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Marine oxygen production and open water
supported an active nitrogen cycle during the
Marinoan Snowball Earth
Benjamin W. Johnson 1,2, Simon W. Poulton 3 & Colin Goldblatt1

The Neoproterozoic Earth was punctuated by two low-latitude Snowball Earth glaciations.

Models permit oceans with either total ice cover or substantial areas of open water. Total ice

cover would make an anoxic ocean likely, and would be a formidable barrier to biologic

survival. However, there are no direct data constraining either the redox state of the

ocean or marine biological productivity during the glacials. Here we present iron-speciation,

redox-sensitive trace element, and nitrogen isotope data from a Neoproterozoic (Marinoan)

glacial episode. Iron-speciation indicates deeper waters were anoxic and Fe-rich, while trace

element concentrations indicate surface waters were in contact with an oxygenated

atmosphere. Furthermore, synglacial sedimentary nitrogen is isotopically heavier than

the modern atmosphere, requiring a biologic cycle with nitrogen fixation, nitrification and

denitrification. Our results indicate significant regions of open marine water and active

biologic productivity throughout one of the harshest glaciations in Earth history.
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The late Neoproterozoic was a time of remarkable climatic
and biological dynamism on Earth. After more than
a billion years of stable climate through much of the

Proterozoic, the Cryogenian period was punctuated by two long-
lived, global Snowball Earth glaciations1. The appearance of
multicellular organisms is thought to have occurred near this time
period2, as well as a rise in atmospheric oxygen in the Ediacaran3.
Thus, some of the greatest climatic fluctuations and evolutionary
innovations (e.g., multicellularity) occurred during this crucial
interval.

It was initially postulated that a “hard Snowball Earth” with
sea ice hundreds of metres thick covered the ocean during
low-latitude glaciation1,4. This would have isolated the
ocean from sunlight and atmospheric oxygen, presenting a
formidable barrier to survival of oceanic species. However, no
obvious mass extinction event is seen in the fossil record5, though
this is difficult to quantify given the lack of contemporary body
fossils. Survivability solutions typically invoke “refugia” for
organisms, ranging from global, low-latitude open-water belts6 to
sea-ice cracks7 and ice shadows8. Geochemical calculations
indicate small areas of open water would permit sufficient air
sea-gas exchange for the atmosphere and surface ocean to
equilibrate9. However, there are to-date no proxy data for the
chemical state of the Snowball Earth ocean, and no direct
evidence for biological productivity. In addition, the long
duration (10’s Myr) of the glaciations would allow for oxic
weathering and reaction with metamorphic gases to deplete
atmospheric oxygen completely if oxygenic photosynthesis was
operating slowly or was absent.

To investigate the redox state of the Marinaon ocean, we
utilised N-isotopes, Fe-speciation, and redox-sensitive trace
elements (TE). The modern marine N cycles serves as a
benchmark for interpretation of sedimentary rocks10. Currently,
dissolved atmospheric N2 is fixed to bioavailable N by single-
celled organisms, with minimal isotopic fractionation of ~−2 to
+2‰11,12 (Stable isotope notations are in per mil (‰) notation,
where

δXE mð Þ ¼
XE=xEsample
XE=xEstandard

� 1

� �
´ 1000 ð1Þ

E is element of interest, X is heavy isotope, x is light isotope. The
standard used for δ15N values is N2 in air, which has a δ15N value
of 0‰ by definition.) fractionation can be larger with non Fe-Mo
nitrogenase enzymes13,14. Nitrogen fixing organisms then die,
release waste, or are consumed by other organisms, releasing N
into the water column as NHþ

4 . In oxygenated water, NHþ
4 is

quickly converted to NO�
3 via bacterial nitrification, leaving

residual NHþ
4 isotopically heavier by ~16‰15. Complete nitrifi-

cation does not preserve isotopic fractionation.
Nitrate can be converted to N2 or N2O in the water column or

sediments via denitrification (NO3→N2) or anammox
(NO2+NH4→N2); both occur most rapidly in low-O2 waters or
pore waters16, and leave residual NO�

3 isotopically heavier by
>25‰. Alternatively, dissimilatory nitrate reduction to ammo-
nium can transform NO�

