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Elementary energy and electron transfer processes are ubiquitous in the renewable energy

science of the last half of the 20th century. As global energy demands increase, researchers are

inclined to explore chemical physics that is outside the scope of the single electron paradigm using

new theoretical concepts and methods. This thesis advances theories of two specific condensed phase

phenomena: singlet fission, and energy transfer in photosynthetic light harvesting complexes. Some

photoactive organic molecules relax through a multielectron process known as singlet fission, where a

photon excites a chromophore that can down-convert the energy of a singlet excitation by relaxing to

two triplet excitations. Singlet fission may lead to unprecedented solar power conversion efficiencies,

but its many-body chemical physics can be challenging to model. We explore the fundamental role

of thermal energy in singlet fission in liquids and solids over multiple timescales. Using quantum

master equations and diabatic representations of the single and double electronic excitations, we

study the scope of the Markovian approximation for the chemical environment’s response to singlet

fission. To better understand how singlet delocalization and triplet localization impact quantum

yields in molecular crystals, we develop a theory for delocalized singlets interacting with a dense

band of two triplet excitations that includes biexciton interactions. We use the Bethe Ansatz for

the two triplets and calculate an entanglement for indistinguishable bipartite systems to analyze

the triplet-triplet entanglement born out of singlet fission.
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Chapter 1

Introduction

1.1 Energy and Electron Transfer in Condensed Phases

The demand for efficient and cost-effective renewable energy has prompted fundamental

physics and chemistry research of charge and energy transfer in solutions, crystals, and disor-

dered solids, all to be used in novel photovoltaic cells and electrocatalysts. This thesis focuses on

dynamical aspects of how the energy of electronic excitations is relaxed in these condensed systems.

1.1.1 The History of Electron Transfer Theory

In 1957, Kubo[1] published his seminal theory of electron transfer in liquids and solids, where

many degrees of freedom relax and equilibrate about the electron’s position.[2] If the electron

experiences a linear restoring force for small displacements from local equilibrium, then the chemical

environment behaves as a large “bath” of harmonic oscillators.[1, 3, 4, 5, 6] Kubo’s work led to a

generic class of microscopic models where the electronic system linearly couples to the bath and

thermal motion modulates the electronic frequencies. These ideas will form the bedrock of our

electronic and vibronic energy transfer theories.

When dephasing times are fast, the quantum dynamics become an incoherent rate process,

and the Liouville equation reduces to a quantum master equation. For simple models, the isolated

dynamics of the system and bath can be solved exactly. But when the system interacts with

the bath we are forced to use reduced descriptions of the quantum dynamics by projecting out

the system degrees of freedom from the harmonic reservoir. From the nonadiabatic perspective,
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nuclear motion and the electromagnetic field of the surroundings help traverse free energy barriers

between two localized charge distributions, and also dissipate energy once the barriers have been

crossed. When temperature is much larger than any frequency of the heat bath, the environment

can be treated as a classical reservoir. Marcus modeled electron transfer in the high temperature

limit as the quantum analogue of the Kramers problem,[3] where the electron is quantal and the

second order cumulant expansion of the Kubo response function is exact.[7, 8] In this case, the

quantum tunneling between two localized diabats is slow, and transition rates are given by Fermi’s

Golden Rule. Energy transfer shares many similarities with electron transfer, and we will show

that Marcus theory can serve as a benchmark for high temperature singlet fission rates.

In this thesis we are concerned with energy transfer processes that occur over picosecond and

subpicosecond timescales, when the environment’s response to electronic transitions may be slow.

This nonMarkovian scenario has been analyzed by Kubo with the generalized Langevin equation,[9]

by Grote and Hynes with transition state theory,[10, 9] and by Golosov and Reichman[11] who

tackled the problem of delocalized charge transfer. Motivated by Jang, Jung, and Silbey’s 2002

generalized Förster-Dexter theory,[12] we evaluate nonequilibrium singlet fission in Chapter 2.

In the opposite limit, where the electronic coupling is large relative to the reorganization

energy, second order time-dependent perturbation theory in the system-bath coupling can well

approximate the quantum relaxation dynamics if the bath cutoff frequency is much larger than the

reorganization energy. In this regime, the Redfield rate equations for the reduced density matrix

help us establish microscopic connections between phenomenological models and coherent energy

transfer. In Chapter 4 we show that this limit is realized in the case of photosynthetic energy

transfer.
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1.2 Singlet Fission

1.2.1 Background and Motivation

The first attempts to design commercial solar cells that convert radiant energy from the

sun into electrical and chemical work date back to Bell Laboratories in the late 1950’s. Over

half a century later, modern solar cells have yet to quench the global energy demand. Shockley

and Queisser’s analysis of one photon generating one electron-hole pair provides an upper bound

for power conversion efficiency of about 30 %.[13] To break this efficiency ceiling, research has

turned to new materials that might be able to down-convert excitation energy through many-body

scattering.[14, 15]

Carrier multiplication from a single photon may fall outside the scope of effective one-body

problems. In semiconductors, multiple electron-hole pairs can be generated and separated if the

system is excited above or at twice the bandgap, and also if the electron-hole pairs can diffuse to

overcome their Coulombic binding.[16, 17, 14, 15] In molecular systems, multiple excitations can be

generated if the excited singlet can relax through an internal conversion whereby the electronic wave-

function acquires multiply-excited character, and if two triplet excitations can be separated.[18, 19]

The former is referred to as multiple exciton generation (MEG) while the latter is its molecular

analogue, singlet fission (SF). SF has the distinct advantages of not competing with intraband

relaxation, and of producing long-lived triplet excitations. Despite these advantages, few of the

candidate SF chromophores exhibit SF that can out-compete all other relaxation pathways. Re-

search has focused on chemically tuning the electronic structure of chromophores in order to achieve

an energy matching that favors charge injection from the triplet excitations rather than charge in-

jection from the initially excited singlet.[18, 19, 20, 21, 22, 23, 24, 25, 26] In this thesis, we focus

on the dynamical picture of singlet fission, using nonperturbative and perturbative methodologies

to examine many-body aspects of the phenomenon.
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1.2.2 Singlet Fission is a Multielectron Process

Singlet fission can not be understood as an effective one-body problem. Multielectron ex-

change interactions are essential for the energy matching condition of singlet fission, and SF on

picosecond and subpicosecond timescales conserves the total spin angular momentum of multiple

electrons by “impulsively” exciting quantum beats between triplet sublevels. Moreover, in molec-

ular crystals the singlet excitations delocalize across many molecules via Coulomb interactions.

Although electronic structure calculations can simulate static singlet delocalization and triplet lo-

calization, it remains unclear why these qualitative features correspond to efficient singlet fission.

In the first few years of my graduate studies, it was not known whether thermal energy would

activate or dampen singlet fission. Chapter 2 is adapted from our 2012 publication that explores the

role of thermal energy and nonMarkovian friction over ultrafast timescales. Although we calculated

rates with a four orbital and four electron representation, the effects of solvation are analogous to

the effects of low frequency lattice phonons in molecular crystals. In a perfect crystal, optical

transitions access the completely delocalized singlet from the ground state. The excited singlet can

then scatter and localize as two triplets at two molecules anywhere in the lattice. We draw an

analogy between this idealized fission and the Anderson model in Chapter 3. In 1961, Anderson[27]

showed that an “impurity” acquires a finite and nonzero self-energy through interactions with a

continuum that irreversibly relaxes the impurity. Lattice defects and electron-phonon interactions

may distort this model, leading to a somewhat disordered solid with disparate exciton localizations.

To enhance photocurrent in photovoltaic devices, the two triplets must be separated. How-

ever, triplet-triplet correlation has been largely overlooked in the literature. In the 1970s, Johnson

and Merrifield[28, 29] explored spin-correlation arising from the spin-dipole interaction that breaks

the spin symmetry on nanosecond timescales. In Chapter 4 we consider the entanglement of the

spatial component of the triplet wavefunctions, and the effects of local biexciton interactions in ul-

trafast singlet fission. Local exchange interactions have been known to correlate plane waves in the

Heisenberg model of spin-1/2 chains.[30, 31] We borrow concepts from quantum information theory,
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such as the preparation of separable states through local operations and classical communications

(LOCC).[31]

1.3 Photosynthetic Light Harvesting

1.3.1 Background and Motivation

Efficient energy transfer in the pigment-protein complexes of photosynthesis has stimulated

theoretical chemical physics for nearly two decades.[32, 33, 34, 35, 36, 37] In green sulfur bacteria,

energy transport hinges upon the Fenna-Matthews-Olson (FMO) complex, which acts like a bridge

between the chlorosome and the reaction center in photoantenna. The intramolecular pigment

vibrations in the FMO complex couple to the transfer of electronic excitation energy.[32] These

pigments are also strongly bound to a protein network whose low frequency vibrations affect the

electronic dynamics.[38] Although two-dimensional electronic spectroscopy (2DES) has measured

the coherent quantum dynamics of pigment-protein complexes,[39, 32, 33, 40, 35, 36, 41] the role

of pigment and protein vibrational motion is not fully understood.[36, 41, 32]

1.3.2 Recent Advances in Theories of Coherent Energy Transfer

Tiwari, Peters, and Jonas[32] have shown, using static vibronic transition frequencies, that the

anticorrelated inter-pigment vibration mixes local pigment electronic diabats,[42, 32] corresponding

to signatures of anticorrelated vibrations on the ground state in 2DES.[32] In Chapter 4 we explore

whether or not fluctuations that lead to dynamic vibronic transition frequencies can “activate” the

correlated inter-pigment vibration. We model the transfer of electronic energy out of the FMO

complex and into the reaction center as a trapping event, analogous to measurement in quantum

information theory. If an increase in the measurement frequency suppresses decay, the system can

be said to exhibit a quantum Zeno effect.
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1.4 Organization of the Thesis

The outline of this dissertation is as follows: In Chapter 2, we assess the role of thermal fluc-

tuations in the singlet fission phenomenon. From the diabatic perspective, fluctuations facilitate

fission via charge transfer intermediate electronic states up to some critical threshold, past which

the system becomes self-trapped. In Chapter 3, we develop a model of singlet fission in molecular

crystals, whose translational symmetry leads to a “momentum selection” rule that, taken together

with the energy matching condition of singlet fission, governs the lifetime of the initial singlet exci-

tation. By calculating the two-triplet density of states, the static structure factor, the Bethe Ansatz

wavefunction, and the Slater decomposition when biexciton interactions are of the same order of

magnitude as the triplet bandwidth, we demonstrate that biexciton interactions correlate the two

triplets born out of singlet fission. We predict a threshold for bound triplet pairs and show that the

two-triplet system can exhibit significant entanglement even if unbound. In Chapter 4, we model

photosynthetic energy transfer as a vibronic energy transfer, using a polaronic system of pigments

in the FMO complex, a thermal reservoir to model the protein scaffolding that introduces dynamic

modulation of the exciton transition frequencies, and an anti-Hermitian operator describing the

transport of electronic excitation energy from the pigment-protein complex to the reaction center.

The polaron transformation rigorously shows that it is only the anticorrelated pigment vibrations

that couple to the transfer of electronic excitation energy. Using the exact hierarchical equations of

motion (HEOM), we validate simulations which solve the Redfield equation for a significant range

of values for the Kubo parameter.



Chapter 2

A Microscopic Model of Singlet Fission

2.1 Abstract

Singlet fission, where an electronically excited singlet on one chromophore converts into a dou-

bly excited state on two, has gone from a curiosity in organic photophysics to a potential pathway

for increasing solar energy conversion efficiencies. Focusing on the role of solvent-induced energy

level fluctuations that would be present in a dye-sensitized solar cell, we present a microscopic model

for singlet fission. Starting from an electronic model Hamiltonian, we construct diabatic states in

a manifold of single and double excitations with total singlet multiplicity and then develop a mul-

tilevel non-Markovian theory of dynamics for electronic populations in the presence of energy level

fluctuations. Depending on the energy scales, energy gap fluctuations can either facilitate or hinder

interconversion steps that lead to singlet fission. We critically assess the Markovian approximation

that leads to golden rule rates and study the role of intramolecular solvation dynamics and electron

transfer.

The contents of this chapter have been reprinted with permission from

P. E. Teichen and J. D. Eaves. A microscopic model of singlet fission. J. of Phys. Chem. B,

116:11473-11481, 2012. Copyright 2012 American Chemical Society.

2.2 Introduction

Developing solar technology that is cost-competitive with fossil fuels will require considerable

advances in fundamental science. In 1961, Shockley and Queisser [13] argued that a single junction

http://pubs.acs.org/doi/abs/10.1021/jp208905k
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solar cell could never have power conversion efficiency larger than about 30 %. Their argument

considered only the most basic physics; one photon absorbed above the band gap yields one electron-

hole pair, and that the cell is operating in steady-state. While these arguments are elementary, no

single junction solar cell to date has broken the Shockley-Queisser limit. To do so, a new generation

of materials has been proposed that yield more than one electron-hole pair per photon absorbed. In

these materials, carriers that have energy in excess of the absorption threshold relax by emitting a

second electron-hole pair rather than cooling by phonon emission or other nonradiative relaxation

pathways. Multiple exciton generation (MEG), the name given to this process in semiconductors

and semiconducting nanocrystals, has received the most attention in recent years [14, 15, 43, 44].

The great deal of debate surrounding the results and yields of MEG in nanocrystals highlights a

fundamental weakness in our current understanding of the basic principles that might enable the

one photon to multiple electron-hole pair paradigm.

Singlet fission is the molecular analog of MEG, where a singlet excited state S1 on one

chromophore decays into two excitations, T1T1, on different chromophores [18] (2.1). Unlike singlet

to triplet conversion via intersystem crossing, the initial and final states are simultaneous eigenstates

of the total spin operator, S2, and the operator for the z-component of the total spin, Sz. Singlet

fission is a form of internal conversion from S1 to T1T1, is spin-allowed, and may take place on the

sub-picosecond timescale [45, 46, 47, 48, 49].

Singlet fission was first invoked in the late 1960’s to explain the photophysics of anthracene

and tetracene crystals [28, 29]. In the past 40 years, it has been observed in molecular crystals and

quantified with a variety of methods [18]. But the potential of singlet fission in solar applications

was not realized until 2006, when Hanna and Nozik [14] proposed that singlet fission chromophores

could enhance the efficiency of dye-sensitized solar cells [50, 51].

The singlet fission mechanism is highly system-specific. Singlet fission is a two-electron

interconversion process that can proceed via direct coupling between the initial singlet excitation

and the T1T1 states [52, 53]. It may also occur through concerted or stepwise electron transfer

events that involve virtual or real intermediates, respectively [18, 54, 55]. Similar to the compounds
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studied in Refs. [54, 56], we consider a class of chromophores whose relevant excited states can

be described within frontier molecular orbital theory [18]. These states are weakly coupled, and

the initial excited state is localized. Our treatment describes singlet fission within the stepwise,

or “mediated” mechanism, in the language of Ref. [18]. Extensions of our model to higher-order

perturbation theories that would describe concerted events through virtual state transitions, are

straightforward. [57]

Clearly, computation has a role to play in locating molecules that might undergo singlet

fission, but the calculations are demanding, and state-of-the-art calculations are done with molecules

in isolation. But dye-sensitized solar cells are in polar solutions [14, 15, 43, 16] where interactions

with solvent molecules induce electronic energy level fluctuations that can be on the order of

0.1-0.2 eV [58, 59, 60]; comparable to electronic energy level splittings of isolated singlet fission

chromophores calculated with the highest available levels of theory [61, 52, 62, 63, 64, 65]. Solvent

polarization fluctuations enable transitions between states by activating the system and bringing

it to a crossing point. They also dissipate the energy of excited states [66] and stabilize products.

From a design perspective, one may actually be able to exploit fluctuations to enable singlet fission

when the energies of the S1 and T1T1 states are not exactly degenerate. Clearly, a quantitative

model of fluctuations needs to be part of a comprehensive theory for singlet fission.

In this chapter, we develop a microscopic model of singlet fission that is capable of describing

dynamics on picosecond and subpicosecond timescales in the presence of solvent induced energy

level fluctuations. First, we propose a physically reasonable electronic model Hamiltonian that is

based on frontier molecular orbital theory. We then derive an exact quantum master equation for

the populations of the electronic states and analyze it in the limit of weak-coupling between them.

We analyze rate theories in the Markovian limit, when the timescale between relaxation is well-

separated from the timescale for interconversion. Here, one imagines that solvation and relaxation

timescales, as quantified through a time-dependent Stokes shift, are on the timescale of picoseconds,

while interconversion timescales are at least an order of magnitude longer. The rate theories align

with the Förster/Dexter theory of energy and electron transfer [67, 68]. Using plausible model
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Figure 2.1: Conceptual diagram of singlet fission and the role of fluctuations. (A) Two chro-
mophores, Left and Right, have energy levels where the doubly-excited state is nearly half the
energy of the singlet S1 state. The electron (solid blue circle) and hole (empty circle) undergo
singlet fission, which is an internal conversion process that leaves the system with two excitations,
one on each chromophore. (B) Electronic configurations that participate in singlet fission. A
singlet (top) can go through a charge transfer state (middle) and then to a doubly-excited state
(bottom). The states in both A and B are schematic because if taken literally, these states are not
eigenstates of the total electron spin angular momentum. In addition to satisfying spin selection
rules, interconversion must satisfy energy conservation. An initial state, | i 〉, cannot transition to
another state, | f 〉, unless energy is conserved. For a system in relative isolation (C), a large energy
difference between states forbids transitions. In (D), the solvent induces energy level fluctuations
that broaden the relevant densities of states between | i 〉 and | f 〉. Provided that selection rules
are satisfied, transitions can occur when two states have the same energies (purple overlap).
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parameters for the theory, we examine the nonMarkovian limit, where the system is prepared in

such a way that the solvent is not in thermal equilibrium with the electrons when they are excited.

We then analyze the rate theory of a model that separates fluctuations from solvation dynamics

and electron transfer kinetics. While phenomenological, the theory is microscopic. As a result, the

inputs to the theory can come from a variety of sources: electronic structure calculations, molecular

spectroscopy, and molecular dynamics [69, 70, 71, 72].

2.3 Methods

2.3.1 The Electronic Hamiltonian

We begin by discussing a model electronic Hamiltonian. Recent work has suggested that

the electronic levels in singlet fission systems can be modeled by considering the frontier molecular

orbitals of two chromophores, termed left (L) and right (R). These chromophores could be different

molecules, or different chromophores on the same molecule. Each chromophore has HOMO and

LUMO energy levels separated by a gap, ∆. For the purposes of illustration, we consider identical

chromophores. To construct a fairly general model, we clamp the nuclei at their equilibrium

configuration and propose the following semiempirical electronic Hamiltonian,

Hel = H0
el +Wel ,

with

H0
el =

∑
k,σ

εknk,σ+V
∑
σ,σ′

[
nhL,σnlL,σ′+nhR,σnlR,σ′

]
+U

∑
k,σ

nk,σnk,−σ−X
∑
σ

[
nhL,σnlL,σ+nhR,σnlR,σ

]
,

(2.1)

and

Wel = −
∑
j 6=k,σ

Jjkc
†
j,σck,σ . (2.2)

The fermionic creation and destruction operators, c†k,σ and ck,σ respectively, create or destroy an

electron in orbital k with spin σ. The fermionic number operator is nk,σ = c†k,σck,σ. The ground

state is a closed shell, and electrons can reside in the four frontier orbitals {hL, lL;hR, lR} in either
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the spin up (σ =↑) state or spin down (σ =↓) state. The HOMO and LUMO basis functions

are physically-motivated and mutually orthogonal, but do not necessarily represent the result of

the real and virtual orbitals in an electronic structure calculation. εk is the “bare” energy of an

electron in orbital k, U is the “Hubbard” on-site Coulomb integral of electrons in the same orbital,

V the off-site Coulomb matrix element, and X is the exchange energy. Note that none of the terms

in H0
el couple different orbitals on different chromophores. The coupling matrix elements Jjk, do.

They are two-center ”resonance” integrals that do couple orbitals between R and L chromophores.

The resonance integrals represent the electron kinetic energy, and allow electrons to move between

orbitals by one-electron hops. The energy levels of H0
el may be split by as much as 1 - 10 eV, while

J has been calculated to be in the range of about 0.01 to 0.1 eV [54, 48, 49]. Solute-solvent energy

scales, as quantified through the solvent-induced Stokes shift or electron transfer reorganization

energies can be on the scale of 0.1 eV. These energy scales suggest that one can approach the singlet

fission problem, at least for some of the chromophores in which these parameters are known, in the

weak electronic-coupling limit.

2.2 is an energy level diagram of some of the electronic configurations present in the rep-

resentation of the electronic Hamiltonian in the frontier molecular orbital basis. The electronic

interaction parameters can be computed from first principles simulations, but here they are model

parameters. In arriving at the model Hamiltonian for the electronic degrees of freedom, we drop

all integrals in the Hamiltonian that are three-center and higher. Physically, we suppose that the

states are localized enough that three or more different orbitals have negligible overlap in space.

This is a standard assumption that leads, for example, to the PPP Hamiltonian when atomic or-

bitals are the assumed basis set [73, 74, 75]. Examples of terms missing from the model electronic

Hamiltonian are the Davydov splitting and the direct coupling between singlets and the doubly-

excited state [18]. When these are important, 2.1 is probably not a good model Hamiltonian. But

when the direct coupling term between singlets and doubly-excited states is dominant, the theory

may also be much simpler because the system essentially becomes a two-level system, for which

any number of sophisticated theories are applicable. Detailed calculations [54] show that only three
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Figure 2.2: Energy level diagrams for electron-electron interactions in 2.1. Each panel represents
an electronic state of a chromophore. When two electrons are in the same molecular orbital, they
experience an “onsite” Coulomb repulsion U , while two electrons on the same chromophore but
in different orbitals experience an “offsite” Coulomb repulsion V. The HOMO-LUMO gap is ∆,
and the exchange energy is X. The coupling, J, allows electrons to move between chromophores in
one-electron steps, or hops.

