dividing them into a set of nested elliptical rings. The best fit model at each radius is fit

using different values of PA and flattening factor q = 1-e, where e is the ellipticity of the

ring in the plane of the galaxy. These models use a decomposition of the moment maps

into harmonic Fourier coefficients in polar coordinates. For instance, the velocity or velocity

dispersion map, K(r, ψ) can be expanded into a finite number of harmonic frequencies:

K(r, ψ) = A0(r) +
N∑
n=1

An(r) sin nψ +Bn(r) cos nψ

where r is the semimajor axis of the ellipse, ψ is the azimuthal angle, A0(r) is the systemic

velocity, N is the number of ellipses fit, and An and Bn are the coefficients of the harmonic

expansion. The best-fitting ellipses are obtained by minimizing χ2 for the linear combination

of the An and Bn coefficients. The amplitude and phase coefficients (kn and φn) can be

calculated from the An and Bn coefficients:

kn =
√
A2
n +B2

n
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φn = arctan
(An
Bn

)
An ideal rotating disk can be described using only the B1 term, which represents the

cosine term for the circular velocity of a galaxy’s rotating disk:

V (r, ψ) = Vc(r) sin i cos ψ

where r is the radius in the plane of the galaxy, ψ is the azimuthal angle, Vc(r) is the circular

velocity, and i is the inclination of the galaxy disk.

The higher order An and Bn terms represent deviations from an ideal rotating disk. We

quantify these perturbations with vasym and σasym, which are measured from the kn amplitude

coefficients of the model velocity and velocity dispersion maps, respectively (Krajnovic et al.

2006; Shapiro et al. 2008; Hung et al. 2016; Bellocchi et al. 2016):

vasym = <∑5
n=2 kn,v/4

B1,v >r, σasym = <∑5
n=1 kn,v/5

A0,v >r

where the expression is averaged over all radii, r. The amplitude coefficients, kn,v, are

summed and averaged for the n higher order moments. We exclude the k1,v term from the

calculation of vasym since it represents radial outflow, which is not associated with stars

(Shapiro et al. 2008). We normalize vasym by the circular velocity term and σasym by the A0

term, which is the amplitude of the velocity dispersion maps, as in Krajnovic et al. (2006).

vasym and σasym increase for disordered velocities and velocity dispersions. While this

effect is more dramatic for ionized gas (Shapiro et al. 2008), we also expect that disordered

stellar velocity and stellar velocity dispersion fields should also lead to enhanced vasym and

σasym values.

To determine the best fit Fourier coefficients to calculate vasym and σasym, we run

kinemetry multiple times. We center on the kinematic center, which is defined from the

Radon Transform. We first allow the best fit PA to vary for each elliptical radius fit. After

determining a median value of the PA, or the global PA (PAkin), we then allow the value

of q to vary, which is the ellipticity. After determining the global values for PA and q, we
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Figure 5.7: Example kinemetry fits to a galaxy with observed stellar velocity map (left), best
fit kinemetry model (middle), and vobs − vkinemetry residual map (right). The color bar shows
the velocity in km s−1. We utilize the residuals as a predictor, which we refer to as ‘resids’ or
‘kinemetry residuals.’

do a final run to determine the values of the higher order kinematic moments and therefore

vasym and σasym, which are the kinematic predictors we use in our LDA technique. We then

compare the PA of the kinematic major axis (PAkin) from kinemetry to the imaging major

axis (PAimg, measured using statmorph from the r−band imaging) to create our predictor

∆PA (Barrera-Ballesteros et al. 2015). Since ∆PA traces the recent global misalignments of

stars, it should be elevated for the merging galaxies.

The final predictor that we extract using the kinemetry fitting process is the velocity

residuals or ‘resids’, as we refer to it. This predictor is quantified:

resids =

∑N
i,j |vobs − vkinemetry|

N

where vobs is the observed velocity map, vkinemetry is the best fit model from kinemetry, and

N is the number of spaxels fit. We include this normalization factor in order to penalize the

fits that converge to a very inclined galaxy in order to avoid fitting disordered kinematics in

the exterior regions of the galaxy. We show an example of a simulated galaxy snapshot from

the q0.5 fg0.3 simulation fit with kinemetry and its velocity residuals in Figure 5.7.

Finally, we extract λRe , the specific angular momentum, which is defined by Emsellem

et al. (2007):
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λRe =
< R|V | >

< R
√
V 2 + σ2 >

=

∑N
n=1 FnRn|Vn|∑N

n=1 FnRn

√
V 2
n + σ2

n

where Fn is the (r−band) flux, Rn is the distance from the kinematic center, Vn is the

stellar velocity, and σn is the stellar velocity dispersion. λRe is only measured to the r−band

effective radius.

The ellipticity of a galaxy, ε, is measured from the r−band photometry. ε is specifically

extracted using statmorph, and is distinct from the ellipticity parameter used by kinemetry

to fit rotation curves.

Both λRe and ε can be used in combination to define the fast/slow rotator division for

elliptical galaxies from Emsellem et al. (2011):

λRe < 0.08 + ε/4

where slow rotators fall below this line.

This division is discussed in more detail as it applies to the simulated galaxies in this

work in Section 5.3.3. In Emsellem et al. (2004) and Smethurst et al. (2018), it is applied

to galaxies in the SAMI and MaNGA surveys, where it is used to divide the galaxies with

disordered or slow rotation from the galaxies with fast or organized rotation.

The more predictive of the two axes of this classification is λRe , which decreases more

dramatically for galaxies with more disordered rotation, so we predict that it will decrease

for merging galaxies. While ε is technically an imaging predictor, we include it in this work

for direct comparison with previous papers that examine fast/slow rotators. Since ε = 0

is a more spherical galaxy, we predict that ε will decrease slightly for the post-coalescence

stages of the merger, where the extended tidal features have faded, and the light is more

concentrated, as we found in N19.

To summarize, we extract the following kinematic predictors: ∆PA, vasym, σasym, resids,

λRe , ε, A, and A2.
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5.2.6 Linear Discriminant Analysis

The classification in this work relies upon a LDA technique that separates nonmerging

galaxies from merging galaxies based upon a combination of the input kinematic predictors.

This same technique was presented in N19, but for imaging predictors. Here, instead of

including all of the kinematic predictors in the final classification, we first utilize the LDA

technique as a selection technique to determine which predictors are most informative and

then create the final classification based on these selected predictors. In order to directly

compare the imaging classification to the kinematic classification, we utilize the same snap-

shots from all simulations.

Relevant details of the LDA technique from N19 include:

• All predictors are standardized prior to the LDA technique, meaning that predictors

with higher values (such as A2) do not have an outsized effect on the analysis.

• We utilize priors on the relative fraction of merging and nonmerging galaxies in

nature vs in the simulations; this accounts for the fact that we have more merging

galaxy snapshots (relative to nonmerging snapshots) for each simulation. We use

the same priors from N19; fmerg = 0.1 for the major mergers and fmerg = 0.3 for the

minor mergers.

• We include interaction terms to explore correlations between predictors.

• Machine learning techniques like LDA do not often come with statistical errors on

the returned classification coefficients. Therefore, we use k-fold cross-validation in

order to obtain 1σ errors on the predictor coefficients.

• In order to select which coefficients are necessary for the classification, we use a

forward stepwise selection technique, which orders and includes only the relevant

terms and interaction terms.

For complete details, including the full mathematical formulation for LDA, see N19.



231

5.3 Results

After creating mock MaNGA datacubes from the five simulations of merging galaxies

(with matched isolated galaxies), we extract the eight kinematic predictors introduced in

Section 5.2.5 (∆PA, vasym, σasym, resids, λRe , ε, A, and A2). Our next step is to prepare the

input data for the LDA, initialize the classification by running the LDA as first a predictor

selector (to eliminate unnecessary predictors), and then rerun it as a classification. We

describe our process for preparing the data and examining it in the context of assumptions

of LDA in Section 5.3.1, the selection process in Section 5.3.2, and the final classification

results in Section 5.3.3. In Section 5.3.3, we also combine the major and minor mergers into

a combined ‘Major Merger’ and ‘Minor Merger’ classification, respectively, as in N19. We do

this with our ultimate goal in mind, which is to create a combined imaging and kinematic

classification in Nevin et al. (2019, in prep) that we will apply to the galaxies in MaNGA.

Finally, we measure the observability timescales for the kinematic classifiers in Section 5.3.4

and the accuracy and precision of the LDA classification for each simulation in Section 5.3.5.

5.3.1 LDA Data Preparation

LDA assumes multivariate normality, homoscedasticity, and the absence of multi-

collinearity, meaning that all the predictors are normally distributed, the covariance among

the merging and nonmerging classes is equal, the predictors are not strongly correlated with

one another, and there are not significant outliers in the data1 . Here, we test these four

assumptions by closely examining the data. We carry out the same statistical tests as in N19

to test for normality, homoscedasticity, multicollinarity, and outliers. In N19, for the imag-

ing predictors, we found that the data violated multivariate normality and homoscedasticity

while passing the test for multicollinarity and extreme outliers. The kinematic predictors

1 When we refer to ‘data’ in this section, we mean the set of predictor values for each simulation. For
instance, an outlier in the data is a galaxy snapshot for which one or multiple predictor values are outliers
relative to the distribution of predictor values of the other galaxy snapshots.
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also violate multivariate normality and homoscedasticity; in addition, some predictors are

collinear, and there are outliers in the data. In this section, we briefly justify why the data

are not normal or homoscedastic, we remove a predictor to eliminate multicollinearity, and

we then describe our treatment of outliers.

We conduct a Shapiro-Wilke and Kolmogorov-Smirnov test for normality on the

marginalized predictor distributions and are able to reject the null hypothesis that the data

are drawn from a normal distribution for the majority of predictors. This means that the

marginal distributions are not normal. It naturally extends that the data are not multivari-

ate normal since each individual marginal distribution must be normal and so must their

joint distributions. Using visual examination, we find that the predictors have skewed dis-

tributions as opposed to multi-modal distributions. Thus, the violation of non-normality is

not extreme.

Given that the predictors are not normal, it is unsurprising that the data also violate

the homoscedasticity assumption. The covariances for the nonmerging and merging classes

are not equal; the Levene test allows us to confirm that the variances between groups are not

equal for most predictors. However, as we discussed in N19, LDA is fairly robust to violations

of normality and homoscedasticity, and our large sample sizes and standardization of the

predictors prior to conducting the LDA make this analysis more robust to these violations

(Duda et al. 2001; Li et al. 2006). Additionally, some work has found that if the LDA dataset

violates homoscedasticity and has unbalanced priors, the classification will predict in favor

of the largest group, which is the nonmergers (Fan & Wang 1999). In our case, this makes

for a more conservative classifier that is not prone to misidentify nonmergers as mergers,

which minimizes false positives.

We screen for multicollinarity and find that many predictors have positive correlations.

All Pearson’s r values fall below the value of 0.99, which is the official threshold for complete

multicollinearity, so while some of the predictors have high Pearson’s r values (A and A2

have an r-value of 0.97), they do not exceed the limit for multicollinearity. However, we run
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an ordinary least squares linear fit on the data and we find that the covariance matrix has

a high condition number for many runs; this indicates that while the individual Pearson’s r

values between predictors do not exceed the 0.99 cutoff, there still may be collinearity within

the data. In order to avoid this multicollinearity within the data, we remove the A predictor,

which is very similar to the A2 predictor (they have the same numerator). The A predictor

also has less predictive power (than A2) according to the ordinary least squares linear fit. We

remove it and rerun the analysis, finding that our next largest Pearson’s r value is ∼0.6-0.7

for most runs.

Next, since LDA can be sensitive to outlier values, we clean the data. We carry out

an outlier analysis for all of the input predictors for each simulation. To demonstrate this

process visually, we include Figure 5.8, which is a box and whisker plot, used to identify

outliers for the q0.2 fg0.3 BT0.2 simulation. A box and whisker plot splits the data into

quartiles, where the center line of the box is the median of the distribution for the merger or

nonmerger class, the edges of the box are the upper and lower quartiles of the data, and the

whiskers span the remaining quartiles of the distribution of the predictor values. Points that

fall outside the whiskers are outliers; outliers can either be influential points or significant

errors in measurement.

We want to avoid overcleaning the data, or removing outliers that are not measurement

errors, so we first examine the outliers point by point and remove the outliers that are related

to measurement errors, which amount to ∼1-2 galaxy snapshots for each simulation. Again,

‘data points’ refers to the predictor values from a galaxy snapshot. Measurement errors

are points where the imaging or kinematic portion of the pipeline has failed, for instance,

statmorph very rarely fits a negative ellipticity value.

The remaining outliers are influential points, which we also examine individually. We

find that the majority of outliers have elevated values in ∆PA, vasym, and A2 and are asso-

ciated with the nonmerger class. These points have a viewpoint that is 100% face-on. We

demonstrate this problem for the vasym predictor in Figure 5.9, where we show that vasym is
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Figure 5.8: The initial (pre-cleaned) box and whisker plot distributions of the q0.2 fg0.3 BT0.2
simulation. Class 0 (blue) is the nonmergers and class 1 (salmon) is the mergers. We plot the
distribution of the values for each input predictor. There are many outlier points; we eliminate
points that are measurement errors and points that are associated with the 100% face-on isolated
viewpoints. This plot also demonstrates that the distributions are skewed non-normal distributions.
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elevated, particularly for nonmerger snapshots that have close to zero ellipticity, or face-on

viewpoints. However, this is not a general trend with ε; in other words, this effect cannot be

accounted for with the vasym∗ε cross-term; instead this is a problem that must be addressed

by cleaning the data. Additionally, for all of the simulations, the isolated simulations have

slightly different viewing angles for the seven isotropic viewpoints relative to the merging

simulations. For instance, the most face-on viewing angle is 100% face-on for the isolated

galaxies while the most face-on viewing angle is not 100% face-on for the merging galaxies

because they are slightly inclined. This difference is significant when examining the predic-

tors that are sensitive to viewing angle; since these isolated samples are not matched (in

exact viewing angle) with the merging galaxies and since it would rare to identify a 100%

face-on galaxy in MaNGA, we remove all of the face-on isolated galaxy viewpoints from the

sample. This accounts for ∼10% of the isolated data points, which is acceptable since there

are of order 100 isolated snapshots for each simulation. After removing these outliers, we

are prepared to run the LDA to select which of the remaining seven predictors to retain.