3 to NHþ
4 , again with no preserved

isotopic effect if this goes to completion17. We use “denitrifica-
tion” hereafter to include all pathways of NO�

3 removal.
A small amount of biologically processed N sinks to the

sediment. Without biologic cycling, little N would transfer to
sediments and fixed N would likely have negative δ15N values18.
Organic N breaks down in sediment, releasing NHþ

4 , which is
absorbed by, or substitutes for K+, in clay minerals. This process
has little isotopic fractionation, especially in anoxic sediments19.
Sedimentary N may faithfully record the isotopic signature of the
water column from which it was deposited10,20. Since δ15N values

depend on the balance of inputs (N fixation, minimal isotopic
fractionation) and outputs (denitrification and anammox, large
positive isotopic fractionation), sedimentary δ15N indicates the
state of the past N-cycle. In addition, as the balance of outputs
depend on O2 concentrations, sedimentary δ15N is a proxy for the
water redox state.

Though sedimentary δ15N reflects water column N-cycling,
different proportions of N-fixing to denitrification can result
in equivocal sedimentary δ15N values. For example, low,
but positive, sedimentary δ15N might record either quantitative
(i.e., nearly 100%) or minimal water column denitrification.
Quantitative denitrification would not preserve the 25‰
fractionation associated with conversion of NO�

3 to N2 or N2O.
No or small amounts of denitrification would result in water-
column fixed N reflecting the isotopic value imparted by N-fixing,
typically only 1–2‰ within atmospheric, assumed to be 0‰
during the Marinoan.

A further complication could arise in a fully anoxic ocean with
ample NHþ

4 . Ammonium assimilation has an isotopic fractiona-
tion, so biomass in NHþ

4 -replete oceans should be isotopically
negative21. Modern sediments generally reflect biologic cycling in
the overlying water column20, thus negative δ15N values could
record such an anoxic, but N-replete environment. If there is a
deficit in dissolved NHþ

4 , however, the fractionation from
assimilation would not be preserved, as all available N would
likely be assimilated into biomass. Complete assimilation of NHþ

4
in an anoxic ocean should result in biomass that is
isotopically equal to fixed N. Again, we recognize the need for an
independent redox proxy to assist in interpretation of N-isotopic
data.

Since the amount of water column denitrification is directly
related to the volume of anoxic water in the global ocean16,
independent redox proxies are required to break this degeneracy.
Thus, we use iron-speciation22 and redox-sensitive trace
element23 data to aid interpretation of N-isotopic data. Iron-
speciation has proven to be a reliable indicator of local bottom
water redox state, being sensitive to oxic, anoxic, and
euxinic conditions. Uranium, V, and Mo are all more soluble in
oxygenated water than in anoxic water; they are delivered via oxic
weathering (i.e., require atmospheric oxygen), and their residence
times are long (>104 yr) in oxic waters. In anoxic waters, U, V,
and Mo may precipitate rapidly and are deposited to sediments.
Under euxinic conditions, high Mo enrichments are often
observed23. Thus, given a supply of TE to the ocean via
oxic weathering, sediments which record no enrichment in these
elements were likely formed beneath an oxic water column,
those with moderate enrichments under low-O2 to anoxic
conditions, and those with especially high Mo enrichment under
euxinic conditions.

We have recovered and analysed two sections of synglacial
sedimentary rocks and one section of deglacial rocks representing
the Marionan glacial (the second Neoproterozoic Snowball)
from the Namibian Ghaub Formation. Using Fe-speciation,
redox-sensitive trace element (TE), and nitrogen isotope
geochemical data, we show that there was an active N-cycle,
primary productivity, oxygen production, and an oxygenated
atmosphere with at least pockets of oxygenated ocean water,
despite extreme environmental stress.

