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Transmission of everyday sound and heat can be traced back to a physical particle, or

wave, called a “phonon”. Understanding, analyzing and manipulating phonons across multiple

scales/disciplines can be achieved using phononic materials. That is a class of material systems fea-

turing a basic pattern that repeats spatially. Among many qualities, it exhibits distinct frequency

characteristics such as band gaps, where vibrational waves of certain frequencies are prohibited

from propagation. These properties can benefit a multitude of applications, ranging from vibra-

tion isolation and converting waste heat into electricity to exotic concepts like acoustic cloaking.

Using unit-cell design and optimization, phononic materials/devices with extraordinary properties

may be realized. Since many of these applications are based on band-gap utilization, a critical

design objective is to widen band-gap size or precisely synthesize its characteristics. Approaching

this problem at the unit cell level is advantageous in many aspects, mostly because it provides a

complete picture of the intrinsic local dynamics which is often obscured when analyzing the struc-

ture as a whole. Moreover, it is computationally less expensive than designing an entire structure.

Unit-cell dispersion engineering is also scale independent; an optimized unit cell may be used to

manipulate waves ranging from a few Hz to GHz, or higher, with proper scaling. In order to keep

the structure/device size as small as possible, the band-gap central frequency is tuned to be as low

as possible.

The objective of this thesis is to explore and advance unit-cell design and optimization of

phononic materials in one, two and three-dimensions for a broad range of applications. In particu-

lar, an application for flow control is investigated where a phononic material is shown to manipulate

and alter a flow field in a favorable manner. Results involving unit-cell design and coupled fluid-



iv

structure simulations (as part of a collaborative project) are presented and analyzed. The potential

impact for a passive, inexpensive and practical technology for flow control is substantial. It can

facilitate the delay/advancement of transition, prevention/provocation of separation and the sup-

pression/enhancement of turbulence. A successful control scheme for one or more of these three

flow phenomena will lead to drag reduction, lift enhancement, mixing augmentation and noise

suppression, among other beneficial functions.
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Chapter 1

Introduction

One main measure of advancement of the human race is the ability to understand, control

and manipulate matter. This motivates the classification of historical periods according to the

usage of natural materials in daily activities (i.e., stone, bronze, iron, and silicon ages). In or-

der to predict what is next, we should have a closer look at where we stand now. Most of the

technological breakthroughs that emerged in the last century were results of our understanding of

and ability to control two main fundamental particles: electrons and photons. The manipulation

of electrons in semi-conductors enabled the existence of laptops and cell phones, while controlling

photons with fiber optics and more recently with photonic materials/crystals permitted a wide

range of applications from the internet to wireless technology. A more recent trend with tremen-

dous potential is related to the utilization of yet another atomic-scale particle or wave, namely the

phonon, using phononic materials [1]. Numerous studies have investigated phononic materials as

cloaks for submarines, efficient thermoelectrics, thermally insulated buildings, and protection from

environmental noise and earthquakes, to name a few applications [2].

1.1 Phononic materials

Phononic materials are periodic systems composed of a basic building block, the unit cell,

that repeats in space. These materials exhibit distinct frequency characteristics, band gaps, which

are frequency ranges where elastic/acoustic waves are prohibited from propagation. Phononic ma-

terials can be further divided into two subcategories based on the band-gap formation mechanism,
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phononic crystals (PnC) and acoustic metamaterials1 (AMs). Wave attenuation in PnCs is a result

of Bragg scattering (i.e., scattering due to periodicity). For AMs, band gaps exist due to the local

resonance phenomena. Owing to the different physics of band gap creation, the ratio between unit

cell size and affected wavelength is different for each category. AMs with subwavelength resonances

can attenuate waves with wavelength orders of magnitude larger than the unit cell size, while PnCs

have unit cells on the same order as the targeted wavelength.

Phononic 

Crystals

Metamaterial

1D 2D 3D

Figure 1.1: Realization of PnCs and AMs in one, two and three dimensions

Phononic materials can be modeled, analyzed and realized in different dimensions see Fig.

1.1. Apart from dimensionality, phononic materials are modeled in either continuum form (e.g.,

rod, beam, plate, shell or bulk material) or discrete form (e.g., lumped mass system); however,

to demonstrate most of its important dynamical characteristics, a simple one-dimensional (1D)

spring-mass model is sufficient. A 1D model of a PnC is represented by two masses m1 and m2

connected in series by springs k1 and k2 (Fig. 1.2.a). The equations of motion for the system are

presented in eqs. 1.1 and 1.2 for m1 and m2, respectively,

m1ü
j
1 + k1(u

j
1 − uj−1

2 ) + k2(u
j
1 − uj2) = 0 (1.1)

m2ü
j
2 + k1(u

j
2 − uj+1

1 ) + k2(u
j
2 − uj1) = 0 (1.2)

where u is the displacement, j is the unit cell index and (̈.) is the second derivative of (.) with

1 If the material admits elastic waves, a more accurate term is “elastic metamaterial”.
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m1 m2 m1

k2 k1 k2

. . . . . .

jj-1 j+1

m2

m1 m1

k2

k1 k1

. . . . . .

k2
jj-1 j+1

a) PnC

b) AM

Figure 1.2: Schematic models for PnCs and AMs

respect to time.