5.3.2 Predictor Selection

We first run all of the simulations through the LDA with all seven predictors, after

eliminating A due to multicollineary concerns. We present the results for these seven primary

predictors in Table A.25. As in N19, the predictor selection process is a forward stepwise

selection. This means that starting with zero terms, we add in the term that minimizes

the number of misclassifications at each step. If this selected term is an interaction term,

then we also include the relevant primary terms. For example, if the ε ∗ A2 is selected, we

also include the primary ε and A2 terms. We terminate the forward stepwise selection when

adding more terms does not significantly (to 1σ) decrease the number of missclassifications.

We additionally use k−fold cross-validation to assign each predictor coefficient with a value

and associated error. We bold terms in Table A.25 that are significant to 3σ given this error.

We implement this process for each classification individually.
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Figure 5.9: The distribution of ellipticity (ε) and vasym values for the q0.2 fg0.3 BT0.2 simulation
for the merging (red) and matched nonmerging (blue) sample of galaxies before we clean the data.
We find that vasym is elevated for the face-on galaxies; these same galaxies have ε values close to
zero. Since there are no mergers that are 100% face-on, we eliminate the isolated galaxy snapshots
that are 100% face-on from the analysis.
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We then eliminate predictors that are not selected by the forward stepwise selection

technique by any simulation. The vasym predictor is unimportant for all simulations so it

is the only term that we eliminate from the analysis. So although vasym increases for many

of the merging galaxies it is not selected as a useful predictor by the preliminary LDA run.

Upon closer examination, we find that vasym and σasym are correlated, and that σasym is less

sensitive to viewing angle. Therefore, σasym captures the relevant information while vasym is

superfluous to the analysis.

5.3.3 Classification Results

We eliminate the vasym predictor and rerun the LDA as a classifier. For this final

iteration of the classification, we combine the three major mergers into a combined major

merger classification and the two minor mergers into a combined minor merger classifica-

tion. We present the new results for the primary predictor coefficients in Table A.26 and the

interaction term coefficients in Table A.27. We also rerun the classification without interac-

tion terms in Table A.26 and we discuss the motivation for this in this section. Finally, we

also briefly discuss the main results of the LDA classification for each simulation, which we

examine in more detail in Section 5.4.

We present the values of LD1 for the nonmerging and merging populations of each

simulation in Figures 5.10 and 5.11 for the major mergers and minor mergers, respectively.

LD1 is the first discriminant axis of the LDA classification: the higher the value, the more

likely the galaxy is merging, so this axis best separates the two classes of merging and

nonmerging galaxies. We find that the classification is better able to separate the merging

and nonmerging classes for the major merger simulations.

Here we briefly discuss the relative importance of the primary predictor coefficients for

each simulation since they represent the most easily interpretable outcome of the classifica-

tion. However, these are the linear terms, and there are also important interaction terms

that affect this analysis. In order to more directly assess the relative importance of the
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Figure 5.10: Histograms of LD1 for the populations of merging and nonmerging galaxies for the
combined major merger (top) simulation and all of the individual major merger simulations. All
of the matched nonmergers are blue. The vertical black line is the decision boundary; it is the
midway point between the mean of the nonmerger and merger populations. If the LD1 value of a
galaxy falls above this line, the galaxy is more likely to be classified as a merger.
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Figure 5.11: Histograms of LD1 for the populations of merging and nonmerging galaxies for the
combined minor merger (top) simulation and all of the individual minor merger simulation. All of
the matched nonmergers are blue. The vertical black line is the decision boundary; it is the midway
point between the mean of the nonmerger and merger populations. If the LD1 value of a galaxy
falls above this line, the galaxy is more likely to be classified as a merger.
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primary predictors, we rerun the LDA without interaction terms and report the results in

Table A.26. It is very important to note that the classification is different without interaction

terms; the interaction terms are accounting for relationships between the predictors that we

cannot perceive as easily by eye in the predictor space and therefore these terms increase the

accuracy of the classification by a minimum of 10%. So although the interaction terms do

not facilitate an easy analysis of how individual predictors affect the classification, they are

important for the overall method. We describe here how to properly analyze the primary

predictor coefficients with particular attention to these interaction terms.

We find that for the simulations where there are few and/or small interaction terms,

the order of importance of the linear primary predictor coefficients more closely matches that

of the primary coefficients for the LDA run without interaction terms. For instance, LD1 is

fairly simple for q0.5 fg0.3 since it has only three important terms:

LD1q0.5 fg0.3 = 1.69σasym + 0.69A2 − 0.19σasym ∗ A2

In this case, the primary predictors dominate since their coefficients are larger, and

the interaction term is a combination of the two primary predictors. This interaction term

describes the way that σasym changes relative to the A2 predictor. For instance, if we want

to know how LD1 changes relative to σasym when A2 = 0, we can ignore the interaction term

since it goes to zero, and we simply use the primary predictor for σasym. However, this is

rarely the case. Instead, the interaction term changes sign if the value of A2 or σasym drops

below the mean of the distribution (recall, the predictors are standardized to a mean value of

0). For instance, if A2 = -1, and σasym is also less than zero, then LD1 will decrease towards

the nonmerger classification. In this case, since the interaction term coefficient value is

much less than the primary coefficients, the primary coefficients still dominate the analysis,

so we can safely claim that if the value of σasym increases, the galaxy is more likely to be

merging and likewise for A2. In this case, it is also straightforward to claim that σasym is

more important than A2. When we run just the primary predictor terms through the LDA
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without any interaction terms, we find that the σasym and A2 coefficients have this same

order of importance.

The picture with interaction terms becomes more complicated for simulations such as

the major merger combined simulation, where there are many more interaction terms that

have large relative coefficients. In this case, LD1 is (in order of the absolute value of the

term coefficients):

LD1major, combined = 3.09σasym ∗ λRe − 1.94λRe + 1.74resids− 1.27resids ∗ λRe

−1.13σasym ∗ resids− 0.82σasym ∗ ε − 0.7σasym

+0.55ε + 0.53A2 + 0.38∆PA − 0.14∆PA ∗ A2

(5.1)

The largest coefficient belongs to an interaction term. The largest primary predictor

coefficient is λRe , so if all other predictors are perfectly at zero, then if λRe decreases, LD1

will move towards the merger classification. However, in the case where σasym is large, then

increasing λRe will actually move LD1 towards the merger classification. Therefore, it is

extremely difficult to directly compare the primary predictor coefficients for this simulation.

In this case, we rely upon the run without interaction terms to compare the primary predictor

coefficients.

When we examine the LDA run without interaction terms for the major merger com-

bined simulation, we find that σasym is the most important predictor coefficient, followed

by ∆PA and A2. We find that all of the simulations have too many interaction terms for

a straightforward interpretation of the interaction terms (except q0.5 fg0.3), so we use the

LDA run without interaction terms for all others. We find that in the majority of cases, the

primary coefficient terms selected by the LDA run without interaction terms agree with the

terms selected by the full LDA run, although the predictor coefficients may not be in the

same order. For the minor merger combined simulation, the most important primary term

is σasym, followed by resids, and ∆PA. For q0.333 fg0.3, the important predictors are λRe ,

then σasym, then ε and A2, which are tied for third. For q0.333 fg0.1, the most important
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term is λRe , followed by σasym, ε, and A2. For the q0.2 fg0.3 BT0.2 run, the most important

predictors are σasym, resids, λRe , ε, and ∆PA. For the q0.1 fg0.3 BT0.2 simulation run, the

important selected terms are ∆PA, resids and σasym, and ε and A2. All of our discussion in

Section 5.4.1 of the relative import of the primary predictor coefficients for different simula-

tions as well as the sign of each coefficient (does it decrease or increase for the merging galaxy

population) is based on the runs without interaction terms while the final classification is

based on the full LDA run. This is justified as a first-order analysis of the behavior of the

predictor coefficients due to the similar behavior of the predictor coefficients between the

two models. We discuss the importance of the non-linear interaction terms in the context of

the non-linear evolution of the kinematic predictors in Section 5.4.2.

We next briefly analyze which terms are included in the overall LDA run. We can

also assess the relative complexity of each simulation using the number of total primary and

interaction predictor terms that are necessary. For instance, the combined major merger

simulation has 11 total terms, the combined minor merger simulation has five, the q0.5 fg0.3

simulation has two, the q0.333 fg0.3 simulation has seven, the q0.333 fg0.1 simulation has

six, the q0.2 fg0.3 BT0.2 simulation has four, and the q0.1 fg0.3 BT0.2 simulation has two.

The minor merger simulations require fewer overall terms. The majority of simulations tend

to rely upon the σasym, resids, and λRe predictors. The major mergers tend to rely upon

A2, while this coefficient is unimportant for the individual minor merger simulations. ∆PA

and ε are only important for a few simulations, where ∆PA is more important for the minor

mergers. We discuss the importance of mass ratio to the classification in Section 5.4.3.

We can directly compare the q0.333 fg0.3 to the q0.333 fg0.1 simulation in order to

differentiate between the effects of gas fraction. These two simulations are not significantly

different and we discuss the lack of differences between the LDA classifications for gas fraction

in Section 5.4.4.
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Figure 5.12: LD1 sensitivity with time. The points are the viewpoint-averaged value of LD1 for
each snapshot in time along with the shaded 1σ confidence intervals of the LD1 values for each
snapshot. We divide each plot into the early, late and post-coalescence stages of the merger. The
blue lines and shaded 1σ confidence intervals are the isolated galaxies for each simulation, from the
matched isolated galaxies that evolve for ∼2 Gyr and the snapshots that are before first pericentric
passage and > 0.5 Gyr after final coalescence. The horizontal black line is the decision boundary,
which is the halfway point between the means of the merging and nonmerging population.
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5.3.4 Observability Timescale

We define the LDA observability timescale in N19 to be the sum of all snapshots

where the average LD1 value for a given snapshot (averaged over all the viewpoints for that

snapshot) is greater than the decision boundary. The decision boundary is halfway between

the means of the merging and nonmerging galaxy distributions. We present the observability

timescales for all of the simulations in Table A.28 along with the total merger duration for

each simulation and the fraction observability, or fraction of the duration of the merger that

it is observable by the LDA technique. We exclude the combined major and minor mergers

from this table since they are not one continuous merger and so it is impossible to calculate

an observability timescale for them.

With the exception of the 1:5 minor merger (q0.2 fg0.3 BT0.2), which is observable for

100% of the duration of the merger, the major mergers have a larger fraction of observability.

The major merger simulations are observable for ∼70% of the duration of the merger, and

the 1:10 minor merger (q0.1 fg0.3 BT0.2) is only observable for 36% of the duration of the

merger. We present a visualization of how the mean values of LD1 change throughout the

lifetime of each merger in Figure 5.12. This shows the viewpoint-averaged value of LD1

for each snapshot as well as the 1σ confidence interval on this value. We also plot the

decision boundary for each simulation. The minor mergers do not fall significantly above

this line; even though the viewpoint-averaged LD1 values for the q0.2 fg0.3 BT0.2 simulation

fall above the decision boundary, they overlap the decision boundary to 1σ confidence. This

means that not all viewpoints are significantly above this boundary. On the other hand,

the major merger simulations are significantly above this boundary for the majority of their

duration. We discuss the implications of the different observability timescales in more depth

in Section 5.4.5.
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Figure 5.13: Confusion matrices to visualize the relative numbers of
true negatives (upper left quadrant), false positives (upper right),
false negatives (lower left), and true positives (lower right) for the
minor merger (left) and major merger (right) combined simulations.

5.3.5 Accuracy and Precision

Here, we measure the relative accuracy and precision of the various simulations. We

present these results using a confusion matrix for the major and minor combined simulations

in Figure 5.13, which shows the relative fraction of known mergers and nonmergers that are

classified by the LDA as merging and nonmerging. We quantify the accuracy and precision

for all simulations in Table A.29.

The accuracy for a given simulation is defined as the number of correct classifications

of nonmergers as nonmergers (true negatives) and the number of correct classifications of

mergers as mergers (true positives) divided by the number of total classifications:

A =
TP + TN

TP + TN + FP + FN

where FP is the number of false positives, or nonmerging galaxies that are classified as merg-

ers, and FN is the number of false negatives, or mergers that are classified as nonmerging.

A more accurate classifier maximizes the number of true classifications.

Precision is defined as the number of true positive classifications over the total number
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of positive classifications:

P =
TP

TP + FP

A precise classifier maximizes the fraction of true positive classifications relative to false

positives (nonmergers that are classified as mergers). In this work, we seek to eliminate false

positives from the sample, or nonmerging galaxies that are incorrectly classified as mergers.

Figure 5.13 demonstrates that the classifiers are precise and not as accurate. We do not

optimize these classifications by either of these metrics here, although it is possible to do so

by adjusting the decision boundaries. For example, if we wish to increase the accuracy of the

methods by sacrificing a small degree of precision, we could move the decision boundaries

to lower values of LD1 (to the left in Figures 5.10 and 5.11). We discuss the implications of

the accuracy and precision of the classifications in more depth in Section 5.4.6.

5.4 Discussion

In this section, we discuss the kinematic LDA classifications and their implications for

merging galaxies. We specifically discuss the individual LD1 coefficients in Section 5.4.1. We

discuss how the values of the predictors change with time in Section 5.4.2. We mirror the

discussion from N19 in Sections 5.4.3 and 5.4.4, where we explore the differences between

simulations of different mass ratio and gas fraction, respectively. We consider the implications

of the observability timescale of the kinematic LDA technique in Section 5.4.5 and the

accuracy and precision of the technique in 5.4.6. Finally, we explore some alternative machine

learning techniques in Section 5.4.7.

5.4.1 The behavior of the LD1 coefficients are consistent with previous work

Since the interaction terms affect how changing a given predictor will change the de-

pendent variable (LD1), we use our analysis from the LDA run without interaction terms for
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this discussion. The LDA run without interaction terms is a different classification from the

original with the interaction terms; it decreases the accuracy and precision of the classifier

and is not the final classifier we plan to apply to the MaNGA galaxies. We therefore restrict

the discussion here to a first-order more general discussion of the selected coefficients for each

run, whether they are positive or negative, and the significance of which classifications rely

on each predictor. Here, when a predictor coefficient has a positive value, this means that

a larger value of this predictor will lead to a larger value of LD1, increasing the likelihood

that the galaxy is merging.