Results
Geologic setting and sample description. Neoproterozoic strata
of Namibia24 are characterised by marginal continental deposits,
comprising a carbonate platform with occasional subaerial
exposure, slope deposits, and deeper water units. Interspersed
are two distinctive glacial units, the Sturtian Chuos and the
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Marinoan Ghaub Formations. Each glacial unit is overlain by a
cap carbonate, the Rasthoff Formation and Keilberg Member,
respectively. We have sampled and analysed samples from three
sections of the Ghaub (Fig. 1). Importantly, all sampled intervals
occur within the glacial interval, as evidenced by stratigraphic
position below the uppermost diamictite (deposited synglacially)
and cap carbonate, which indicates the end of Snowball
glaciation25.

The first sampled section is a synglacial siliciclastic (SGS)
sequence from the Bethanis area26. The Ghaub Fm. in this area
grades upward from a laminated quartz siltstone, with authigenic
pyrite, into bedded laminations (sampled) with frequent
ice-rafted debris (IRD), and finally into a massive carbonate
diamictite. It is interpreted to represent an ice advance, though
the timing of this advance during the glaciation is unknown.
There is no evidence of wave action, so it is likely a deep water
setting. This unit is synglacial, evidenced by minor IRD at the
bottom of the section.

Other sampled sections are from Fransfontein ridge, 80 km to
the east24. There are four facies at this location: massive carbonate
diamictite, thinly laminated detrital carbonate with minor clay
with and without IRD, and turbidites. Glacial activity in this
region primarily eroded underlying carbonate platform units.
The non-diamictite units at this section were likely deposited
beneath a grounded ice sheet. Detrital carbonate was delivered,
possibly by subglacial flow, into open water beneath floating ice.
We sampled the thinly laminated beds without IRD, as this facies,
synglacial with carbonate (SGC), should best represent ambient
water conditions. The laminated facies are overlain by 30 m of
diamictite.

Above the last glacial diamictite of SGC is the Bethanis
member24. This unit represents the terminal deglaciation. It is
a dark coloured, bedded, detrital Fe-rich dolostone with minor
clay. It is conformably overlain by the Keilberg cap carbonate24.
Again, we have sampled well-bedded intervals in an effort to
analyze ambient water conditions during the deglacial (DGC).
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In all units, there is the potential that any measured
biogeochemical data records reworked detrital material. Any
such material could mask information about the water column
during deposition. However, modern N in most marine settings
mostly comes from sinking organic material sourced from
primary production. Further, we find no correlation between
N/Rb and Al2O3 (Supplementary Note 1), as would be expected if
detrital influence was the main source of N to sampled sediments.
In addition, previous work suggests the source of the majority
of Ghuab sediments was the Ombaatijie Fm., representing a near-
shore carbonate platform24. The Ombaatjie Fm. is relatively
organic poor27, and, thus, we suggest that detrital organic input is
minimal in the sampled sections. Please see Supplementary
Tables 1–4 and Supplementary Datasets 1–4 for full analytical
results.

Iron speciation indicates local bottom water anoxia. Iron
speciation data (Fig. 2, Supplementary Table 2) indicate similar
bottom water conditions in all three sections. The ratio of
highly reactive Fe (FeHR, Methods section) to total Fe is generally
typical of anoxic conditions (>0.38) in all sections, with the
pyrite to FeHR ratio indicating ferruginous (i.e., non-sulphidic)
water column conditions28,29. Some samples (n= 5) fall in
the equivocal (FeHR/FeT=0.22–0.38) or oxic (FeHR/FeT <0.22)
fields (Fig. 2). However, two of these samples have Fe/Al
ratios clearly indicative of anoxia (Fe/Al>0.6630), suggesting that

the low FeHR/FeT ratios are likely a result of loss of unsulphidized
FeHR to Fe-rich clays during diagenesis31. Thus, our Fe-speciation
data strongly support dominantly anoxic, ferruginous deposi-
tional conditions throughout most of the succession.
These results are consistent with Fe-speciation data from the rest
of the Neoproterozoic, suggesting ferruginous deep waters,
beneath oxic shallow waters, were common throughout the
period32.