Onsite

 U  V + Δ  V  - X + Δ

ExchangeOffsite
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classes of states are close to the energy of the singlet monomer with the total spin angular mo-

mentum projection, Sz = 0, diagrammed in 2.2: the singly excited singlets, charge transfer states

with three electrons on one chromophore, and doubly-excited states. Guided by the results for a

number of organic chromophores that exhibit singlet fission, we ignore spin-orbit coupling [18, 54].

In the absence of spin-orbit coupling, the total electron spin operators S2 and Sz both commute

with the Hamiltonian and are conserved. As a result of the conservation law, the states must then

satisfy selection rules, which in the space of singlet excited states, means that the total electron

multiplicity must always remain a singlet[18]. This also implies that Sz | Φ 〉 = 0 for any state

| Φ 〉 in the singlet manifold. The spin-adapted linear combinations (SALC) are unitary transforms

of the singlet, charge transfer, and doubly-excited electronic configurations that are simultaneous

eigenstates of S2 and Sz with eigenvalue 0. Note that the | TT 〉 is not a two-triplet state, but is a

SALC that contains doubly-excited singlet character. There are only six SALC that we consider.

They are the ground state, | 0 〉, the singlet state localized on the left chromophore, | S 〉, the sin-

glet state localized on the right chromophore, | S 〉, the charge transfer states localized on the left,

| CT 〉, and right, | CT 〉, and the doubly-excited state, | TT 〉. This choice is not unique. Indeed,

one could, for example, seek linear combinations that are delocalized across each chromophore. We

choose these states rather than other linear combinations because they are consistent with weak

coupling between chromophores. This choice will be important in 2.4 where we couple the elec-

tronic system to a polar solvent bath. Setting the energy of the ground state to zero, and using ∆

to denote the HOMO-LUMO gap, the electronic Hamiltonian in the SALC basis is diagonal with

energies ES = ES = ∆ +V −U , ECT = ECT = ∆ + 2V −U −X, and ETT = 2(∆ +V −U)− 4/3X.

Note that the energy of the | TT 〉 state is higher than the energy of the isolated triplet states by

2/3 the exchange energy, 2X
3 . Had we not insisted on total spin angular momentum conservation,

we would predict a lower threshold for singlet fission.
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Figure 2.3: Spin-adapted linear combinations in the total singlet manifold. Red and blue levels
belong to left and right chromophores, respectively. The levels are physically-motivated, mutually
orthogonal molecular orbitals, for which the matrix elements in 2.1 are evaluated. Only five singly
and doubly-excited states in this system will be simultaneous eigenstates of the total electron spin
operators S2 and Sz with eigenvalue zero. We denote the many-body electronic states in the number
occupation basis as | hL, lL;hR, lR 〉, where, for example, hL is the HOMO on the left chromophore
and lR is the LUMO on the right chromophore. As an example, the singlet excited state localized on
the left chromophore in the number occupation basis is | S 〉 = 1√

2
( | ↓, ↑; ↑↓, 0 〉 − | ↑, ↓; ↑↓, 0 〉 ).
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The nonzero off-diagonal matrix elements of Wel in the SALC basis are

〈 S |Wel| CT 〉 = −JhRhL , 〈 S |Wel| CT 〉 = JlRlL ,

〈 S |Wel| CT 〉 = JlLlR , 〈 S |Wel| CT 〉 = −JhLhR ,

〈 CT |Wel| TT 〉 = −
√

2

3
JhLlR , 〈 CT |Wel| TT 〉 =

√
2

3
JhRlL ,

with the remaining terms following from the Hermitian conjugate of Wel. The SALC, | 0 〉, | S 〉,

| S 〉, | CT 〉, | CT 〉, and | TT 〉 are the diabatic states of the problem (2.3). When all resonance

integrals Jjk are small and the initial excitation is localized, they are the physically relevant states

of the system. This is the limit in which we present the current work. Because we have neglected

three-center and higher integrals, singlets do not couple to | TT 〉 states directly, but rather pass

through intermediate charge transfer states via electron or hole transfer [18]. For example, electron

transfer couples | S 〉 to | CT 〉 and hole transfer couples | S 〉 to | CT 〉.

2.3.2 Hamiltonian of the Dissipative System

Having specified the electronic states that couple to one another and satisfy spin selection

rules, we now derive the equations of motion of the populations of the diabatic states. Experience

from small polaron transport [76], electron and energy transfer [77, 78, 79, 80, 7, 8], and spectroscopy

shows that one can model the effects of the environment with the Hamiltonian,

H =
∑
k

| k 〉Hk〈 k |+ ε
∑
k,l 6=k

| k 〉J〈 l | . (2.3)

2.3 is a generic linear response Hamiltonian. The sum is over diabatic states, | k 〉, J is a constant

in the Condon approximation and ε is a parameter whose numerical value is 1, but will order a

perturbation expansion for weak coupling. Though evidently nonessential, for simplicity we assume

that all couplings between diabatic states are equal, which sets all off-diagonal matrix elements of

Wel = J . Assuming that the environment responds linearly when the system enters diabatic state

| k 〉, Hk can be modeled as a set of quantum-mechanical displaced harmonic oscillators,

Hk = Ek +
1

2

∑
ν

ων

(
p2
ν + (qν + χkν)2

)
. (2.4)
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Ek is the bare energy of diabatic state | k 〉 (e.g. ES , ECT , ETT , etc.). The equilibrium position of

bath mode ν occurs at -χkν when the electronic system is in state | k 〉. Setting E0 = χ0
ν = 0 uses

the ground state as a reference, so that all energy levels and fluctuations are now with respect to

the ground state, | 0 〉. The sum is over all bath modes ν, each with frequency ων , that represent

the polarization fluctuations of the solvent. pν and qν are mass-weighted bath momenta and

coordinates, respectively. The spectra of coupling constants between system and bath, or spectral

densities,

Jk(ω) =
π

2

∑
ν

(ων χ
k
ν)2 δ(ω − ων) ,

completely specifies the behavior of the system. While in this work, we specialize the environment to

include only solvent polarization fluctuations, it is straightforward to include molecular vibrations

and phonons [80] in 2.4.

2.3.3 Equation of Motion for the Populations of the Diabatic States

In Hilbert space, the density matrix obeys the Heisenberg equation of motion, where the

Hamiltonian acts on both the right and left of the density matrix. It is convenient to work in

Liouville space where one orders the density matrix elements into a vector, ρ → | ρ 〉〉 [81]. The

equation of motion can now be written in the form, d| ρ 〉〉
dt = −iL | ρ 〉〉, and the Liouvillian L

acts only on the left side of the density matrix. In Liouville space inner products are defined as

〈〈 A | B 〉〉 = TrSTrB
(
A†B

)
. TrS is a trace over the diabatic states and TrB is a trace over the

bath states. Choosing H0 =
∑

k | k 〉Hk〈 k |, ~ = 1, and V =
∑

k,l 6=k | k 〉J〈 l |, the full density

matrix, | ρ(t) 〉〉 obeys the quantum Liouville equation in the interaction picture,

d

dt
| ρ̂(t) 〉〉 = −iε L̂V (t)| ρ̂(t) 〉〉 ,

where L̂V (t) = eiL0tLV e
−iL0t and | ρ̂(t) 〉〉 = eiL0t| ρ(t) 〉〉. One can go between the two spaces

by using dual relationships between Hilbert and Liouville space in the interaction picture, such as

L̂V (t)A↔
[
V̂ (t), A

]
, L0A↔

[
H0, A

]
.

The electronic population is the reduced density matrix element at time t. For state | k 〉 it
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is σk(t) = 〈〈 k | ρ(t) 〉〉 = TrB
[
〈 k |ρ(t)| k 〉

]
. Motivated by the work of Reichman and Golosov, we

isolate the populations of the diabatic states using the projection operator P =
∑

k | kρk 〉〉〈〈 k |

where ρk is an arbitrary, normalized, nuclear density matrix [11, 81]. With the aid of the projection

operator, one arrives at the formally exact (time-local) equation of motion for the populations. The

equation of motion takes the form of a nonMarkovian quantum master equation [82],

d

dt
σ̂j(t) = −

∑
k

Rj,k(t)σ̂k(t) + Ij(t) . (2.5)

Rj,k(t) is an element of the relaxation matrix and Ij(t) is the quantum inhomogeneous term that

depends on the initial value of the density matrix in the complementary space, (1 − P )| ρ̂(0) 〉〉.

This term is often either zero, or it decays quickly [83]. The derivation of 2.5, including the

forms of the relaxation operator and inhomogeneous term, are in the Appendix. Because 2.5 is

exact, it is a convenient starting point for analysis of the electronic population dynamics. Methods

for analyzing it include explicit quantum simulation via path integral and semiclassical methods

[84, 85, 86], perturbation expansions [82, 12], and asymptotic approximations [11, 81].

We expand the relaxation operator to second order in perturbation theory with respect to ε

to find the approximate quantum master equation in the weak-coupling limit. Assuming that the

initial state is a product state so that (1 − P )| ρ̂(0) 〉〉 = 0, the inhomogeneous term disappears

entirely. This assumption simplifies analysis considerably, but will be re-assessed when more details

about the initial conditions from experiments become available. In singlet fission, systems are

necessarily multilevel, and electronic states in these systems can undergo rapid internal conversion.

The initial conditions are likely to be subtle and highly system-dependent.

Expanding 2.5 to second order in ε, inserting complete sets of diabatic states, and coming

out of the interaction picture yields tractable expressions for the populations [82, 87],

d

dt
σj(t) =

∑
k

[
Wk→j(t)σk(t)−Wj→k(t)σj(t)

]
+ O(ε3) . (2.6)

Wj→k(t) is a time-dependent rate,

Wj→k(t) = 2J2

∫ t

0
dτRe

[
TrB

{
e−iHkτeiHjτρj(t)

}]
. (2.7)
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2.7 is the nonMarkovian generalization of Fermi’s golden rule to a multilevel dissipative

system. When t is long relative to the energy equilibration time in state | k 〉, one can make

the ergodic hypothesis, ρj(t) ≈ ρ
(eq)
j , where ρ

(eq)
j = exp(−βHj)/Zj , and Zj = TrB [exp(−βHj)].

Extending the integral to infinity is equivalent to making the Markov approximation and results in

Fermi’s golden rule,

Wj→k = J2

∫ ∞
−∞

dτ 〈exp(−iHkτ) exp(iHjτ)〉j , (2.8)

where 〈·〉j is an equilibrium ensemble average with respect to state | j 〉, 〈A〉j = TrB(Aρ
(eq)
j ).

The nonMarkovian effects appear as transients, manifest at early times, but converge to the (time-

independent) golden rule rates at long times. An example illustrating this convergence appears

in 2.4. The prefactor J2 controls the distance dependence of the rates. Because it is a resonance

integral, rates should have an approximately exponential dependence on the distance between the

chromophores.

2.3.4 Rate Theories

Assuming that each diabatic state is statistically independent [12] implies that the coupling

matrix elements in 2.4 obey χkν χ
l
µ = 0 for k 6= l. After performing a cumulant expansion of

2.8, taking the trace over the bath, and using Parseval’s theorem, 2.8 becomes the multilevel

generalization of Förster/Dexter theory applied to singlet fission,

Wj→k =
J2

2π

∫ ∞
−∞

dω Ak(ω)Ij(ω) .

Ak(ω) and Ij(ω) are envelope functions related to the strength of solvent-induced fluctuations about

diabatic states | k 〉 and | j 〉. If both states are bright, the envelope functions can be cast in terms

of the absorption spectrum of state | k 〉 and the emission spectrum of state | j 〉. The envelope

functions can be written as

Ij(ω) =

∫ ∞
−∞

dt exp(iωt) exp
[
−i (Ej − λj) t− g∗j (t)

]
, (2.9)

Ak(ω) =

∫ ∞
−∞

dt exp(iωt) exp [−i (Ek + λk) t− gk(t)] .
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λj = 1
2

∑
ν ων(χjν)2 is the reversible work done by the solvent to equilibrate state | j 〉 from the

ground state and gj(t) is a lineshape function for the energy level fluctuations in state | j 〉. It can

be related to the spectral density, Jj(ω),

gj(t) =
1

π

∫ ∞
0

dω
Jj(ω)

ω2
[coth(βω/2)(1− cos(ωt))− i (ωt− sin(ωt) )] . (2.10)

Dipole selection rules forbid emission or absorption to any state other than | S 〉 and | S 〉, so

envelope functions and associated spectral densities cannot be inferred from linear emission and

absorption spectra as they can be in Förster theory. They must be fit from experimental data,

computed from molecular dynamics trajectories, or calculated with a given model for the spectral

densities. In this chapter we use model spectral densities.

2.4 Results and Discussion

Golden rule rates depend on the spectral densities associated with their energy level fluctu-

ations with respect to the ground state for each level. For simplicity, we assume that fluctuations

in all levels are identical. For a model spectral density, we take

J (ω) = 2γ
ωΓ

ω2 + Γ2
, (2.11)

which is a model spectral density applied broadly to electronic spectroscopy in polar solvents. γ

is an energy scale that controls the coupling strength between the electronic states and the bath.

In the high temperature limit the time correlation function for energy level fluctuations decays

exponentially with a time constant of 1/Γ [88]. When the timescale of energy level fluctuations is

slow with respect to 1/γ, each chromophore is in a static environment and the lineshape function

is quadratic in time,

gSlow(t) = kBTγt
2 . (2.12)

The golden rule rate from | j 〉 to | k 〉 is the overlap of two Gaussians, evaluated by integrating

2.9 using the lineshape functions in 2.12,

W Slow
j→k = J2

√
π

2kBTγ
exp

[
−(Ek − Ej + 2γ)2

8kBTγ

]
. (2.13)
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If one identifies the solvent reorganization energy with 2γ, 2.13 has precisely the same form as the

nonadiabatic Marcus electron transfer rate. The static limit implies inhomogeneously broadened

fluctuation spectra. In the inhomogeneous limit, the envelope functions are probability distributions

of a state having a given energy in the ensemble [82]. What 2.13 says is that only a subset of

chromophores in the ensemble have the same energy in state | k 〉 and | j 〉, and only they can

conserve energy. Because 2.13 is essentially a weak-coupling high temperature approximation to the

rate, it is not surprising that the result is reminiscent of the Marcus theory. The role of fluctuations

is evident from 2.13. The rate is not maximal when the bare energies Ek and Ej are equivalent,

but instead when their energy difference matches the strength of environmental fluctuations, 2γ.

Outside the slow modulation and high temperature limits, we evaluate the lineshape functions

gj(t) and gk(t) by expressing the hyperbolic cotangent function in 2.10 as a sum over Matsubara

frequencies and performing contour integrals [89, 90, 6]. 2.4 shows the results as a function of the

coupling strength, γ for off-resonant bare energies, Ek − Ej = -0.1 eV at T = 300 K, and 1/Γ =

100 fs. When the energies are off-resonant, fluctuations increase the rate of transfer from | j 〉 to

| k 〉, up to a point. Above a critical threshold, the rate decreases with increasing γ. If the coupling

strength to fluctuations far exceeds | J |, fluctuations stabilize the diabatic states too much and

thermal activation is increasingly difficult. The system becomes self-trapped [6]. This behavior is

qualitatively similar to that predicted by 2.13 in the high-temperature static limit. 2.5 shows the

results for the time-dependent rate of going from state | j 〉 to state | k 〉 as a function of time for

physically reasonable values of the model parameters: 1/Γ = 100 fs, T = 300 K, γ = 0.1 eV and

Ek − Ej = -0.05 eV. We assume that the system has entered electronic | j 〉 on a timescale much

faster than the solvent or nuclei can equilibrate to that state. This can happen, for example, in a

rapid interconversion process from an excited state above S1 that was prepared with an ultrafast

laser pulse. The time-dependent nuclear density matrix in 2.7 is then exp(−iHjt)ρg exp(iHjt),

where ρg is the nuclear density operator for the ground state. We have evaluated this rate by

making a polaron transformation, cumulant expansion and trace over the bath, and a stationary

phase approximation to the integral over τ in 2.7 using the spectral density in 2.11. It is convenient
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Figure 2.4: The golden rule rate from state | j 〉 to | k 〉 as a function of the system-bath coupling
energy γ. Ek − Ej = -0.1 eV at T = 300 K, and 1/Γ = 100 fs (See text). The energy levels are
off resonance and fluctuations enhance the rate of transfer until the system enters the self-trapping
regime [6].
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to use the approximation, cot(x) ≈ 1+exp(−x)/x, which is good in the temperature range in which

we study. Details of this procedure can be found in Refs. [83, 12]. In the parameter range studied,

the approximation to the time-dependent rate,

Wj→k(t) ≈ J2

√
2π

D(β)
exp

[
−(Ek − Ej − 2γ + 2C(t))2

2D(β)

]
, (2.14)

where C(t) = γ exp(−Γt) is the time-dependent reorganization energy, β = 1/(kBT ), and D(β) =

2
π

∫∞
0 dωJ (ω)

[
1 + 2

βω exp(−βω/2)
]
, is rather accurate. This approximation makes the role of non-

Markovian effects physically transparent, and accompanies the stationary-phase result in 2.5. While

the specific values for the model parameters studied here are not yet known for singlet fission ex-

periments, the parameters used in 2.5 are realistic for solvation dynamics in polar solvents [72].

The fact that the time-dependent rate only converges to the golden rule rate for t greater than

about 600 femtoseconds should give one pause. Because singlet fission has been reported to occur

on sub-picosecond timescales, these results indicate that electronic dynamics in singlet fission may

fall outside the scope of a rate theory based on the golden rule even in the weak-coupling limit, and

that a proper description in systems that interconvert on sub-picosecond timescales should include

real-time quantum dynamics. Finally, we comment on the multistate character of the theory, and

model the polarization fluctuations from microscopic considerations. 2.6 is a coarse-grained view,

from the solvent’s perspective, of the diabatic states in the problem. The singlet states experi-

ence a solvochromatic shift relative to the ground state, provided that the electron distribution

is different in the excited state than in the ground state. This shift is a solvent response to an

intramolecular dipole moment that occurs when the chromophore enters the electronically ex-

cited state. An intermolecular, or more precisely interchromophoric, dipole moment relative to

the ground state characterizes the charge transfer states. These states experience an outer sphere

reorganization energy from the solvent in the Marcus sense. If only singlets and charge transfer

states were involved, one could simply apply the theories of photoinduced electron transfer. But the

charge transfer states are intermediates between the singlets and the | TT 〉 state. Relative to the

charge transfer states, the solvent must relax an intermolecular dipole moment and accommodate
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Figure 2.5: The nonMarkovian rate and golden rule rate from state | j 〉 to | k 〉 as a function of
time. Ek − Ej = -0.05 eV at T = 300 K, 1/Γ = 100 fs and γ = 0.1 eV (See text). The stationary
phase approximation (SPA) to the nonMarkovian rate shows good agreement with the approximate
form in 2.14. The nonMarkovian rate converges to the golden rule rate, but only for times greater
than about 600 fs.
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Figure 2.6: Schematic of the charge distribution on each chromophore in the | S 〉, | CT 〉, and | TT 〉
states. Blue and red colors denote charge differences relative to the ground state. The SALC states
are linear combinations of states of the same polarization, only with different spin configurations.
The solvent responds to the charge, not the spin. If the system starts with the solvent equilibrated
in the | S 〉 state, an electron transfer event brings the | S 〉 state to | CT 〉, while both an electron
transfer and an intramolecular charge redistribution must occur in the | TT 〉 state when coming
from the | CT 〉 state. The model system-bath Hamiltonian in 2.15 takes these considerations into
account.
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Figure 2.7: (A) The “mediated” two electron process as a function of energy level stagger for ES and
ETT fixed with ECT varying. The orange rectangle signifies the region where ECT > ES , the green
rectangle denotes the region where ECT < ETT , and the blue region is where ES > ECT > ETT .
Schematic configurations in the top right panel illustrate one-electron electron transfer events. (B)
Marcus rates in the high temperature limit for T = 300K, Λ = λ = 0.1 eV, ETT = −0.1eV .
The extra reorganization energy for the | CT 〉 → | TT 〉 increases the width of the WCT→TT
rate relative to that of the WS→CT rate. Forward rates are solid lines and back transfer rates
are dashed. The dotted vertical light blue lines represent the “window of opportunity” for singlet
fission, where ES > ECT > ETT , and terminate on the black dots where forward and back transfer
rates are equivalent. In the window of opportunity, all forward transfer rates are larger than the
back transfer rates.
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an additional electronic excitation in the | TT 〉 state. To model these phenomena, we assume

that the system begins in state | S 〉, and the solvent has equilibrated to that electronic charge

distribution. To make progress in this direction, we rewrite H0 in the canonical “system plus bath”

form, H0 = HS + HSB + HB. H0 is still diagonal in the diabatic basis but we propose that HSB

should be

HSB = (nR − nL)
∑
ν

ωνΛνqν + (n∗ − 1)
∑
ν

ωνλνqν . (2.15)

nR − nL is the total number of electrons on the right chromophore minus the number of electrons

on the left chromophore, while n∗ is the number of electrons in the LUMO orbitals. The form of

2.15 ensures that the bath responds linearly to the change in the dipole moments relative to state

| S 〉. For simplicity, we assume that intermolecular and intramolecular polarization fluctuations

are uncorrelated by imposing λνΛν = 0. In the high-temperature limit, the transfer rates between

| S 〉 and | CT 〉, and from | CT 〉 to | TT 〉 assume the form of a Marcus rate,

WS→CT = J2

√
πβ

Λ
exp

[
− β

4Λ

(
ECT − ES + Λ

)2]
, (2.16)

WCT→TT = J2

√
πβ

λ+ Λ
exp

[
− β

4(λ+ Λ)

(
ETT − ECT + λ+ Λ

)2]
.