We also supplement this discussion with visuals of how the pre-standardized values

of the predictors change during the merger simulations. In this discussion, we carefully

distinguish between the behavior of the LD1 predictor coefficients and the pre-standardized

predictor values. The LD1 coefficients are the values that correspond to each predictor in

Table A.26; they accompany primary predictors or interaction terms. The pre-standardized

predictors are the measured values of each predictor, prior to standardizing to a mean of

zero and a standard deviation of one. When classifying a single galaxy, one multiplies each

standardized predictor value by the corresponding coefficient and sums all of the relevant

terms to calculate LD1. While the predictor coefficients are not the same as the values of the

pre-standardized predictors, the behavior of the two are closely related since the classification

is built from the standardized predictors. In this way, it is intuitive and informative to

examine the behavior of these ‘raw’ pre-standardized predictor values to understand the

behavior of the predictor coefficients.

5.4.1.1 The difference between the kinematic PA and the imaging PA (∆PA)

The predictor coefficient that corresponds to the difference between the global photo-

metric and kinematic position angles (∆PA) is positive, meaning that merging galaxies are

more likely to have a larger value of ∆PA. These position angles (kinematic and photometric)

are both global measurements of the position angle, since they do not vary with radius.
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Figure 5.14: Time evolution of the merging (red) and matched
nonmerging (blue) galaxies in ∆PA-A2 predictor space for the
q0.2 fg0.3 BT0.2 minor merger (left) and the q0.5 fg0.3 major merger
(right). Here we show the pre-standardized predictor values. Note
that the axes ranges change, such that the q0.5 fg0.3 simulation spans
a larger range of ∆PA and A2.

Barrera-Ballesteros et al. (2015) investigate the kinematic misalignments of optically-

identified merging CALIFA galaxies at different stages. They do this for the stellar and gas

components of the system. We focus on the results that pertain to the stellar velocity field;

the gas velocities are beyond the scope of this paper, but are an intriguing future direction.

Barrera-Ballesteros et al. (2015) find that 43% of their sample of major mergers have stellar

morpho-kinematic misalignments larger than the control sample of non-interacting galaxies.

This verifies our result, that the ∆PA coefficient increases for merging galaxies.

The ∆PA predictor coefficient is important for both the major and minor merger

simulations, and is relatively more important for the minor merger simulations. This result is

also seen in the pre-standardized ∆PA values. When we examine this behavior in Figure 5.14,

we find that for a few snapshots, the average value of ∆PA is elevated for the q0.2 fg0.3 BT0.2

simulation to values of > 10◦, which explains why it is still an important predictor for these

simulations. For q0.5 fg0.3, ∆PA is markedly more elevated for the merging snapshots. So

while ∆PA tends to be greater for the major mergers, it is still slightly elevated for the minor

mergers relative to the isolated population of galaxies, which is why it is still a key predictor
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for the minor mergers.

5.4.1.2 The asymmetry in the velocity dispersion map (σasym)

The σasym coefficient is positive, meaning that a merging galaxy is more likely to have

a greater value of σasym. σasym is also one of the more important predictor coefficients for

merger identification. We present the vasym-σasym predictor space diagram in Figure 5.15

for the q0.2 fg0.3 BT0.2 and the q0.5 fg0.3 simulations, where the σasym pre-standardized

predictor values also increase for the merger population.

The positive σasym predictor coefficient as well as the increased pre-standardized pre-

dictor values for the merging population is confirmed in previous work, which finds that

merging galaxies have enhanced values of both vasym and σasym in observed and simulated

mergers (Shapiro et al. 2008; Bellocchi et al. 2012; Hung et al. 2016). We compare the degree

of increase for the various simulations in this work to some of these studies. However, this is

not a direct comparison since Shapiro et al. (2008), Bellocchi et al. (2012), and Hung et al.

(2016) use the gas kinematics to calculate vasym and σasym and a different method to calculate

σasym. Since they rely upon the gas kinematics, they use the B1,v (rotation curve) coefficient

as the normalization factor to calculate σasym as opposed to the A0,v term, which traces the

mass of the system. The B1,v term is more appropriate for the gas component since the gas

component does not always trace the mass of the system and the gas component can have

decreased radial coverage that corresponds to a loss in the dynamic range of the asymme-

tries. Therefore, this section offers rough comparisons to the findings of previous work, but

avoids directly comparing the values of vasym, σasym, and the Kasym measurement, which is

the total kinematic asymmetry (K2
asym = σ2

asym + v2
asym).

Shapiro et al. (2008) study σasym of warm ionized gas for observed z ∼ 2 galaxies. They

find that 50% of their 11 systems have kinematics consistent with major mergers, which they

classify as Kasym > 0.5. These are highly disordered higher redshift systems, and the study

focuses on ionized gas, which is often more disturbed than the stellar component of the
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velocity field. However, the same principle applies to the stellar velocity field of our lower-

redshift galaxies; σasym, which traces the disorder in the higher order terms of the fit to the

velocity dispersion field, should increase for major merging galaxies, which we confirm in this

work. The relative increase of the galaxies in this work is less, but the overall trend is similar.

We overplot the Kasym > 0.5 line from Shapiro et al. (2008) on Figure 5.15 for comparison.

Again, it is important to note that not only is this divide determined for inherently more

kinematically disturbed z ∼ 2 galaxies, but it is calculated for the gas velocity as opposed

to the stellar velocity (the gas tends to be more disturbed). Additionally, σasym is measured

with a normalizing coefficient of B1,v as opposed to the A0,σ term used in this work.

Bellocchi et al. (2012) study local luminous infrared galaxies (LIRGs), which are major

mergers, with the VLT/VIMOS IFU and find that the threshold value of Kasym changes with

spatial resolution. When they artificially move the sample of galaxies to higher redshift, the

galaxies appear more symmetric in their kinematic maps, and the threshold value for major

mergers decreases from Kasym > 0.135 for local galaxies to Kasym > 0.096 for z ∼ 3 simulated

galaxies.

Hung et al. (2016) define a Kasym threshold of 0.15 for the lower redshift simulated

galaxies in their work, which is calculated from the gas velocity of particles from simulated

SUNRISE mergers. We add this classification threshold to Figure 5.15. Hung et al. (2016) find

that the mergers in their sample exceed this threshold for 0.2-0.36 Gyr and are most visible

during the ‘strong interaction’ or late stage of merging, where the 1:4 mass ratio minor

merger has an observability timescale on the lower end of that range, and the 1:1 major

merger has an observability timescale on the upper end of that range. While we measure

the stellar kinematics (as opposed to the gas kinematics), we also find similar results, that

the major merger simulations show the most heightened values of σasym for the late stages

of the merger, where they do exceed the threshold Kasym > 0.15 threshold from Hung et al.

(2016) for a few snapshots. We expect the ‘observability time’ for σasym and vasym to increase

if they were measured from the gas velocities.



251

We find that all of our merging galaxies fall below the threshold value of 0.5 from

Shapiro et al. (2008). Therefore, a better analog for the local disk-dominated galaxies in

this work would be the LIRGs from Bellocchi et al. (2012) or the simulated local merging

galaxies from Hung et al. (2016).

We find that σasym is not as sensitive to the minor mergers, which undergo a smaller

disturbance in the stellar velocity maps of the primary. This is consistent with Hung et al.

(2016), who find that the simulated minor mergers have a shorter observability timescale

in this predictor. We examine Figure 5.15 to explore the difference between the minor and

major merger simulations; the minor mergers show little offset between vasym and σasym

between the populations of isolated nonmerging and merging galaxies, whereas the merging

galaxies show enhanced values of vasym and σasym for the merging galaxies.

One advantage of the LDA technique (in addition to the utility of relying upon multiple

different predictors) is that we can rely upon the trend of increasing σasym values as opposed

to measuring a new classification line. This is an appropriate approach given that the galaxies

in this work span a specific range of predictor space; they are disk-dominated local mergers.

This also allows us to avoid the pitfalls of using a specific threshold value that was derived

from galaxies with different resolutions, inherent properties, and/or measurement techniques

for vasym and σasym that would lead to systematic offsets in the values of vasym and σasym.

5.4.1.3 The kinemetry residuals (resids)

For the LDA run without interaction terms, the kinemetry residuals (resids) coeffi-

cients are negative for the minor merger simulations, meaning that the residuals are lower

for the mergers. This is surprising because it indicates that a larger disagreement between

the best fit disk model and the observed data means that the galaxy is more likely to be

nonmerging. We are still investigating if this is an effect of the technique utilized to mea-

sure this predictor, a concern with the kinemetry disk fit, or a physical reflection of the

simulated galaxy merging and nonmerging galaxy populations. Here we briefly discuss how
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Figure 5.15: Time evolution of the merging (red) and matched non-
merging (blue) galaxies for the q0.2 fg0.3 BT0.2 simulation (left)
and q0.5 fg0.3 BT0.2 simulation (right) on the vasym-σasym dia-
gram. Here, we show the pre-standardized predictor values. The
Kasym = 0.5 (dashed) and Kasym = 0.15 (dotted) diagnostic lines are
included from Shapiro et al. (2008) and Hung et al. (2016).
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this predictor relates to other predictors and why it is not important for the major merger

classifications. We also discuss some potential concerns with the resids statistic, which is our

leading theory as to why it is the only coefficient that behaves counter to our expectation.

The kinemetry model disk fit is only one aspect of this classification, we also directly

rely upon σasym, which is a positive coefficient in the classification. The resids and σasym

predictors are similar in that they are both constructed from the kinemetry disk model;

the resids exclude the higher order harmonic terms in the model while σasym quantifies the

disorder in these higher order terms. Epinat et al. (2012) study the ionized gas kinematics of

galaxies in the MASSIV survey and find that the residuals of the modeled velocity field and

the deviation of the morphological major axis with the ionized gas position angle are useful

in separating ‘rotating’ from ‘non-rotating’ galaxies. Interestingly, Epinat et al. (2012) find

that the velocity field residuals are well-correlated with σasym. So although σasym and resids

are slightly different measurements, they are still fundamentally related (we also find that

they are correlated), which is part of the reason why it is surprising that the resids coefficient

is negative while the σasym coefficient is positive.

It is unsurprising that the resid coefficient is unimportant for the major merger classi-

fications; all of the merging galaxies in this work are disk-dominated and appear disk-like at

many epochs of the merger. Even during the most disturbed phases, it is still possible for

kinemetry to converge on a disk model. This could be why kinematic predictors that are

more sensitive to smaller deviations in a rotating disk such as A2 are more important for the

major merger classifications.

The measurement of the resids may be sensitive to systematics from kinemetry itself.

For instance, the kinemetry models focus on the centers of the galaxies to determine a

best fit disk, therefore, they are mostly ignoring the outskirts, which are often the most

kinematically disturbed parts of a galaxy merger. Since we calculate the residuals only for

the spaxels where the model has assigned a circular velocity value, these outer regions are not

included in the measurement of resids. kinemetry is also more likely to terminate its fitting
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at smaller radii when it encounters disorder at large radii; this leads to narrower disks fit to

galaxies with highly disordered kinematics. We attempt to account for this by weighting the

measurement of resids with the number of spaxels that are measured. We plan to investigate

this in more detail in the future.

5.4.1.4 The specific angular momentum (λRe)

The coefficient for λRe is negative, indicating that the specific angular momentum of

the merging galaxies is lower than the nonmerging galaxies. This is the case for both the

minor mergers and the major mergers although it is more extreme for the major mergers. We

present the λRe-ε diagram for the combined major and minor merger simulations in Figure

5.16, where the pre-standardized λRe values decrease as the merger progresses.

Naab et al. (2014) utilize cosmological merger tree simulations and find that major

mergers can have a large effect on the angular momentum content of a galaxy; they can

either spin up or spin down the remnant. We find that all of our galaxies begin with a λRe

value of ∼ 0.7 and evolve towards lower values of λRe . The major mergers evolve further in

λRe , down into the ‘slow rotator’ classification, which confirms that major mergers have a

larger impact on λRe .

Jesseit et al. (2007) use a sample of collisionless mergers and matched gas-rich mergers

(where 10% of the disk mass is in gas) from Naab et al. (2006) to study the kinematic

features of mergers. Some of the mergers in the study are major mergers with a 1:1 mass

ratio and some have 1:3 mass ratio. The 2D kinematics are very different depending on mass

ratio; the 1:1 major merger has very low rotation and can have kinematic misalignments

and twists, which are enhanced with gas fraction. On the other hand, the 1:3 major mergers

are faster rotating and have fewer twists. While the merger remnants in this work can have

slight warps, they do not possess more exotic features like kinematically decoupled cores.

However, our results are still consistent with the general picture from Jesseit et al. (2007)

and Naab et al. (2014): the smaller the mass ratio of the merger, the greater the change in
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Figure 5.16: Time evolution of the merging (red) and matched non-
merging (blue) galaxies for the q0.2 fg0.3 BT0.2 minor merger sim-
ulation (left) and the q0.5 fg0.3 major merger simulation (right) on
the λRe-ε diagram. Here, we show the pre-standardized predictor
values. As the merger progresses (red points), the galaxies evolve
towards decreased values of λRe , which corresponds increasing levels
of disorder in the kinematic maps.
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kinematic properties like λRe .

Figure 5.16 demonstrates this for the comparison between the 1:2 major merger sim-

ulation q0.5 fg0.3 and the 1:5 minor merger simulation q0.2 fg0.3 BT0.2. We find that the

λRe coefficient is important for most simulations, but that the pre-standardized values of

λRe decrease more for the major mergers. In Figure 5.16, the q0.5 fg0.3 major merger moves

into the slow rotator region at the end of the merger, showing that major mergers can

dramatically affect the kinematic properties of the remnant.

5.4.1.5 The ellipticity (ε)

The ε predictor is technically an imaging predictor, but we include it here to pair

with λRe . Its coefficient is positive in the classification, indicating that the ellipticity of the

merging galaxies is greater than that of the nonmergers, which means that the mergers are

slightly more disk-like. When we examine Figure 5.16, it becomes apparent that the merging

galaxies have pre-standardized ellipticity values between that of the isolated galaxies and the

isolated postmerger galaxies (the snapshots that fall > 0.5 Gyr after final coalescence). The

mergers evolve towards lower ellipticity values with time, although there is significant scatter

in this trend. The merging galaxies are becoming rounder with time, which is consistent with

the expectation that mergers tend to build elliptical galaxies, which has been shown in detail

for major mergers (Bendo & Barnes 2000; Bournaud et al. 2007) as well as minor mergers

(Walker et al. 1996; Cox et al. 2008; Naab et al. 2014).