Trace element concentrations indicate oxic weathering. Before
evaluating variations in redox sensitive TE in terms of
redox conditions, it is important to demonstrate that variability
is not due to changes in detrital influence alone. By normalizing
TE to non-redox sensitive elements with similar geochemistry
(i.e., Sc, Zr) and comparing with a detrital proxy (Al), we show
that variations in detrital input, as indicated by Al, cannot
fully explain these data (Fig. 3). These plots are corrected for the
non-carbonate fraction. In addition, laser ablation analyses
indicate that the clay fraction, and not the detrital carbonate, is
the host for the TE of interest (Fig. 4). Laser analytical spots with
moderate CaO and MgO, and high K2O, contents compared with
total major oxides generally have a higher concentration of V and
U. While fine grain size and standardless data normalization33 do
not allow for quantitative conclusions based on laser ablation data
alone, the analyses do indicate that the clay fraction, and not
detrital carbonate, is the host of TE.
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Trace element whole rock (WR) concentrations, reported on a
carbonate-free basis, show enrichments in U, Mo, and V above
Post Archean Average Shale (PAAS). Enrichments are evident in
all sections, particularly in SDC and DGC. Uranium, Mo, and V
concentrations, corrected for carbonate content, above PAAS
requires water column anoxia to draw down the metals to the
sediment23,34, consistent with our redox reconstruction of bottom
waters throughout the succession. Indeed, Mo tends to fluctuate,
with concentrations which are often relatively close to PAAS.
This contrasts with U in particular, which shows more significant
enrichments (Figs. 2 and 4). These observations support
deposition from anoxic, ferruginous bottom waters, since high
concentrations of dissolved sulphide are specifically required for
extensive drawdown of Mo35,36.

The availability of the trace metals for drawdown under
anoxic ocean conditions requires contemporaneous oxic
weathering of the continents, since all three trace metals are
mobilised as oxyanions, with modern ocean residence times of
400 Kyr for U, 50 Kyr for V and 800 Kyr for Mo;37 these times
would be shorter given lower atmospheric O2, and are much less
than the duration of the Marinoan glaciation (4 to 20Myr38).
Therefore, the delivery fluid must have been in contact
with atmospheric oxygen, with limited hydrothermal influence
(Supplementary Note 2). The present day lifetime of atmospheric
oxygen with respect to oxic weathering is ~2Myr39, and
would have been similar or shorter in the Neoproterozoic,
when atmospheric oxygen was lower, due to the rate dependence
of oxic weathering on oxygen concentration to a power of
0.5–140,41.

Even if oxic continental weathering were to shut off
completely, a modern amount (3.5×1019 mol) of O2 would be
completely exhausted in ~10Myr given a volcanic/metamorphic
reducing gas flux of 3 Tmol per year42. If atmospheric O2 content
decreases, and reducing input stays constant, the time needed to
deplete atmospheric O2 time will go down. Given that the
residence time of atmospheric oxygen is shorter than the

glaciation, a contemporaneous source of oxygen from
primary productivity followed by burial of organic matter is
required to maintain O2 levels sufficient for oxidative weathering,
as required by the TE enrichments. It is possible that a “hard”
Snowball ocean may have existed for a time, but its duration
would have to be much shorter than the timescale of oxic
weathering (~2Myr) in order to satisfy TE constraints, so could
only have been a fraction of the glacial period. Likewise, it is
possible that productivity in cryoconite holes in the ice sheet
followed by transport to the ocean through moulins could
account for the productivity43. On balance, we assert that
productivity in open water is the most parsimonious explanation
for our data.

Nitrogen isotopes indicate active biologic cycling. Our evalua-
tion of ocean redox conditions, combined with TE evidence for
oxidative continental weathering, provides crucial context for
consideration of N isotope systematics. Both synglacial sections
have δ15N values (<3‰) distinct from modern marine average
sediments (~5 to 7‰), with a small but significant decrease seen
up-section in SGS and an increase followed by a decrease in SGC
(Fig. 2). In DGC, δ15N increases overall up-section, to values
approaching that of modern seawater NO�

3 , but with more
variability than either SGC or SGS. Critically, N concentrations
and isotopes appear to record primary values (Supplementary
Fig. 1).

