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ABSTRACT

A word is called square-free if it does not contain a subword of
the form aa where o is a nonempty word. A Tanguage is called
square-free if it consists of square-free words only. The subword
complexity of a language K, denoted Ty is a function of positive
integers which for a positive integer n assigns the number of different
subwords of Tength n occurring in words of K. It is known that if a
DOL Tanguage K is square free then, for all n, ﬂK(n) < rnlog,n for
some positive integer r. MWe demonstrate that there exists a square-free
DOL language K on four Tletters such that, for all n, wK(n) > prw1ogzn
for some positive real p. This turns out to be the best lower bound on
the size of the alphabet needed for a square-free DOL language to have

the number of subwords of order n1ognn.



INTRODUCT ION

In order to understand the structure of a language one may investigate
the set of its subwords. As a first step in this direction one may take
a numerical approach and simply count the number of subwords of a given
length in the language. For a language K, Tet Ty be the function of
positive integers such that WK(H) is the number of different subwords of
Tength n occurring in words of K; Ty is referred to as the subword
complexity of K. The subword complexity of DOL languages was quite
extensively investigated (see, e.g., [ER1], [L] and [RS]). Among others
it was demonstrated that the subword complexity of a DOL Tanguage is
sensitive to various "local" restrictions on a DOL system that generates
it; local restrictions mean restrictions on the set of productions - e.g.,
one can require that the Tength of the right-hand side of every production

is Tonger than 1.

Another approach to investigate the set of subwords of a Tanguage is
to consider structural restrictions on their distribution in words. Thus
following [T] one calls a word square-free if it does not contain a
subword of the form aoa where a is a nonempty word; a Tanguage is called
square-free if it consists of square-free words only. Square-free DOL
Tanguages are a subject of active investigation, see, e.g., [B1], [B2],
[S1] and [S2]. It was demonstrated ([ER1]) that if K is a square-free
DOL language then, for all n, ﬂK(n) < rr]]ogzn where r is a positive
integer (one should contrast this with the fact that there exist DOL
languages which have the subword complexity function of order n2). In
the same paper it was demonstrated that there exists a DOL Tlanguage K

such that, for all n, ﬂK(n) > prn]ogzn for a positive real p. However,



this particular language is over 9 Tetters. Hence the question arises
whether the "n 1ogzn” remains "reachable" in square-free DOL languages
using less than 9 Tletters. It was shown in [ER2] that if a square-free
DOL Tanguage K is over a three letter alphabet, then for all n,

WK(H) < rn for a positive integer n. In this paper we show that four
Tetters suffice to achieve the order of n 1092n subwords of Tength n

in a DOL square-free language. In this sense this paper establishes the
precise boundary between order n and order n1ogzn square-free DOL

languages.

We assume the reader to be familiar with the basic theory of DOL

systems and languages - see, e.g., [RS].



1. PRELIMINARIES

We use mostly standard Tanguage-theoretic notation and terminology
(see, e.g., [RS]). Perhaps the following points require an additional

explanation.

@ denotes the empty set, N+ denotes the set of positive integers and,
for a finite set A, #A denotes the cardinality of A. We consider finite
alphabets only. A denotes the empty word, |w| denotes the Tength of a
word w, alph(w) the set of Tetters occurring in w and, for a Tetter x,
#Xw denotes the number of occurrences of x inw. For n e N and a word w
the prefix of w of length n, denoted prefn(w), is defined by

t,.ot ifw=t...t

1 0 1" r = n, where tl’ cens tr are letters,

pref, (w) r
w if |w| <n,
similarly the suffix of w of length n, denoted sufﬂ(w), is defined by

tn...t1 ifws= tr"'tl’ r = n, where tl,..., t. are Tetters,
sufn(w)

wif |w| < n.
We will also use the notation first(w) to denote prefl(w) and Zast(w) to
denote sufﬁ(w). If a word w is a subword of a word z then we write

wC z; sub(z) denotes the set of all subwords of z and for a language K,

sub(K) = \“)sub(z).

zeK

The subword complexity of a language K, denoted as Ty is the function

from N into N* defined by ﬂK(n) = #Hwesub (K) : |w|=n}.

A word w is called square-free if, for no nonempty word a, co is a
subword of w. The following obvious to prove result will be useful in

the sequel. First, we need the following notion.



Let w, z be nonempty words such that wecz. We say that w is unique in
z if for all words Zys Zos Z3s Zys if z = z,wz, and z = Z3W 2, then
zy = z3 and Zy = 2.

Lemma 1.1. Let w and z be nonempty words such that w is unique
in z. Let a be a nonempty word such that coa& z. Then w is not a

subword of o. [

For a homomorphism h A Z*, minr(h) = min{|h(x)| : xe 2} and
maxr(h) = max{|h(x)]| : xeZ}.