The scatter in the pre-standardized ellipticities may explain the positive ellipticity

coefficient in LD1; since there is not much separation between the merging and nonmerging

populations and some of the merging snapshots scatter towards higher ellipticity, the mergers

tend to have higher ellipticities. However, this does not mean that they evolve towards higher

ellipticity with time, in fact the opposite is true.
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5.4.1.6 The asymmetry from the Radon profile (A2)

The A2 coefficient is an important term for the majority of the classifications, but is

more important for the major mergers. The A2 coefficient is positive in all cases, meaning

that mergers have larger values of A2.

Figure 5.14 shows that the pre-standardized A2 values are also greater for the merging

galaxies. Stark et al. (2018) apply the Radon Transform to the stellar velocity maps of

galaxies in the MaNGA survey and find that the majority of the galaxies have deviations

from regular co-planar circular motion. Stark et al. (2018) classify a galaxy with A2 > 3

as ‘asymmetric’. We avoid using a cutoff value for A2 since we use a different approach

to measure A2, but we do find that A2 separates the merging and nonmerging snapshots

for the q0.5 fg0.3 simulation in Figure 5.14. There are no isolated snapshots above a value

of A2 ∼10. The separation is less clear for the minor mergers, where there is significant

overlap between mergers and nonmergers and very few merger snapshots have an average

value greater than 10.

A2 measures how the kinematic PA changes with radius, which probes how much it

deviates from a straight line. Epinat et al. (2012) also use this as a classification tool;

galaxies with a larger deviation are classified as ‘non-rotating.’ These galaxies are different

from the disk-dominated galaxies in this work, for which there is always a dominant rotational

direction. The merging galaxies here are not totally kinematically disorganized; they still

maintain a rotating axis. This is why A2 is a powerful predictor: it can detect small kinematic

warps in the rotation field.

5.4.2 The predictors evolve non-linearly with time; the LDA incorporates

this behavior

As evident in Figures 5.14, 5.15, and 5.16, the predictor values evolve with time

throughout the merger. In most cases, this evolution is non-linear. For instance, in Fig-
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ure 5.16, the trend is towards decreased values of λRe , ending at the lowest values for the

post-coalescence stages. However, then, there is a slight positive evolution for the snapshots

that we classify as isolated because they take place > 0.5 Gyr after final coalescence. This

is the case for all of the major merger simulations, which decrease in λRe until these isolated

post-coalescence snapshots. For the minor mergers, the isolated post-coalescence snapshots

are consistent with the lowest values of λRe from during the merger.

What does this mean for the LDA classifier? The interaction terms deal with this non-

linear behavior of the predictor values with time. For instance, if we were to create a classifier

with only the primary predictors, which we did to understand the first order evolution of

these predictors, then the classifier would be inaccurate, classifying many of these isolated

post-coalescence snapshots as mergers. However, the LDA includes interaction terms, which

are sensitive to the values of the other predictors. In this way, the classifier can place less

weight on certain areas of these predictor spaces, such as the lower values of λRe . By including

interaction terms, we make the ‘linear’ discriminant analysis slightly less linear to account

for some of these non-linear predictors.

It is also important to note that while many of the predictors have a non-linear evo-

lution, some are more straightforward. For example, the LDA classifier for the q0.5 fg0.3

simulation relies on σasym and A2 and has interaction term that is not significant to 1σ.

Figure 5.14 displays this result for the q0.5 fg0.3 simulation, where A2 is heightened for the

mergers. Figure 5.15 shows this for the σasym predictor. These predictors are more cleanly

able to separate the merger population than λRe , which is why λRe is not included in the

classification for q0.5 fg0.3.

5.4.3 The classification changes with mass ratio

There have been a scarcity of studies of the properties of simulated mergers and how

they affect kinematic predictors. Hung et al. (2016) have investigated this for a set of

simulations of merging galaxies with mass ratios 1:1 and 1:4. They find that the mass ratio
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is the most important input parameter and that the merger signatures in kinematics are

most visible for the major mergers, where they can be visible for up to twice as long for

the 1:4 major merger. While there are significant differences between the approach in Hung

et al. (2016), which utilizes the GADGET-3 particle velocities for the gas particles, and our

mock datacubes, we still find that we produce markedly different classifications based on

mass ratio.

The major and minor merger classifications are different in several ways. First of all,

the minor merger classifications are less accurate and tend to have a shorter observability

timescale. Second, they rely upon a different number of terms, where the minor merger

classifications rely upon fewer terms. This could be a reflection of the decreased power of

the kinematic predictors for these simulations. We have shown in Figures 5.14, 5.15, and

5.16 that the minor merger classification does not show a significant separation in predictor

space between the merging and nonmerging galaxies. The major merger classifications have

up to 11 significant terms for the major merger combined simulation, reflecting that the

primary and interaction terms are all informative for the separation between groups.

Lastly, the significant terms differ between the major and minor classifications; resids

and ∆PA are relatively more important for the minor merger classifications while A2 is more

important for the major mergers. Unpacking these results is an exercise in relativity. For

instance, ∆PA is a relatively more important term for the minor mergers. This indicates that

the global change of the position angle is relatively more important for the minor mergers,

although it is key that the actual change in ∆PA is still greater for the major mergers. A2,

on the other hand, is the asymmetry in the Radon profile. This means it measures the

deviation of the kinematic position angle from a straight line, which identifies kinematically

warped disks. We observe more visible warps in the major mergers.
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5.4.4 The classification does not change with gas fraction

We find that the q0.333 fg0.3 simulation and the q0.333 fg0.1 simulation, which have

the same mass ratio but different gas fractions, are very similar. Therefore, the gas fraction

does not have a large effect on the kinematic predictors.

Observations and theory show that the gas fraction of merging galaxies can have a

significant impact on their kinematics. For instance, the (stellar or gas) disks of gas-rich sys-

tems can survive mergers or reform to erase kinematic signatures of a merger (e.g., Springel

& Hernquist 2005; Ueda et al. 2014). One specific prediction from Hopkins et al. (2009) is

that a higher gas fraction will result in an increased chance of disk survival. While this work

is for higher redshift, significantly gas-enhanced galaxies, the dependence of the fraction of

surviving disks on gas fraction still applies here.

In the case of all the simulations in this work, the disk-like kinematics survive following

the merger. This is consistent with N19, where although the morphology of the merger

remnants is slightly enhanced in terms of concentration, the remnant is still disk-like. To

summarize, the kinematics of the relatively gas-rich and gas-poor simulations in this work

are not significantly different.

5.4.5 The observability timescale is long for most runs but shorter than for

the imaging technique

Here we discuss the results of the observability timescale of the kinematic LDA clas-

sification for the different merger simulations. These results are presented in Section 5.3.4,

where we show that the major mergers generally have a longer observability timescale that

spans ∼60% of the total merger time.

However, the q0.2 fg0.3 BT0.2 simulation is observable for 100% of the total merger.

Figure 5.12 demonstrates that while the q0.2 fg0.3 BT0.2 simulation nominally has the

longest fractional observability time, the standard deviation of each snapshot’s mean value
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of LD1 is large. If we were to instead incorporate the standard deviation into the calculation

of observability time, requiring that the mean LD1 value minus one standard deviation fall

above the decision boundary, the observability timescale of the q0.2 fg0.3 BT0.2 simulation

would be much shorter relative to the other simulations. The same pattern holds for the

q0.1 fg0.3 BT0.2 simulation; there is a large standard deviation on the LD1 value, indicating

that some viewpoints are much more ‘observable’ than others. This is not a systematic that

is associated with a specific viewpoint; the outlier viewpoints vary with each snapshot.

Another interesting observation to be made from Figure 5.12 is that the early stages

of merging for all simulations show a larger standard deviation in the LD1 values. In other

words, there is more variation among the kinematic predictors for the viewpoints of these

earlier snapshots. As the merger progresses from the post-coalescence snapshots into the

isolated snapshots that occur >0.5 Gyr after final coalescence, the value of LD1 does not

decrease significantly. This is different than the trend in N19, where the value of LD1

decreases significantly with time for the isolated snapshots that fall >0.5 Gyr after final

coalescence. Perhaps the kinematic signatures of a merger are longer lived, which is why we

do not observe the drop-off in LD1 values for the set of isolated galaxies that are selected

from the end of the merger simulations. We plan to discuss this in more detail when we

combine the two techniques in Nevin et al. (2019, in prep).

This is consistent with Hung et al. (2015), who find that kinematic tracers of mergers

tend to be most informative during the late stage of the merger, which is when the imaging

predictors are also most useful. Additionally, they find that the kinematic classification

results in a significant fraction of false negatives (mergers identified as nonmergers), meaning

that various stages of the merger can be indistinguishable from disks. This stage of merging

galaxy would also be a false negative in our technique, which leads us into the discussion of

accuracy and precision of the classification in the next section.
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5.4.6 The kinematic LDA is precise but not accurate at identifying merging

galaxies

As we discuss in Section 5.3.5, the LDA technique has a significant number of false

negatives and very few false positives. This means that the accuracy is relatively low while

the precision high; In other words, there will be fewer total galaxies correctly classified

but there are very few false positive classifications. This could be due to the skewness

of some of the predictor populations. We discuss this in the context of the violation of

multivariate normality in Section 5.3.1. To reiterate, Fan & Wang (1999) found that if

multivariate normality and homoscedasticity are violated and there are unbalanced priors,

the classification will favor the larger group, which is the nonmergers in our case (since

the nonmerger prior is large). We find that there are more false negatives for the major

merger classifications, where the prior is fnonmerg = 0.9, as opposed to the minor merger

simulations, where the prior is fnonmerg = 0.7. Therefore, we suggest that the classification is

more conservative in the sense of producing fewer false positives due to this skewness.

In this classification, accuracy and precision are a trade-off. We have the option to

modify the decision boundary in favor of increasing the accuracy; in turn, the precision

will decrease. This was not an issue with the imaging classifier since it was reasonably

precise and accurate simultaneously. We save discussion of this modification for Nevin et

al. (2019, in prep). Hung et al. 2016 recommend using kinematic predictors in combination

with imaging predictors due to the frequency of false negatives in their investigation of

kinematically-identified merging galaxies. In Nevin et al. (2019, in prep), we also plan to

combine the imaging and kinematic classifications and balance the accuracy and precision

of the kinematic classifier against that of the imaging classifier.



263

5.4.7 LDA is one of many statistical and machine learning classification

techniques; it has limitations and advantages

Here we discuss the advantages and disadvantages of an LDA approach to the galaxy

merger classification in the context of other available statistical and machine-learning meth-

ods.

Logistic regression is a binary classifier that is very similar to LDA. It is akin to a

linear regression but with a binary dependent variable as opposed to a continuous dependent

variable; in this way it is well suited for classification. We run logistic regression with the

same primary coefficients as LDA and find similar results. However, there are a number of

trade-offs between logistic regression and LDA, which is why we ultimately selected LDA as

the statistical approach in N19. We also continue to utilize LDA here in order to directly

compare the imaging and kinematic classifications in future work.

Here we briefly discuss the advantages and disadvantages of selecting the LDA tech-

nique over logistic regression. First, as was discussed in Section 5.3.1, LDA makes many

assumptions about the distribution of the data. There has been a huge body of statistical

studies about how robust LDA is under these violations. Some work suggests that LDA

is very robust and can be used to obtain accurate classifications even under extreme vi-

olations of these assumptions (e.g., Duda et al. 2001; Li et al. 2006) whereas some work

cautions that LDA is less accurate and precise than logistic regression when these violations

are present (e.g., Fan & Wang 1999). In N19, the classification is very accurate and precise

for all simulations. In contrast, in the kinematic analysis we find that the number of false

negative classifications increases. It would be interesting to explore if these classifications

would change if we used logistic regression with all the interaction terms. The disadvantages

of logistic regression are that it is surprisingly unstable when the classes are well-separated

and that it is more computationally expensive.

Another approach could be to use quadratic discriminant analysis (QDA), which we
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pursue in N19 in order to compare the accuracy and precision. This method does not

assume homoscedasticity; however the interpretation of the QDA coefficients are not as

straightforward. We find that it does not significantly improve the classification in N19.

Along the same lines, there are other machine-learning techniques, such as support

vector machines (SVM) or random forest classifiers, that could reduce the number of mis-

classifications. This class of technique tends to be more successful, yet the decisions that

drive the classifications are more opaque. We ultimately chose to pursue a classifier that

was based upon previous kinematic predictors so that we could directly compare the result

to previous work. We wanted to create a classifier that could work for multiple stages of

the merger. However, it would be interesting to investigate some of these other techniques

with the goal of better separating different epochs of the merger. Since these more com-

plicated machine learning techniques can create adaptive solutions (i.e., changing based on

the merger stage), we could create a more complicated technique that classifies based on the

epoch of the merger as well.

We chose to use LDA as our classification technique in N19 since it had a high accuracy

and precision. It is also more explicit, meaning that the analysis of the classification decisions

is more straightforward and applicable to the existing discussions in the literature. However,

there may be some trade-offs with this decision; specifically, this technique may have a

higher rate of misclassifications due to violations of the assumptions of LDA. To complete

this paper, we plan to test the technique against logistic regression as well as some more

opaque classifiers such as SVMs or random forest classifiers. This less explicit type of classifier

could also be very informative in terms of discovering new kinematic predictors or features

in kinematic maps that are useful as classifiers.

5.5 Preliminary Conclusions

In this work, we build upon the stand-alone imaging approach in N19 to create a

parallel LDA classifier that utilizes kinematic predictors to identify merging galaxies. To
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produce the classification we create mock MaNGA-ized datacubes from SUNRISE simulated

galaxy SEDs, convolving to the spatial and spectral resolution of MaNGA, introducing noise,

and binning following the Voronoi binning scheme used for the MaNGA datacubes. Using

ppxf, we extract stellar velocity and stellar velocity dispersion maps from each datacube.