For the AM, the same number of masses and springs are used, albeit connected differently

(Fig. 1.2.b). The equations of motion for the system are presented in eqs. 1.3 and 1.4 for m1 and

m2, respectively.

m1ü
j
1 + k1(2u

j
1 − uj−1

1 − uj+1
1 ) + k2(u

j
1 − uj2) = 0 (1.3)

m2ü
j
2 + k2(u

j
2 − uj1) = 0 (1.4)

Assuming a generalized Bloch solution of the form uj+n = Uei(ωt+nκa), where ω is the

frequency, κ is the wavenumber and a is the unit cell size (i.e., lattice spacing) and collecting

together the equations of motion for both systems yields a complex generalized eigenvalue problem

in the form:

(ω2M+K(κ))u = 0 (1.5)

where mass and stiffness of each system matrices are written as:

MPnC =

 m1 0

0 m2

 ,KPnC(κ) =

 k1 + k2 −(k1e
−iκa + k2)

−(k1e
iκa + k2) k1 + k2

 (1.6)
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MAM =

 m1 0

0 m2

 ,KAM (κ) =

 2k1(1− cos(κa)) −k2

−k2 k2

 (1.7)

In order to obtain statically equivalent models for the PnC and AM, the spring stiffness

should be adjusted such that the speed of sound c of each model matches in the long-wavelength

limit [3]:

c = lim
κ→0

ω

κ
(1.8)

By using the values in table 1.1 for both systems we solve the eigenvalue problem in Eq. 1.5, and

obtain the dispersion curves of the two material systems that correlate frequency to wavenumber

(Fig. 1.3).

Table 1.1: Summary of parameters for PnCs and AMs unit cells

Cell m1[kg] m2[kg] k1[N/m] k2[N/m] c(κ → 0)[m/s]

AM 1 2 10,000 10,000 57.73
PnC 1 2 20,000 20,000 57.73

(a) PnC (b) AM
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Figure 1.3: Dispersion curves for PnC and AM systems

The two dispersion curves have the same slope (i.e., group velocity) in the first branch for

small κ values (i.e., the long wavelength limit). However, the group velocity decays quicker in the

AM as κ increases, due to a hybridization between the first branch (a.k.a., the acoustic branch)

and the local resonance mode. The band gaps are highlighted in gray. The PnC band gap ranges
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from 22-31 Hz, while for a statically equivalent AM system the band gap exists at a lower frequency

range, 10-20 Hz.

PnC and AM cells can also be analyzed as a finite structure, with the number of cells in the

material system denoted by Ncell. In this setting, one can formulate the problem in two different

ways; vibration analysis and wave propagation. In the first model, steady-state and harmonic

excitation are assumed to obtain a frequency response function (FRF).
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Figure 1.4: Dispersion and FRF for (a-b) Phononic Crystal and (c-d) Acoustic Metamaterial; gray
shaded area represents a band gap

The FRF and dispersion curves for both cells are presented in Fig. 1.4. It is worth noting

that in the FRF for both systems, there appears to be an anomaly within the band gap, which can

be attributed to breaking the symmetry of the system due to finite size truncation. Apart from

this anomaly, the FRF follows the dispersion in that when the frequency of excitation occurs in a

band gap, the response exhibits a minimum for both the PnC and AM cells. The FRF provides a

verification to the unit cell dispersion analysis.
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The study of wave propagation in phononic materials can be done integrating the equations

of motion based on the same M and K matrices for this finite structure using the Newmark method

given by Eqs. 1.9- 1.11.

Di+1 = Di +∆tVi + (∆t)2
[(

1

2
− β

)
Ai + βAi+1

]
, (1.9)

Vi+1 = Vi +∆t [(1− γ)Ai +Ai+1] , (1.10)

MAi+1 +KDi+1 = Fi+1, (1.11)

where Di, Vi, and Ai represent the displacement, velocity, and acceleration vectors at the ith

time-step. The value of ∆t is chosen such that the simulation is both accurate and stable for a

given forcing frequency ω. By selecting γ = 1/2 and β = 0, the Newmark method becomes a

fully explicit scheme with accuracy on the order of O(∆t2). The solution method is as follows.

First, the new displacement is obtained through Eq. 1.9. After which, Eq. 1.11 is inverted for the

unknown acceleration Ai+1. Finally, Eq. 1.10 is used to obtain the updated velocity, after which

the simulation is marched forward in time and the process repeated for a specified amount of time.

The response of the system considered earlier is obtained by integrating the equations of

motion using the Newmark method applying fixed-free boundary conditions with Ncell = 60. A

case of prescribing a displacement on m1 of the first unit cell is considered

D(1)m1 = A sin (2πωt), (1.12)

where D(1)m1 represents the displacement of the first mass m1 of the first unit cell. The forcing

frequency ω is in units of [Hz], A = 1 [m] is the amplitude of displacement, and t represents time.