Since N fixation has a very small fractionation, δ15N values
approaching atmospheric values (assumed to be 0‰) suggest
denitrification is either complete in the water column, occurs
exclusively in sediments, or there is no denitrification at all. In
either case, the large fractionation associated with denitrification,
which leaves residual water column NO�

3 isotopically heavier, will
not be preserved if all NO�

3 is consumed during denitrification.
Similarly, sedimentary denitrification has no effect on bulk ocean
δ15N values, as it tends to go to completion. Thus, the choices to
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explain low δ15N, but non-zero, values in both SGS and SGC are:
a fully oxygenated water column with denitrification in the
sediments only, or extensive water-column anoxia causing nearly
complete, but not total, denitrification. The Fe-speciation data
indicate that bottom waters were predominantly anoxic, but trace
metal enrichments and non-atmospheric δ15N require O2

production and NO�
3 availability. Thus, the low, but non-zero

δ15N values likely result from either a persistent or periodic
shallow water oxycline.

In contrast, DGC δ15N values are more enriched, and
even approach modern values (which are the result of
the balance between N fixation and partial denitrification
in the water column) near the top of the section. This
would indicate that water column denitrification is only
partial at this time. That is, some NO�

3 must remain in the
water column to preserve the large fractionation associated
with denitrification.

Discussion
Our data from the Marinoan glaciation present a very different
picture of the palaeoenvironment during low-latitude glaciation
than the canonical “hard Snowball Earth” model. There is
evidence of an active biosphere with oxygen production and
gas exchange between the atmosphere and ocean, and
contemporaneous nutrient input from the continents. There was
an active nitrogen cycle, including nitrogen fixation, nitrification
and denitrification. The ocean was likely dominantly ferruginous,
beneath at least partially oxygenated surface waters (Fig. 5). The
hard Snowball Earth model restricted ocean-atmosphere
exchange and marine productivity entirely and posited an
anoxic ocean throughout; our data call for that model to be
rejected.

Low δ15N values indicate a nitrogen cycle with nitrogen
fixation, nitrification and denitrification. The balance between
these is distinct from the modern balance. Nitrification occurs
efficiently at O2 concentrations <10 μM44 or even nM levels45,
though denitrification would have been sufficient to process all
NO�

3 at such oxygen levels. Extensive, but not quantitative,
denitrification is suggested, which is consistent with low oxygen
levels. If removal of NO�

3 produced N2 or N2O, N could have
been limiting, though on long time scales biologic N-fixation rates
are likely sufficient to mitigate limitation.

Even if there were a lower oceanic N reservoir, our
dataset provides evidence for O2 production and primary
productivity. Evidence for N fixation itself indicates some
primary production with additional productivity occurring
from already fixed N. The TE data require oxidative weathering
to occur throughout the glacial, which is unlikely if O2 production
was shut off or greatly decreased. Reaction with reducing
volcanic and metamorphic gases and weathering of reduced
carbon in the continental crust would exhaust atmospheric O2

before the end of the glacial period without O2 produced by
primary production.

The robustness and flexibility of the N-cycle is also apparent
when viewed in the context of the rest of the Neoproterozoic
(Fig. 6), the modern ocean, and the last glacial maximum and
associated deglaciation. After the Marinoan, multiple proxies
indicate an increase in atmospheric O2

3. Correspondingly, δ15N
values increase. This trend suggests an increase in partial water-
column denitrification, consistent with our interpretation of
Snowball deglaciation. N-isotopic values decreased throughout
the Ediacaran, perhaps in response to more quantitative
denitrification, before varying widely immediately after the
start of the Cambrian. Major changes to the biosphere occurred
at this time, perhaps associated with changes in surface O2
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Similarly, during the last glacial maximum, ocean waters were
more pervasively oxygenated than the Holocene, and low δ15N
values indicate water-column denitrification was less prevalent47.
During the subsequent deglaciation and continuing into the
Holocene, N-isotopic values increase, and cover a greater range.
This increasing trend reflects an increase in partial water-column
denitrification and a greater range in a heterogenous ocean.

The N-cycle and the history of O2 are intertwined, especially
during times of great environmental change or stress. During the
Neoproterozoic Marinoan glaciation, modern N-cycle processes
were active, as indicated by enriched δ15N values in synglacial
sediments, though their relative activity was markedly different
from the modern (Fig. 5). The resilience and flexibility of the N
and O2 cycles, as revealed by TE values, has implications not only
for the survival of life on Earth, but also for life on other cosmic
bodies. The presence of an active biosphere on a nearly frozen
planet is indicative of life’s propensity to endure.