We then extract the following kinematic predictors from the 2D velocity and velocity

dispersion maps: the difference between the kinematic PA and the imaging PA (∆PA), the

asymmetry of the velocity map (vasym), the asymmetry of the velocity dispersion map (σasym),

the kinemetry residuals (resids), the specific angular momentum (λRe), the ellipticity (ε), the

weighted asymmetry in the Radon profile (A), and the asymmetry in the Radon profile (A2).

We clean the input data and run the linear discriminant analysis (LDA) as a predictor selector

first, and then as a classifier for all simulations individually as well as for the combined major

merger simulation and the combined minor merger simulation. Our main conclusions are:

• The LDA classifications for mergers with different gas fractions are not significantly

different.

• The major and minor merger combined LDA classifications are significantly different.

The major mergers rely more on the A2 coefficient, which encompasses the deviation

of the kinematic PA from a straight line. The minor mergers rely more on ∆PA,

which is the global offset of the kinematic PA from the imaging PA.

• The most important kinematic predictors (for all simulations) are the specific angular

momentum (λRe) and the asymmetry of the velocity dispersion map (σasym), both

of which show significant evolution for the major merger simulations. This agrees

with previous work that finds that major mergers have a larger effect on the 2D

kinematics of galaxies.

• Many kinematic predictors evolve non-linearly with time throughout the merger; the

interaction terms of the classification can account for this behavior. The interaction
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terms are the multiplicative combinations of the input predictors, such as σasym*ε.

• Since we combine the sensitivities of many different kinematic predictors, we find

that the observability timescale for the merger simulations is a significant fraction

of the overall merger time (∼60%).

• With the current LDA decision boundaries for separating mergers from nonmergers,

the classifications are very precise (∼90%) but less accurate (∼60%), meaning that

the classification leads to a significant number of false negatives, or missed mergers.

The precision and accuracy could be adjusted by moving the decision boundary, but

it should be noted that even with this adjustment, the kinematic technique will be

less precise and accurate overall than the imaging technique.

In Nevin et al. (2019, in prep) we plan to combine the kinematic classification with

the imaging classification presented in N19. In that paper we will describe the differences

between the approaches and will further investigate whether various kinematic parameters

enhance the existing imaging classifier. Also, we plan to apply the classifier to MaNGA

galaxies, which will involve extensive work to determine the optimal amount to move the

decision boundaries to create various levels of clean samples. For instance, as discussed in

this work, we could move the decision boundaries to a lower value in order to identify more

mergers, but this would have the effect of making the classification less precise with more

false positives.

We will also investigate the possibility of splitting the classification into two different

stages of the merger to identify early vs late-stage mergers. Our scientific goals include

identifying how the star formation histories, metallicities, and AGN activity change for

these different stages as well as for different mass ratios of merging galaxies.



Chapter 6

Conclusion

In this thesis, I have presented a novel technique to directly identify the kinematic

origin of double-peaked narrow lines in integrated spectra (Chapter 2). The sample of

double-peaked AGN (DPAGN) in this work are the 71 DPAGN at z < 0.1 identified in the

Sloan Digital Sky Survey. The kinematic technique was critical for determining that the

majority (86%) of the 71 Type-2 AGN with double-peaked emission lines are dominated by

moderate-luminosity AGN outflows. I also examined the relationship between the size of the

narrow-line region and the luminosity of the central AGN responsible for its photoionization.

I found a relationship of RNLR ∝ L[OIII]
0.21±0.05, which supports a clumpy two-zone ionization

model for the photoionization of the NLR.

My work in Chapter 2 led directly into Chapter 3; I collected the 18 double-peaked AGN

from Chapter 2 that were dominated by outflow signatures on all spatial scales. I applied

an analytic Markov Chain Monte Carlo biconical outflow model (of my own development)

to the spatially resolved kinematics of these DPAGN. I determined that multiple different

bicone geometries best described the data, including asymmetric bicones, nested bicones,

and symmetric bicones. For all 18 DPAGN, I was able to constrain mass outflow rates

and energetics from the derived surface geometries and velocities of the best fit biconical

models. This was critical for determining that 89% of the outflows were energetic enough

(LKE/Lbol > 0.005) to drive a two-staged feedback process in the disk of the host galaxies. I

additionally utilized the model bicones to show that these moderate-luminosity AGN outflows
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are very large for their luminosities with large opening angles that intersect the disk of

the host galaxies, thus having the potential to couple their energy to the ISM. Finally,

I investigated the properties of the host galaxies compared to a matched control sample

and found that 23% were significantly redder and/or had a significantly lower specific star

formation rate, which provided tentative evidence for negative feedback. Chapter 3 wrapped

up the portion of this thesis that is dedicated to AGN feedback.

I then embarked on an investigation of how to improve the accuracy of galaxy merger

identifications. In Chapter 4, I approached this using images from galaxy simulations

(GADGET-3 hydrodynamical simulations of merging galaxies with the dust radiative transfer

code SUNRISE). I presented a suite of simulated merging galaxies with different merger param-

eters (gas rich/poor, major/minor) and matched isolated galaxies. The simulated snapshots

have high temporal and spatial resolution and capture the different simulations from various

viewpoints. I first built a pipeline to create mock SDSS images from the simulated galaxy

images with the goal of identifying mergers directly from SDSS imaging. I then created tools

to extract various different imaging predictors that have been utilized in the past to iden-

tify merging galaxies; I combined all of these predictors using a linear discriminant analysis

(LDA) technique. I ran this classifier on all of the different simulated mergers and found

that the mass ratio of the merger had the biggest effect on the classification while the gas

fraction did not affect the LDA result. I then created a separate major and minor merger

classification. By creating a classification that combined all of the individual techniques, I

dramatically lengthened the observability timescale of the merger (>2 Gyr) and increased

the accuracy and precision above that of the individual tools. I preliminarily applied the

technique to GalaxyZoo galaxies and found good agreement with their merger classifications;

I plan to apply it to a larger sample of SDSS images in the future.

Chapter 5 built off of Chapter 4 by extending the classification technique to kinematic

predictors from the same set of simulated galaxies. This required creating mock datacubes

to match the specifications of the MaNGA IFS survey of galaxies. The results were similar
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in that the mass ratio of the mergers had the biggest effect of the classification, so I created a

separate major and minor merger classification. I found that the kinematic side of the tech-

nique also increased the observability timescale of the merger beyond that of the individual

kinematic predictors but that the accuracy was lower, with many false negatives, meaning

that a significant fraction of merging galaxies were missed by the identification technique.

The results from Chapter 5 are very interesting in the context of Chapter 4. I plan to

more directly compare the results of the two classifications in Nevin et al. (2019, in prep),

when I apply both techniques individually and in combination to galaxies in MaNGA.

My immediate future plans also involve publishing the imaging and kinematic technique

on Github. I have developed this technique to be adaptable to different imaging and IFS

surveys; the suite of tools will be made available under the MergerMonger Github respository

and can be adapted to telescopes such as HST, TMT, or JWST. My goal is to make this type

of classification technique accessible to the astronomical community. I have embarked on a

side projects to extend the merger identification technique to higher redshift HST imaging

with Laura Blecha’s group at the University of Florida. I plan to continue working on this

with her students in the future and to further extend this work to JWST imaging and IFS.

The more direct extension of Chapters 4 and 5 is to apply the imaging + kinematic

merger classifications to the images and IFS of the MaNGA/SDSS surveys. Then, I plan to

more directly address some of the questions posed about galaxy evolution using my samples of

merging galaxies in MaNGA. I will first investigate the spatially resolved star formation in the

MaNGA mergers since mergers are predicted to funnel gas to the center of a galaxy, fueling

star formation. Recent work finds that there is a higher fraction of recent star formation

for asymmetric galaxies, tentatively implying that galaxies that are undergoing mergers are

actively forming stars (Rowlands et al. 2018). With spatially resolved metallicities from

IFS, it is also possible to use the metallicity gradient (in this case, O/H) as a powerful

complementary probe to star formation histories; the radial distribution of metals in a galaxy

reveals the manner in which gas is accreted. For instance, major mergers have been observed
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to have low central metallicities and flat metallicity gradients (e.g., Rupke et al. 2010),

implying inflows of metal-poor gas as predicted by simulations (Mihos & Hernquist 1996).

I would investigate this in more detail with the spatially resolved stellar ages and

metallicities of pre- and post-coalescence major and minor mergers. To do this, I first plan

to modify the classification to identify pre- and post-coalescence mergers separately. I will

then measure the star formation histories for each galaxy using the Pipe3D data product

(Sánchez et al. 2016a,b) from the MaNGA survey. I plan to probe the star formation history

as a function of the spatial position in the galaxy, so I will characterize the stellar age of

spaxels at elliptical (deprojected) radial bins as a function of the Petrosian radius of the

galaxy. I will then use the Bayesian inference code IZI (Blanc et al. 2015) to measure the

metallicity at the same elliptical bins.

I also plan to further investigate the kinematic properties of galaxies in MaNGA. This

project is highly exploratory and will probably occupy me for several years. For this project,

I will use various machine learning techniques (supervised and unsupervised) to explore the

kinematics of many different types of galaxies (not only mergers) in MaNGA. My goal is to

use these machine learning tools to learn about the relationships between different kinematic

classes of galaxies; in an era of an abundance of data from IFS, it is necessary to develop

new tools to incorporate all of the information that is available. This project may expand

to include non-kinematic information such as star formation histories. Since much of galaxy

research is kinematic follow-up to morphological classifications, it could be highly informative

to first classify galaxies by their kinematic properties.
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Appendix A

Appendix of Tables

Here I include all of the tables from all four chapters and from Appendix B.

SDSS ID Galaxy Name z Telescope/Instrument
J000249.07+004504.8 J0002+0045 0.086735± 3.9E− 5 Lick/Kast
J000911.58−003654.7 J0009−0036 0.073135± 3.4E− 5 MMT/Blue Channel
J013555.82+143529.7 J0135+1435 0.072157± 1.9E− 5 Lick/Kast
J015605.14−000721.7 J0156−0007 0.080964± 1.8E− 5 Lick/Kast

Table A.1: Optical longslit observations of double-peaked AGNs.
Column 1: SDSS ID, also RA and Dec. Column 2: Redshifts and
errors, determined from the velocity of the stellar absorption lines.
Column 3: Observatory and spectrograph (This table is available in
its entirety in the online journal.)
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Properties Rotation Ambiguous Outflow Outflow
Dominated Composite

> 2 Gaussian 0/4 (0%) 2/6 (33.3%) 0/35 (0%) 26/26 (100%)
Vr > 400 km s−1 0/4 (0%) 0/6 (0%) 9/35 (25.7%) 2/26 (7.7%)
σ > 500 km s−1 3/4 (75%) 6/6 (100%) 28/35 (80.0%) 19/26 (73.1%)
σ1 or σ2 > 500 km s−1 0/4 (0%) 0/6 (0%) 35/35 (100%) 26/26 (100%)
Aligned? 4/4 (100%) 0/6 (0%) 17/35 (48.6%) 10/26 (38.5%)

Table A.5: The statistics of the properties for each kinematic classifi-
cation. Row 1: The fraction of galaxies in each classification that are
best fit by more than 2 Gaussian components. Row 2: The fraction
of galaxies with a radial velocity of the single Gaussian component
fit in excess of 400 km s−1. Row 3: The fraction of galaxies in each
classification that have a single Gaussian component velocity disper-
sion greater than 500 km s−1. Although this property is not used in
the classification process, we discuss its value for the different clas-
sification categories below. Row 4: Velocity dispersion, but for the
individual components of the two Gaussian fits. Row 5: The fraction
of galaxies where the position angle of the [OIII]λ5007 emission is
aligned (within 20◦) with the photometric major axis of the galaxy.

SDSS ID [OIII]λ5007 [OIII]λ5007 Hα Hα
∆V [km s−1] ∆V [km s−1] ∆V [km s−1] ∆V [km s−1]
PA 1 PA 2 PA 1 PA 2

J0736+4759a 274 ± 6 283 ± 6 289 ± 118 273 ±190
J1018+5127 298 ± 4 285 ± 4 312 ± 79 312 ± 79
J1250+0746 211 ± 8 218 ± 4 184 ± 2 158 ± 58
J1516+0517 292 ± 30 285 ± 50 320 ± 81 309 ± 61

Table A.6: Table of the separation in velocity space (∆V) between
the blue and red Gaussian component fits for the four rotation-
dominated galaxies. Column 1: Galaxy name. Column 2 and 3:
The velocity separation in [OIII]λ5007 in km s−1 for PA 1 and PA 2
for each galaxy. Column 4 and 5: The velocity separation in Hα in
km s−1 for PA 1 and PA 2.
aDue to a restricted wavelength coverage from the observations of
J0736+4759, we lack a Hα profile and instead compare to the Hβ
profile.
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SDSS ID Symmetric Asymmetric Nested Best Fit
χ2
ν χ2

ν χ2
ν

J0009−0036 9146.3 243.0 >10000 Asymmetric
J0803+3926 5.1 18.1 100.3 Symmetric
J0821+5021 169.1 68.2 >10000 Asymmetric
J0854+5026 >10000 183.3 226.1 Asymmetric
J0930+3430 2874.3 4.6 50.0 Asymmetric
J0959+2619 73.2 >10000 5.0 Nested
J1027+1049 73.4 27.6 4.7 Nested
J1109+0201 150.5 65.8 63.8 Nested
J1152+1903 122.8 139.7 728.9 Symmetric
J1315+2134 559.5 14.7 16.0 Asymmetric
J1328+2752 10.8 2.3 >10000 Asymmetric
J1352+0525 131.7 87.1 176.3 Asymmetric
J1420+4959 32.12 11.87 1.03 Nested
J1524+2743 390.3 168.8 4.1 Nested
J1526+4140 1.8 0.5 0.3 Nested
J1606+3427 386.2 21.1 17.0 Nested
J1630+1649 2383.9 1086.1 1591.4 Asymmetric
J1720+3106 1240.8 547.4 235.8 Nested

Table A.8: We select the best fit biconical outflow model for each
galaxy by selecting the model with the lowest χ2

ν value.