The total time of integration tf = 1.42 [s] is selected for both the AM and PC systems such that

reflections from the fixed boundary condition of D(Ncell)m1 do not pollute the response.
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Figure 1.5: Space-time contours of (a) PnC excited at ω = 10 [Hz] (pass band); (b) PnC excited
at ω = 25 [Hz] (stop band) (c) AM excited at ω = 5 [Hz] (pass band); (d) AM excited at ω = 15
[Hz] (stop band)

Spatial-temporal contours of displacement are presented in Fig. 1.5 for both the PnC and

AM cases, with prescribed displacements occurring at frequencies in both a pass band and a stop

band to observe the global response of the system. It is evident that the response throughout the

system is high when excited in a pass band and relatively low when excited in a stop band for

both systems. In addition, these contours provide a visualization of wave reflections on the fixed

boundary, and is clearly shown in the PnC system at approximately t = 1.1 [s] in Fig. 1.5(a).

Observing the displacements of mass 1 and mass 2 in the 30th unit cell in Fig. 1.6, we see that

in a pass band the displacements are rather large, and even exceed the amplitude of the prescribed

displacement which indicates a large transmission of energy through the structure. In a stop band,
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however, the displacements are drastically reduced. It is interesting to note that for both the PnC

and AM cases, mass 1 and mass 2 appear to be in-phase with one another. In addition, when

the AM system is excited in a pass band, the resonating mass m2 has higher amplitude than the

“outside” mass m1.
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Figure 1.6: Displacement of the 30th unit cell (a) PnC excited at ω = 10Hz (pass band); (b) PnC
excited at ω = 25Hz (stop band) (c) AM excited at ω = 5Hz (pass band); (d) AM excited at
ω = 15Hz (stop band)

As stated earlier, one-dimensional models of PnC and AM are sufficient to explain most of the

basic concepts. In 1D, the range of wavenumbers defining the fundamental period of the dispersion

relation encompassing half of the unit-cell due to the symmetry of the dispersion relation is called

the irreducible Brillouin zone (IBZ). However, when dealing with higher dimensional models, lattice

symmetry plays a more subtle role in defining the boundaries of IBZ. Figure 1.7 shows the IBZ for

square and hexagonal lattices with C4v symmetry [4] imposed at the unit-cell level. Subsequently,
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design representation is needed in only a portion of the unit cell and the band-structure calculation

is limited to the corresponding IBZ (Fig. 1.8).
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Figure 1.7: The irreducible Brillouin zones for (a) square (b) hexagonal unit cell in real and
reciprocal space

1.2 Motivation

Applications of phononic materials include elastic or acoustic waveguiding and focusing, vi-

bration minimization, sound collimation, frequency sensing, acoustic cloaking, acoustic rectification,

opto-mechanical waves coupling in photonic devices, thermal conductivity reduction in semiconduc-

tors, among others [1]. These applications require well defined characteristics of phononic materials,

hence unit cell design and optimization can lead to the discovery of better performing phononic

materials/devices. Since many of these applications are based on band gap utilization, an impor-

tant design objective is to widen the band gap. Designing the phononic material on the unit cell

level is advantageous in many aspects. It is computationally less expensive than designing an entire
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Figure 1.8: Two-dimensional phononic crystals arranged in a square lattice and its corresponding
irreducible Brillouin zone

structure. It is also scale independent (i.e., you can use an optimized unit cell to attenuate waves

of a few Hz or GHz with proper scaling). This is why keeping the band gap central frequency as

low as possible reduces the total material/device size.
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Unit-cell design optimization for a desired objective can be carried out using three approaches

as presented in Fig. 1.9. One approach is parametric sweeping, that is, given a particular unit cell

shape and geometry, the unit cell attributes/parameters are varied systematically while preserving

its shape. Another approach is to start with a certain topology (i.e., fixed number of holes), and

vary their shape to improve the design without changing its topology. The third approach is to have

no assumptions about the unit cell topology a priori, leaving the job of defining the topology to the

optimization algorithm. The latter is the most general of the three and the approach considered

in chapters 2 and 3. Since both shape and topology approaches involve varying design parameters

throughout the optimization process, modern classifications consider parametric sweeping a subclass

of either one.
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Figure 1.9: Unit cell optimization approaches

This thesis covers the unit cell design and optimization problem in one, two and three-

dimensions. Aside from the optimization technique, the design domain for two or three-dimensional

crystals is typically divided into uniformly sized pixels allowing a material phase to be allocated to
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each pixel. Regarding the one-dimensional case, the representation of the material topology within

a layered unit cell needs to incorporate the number of material phases, the number of layers, and

the thickness of each of the layers.

The design space for the problems at hand is intractable, thus considering all the alternatives

is unfeasible. Considering a simple 2D unit cell with 32Ö32 pixels, the number of possible designs

exceeds 1040 as shown in Fig 1.10. A computer that could test a single design per second and

commencing its calculations at the beginning of time, approximately, 14 billion years ago at the

onset of the Big Bang, would have examined fewer than 1% of all the possibilities by the present

time! Due to the presence of eigenvalue multiplicities and the non-convexity nature of the objective

functions considered, gradient-based methods suffer from low regularity and non-differentiability.