Λ = 1
2

∑
ν ωνΛ2

ν is the reorganization energy associated with interchromophoric electron transfer and

λ = 1
2

∑
ν ωνλ

2
ν is the reorganization energy for intramolecular charge redistribution in the excited

state. It is related to the Stokes shift. Because the solvent must do more work to accommodate the

charge distribution in the | TT 〉 state, the rates in 2.16 indicate that the inverted regime occurs

at higher energies for the WCT→TT than for WS→CT . 2.7 (B) is a plot for the forward transfer

rates, WS→CT and WCT→TT compared to the back transfer rates WCT→S and WTT→CT for the

energy level stagger between | S 〉 and | TT 〉 fixed as a function of the energy for the charge

transfer intermediate | CT 〉. The specific parameters appear in the figure caption. 2.7 indicates

a region where ES > ECT > ETT (between the dotted blue lines), where the forward rates exceed

the back transfer rates. The weak-coupling, high-temperature result predicts the non-Arrhenius

behavior characteristic of Marcus electron transfer. While this is not particularly surprising, 2.4
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illustrates the interplay between energy level spacings and solvent fluctuations as a design principle

for maximizing singlet fission yields. Even if the bare energy levels are not resonant, environmental

fluctuations make the rates nonzero.

We have presented a model for singlet fission in the presence of solvation-induced energy level

fluctuations and analyzed it using model parameters for electronic energy levels, electronic-coupling,

and spectral densities in the weak electronic-coupling limit. The model electronic Hamiltonian

employed allowed us to identify selection rules and approximate energies of electronic configurations.

Enforcing total angular momentum spin conservation predicts that degeneracy between the singly

excited singlet states and the doubly-excited | TT 〉 state should occur at a slightly higher energy

than that of the isolated triplets. This is because one needs to include the doubly-excited spin

singlets to satisfy total spin angular momentum conservation. This is vaguely reminiscent of theories

of MEG in nanocrystals and carbon nanotubes, where selection rules delay the onset of MEG,

although the matrix elements evaluated there are different. It would be interesting to check this

prediction against more detailed electronic structure calculations. Though we did not follow this

route for reasons of consistency, if the | S 〉 and | TT 〉 states are directly coupled, as some

have suggested for molecules like pentacene [18], it is simple to redefine the diabatic states and

extend the results of 2.3.3 to describe this case. Using a reasonable initial density matrix and

model parameters for energy level splittings and solvent reorganization energies, we find that the

nonMarkovian aspects of electron dynamics in singlet fission may be significant on sub-picosecond

timescales. One should apply the golden rule with caution when dynamics occur on timescales of

less than a picosecond, even in the limit of weak coupling. Finally, while we have assumed the weak

electronic-coupling limit in this work, this assumption is probably marginal in some cases. Recent

work has found coupling matrix elements that range between 0.02 to 0.1 eV. If the reorganization

energy is not larger than this energy scale, the weak electronic-coupling limit is not valid. If the

electronic-coupling matrix elements are larger than the reorganization energies, then one should

analyze the density matrix dynamics with Redfield theory or one of its variants [88, 91]. If the

reorganization energies and electronic-coupling matrix elements are of the same size, which may
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be the case in some systems, perturbative approaches are not trustworthy [92]. While there is

still much theoretical and experimental work that needs to be done to understand what controls

electronic energy levels and coupling, we hope the current work will help empower the sophisticated

tools of condensed phase chemical physics: nonlinear spectroscopy, molecular dynamics simulations,

and quantum dynamical theory, to build a comprehensive picture of singlet fission.

2.5 Appendix 2A - Quantum Master Equations

We can solve the Liouville equation in the complementary space by defining Q = 1− P and

solving for Q| ρ̂(t) 〉〉, which is given by

Q| ρ̂(t) 〉〉 = G +
Q (t, 0)Q| ρ̂(0) 〉〉 − iε

∫ t

0
dτG +

Q (t, τ)QL̂V (τ)P | ρ̂(τ) 〉〉

using the time evolution operators

g−(t, τ) = T̂− exp

[
iε

∫ t

τ
dsL̂V (s)

]
G +
Q (t, τ) = T̂+ exp

[
− iεQ

∫ t

τ
dsL̂V (s)

]
where T̂+ and T̂− denote forward and backward time evolution, respectively. This solution can be

recast as

Q| ρ̂(t) 〉〉 =
[
1− Σ(t)

]−1[
G +
Q (t, 0)Q| ρ̂(0) 〉〉+ Σ(t)P | ˆρ(t) 〉〉

]
, (2.17)

where the Σ(t) operator is given by [82]

Σ(t) = −iε
∫ t

0
dτG +

Q (t, τ)QL̂V (τ)Pg−(t, τ) .

When 2.17 is introduced into our reduced space we get the exact solution

d

dt
P | ρ̂(t) 〉〉 = −iεP L̂V (t)P | ρ̂(t) 〉〉 − iεP L̂V (t)

[
1−Σ(t)

]−1
[
G +
Q (t, 0)Q| ρ̂(0) 〉〉+ Σ(t)P | ρ̂(t) 〉〉

]
.

(2.18)

Operating from the left with 〈〈 j | on 2.18 we get

d

dt
σ̂j(t) = −

∑
k

Rj,k(t)σ̂k(t) + Ij(t) (2.19)
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where the relaxation matrix and inhomogeneous terms are

Rj,k(t) = iε〈〈 j |L̂V (t)
[
1− Σ(t)

]−1| kρk 〉〉

Ij(t) = −iε〈〈 j |L̂V (t)
[
1− Σ(t)

]−1
G +
Q (t, 0)Q| ρ̂(0) 〉〉 .

Using the simplification that P L̂V P = 0 we expand 2.19 to O(ε2) which leads to 2.6 and 2.7.

2.6 Appendix 2B - Biexciton Interactions and Spin Relaxation Measured

using Magnetic Fields

The multiexciton singlet state, | TT 〉, is a linear combination of Slater determinants with

triplet character each weighted by Clebsch-Gordon coefficients. There are 22 one-triplet (two elec-

tron) Slater determinants and 42 two-triplet (four electron) Slater determinants: 2 singlets, 9

triplets, and 5 quintets. If the two triplets born out of singlet fission do not interact, there are 32

degenerate two-triplet states in the absence of an external magnetic field, 3 of which have singlet

character. The zero-field states for each molecule of a dimer are | x 〉 = 1√
2

(
| β, β 〉 − | α, α 〉

)
,

| y 〉 = i√
2

(
| β, β 〉 + | α, α 〉

)
, and | z 〉 = 1√

2

(
| α, β 〉 + | β, α 〉

)
. The dimer Hilbert space for

independent chromophores is then the direct product space:

{ | x 〉, | y 〉, | z 〉 } ⊗ { | x 〉, | y 〉, | z 〉 } . (2.20)

In a strong magnetic field, the monomer magnetic states are | 0 〉 = | z 〉, | + 〉 = | α, α 〉, and

| − 〉 = | β, β 〉, with the corresponding to the dimer product basis:

{ | 0 〉, | + 〉, | − 〉 } ⊗ { | 0 〉, | + 〉, | − 〉 } . (2.21)

When local spins are allowed to interact, the character of the | TT 〉 state changes such

that fluorescence decay changes in a strong magnetic field. Burdett et al.[93] and Piland et al.[94]

have extended Johnson and Merrifield’s theory,[28] including the dipole-dipole interactions between

triplets that reduce the singlet character of two-triplet states in a high magnetic field, to polycrys-

talline films and amorphous solids. This is the most direct way to differentiate interacting triplet
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pairs from independent triplets using magnetic fields. In Fig. 2.8 we illustrate the change in

two-triplet character of the | TT 〉 state when a magnetic field is applied.

Figure 2.8: The multiexciton singlet state in the absence of a magnetic field (a) and in the
presence of a strong magnetic field (b), illustrated using uncertainty cones in the x̂ŷ plane. In a
strong magnetic field, the number of nonzero Clebsch-Gordon coefficients is reduced from 3 to 2,
with the | T+ 〉 = 1√

2

(
| +,− 〉 + | −,+ 〉

)
Slater determinant selected rather than the zero-field

states, | x, x 〉 and | y, y 〉.
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Spin-spin interactions break the degeneracy of |+,− 〉 and | −,+ 〉 in the strong-field represen-

tation of | TT 〉, shown in Fig. 2.8, leading to changes in the prompt and delayed fluorescence.[93, 94]

If fission is to enhance photocurrent in multijunction devices, the triplet excitons born out of singlet

fission must be separated. This | TT 〉 to | T 〉 ⊗ | T 〉 transition is spin-forbidden, occuring on

nanosecond timescales over which the doubly excited state equilibrates across the 32 zero-field spin

states.[93] Work is currently underway by Burdett, Bardeen, and coworkers to measure and better

describe spin relaxation in singlet fission.



Chapter 3

Collective Aspects of Singlet Fission in Molecular Crystals

3.1 Abstract

We present a model to describe collective features of singlet fission in molecular crystals

and analyze the model using many-body theory. The model we develop allows excitonic states

to delocalize over several chromophores and is consistent with the character of the excited states

in many molecular crystals, such as the acenes, where singlet fission occurs. As singlet states

become more delocalized and triplet states more localized, the rate of singlet fission increases. We

also determine whether or not the two triplets resulting from fission are correlated. Using the

Bethe Ansatz and an entanglement measure for indistinguishable bipartite systems, we calculate

the triplet-triplet entanglement as a function of the biexciton interaction strength. The biexciton

interaction can produce bound biexciton states and provides a source of entanglement between the

two triplets. Significant entanglement between the triplet pair occurs well below the threshold for

bound pair formation. Our results paint a dynamical picture that helps explain why fission has

been observed to be more efficient in molecular crystals than in their covalent dimer analogues,

and have consequences for photovoltaic efficiency models that assume that the two triplets can be

extracted independently.

3.2 Introduction.

Singlet fission (SF) is an internal conversion process that can take place in organic molecules

and crystals where one photon produces two triplet excitons. While the observation of SF in
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organic chromophores is decades old, Hanna and Nozik’s proposal[14] that dye-sensitized solar cells

incorporating SF chromophores can break the Shockley-Queisser limit[13] has reignited interest in

the phenomenon of singlet fission.[95, 96, 97, 93, 98, 99, 48, 100, 101, 102, 94, 103, 47, 104, 105,

20, 21, 22, 23, 24, 25, 26, 106, 107, 108] While these photovoltaic applications are important, SF

presents several fundamentally challenging problems in condensed phase chemical physics.

One might argue that we remain in the observational phase of fission research.[18, 19] There

are a handful of chromophores that undergo SF, and the reasons that some do and others do

not remain poorly understood.[18, 19, 20, 21, 22, 23, 24, 25, 26] Moreover, the guiding principles

that are in place, like the energy matching condition, which says that fast fission can occur if it is

exoergic or nearly isoergic, are mostly empirical and perhaps overly simplistic.[98, 99, 107, 108, 109]

Indeed, recent experiments on tetracene call into question how general this requirement really is,

particularly in crystals where the density of two-triplet states is large.[99, 101, 95, 97, 103] While the

majority of SF systems investigated experimentally are condensed, often solid phases of molecular

crystals, theory has primarily focused on SF in isolated dimers.[18, 19, 110, 111, 112, 26, 53, 105, 113,

114, 115, 116, 24, 107, 108, 117] While these studies are insightful, a complete and comprehensive

theoretical picture of SF must describe fission in crystals, which are qualitatively different than

dimers.

In the most conceptually simple picture of SF, one considers fission between a pair of

chromophores.[18, 19, 106, 108] While tractable, this local viewpoint misses important details

about the nature of the electronically excited states in crystals.[118, 119, 120, 121, 122, 107]

Experiments[123, 124, 97, 125] and several calculations[126, 49, 127, 128, 108] provide evidence

that the electronic wavefunction of the optically bright singlet in acene molecular crystals is

delocalized across several chromophores. The triplet states, in contrast, localize to individual

molecules.[18, 129, 117, 130, 122] If one thinks of a molecular crystal as a dense array of chro-

mophores, the singlets can couple to one another through electronic dipole-dipole coupling, while the

triplet states, which are dark, can not.[49, 117] This leads to a band-narrowing and localization effect

for the triplets relative to the singlets, which has measurable consequences for singlet and triplet ex-
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citon transport mechanisms in acene crystals.[49, 18] The first part of this manuscript addresses how

differences between localization and delocalization can influence fission yields. SF can be a domi-

nant decay pathway for singlet excited states in pentacene and tetracene molecular crystals, and in

pentacene crystals, for example, some have reported near unit quantum yield.[131, 132, 133, 21] In

covalent dimer analogues of tetracene and pentacene crystals, however, fission yields are typically

an order of magnitude less efficient than their crystalline counterparts.[18, 19, 95, 108] One potential

reason is that the electronic couplings in the dimer analogues simply aren’t big enough to enable

SF rates that out-compete other relaxation processes.[108] It could also be the case that collective

characteristics of the excited states, like exciton delocalization that has no parallel in dimers, play

an important role.[134, 135, 136] These are much more difficult to describe and understand, and

are a principal focus of this work.

The singlet fission process we study appears is [18, 19]

S1 ↔ 1(TT )→ T1 + T1 . (3.1)

The photon prepares an initial singlet state, S1, that decays into a doubly-excited state, 1(TT ),

which is a superposition of triplet excitons. There are nine spin states that result from adding the

angular momentum for a pair of triplets, but only the singlet within this manifold, designated with

the 1 superscript, connects to the initial singlet, S1, through spin selection rules.[18] While Eq. 3.1

has the form of a chemical rate equation, one should refrain from interpreting it in this way because

the mechanism may involve both electronic populations and coherences.[18, 19] As recent detailed

work on acenes has shown, the interconversion events, shown in Eq. 3.1, are not stepwise in those

systems. SF occurs through a mechanism reminiscent of “superexchange”, where a superposition

of the S1 and 1(TT ) states decohere into 1(TT ).[101, 95, 93, 98, 99, 48, 102, 47, 104, 105, 28, 135]

Theoretical calculations of spectral features, such as the Davydov splitting, have shown that the

initial excitation possesses significant charge transfer character not shown in Eq. 3.1.[49] In some

of the acenes, a consistent picture for the first step is emerging, but is still under debate.[105,

104, 109, 114, 108, 137, 98] The second step, 1(TT ) → T1 + T1, is less well understood. While
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the 1(TT ) state is an approximate eigenstate of the electronic Hamiltonian, it is not an eigenstate

of the spin-dipole operator, which splits the levels of the 1(TT ) state.[28, 29, 18, 19] Burdett and

Bardeen’s time-resolved fluorescence experiments have resolved the quantum beats that result from

this splitting and their measurements provide some timescales for the transition from the 1(TT )

state to T1 + T1.[96, 93, 138] This transition may require spin-lattice relaxation that occurs on

nanosecond (ns) timescales.[96, 93, 138, 139]

Many optical experiments that measure SF yields do so indirectly,[95, 97, 98, 99, 48, 100] so

estimates of SF yields from these measurements must be interpreted with some care. The spectra

are often broad and congested, with linewidths exceeding the laser bandwidth.[48] Pump-probe

experiments, for example, attribute the SF yield to the amplitude of the induced absorption from

the S1 to the putative T1 state. But without an external magnetic field these experiments cannot

reliably distinguish between the 1(TT ) and the T1 + T1 state.[98, 99, 48] If both states contribute

to the induced absorption then both the intermediate and final states contribute to the transient

absorption signature, and so estimates of the SF yield, along with assignments of the dynamics from

these measurements, will be inaccurate.[93] In addition, the molecular crystals and aggregates that

undergo SF exhibit a high degree of polymorphism, which not only changes with temperature, but

also implies that samples prepared using different methods or under different conditions can have

different morphologies, intermolecular electronic couplings, and SF yields.[140, 64, 102, 141, 115,

100, 21] These factors have all likely contributed to variations in estimates of SF timescales, which

can range from 0.1 picoseconds (ps) to 100 ps in solid phases of tetracene.[142, 103, 101, 96, 98, 99]

In theoretical descriptions of SF in crystals, one should describe exciton delocalization and

recognize that, in contrast to the electron and exciton transfer work that has dominated the liter-

ature in the last few decades, SF is a multielectron process. Many theories of electron and energy

transfer dynamics in the condensed phase can be phrased as an effective one-body problem.[76] A

concrete example is the Holstein small polaron model,[143, 144, 145, 76] which underpins both the

Marcus theory of electron transfer [7] and the Förster/Dexter theory of energy transfer,[67] and is

a model that our group has generalized to describe SF in dimers when the weak electronic coupling
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limit applies.[106] In the Marcus scenario, the electron distorts the nuclei and solvent polarization

as it moves between electronic states so that the reaction coordinates are massive and can be treated

classically.[69, 70] While the electron is a fermion, its spin statistics are immaterial in the single

particle problem. In the case of energy transfer in molecular crystals, the Coulomb interaction

between the electron and the hole in the excited state binds them into an exciton.[120, 126, 65] So

while an exciton is formally a two-particle state, the electron and hole move together and function,

in many ways, as a single particle. In both cases, the electron (or hole) in electron transfer or the

exciton in energy transfer, the relevant electronic states behaves as quasiparticles; in many ways

like an elementary particle, but with an energy shift and lifetime inherited from the interactions

between the particle and the other degrees of freedom.[146] Making the quasiparticle notion quan-

titative is a frontier area in electronic structure theory first pioneered in condensed matter physics,

but one that has seen recent application in molecular systems.[147, 148, 126, 128, 149] To connect

our work to this nascent framework and make quasiparticle notions precise, we employ the methods

of many-body and Green’s Function Theory in this manuscript.[150]

By analogy, SF is at least a two quasiparticle problem, where one must understand not only

how these effective excitons interact with the environment, but how they interact with each other.

Many-body electron-electron interactions and entanglement between pairs of excitons, not present

in one-body problems, are manifest in fission. The model presented here captures essential features

of SF in periodic molecular crystals, but allows questions about particle-particle entanglement to

be addressed clearly. In particular, for photovoltaic applications, it is natural to expect that max-

imum extraction efficiency occurs when the T1 + T1 state is composed of distinct and independent

excitons. Our criteria for “distinct” and “independent” come from quantum information theory

and move beyond the preliminary classifications of triplet-triplet independence, which hypothesized

that triplets that are “well-separated” are independent.[135, 151] Pairs of quantum particles born

under selection rules can exhibit quantum entanglement, where even though they are well-separated

spatially, they are not independent; a measurement on one of the particles affects the state of the

other. In analogy to spin-entangled pairs produced in Bell test experiments,[152] the 1(TT ) state,
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born from an optically bright singlet, is certainly spin-entangled even if the excitons are spatially

well-separated. One might suppose still that thermal fluctuations destroy any kind of quantum en-

tanglement, but there are theoretical models for which this is not true where thermal fluctuations

can produce or reinforce entanglement.[153, 154, 155, 156, 157, 158, 159, 160]

While a dimer picture cannot describe excitons that span more than two molecules, we draw

on it to construct a molecular level description for SF in a crystal that allows for delocalization

amongst several chromophores. We present a model Hamiltonian that builds on empirical evidence

for SF in both experiments and theory.[117, 161, 145, 162, 49, 127, 124, 95, 163, 164] When param-

eterized from microscopic simulations, the exciton model we employ for the excitonic states gives a

quantitative description of the electronically excited states in acene molecular crystals,[145, 49, 127]

with the largest electron correlation energy coming from the interaction between the electron and

hole on the same molecule.[120] At this level of detail, excitonic states are particles, and the exciton

model shares similarities with tight binding models of electronic band structure. Just like electrons

and holes have band structure, so do excitons.[145] The exciton resonance integrals, JS and JT play

the role of the electronic tunneling matrix elements in tight binding models and are proportional to

the excitonic bandwidth. In this work we use the resonance integral for triplets as a surrogate for

delocalization: the larger the resonance integral, the larger the degree of delocalization. This is not

entirely rigorous because we do not include explicit localization mechanisms for triplet states other

than the biexciton interaction. Rather than saying the resonance integral is large or small, one must

instead compare the size of these resonance integrals to another energy scale responsible for local-

ization, like the electron-phonon coupling strength. While two-particle excited states are somewhat

of a novelty in electron and energy transfer, they occur naturally in nonlinear spectroscopies, and

we draw upon these studies to understand SF.[165, 166, 167, 168, 169] Models akin to the one we

develop can capture essential spectral features of exciton-exciton interactions in pump-probe spec-

troscopy of linear and cylindrical molecular aggregates.[170, 171, 165, 166, 172, 169] Importantly,

these studies show that, in collective systems like aggregates and crystals, one needs to include the

biexciton interaction or else the bleach and induced absorption signals in pump probe spectra will
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cancel one another and produce no signal.[173]

In this work we develop and solve the exciton model Hamiltonian in one dimension and do not

include dissipation via electron phonon or spin lattice relaxation. While exciton dynamics in some

molecular crystals and aggregates do occur in dimensions less than three,[49, 126, 128] these choices

are made for technical reasons. First, in one dimension the exciton model for SF transforms into a

quantum lattice model of interacting fermions, a procedure detailed in Section 3.3, which dramati-

cally simplifies the analysis of the two-triplet state. Second, the Bethe Ansatz, which is thought to

be exact for fermions in one dimension, provides solutions for these two particle states.[174, 175] We

do not include dissipation because quantifying bipartite (two-triplet) entanglement on a quantum

lattice in a dissipative environment is not straightforward.[176, 177, 178, 153] Quantum dissipation

through the electron-phonon interaction and loss of spin coherence through spin-lattice relaxation

are certainly important phenomena for singlet fission in crystals, but these features are even more

poorly understood than the ones addressed here. We therefore defer their study to later work.

The outline of the manuscript is as follows: In Sec. 3.3, we describe the model for fission,

calculate the eigenstates in the noninteracting case, and write the translationally invariant rep-

resentation of all excitonic states on the periodic lattice. The periodicity of the crystal leads to

momentum selection rules which state that the center of mass momentum for the triplet pair born

from fission must have the same momentum as the singlet. For N chromophores in a lattice, there

are ∼ N2 two-exciton states, but Pauli exclusion for the two-exciton states, in addition to optical

and momentum selection rules, reduce the size of the Hilbert space considerably. In a periodic lat-

tice, only one singlet state is bright and only ∼ N/2 two-triplet states couple to that singlet. In Sec.

3.4, we use many-body Green’s functions to describe SF in the case where the biexciton interaction

is zero, which yields an exactly solvable result, vis-a-vis the quasiparticle interpretation. This sce-

nario reduces to the Fano-Anderson model that describes how a quantum impurity, here the bright

singlet state, interacts with a continuum formed by the two-triplet states. The singlet fission rate

comes directly from the singlet self-energy and reduces to the Golden Rule, which predicts that the

singlet fission rate increases with increasing triplet localization. While the optical selection rules
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in perfectly periodic lattices preclude a formal analysis of how singlet localization impacts the rate

of singlet fission, we show, using a variational solution for a localized singlet state, that the rate of

singlet fission, W , depends on the delocalization length, `, strongly, as W ∼ exp(−1/`2). In Sec.