SDSS ID i PAbicone rt θ1,half Vmax < |Vobs-Vmod| >
[◦] [◦E of N] [kpc] [◦] [km s−1] [km s−1]

J0803+3926 40+18
−29 20+20

−10 9+5
−3 53+9

−9 430+110
−70 73

J1152+1903 42 +6
−44 40+20

−40 6+3
−2 60+2

−7 370+90
−50 44

Table A.9: Column 1: galaxy name. Column 2: outflow inclination.
Column 3: position angle of the bicone axis on the sky. Column 4:
turnover radius in kpc. Column 5: half opening angle. Column 6:
maximum velocity. Column 7: the mean modulus of the velocity
residuals.
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SDSS ID i PAbicone rt θ1,half θ2,half Vmax < |Vobs-Vmod| >
[◦] [◦E of N] [kpc] [◦] [◦] [km s−1] [km s−1]

J0009−0036 56+8
−6 79+16

−17 5+3
−1 60+3

−4 77+3
−2 320+60

−80 139
J0821+5021 51+34

−8 6+19
−7 9+5

−3 50 +7
−11 72+4

−6 360 +60
−100 175

J0854+5026 60+16
−8 205 +14

−169 7+2
−2 42+4

−7 75+6
−3 290+40

−50 46
J0930+3430 80+6

−9 75+55
−49 10+4

−6 37+12
−10 67+3

−2 290+130
−30 27

J1315+2134 58 +7
−12 39+14

−12 6+2
−2 48+4

−4 78+3
−2 600+130

−50 68
J1328+2752 78 +9

−13 52+81
−39 6+4

−3 48+15
−19 81+3

−5 230+260
−80 106

J1352+0525 43+14
−7 43+42

−9 6+2
−1 61+3

−6 78+2
−3 440+60

−80 78
J1630+1649 83 +5

−25 38+29
−34 6+3

−1 40+16
−7 82+2

−1 290+90
−30 92

Table A.10: Column 1: galaxy name. Column 2: outflow inclination.
Column 3: position angle of the bicone axis on the sky. Column 4:
turnover radius in kpc. Column 5: inner half opening angle. Column
6: outer half opening angle. Column 7: maximum velocity. Column
8: the mean modulus of the velocity residuals.

SDSS ID i PAbicone rt θ1,half θ2,half Vmax < |Vobs-Vmod| >
[◦] [◦E of N] [kpc] [◦] [◦] [km s−1] [km s−1]

J0959+2619 78 +9
−20 13+31

−9 7+4
−3 49+10

−14 71+5
−4 280+180

−100 46
J1027+1049 77 +9

−14 32+81
−25 12+6

−6 33+9
−9 61+5

−4 540+100
−80 43

J1109+0201 48+5
−5 59+16

−16 10+4
−2 55+5

−4 73+3
−3 390+50

−40 86
J1420+4959 79 +7

−19 174 +98
−126 5+4

−3 41+10
−16 70+6

−5 390+170
−110 153

J1524+2743 83 +5
−10 100+29

−57 5+5
−2 35 +7

−10 62+2
−2 720+100

−90 127
J1526+4140 74+12

−15 59+66
−45 10+7

−5 44+15
−14 62+11

−16 410+270
−120 88

J1606+3427 81+5
−9 114+48

−76 9+3
−3 37+8

−6 74+3
−3 370+70

−40 71
J1720+3106 84+6

−8 34+28
−24 14+4

−3 18+11
−5 30+9

−5 300+20
−10 152

Table A.11: Column 1: galaxy name. Column 2: outflow inclination.
Column 3: position angle of the bicone axis on the sky. Column 4:
turnover radius in kpc. Column 5: inner half opening angle. Column
6: outer half opening angle. Column 7: maximum velocity. Column
8: the mean modulus of the velocity residuals.
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Modeled PAs i PAbicone rt θ1,half θ2,half Vmax

[◦] [◦E of N] [kpc] [◦] [◦] [km s−1]
Pseudo-IFS 62+16

−22 75+121
−53 11+5

−6 38+23
−27 81 +5

−23 320+290
−170

21, 66 68+15
−29 92+105

−45 10+6
−6 34+28

−27 75+10
−14 330+240

−170

21, 111 80+6
−9 75+55

−49 10+4
−6 37+12

−10 67+3
−2 290+130

−30

21, 156 72+12
−25 85+100

−63 10+6
−7 30+23

−23 79 +5
−14 350+270

−170

66, 156 55+26
−35 128+119

−91 11+8
−8 23+24

−17 63+18
−28 360+300

−190

66, 111 69+15
−20 90+98

−56 10+7
−7 37+23

−19 70+13
−14 330+300

−180

111, 156 69+14
−33 105+105

−70 11+5
−9 29+25

−19 76 +6
−20 390+330

−210

Table A.12: Best-fit parameters for all observed PAs of J0930+3430
with 1σ errors. Column 1: PAs used in model. ‘Pseudo-IFS’ indicates
that all four PAs were used. Column 2: outflow inclination. Column
3: position angle of the bicone axis on the sky. Column 4: turnover
radius in kpc. Column 5: inner half opening angle. Column 6: outer
half opening angle. Column 7: maximum velocity.
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Model i PAbicone rt θ1,half θ2,half Vmax

[◦] [◦E of N] [kpc] [◦] [◦] [km s−1]
IFS 11 ± 4 -2 ± 3 3.2 ± 0.2 39 ± 6 66 ± 4 188 ± 14

Longslit 11+26
−7 60+110

−50 1+4
−1 44+39

−33 – 300+630
−180

Table A.17: Best-fit parameters for the IFS and longslit model of
the outflow in J0749+4514 with 1σ error bars. Column 1: data
used in model. Column 2: outflow inclination. Column 3: position
angle of the bicone axis on the sky. Column 4: turnover radius in
kpc. Column 5: inner half opening angle. Column 6: outer half
opening angle if applicable. Column 7: maximum velocity. The
best-fit longslit model is the symmetric bicone, so it has no outer
opening angle. The IFS model for the outflow has a wall of finite
thickness that can be described with both an inner and an outer
opening angle.

Model Mtot Stellar Mass Gas Fraction Mass Ratio
[1011 M�] [1010 M�]

q0.5 fg0.3 20.8 5.9 0.3 1:2
q0.333 fg0.3 18.7 5.2 0.3 1:3
q0.333 fg0.1 18.7 6.3 0.1 1:3

q0.2 fg0.3 BT0.2 16.8 5.0 0.3 1:5
q0.1 fg0.3 BT0.2 15.1 4.6 0.3 1:10

Table A.18: Key parameters of our suite of high-resolution GADGET-3

galaxy merger simulations.

Model Mtot Stellar Mass fgas Matched Model(s)
[1011 M�] [1010 M�]

m1 fg0.3 13.9 3.9 0.3 q0.5 fg0.3, q0.333 fg0.3
m0.5 fg0.3 6.9 2.0 0.3 q0.5 fg0.3
m1 fg0.1 14.0 4.7 0.1 q0.333 fg0.1

m0.333 fg0.1 4.7 1.6 0.1 q0.333 fg0.1
m1 fg0.3 BT0.2 13.7 4.2 0.3 q0.2 fg0.3 BT0.2, q0.1 fg0.3 BT0.2

Table A.19: Key parameters of the matched sample of isolated galax-
ies. These are matched to the mass of the primary or secondary
galaxy in the merger for each simulation and the gas fraction. The
gas fraction is the same for each merger progenitor in a given simu-
lation.
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Simulation Total Merger Time LDA Gini−M20 A AS
q0.5 fg0.3 2.20 1.96 0.59 < 0.1 2.20

q0.333 fg0.3 2.64 2.45 0.34 < 0.1 2.64
q0.333 fg0.1 2.83 2.05 0.78 < 0.1 2.34

q0.2 fg0.3 BT0.2 3.52 3.52 0.19 < 0.1 3.52
q0.1 fg0.3 BT0.2 9.17 8.78 0.73 < 0.1 7.79

Table A.22: Observability timescales in Gyr for the four different
merger identification techniques compared in Section 4.3.2 as well as
the total time of the merger.

Simulation Accuracy Precision Recall F1 Score
All Major 0.85 0.97 0.80 0.88
All Minor 0.81 0.94 0.66 0.78
q0.5 fg0.3 0.91 0.98 0.82 0.90

q0.333 fg0.3 0.90 0.97 0.87 0.92
q0.333 fg0.1 0.86 0.96 0.83 0.89

q0.2 fg0.3 BT0.2 0.88 0.96 0.78 0.86
q0.1 fg0.3 BT0.2 0.89 0.89 0.79 0.84

Table A.23: LDA performance. We list the accuracy, precision, re-
call, and F1 score as defined in Appendix B.7 for all runs of the LDA
classification.

Simulation Mass Ratio Gas Fraction Matched Isolated Galaxies
q0.5 fg0.3 1:2 0.3 m0.5 fg0.3, m1 fg0.3

q0.333 fg0.3 1:3 0.3 m1 fg0.3
q0.333 fg0.1 1:3 0.1 m0.333 fg0.1, m1 fg0.1

q0.2 fg0.3 BT0.2 1:5 0.3 m1 fg0.3 BT0.2
q0.1 fg0.3 BT0.2 1:10 0.3 m1 fg0.3 BT0.2

Table A.24: Key simulation parameters and matched isolated galax-
ies.
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Simulation Merger Duration LDA Observability Time Fraction Observability
q0.5 fg0.3 2.20 1.61 0.73

q0.333 fg0.3 2.64 2.16 0.82
q0.333 fg0.1 2.83 1.71 0.60

q0.2 fg0.3 BT0.2 3.52 3.52 1.00
q0.1 fg0.3 BT0.2 9.17 3.31 0.36

Table A.28: The duration of the merger, LDA observability time, and
fraction observability (LDA observability time/merger duration) for
each simulation.

Simulation Accuracy Precision
All Major 0.53 0.96
All Minor 0.57 0.83
q0.5 fg0.3 0.69 0.94

q0.333 fg0.3 0.69 0.94
q0.333 fg0.1 0.63 0.91

q0.2 fg0.3 BT0.2 0.63 0.83
q0.1 fg0.3 BT0.2 0.69 0.77

Table A.29: Accuracy and precision for all LDA runs.



Appendix B

Appendices of Chapters 3 and 4

Here I include the appendices for Chapters 3 and 4. At the beginning of each section,

I state which chapter the appendix accompanies.

B.1 Investigating Outflow vs Rotational Kinematics

This section accompanies Chapter 3.

In this Appendix we discuss the outflow-dominated kinematics of this sample. We com-

pare these AGN outflows to other galaxies that demonstrate rotation-dominated kinematics

on large scales (e.g., Fischer et al. 2017) to explain why we are motivated to model only

outflowing components for our sample. Additionally, we present a case study of a galaxy

from Nevin et al. (2016) that was not included in this work. This galaxy offers insight into

rotational and outflow kinematics and sheds light on the nature of the sample of 18 galaxies

in this work.

We first discuss the previous work on the full sample of 71 AGNs in Nevin et al. (2016)

as well as other general properties of this sample of AGNs that lead to our conclusion that

the 18 galaxies in this work are dominated by outflow kinematics, not large-scale rotation.

In Nevin et al. (2016), we kinematically classify the full sample of 71 double-peaked AGNs as

either outflow-dominated or rotation-dominated. The outflow-dominated AGNs are further

classified as outflow or outflow composite. Outflow composite AGNs are best fit with > 2

kinematic components and outflow AGNs are best fit with 2 kinematic components. The
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outflow-dominated classification requires that one of the kinematic components have a ve-

locity dispersion σ > 500 km s−1 or a velocity offset v > 400 km s−1 for at least one spatial

position. While outflows can also have lower velocity dispersions or velocity offsets, these

cutoffs are meant to conservatively eliminate rotation-dominated kinematics as the origin of

the kinematic components.

For this work, we carefully select 18 of the outflow-dominated galaxies from Nevin et al.

(2016) with the best quality data to model as biconical outflows. We describe this selection

in Section 3.2.1. The classification in Nevin et al. (2016) previously identified these 18 AGNs

as those with outflow-dominated kinematics apparent at one or more spatial positions in the

galaxy. The selection in this work further required that these AGNs have double-peaked

profiles consistent with a bicone at all of the modeled spatial positions. Therefore, we are

selecting for AGN outflows to model that have outflow-dominated kinematics and that are

double-peaked on large spatial scales.

Additionally, the double-peaked nature of the [OIII]λ5007 profiles at all spatial posi-

tions indicates that the 18 galaxies in this work are indeed dominated by outflow kinematics

because rotation cannot explain double-peaked profiles at all spatial scales. This was one of

the main outcomes of Nevin et al. (2016). Unlike in some modeled Seyfert galaxies, where

the profiles are double peaked towards the center, but single-peaked and rotation-dominated

at spatial extremes (e.g., Fischer et al. 2017), we found profiles for the 18 galaxies that were

double-peaked at all spatial positions.

The 18 galaxies are outflow-dominated and not rotation-dominated, but as another test

we examine how well a rotating structure can fit the gas velocity in each galaxy. We create

spatially-resolved velocity maps for each galaxy by superimposing each of the two observed

longslit PAs and fitting a single Gaussian peak to the [OIII]λ5007 profile at each position

along each slit. We determine whether the spatially-resolved velocity map for each galaxy is

rotation-dominated using two criteria: The velocity map must be centered on zero velocity

(systemic velocity for the galaxy) and it must demonstrate symmetric rotation, where if one
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extreme of an observed PA is redshifted, the other must be blueshifted by the same amount.

We find that while three AGNs potentially demonstrate disk-like rotation on large spatial

scales (J0009−0036, J0803+3926, and J1152+1903), the other 15 do not have large-scale

rotation.

These results are unsurprising given Figure 3.1, which plots the double-peaked

[OIII]λ5007 profile of each galaxy from the SDSS spectra. If these galaxies were entirely

dominated by a disk on a large scale and if this disk has a bright integrated flux, we would

expect the integrated profiles to be centered on zero velocity. However, that is not the case

for most galaxies in our sample and only two galaxies (J0803+3926 and J1152+1903) are

classified and modeled as a ‘Symmetric Bicone’ because their double-peaked velocity profiles

are centered at zero velocity. These two galaxies are also two of the galaxies that show

potential disk-like rotation in the spatially-resolved velocity maps. The third galaxy with

disk-like rotation is J0009−0036, which is best described as an ‘Asymmetric Bicone’, but it

does have velocities that are centered around zero velocity.