Methods
Rock powder preparation. All samples were cut and trimmed as to remove
weathered exteriors. Sample chips (~1–4 cm) were then crushed into smaller pieces
using a jaw crusher. Small chips were then powdered in a tungsten-carbide
shatter box. Clean quartz sand was crushed in between each sample to ensure no
contamination between samples occurred. The shatterbox puck and container were
cleaned with deionized water and ethanol between samples.

Nitrogen and carbon. All N and C isotope and concentration analyses were
undertaken at the University of Washington’s IsoLab. Each sample was dec-
arbonated prior to analyses. Approximately 1 g of sample powder was weighed into
glass test tubes that had been cleaned and sterilized (baked at 500 °C overnight).
Depending on the sample, between one and three 100 g tubes were prepared.
To each tube, 30 mL of 6N HCl was added. Samples were then sonicated for
30 min. All tubes were then placed in a 60 °C oven overnight. The next day,
samples were centrifuged to settle all undissolved material. Acid was poured off,
fresh acid was added as before, and samples sat in the oven overnight. This acid
refresh was repeated once more. To clean samples, all were rinsed three times with
DI H2O, centrifuging between each rinse. Sample powders then dried at 60 °C for
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two days; all vials containing multiples of the same sample powder were combined
and homogenized after drying.

Samples were then analysed on a Thermo-Finnigan MAT 253 coupled to a
Costech Elemental Analyzer. Between 50 and 100 mg sample powder was weighed
into a Sn capsule, as well as standards: two glutamic acids (GA-1 and GA-2), dried
salmon (SA), and an internal rock standard (McRae Shale). All samples were flash-
combusted with an excess of O2 at 1000 °C in a combustion column packed with
cobaltous oxide (combustion aid) and silvered cobaltous oxide (sulphur scrubber).
Combustion products passed over a reduced copper column at 650 °C to reduce all
N to N2 and absorb excess O2. Finally, sample gas passed through a magnesium
perchlorate trap to absorb water and a 3 m gas chromatography column to separate
N2 from CO2. All analyses were quantified using IsoDat software. Errors reported
are standard deviations from repeated analyses.

Trace elements. Trace elements were measured at the University of Victoria
in two ways: whole rock solutions and laser ablation. For the first, ~100 mg of
samples/standards were weighed into 5 mL Teflon vials. To this, 5 mL 50% HF was
added, vials were capped, and samples sat on a 170 °C hotplate for two days. Then,
caps were removed, and HF was allowed to evaporate until nearly dry. Five mL of

8N nitric acid was added, vials were capped, and again samples sat on a hotplate for
two days. Evaporation procedure was repeated, 5 mL of 4N nitric acid along with
0.5 mL oxalic acid was added, and samples sat on a hotplate for one day. Finally,
samples were diluted to 100 mL with DI H2O in clean 100 mL bottles. Sample
solutions were analysed on a Thermo X-Series II (X7) quadrupole ICP-MS. Errors
were estimated from duplicate samples and standard reproducibility. We used the
following standards: JLS-1, BCR-2, SY-4, SY-4, DR-N, BIR-1a, IF-G, LKSD-2, and
IAEA-405.

Laser ablation was undertaken using the same mass spectrometer with a UP-
213 (213 nm) solid state Nd-YAG UV laser. Beam size was set to 30 μm, and all
analyses were either spots or raster lines ~100 μm in length. Samples are
normalized to the sum of all major element oxides (Na2O, MgO, Al2O3, SiO2, P2O5,
K2O, CaO, MnO, and FeO) instead of an internal standard element of known
concentration33. External standards were BCR-2g and BIR-1g. Analyses that
summed to less than 90% total oxides were excluded from further discussion.
In addition we tested accuracy by calculating composition of NIST 611 glass
assuming it was an unknown, and based on calibration from BCR-2g and BIR-1g.
Calculated trace element concentrations were within 5% of their accepted values,
with most other elements within 10–15% of their accepted values (Supplementary
Table 1).