3.6 we use scattering theory to study the system for nonvanishing biexciton interaction strength,

χ, and in Sec. 3.7 we characterize the two-triplet states using the Bethe Ansatz . The size of χ/JT

determines whether or not the two-triplet states are bound to one another or are unbound, and in

Sec. 3.8, we compute triplet-triplet entanglement using the Slater decomposition. We conclude by

discussing our results in the context of recent and past work on singlet fission, including that of

Suna and Merrifield.[135, 28, 29, 134, 119]

3.3 A Model Hamiltonian for Fission.

Molecular crystals are ordered, periodic, and dense arrays of chromophores that can be

modeled using quantum lattices.[143, 144] In the diabatic picture of the crystal lattice the nuclei

are fixed, each molecule becomes a site, and each site can support one exciton. The excited state

wavefunctions are product states, similar to the Heitler-London approximation for electronic states

of molecules.[172, 179, 180, 181, 182, 183] The many-body ground state is | 0 〉 =
∏
n(S0)n and

the excited state with a singlet localized on site n is | n 〉S = (S1)n
∏
m 6=n(S0)m, where (S0)n is a

singlet ground state on site n and (S1)n is the first excited state of site n. The excited state with

a triplet localized on molecule n is | n 〉T = (T1)n
∏
m6=n(S0)m, where (T1)n is the triplet excited

state wavefunction of site n. We pass to a second-quantized formalism by introducing the singlet

and triplet excitation operators, P†n ≡ | n 〉S〈 0 | and T †n ≡ | n 〉T 〈 0 |, respectively, and the singlet

and triplet de-excitation operators, Pn ≡ | 0 〉S〈 n | and Tn ≡ | 0 〉T 〈 n |, respectively.[173]

The exciton basis describes particles called paulions that obey a mixed Bose-Fermi commu-

tation algebra. Like fermions, paulions forbid double singlet and double triplet excitons localized

on the same molecule,

P†nP†n = 0 , T †n T †n = 0 , (3.2)
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and also forbid the singlet-triplet composite exciton,

P†nT
†
n′ = T †n′P

†
n = 0 . (3.3)

The total Hamiltonian, H , is the sum of the exciton Hamiltonian, H, and the light-matter inter-

action in the dipole approximation, −ME(t),

H = H −ME(t) . (3.4)

The dipole operator, M is M = µ
∑

n (P†n+Pn) for identical molecules, µ is the molecular transition

dipole moment, and E(t) is the time-dependent electric field that drives transitions. In the product

basis, M is

M = µ∗
∑
n

| n 〉S〈 0 |+ µ
∑
n

| 0 〉S〈 n | . (3.5)

The exciton Hamiltonian, H, spans the Hilbert space of singlet and triplet excitons, HS and

HT , respectively. H also couples singlets and triplets through V and V †, operators that correspond

to singlet fission and triplet-triplet annihilation, respectively,

H = HS +HT + V + V † . (3.6)

Each term in the exciton Hamiltonian in Eq. 3.6 appears in Eq. 3.7 – Eq. 3.9

HS = εS
∑
n

P†nPn − JS
∑
n

[
P†nPn+1 + P†n+1Pn

]
(3.7)

HT = εT
∑
n

T †n Tn − JT
∑
n

[
T †n Tn+1 + T †n+1Tn

]
−χ
∑
n

T †n T
†
n+1Tn+1Tn (3.8)

V =
γ

4

∑
n

[
T †n T

†
n+1 + T †n−1T

†
n

]
Pn (3.9)

Fig. 3.1 illustrates the terms in the Hamiltonian. The energies εS and εT are the “on-site” singlet

and triplet exciton energies, the energies of the individual molecular excited states in the effective

field of the crystal. The singlet and triplet resonance integrals are JS and JT , respectively, and χ is

the biexciton interaction strength. All of the model parameters in this study are positive. Singlet
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resonance integrals are available from quantum chemistry calculations,[49, 127, 128, 108] but few

calculations of JT and χ have been published.[117, 129, 184, 185] In acene crystals that exhibit

fission, there is evidence that singlet exciton transport is bandlike while triplet exciton transport

occurs via hopping diffusion.[123, 124, 97, 125, 126, 49, 127, 128, 108, 18, 129, 117, 130, 122] On

physical grounds, the singlet excitons, which are optically bright, can couple to one another through-

bond and through-space via transition dipole coupling, while triplet excitons, which are dark, only

couple from one molecule to another with through-bond interactions. In either case, one expects

that |JS |/|JT | >> 1.[186, 187, 188, 189, 129] The exciton resonance integral can even change signs

for different polarization directions in the same crystal,[145, 167, 190] but in this paper, we choose

JS > 0 and JT > 0, so that both bands run up from the Γ-point in the Brillouin zone. We also work

in units where ~ = 1. Because the Hamiltonian is periodic, the eigenstates of the Hamiltonian must

remain unchanged under translation. This symmetry gives rise to a crystal momentum quantum

number, k. The Fourier transform, P̂†k = 1√
N

∑
n e

iknaP†n and P̂k = 1√
N

∑
n e
−iknaPn, diagonalizes

Eq. 3.7, HS =
∑

k | k 〉ES(k)〈 k |, where | k 〉 = P̂†k| 0 〉, and the energy spectrum of all singlet

excitons is

ES(k) = εS − 2JScos(ka), (3.10)

where a is the lattice spacing between sites, k = (1 −N)π/L, (3 −N)π/L, · · · , 0, 2π/L, · · · , (N −

1)π/L, and L = Na is the total length of the lattice. The dipole operator is particularly simple in

the | k 〉 basis, M = µ∗P̂†k=0 + µP̂k=0, and therefore only the k = 0 mode is optically bright in a

periodic lattice. We designate the optically bright singlet | S 〉 ≡ | k = 0 〉. It has energy

ES = εS − 2JS (3.11)

relative to the ground state. Because the fields used in experiments are weak, we assume that the

role of the electric field is simply to prepare the system in state | S 〉. Dynamics then follow from

the decay of | S 〉 into two-triplet states, which we compute using many-body theory.
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Figure 3.1: Dynamics of singlet and triplet excitons. A singlet localized at site n, | n 〉S , may relax
to two triplets with one triplet at site n and one to the left or to the right of it. | n 〉S may not
relax to next nearest-neighbor triplets. The singlet and triplet resonance integrals, JS and JT , are
related to exciton energy transport in a crystal and are proportional to exciton bandwidths. The
local triplet-triplet interaction strength, χ, is a measure of the mutual attraction between nearest-
neighbor triplets. γ is the quantum amplitude for singlet fission, coupling a singlet localized at site
n to two triplets, one triplet localized at site n and the other triplet localized at either site n− 1 or
n+1. Singlet and triplet excitons are denoted by circles and x’s, respectively. The matrix elements,
JS , JT , and χ account for intermolecular electron-electron interactions and all have expressions in
terms of many-body repulsion integrals over the appropriate wavefunctions.[76, 107]
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3.3.1 The Jordan-Wigner Transformation and Matrix Representations

While the exciton basis is convenient for constructing a model, there are many complica-

tions one encounters when trying to represent the exciton Hamiltonian in matrix form for practical

calculations.[191, 170, 119, 118] To alleviate these problems, we use the Jordan-Wigner transfor-

mation to turn the paulions into fermions. The Jordan-Wigner transformation is exact in one

dimension and is a standard method of attack for quantum lattice problems. The Jordan-Wigner

string operator, Θn = eπi
∑
n′<n t

†
n′ tn′ , provides a relationship between the paulion and fermion

creation operators, T †n = t†nΘ†n, and a relationship between the paulion and fermion annihilation

operators, Tn = Θntn. Physically, t†n creates an fermion at the same lattice site as T †n creates a

paulion, but with a phase that is −1 for each excitation to the left of site n. Unlike the paulions,

the Jordan-Wigner particles obey fermionic anticommutation algebra,

{tn, t†n′} = δn,n′ , {tn, tn′} = {t†n, t
†
n′} = 0 . (3.12)

It is convenient to separate the two-particle states into their center of mass and relative separation,

R = m+n
2 and r = n − m respectively. The two-triplet state with one Jordan-Wigner fermion

localized at site R+r/2 and the other triplet localized at site R−r/2 is | R, r 〉 = t†R−r/2t
†
R+r/2| 0 〉.

The translationally invariant two-particle states are [190, 167]:

| Q, r 〉 =
1√
N

∑
R

eiQRa| R, r 〉 , (3.13)

with the sum running over R = 0, 1
2 , · · · ,

N−1
2 . The momenta conjugate to the center of mass

and relative two-triplet separation are Q/2 and q, respectively, so that one triplet has momentum

q1 = Q/2 + q and the other has momentum q2 = Q/2 − q. The center of mass momentum is

enumerated by [170, 192]

Q = 0, 4π/L, · · · , 4(N − 1)π/L (3.14)
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Two-particle states in the momentum basis that satisfy Pauli exclusion are sine transforms of the

position-space two-triplet wavefunctions,[190, 167]

| Q, q 〉 =
2

N

∑
R

∑
r

eiQRasin(qra)| R, r 〉 , (3.15)

where the summation over the relative separation runs over r = 1, 2, · · · , N−1
2 , and the relative

momentum conjugate to r goes over the range q = π/L, 3π/L, · · · , (N − 2)π/L. Importantly, Pauli

exclusion forbids states with q = 0.

By inserting a complete set of states on both sides for both the singlet and two-triplet states

we can express the exciton Hamiltonian as

HS ≡
∑
k

| k 〉ES(k)〈 k |, (3.16)

HTT ≡
∑
Q

∑
q,q′

| Q, q 〉
[
δq,q′ETT (Q, q) + χ ζ(q, q′)

]
〈 Q, q′ |, (3.17)

VTT,S ≡
∑
k

∑
Q

∑
q

| Q, q 〉δQ,kF (Q, q)〈 k |, (3.18)

which takes the form of a partitioned matrix,

H :=

 HS V †TT,S

VTT,S HTT

 , (3.19)

where Eq. 3.19 shows how we partition the Hamiltonian matrix and the := sign denotes the

representation of the Hamiltonian in the chosen basis. Provided that the lattice is large enough

(Appendix 3.11)[191, 170, 119], matrix elements follow from the application of Wick’s theorem, with

the bare two-triplet energies corresponding to the energies of two noninteracting triplet excitons,

ETT (Q, q) = 2εT − 4JT cos(Qa/2)cos(qa) . (3.20)

The biexciton interaction couples triplet states with the same center of mass momentum, Q,

ζ(q, q′) = − 4

N
sin(qa)sin(q′a) . (3.21)

Singlets couple to two-triplet states with a strength governed by a momentum form factor,[193]

F (Q, q) =
γ√
N
cos(Qa/2)sin(qa) . (3.22)
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Appendix 3.11 contains the derivation of all matrix elements.

In the case that all fission occurs from the zero momentum singlet, | S 〉, the two-triplet state

must have a zero center of mass. | q 〉 ≡ | 0, q 〉. In this case we abbreviate the two-triplet energies

and form factor as

ETT (q) = ETT (0, q) (3.23)

and

F (q) = F (0, q) , (3.24)

respectively. The energy-level diagram of the singlet fission model appears in Fig. 3.2.

3.4 The Singlet Self-Energy and the Rate of Singlet Fission.

In Sec. 3.3 we showed that the center of mass momentum is a constant of the motion and

that the model’s invariance under translations results in a simple momentum form factor for the

singlet-two-triplet couplings. These two facts constitute the momentum selection rules of ultrafast

fission in molecular crystals. In Fig. 3.3 we sketch the singlet fission phenomenon as a scattering

process and plot the energies of triplet pairs within the first Brillouin zone, taking an example where

the center of the two-triplet band at 2εT = 0 and the triplet bandwidth at 4JT /γ = 5. In Fig.

3.3 (b) the triplet pair dispersion along q is equivalent to that of a one-dimensional tight-binding

model, thus reducing the two-body problem to an effective one-body problem.

The dynamics, in principle, proceed by solving for the time-dependence of the wavefunction

from the initial condition | ψ(0) 〉 = | S 〉. The solution to the time dependent Schrödinger

equation, written as an initial value problem is | ψ(t) 〉 = U(t) | S 〉 with the time evolution

operator U(t) (t > 0), related to the retarded Green’s function, G(E), by the inverse Laplace

transform,

U(t) = Θ(t)e−iHt (3.25)

=
i

2π

∫ ∞
−∞

dE e−iEt G(E) . (3.26)
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Figure 3.2: Schematic of ground state absorption and singlet fission, shown in green and light blue,
respectively. Ground state absorption accesses the zero momentum singlet that then relaxes, via
fission, to two triplet excitons. In the diagram the triplet bandwidth increases from left to right.
If the triplets are spatially localized, the density of states is very large but also narrow. SF to
these states will be rapid, but will not be tolerant to any energy fluctuations in either the singlet
or two-triplet states. As the triplet bandwidth increases (left to right in the figure), the two-triplet
density of states widens. In our one-dimensional model, the two-triplet density of states has Van
Hove singularities at the band edges. The detuning parameter, ∆, is the energy difference between
the bottom of the singlet band and the bottom of the two-triplet band, ∆ = ES − 2ET , where the
bottom of the two-triplet band is 2ET = 2εT − 4JT . Triplet-triplet interactions cause two-triplet
density to shift and form satellite peaks. The center of the two-triplet band is twice the energy of
a localized triplet, εT .
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Figure 3.3: (a) Singlet fission as a scattering process. By analogy to optical mixing in nonlinear
crystals, where one must phase match, singlet fission in a periodic system conserves both energy
and momentum. The energy of the initial state therefore decides both the energy and the relative
momentum of the two-triplet state. The singlet, shown in purple, scatters to two triplets with
relative momentum 2q. The momentum in the center of mass of the triplet pair is zero. (b) Energy
of triplet pairs as a function of the relative momentum, ETT (q) = 2εT − 4JT cos(qa). A singlet
of energy ES produces a triplet pair at the same energy and with a definite relative momentum,
ES = ETT (q∗), thus simultaneously conserving both energy and momentum.
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In systems with many degrees of freedom, it is often impossible to solve or even approximate the full

wavefunction. But in the many-body theory of condensed phase systems with dense spectra, G(E)

plays a similar role as the wavefunction. G(E) has poles at the eigenvalues of the fully interacting

Hamiltonian. Many useful properties, like the density of states, come directly from G(E), and the

Green’s function approach is invaluable in theories of transport and spectroscopy.[194] Even though

it is called a Green’s “function”, like U(t), G(E) is an operator. Eq. 3.26 can be rewritten as the

resolvent equation for G(E), [
E −H + i0+

]
G(E) = 1, (3.27)

where 0+ is shorthand for limε→0+ ε. 1 = | S 〉〈 S | +
∑

q | q 〉〈 q | expresses completeness of

the Hilbert space in the singlet and two-triplet sectors, and z = E + i0+ is the Laplace variable

conjugate to time.[194]

To calculate the projection of G(E) onto the singlet and two-triplet sectors, we represent the

resolvent equation, Eq. 3.27, in matrix form and then partition the matrix, [192, 195, 86] as in Eq.

3.19,  E + i0+ − ES −V †TT,S

−VTT,S E + i0+ −HTT


 GS GS,TT

GTT,S GTT

 = 1 . (3.28)

The singlet and two-triplet Green’s functions are GS = | S 〉〈 S |G| S 〉〈 S | and GTT =∑
q,q′ | q 〉〈 q |G| q′ 〉〈 q′ |. By algebraically solving Eq. 3.28 for the partitioned Green’s func-

tions, we have, for example,

GS(E) =
1

E − ES − ΣS(E) + i0+
, (3.29)

where the singlet self-energy is

ΣS(E) = V †TT,S [E −HTT + i0+]−1VTT,S . (3.30)

The self-energy describes the interaction of the optically bright singlet with the two-triplet manifold.

In the limit that γ → 0, the singlet decouples, ΣS(E) = 0 and there is only one pole for GS(E) at

E = ES . When γ 6= 0, ΣS(E), describes how this pole, or resonance, shifts and broadens. In the
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quasiparticle picture, the singlet acquires a finite lifetime, inversely proportional to the imaginary

part of the self-energy, when it undergoes fission to a dense set of triplet states. Because the singlet

only interacts with the two-triplet states, the self-energy describes the dynamics of the SF process

in frequency (E) space.

Analyzing the self-energy when the biexciton interaction is zero leads to an interesting result

that forms a basic picture of SF in molecular crystals. When the triplet-triplet interaction is zero

(χ = 0) the self-energy of the singlet is equivalent to the self-energy of a quantum impurity in the

Fano-Anderson model,[27, 196]

Σχ=0
S (E) =

∑
q

|F (q)|2

E − ETT (q) + i0+
. (3.31)

In a large quantum lattice, the spectrum becomes continuous and the sum from the matrix product

in Eq. 3.30 becomes an integral, [194, 190]

1

N

∑
q

f(qa)→ 1

2π

∫ π

0
dθf(θ) , (3.32)

The self-energy for χ = 0, Σχ=0
S becomes

Σχ=0
S (E) =

γ2

2π

∫ π

0
dθ

sin2(θ)

E − 2εT + 4JT cos(θ) + i0+
. (3.33)

One can evaluate the integral directly, or use the identity 1
x+i0+

= Pr.(1/x)− iπδ(x). In the latter

case, it is easy to see that the imaginary part of the self-energy is equivalent to the rate from Fermi’s

Golden Rule,[192]

W0 ≡ −2Im
[
Σχ=0
S (E = ES)

]
. (3.34)

giving the result,

W0 =
γ2

4JT

√
1−

(
∆/4JT − 1

)2

, (3.35)

where W0 is the SF rate when χ = 0. The detuning, ∆ = ES − 2ET is the energy of the singlet

relative to the bottom of the two-triplet band (Fig. 3.2), and for every value of the detuning

there is a critical wavevector, q∗, that satisfies both energy and momentum conservation rules

(Fig. 3.3). The Golden Rule rate is usually a product of the density of states and the square of
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the coupling matrix element, and both factors have different physical interpretations that provide

insight into what controls the rate. The density of two-triplet states per site, %(E), also comes from

the imaginary part of the two-triplet Green’s function,

%(E) = − 1

Nπ
Im[GTT (E)] (3.36)

= − 1

2π2
Im

[ ∫ π

0
dθ

1

E − 2εT + 4JT cos(θ) + i0+

]
,

=
1

8πJT

1√
1−

(
E−2εT

4JT

)2 . (3.37)

Equipped with the density of states, Eq. 3.35 can be written as a canonical Golden Rule formula,

W0 = 2π|V |2(ES)%(ES), (3.38)

where the square of the coupling matrix element is |V |2(E) = γ2[1− (E−2εT )2/(4JT )2]. While the

density of states peaks sharply near the band edges, corresponding to the van Hove singularities,

the square of the coupling matrix element goes to zero at these points to satisfy Pauli exclusion

for the two-triplet states. Thus the rate of fission is not maximal where the density of states is the

largest, but instead where the density of states is flat, which occurs in the middle of the two-triplet

band. Fig. 3.4 shows plots of the singlet fission rate, the density of states, and the square of the

coupling matrix element. The maximal SF rate scales as 1/JT for ∆/JT fixed. Consistent with

recent calculations and empirical observations,[126, 65] fission is therefore fastest when JT is small.

The reason for this is that a small value of JT increases the density of states in the middle of the

triplet band, where the coupling matrix element is the largest. While a narrow triplet bandwidth

implies fast fission, there is a trade-off. Fig. 3.4 shows that the rate is a more sensitive function to

the detuning energy as JT decreases, meaning that the SF rate is faster, but less robust to energy

level fluctuations in either the singlet or two-triplet energies.

3.4.1 SF from a Localized Singlet State

The preceding analysis showed that the SF rate decreases with increasing triplet bandwidth.

We now comment on how the extent of localization in the singlet state affects the rate of SF. The
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Figure 3.4: The rate of singlet fission as a function of the detuning and triplet resonance integral.
The singlet-two-triplet coupling matrix element squared (a) and density of two-triplet states (b) as a
function of detuning, ∆, and the triplet resonance integral, JT . As the triplet bandwidth increases,
the maximum rate of SF decreases, but SF can also occur over a broader range of energies. In this
sense, there appears to be a trade-off between a fast rate of SF and one that is tolerant of energy
level fluctuations.
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optical selection rules for singlets on a perfectly periodic lattice, discussed in Sec. 3.3, imply that

the optically bright singlet state is completely delocalized. Evidence, from both experiments and

simulations,[126, 49, 127] shows that while the singlet states are more delocalized than the triplets

are, they span on the order of 10 molecules. Quantitatively, singlet excitons can scatter off of

phonons, crystal impurities, or couple to localized charge transfer states. Any of these interactions

lead to an initial singlet state that is not a pure | k = 0 〉 state, but is instead a superposition

state, | I 〉 = 1√
N

∑
k A(ka)P̂†k| 0 〉. This state is a zero-order eigenstate of some Hamiltonian, with

energy Ei. While this Hamiltonian acts to localize the singlet, its details are, in fact, not essential

for the analysis presented here. If it is not too different from HS , the coefficients A(ka) will be

sharply peaked near zero. The Golden Rule rate of singlet fission from this variational initial state,

W̃ , is

W̃ = 2π
∑
k,k′

∑
Q,q

1

N
A∗(k′a)A(ka)〈 k′ |V | Q, q 〉〈 Q, q |V | k 〉δ(Ei − Ef ) (3.39)

≈ 2π
∑
k

∑
Q,q

1

N
|A(ka)|2|〈 k |V | Q, q 〉|2δ(Ei − Ef ) . (3.40)

≈ 1√
2π

ργ2

σ

1

4JT

∫ π

−π
dΘe−(ρΘ)2/2σ2

cos(Θ/2) (3.41)

≈ W ∗ exp

(
− σ2

8ρ2

)
, (3.42)

where ρ = N/L is the linear density of the lattice and W ∗ is the maximum singlet fission rate along

the energy detuning coordinate. In moving from the first equation to the last, we assume that A(ka)

is so sharply peaked about k = 0, that A∗(ka)A(k′a) is zero unless k ≈ k′, replace |A(ka)|2 with its

second cumulant (Gaussian) approximation and evaluate the singlet fission rate at the maximum

with respect to the detuning between the initial and final states, Ei − 2ET = 4JT . The exciton

delocalization length in real space, `, is inversely related to σ, which leads to the relationship

ln

(
W̃

W ∗

)
∼ − 1

`2
, (3.43)

so that the fission rate decreases very strongly with the degree of localization in the singlet state.
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3.5 Biexciton Interactions

Density functional theory calculations[117, 129] have shown that triplet resonance integrals

for the acenes span nearly four orders of magnitude, 0.01 to 10 wavenumbers. In analogy to

the spectroscopy of molecular aggregates, some have proposed using pump-probe spectroscopy to

measure the biexciton interactions. When biexciton interactions are nonzero, χ 6= 0, we must

calculate a diagonal representation of HTT . With HTT | α 〉 = Eα| α 〉, the singlet self-energy is

ΣS(E) = (3.44)

=
∑
α

〈 S |V †| α 〉[E − Eα + i0+]−1〈 α |V | S 〉 .