This suggests that the problem of band gap optimization is multi-modal in nature and manifests a

complex design landscape. Evolutionary algorithms are therefore a natural choice for this problem.
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1.3 Literature search

The following section includes a general outline of the field and its application. A more

focused literature search is provided in chapters 2-5 for the specific problems studied.

1.3.1 Phononic materials

The study of wave propagation in periodic media was first formulated by Floquet [5] in one-

dimension. Bloch generalized the work of Floquet to three dimensions in what is now known as

Floquet-Bloch theory, or Bloch’s theorem for short. However the systematic study of phononic

crystals started with the work of Sigalas and Economou in [6] and Kushwaha et. al. [7]. The

introduction of acoustic metamaterials by Liu et. al. occurred almost a decade later [8].

In a phononic crystal, band gaps are generated by Bragg scattering for which an underlying

constraint is that the wavelength has to be on the order of the lattice spacing [7, 9]. In a locally

resonant acoustic/elastic metamaterial, on the other hand, band gaps may be generated by the

mechanism of hybridization between local resonances and the dispersion properties of the under-

lying medium, and this in turn may take place at the subwavelength regime [8]. These unique

dispersion properties may sufficiently be utilized in numerous applications involving wave filter-

ing, [10, 11, 12] localization, [13, 14] guiding, [14, 15] focusing, [16, 17, 18] collimation, [19, 20]

among others. The applications of locally resonant acoustic/elastic meteamterials are, in turn,

far from conventional, e.g., subfrequency wave isolation, [21] subwavelength focusing and imag-

ing, [22, 23] and cloaking, [24, 25] to name a few.

Unit cell optimization has been considered in the literature in one dimension [26, 12] as well

as two dimensions [27, 28, 29, 30, 31, 32] by using gradient-based [27, 28, 29, 30] as well as non-

gradient-based [12, 31, 32] techniques. While there are numerous studies on band-gap maximization

for phononic crystals, less work has been done for locally resonant acoustic/elastic metamaterials.

However, previous studies [12, 33, 34] and preliminary investigations [35, 36] have suggested that

the general problem of band gap optimization is multi-modal in nature and manifests a complex
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design landscape.

1.3.2 Flow control

Flow control, not to be confused with flow-rate control in valves, is the ability to manipu-

late/alter a flow field in desired way. This manipulation can be divided into three main classes.

The control of: (1) transition, delaying or advancing laminar flow transition to turbulence; (2)

separation, preventing or provoking flows to separate from bodies in relative motion with the flow;

(3) turbulence, suppression or enhancement of a turbulent flow. By achieving one or more of these

three objectives, many applications can be improved. In particular, certain engineering challenges

can be met (e.g., drag reduction, lift enhancement, mixing augmentation and noise suppression).

Different classification criterion exist for flow-control methods. One criteria is to consider

whether the technique is applied at the wall or away from it. Wall surface parameters can in-

fluence the flow due to roughness, shape, curvature, rigid-wall motion, compliance, temperature,

and porosity [37]. Flow control strategies can also be divided in two categories based on energy

expenditure (1) active flow control [38] (2) passive flow control [39].

Inspired by the exceptional swimming efficiency of dolphins, Kramer proposed using a com-

pliant coating layer covering the body of moving objects to reduce drag, speculating that a dolphin’s

body may have a very low drag coefficient [40]. His experiments showed a substantial reduction in

drag of up to 50% using a compliant coating modeled from dolphin’s skin. Benjamin did theoretical

analysis on the effectiveness of compliant coatings for drag reduction in the turbulent boundary

layer instead of using them in the laminar boundary layer, where the dolphin is believed to be able

to reduce the skin-friction drag by delaying transition to turbulence [41]. Attempts to replicate

Kramer’s original experiment and achieve similar drag reduction percentages were pursued with

no success [42]. Carpenter verified Kramer hypothesis for both Tollmien-Schlichting (TS) type

instabilities [43] and flow-induced surface instabilities [44]. Multi-layer compliant walls were first

introduced in Refs. [45] and [46]. Semenove [47] formulated two necessary conditions of modeling

and the choice of viscoelastic coatings for drag reduction. Carpenter studied optimizing compliant
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coatings using different panels [48], but it was not until 1997 when Choi et. al.[49] experimen-

tally demonstrated the ability, in principle, of compliant surfaces to reduce the skin-friction drag

and surface-flow noise in a turbulent boundary layer. Carpenter used a short compliant panel to

suppress two-dimensional TS waves propagating along a wall shear layer using direct numerical

simulation (DNS) [50].

Other passive flow control methods can be found in the literature [51, 52]. A well-known

approach is the use of riblets [53], that is, small surface protrusions aligned with the direction of

the fluid mean flow. Chu et. al. [54] and Goldstein [55] carried out a direct numerical simulation of

laminar and turbulent flow over riblet-mounted surfaces. A review by Dean et. al. [56] summerizes

the recent work done on riblets.