If A ¢ Z where Z is an alphabet then pres) y» or simply pres, if =
is understood, denotes the homomorphism defined by presA,Z(X) = X

for x e A and pres, -(x) = A for x e I\A.

We say that h is square-free if h(z) is square-free for every
square-free z « 2. The following result from [BEM] will be useful
in the sequel.

Theorem 1.1. Let ¥ be an alphabet and let h be a homomorphism
of 1. If
(i). h(z) is square-free for every square-free word z « Z* such that
|z] <3, and
(ii). if h(x)€ h(y) implies x = y for all x, y ¢ %,

then h is square-free. 0O

A DOL system will be specified as a triplet G = (X, g, w) where I
is its alphabet, g is its homomorphism and w is the axiom of G. Then

E(G) denotes the sequence of G and L(G) denotes the language of G.



2. RESULTS

In this section we investigate the subword complexity of square-free
DOL languages over a four Tetter alphabet. Our first result provides a
method to construct a square-free DOL Tanguage such that the number of

subwords of Tength n in it is of order n 1ogzn.

Theorem 2.1. Let A and T be alphabets where A = {a, b, c,} and
*
Z=Au{d} withd ¢ A, Let h:A +-A* be a square-free homomorphism

and let w ¢ A+ be such that

(C1). minr(h) = 3,

(C2). for every x e A, first(h(x)) = a and Zast(h(x)) = b,
(C3). for every x, y ¢ A, h(x)E h(y) implies x =y,

(C4). the word bcwca is square free and

(C5). |cwc]| zmaxr(h).

Let g Ay be the homomorphism defined by: g(x) = h(x) for x ¢ A
and g(d) = dcdtldtz...dtzdcd where w = ..ty £21 and

t eh. Let G=(x,g,dabcd).

1""’t£
Then L(G) is square-free and there exists a positive real p such that
ﬂk(h) > pr1]0g2 n for every n en'.
Proof':
The proof of this theorem goes through a sequence of lemmas.
Lemma 2.1. If z ¢ Z*, z is square-free and z is such that
#d(z) = 1 then g(z) is square-free.
Proof of Lemma 2.1:

*
Let z = z;dz, where z;, z,¢A and Tet g = g(z,dz Assume to

1 2)'
the contrary that, for some o 2 A, aa©=B. Since h is square-free and
g(zl) = h(zl), 9(22) = h(zz) it must be that d e alph(a).

Clearly, (see the definition of g(d)), if Ig(zl)l > 2 then sufz(g(zl))d
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is unique in 8 and if |g(z,)| = 2 then dpref,(g(z,)) is unique in 8.
Consequently, by Lemma 1.1,<xag;Zast(g(zl))g(d)first(g(zz)). Since d2
is not a subword of g(d) this implies that ' '
presA(Zasﬁ(g(zl))g(d)first(g(zz))) is not square-free. Since (C.2)
implies that Zast(g(zl)) =b if z; = A and first(g(zz)) =a if z, = A,
presA(Zast(g(zl)) g(d)first(g(zz))) is a subword of bcwca. Thus
bcwca is not square-free which contradicts the assumption (C4).

Consequently, B = g(z) is square-free and Lemma 2.1 holds. [

Lemma 2.2. For every x ¢ A, g(dxd) is square-free.

Proof of Lemma 2.2:

Assume to the contrary that, for some a = A, aaC B where B = g(dxd).
Then Lemma 2.1 implies that neither aacg(dx) nor catg(xd). However,
(C1) implies that |g(x)| = |h(x)| = 3 and both, dprefz(g(x)) and
sufé(g(x))d are unique in 8. Thus, by Lemma 1.1 we get a contradiction.

Hence B must be square-free which concludes the proof of Lemma 2.2. 0O

Lemma 2.3. For all x, y e Z, if g(x)€g(y) then x = y.

Proof of Lemma 2.3:
If x, y e A then g(x) = h(x) and g(y) = h(y) and so the Temma follows
from condition (C3).
If x e Aand y = d then (C1) and the definition of g imply that g(x) is
not a subword of g(y). If x=d and y ¢ A then g(x) is not a subword

of g(y) because d e alphg(x) and d ¢ alph g(y). Hence Lemma 2.3 holds.

Lemma 2.4. g is square-free.
Proof of Lemma 2.4:

*
Let z ¢ & be such that |z| = 3 and z is square-free. Consider g(z).