However, what may appear to be disk rotation in these figure*s could also mimic

a symmetric slower velocity bicone in these spatially-resolved velocity maps. We further

investigate the three galaxies that demonstrate disk-like rotation and find that individual

component fits of J0009−0036 and J0803+3926 have large velocity dispersions (σ > 500

km s−1). These large dispersions occur at large spatial scales. This indicates that they

are outflow-dominated at these spatial positions. J1152+1903 has a few spatial positions

with large velocity dispersions of its individual components, however they are overall bet-

ter characterized as narrower (σ < 500 km s−1). All three galaxies are double-peaked at

all spatial positions. This is distinct from spatially compact outflows, where the outflow

is confined to small spatial positions, and the double-peaked profile only appears at the

center of the galaxy. We conclude that these three galaxies, while their spatially-resolved

velocity maps mimic disk rotation, are dominated by outflows on all spatial scales due to the

large velocity dispersions of their individual components (J0009−0036 and J0803+3926) and
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Figure B.1: IFS maps from MaNGA and models for J0749+4514.
We plot the stellar velocity (top left) and the [OIII] gas velocity (top
right). We show the kinemetry models (Krajnović et al. 2006) for the
stellar velocity (bottom left). The [OIII] velocity map is anti-aligned
to the stellar velocity and can be described as a counter-rotating disk
(bottom middle). We also model a biconical outflow (Müller-Sánchez
et al. 2016) along the plane of the galaxy (bottom right).
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double-peaked profiles at all spatial positions (J0009−0036, J0803+3926, and J1152+1903).

Although the galaxies are dominated by outflows on all spatial scales, we now examine

whether there could be smaller contributions from disk rotation. If this is the case, then the

analytic models should take this into account by including the parameters for a rotating disk

structure in the model in addition to those for a biconical outflow.

To investigate this situation, we make a spatially-resolved velocity map of the narrower

component of the double-peaked profile for all 18 galaxies. We choose to track the narrower

component because broader components are most often associated with outflow-dominated

kinematics. We use the same criteria as above, where we identify a galaxy as rotation-

dominated if its spatially-resolved velocity map is symmetric about zero velocity. We find

that the velocity offset of the narrow component is not consistent with disk rotation for any

of the 18 galaxies.

After our analysis of the kinematics of the 18 galaxies in this sample, we find that they

are well described by outflow kinematics on all spatial scales with minimal small contributions

from disk rotation. This is consistent with our findings of the biases of the selection of this

double-peaked sample. We have selected a sample of energetic and large AGN outflows.

They are distinct from the population of outflows in local Seyfert galaxies, for example the

galaxy in Fischer et al. (2017) was selected for the biconical morphology of the [OIII]λ5007

emission in imaging (not for double-peaked narrow lines). These types of outflows occur

on smaller scales and the gas kinematics can be described by illuminated disk rotation on

larger scales. This is consistent with the biases discussed in Section 3.4.2. The outflows in

this work are larger and more energetic than samples of lower-luminosity AGNs, which often

only have small-scale outflows (e.g., Fischer et al. 2017).

While we have determined that the large-scale kinematics of the 18 galaxies in this

sample are best described as outflow-dominated, we investigate a single galaxy in more depth

to determine the role of rotating structure in the kinematics of the galaxy. We examine the

galaxy J0749+4514 more closely in a case study of an ‘Outflow Composite’ galaxy from
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Nevin et al. (2016) that is most likely dominated by outflow components on large scales with

some rotation on small scales. This galaxy is the only galaxy from our original sample of

71 galaxies that has been observed by the SDSS-IV Mapping Nearby Galaxies at Apache

Point (MaNGA) IFS survey (Gunn et al. 2006; Bundy et al. 2015; Drory et al. 2015; Law

et al. 2015; Yan et al. 2016b,a; Law et al. 2016; Abolfathi et al. 2017; Blanton et al. 2017).

So while this is not one of the 18 galaxies selected for the biconical modeling in this work,

it offers a unique opportunity to determine how disk rotation shapes the kinematics, and

directly investigate how outflow modeling with longslit data compares to outflow modeling

with IFS data.

In IFS, this galaxy has misaligned ionized gas with respect to the stellar disk (Figure

B.1). This is a kinematic signature of either a counter-rotating disk produced by a merger or

an outflow (Allen et al. 2015, Müller-Sánchez et al. 2011). To fully determine the kinematic

origin of the [OIII]λ5007 emission, we model it as a rotating disk, a counter-rotating disk,

and an outflow using the IFS data. First, we use the modeling code kinemetry to model

the higher-order moments of the LOS velocity distribution of the stellar velocity map as a

rotating disk (Krajnović et al. 2006). At each radius, a small number of harmonic terms

in a Fourier expansion are used to determine the best fitting ellipse for the stellar velocity

map. While kinemetry finds a good fit to the stellar velocity map, this same model is a

bad fit for the [OIII] velocity as indicated by a high velocity residual and a high χ2
ν value

(listed below). Second, we model the [OIII] velocity map as a counter-rotating disk. A

counter-rotating disk can be produced by a merger, where gas is funneled to to the center

of the galaxy, but is misaligned with the stellar velocity (e.g., Allen et al. 2015). Third, we

model the [OIII]λ5007 emission using a biconical outflow model and give the parameters for

the best-fit model in Table A.17. This analytic model from Müller-Sánchez et al. (2016) is

a six parameter model that uses an inner and outer half opening angle, a position angle,

a turnover radius, a maximum velocity, and an inclination to produce a biconical outflow

model.
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Figure B.2: The longslit PAs for J0749+4514 overlaid on the SDSS gri galaxy image and
the MaNGA field of view (top). Longslit PA 87 (left bottom) and PA 177 (right bottom)
observations. We label the spatial position in the upper left corner of each spatial panel,
where positive directions are to the east (PA 87) and north (PA 177). The spatial positions
of the longslit positions shown here are confined to the inner 2.′′3 radius of the galaxy,
inside the magenta MaNGA fiber. We fit two Gaussians, blue and red corresponding to
the blueshifted and redshifted profile respectively, and light blue corresponding to the one
Gaussian fit. A vertical dashed line denotes systemic velocity.
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We compare the χ2
ν values from the rotating disk, counter-rotating disk, and outflow

model and find values of 1691, 7, and 32, respectively. We find that the velocity residuals

(< |Vobs-Vmod| >) are 126, 10, and 18 km s−1, respectively. The numerical best fit is the

counter-rotating disk, but both the counter-rotating disk and the outflow are good fits to

the data and also have low velocity residuals.

While the χ2
ν values indicate that both a counter-rotating disk and an outflow describe

the data well, an outflow origin for the kinematics in J0749+4514 is a more likely explanation.

First, J0749+4514 has BPT ratios from MaNGA consistent with an AGN origin for the

ionized gas on all spatial scales. Second, this AGN is classified as an ‘Outflow Composite’ in

Nevin et al. (2016) and as discussed below, has double or triple peaked lines at many spatial

positions, especially near the center, where one of these components is broader. As discussed

for the full sample, double-peaked profiles at nearly all spatial positions indicates an outflow

origin for the gas kinematics. Third, J0749+4514 is an isolated galaxy in SDSS imaging so

it is unlikely that a merger is producing a counter-rotating disk. Fourth, outflows are more

ubiquitous than counter-rotating disks (e.g., Allen et al. 2015). An outflow origin is a better

explanation but does not fully explain all of the kinematics in the IFS data.

While the IFS data offers insight into the kinematics of this galaxy, we can also use the

longslit data to investigate the kinematics and verify that any conclusions from the longslit

observations are consistent with those from the IFS data. We present the MMT longslit

data for this galaxy in Figure B.2. PA 87 is the kinematic minor axis of the galaxy (as seen

in stellar kinematics); it has double peaks at many spatial positions but is also spatially

compact. PA 177 is aligned with the photometric major axis of the galaxy, which is also the

kinematic major axis. PA 177 has double or triple peaks at all spatial positions as well, but

one component dominates. The dominating component at the spatial extremes of PA 177 is

anti-aligned with the stellar velocity maps from MaNGA and cannot be described as stellar

rotation. It is redshifted to the south and blueshifted to the north, which is consistent with

the [OIII]λ5007 maps from MaNGA. This dominating component is narrower (σ < 500 km



317

s−1) at the spatial extremes of PA 177 and could be either a counter-rotating disk or an

outflow, which is consistent with the interpretation from the IFS data for the [OIII]λ5007

maps.

This galaxy was classified as Outflow Composite due to the presence of three kinematic

components in the longslit maps. For instance, at row 0.′′288 in PA 177 (Figure B.2), there

are three kinematic components. First, there is a dominating narrower component that is

anti-aligned with respect to the stellar rotation as seen in the IFS maps. This component

is the same component that dominates at large spatial positions. Second, a compact lower

flux narrow component tracks the stellar rotation. Third, a broader lower flux component is

centered around zero velocity.

There could be multiple kinematic explanations for these three components. First,

outflows can have many kinematic components so all three could be attributed to an AGN

outflow. Second, the low flux narrow compact component that is aligned with the stellar

velocity map could be tracking the rotating disk while the other two components correspond

to the walls of an outflow. Third, the dominating high flux narrow component could track a

counter-rotating disk, while the low flux narrow compact component is the stellar disk and

the broader component is a very small scale outflow. The presence of multiple interacting

kinematic components in the longslit and IFS data may cause the observed ambiguity in

the modeling using both the IFS and longslit data. This also underscores why we did not

include this galaxy in the 18 outflows modeled in this work due to the presence of multiple

kinematic processes.

We are conservative in selecting which galaxies we model as outflows, which is why

we excluded this galaxy and others like it from the final sample for this work. This galaxy

was excluded due to the spatially compact nature of PA 87 and the difficulty of tracking

individual components for PA 177. But while we did not include J0749+4514 in the 18

galaxies selected for this work, we model it here as a biconical outflow to compare our

longslit model to the IFS model for the outflow. As discussed above, due to the isolation of
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the galaxy, the ubiquity of AGN outflows, and the BPT ionization origin for the emission

lines, the large-scale dominating component is most likely an outflow. We find consistent

results from each model (within 2σ) and an outflow with parameters given in Table A.17.

The longslit outflow model has large uncertainties associated with the best-fit param-

eters. This is an indication of the success of our selection criteria in this paper to select the

18 galaxies to further model and correctly exclude those galaxies that will produce larger

uncertainties on the best-fit parameters. Instead of just modeling the two walls of a biconical

outflow, it is possible that we are incorrectly attributing small-scale rotational components

to the walls of an outflow as discussed above. However, it is impractical to include a rotating

component in our model in addition to the biconical outflow model because we do not have

enough data points to satisfy the n > 2k selection criterion for a bicone and a rotating disk.

If we attempted to introduce more parameters, the model would be under constrained.

The outflow models done with longslit and IFS data agree within 1σ errors for all but

one parameter (PAbicone). We have shown in our sensitivity analysis in Section 3.2.3 that

PAbicone is not well determined. In this case, one of our observed PAs is aligned with the

axis of the bicone from the IFS model, but the other does little to constrain the motion

of the outflow. Therefore, we are unable to constrain this parameter in the longslit model.

This is reflected in the large uncertainty associated with it. The values for PAbicone from

each model do agree to 2σ uncertainty. Overall, the models agree but the longslit model has

larger uncertainties associated with it, justifying our conservative selection criteria which

allows us to use longslit data for modeling purposes only when it can better constrain the

bicone geometry.
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B.2 18 Biconical Models

This section accompanies Chapter 3.

Here we show the best fit bicone models for all 18 galaxies.
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Figure B.3: As Figure 3.3, but for the remaining 15 galaxies not
shown there.
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B.3 Initial Conditions

This section accompanies Chapter 4.

We vary the initial masses, mass ratios, gas fractions, and B/T (bulge-to-total mass)

ratios of the merging galaxy models based upon previous work with similar merger simula-

tions (e.g., Cox et al. 2008; Lotz et al. 2008; Blecha et al. 2011, 2018). Additionally, we select

the values for these initial conditions based upon the range of observed values for present

day galaxies in SDSS as in Cox et al. (2008). Our goal is to produce simulated mergers

that are typical of merging galaxies in SDSS and also comparable to previous work with the

imaging predictors of simulated galaxies (e.g., Cox et al. 2008; Lotz et al. 2008).

Our simulations span a range in total stellar mass 10.6 < log M?(M�) < 10.8, which

agrees well with the fiducial models used in Cox et al. (2008) that have a range in total

mass 9.0 < log M?(M�) < 10.7. SDSS galaxies span a range in stellar mass (for individual

galaxies) of 9 < log M?(M�) < 11. When we compare this to the total mass of the merger

simulations (which combine two galaxies), we find that the simulated galaxies are in the

middle of the expected mass range for SDSS galaxies.

We vary the total mass ratio between 1:2 and 1:10 to capture three major merger

simulations and two minor merger simulations. We are able to compare to Lotz et al. (2010a)

and Cox et al. (2008), who choose mass ratio ranges of 1:1-1:20 and 1:1-1:22.7, respectively.

We select gas fractions between 0.1− 0.3. This range is typical of the SDSS galaxies,

which have gas fractions between 0 and 0.5 (Catinella et al. 2010). The mean gas fraction

of the SDSS population is ∼ 0.2 − 0.3, which is in good agreement with our choice to run

most galaxy simulations with a gas fraction of 0.3. Additionally, Cox et al. (2008) and Lotz

et al. (2010b) vary the gas fraction between 0.2 − 0.4 and 0.2 − 0.5, respectively, providing

a good amount of overlap for comparison of results.

Most of our simulations do not have stellar bulges, but we do include bulges in the

minor merger simulations. Cox et al. (2008) demonstrate that bulges act to stabilize the disk
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of the galaxy for large mass ratio mergers (they see this effect primarily for 1:5 to 1:20 mass

ratio mergers), leading to less disturbed morphology than bulgeless mergers. Since this effect

is most prominent for minor mergers, we include stellar bulges in the progenitor galaxies for

these simulations. We lack the computation resources to additionally investigate this effect

for major mergers.

The B/T ratio depends on the total stellar mass of a galaxy and SDSS galaxies range

between 9 < log M?(M�) < 11. Measured B/T ratios for this stellar mass range for galaxies

in SDSS span 0− 0.6 (Bluck et al. 2014). Therefore, our choice of a B/T ratio of 0.2 for the

minor merger simulations is typical of SDSS galaxies. We use a matched sample of isolated

galaxies so that the slightly enhanced C and n values for the minor mergers (relative to the

major mergers) are accounted for in the LDA technqiue.

B.4 Merging Galaxy Priors

This section accompanies Chapter 4.