All of the previously mentioned methods have been extensively studied computationally and

experimentally as a potential means for flow control, particularly drag reduction; but have not

conclusively proven to be useful in applications, particularly in the aerospace industry [57]. Xu et.

al. [58] showed that, for compliant surfaces, the benefits gained are very small and there is little

change in the very long-time behavior of the turbulent skin friction drag and little modification to

the near-wall turbulent coherent structures. In addition, from a practical point of view, compliant

coatings do not offer the load bearing capacity needed. Moreover compliant surfaces performance

in drag reduction generally deteriorates with the age of the coatings [59, 60]. For riblets, durability

tests in airline service showed major complications [57].

1.4 Thesis objectives

The thesis explores the fertile ground of phononic materials through design and optimization

and investigates its applicability to control a flow field. This exploration can be outlined as follows:

� Develop an optimization framework that has the capacity to produce unit cell designs/topologies

with particular dispersion characteristics of interest.

� Utilize this optimization framework for different design studies in one, two and three-
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dimensions and analyze the results to gain a deeper understanding of the problem physics.

� Explore different practical design mechanisms for enlarging super/subwavelength band gaps

for phononic materials.

� Investigate the ability of phononic materials, in general, to manipulate a flow field in a

favorable manner.

1.5 Thesis organization

The thesis is organized as follows: chapters 2-4 are reprints of completed/published work.

Chapter 2 covers an optimization study for a one-dimensional phononic crystal modeled as a rod

for different objective functions [61]. In chapter 3, the optimization study of a two-dimensional

unit cell for different wave polarizations is included [62, 36]. A novel design concept for enlarging a

subwavelength band gap for a metamaterial [63] based on reducing the base compliance is presented

in chapter 4. Chapter 5 presents the investigation of using phononic crystals for flow control. The

last chapter draws conclusions on the work and outlines possible future directions.



Chapter 2

On the properties of optimized layered phononic crystals1

2.1 Abstract

A periodic material is composed of two or more different elastic materials laid out in space in

a repeated fashion. The properties of a periodic material depend on the arrangement of materials

within its basic building block (i.e., unit cell). Periodic materials are commonly characterized by

their dispersive frequency spectrum. With appropriate spatial distribution of the constituent ma-

terial phases, spectral stop bands can be generated. Moreover, it is possible to control the number,

the width, and the location of these bands within a frequency range of interest. This study aims at

exploring the relationship between the unit cell configuration and its frequency spectrum charac-

teristics. A subcategory of periodic systems that affects mechanical waves, phononic materials, is

considered. Focusing on a layered configuration and longitudinal wave propagation in a direction

normal to the layering. the unit cell features of interest are the number of layers, material phase

and relative thickness of each layer. An evolutionary search for multi-phase cell designs exhibit-

ing a wide stop band, or a series of wide stop bands, is conducted using a specially formulated

representation and a set of operators that break the symmetries in the problem. The designed

phononic materials are excellent candidates for use in a wide range of applications including the

development of vibration and shock isolation structures, sound isolation pads/partitions, multiple

band frequency filters, among many other applications.

1 This chapter is drawn from Ref. [61] and has been adapted to suit the style and the notation of the dissertation.
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2.2 Introduction

Phononic crystals are composite materials consisting of a periodic spatial distribution of con-

stituent material phases, usually a stiff, high density phase and a compliant, low density phase. The

characteristics of elastic wave propagation through these crystals is frequency-dependent. Within

stop bands (also referred to as band gaps), a medium effectively prohibits elastic wave propaga-

tion, and the converse takes place at pass band frequencies. These bands are commonly identified

through a frequency spectrum diagram relating frequency to wavenumber. The topological dis-

tribution of constituent material phases within a unit cell (the smallest repeatable spatial unit)

directly affects the location and width of stop bands and pass bands in the frequency domain. This

provides an opportunity for designing composite materials with specific dynamical characteristics

that can be utilized for a wide range of traditional applications including sound and vibration fil-

tering [64]. This concept can also be extended to nanoscale crystalline composite materials such as

thermoelectric super-lattices which enable solid state energy conversion. In these materials, which

usually exhibit layered topologies, engineering of the frequency band structure is an avenue for

reducing the thermal conductivity and increasing the energy conversion figure-of-merit [65, 66].

Tailoring a unit cell for a desired band structure can be realized for different types of objective

functions depending on the application. Commonly, it is desired to optimize for a band gap with

maximum width centered at a given frequency or maximum width centered at a minimum frequency

[67]. Optimizing for maximum attenuation at a band-gap frequency or for maximum size of multiple

band gaps over a large frequency range has also been considered [12, 64]. Previous studies [33, 34,

12] and a preliminary investigation [35] have suggested that the general problem of band gap

optimization (in phononics or photonics) is multi-modal in nature and manifests a complex non-

convex design landscape. Evolutionary algorithms are therefore a natural choice for this problem.

The challenge is to find (i) an efficient representation that eliminates degeneracies (ii) effective

evolutionary operators.