If #d(z) = 0 then g(z) = h(z) and so g(z) is square-free.
If #d(z)
If #d(z)

i

1 then Lemma 2.1 implies that g(z) is square-free.

i

2 then z must be of the form dxd, where x ¢ A. Hence Lemma 2.2
implies that g(z) is square-free.
Consequently, g(z) is always square—freeQ Consequently Lemma 2.3 and

Theorem 1.1 imply that g is square-free. Hence Lemma 2.4 holds. [

Since dabcd is square-free, Lemma 2.4 implies that L(G) is

square-free and so the first part of the conclusion of Theorem 2.1 holds.

Now we proceed to estimate the subword complexity of L(G).
Let maxr (h) = r and #dg(d) =53,
Lemma 2.5 S > r.
Proof of Lemma 2.5:
From the definition of g(d) it follows that #dg(d) = Jcwc| + 1

and (C5) implies that |cwc]| = r. Hence the result holds. 0

Let E(G) = Wys Wys wee Clearly for k = 0 w, = gk(d)gk(at)c)gk(d).
Obviously the following result holds.

k k

Lemma 2.6. For every k =1, [gk(d)l > s" and ng(alac)] <3r. O

Let for n > 1,

z, =ik :ng(alac)1 < %—and igk(d)l > n} and
N S () k
an— {k:3r < 5 and s° = n}
Lemma 2.7. For every n = 1, zg c 7 and if k = 1 is such that
1ogzn s 1og2n - 10926
10925 1092r

then k « Zn'



Proof of Lemma 2.7:

The first part of the statement follows from Lemma 2.6. The second

part of the statement follows from the definition of Zé. O

+ , n
Lemma 2.8. For every ne N, WL(G)(H) > % #,Zn'

Proof of Lemma 2.8:

For k ¢ Z; let Pk be the set of all these subwords of length n of
o that contain gk(alac). From the definition of Z;, from Lemma 2.6 and
from the fact that Zast(gk(d)) =d = first(gk(d)) while gk(alac) € A* it
follows that #Pk > g; On the other hand, because gk(at>c) is strictly growing
(with the growth of k) it is clear that Pk n PZ =0 if k = L.

Hence the Temma follows. [

Now we complete the proof of the theorem as follows.
Clearly from Lemma 2.7 it follows that

1092r1—1og26 ]ogzn

#Z; = - - 2= e]ogzn -m,
Togzr 10923
1og,6
where e = 1. 1 and m = 2. 4 2.
1092r 10923 ]ogzr

Note that from Lemma 2.5 it follows that e > O.

Thus Lemma 2.8 implies that

n
WL(G)(H) 2~§(e1og2r1—m) .............................................. (1)
Note that
2m
e _ e
§1og2r1-m = 0 for every n 2 ny = 2 et iir et (2)

and consequently (add %1ogzn to both sides of inequality (2))

e1092r1—m z‘%1ogzrnfor S L 1 R (3)
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From (3) it follows that

e
ﬂL(G)(”) > 7n10g,Nn for every n = np .....iiiiiiiiiiiiii (4)
n log,n
On the other hand <1 for n < n, and so, note that e < 1, we have
n~10g,n 0
0 7°2°0
e
WL(G)(n) = 10%{1 for every n < My woeereeeeee e (5)
4n01092n0

Then (4), (5) and the definition of n, yield

0
+
WL(G)(H) >pnlogn for every n e N,

e2

'2—{];" .
gmp ©

where p = -

This concludes the proof of the second part of the conclusion of

the theorem. [J

Now using Theorem 2.1 we can exhibit a square-free DOL Tanguage over
a four Tetter alphabet which has the number of subwords of length n

of order n]ogzn.

*
Theorem 2.2. There exists an infinite DOL language K ¢ £ such that
#Z = 4, K is square-free and there exists a positive real p such that

WK(H) > pr11092r1 for allne N

Proof.
*
Let h: {a, b,c}* - {a, b, c} be the homomorphism defined by
h(a) = abcab, h(b) =acabcb and h(c) = acbcach. It is proved in

[T] that h is square-free (see also Corollary 1.1 in [BEM]).
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Let w=abacb and let g:{a, b, c, d}*-+{a, b, c, d}* be the homomorphism
defined by g(x) = h(x) for x ¢ {a,b,c} and g(d) = dcdadbdadcdbdcd.
It is easily seen that h, w, g satisfy the assumptions of Theorem 2.1.
Consequently, by Theorem 1.1, K = L(G) where G = ({a,b,c,d}, g, dabcd)

satisfies the statement of the theorem. 0O
To put the above result in a proper perspective we recall now two
results (the first one is from [ER1] and the second one is from [ER2].
Theorem 2.3. If K is a square-free DOL language then there exists an

r e N such that, for all n ¢ N+, wK(n) < rv1logzr1. d

*
Theorem 2.4. If K is a square-free DOL language, K ¢ Z where

#% = 3 then there exists an r ¢ N+ such that, for all n ¢ N+,
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