In the absence of biexciton interactions, the inverse lifetime of | S 〉 depends on only two energy

scales, ∆/γ and JT /γ. For nonzero χ, the lifetime depends on all three energy scales, JT /γ, ∆/γ,

and χ/γ. The fission rate for interacting triplets appears in Fig. 3.5 with respect to χ/γ and

JT /γ, and with the detuning parameter∆ fixed to 3γ. In Fig. 3.5 the singlet-two-triplet resonance

ranges from the center of the triplet pair band at 4JT /γ = 3 to 3γ away from the bottom of the

triplet pair band at 4JT /γ = 10. We can see from Fig. 3.5 that fission is fastest when the triplets

are noninteracting only when 4JT /γ < 3. Even when χ is nonzero, the SF rate increases with

decreasing JT , which leaves the qualitative conclusions deduced from the χ = 0 case unchanged.

We emphasize that, although χ and JT are likely to be smaller than the singlet bandwidth, the

ratio χ/JT has yet to be calculated or measured.

3.6 Characterizing the Fission Product: Structure Functions.

To characterize the two-triplet states, we start by considering the two-triplet density corre-

lation function, written in terms of the center of mass and relative coordinates for an eigenstate of

HTT , | Ψ 〉, measured in units of the lattice density in Eq. 3.45.

ρ2(R, r) = 〈 Ψ | R, r 〉〈 R, r | Ψ 〉 (3.45)



53

Figure 3.5: The fission rate described in the text as a function of χ and ∆/γ = 3, computed
numerically using a lattice of 2001 sites. The dashed black line indicates the direction for which the
rate decreases most slowly. A dashed white line along χ/γ = 0 emphasizes that for 4JT /γ > 3 fission
is fastest when the singlet relaxes to an interacting two-triplet system. Even with the biexciton
interaction nonzero, the SF rate still increases when JT decreases.
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To satisfy Pauli exclusion and parity, r > 0 and the average is over the fully interacting states of

the triplet Hamiltonian. The radial distribution function for the exciton pair, g(r), is

c2g(r) = ρ

∫
d(aR) ρ2(R, r) , (3.46)

where c is the bulk exciton density. The pair distribution function is related to the static structure

factor, S(θ), through

g(r)− 1 =
2

π

∫ π

0
dθ sin(θr)

(
S(θ)− 1

)
. (3.47)

The Lippmann-Schwinger equation provides a convenient connection between the wave function of

the total Hamiltonian, | Ψ 〉, and the singlet state,

| Ψ 〉 = | S 〉+G0T | S 〉 . (3.48)

G0 is the unperturbed Green’s function of singlet and triplet excitons corresponding to H0 = HS +

HTT , with V = H−H0 corresponding to the SF and triplet-triplet annihilation processes.[194, 197]

The T-matrix is T = V [1−G0V ]−1. In terms of the T-matrix, the two-triplet density is

ρ2(R, r) =
∣∣〈 R, r |G0T | S 〉

∣∣2 . (3.49)

Calculations of both the pair distribution function and S(θ) appear in Appendix 3.12. By solving

the Lippmann-Schwinger equation for a fixed detuning, we find that the static structure factor is

sharply peaked at the resonant momentum, q∗a = cos−1
[
1 − ∆/4JT

]
, similar to the momentum

selection rules we found in the χ = 0 case. In Fig. 3.6 we show the static structure factor with the

triplet bandwidth fixed at 4JT /γ = 10.

While both JT and χ may be small, the ratio χ/JT could have a profound effect on the

character of the two-triplet states that participate in SF.

3.7 Bound States from the Bethe Ansatz.

If a singlet relaxes to a composite two-triplet state, the triplet pair may behave as one

entity if it is strongly correlated. In linear spectroscopies no such correlations can be observed.
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Figure 3.6: The static structure factor described in the text, illustrating scattering from the singlet
state to classes of unbound and bound states. The structure factor follows the momentum selection
rules for the unbound two-triplet states (a,b), but shows the emergence of candidate bound states
(c,d) when χ/JT > 2. In Sec. 3.7, we show using the Bethe Ansatz that the satellite peaks do
indeed correspond to bound two-triplet states. We have fixed the bulk triplet density at c = 10/L.
Points where S(qa) 6= 1 are shown in black.
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In nonlinear spectroscopies the triplet-triplet interactions that distort one triplet momenta may

exhibit correlated spectral features that register as off-diagonal cross peaks.[198]

Recently Feng et al.[104] computed the number of unpaired electrons in the singly and doubly

excited states of a dimer model using one-particle transition density matrices. While their technique

can elucidate one-electron character of nonadiabatic transitions it cannot quantify spatial entangle-

ment of multiple triplet excitons. Any entanglement measure computed from a one-particle density

matrix assigns the same degree of correlation to all two-particle density matrices.[199] In this sec-

tion we decouple the singlet from the two triplets, γ → 0, and discuss how biexciton interactions

acting in concert with triplet hopping lead to a nontrivial entanglement. For nonzero triplet-triplet

interactions the triplet momenta are correlated through the Bethe Ansatz phase even if that phase

is entirely real.[30] This correlation may seem surprising, since the two-triplet density of states is

relatively insensitive to such local interactions, but it is an intrinsic property of the composite pair.

When triplet-triplet interactions are included, the momentum basis no longer diagonalizes the

triplet Hamiltonian. The Bethe Ansatz is a physically motivated parameterization of eigenvectors

most commonly used to build the eigenspace of spin Hamiltonians through a series of spin flip

operations. Two spin flips are analogous to creating two fermionic triplets in our model. The Bethe

Ansatz provides insight into the emergence of bound two-triplets and triplet-triplet entanglement.

We start by writing the arbitrary singlet fission product state as some combination of composite

two-triplet states,

| ψ 〉 =
∑
m

∑
n>m

Am,nt
†
mt
†
n| 0 〉 , (3.50)

where HTT | ψ 〉 = E| ψ 〉. The Bethe Ansatz is a form of eigenstate,[200, 201, 202]

Am,n = a1,2z
m
1 z

n
2 + a2,1z

m
2 z

n
1 , (3.51)

having abbreviated z1 = eiq1a and z2 = eiq2a. These Bethe Ansatz coefficients are not antisymmetric
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and are defined only for r = n−m ≥ 1. Wick’s theorem tells us that for r = n−m > 1,

(E − 2εT )Am,n = −JT
(

A m,n−1 +Am−1,n

+ Am,n+1 +Am+1,n

)
, (3.52)

and for the r = 1 case,

(E + χ− 2εT )Am,m+1 = −JT
(
Am−1,m+1 +Am,m+2

)
. (3.53)

Eqs. 3.52 and 3.53 do not apply to the r < 1 case. From Eq. 3.52 we calculate the energy spectrum:

E = 2εT − 2JT cos(q1a)− 2JT cos(q2a) . (3.54)

Although Eq. 3.54 is of the same form as two independent triplet excitons, the biexciton interactions

induce momentum shifts that in general are complex.[30] By solving Eq. 3.53 using Eqs. 3.54 and

3.51, we find

a1,2/a2,1 =
1 + z1z2 − z1(χ/JT )

z2(χ/JT )− 1− z1z2
(3.55)

If χ = 0 then a1,2/a2,1 = −1, and Am,n = zm1 z
n
2 − zm2 z

n
1 . Periodic boundary conditions re-

quire AR,r = AR+N/2,r, consistent with our spectrum of total two-triplet momentum.[190] Periodic

boundary conditions also require that Am,n = Am,n+N , and therefore

q1 = Q/2 + q − i ln[a1,2/a2,1]/Na (3.56)

q2 = Q/2− q + i ln[a1,2/a2,1]/Na , (3.57)

Eqs. 3.55, 3.56, and 3.57 form a set of nonlinear equations that, for each of the N(N − 1)/2

triplet pairs, provides a phase through which the mixing coefficients can be calculated,[30] φ =

−i ln[a1,2/a2,1].

The Bethe Ansatz phase correlates each of the one triplet momenta and indicates the emer-

gence of bound states when it becomes complex and the magnitude of the two terms in Eq. 3.51

are no longer unity. For complex φ, the magnitude of the two terms in Eq. 3.51 are proportional
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to e(r/N−1/2)Imφ and e−(r/N−1/2)Imφ, so as r → ∞ one term diverges as the other tends to 0. If

Im[φ] > 0, then eiφ/2 = 0 such that as r →∞ the Ansatz is well behaved, Am,m+r → 0. Similarly,

if Im[φ] < 0, then e−iφ/2 = 0.

One of the earliest theories of biexciton interactions between doubly excited states in a

one-dimensional crystal was made in 1959 by R. E. Merrifield, who calculated bound biexcitons

when doubly excited states reside on a single molecule.[134] Smith and Michl[18, 19] proposed that

bound biexcitons are stable for χ/kBT > 1. Others have used simulated pump-probe spectra [170]

to calculate a threshold of χ/JT = 2. To determine when attractive triplet-triplet interactions lead

to bound biexcitons we first calculate the distortions of the triplet pair density of states caused by

the biexciton interactions, ∆%(E) = |%(E;χ)−%(E;χ = 0)|/%(E,χ = 0). In Fig. 3.7 we plot ∆%(E)

(a), having fixed the triplet bandwidth at 4JT /γ = 10. We also compute the complex phase in the

Bethe Ansatz in Fig. 3.7 (b). We see from Fig. 3.7 (a) that unless biexciton interactions are roughly

greater than χ/JT ≈ 2 no bound states can be resolved from the continuum. This is confirmed by

the Bethe Ansatz in Fig. 3.7 (b) that indicates bound states may occur for χ/JT > 2, or half the

triplet bandwidth, similar to the threshold that Juzeliunas and Reineker calculated for singlets.[170]

As we have discussed, the meaning of “bound states” in the Bethe Ansatz is asymptotic and is to

be understood in the limit that the triplet-triplet separation approaches infinity.

The two-triplet density of states, the Bethe Ansatz, and the static structure factor all identify

a threshold for bound states at approximately the same ratio of χ/JT . The Bethe Ansatz suggests

that even below this threshold there may be appreciable triplet-triplet entanglement. We can only

speculate as to the magnitude of the biexciton interaction and we see no reason at this date to

exclude the possibility of bound states. In acenes, the singlet-two-triplet resonance may fall within

the triplet pair density of states or well outside of it. The initial singlet may relax quickly, but the

relative motion of the two-triplets born out of fission also depends on JT and ∆.
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Figure 3.7: (a) Distortions of the two-triplet density of states described in the text for χ/JT = 2.0,
2.5, and 3.0, shown in blue, green, and red, respectively. The small differences for χ/JT ≤ 2 near
the Van Hove singularity at E/4JT = −1 indicate the absence of bound states. (b) Domain where
the Bethe Ansatz phase is complex and bound states may occur in the plane spanned by the ratio
χ/JT and the noninteracting relative momentum, 2q. 2001 lattice sites were used and all resonances
were broadened by γ/10. The dashed color lines emphasize the points of correspondence with the
distortions shown in (a). Complex phases for χ/JT < 2 may indicate quasi bound two-triplet states.
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3.8 Triplet-Triplet Entanglement and the Slater Decomposition

Johnson and Merrifield[28, 29] were first to consider a spin-dipole interaction that broke the

symmetry of spin angular momentum and entangled pure spin states. This spin correlation leads

to a decoherence of the S1 and 1(TT ) singlets. As the initial singlet excitation relaxes, it scatters to

some distribution of triplet pairs that may possess a finite and spatial triplet-triplet entanglement.

In Suna’s original work,[135] the triplets were local, and if two triplets diffused to some critical

separation they were considered correlated. Although Suna speculated that band effects could be

important and even wrote equations of motion in reciprocal space, the general solution including

both biexciton interactions and band effects was relegated to later work.

The interpretation of separability and many-body entanglement in the context of measure-

ments can be challenging.[203, 176, 177] Measurement causes quantum discord, and it is not yet

clear whether the measurement of one triplet born out of fission affects the measurement of the sec-

ond. In the limiting case that each triplet is statistically independent, the two-triplet state can be

written as a product of one triplet states. To measure triplet-triplet entanglement we will search for

a decomposition of the eigenstate, | ψ 〉, characterized as a mixture of plane waves and local triplets

when χ ∼ JT . Although we choose to study the spatial component of the electronic wavefunction

a similar analysis can be developed for the spin dynamics on nanosecond timescales.[96, 93]

To measure entanglement between two triplets, we ask whether or not the two-particle density

matrix can be formed from a product state in any basis. We will compute a Slater rank,[204, 205]

analogous to the Schmidt number, or the number of nonzero singular values in the singular-value

decomposition of the density matrix for distinguishable particles. The two-triplet eigenstate, | ψ 〉,

is

| ψ 〉 =
∑
m,n

Am,nt
†
mt
†
n| 0 〉 , (3.58)

where the A-matrix is antisymmetric (Am,n = −An,m) unlike Eq. 3.51, and the A-matrix is normal-

ized such that Tr
[
A†A

]
= 1/2. For the real normal A-matrix, a unitary congruence transformation
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reduces to an ordinary similarity transformation [206, 205]

Ã = U †AU∗ = diag
[
Z0, Z1, · · · , ZM

]
, (3.59)

where each block is defined by Zi =

 0 zi

−zi 0

, with eigenvalues ±izi. Z0 is an (N − 2M) by

(N − 2M) null matrix and M is the number of nonzero eigenvalues, referred to in this manuscript

as the Slater rank. In this manuscript we set a threshold of 1/N below which eigenvalues are

considered zero.

We represent the composite two-fermion system in a basis of one-fermion states using the

Slater decomposition,

| ψ 〉 = 2

≤N/2∑
i=1

zi| 2i− 1 〉 ⊗ | 2i 〉 . (3.60)

Notice that the sum is not running over the lattice index but instead runs over the Slater states

defined by | i 〉 = t̃†i | 0 〉 with t̃†i =
∑

j U
†
i,jt
†
j . In this manuscript we use Wimmer’s algorithm

for speed and efficiency.[206] Here, a series of Householder transformations defines the similarity

transform. The partial trace with respect to one of the two triplets,

4

≤N/2∑
i=1

|zi|2| 2i− 1 〉〈 2i− 1 | (3.61)

is itself mixed rather than pure if | ψ 〉 is entangled.[207] The prefactor of 2 in Eq. 3.60 accounts

for the parity of the two triplets.

When M = 1, the two-triplet wavefunction is a single Slater determinant. By definition,

M = 1 for N = 2 and N = 3 although there may exist classical correlation in either case.[204]

When the Slater number is greater than one, the pair state is considered nonseparable with respect

to pure one triplet subsystems. There are (N − 1)/2 lattice sites to the left of N/2 and therefore

the point of maximum entanglement occurs when |z|2 = 1/2(N − 1).

When χ ∼ JT a quasibound resonance is embedded in the triplet pair energy band and neither

the local nor the momentum basis approximately diagonalize the triplet Hamiltonian. In Fig. 3.8

we calculate the Slater decomposition with the triplet bandwidth fixed at 4JT /γ = 10. It is clear
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Figure 3.8: The Slater rank, relative to unity measured in units of the maximum rank, for a lattice
of N = 1001 sites. We average our entanglement measure over 50 triplet pairs nearly resonant with
the singlet energy, which is JT away from the bottom Van Hove singularity, at the center of the
two-triplet band, and JT away from the upper Van Hove singularity in the blue, green, and red
lines, respectively. The energy of the singlet is shown in the inset corresponding to the blue, green,
and red entanglement calculations. The Bethe Ansatz predicts a threshold for bound two-triplets at
approximately χ/JT ≈ 2.0 (Fig. 3.7). Bound states emerge between χ/JT = 1.5 and 2.0, illustrated
with a dashed black line and a dashed blue line, respectively.
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from Fig. 3.8 that for χ = 0 the Slater rank is one (M = 1). Independent of how far apart the two

triplets are from each other, each triplet will behave more independently the weaker the triplet-

triplet interactions are. As the triplet-triplet interaction strength increases, so too does the Slater

rank. Provided χ/JT 6= 0, there exists finite triplet-triplet entanglement that can be on the order of

10% of the maximal entanglement before the threshold for bound states is reached. Recall that the

upper entanglement limit corresponds to the maximum number of Slater determinants that could

be needed to represent any two-triplet state. Broader averaging and larger lattices can improve the

smoothness of the Slater rank, but qualitative and quantitative trends remain the same. We have

not pursued an extensive analysis of the bipartite entanglement, but have highlighted key aspects

of triplet-triplet entanglement not discussed in the literature. Our calculation not only associates

biexciton interactions with triplet-triplet entanglement, but also illustrates that the energy of the

singlet-two-triplet resonance will also tune the triplet-triplet correlation. Our theory is unique in

this way— rules that govern singlet to two-triplet scattering rates may also steer the system towards

entangled two-triplets and even bound two-triplets if the triplet resonance integral is finite.

Our entanglement measure does not, alone, distinguish between classical and quantum corre-

lation. To make such a distinction, one needs a somewhat detailed model for the triplet extraction

process, which is beyond the scope of the current work.[208, 209, 210] Future work is needed to

quantify the relative entropy of entanglement for triplets born out of singlet fission.

3.9 Conclusions.

To summarize, we have constructed a model of singlet fission in molecular crystals that is

consistent with known characteristics of the excited states in acene crystals and singlet fission. In

this model, excitations are confined to a periodic one-dimensional quantum lattice where each site

corresponds to a molecule that can support either a singlet or a triplet excited state. Singlets and

triplets on individual molecules couple to one another with exciton resonance integrals, JS and JT ,

corresponding to the bandwidth of singlet and triplet excitons, respectively. In accordance with

both calculations and electron-pushing mechanisms,[18, 19, 76, 106, 108] we model singlet fission as
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a process that occurs between adjacent chromophores. In the absence of lattice disorder, the crystal

periodicity leads to momentum selection rules that accompany the energy matching condition of SF.

Using Green’s functions and many-body theory, we analyzed the dynamics of SF from an initially

excited singlet state. In the limit of a perfectly periodic lattice and when the two-triplet biexciton

interaction, χ, is zero, the singlet excited state becomes a quantum impurity, coupled to a dense

set of two-triplet states. Our model for SF then maps onto the Fano-Anderson model.[27, 196] The

SF rate, taken from the imaginary part of the singlet self-energy of the singlet Green’s function

reduces to Fermi’s Golden rule, a product of the coupling matrix element squared and the two-

triplet density of states. While the two-triplet density of states is largest near its band edges, no

molecule can support two triplet excitons, and formally, the Pauli exclusion principle sends the

coupling matrix element to zero at the band edges. Thus, the singlet fission rate is largest when

the singlet decays to the middle of the two-triplet band. When JT is small, the band is narrow and

more two-triplet states appear in the middle of the band. As a result, the rate of SF is largest when

JT is small. Using the magnitude of JT as a surrogate for triplet localization, this result implies

that the SF rate is large when the singlet relaxes to localized two-triplet states. Lattice disorder,

impurity or phonon scattering, and, importantly, coupling to charge transfer states, localizes the

singlet exciton. To gauge the importance of exciton delocalization in the singlet state, we used

a variational calculation to argue that, as the singlet state becomes more localized, the SF rate

decreases precipitously. The excitonic states of the acene crystals that exhibit fast SF are consistent

with these characteristics. In both pentacene and tetracene,[123, 124, 97, 125, 126, 49, 127, 128, 108]

the singlet state is delocalized and the triplet states are nearly localized to individual molecules

(vanishingly small JT ).

For singlet excitations in periodic molecular aggregates, nonlinear spectra can measure the

singlet-singlet biexciton interaction strength. This work includes the biexciton interaction in SF

dynamics and finds that it plays an important role here too. The energy shift that the biexciton

interactions cause may not strongly affect fluorescence quantum beating, but if its magnitude is

close to the triplet resonance integral, JT , then the triplets will be entangled with one another,
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even before the threshold where χ generates bound two-triplet states. This result has consequences

for photovoltaic efficiency models that assume triplets can be extracted independently. This work

takes some important first steps in constructing a theoretical understanding of SF in molecular

crystals, but it is not a full and comprehensive picture of SF. To gain a tractable model, we have

not included some important features in SF. Exciton dynamics in crystals occur in more than one

dimension. Phonon and spin dynamics at finite temperatures are important, particularly when

assessing the two-triplet entanglement and modeling the final step of SF, 1(TT ) → T1 + T1. Our

model does, however, allow for these features to be included systematically. In addition to the

density of states and coupling arguments presented above, our model and results suggest a physical

picture that can help explain how exciton localization and delocalization contribute to the difference

in SF yields between crystals and analogous dimers. If, as in dimers, the singlet were localized to

one molecule, the two-triplet state would correspond to a triplet exciton on adjacent chromophores.

The likelihood that these triplets would undergo geminate recombination back to the singlet is high.

As the singlet becomes more delocalized in a crystal, the singlet has some some quantum amplitude

on each chromophore and singlet fission can produce triplet pairs that are separated by more one

or more chromophores. These states are less likely to annihilate one another and reform the singlet.
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3.11 Appendix 3A - Triplet Hamiltonian Matrix Elements.