Utilization of stop-bands and pass-bands characteristics for materials design has been con-
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sidered before by this group [64, 68, 35, 12, 32]. Hussein et al. [12] used a multi-objective Genetic

Algorithm (GA) with two alternative formulations, binary and mixed. They considered three sep-

arate objectives, in addition to minimizing the number of layers, the first was to maximize wave

attenuation, the second was to minimize the transmissibility (i.e., maximizing the number of stop

band gaps) and the third was to create band gaps at specified frequency ranges. Although the

inherent symmetry in the unit cell design problem was addressed, it was not fully capitalized on.

The study of El-Beltagy and Hussein [68] considered the first two objectives in [12] with a single

objective problem formulation and the introduction of a new scale-preserving and repair free rep-

resentation that fully utilize the symmetry of the periodic layered unit cell. The same framework

was used in [35] to address the effect of different material properties on the objective functions

considered. In the present work an investigation of the same problem with the introduction of new

repair-free localized genetic operators that fully utilize the symmetry with capturing the salient fea-

tures of the problem is carried out. Furthermore, analysis of the properties of the evolved designs

and their corresponding objective functions is presented.

In the next section, the mathematical background for wave propagation analysis is briefly

described. This is followed by sections on the description of the various objective functions con-

sidered, the unit cell chromosome representation, and the developed evolutionary operators. The

results are then presented in a separate section, followed by a discussion and a conclusion.

2.3 Frequency spectra computation

The governing equation of motion for longitudinal wave propagation in a 1D heterogeneous

solid is

ρü = σ + f, (2.1)

where ρ = ρ(x), σ = σ(x) , u = u(x, t) and f = f(x, t) denote density, stress, displacement and

external force, respectively. The position coordinate and time are respectively denoted by x and t.
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Assuming a linear elastic material,

σ = Eu (2.2)

where E = E(x) is the elastic modulus. To model a phononic crystal, we consider an infinite

general multilayered medium where an arbitrary layer j is positioned between an adjacent layer

j− 1 at its left and an adjacent layer j+1 at its right. The interface between the layers is assumed

to be ideal. The jth layer has thickness d(j), density ρ(j), elastic modulus E(j), and longitudinal

velocity

c(j)p =
√

E(j)/p(j), (2.3)

respectively. The boundary conditions that must be satisfied at the layer interfaces are (i) continuity

of the displacement u and (ii) continuity of the stress σ. Furthermore, no external forces are

permitted, i.e., f = 0, in 2.1.

The solution of 2.1 in the jth layer can be written as a superposition of forward and backward

traveling waves with harmonic time dependence:

u(x, t) =
[
A

(j)
+ eik

(j)
p +A

(j)
− e−ik

(j)
p

]
e−iωt (2.4)

where i =
√
−1, k

(j)
p = ω/c

(j)
p , ω is the temporal frequency, and A

(j)
± are complex coefficients. The

stress component is given by

σ(x, t) = E(j)(x) =
∂u(x, t)

∂x
(2.5)

Let xjL and xjR denote the position of the left and right boundaries of layer j, respectively. From

2.4 and 2.5, and using the relation

xjR = xjL + d(j), (2.6)

the values of the displacement u and stress σ at xjL are related to those at xjR. Through a transfer

matrix Tj , where

Tj =

 cos
(
k(j)d(j)

) (
1/Z(j)

)
sin

(
k(j)d(j)

)
−Z(j) sin

(
k(j)d(j)

)
cos

(
k(j)d(j)

)
 , (2.7)
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and Z(j) = ρ(j)c(j)
2
k(j), this mapping can be repeated recursively to relate the displacements and

the stresses across several layers. For a periodic medium with n layers in the unit cell, a cumulative

transfer matrix across a cell T = TnTn−1 · · ·T1 is constructed: u1

σ


xnR

= T

 u

σ


x1L

. (2.8)

The periodicity also allows the application of Floquet-Bloch theory. Denoting the cell length

as d, that is d = d(1)+ d(2)+ ...+ d(n), the time harmonic response in two adjacent cells are related

by  u

σ


x+d

= eikd

 u

σ


x

, (2.9)

where k is a complex wavenumber. Applying 2.9 at x = x1L and coupling it with (2.8) results in

the eigenvalue problem [
T− Ieikd

] u

σ


x1L

= 0, (2.10)

which is solved for the dispersion curves (ω versus k). It is advantageous for these curves to be

represented in a non-dimensional form, that is,

Ω = ωd/
√

E1/p1 (2.11)

for the dimensionless frequency (subscript ”1” denotes lowest elasticity modulus and density phase),

and

ξ = ξreal + iξimag = kd. (2.12)

or the dimensionless wavenumber.

2.4 Unit cell analysis

Since the problem in hand is periodic, the rod is treated as an infinite number of repeated

unit cells. Each unit cell is composed of n layers. The layers could be a low stiffness material

(matrix) or a high stiffness one (fiber). Fig. 2.1 shows only one unit cell of width d with n layers.
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(1)     . . .     (j-1)       (j)      (j+1)      . . .        (n)

a

a)

b)

Figure 2.1: (a) A general one-dimensional unit cell consisting of n layers (layer number indicated
in parenthesis) (b) Example of one-dimensional unit cell consisting of 10 layers.