TE analyses indicate the presence of oxygen in the atmosphere and shallow
ocean. Samples have a major component of detrital carbonate, however, which
might dilute or obfuscate TEs contained in clay minerals. We rely primarily on
whole-rock (WR) analyses via solution ICP-MS for redox interpretation, as sample
petrology varies at finer than laser ablation resolution. We are confident, though,
that the clay mineral fraction in all samples retains the majority of TE
concentration for several reasons. TE are incompatible in carbonate lattices, and
should be in low concentrations. Decarbonated powders, used for N isotopic
analyses, are more enriched in TE than non decarbonated WR powders. Analysis of
clay-rich and clay-poor spots by laser ablation show enrichment in TE in clay-rich
domains compared to carbonate grains (Fig. 4).

Iron-based redox proxies. The Fe speciation method targets operationally
defined Fe pools, including carbonate-associated Fe (Fecarb), ferric oxide Fe (Feox),
magnetite Fe (Femag), and pyrite Fe (Fepy). Extractions were performed
according to well-established protocols22,48, with subsequent analysis via atomic
absorption spectroscopy (AAS) for Fecarb, Feox, and Femag. Fepy was determined
gravimetrically following chromous chloride distillation48. Total Fe (FeT) was
determined after HF-HClO4-HNO3 dissolution via AAS. All Fe extractions
gave a RSD of < 5% based on replicate analyses. Total dissolution of
international sediment standards (USGS; SGR-1bl; USGS SBC-1) gave an Fe
recovery of > 98%.

The sum of Fecarb, Feox, and Femag, and Fepy defines a highly reactive (FeHR)
pool, which is considered to represent Fe that is biogeochemically reactive during
deposition and early diagenesis22. Modern and ancient sediments deposited from
anoxic waters commonly have FeHR/FeT ratios > 0.38, in contrast to oxic
depositional conditions where ratios are generally < 0.22. Elevated FeHR/FeT in
anoxic settings arises from the additional water column formation of pyrite
in euxinic (sulphidic) settings, or unsulphidized FeHR minerals in ferruginous
(Fe-rich) settings. Thus, the ratio of Fepy/FeHR distinguishes euxinic (Fepy/FeHR>
0.7) from ferruginous (Fepy/FeHR< 0.7) water column conditions28. FeHR/FeT ratios
of 0.22–0.38 are considered equivocal29, and may occur due to the masking of
water column enrichment via rapid sedimentation (e.g., during turbidite
deposition), or due to transformation of unsulphidized FeHR to clay minerals
during diagenesis and metamorphism. This second possibility can be evaluated by
considering Fe/Al ratios, since FeT is preserved even if FeHR is lost to clay minerals.
In this case, normal oxic marine shales tend to have Fe/Al ratios of 0.55± 0.1130,
and thus Fe/Al> 0.66 is considered to provide a robust indication of water
column anoxia.

Clarkson et al.30 suggest that samples with FeT> 0.5 wt. % can generally be used
to provide a robust indication of water column redox conditions30. Of our
32 samples, 11 have FeT< 0.5 wt. % (Supplementary Table 2), and thus these data
should be considered with caution. However, we note that almost all Fe speciation
data give a similar redox reconstruction, regardless of FeT content, suggesting that
all samples record a robust, anoxic ferruginous signal. In addition, however, there is
a substantial component of detrital carbonate in SGC and DGC. Thus, there is the
potential to add detrital Fe-carbonate minerals to these sections, which would
obfuscate the Fe-speciation signal. The main Fe-carbonate phases formed under
anoxic conditions are siderite and ankerite. However, the carbonate platform which
served as the potential source of detrital carbonate was likely deposited under oxic
conditions, and siderite and ankerite should be rare. In addition, TE data suggest
oxic weathering during the Marinoan, which should serve to oxidize any detrital Fe
carbonates. We thus suggest that Fe carbonate measured in all sections is
dominantly primary, rather than detrital.

Data availability. All analytical data are available from the corresponding author
(B.W.J.) via email or his website (http://benwjohnson.weebly.com). We have also
placed data on EarthChem.
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