For a one-dimensional quantum lattice, the triplet Hamiltonian can be expressed with Jordan-

Wigner operators as

HT = εT

N−1∑
n=0

t†ntn − JT
N−2∑
n=0

(
t†ntn+1 + t†n+1tn

)
+JT

(
t†N−1t0 + t†0tN−1

)
ΘN − χ

N−1∑
n=0

t†nt
†
n+1tn+1tn . (3.62)

The Jordan-Wigner creation operator t†n creates a Jordan-Wigner fermion at position n. To cal-

culate the matrix elements of the Hamiltonian in the basis of momentum states we use Wick’s

theorem. Here, an expectation value is expressed as a sum over all possible contractions, each

which becomes a commutator (anticommutator) for bosons (fermions). Using the series represen-

tation of ΘN , one can show that the matrix elements of the triplet Hamiltonian, with all boundary

terms included, are [190, 167]

〈 Q, r |HT | Q′, r′ 〉 =

=
1

N

∑
R,R′

e−iQRa+iQ′R′a〈 R, r |HT | R′, r′ 〉 (3.63)

= 2εT δQ,Q′
(
δr,r′ − δr,−r′

)
−χ δQ,Q′

(
δr,1δr,r′ − δr,1δr,−r′ − δr,−1δr,−r′ + δr,−1δr,r′

)
−2JT δQ,Q′cos

(
Qa/2

)(
δr+1,r′ + δr−1,r′

−δr+1,−r′ − δr−1,−r′
)
, (3.64)

and matrix elements in the basis of momentum states are

〈 Q, q |HT | Q′, q′ 〉 =

=
4

N

∑
r,r′

sin
(
qra
)
sin
(
q′r′a

)
〈 Q, r |HT | Q′, r′ 〉

= δQ,Q′δq,q′ETT (Q, q) + δQ,Q′χ ζ(q, q′) , (3.65)

where the two-triplet energies and the couplings between triplet pairs, one pair with relative mo-

mentum 2q and one pair with relative momentum 2q′ but each with the same center of mass
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momentum, are Eqs. 3.66 and 3.67, respectively.

ETT (Q, q) = 2εT − 4JT cos
(
Qa/2

)
cos(qa) (3.66)

ζ(q, q′) = − 4

N
sin(qa)sin(q′a) (3.67)

The matrix elements of the singlet fission operator are calculated in the same way, first expressing

V in terms of the Jordan-Wigner operators:

V =
γ

4

N−2∑
n=1

(
t†nt
†
n+1 − t

†
nt
†
n−1

)
Pn (3.68)

+
γ

4

[(
t†0t
†
N−1 + t†N−2t

†
N−1

)
PN−1 +

(
t†0t
†
1 + t†0t

†
N−1

)
P0

]
.

The boundary terms of the singlet-two-triplet interaction cannot be regrouped with the bulk terms

and therefore the Jordan-Wigner string operators break the translational symmetry of the full

electronic Hamiltonian at the boundaries of the lattice.[191, 170] As we increase the number of

lattice sites the effect of this symmetry breaking decreases,[119] and matrix elements coupling a

singlet with momentum k to a translationally invariant two-triplet states are

〈 Q, r |V | k 〉 =

=
1√
N

∑
R

e−iQRa〈 R, r |V | k 〉 (3.69)

≈ γ

4N

∑
R

e−iQRa
N−1∑
m,n=0

eikma〈 0 |tR+r/2tR−r/2 · · ·

· · ·
(
t†nt
†
n+1 − t

†
nt
†
n−1

)
PnP†m| 0 〉

=
γ

2N

∑
R

e−iQRa
(
δr,1e

ik(R−1/2)a − δr,−1e
ik(R+1/2)a

)
.

Matrix elements in the basis of momentum states are

〈 Q, q |V | k 〉 =

=
2√
N

∑
r

sin
(
qra
)
〈 Q, r |V | k 〉 ≈ δQ,kF (Q, q) , (3.70)

with the momentum form factor,

F (Q, q) =
γ√
N
cos
(
Qa/2

)
sin
(
qa
)
. (3.71)
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For a single optically bright singlet, | S 〉, we have

F (q) =
γ√
N
sin
(
qa
)
. (3.72)

For the superposition singlet state, | I 〉, matrix elements that couple | I 〉 to the translationally

invariant two-triplet states are

〈 Q, r |V | I 〉 ≈ γ

4
√
N

∑
R

e−iQRa
[
δr,1 − δr,−1

]
· · ·

· · ·
[
A(R− r/2) +A(R+ r/2)

]
, (3.73)

with A(n) =
∑

k A(k)eikna/
√
N , and matrix elements that couple | I 〉 to the momentum two-triplet

states are

〈 Q, q |V | I 〉 ≈ γ

2N
sin(qa)

∑
R

e−iQRa · · ·

· · ·
[
A(R− r/2) +A(R+ r/2)

]
. (3.74)

3.12 Appendix 3B - Pair Distribution Functions

Using the Lippmann-Schwinger equation one can show that the two-triplet density is ρ2(R, r) =∣∣〈 R, r |G0(ES)T (ES)| S 〉
∣∣2 and therefore the pair distribution function is

c2g(r) = ρ

∫
d(aR)

∣∣〈 R, r |G0(ES)T (ES)| S 〉
∣∣2 . (3.75)

The quantum amplitude for fission to a triplet pair separated by a distance r can be written as a

sum over momentum states,

〈 R, r |G0T | S 〉 =
∑
q

〈 R, r | q 〉〈 q |G0T | S 〉 (3.76)

In the absence of biexciton interactions the quantum amplitude for fission to a triplet pair with

relative momentum 2q is 〈 q |G0T | S 〉, which can be written in terms of the singlet self-energy as

〈 q |G0T | S 〉 = 〈 q |G0

[
V + V G0V

+ V G0V G0V

+ · · ·
]
| S 〉 . (3.77)
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Eq. 3.77 can be resummed to

〈 q |G0T | S 〉 = (3.78)

=
γ√
N

sin(θ)

E − 2εT + 4JT cos(θ) + i0+

1

1−G(S)
0 ΣS

,

having defined the zeroth order singlet Green’s function, G
(S)
0 (E) = [E − ES + i0+]−1. With this

resummation we write the real-space amplitude,

〈 R, r |G0T | S 〉 =
γ

4JT

1

π
√
L

1

1−G(S)
0 (E)ΣS(E)

I(r, E) , (3.79)

in terms of the integral

I(r, E) =

∫ π

0
dθ

sin(θr)sin(θ)

(E − 2εT )/4JT + cos(θ) + i0+
. (3.80)

One-dimensional tight-binding integrals of this form have been discussed in the literature,[211, 194]

and their solutions can be found using the residue theorem. Start by shifting the complex energy

by z ← (E − 2εT )/4JT and make a change of variables, u = eiθ, such that the integral becomes a

contour integral along a unit (a = 1) semicircle in the counter-clockwise direction,

I =
i

4

∮
du
ur+1 + u−(r+1) − u1−r − ur−1

u2 + 2zu+ 1
, (3.81)

with two roots at u± = −z ±
√
z2 − 1. If z ∈ R and −1 ≤ z ≤ 1 then both roots lie on the unit

circle and

I(r, ES) =
π

2

u1−r
+ + ur−1

+ − ur+1
+ − u−(r+1)

+

u− − u+

=
π

2

(
− ES − 2εT

4JT
+ i

√
1−

(
ES − 2εT

4JT

)2)−r
−π

2

(
− ES − 2εT

4JT
+ i

√
1−

(
ES − 2εT

4JT

)2)r
. (3.82)

When biexciton interactions are included we solve for the eigensystem of HT numerically,

and the quantum amplitude for fission to a triplet pair with relative momentum 2q becomes

〈 q | α 〉 =
∑
α′

〈 q | α′ 〉〈 α′ |G0T | S 〉

=
1

1−G(S)
0 ΣS

∑
α′

〈 q | α′ 〉 〈 α
′ |V | S 〉

E − E′α + i0+
, (3.83)
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with HTT | α 〉 = Eα| α 〉.

Having calculated the quantum amplitudes, we can now write the pair distribution function

as

c2g(r) =
1

2

∣∣∣∣ γ

4JTπ

I(r, ES)

1−G(S)
0 (ES)ΣS(ES)

∣∣∣∣2 , (3.84)

and therefore the static structure factor is

S(θ) = 1 +
4

L

∫
d(ar) sin(θra)

(
g(r)− 1

)
= 1 +

4

L

∫
d(ar) sin(θra)

(
ρ2

2c2

∣∣∣∣ γ

4JTπ

I(r, ES)

1−G(S)
0 (ES)ΣS(ES)

∣∣∣∣2 − 1)
, (3.85)

3.13 Appendix 3C - Bosonification on a Square Lattice

The role of biexciton interactions and the thresholds for bound triplet pairs born out of fission

have not been analyzed for two-dimensional molecular aggregates. For the larger acenes diffusion

may be anisotropic. To extend our analysis to the case of a isotropic and anisotropic diffusion in

two dimensions, we propose to study a square lattice model. In a discrete square lattice, the Pauli

creation and destruction operators, T †n and Tn, respectively, create or destroy a triplet exciton on

lattice site n =
(
nx ny

)
. The mixed Bose Fermi commutation relations are

[
Tn, T †n′

]
= δn,n′

[
1− 2T †n′Tn

]
,
[
Tn, Tn′

]
= 0 . (3.86)

In bra-ket notation local one triplet and two triplet states are | n 〉 = T †n | 0 〉, and | m,n 〉 =

T †mT †n | 0 〉, respectively. The triplet Hamiltonian for diffusion and biexciton interactions in two

dimensions is Eq. 3.87.

HT = εT
∑
n

T †nTn −
∑
〈m,n〉

J(m,n)T †mTn −
∑
〈m,n〉

χ(m,n)T †mT †nTnTm (3.87)
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The hopping matrix elements and triplet-triplet interactions in the nearest-neighbor approximation

are

J(m,n) = Jxδmy ,nyδmx,nx±1 + Jyδmy ,ny±1δmx,nx (3.88)

χ(m,n) = χxδmy ,nyδmx,nx±1 + χyδmy ,ny±1δmx,nx (3.89)

The periodic boundary conditions for the triplet operators are Tnx,N+1 = Tnx,1, TN+1,ny = T1,ny ,

T †nx,N+1 = T †nx,1, and T †N+1,ny
= T †1,ny . The energy of singlet bound states relative to the two-exciton

continuum has been shown to be dependent on the orientation of the molecular dipole moments in

two-dimensional aggregates. Quantum lattices of molecular dipole moments oriented either parallel

to or perpendicular to the plane are used to model J and H aggregates, respectively.[190] Although

the two-triplet states are dark we can classify anisotropy with J and H type lattice models. For the

J type lattice we set Jx = −Jy/2 and χx = −χy/2 whereas for the H type lattice we set Jx = Jy

and χx = χy.

Paulions are hard-core bosons, and mixed Bose-Fermi commutation relations are not pre-

served under unitary transformations, leading to nonphysical particle statistics. Juzeliunas and

Knoester[172] show that the many-boson interactions arising from the Agranovich-Toshich trans-

formation can be approximated by a hard-core interaction. We write the triplet Pauli operators

in terms of Bose operators using the Holstein-Primakov transformation for one- and two- exciton

states:

T †n = s†n
(
1− s†nsn

)
, (3.90)

which obey the commutation relations

[
sm, s

†
n

]
= δm,n ,

[
sm, sn

]
= 0 . (3.91)

This transformation is sometimes referred to as Bosonification. After Bosonification, the triplet

Hamiltonian HT becomes HT = H0 + Vkin with

H0 = εT
∑
n

s†nsn −
∑
〈m,n〉

J(m,n)s†msn −
∑
〈m,n〉

χ(m,n)s†ms
†
nsnsm (3.92)
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and

Vkin = −εT
∑
n

s†ns
†
nsnsn +

∑
〈m,n〉

J(m,n)
(
s†ms

†
msmsn + s†ms

†
nsnsn

)
. (3.93)

Juzeliunas and Knoester have shown that, without exciton-exciton interactions, the model Hamil-

tonian in Eq. 3.87 is equivalent to the hard-core Boson model. Their proof involves adding large

kinematic interactions to enforce the Pauli exclusion principle. The same arguments apply with

the exciton-exciton interactions included, so we take

HT → H0 +
A

2

∑
n

s†ns
†
nsnsn (3.94)

for A→ ±∞.



Chapter 4

Dynamic Fluctuations Facilitate Vibronic Energy Transfer in Light-Harvesting

Antennas

4.1 Introduction

Energy that is harvested by close to a million bacteriochlorophylls (BChls) in the chloro-

some of photoantennas in green sulfur bacteria is efficiently transported to a reaction center.

This phenomenon has motivated research on the quantum dynamics that occur within pigment

aggregates.[212] Evidence for energy transfer on subpicosecond timescales has been found in many

organisms like Chlorobium Tepidum[213, 214] where the Fenna-Matthews-Olson (FMO) complex

acts as a bridge between the chlorosome and the reaction center. The FMO complex is a trimer

with each monomer composed of seven BChl molecules, shown in Fig. 4.1.

Recently, it was proposed that this ultrafast energy transfer involved purely electronic coher-

ence between localized pigment excited states. Pigments are strongly bound to protein scaffolding,[212]

and quantum dynamics simulations show that localized vibrations have prolonged coherent oscillations.[215]

In the last decade there have been numerous claims that two-dimensional electronic spectroscopy

(2DES) exhibits signatures of electronic coherence. Turner et al. modeled coherence between a

ground state and one electronic excited state, each capable of supporting one quantum of vibra-

tional energy.[216] They found that vibrational coherence displayed unique nonrephasing signatures

and that coherence dephasing times are approximately 150 fs. Butkus et al.[217] identified pure

electronic coherence not involved in energy transport with static diagonal peaks and oscillatory

off-diagonal peaks, allowing for up to two quanta of vibrational energy. In 2013, Tiwari, Peters,
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Figure 4.1: Diagram of a photoantenna, described in the text. The simplified composition of
each constituent is shown in the dashed boxes. In the integral membrane proteins (PscA) elec-
trons are shuffled from a primary electron acceptor derived from BChla to iron-sulfur centers. In
the peripheral protein (PscB), electrons are transferred from the iron-sulfur centers to a mobile
ferredoxin.
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and Jonas [32] showed that a vibronic energy matching enhances pulsed laser excitation of coher-

ence between intra-pigment vibrations. Their basic energy level diagram is shown in Fig. 4.2. The

energies of electronic excitations localized at individual pigments are modulated by intra-pigment

vibrations and also by fluctuations of protein scaffolding within the photoantenna. Tiwari, Peters,

and Jonas[32] showed that it is only the anticorrelated linear combination of donor and acceptor

intra-pigment vibrations that directly participates in the transfer of electronic energy in a static

protein environment. We will refer to these vibrations hereafter as the anticorrelated vibrations.

Their nonadiabatic treatment defines local potentials of each pigment by fixing the local electronic

excitation and equilibrating the remaining nuclear degrees of freedom. In this chapter we consider

dynamic exciton vibronic transition frequencies, and show that nonadiabatic vibrational mixing

that is in phase with intra-pigment vibrations does not couple to the transfer of electronic excita-

tion energy.

Quantum dynamics of reduced degrees of freedom can be calculated exactly for simple model

spectral densities using the hierarchical equations of motion (HEOM). In Sec. 4.3 we compare non-

perturbative dynamics obtained using HEOM with solutions of the Redfield equation. The HEOM

does not require the secular approximation and is exact at all values of the Kubo parameter.[218]

S. Jesenko et al. compared the HEOM and Redfield dynamics for a dimer and trimer in the pres-

ence of a thermal reservoir,[219] but did not include the anticorrelated vibrations in their quantum

master equation.

Dynamic fluctuations of the protein scaffolding, which can be measured using optical anisotropy,[220,

221] can modulate the nonadiabatic coupling between electronic excitations, J , the exciton splitting

between the donor and acceptor vibronic manifolds, ∆, and the stabilization energy of the intra-

pigment vibrations, Es. We model the protein scaffold as a thermal reservoir which introduces a

stochastic distortion of the stabilization energy. Correlated fluctuations, where the random fluctu-

ation of transition frequencies of one pigment depend on the transition frequencies of a neighboring

pigment,[218, 221] have been simulated using molecular dynamics.[222]

The outline of the chapter is as follows: In Sec. 4.2, we define a model Hamiltonian for a
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Figure 4.2: One-exciton diabatic and adiabatic energies of a dimer.[32] Donor and acceptor elec-
tronic surfaces, shown in blue and green, respectively, can support up to 2 quanta of anticor-
related vibrational energy. The bias between the donor and acceptor electronic states has been
fixed at ∆ = 150 cm−1 with an electronic interaction between the donor and acceptor diabats
of J = 66 cm−1. J couples the undisplaced donor and acceptor states with equivalent quanta
of vibrational energy. The vibrational frequency and stabilization energy are ω = 200 cm−1 and
Es = 5 cm−1, respectively.
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dimer of two pigments where the electronic excitation can localize on either pigment, and intra-

pigment vibrations can be either correlated or uncorrelated across the dimer. We use the polaron

transformation to dress the electronic coupling with the anticorrelated momentum and show that,

in the polaron representation, the correlated vibration does not couple to the transfer of electronic

energy. To simulate dynamic vibronic transition frequencies, we introduce a thermal reservoir that

linearly couples to the electronic degrees of freedom. We show that thermal fluctuations correlated

across both pigments do not activate the correlated vibration. In Sec. 4.3 we calculate coherent

dynamics using the HEOM and the Redfield equation, and demonstrate that perturbation theory

in the system-bath coupling well approximates the exact dynamics over a wide range of values for

the Kubo parameter. In Sec. 4.4 we simulate the transfer of electronic energy from the FMO

complex to the reaction center by adding an anti-Hermitian Hamiltonian that “pulls” population

out of the acceptor pigment.

4.2 A Model for Photosynthetic Antennas

To model the electronic energies of a dimer of two pigments, we first localize the excitation

on the donor pigment, | e, g 〉, and equilibrate all the nuclear degrees of freedom about | e, g 〉. The

energy minimum in this diabatic configuration is ED. Likewise, the optical transition and Franck-

Condon energy of the acceptor pigment is EA.[223] These two electronic excitations comprise a

Hilbert space for the bare electronic Hamiltonian. In this basis, the electronic Hamiltonian takes

the matrix form:

HS := −(∆/2)σz + Jσx , (4.1)

where ∆ is the bare exciton energy gap, ∆ = ED −EA, and J is an electronic coupling attributed

to Coulombic interactions between BChl pigments.[218] σx and σz are the first and third Pauli

matrices. Eq. 4.1 is the generic Hamiltonian of a two-level system. We will show that anticorrelated

vibrations couple to the electronic degrees of freedom as in the spin-boson model.

Correlated (+) and anticorrelated (−) vibrational displacements are defined in this chapter by
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q+ = (b†+ + b+)/
√

2mω and q− = (b†− + b−)/
√

2mω, respectively, assuming each localized vibration

has equivalent frequencies and stabilization energies. The total vibronic Hamiltonian that governs

the energetics of the two localized electronic excitations coupled to correlated and anticorrelated

vibrations is a sum of the electronic Hamiltonian with the renormalized vibrational frequencies and

the electron-vibration interaction, Hvibronic = HS +Hvib +HS−vib, with

Hvib = ω
(
b†−b− + 1/2

)
+ ω

(
b†+b+ + 1/2

)
+ d2/mω2 (4.2)

and

HS−vib := −d
(
q+1 + q−σz

)
. (4.3)

1 is the identity operator, b± are the vibration annihilation operators, b± =
√

mω
2

(
q± + ip±/mω

)
,

and b†± are their Hermitian conjugates. Tiwari, Peters, and Jonas[32] showed that it is only the

anticorrelated vibrations that couples to the transfer of electronic energy. Define a Polaron trans-

formation for the vibronic system as, H̃vibronic = eSHvibronice
−S , with

S :=
(
iα/2

)(
p+1 + p−σz

)
(4.4)

and p± = i
√
mω/2(b†±− b±). We have abbreviated α = 2d/mω2 in Eq. 4.4. Re-sum the expansion

eSHvibronice
−S = Hvibronic + [S,Hvibronic] + 1

2! [S, [S,Hvibronic]] + · · · to arrive at the transformed

vibronic Hamiltonian:

H̃vibronic = −(∆/2)σz + Jσxcos(αp−)− Jσysin(αp−) +Hvib . (4.5)

Eq. 4.5 is a matrix representation of H̃vibronic in the dimer basis of electronic excited states,

{ | e, g 〉, | g, e 〉 }. The electronic coupling has been dressed with vibrations,

Jσxcos(αp−)− Jσysin(αp−) = J

 0 eiαp−

e−iαp− 0

 , (4.6)

but the exciton splitting between the donor and acceptor is unchanged. We can see from Eq. 4.5

that the correlated inter-pigment vibration does not couple to the electronic degrees of freedom in

the polaron representation.
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In this chapter, we quantize the canonical position and momentum of the pigment vibrations.

Feynman’s method for disentangling operators[76] gives the normal ordered polaron operators:

eiαp− = e−αb
†
−
√
mω/2 eαb−

√
mω/2 e−mωα

2/4 (4.7)

e−iαp− = eαb
†
−
√
mω/2 e−αb−

√
mω/2 e−mωα

2/4 . (4.8)

The diagonal elements of the electronic coupling, written in the number basis for the anticorrelated

vibrations,

| µ− 〉 =

(
b†−
)µ−√
µ−!
| 0 〉 , (4.9)

where µ− is the anticorrelated vibrational quantum number, are the Laguerre polynomials,

〈 µ− |〈 e, g |JDA/J | g, e 〉| µ− 〉 = e−mωα
2/4Lµ−(mωα2/2) . (4.10)

Eq. 4.10 describes an electronic coupling that is damped by increasing the Franck-Condon dis-

placement of the vibrations for stabilization energies approximately equal to 5 cm−1. The Laguerre

polynomials are L0(x) = 1, L1(x) = 1 − x, and L2(x) = 1
2x

2 − 2x + 1. The coupling between the

electronic degrees of freedom and the inter-pigment vibrations facilitates an energy matching that,

in the polaron picture, increases the magnitude of the dressed electronic couplings:

〈 µ− |〈 e, g |JDA/J | g, e 〉| 0 〉 = e−mωα
2/4 1√

µ−!