For our problem formulation, without any loss of generality, the first unit cell is the widest

fiber layer in the composite. Unit cells with different numbers of layers have been considered

in separate optimization runs, in order to understand the effect of the number of layers on the

maximum band gap value.

For the simplicity of argument, we consider here the fundamental case that involves the

design of a two-phase phononic material. The unit cell can be represented either by (a) having a

chromosome of zeros and ones representing the different material types for a given number of 0/1

slots (binary approach), or (b) specifying the number of layers and the phase and width of each

layer (mixed approach) [12]. Both of these approaches underutilize the fact that we are dealing

with a periodic material and hence a large number of apparent cell designs are equivalent. This is

clearly demonstrated in the example given in Fig. 2.2.

2.5 Problem formulation

The problem of designing a one-dimensional phononic structure can be represented mathe-

matically as follows:

Decision Variables:

dj : The width of layer j in the design d.
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. . . . . .

Design 1

[0.1 0.2 0.15 0.05 0.25 0.25]

Design 2

[0.15 0.05 0.25 0.25 0.1 0.2]

Design 3

[0.25 0.25 0.1 0.2 0.15 0.05]

Figure 2.2: Due to the symmetry of the problem, many different unit cell representations can
produce the same layered material. The three identified designs have unique layer width, yet they
represent the same composite material.

1st Objective Function:

Minimize f(d) (2.13)

Subject to:

n∑
j=1

dj = 1, (2.14)

d1 > dj , j = 3, 5, ..., n− 1, (2.15)

mod(n, 2) = 0, n is an even number, (2.16)

dj ≥ w, j = 1, 2, ..., n, w = minimum width allowed, (2.17)

dj ∈ Rn, (2.18)



24

where f(d) represents any of the four objective functions considered. The objectives involve maxi-

mizing the attenuation at a given frequency, and maximizing the percentage of stop bands within

a specified large frequency range for minimum transmissibility. Some of these objectives were ex-

plored in previous work [12]. In this work, we report better performing designs and draw some

conclusions regarding the search space of the problem and the properties of the emerging designs.

Maximizing the attenuation at a given non-dimensional frequency Ω∗ makes use of the fact

that the strength of spatial attenuation of an incident wave at a stop band frequency is exponentially

related to the value of the corresponding imaginary wavenumber (which is negative). Hence the

first objective to be minimized is:

min f1(d) = ξimag (Ω
∗) . (2.19)

The second objective involves minimizing the transmissibility, this is defined as the percentage

of the sum of frequency ranges where a pass band exists to the total frequency range Ωmin ≤ Ω∗ ≤

Ωmax of interest. The objective is formulated as follows:

min f2(d) = 100×

∫ Ωmax

Ωmin

H (ξreal(Ω)) dΩ

Ωmax − Ωmin
, (2.20)

where H(ξreal(Ω)) is hard limit function defined as

H(ξreal(Ω)) =

 1 if ξreal > 0 (pass band)

0 if ξreal < 0 (stop band)

(2.21)

Maximizing the width of the first stop band relative to its central frequency (the third ob-

jective) is expressed as

Maximize f3(d) =
(∆Ω)1
Ωc1

, (2.22)

where (∆Ω)1 is the width of the first stop band and Ω1 is its central frequency.

The fourth objective considered is maximizing the sum of the first 10 band gaps relative to

their corresponding central frequency:

Maximize f4(d) =
10∑
i=1

(∆Ω)i
Ωci

. (2.23)
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2.6 Genetic algorithm

The general-framework evolutionary computation offers a multitude of possibilities with re-

gards to the ways in which a given problem is represented. Careful choice of problem representation

that is based on keen insight into the nature of the design space can often improve optimization

efficacy. Though the standard operators of evolutionary computation work reasonably well over

a large number of problems, they can often yield poor results if the practitioner is unaware of

potential complications they might introduce into the problem.

Initial Population The standard way is choosing the layer widths for each individual

(design) randomly from the allowed set of values.

Selection Operator Tournament selection has been used here. A group of l individuals

have been randomly selected. These l individuals then take part in a tournament, i.e., the individual

with the best fitness is selected and the process is repeated again with other k individuals to choose

the second parent.

Crossover Operator The order and scale preserving crossover [68] has been used here as

an initial step to explore the search space of such problems: The crossover operator takes two

parent designs represented by d1 and d2 to generate a new design d′ that preserves the ordering

relationship. The crossover operator executes the following steps:

(1) Generate a uniformly distributed random integer j between 1 and n.

(2) Set the new layer h, h = d1j + α(d2j − d1j ) where α is a random number between -0.25 to

1.25 (uniformly distributed).

(3) If j is odd, j > 1 , h > d11 and h > 0, go to step 1 {butting larger layer into the middle of

the design which violates the assumption }.

(4) If j = 1 , h < d1i for any i = 2...n and h > 0, go to step 1.
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(5) Set d
′
i = d1i + d1i ∗

1−
n∑

k=1,k ̸=j

d1k − h

n∑
k=1,k ̸=j

d1k

for i = 1...n, i ̸= j.