LDA requires a prior to characterize the dataset if the relative numbers of objects

in each class are not representative of the overall population. If the frequency of merging

and nonmerging galaxies in our simulated dataset exactly matched the frequency of merging

and nonmerging galaxies in nature, our priors would be [0.5, 0.5] and would not need to be

specified. However, since we have a lower frequency of nonmerging galaxies in our inputs

to LDA relative to the frequency of nonmerging galaxies in reality, we use the fraction of

merging galaxies in the universe (fmerg) as our prior.

We use a different fraction for major and minor mergers. For major mergers, we use

the fraction of merging galaxies, fmerg = 0.1 from Lotz et al. (2011). This is an average,

calculated from different fmerg measurements that rely upon Gini-M20 and A to determine

merger fractions for galaxies in the local universe ( Lotz et al. 2008; Conselice et al. 2009;

López-Sanjuan et al. 2009; Shi et al. 2009). We choose not to use pair fractions to determine

fmerg as they tend to underestimate the fraction of merging galaxies since pair studies are
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only sensitive to the early stages of a merger.

It is important to note that Lotz et al. (2011) use individual predictors (such as Gini−

M20 or A alone) to identify mergers, and find short timescales of observability (∼ 0.2− 0.6

Gyr). As discussed in Section 4.3.2, we find timescales of observability > 2 Gyr from the LDA

technique and therefore fmerg = 0.1 is a conservative estimate. In reality, observed merger

fractions may be underestimated in the local universe (particularly for minor mergers) since

the observability timescales of past imaging methods are short. Using merging galaxies in

the Millennium simulation, Bertone & Conselice (2009) find that the estimate of fmerg for

minor and major mergers increases by a factor of 2 − 10 if the observability timescale is

increased from 0.4 Gyr to 1 Gyr.

While the fraction of minor mergers is less certain, studies have indicated that it is

3− 5 times greater than the major merger rate, so we use fmerg = 0.3 for the minor merger

simulations (e.g., Bertone & Conselice 2009; Lotz et al. 2011).

For comparison purposes, we also estimate fmerg from the Illustris simulation. Using

estimations of the timescale of the merger, we convert from merger rate (measured directly

from Illustris to be ∼ 0.1 Gyr−1 (Rodriguez-Gomez et al. 2015)) to the merger fraction of

galaxies in the local universe. If we multiply this rate by the ∼ 2 Gyr timescale estimate

from our work, we find fmerg = 0.2, which is in good agreement with the 0.1 value for fmerg

from observations of merging galaxies in the literature. If we use the 0.2− 0.6 Gyr timescale

from Lotz et al. (2008), we find a much lower merger fraction of fmerg = 0.02− 0.06.

Since the estimates of fmerg are so uncertain, we compare the results of using different

values for fnonmerg on the outcome of the LDA in Figure B.4. For each simulation, we have

more snapshots of merging galaxies than nonmerging, which is not reflective of reality. We

use the LDA accuracy to measure the sensitivity of the technique to the input priors. We

find that the LDA is relatively insensitive to prior selection within a range of priors on the

fraction of merging and nonmerging galaxies. This range exists from 0.1 < fnonmerg < 0.9.

As we increase fnonmerg above 0.9, we start to see the accuracy decline from ∼ 80 − 90%
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correct identifications to 60−70%. While this is a significant decline, the decline is somewhat

asymptotic. Therefore, at our chosen prior for major mergers (0.9), the accuracy has declined

to around 90% for the three major merger simulations pictured, which is still very high.

Additionally, while the minor merger simulations are less accurate as fnonmerg increases, the

prior for minor mergers is 0.7, so they do not fall off as fast in accuracy at this point.

B.5 Testing the Assumptions of LDA with Multivariate Analysis

This section accompanies Chapter 4.

We carry out a simple multiple linear regression analysis to test the assumptions of

LDA and examine the input predictors. Many of these techniques as well as an introduction

to LDA are covered in James et al. (2013). The key assumptions of LDA include multivariate

normality, homoscedasticity (that the covariance among groups is equal), and an absence of

multicollinearity. However, it should also be noted that LDA is relatively robust to slight

violations of these assumptions and can still be reliable even when certain assumptions

are violated (Duda et al. 2001; Li et al. 2006). We conduct a preliminary multivariate

analysis of the input predictors to screen for multicollinearity and violations of normality and

homoscedasticity. We present our results for the major merger and minor merger combined

simulations and show plots just for the major merger combined simulation.

We first address the multivariate normality assumption by examining the individual

histograms of the input predictors for both of the combined simulations (the major merger

combined simulation is Figure B.5). Visually, the predictors do not seem to be drawn from a

normal distribution. We conduct Shapiro-Wilke and Kolmogorov Smirnov tests for normality

and in both cases we are able to reject the null hypothesis that the data are drawn from a

Gaussian multivariate normal distribution for the majority of predictors.

We also address the homoscedasticity assumption in Figure B.5. By examining the

distributions of the values for each class for a cross-section of input predictors, we are able

to determine that the covariances for each class are not equal. We conduct a Levene test
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and confirm that we can reject the null hypothesis and that the covariance matrices are not

equal. This is unsurprising given that multivariate normality is also violated.

We next examine the relationships between predictors to determine if the predictors

demonstrate multicollinearity. A violation of multicollinearity could lead to a decrease in

the predictive ability of LDA. We screen for multicollinearity visually in Figure B.6 using a

Hinton visual diagram where the size and color of the boxes indicate the strength and sign

(positive is red and negative is blue) of the correlation. We find that many predictors have a

large positive correlation. We further examine the strength of the correlation and find that n

and C have the most significant correlation for the major mergers with a Pearson’s r value of

0.72. For the minor mergers, M20 and A have the largest correlation with an r value of 0.66.

All Pearson’s r values are below 0.99, the threshold value for multicollinearity, so we can

rule out multicollinearity in this dataset. However, we must still deal with these correlations

using interaction terms, which remove cross-correlation effects from the coefficients of LD1

so that we can individually assess trends with the seven main coefficients (James et al. 2013).

To screen for outliers we use box and whisker plots. Outliers can affect the LDA

classification, dominating the analysis. We find that a few inputs are greater than 1.5 times

the interquartile range (as indicated by the extent of the whiskers). However, overall, there

are very few outliers. We also calculate the z scores for each predictor and find that none

are outside 3σ from the sample mean.

To verify that each predictor is necessary in the LDA, we conduct Ordinary Least

Squares (OLS) fitting. We first linearly regress each predictor against the class label (a

binary variable for merger/nonmerger classification). While a logit regression would be a

better tool with more than two classes, a linear regression is appropriate here since the

response is binary (James et al. 2013). Additionally, for a binary response variable, LDA

is quite similar to multiple linear regression. We find that almost all predictors have an p-

value for the t-test below 0.05, indicating that there is a significant relationship between the

predictor and the class, or in other words, that the predictor is required for classification. The
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only predictors that fail this test are the Gini, M20, and S predictor, which fail for the minor

merger simulations, and the n predictor, which fails for the major merger simulation. We

also find in our LDA modeling that the Gini, M20, and S predictors are fairly unimportant

for the minor merger simulation and that n is unimportant for the major merger simulation.

We also run the OLS fitting for all simulations and find that there are no predictors that

are unimportant across the board. Therefore, we include all of the predictors in the LDA

classification. We ultimately discover that all predictors are important according to the

forward stepwise selection for certain simulations, so we cannot eliminate them prior to the

LDA.

Overall, the data violate multivariate normality and homoscedasticity while passing

the tests for multicollinearity and extreme outliers. For classification purposes, LDA is very

robust to varying distributions of the data and can still achieve good performance even when

the covariance matrices are not equal and normality assumptions are violated (Duda et al.

2001; Li et al. 2006).

One alternative approach to LDA is to utilize Quadratic Discriminant Analysis, which

does not rely on the equality of covariance matrices. We test the accuracy, precision, recall,

and F1 score of both an LDA and a QDA method (see Appendix B.7 for the accuracy of

LDA). We find that the LDA classifier performs very well and while the QDA classifier

increases accuracy, recall, and F1 score by ∼ 5%, the LDA classifier is still above ∼ 85% for

accuracy on all simulations. A downside to using QDA is that it is inherently nonlinear and

does not allow us to directly interpret each predictor individually. We choose to use LDA

since it allows for a more practical interpretation of the imaging predictors and since it does

an adequate job of separating the merging and nonmerging classes across all simulations.

Additional ways to prepare the input data for better classification include increasing

the number of observations (number of galaxy snapshots) and standardizing the data. We

already have at least 20-30 snapshots per class and are therefore more robust to violations

of normality and homogeneity of covariance. Also, when we combine all the individual runs
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of LDA for the final combined major and minor merger runs, we increase the sample size to

at least 100 observations per class. This final analysis is robust to violations of normality

and homoscedasticity.

We also find that the predictors require standardization prior to the input to LDA;

they have very different means and standard deviations, which could affect the output of

LDA. For instance, if one variable has a large mean, it could dominate the first discriminant

axis (LD1). We standardize the input predictors to all have a mean of zero and a standard

deviation of one prior to our LDA classification.

B.6 Forward Stepwise Variable Selection and k-fold Cross-Validation

This section accompanies Chapter 4.

A limitation of LDA is that there are no standard errors on the LDA predictor coef-

ficients. We use the stratified k−fold cross-validation method with ten folds to return an

estimate of the underlying distribution of possible values for the LDA coefficients given the

data. k−fold cross-validation functions by dividing the sample into k equal sized samples,

where the first k-1 samples will be used as the training set and the kth sample will be used

as the test set. We repeat the LDA k times and estimate the mean and standard deviation
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of the LDA coefficients from the data. Stratified cross-validation specifically requires that

the test sample includes a number of snapshots from each class that are representative of

the overall sample.

This method is effective for minimizing bias and variance given the correct choice of k

(James et al. 2013). For instance, Efron (1983) prove that k−fold cross-validation is ‘almost

unbiased’ if k is large and the sampling is random (this approaches leave one out cross-

validation (LOOCV), when k = n where n is the sample size). However, LOOCV has a high

variance since it involves finding the variance of n fitted models which are trained on nearly

identical data. The mean of highly correlated quantities has a higher variance, so we choose

an intermediate value of k so that we avoid high bias and high variance. Kohavi (1995) find

that stratified k−fold cross-validation with ten folds is the most effective at model selection

even if computation power allows for more folds. We also find that k=10 is a good choice to

ensure that the number of misclassifications (cross-validation error) is minimized and that

the mean and standard error of the LD1 coefficients is stable.

We use forward stepwise selection with k−fold cross-validation to determine which

predictors are necessary to build LD1 for each simulation. The purpose of this process is to

avoid introducing excess predictors that are unnecessary to the separation of the merging

and nonmerging galaxies along LD1. We choose forward stepwise selection since it is less

computationally expensive than best subset selection (James et al. 2013).

Forward stepwise selection begins with a model without predictors. It then determines

which predictor to add by comparing the cross-validation error for each predictor. The cross-

validation error is also the number of misclassifications corresponding to each model. For

instance, the first step of forward stepwise selection is comparing the cross-validation error

from a model with only one predictor (i.e., Gini) to all other possible models with only one

term (i.e., a model with M20, a model with M20 ∗Gini, etc.). The one-term model with the

lowest number of misclassifications is selected. Next, the forward stepwise election iteratively

attempts to add all remaining predictors to to the model. It chooses to add a term only if
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the cross-validation error of the overall model is less than that of the previous step. Again,

it adds the term that minimizes the cross-validation error as compared to all other possible

terms.

The forward stepwise selection proceeds until no more terms are required to decrease

the cross-validation error. We refer to the predictors in the final model as the ‘required’

predictors. We show the process in Figure B.7, where we determine the number of predictors

necessary for the LD1 for each simulation by minimizing the cross-validation error with

forward stepwise selection. We additionally use the one-standard-error rule from James

et al. (2013) to select the best overall model. This allows us to select the simplest model for

which the estimated cross-validation error is within one standard error of the lowest point

on the curve in Figure B.7. The standard error of the cross-validation error is the standard

deviation of the number of misclassifications for all ten k−folds.

B.7 LDA Performance: Accuracy and Precision of the Classifier

This section accompanies Chapter 4.

We investigate the performance of the classifier using the confusion matrix (Figure

B.8). The confusion matrix is constructed using the ten randomized test and training sets

of galaxies, which were created in the k-fold method described in Appendix B.6. It is the

mean confusion matrix from the ten k-fold runs.

The confusion matrix shows the number of nonmerging galaxies from the test set that

were correctly classified as nonmerging (upper left) and the number of merging galaxies that

were correctly identified as merging (lower right), which are referred to as ‘True Negatives’

(TN) and ‘True Positives’ (TP), respectively. The top right corner of the confusion matrix is

the galaxies that were classified as merging although they are in fact nonmerging. These are

the ‘False Positives’ or FP. The bottom left square is the galaxies that are merging but were

not correctly identified as merging, or the ‘False Negatives’ or FN. In Figure B.8 we show the

normalized percentage of galaxies that fall into each category for the final combined major
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and minor merger runs of LDA.

From the confusion matrix, we quantify accuracy, precision, recall, and F1 score of the

LDA classification in order to assess the overall performance of the LDA method for each

simulation.

The accuracy is the number of correct classifications divided by the total number of

classifications:

A =
TN + TP

TN + TP + FN + FP

We assess the precision of the LDA, or the fraction of correct positive predictions:

P =
TP

TP + FP

Recall is the fraction of true positives that are classified as such:

R =
TP

TP + FN

The F1 score is the harmonic mean of recall and precision:

F1 =
2TP

2TP + FN + FP

We collect the accuracy, precision, recall, and F1 score values for all simulations in Table

A.23. We find that the LDA classification performs well, with all performance metrics around

or above ∼ 0.7−0.9. Accuracy ranges from 0.85−0.91 while precision is between 0.89−0.98

for all runs. This confirms our discussion from Section B.5; the LDA method is accurate,

and therefore we are not concerned that our violations of normality and homoscedasticity

are detrimental to the classification.

The LDA has a very high precision value. This indicates that it does an excellent job

of identifying all merging galaxies as merging. This is critical to the next phase of analysis,

which will include classifying SDSS galaxies; we do not wish to misidentify mergers and are
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more tolerant with false positives than false negatives, given that this initial classification is

created from simulated galaxies.