(
−
√
mω/2 α

)µ− (4.11)

and

〈 µ− |〈 e, g |JDA/J | g, e 〉| 1 〉 = e−mωα
2/4

[ √
µ−!

(µ− − 1)!

(
−
√
mω/2 α

)µ−−1

− 1√
µ−!

(√
mω/2 α

)µ−+1
]
. (4.12)

In Fig. 4.3 we plot the local pigment energy level diagram alongside the polaron energies fixing

the stabilization energy at Es = 5 cm−1 such that mωα2/2 = 0.1. We now couple the vibronic

system to a thermal reservoir and explore whether or not the thermal fluctuations “activate” the

correlated intra-pigment vibration.
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Figure 4.3: (a) The dimer (left) and polaron (right) energies for ∆ = 150 cm−1 and ω = 200 cm−1.
(b) The dressed electronic couplings in the polaron representation as a function of the anticorrelated
vibrational displacements.
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The large protein network in which the pigment dimer is embedded must reorganize when

a vibronic transition occurs. If the restoring force to these transitions is approximately linear,

then we can model the protein scaffold with a heat bath of harmonic oscillators. In this case, the

system-bath model Hamiltonian is the sum of isolated vibronic interactions of the pigment dimer,

the renormalized energies of the thermal reservoir, and the interactions between the electronic

degrees of freedom and the thermal reservoir, H = Hvibronic +HB +V . Fluctuations are correlated

for vibronic transition frequencies for each pigment, and therefore two statistically independent

thermal reservoirs modulate the pigment energies for a dimer, with the canonical position and

momenta: { qj,D/A , pj,D/A }, such that the jth reservoir mode causes a variation in one of two

pigment potentials, { VD/A }, through

cj,D/A =
∂VD/A

(
{qk,D/A}

)
∂qj,D/A

∣∣∣∣
{qk,D/A}={0}

, (4.13)

abbreviating the equilibrium configuration of the reservoir with {0}. For small variations about

this equilibrium, the interaction Hamiltonian can be written as

V = −
∑
j

 cj,Dqj,D 0

0 cj,Aqj,A

 . (4.14)

The renormalized bath frequencies are contained in the bath Hamiltonian, HB, such that

HB + V =

 ∑
j

p2j,D
2mj

+
mjω

2
j

2

(
qj,D −

cj,D
mjω2

j

)2
0

0
∑

j

p2j,A
2mj

+
mjω

2
j

2

(
qj,A −

cj,A
mjω2

j

)2
 ,(4.15)

which describes a bath in thermal equilibrium. HB + V is invariant under the polaron transforma-

tion:

H̃B + Ṽ = HB + V . (4.16)

The total Hamiltonian in the polaron picture shows that the correlated intra-pigment vibrations

decouple from the dynamical picture of vibronic energy transfer,

H̃ = −(∆/2)σz + Jσxcos(αp−)− Jσysin(αp−) +Hvib +HB + V (4.17)
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The spectral density that defines the distribution of couplings between the electronic excitation

localized at | e, g 〉 and the thermal reservoir is

JD(ω) =
π

2

∑
j

(
cj,D

)2
mjωj

δ(ω − ωj) . (4.18)

Similarly, for the acceptor pigment we have

JA(ω) =
π

2

∑
j

(
cj,A

)2
mjωj

δ(ω − ωj) . (4.19)

The reorganization energy for theD(A) pigment renormalizes the local pigment energy of | e, g 〉(| g, e 〉).

Each reorganization energy can be calculated from the corresponding spectral density:[223]

λD/A =
1

2

∑
j

(
cj,D/A

)2
mjω2

j

=
1

π

∫ ∞
0

dω
JD/A(ω)

ω
. (4.20)

The time correlation function for harmonic motion equilibrated about the mth pigment is

Cm(t) =

〈∑
j,k

cj,mqj,m(t)ck,mqk,m(0)

〉
B

=
~
π

∫ ∞
−∞

dωJm(ω)
(
n(ω) + 1

)
e−iωt , (4.21)

corresponding to the frequency correlation function,

Ĉm[ω] =

∫ ∞
0

dteiωtCm(t) = ~Jm(ω)
[
n(ω) + 1

]
+
i~
π
PP

∫ ∞
−∞

dω′
Jm(ω′)

[
n(ω′) + 1

]
ω − ω′

,(4.22)

with n(ω) =
(
eβ~ω − 1

)−1
. A Peierls-like coupling can be written as

Cm,n(t) =

〈∑
j,k

cj,mqj,m(t)ck,nqk,n(0)

〉
B

=
~
π

∫ ∞
−∞

dωJm,n(ω)
(
n(ω) + 1

)
e−iωt . (4.23)

The imaginary part of Ĉ[ω] modifies the vibronic transition frequencies and is essential for correctly

accounting for the phonon equilibrium.[88, 224] When the electronic coupling is of the same order

of magnitude as typical reorganization energies, it is unclear whether dissipation will be coherent

or incoherent, and which energy scale, if any, can be treated perturbatively.

4.3 Vibronic Energy Transfer

4.3.1 The HEOM and Redfield Theory

In this section we review key aspects of the HEOM and Redfield theory in Liouville space,

where the elements of the density matrix compose a vector, ρ → | ρ 〉〉, and the density matrix
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propagates according to | ρ(t) 〉〉 = U (t)| ρ(0) 〉〉 with the Liouville space propagator U (t) = e−iL t.

The Liouville operator corresponds to the commutator in Hilbert space, LA ↔ [H,A], and dic-

tates the quantum dynamics in the interaction representation through the Liouville equation:

d
dt | ρ̂(t) 〉〉 = −iεL̂V (t)| ρ̂(t) 〉〉, where the density matrix in the interaction representation is

| ρ̂(t) 〉〉 = U †
0 (t)| ρ(t) 〉〉. The perturbative Liouville operator is L̂V (t) = U †

0 (t)LV U0(t) with

U0(t) = e−iL0t. ε is a parameter whose numerical value is 1 but will order a perturbation ex-

pansion for the coupling between the vibronic system and the thermal reservoir. Inner products

in Liouville space correspond to trace operations in Hilbert space: 〈〈 A || B 〉〉 ↔ Tr[A†B] and

〈〈 i, j |L | k, l 〉〉 ↔ Tr
[
| j 〉〈 i |[H, | k 〉〈 l |]

]
.

If the bath dephasing time, 1/2πΛ, is fast relative to the energy transfer, we can approximate

the initial density matrix with the factorized initial condition,[225, 226, 227] | ρ(t0) 〉 = ρB| σ(t0) 〉〉,

where ρB is the canonical ensemble for a bath of harmonic oscillators. In this chapter we use this

factorization at all times, | ρ(t) 〉〉 = ρB| σ(t) 〉〉. Before the pump pulse interacts with the chemical

system, σ(t0) = | g, g 〉〈 g, g |. In the dipole approximation, the light-matter interaction is −ME(t),

where the dipole operator is M = µ| g, g 〉〈 e, g |+ µ∗| e, g 〉〈 g, g |. After an impulsive pump, the

first order change to the density matrix is proportional to | e, g 〉〈 g, g | + | g, g 〉〈 e, g |, but this

would violate positivity to second order. Valkunas[228] uses the augmented density matrix:

σ(t0) =
1

2

(
| g, g 〉〈 g, g |+ | e, g 〉〈 e, g |+ | e, g 〉〈 g, g |+ | g, g 〉〈 e, g |

)
. (4.24)

Eq. 4.24 is a perfect coherent superposition as achieved by a π/2 pulse. A typical ad hoc initial

condition for simulations of excited state quantum dynamics is[83, 229] σ(t0) = | e, g 〉〈 e, g |. In

this chapter, we approximate the initial conditions of the system with an incoherent distribution of

population, with anywhere from 0 to 2 quanta of anticorrelated vibrational energy. Our simulated

dynamics cannot describe phase-controlled interference observed with heterodyne-detection.[230]

We are now in a position to directly contrast exact and perturbative simulations of quantum

dynamics.
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4.3.1.1 The HEOM.

At low temperatures and when κ > 1, we expect perturbation theory in the coupling between

the vibronic system and the thermal reservoir to poorly approximate the true coherent dynamics.

To quantify the error in solutions of the Redfield equation, described in the next section, we

consider first the HEOM which is exact to an arbitrary level of hierarchy for specific model spectral

densities like that of the overdamped Brownian oscillator model. In the absence of dissipation,

the vibronic system propagates forward in time through the vibronic propagator Uvibronic(t, t0) =

e−i(t−t0)Hvibronic ,

| ψ(t) 〉 = Uvibronic(t, t0)| ψ(0) 〉 , (4.25)

having chosen ~ = 1. Following conventional derivations of the HEOM,[231, 232] we define an

arbitrary basis of the vibronic system for the path integral representation,[233, 234, 235, 6] x, and

write the finite time kernel as a product of short-time kernels:

Uvibronic(xt, x0; t− t0) = 〈 xt |Uvibronic(t, t0)| x0 〉 (4.26)

=

[N−1∏
j=1

∫ ∞
−∞

dxj

][N−1∏
j=0

K(xj+1, xj ; ∆t)

]
(4.27)

= N
∫ x(t)=xt

x(t0)=x0

D[x(τ)]exp

[
iS[x(τ); t, t0]

]
, (4.28)

implicitly defining the initial and final points as xi = x0 and xf = xt, respectively, and∫ x(t)=xt

x(t0)=x0

D[x(τ)] = lim
N→∞

[N−1∏
j=1

∫ ∞
−∞

dxj

]
(4.29)

∫
D[p(τ)/2π] = lim

N→∞

[N−1∏
j=0

∫ ∞
−∞

dpj/2π

]
, (4.30)

where, in the continuum limit, the normalization constant is N =
∫
D[p(τ)/2π].

Define the zeroth order Hamiltonian as the spectrum of reservoir harmonic frequencies, H0 =

HB. The dynamic coupling in the interaction representation is

V (t) = eiHBtV e−iHBt = −
∑
j

 cj,Dqj,D(t) 0

0 cj,Aqj,A(t)

 , (4.31)
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where qj,D/A(t) and pj,D/A(t) are the dynamical position and momentum of the jth bath mode

in reservoir (D/A), qj,D/A(t) = qj,D/Acos(ωjt) +
pj,D/A
mjωj

sin(ωjt) and pj,D/A(t) = pj,D/Acos(ωjt) −

mjωjqj,D/Asin(ωjt), respectively. Eq. 4.31 is often abbreviated as

V (t) =
∑
m

1mFm(t) (4.32)

with 1D = | e, g 〉〈 e, g |, 1A = | g, e 〉〈 g, e |, and Fm(t) = −
∑

j cj,mqj,m(t). We can approximate

the case of fully uncorrelated fluctuations, where the dynamics of each vibronic transition frequency

are independent of all others, keeping only the anticorrelated vibrations, and writing

V (t) = −
∑
µ

| µ 〉〈 µ |
∑
j

 cj,D,µqj,D,µ(t) 0

0 cj,A,µqj,A,µ(t)

 (4.33)

Eq. 4.33 is an ad hoc form of the interaction, and we have not yet determined whether or not fully

uncorrelated fluctuations activate the correlated intra-pigment vibration.

The density matrix in the interaction representation, defined by LVA ↔ [Hvibronic + V,A],

propagates forward in time as

| ρ̂(t) 〉〉 = UV (t, t0; {Fm(t)})| ρ̂(t0) 〉〉 , (4.34)

where the time evolution operator factorizes into a product of the Hermitian conjugate of the bath

operator, U †
B(t, t0), and the full time evolution operator, U (t, t0; {Fm(t)}) such that | ρ(t) 〉〉 =

U (t, t0; {Fm(t)})| ρ(t0) 〉〉:

UV (t, t0; {Fm(t)}) = U †
B(t, t0)U (t, t0; {Fm(t)}) (4.35)

To compute UV (t, t0; {Fm(t)}), start by writing its derivative,

d

dt
UV (t, t0; {Fm(t)}) = −iεL̂V (t, t0)UV (t, t0; {Fm(t)}) , (4.36)

which can be integrated using a time ordered exponential,

UV (t, t0; {Fm(t)}) = T+exp

[
− iε

∫ t

t0

dτL̂V [{Fm(τ)}; τ ]

]
. (4.37)
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If | ρ(t0) 〉〉 = ρB| σ(t0) 〉〉, then the reduced density matrix can be calculated by operating

from the left with the projection operator P ,

P | ρ(t) 〉〉 = ρB| σ(t) 〉〉 = PUV (t, t0; {Fm(t)})ρB| σ(t0) 〉〉 , (4.38)

where the nuclear equilibrium density is ρB = e−βHB/ZB. Through Eq. 4.38, we see that the time

evolution operator of the reduced density matrix is

Uσ(t, t0; {Fm(t)}) = ρ−1
B PUV (t, t0; {Fm(t)})ρB , (4.39)

which corresponds to the Hilbert space reduced density matrix,[236, 231]

σ(t) =

〈
U(t, t0; {Fm(t− iβ)})σ(0)U †(t, t0; {Fn(t)})

〉
. (4.40)

U(t, t0; {Fm(t)}) is the full time evolution operator, defined through ρ(t) = U(t, t0; {Fm(t)})ρ(0).

The reservoir operators transform as Fm(t − iβ) = eβHBFm(t)e−βHB . In the path integral formu-

lation of Eq. 4.38,

〈〈 xt, x′t |Uσ(t, t0)| x0, x
′
0 〉〉 =

∫ x(t)=xt

x(t0)=x0

D[x]

∫ x′(t)=x′t

x′(t0)=x′0

D[x′] · · ·

· · · exp

[
iS[x; t, t0]

]
F
[
x, x′

]
exp

[
− iS[x′; t, t0]

]
, (4.41)

with the influence functional

F [x, x′] = (4.42)

=

〈
T+exp

[
− iε

∑
m

∫ t

t0

dτ1m[x(τ)]Fm(τ − iβ)

]
T−exp

[
iε
∑
n

∫ t

t0

dτ1n[x′(τ)]Fn(τ)

]〉
.

The hierarchy is now constructed by differentiating Eq. 4.41, ordering terms by powers of ε,

expanding the bath correlation function in a series of exponential functions,

Cm(t) =
∞∑
k=0

c
(m)
k e−ν

(m)
k t (4.43)

and then closing the hierarchical equations of motion through truncation.[231] The Matsubara

frequencies are ν
(m)
0 = Λm and ν

(m)
k≥1 = 2πk/β. When using the model spectral density for the over-

damped Brownian oscillator, Jm(ω) = 2λmΛm
ω

ω2+Λ2
m

with the cutoff frequency of the bath defined
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as Λm. The expansion coefficients for the correlation function are c
(m)
0 = 2Λmλm

2

[
cot
(
βΛm/2

)
− i
]

and c
(m)
k≥1 = 4λmΛm

β

(
ν
(m)
k

ν
(m)
k

2−Λ2
m

)
. Details of the HEOM using the spectral density for the overdamped

Brownian oscillator can be found elsewhere.[231, 232] Although the HEOM has the advantage of

being numerically exact, it is computationally expensive. In the next section we review the Redfield

equation and its solutions.

4.3.1.2 Redfield Theory.

Solutions of the Redfield equation should well approximate the true coherent dynamics when

0 < κm < 1 for all m, where κm is the Kubo parameter for the mth pigment, κm = λm/Λm.[88, 237]

Coherence can be relaxed by population decay or from system-bath induced frequency shifts in the

system. The latter is referred to as “pure dephasing”. Redfield theory is derived by invoking

the Markovian approximation such that phonons relax to their equilibrium instantaneously, and

C(t)→ 0 as t→∞ faster than any characteristic timescale of the system for each pigment.

Unlike the derivation of the HEOM, define an interaction representation through the zeroth

order Hamiltonian: H − V . In this case the interaction Liouville operator is defined by LVA ↔

[V,A]. In a previous publication, we show that the exact solution of the reduced density operator

in the interaction representation is[106]

d

dt
P | ρ̂(t) 〉〉 = −iεP L̂V (t)P | ρ̂(t) 〉〉

−iεP L̂V (t)
(
1− Σ(t)

)−1
(

G +
Q (t, 0)Q| ρ̂(0) 〉〉+ Σ(t)P | ρ̂(t) 〉〉

)
(4.44)

with

Σ(t) = −iε
∫ t

0
dτG +

Q (t, τ)QL̂V (τ)Pg−(t, τ) , (4.45)

and the forward and reverse propagators,

G +
Q (t, τ) = T+e

−iεQ
∫ t
τ dsL̂V (s) , (4.46)

and

g−(t, τ) = T−e
iε
∫ t
τ dsL̂V (s) , (4.47)
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respectively. One can show that the quantum master equation for the reduced operator, dropping

the inhomogeneous term, can be written in the time local form,[106]

d

dt
P | ρ̂(t) 〉〉 = −iεP L̂V (t)P | ρ̂(t) 〉〉 − iε2P L̂V (t)

∫ t

0
dτL̂V (τ)P | ρ̂(τ) 〉〉+ O(ε3) (4.48)

The second order term in the ε expansion has the Liouville/Hilbert space correspondence:

P L̂V (t)

∫ t

0
dτL̂V (τ)P | ρ̂(τ) 〉〉 ↔ ρB

∫ t

0
dτTrB

([
V̂ (t), [V̂ (τ), ρBTrB

(
ρ̂(τ)

)
]
])

. (4.49)

If the bath dynamics are much faster than those of the system, the Markovian approximation is

valid, and the quantum master equation to second order in ε is the Redfield equation,

∂

∂t
σj,k(t) = −iωj,kσj,k(t) +

∑
j′,k′

Rj,k;j′,k′σj′,k′(t) , (4.50)

with the relaxation superoperator, R, defined as

Rj,k;j′,k′ = Γk′,k,j,j′ + Γ∗j′,j,k,k′ − δk′,k
∑
l

Γj,l,l,j′ − δj′,j
∑
l

Γ∗k,l,l,k′ . (4.51)

Eq. 4.50 is the equation of motion for elements of the reduced density operator in the vibronic

eigenbasis, Hvibronic| j 〉 = Ej | j 〉. Populations can be represented in the local pigment basis:

σD,µ−(t) = 〈 µ− |〈 e, g |σ(t)| e, g 〉| µ− 〉 (4.52)

=
∑
j,k

〈 µ− |〈 e, g || j 〉σj,k(t)〈 k || e, g 〉| µ− 〉 (4.53)

Likewise for the coherences,

σD,µ−;A,ν−(t) =
∑
j,k

〈 µ− |〈 e, g || j 〉σj,k(t)〈 k || g, e 〉| ν− 〉 . (4.54)

Recall that µ− is the anticorrelated vibrational quantum number. The trace property of the reduced

density operator is invariant under unitary transformations:

Tr
[
σ(t)

]
= Tr

[
eSσ(t)e−S

]
. (4.55)

The frequency correlation function is

Γj,k;j′,k′ =
∑
m,n

∑
µ−,ν−

〈 j || µ− 〉1m〈 µ− || k 〉〈 j′ || ν− 〉1n〈 ν− || k′ 〉Ĉ(µ−,ν−)
m,n [ωk′,j′ ] (4.56)
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For fluctuations which are intra-pigment correlated, Ĉ
(µ−,ν−)
m,n [ω] = δm,nĈ[ω]. Our approximate

treatment of fully uncorrelated fluctuations of vibronic transitions involving only anticorrelated

vibrations corresponds to frequency correlation functions of the form:[238, 239]

Ĉ(µ−,ν−)
m,n [ω] = δm,nδµ−,ν−Ĉ[ω] . (4.57)

As a first approximation we decouple the dynamics of the populations and the dynamics of the

coherences. This is known as the secular approximation. We will test the validity of these approx-

imations by comparing the simulated dynamics calculated using Redfield theory and the HEOM

directly. The HEOM are truncated at k = 3 (4 Matsubara terms) and 7 levels of hierarchy. The

HEOM are integrated with the Runge-Kutta-Fehlberg 4/5 adaptive integrator and with time local

truncation.[232]

One might expect the energy fluctuations of neighboring pigments to be correlated if the

wavelength of the protein motion is much longer than the inter-pigment separation.[223] In 2012,

Gelin et al.[240] considered a heat bath that induced correlated fluctuations in the local intra-

pigment vibrations directly. These fluctuations were uncorrelated from the perspective of the

electronic excitation, and the dynamics of 〈q+〉(t) were only damped by correlated fluctuations

while 〈q−〉(t) were only damped by anticorrelated fluctuations. We have shown that for intra-

pigment correlated fluctuations, it is only the anticorrelated vibration that couples to the transfer

of electronic energy. In Fig. 4.4 we plot the population of the donor pigment with 0 quanta of

anticorrelated vibrational energy, fixing the initial population of | e, g 〉| 0 〉, and also plot the donor

population for a dimer exciton model in the absence of any pigment vibrations. In Fig. 4.5 we

plot the total population in the acceptor manifold of vibronic states, | g, e 〉| 0 〉, | g, e 〉| 1 〉, and

| g, e 〉| 2 〉.

To explore the role of vibrational relaxation in vibronic energy transfer, we next examine

simulations of fully uncorrelated fluctuations, Ĉ
(µ,ν)
m,n [ω] = δm,nδµ,νĈ[ω]. In Fig. 4.6 we compare

the dynamics of the donor pigment with different quanta of vibrational energy. The populations

in Fig. 4.6 are not the total population in the donor manifold of states, but rather the decay of
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Figure 4.4: The population of the donor state, | e, g 〉| 0 〉, described in the text, computed using
the HEOM and an exciton model in black, and the Redfield theory with the polaron model in blue.
The Kubo parameter has been fixed at κ = 0.05 (a) and κ = 0.8 (b). The frequency cutoff has

been fixed at Λ = 50 cm−1. Fluctuations are intra-pigment correlated, with Ĉ
(µ,ν)
m,n [ω] = δm,nĈ[ω].

(a) κ = 0.05 (b) κ = 0.8
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Figure 4.5: The total population of the acceptor state, | g, e 〉, described in the text. The Kubo
parameter has been fixed at κ = 0.05 (a) and κ = 0.8 (b).
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the initial excitation for different choices of initial conditions. We can see from Fig. 4.6 that the

Figure 4.6: The population of the donor state, | e, g 〉, with either 0, 1, or 2 quanta of anticorrelated
vibrational energy shown in blue, green, and red solid curves, respectively, all computed using the
HEOM. The Kubo parameter has been fixed at κ = 0.05 (a) and κ = 0.8 (b). The frequency cutoff
has been fixed at Λ = 50 cm−1. The Redfield dynamics are shown with dashed curves. The exciton
dynamics for a dimer without pigment vibrations are shown in black.

(a) κ = 0.05 (b) κ = 0.8
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initial relaxation is more rapid for systems initially prepared with anticorrelated vibrational energy.

Rapid vibrational cooling is followed by stronger amplitude and longer period quantum beating.

The damping of these oscillations increases as the Kubo parameter increases. The Redfield and

HEOM are in qualitative agreement, with the Redfield theory missing short-time oscillations for

large values of the Kubo parameter. The total population in the acceptor, | g, e 〉, corresponding to

the calculations shown in Fig. 4.6, is shown in Fig. 4.7. We can see from Fig. 4.7 that the decay of

the initial population strongly correlates with the rise of total population in the acceptor manifold

of vibronic states. Both the HEOM and the Redfield theory predict increased population in the

acceptor pigment when the energy of the initial population increases. For low values of the Kubo

parameter, the HEOM and the Redfield theory give similar rates at which σA initially rises within

≈ 200 fs. As the Kubo parameter increases, the initial rise times predicted by the Redfield theory

for 1 and 2 quanta of initial vibrational energy are faster than those calculated from the HEOM,

and the short-time quantum beating is more strongly damped for σ(0) = | e, g 〉| 0 〉〈 0 |〈 e, g |.
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Figure 4.7: The total population of the acceptor state, | g, e 〉 where the system is prepared with
0, 1, and 2 quanta of anticorrelated vibrational energy in the blue, green, and red solid curves,
respectively, computed using the HEOM. The Kubo parameter has been fixed at κ = 0.05 (a) and
κ = 0.8 (b). The corresponding Redfield theory results are shown with dashed curves.

(a) κ = 0.05 (b) κ = 0.8
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4.4 Zeno and Anti-Zeno Effects

Mohseni et al.[213] modeled FMO as a linear array of chromophores, and approximated

the initial conditions as a mixture of population at the pigments in contact with the baseplate

and reaction center.[213, 241] In our dimer model we can represent the transfer of electronic ex-

citation from the FMO complex to the reaction center as transfer out of the | g, e 〉 manifold of

vibronic states. Although electronic energy flows to the reaction center, it may do so through

pigment intermediates[92], as is illustrated in Fig. 4.8. This “out-transfer” can be modeled as

Figure 4.8: (a) Sketch of the FMO complex with the donor and acceptor pigments shown in blue
and green, respectively. (b) An energy level diagram corresponding to the FMO complex in (a),
with transfer to either pigments 3 or 4 or the reaction center modeled with a trapping rate, Γ.
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H = Hvibronic +HB + V +Hout, with an anti-Hermitian operator,[242, 213]

Hout = −iΓ| g, e 〉〈 g, e | . (4.58)

Transfer out of | g, e 〉 is analogous to the short-time measurement of qubits, where increased

measurement rates have been known to inhibit decay (the Zeno effect). Conversely, the anti-Zeno

effect refers to the enhanced decay when the measurement rate is increased. In Fig. 4.9 we plot

the dynamics of the populations calculated using Redfield theory for various out-transfer rates,

Γ/Λ. From Fig. 4.9 we see that as Γ/Λ increases, the ratio of total population in the acceptor to

the total population in the donor decreases on picosecond timescales. This may suggest a type of

Zeno effect,[241] but the rate of transfer from | e, g 〉 to | g, e 〉 is invariant to changes in Γ/Λ, and
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Figure 4.9: The total population of the acceptor state described in the text. The transfer rate
out of the acceptor has been fixed at Γ/Λ = 1, 0.1, and 0.01 in blue, green, and red, respectively.
Every vibronic splitting is dynamic and is modulated by an independent thermal reservoir using the
Redfield theory, plotted in solid lines. Fluctuations in the vibronic splittings are then correlated
for each pigment for the dashed lines. The vibronic system initially contains 0 and 1 quantum
of anticorrelated vibrational energy in (a) and (b). The ratio of acceptor to donor populations,
σB/σA, corresponding to (a) and (b) are shown in (c) and (d).
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therefore the decay of the population ratio is simply the effect of a drain on the acceptor population.

Crossover from Zeno to anti-Zeno behavior has been calculated in the range[243] 0.1 < Γ/Λ < 1,

but we see no such crossover in our Redfield calculations.

The transfer efficiency can be calculated from the net population that has left the vibronic

dimer,[213, 244, 245]

η =
Γ

~

∫ ∞
0

dt
(
1− σD(t)− σA(t)

)
. (4.59)

which defines the following trapping time:

τ =
Γ

η

∫ ∞
0

dt
(
1− σD(t)− σA(t)

)
t . (4.60)

In Fig. 4.10 we plot the trapping time as a function of the transfer rate out of the acceptor, choosing

a finite upper bound on the time integration to be 2 ps. From Fig. 4.10 we see no clear evidence

Figure 4.10: The trapping time, described in the text, calculated using the Redfield theory for
uncorrelated and correlated fluctuations shown with solid and dashed curves, respectively. The
trapped population is shown in the inset with the transfer rate out of the acceptor fixed at Γ/Λ = 1,
0.1, and 0.01 in blue, green, and red, respectively.
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of the quantum Zeno effect. We are left to conclude that, from the perspective of energy transfer

within the FMO complex, there is no evidence of a quantum Zeno effect.
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4.5 Conclusion

To summarize, we have constructed a model Hamiltonian of electronic excitations and intra-

molecular vibrations in a dimer of two pigments. Using the polaron transformation, we showed

that the correlated pigment vibration does not couple to the electronic energy transfer even when

the electronic excitation is linearly coupled to a thermal reservoir. The exact coherent dynamics

calculated using the HEOM are in close agreement with the approximate dynamics obtained by

solving the Redfield equation. The rate of transfer from the donor to the acceptor pigment is faster

when the vibronic system is initially prepared with anticorrelated vibrational energy than when

the system is vibrationally cold initially. We show that thermal fluctuations correlated across the

dimer enhance the rate of decay out of the vibronic donor state. By incorporating anti-Hermitian

decay in our model we were able to comment on the transfer of electronic excitation energy to the

reaction center in photosynthesis.

4.6 Appendix 4A - Calculating Low Temperature Transitions with the Nu-

merical Renormalization Group

In this Appendix we describe our attempt to identify low temperature phase transitions using

the Numerical Renormalization Group (NRG).[246, 247] When the coupling between the electronic

degrees of freedom and the intra-pigment vibrations is negligible, the local pigment energies are

degenerate, and fluctuations are anticorrelated across the dimer, cj,D = −cj,A, the Hamiltonian

maps to the spin-boson model,

H = −(∆/2)σz + Jσx +HB + V . (4.61)

By iteratively diagonalizing a coarse-grained version of Eq. 4.61, we can calculate the delocalization

of the excitation across the dimer nonperturbatively. To make contact with known NRG results,

we approximate our spectral density in the infrared limit as

J(ω) = 2κω . (4.62)
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Eq. 4.62 describes Ohmic dissipation. For a continuous dispersion of a bosonic bath, g(ε), Eq. 4.61

can be written as

H = HS +

∫ 1

0
dεg(ε)b†εbε − σz

∫ 1

0
dε c(ε)

(
bε + b†ε

)
, (4.63)

where the spectral density is related to the coupling function, c(ε), through

1

π
J(ω) =

dε(ω)

dω

(
2

ε
c2[ε(ω)]

)
. (4.64)

The NRG is constructed using a logarithmic discretization of the system-bath interactions,

c(ε)→ cn =

√
1

Ω−n − Ω−(n+1)

∫ Ω−nΛ

Ω−(n+1)Λ

2

πω
J(ω)dω . (4.65)

Details of the NRG can be found elsewhere in the literature.[247, 246]. In Fig. 4.11 we plot the

flow diagrams using Ohmic dissipation and zero bias. We have not had success with the NRG and

Figure 4.11: The flow diagrams of energies calculated using the NRG and an ohmic spectral density.
The bias, electronic coupling, and bath frequency cutoff have been fixed at ∆ = 0, J = −0.005,
and Λ = 1, respectively. 100 energies were kept at each NRG iteration with 8 new boson degrees of
freedom added. The discretization parameter has been fixed at Ω = 2. (Reproduced from ref.[246])
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finite bias, which is a necessary condition for any relevant calculation of excitation delocalization

throughout the FMO complex.
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[205] J. Schliemann, J. I. Cirac, M. Kuś, M. Lewenstein, and D. Loss. Quantum correlations in
two-fermion systems. Phys. Rev. A, 64:022303, 2001.

[206] W. Wimmer. Algorithm 923: Efficient numerical computation of the pfaffian for dense and
banded skew-symmetric matrices. ACM Trans. Math. Softw., 38:1, 2012.

[207] M. Almeida, Y. Omar, and V. Rocha Vieira. Strongly correlated systems, coherence and
entanglement. World Scientific Publishing Co. Pte. Ltd., 2007.

[208] S. Hamieh, J. Qi, D. Siminovitch, and M. K. Ali. Extracting classical correlations from a
bipartite quantum system. Phys. Rev. A, 67:014301, 2003.

[209] S. Hamieh, R. Kobes, and H. Zaraket. Positive-operator-valued measure optimization of
classical correlations. Phys. Rev. A, 70:052325, 2004.

http://link.springer.com/chapter/10.1007/978-3-662-06390-3_35
http://pubs.acs.org/doi/abs/10.1021/jz201368e
http://journals.aps.org/pr/abstract/10.1103/PhysRev.124.1866
http://scitation.aip.org/content/aip/journal/jcp/132/24/10.1063/1.3454657
http://journals.aps.org/prl/abstract/10.1103/PhysRevLett.106.053003
http://journals.aps.org/prl/abstract/10.1103/PhysRevLett.19.1312
http://www.sciencedirect.com/science/article/pii/0960077995000143
http://journals.aps.org/rmp/abstract/10.1103/RevModPhys.85.1633
http://informationphilosopher.com/solutions/scientists/everett/DeWitt_QM_Reality.pdf
http://journals.aps.org/pra/abstract/10.1103/PhysRevA.64.042310
http://journals.aps.org/pra/abstract/10.1103/PhysRevA.64.022303
http://journals.aps.org/pra/abstract/10.1103/PhysRevA.67.014301
http://journals.aps.org/pra/abstract/10.1103/PhysRevA.70.052325


111

[210] S. Oh and J. Kim. Entanglement of electron spins of noninteracting electron gases.
Phys. Rev. A, 69:054305, 2004.

[211] V. M. Agranovich, O. A. Dubovsky, D. M. Basko, G. C. La Rocca, and F. Bassani. Kinematic
frenkel biexcitons. J. Lum., 85:221–232, 2000.
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Appendix A

Stochastic Modeling of the Vibrational FID in s-SNOM of PTFE

A.1 Introduction

The advent of scattering-scanning near-field optical microscopy (s-SNOM) has made possible

the imaging of condensed matter on nanometer length scales.[334, 358, 357] By propagating surface

plasmon polaritons along nanoantenna capable of supporting strong local fields, S. Berweger et

al.[334] enhanced the sensitivity of s-SNOM with near-infrared excitation. In recent years, s-

SNOM and femtosecond (fs) infrared (IR) vibrational spectroscopy have been combined to image

micro chemical environments.[358, 357] In 2013, Xu and Raschke[358] studied the vibrational free-

induction decay (FID) of polytetrafluoroethylene (PTFE), also known as Teflon, and found that

the tip-sample coupling provides control of vibrational decoherence. Since then, the Raschke group

has also examined poly(methyl methacrylate) (PMMA).[357]

FID arises from the near-field dipole-dipole coupling between the AFM tip and molecular

vibrations. The near-field signal is a coherent superposition of a frequency independent nonres-

onant instantaneous response and a resonant vibrational contribution.[348] In this appendix, we

assume that s-SNOM impulsively excites vibrational coherence in PTFE that then decays through

interactions with segments of PTFE many nanometers removed from the probed subensemble as

well as through interactions with neighboring PTFE chains.

In the classical description of FID, a radiating dipole moment is represented as a local har-

monic vibration. Normal oscillations are damped by friction, and thermal fluctuations randomly

perturb the vibration. The transition dipole operator for N oscillators, each interacting with the
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IR field, is µ̂ =
∑N−1

i=0

(
∂µ
∂qi

)
0

qi, where qi is the vibrational coordinate of the ith oscillator. The

linear response function for linear optical measurements is governed by the time correlation func-

tion, C(t) = 〈 µ(t)µ(0) 〉. C. Quarti et al. have shown,[338] using density functional theory with

the B3LYP/TZVP functional, that the intensity of the local symmetric stretch frequency is dra-

matically reduced when infinite chains are replaced with finite length oligomers. We will simulate

the dynamics of qi(t) using the quantum Langevin equation to explore how s-SNOM might predict

the vibrational composition of PTFE at nanometer resolutions, and how spectral features of FID

depend on chain length.

A.2 Nonergodic FID at Nanometer s-SNOM Resolution

At room temperature, the CF2 groups are arranged in PTFE chains in a zig zag conformation

such that local CF2 dipole moments alternate along the carbon backbone. If these CF2 groups are

only weakly interacting, then the Fourier transformation of the FID will possess two strong features

at Ωs ≈ 1160 cm−1 and Ωas ≈ 1220 cm−1, corresponding to the local symmetric and antisymmetric

stretch frequencies, respectively.[336, 358, 337] To make progress, we ignore phase transitions that

can occur across a range of temperatures[338, 337, 335] from 0−50 ◦C, and choose an approximate

zeroth order basis of local symmetric and antisymmetric stretch modes.[337, 336, 358]

Friction damps the harmonic motion of the local stretches and also damps thermal fluctu-

ations arising from the chemical environment surrounding the subensemble of local oscillations

probed by s-SNOM. If friction is uncorrelated with respect to each local normal mode, then the

dynamics of each vibration are independent, and we start with a model Hamiltonian of a single

displacement, q, subject to a potential, V (q), with the momentum canonical to the position de-

fined as p. If the mass responds linearly to displacements of vibrations in a heat bath, then the

Hamiltonian in mass-weighted coordinates is[355, 3, 4, 6]

H = p2/2 + V (q) +
∑
j

[
k2
j /2 + ω2

j (xj − λjq)2/2
]

(A.1)

having let ~ = 1. The equilibrium position of the jth bath mode is χj = λjq. Using [q, p] = i,
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[xj , kk] = iδj,k, and d
dtA = −i[A,H] one can derive the Heisenberg equations of motion:

d

dt
q = p (A.2)

and

d

dt
p = − d

dq
V (q) +

∑
j

ω2
jλj(xj − λjq) , (A.3)

having used d
dtq = ∂H

∂p and d
dtp = −∂H

∂q , and

d

dt
xj = kj ,

d

dt
kj = ω2

j (λjq − xj) . (A.4)

Eqs. A.2, A.3, and A.4 define a system of inhomogeneous differential equations:

d2

dt2
q = − d

dq
V (q) +

∑
j

ω2
jλj(xj − λjq) (A.5)

d2

dt2
xj = ω2

j (λjq − xj) . (A.6)

Solutions of these differential equations are common, and we leave the derivation of the general

solution,[365]

xj(t) = Xj(t) + x̃j(t) =

=
(
xj − λjq(0)

)
cos(ωjt) +

kj
ωj
sin(ωjt) + λjq(t)− λjRefj(t) , (A.7)

to the reader. Insert this result into Eqn. A.3 to arrive at

d2

dt2
q +

∫ t

0
dτR(t− τ)

d

dτ
q(τ) +

d

dq
V (q) = F (t) , (A.8)

with the stochastic forcing function given by

F (t) =
∑
j

[(
xj − λjq(0)

)
ω2
jλjcos(ωjt) + kjωjλjsin(ωjt)

]
, (A.9)

and the response function defined as R(t) =
∑

j ω
2
jλ

2
jcos(ωjt). Friction is said to be memoryless if

it does not depend on the history of the velocity, such that the response function is proportional

to a scalar friction, γ.
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xj and kj are sampled from the equilibrium distribution of free harmonic oscillators, ρB =

exp
[
−HB/kBT

]
with HB =

∑
j

[
k2
j /2 + ω2

jx
2
j/2
]
. The initial conditions are: 〈xj〉 = 〈kj〉 = 0 for

all j, 1
2〈kjkk〉 =

ω2
j

2 〈xjxk〉 = kBT
2 δj,k, and 〈xjkk〉 = 0 for all j and k. Thermal energy fixes the ratio

of the stochastic correlation to the response, kBT = 〈F (t)F (0)〉/R(t). In the Markovian limit, all

noise is white noise, and 〈F (t)F (0)〉 = σδ(t) with σ = 2γkBT . Here the force varies rapidly relative

to all other timescales in the problem, and the dynamics are governed by the quantum Langevin

equation,

d2

dt2
q + γ

d

dt
q +

d

dq
V (q) = F (t) . (A.10)

The expectations of variance in the position and momentum in the ensemble limit are kBT/ω
2 and

kBT , respectively. To test deviations from ensemble expectation values of the linear polarization

when s-SNOM accesses a small ensemble of local vibrations, we first launch N stochastic trajectories

in the harmonic potential, V (q) = 1
2Ω2

sq
2. In the semi-impulsive limit, the driving field is a short

pulse,

E(t) ≈ EeiΩptδ(t) ≈ EeiΩpt τ/π

τ2 + t2
, (A.11)

and

d2

dt2
q +

∫ t

0
dτR(t− τ)

d

dτ
q(τ) +

d

dq
V (q) = eE(t) + F (t) . (A.12)

where e is one unit of elementary charge. In this Appendix we fix E = e = 1. If the Markovian

approximation is valid, the displacement can be solved using the Fourier space Green’s function,

Ĝ(ω), and is given by

q(t) =

∫ ∞
−∞

dωeiωtĜ(ω)
(
eÊ(ω) + F̂ (ω)

)
, (A.13)

with Ê(ω) =
∫∞
−∞ dte−iωtE(t) and F̂ (ω) =

∫∞
−∞ dte−iωtF (t). The Green’s function is

Ĝ(ω) =
[
− ω2 + iγω + Ω2

]−1
. (A.14)
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To simulate a subensemble of N vibrations, we launch N trajectories that each experience a sta-

tistically independent “noisy” chemical environment, enumerated by i:

qi(t) =

∫ ∞
−∞

dωeiωtĜ(ω)
(
eÊ(ω) + F̂i(ω)

)
.(A.15)

The underlying frequency fluctuations can be described using Kubo theory, where the correlation

of Gaussian fluctuations exponentially decay in time,

〈δΩ(t)δΩ(0)〉 = ∆2e−Γt . (A.16)

In Fig. A.1 we calculate the autocorrelation function, C(t) = 〈 q(t)q(0) 〉, fixing the friction

and inverse Kubo decay time to γ = Γ = (680 fs)−1. From Fig. A.1 we see that, as the number

of independent trajectories is reduced from 100 to 10, both the Kubo response function and the

autocorrelation function are not fully damped on picosecond timescales. More work is needed to set

quantitative albeit numerical thresholds for what constitutes recurrence at long times, and whether

such noisy dynamics fall outside the scope of ergodic theory.

In Fig. A.2 we simulate a mixed ensemble of N symmetric (Ωs = 1160 cm−1 and γs =

(680 fs)−1) and N antisymmetric (Ωas = 1220 cm−1 and γas = (340 fs)−1) local vibrations.

From Fig. A.2 we see the same nonergodic and noisy dynamics when the number of trajectories is

reduced from 100 to 10, but now with a recurrence in C(t) corresponding to the interference of the

symmetric and antisymmetric stretch frequencies.

A.3 Coherence Transfer between Local Vibrations

The finite set of local symmetric and antisymmetric stretch modes is an approximate repre-

sentation for the response of PTFE to strong local IR fields. The accuracy of our simulations in

this zeroth order picture may be compromised as the extent of crystallinity is reduced such that

PTFE becomes a disordered solid, and if elements of the Hessian strongly couple nearest-neighbor

stretches. At temperatures between 0 and 50 ◦C there is conformational disorder in the crystalline
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Figure A.1: The Kubo response function (a) and autocorrelation function (b), described in the text,
for a PTFE sample at 300 K driven by a short pulse (τ = 200 fs) with frequency Ωp = 1160 cm−1.
Simulations of subensembles of 100 and 10 oscillators are shown in blue and green, respectively.
An inset of % = − 1

π Im[Ĝ(ω)] is shown in (a).
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Figure A.2: The Kubo response function (a) and autocorrelation function (b), described in the text,
for a PTFE sample at 300 K driven by a short pulse (τ = 200 fs) with frequency Ωp = 1190 cm−1.
Simulations of subensembles of 100 and 10 oscillators are shown in blue and green, respectively.
An inset of % = − 1

π Im[Ĝ(ω)] is shown in (a).
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phase of PTFE.[338] PTFE is primarily found in the zig zag and pseudohexagonal 157 helix con-

formations at 30 ◦C, in a hexagonal 157 helix conformation at lower temperatures (19 − 30 ◦C),

and below 19 ◦C is most stable as the 136 helices.[338, 337, 336] The157 and 136 oligomers refer to

configurations which contain 15 CF2 groups in 7 turns and 13 CF2 groups in 6 turns, respectively.

136 and 157 are split by energies approximately equal to dispersive interaction energies. It is

thought that the 136 phase is dominated by inter-chain interactions while 157 is dominated by intra-

chain interactions.[338, 335] In the future we will study two intra-chain interactions, (i) nonlocal

interactions between stretch modes localized at neighboring CF2 groups and (ii) anharmonicities

within a single CF2 group leading to interactions between the symmetric and antisymmetric stretch

modes.