(6) Set d
′
j = h.

step 3 and 4 will ensure that the first layer is always the widest fiber layer. While step 5 and 6 will

ensure that:

n∑
i=1

di = 1 .

A more localized crossover operator is implemented in this study that mimics the spirit of

the scale preserving operator but in a rather confined way, i.e., to two layers only without stretching

the rest of the design. This localized version is more similar to the traditional single point crossover

operator in binary representation schemes.

(1) Generate a uniformly distributed random integer j between 2 and n-1.

(2) Set d
′
i = d1i for i = 1,2, ..., j-1.

(3) Set d
′
i = d2i for i = j+1, j+2, ..., n.

(4) Calculate the left width LW =

j−1∑
i=1

di1.

(5) Calculate the right width RW =
n∑

i=j+1

di2.

(6) Calculate the stretch factor S =
1− LW −RW

d1j−1 + d2j
.

(7) Set d
′
j−1 = d1j−1 ∗ S.

(8) Set d
′
j = d2j ∗ S.

Mutation Operator The order and scale-preserving mutation [68] has been used with

both types of crossover operators implemented here. The mutation operator is applied with various

probabilities on a random design x in order to generate a new design d′ that still preserves the

order and scale. The mutation operator executes the following steps:

(1) Generate a uniformly distributed random integer j between 1 and n.
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(2) Set h = dj + 0.2(2α − 1) where α is a random number between 0 and 1 (uniformly dis-

tributed).

(3) If j is odd, j > 1 , h > d11 and h > 0, go to step 1 {butting larger layer into the middle of

the design}.

(4) If j = 1 , h < d1i for any i = 2...n and h > 0 , go to step 1.

(5) Set d
′
i = d1i + d1i ∗

1−

n∑
k=1,k ̸=j

d1k − h

n∑
k=1,k ̸=j

d1k

for i = 1...n, i ̸= j.

(6) Set d
′
j = h.

step 3 and 4 will ensure that the first layer is always the widest fiber layer. While step 5 and 6 will

ensure that:

n∑
i=1

di = 1

New Generation Selection After the mutation step, the fitness function of the offspring

is calculated. Then a percentage of the initial population survive to the next generation while the

remainder of the next population will be filled with the best offspring produced.

Termination The process terminates either at convergence or when the generation counter

reaches the maximum number of generations.

2.7 Results

The process of designing a phononic crystal involves selecting different material phases. This

can be a cumbersome process, due to the wide range of available options. But, since the ratio

between material properties (i.e., ρ and E) dictates the performance of the designed phononic

material, we investigate the effect of varying the densities and Young’s moduli of material phases

on the previously described objective functions. We carry out a large-scale optimization study

considering all the binary combinations of ρratios and Eratios varying from 2 - 12 for (I) maximum

wave-attenuation at a given frequency, (II) minimum transmissibility for a predefined frequency-

range, (III) maximum relative width of the first band gap, and (IV) the sum of the former objective
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over the 10 first stop bands [2.19-2.23]. We implement this methodology for layered unit cells

constructed of 2 to 12 layers with a 2-layer increment (i.e., 2, 4, 6,..., 12), which reveals some

counter intuitive conclusions about the objective functions considered. The results presented here

are compared with those in [68, 12] using the binary and mixed-integer formulations mentioned

above. In the scale-preserving and localized repair free formulation we set the population size to

120, the number of generations to 50, the crossover probability to 0.02, and the results presented

are the best of 5 runs. These parameters are identical to those used in both [68, 12].

Figure 2.3(a) presents the optimal objective values for f1, given in [Eq.2.19], as a function of

the number of layers in the unit cell for a particular ratio of Youngs modulus and density. Figure

2.3(b) shows a surface plot for f1 as a function of E and ρ for n = 6, 10 and 12 layers. In this

figure (as well as in similar figures to follow), subscripts 1 and 2 are used to denote the material

phases. The localized crossover operator produces a perfectly linear improvement in the attenuation

coefficient. This suggests an excellent agreement with the physics of the problem, as the dispersion

is a result of the impedance mismatch at the interface of the layers. Therefore, as n increases, f1

should keep decreasing. While an increase in both the Youngs modulus and density ratios leads to

an almost monotonic decrease in the objective that is to be minimized, the density ratio is shown

to have a stronger impact.

Figure 2.4 shows the results for the f2 objective function, given in [Eq. 2.21]. For the selected

ratio of E and ρ presented in Fig. 2.4(a), the localized operator generates better designs compared

to all other operators. However, as n exceeds 10 layers, f2 levels out around 5%. This could be

due to reaching the Bragg limit of the design, which means a global optimal, but a more rigorous

mathematical proof is needed. For the surface plot, the Youngs modulus and density ratios appear

to have an almost identical effect on the objective value. The rate at which the objective value

decreases is very high at low values of phase property contrast, indicating that the benefits of

increasing the contrast and the number of layers begin to diminish at ratios of around 5 to 6.

Although, f3 is the most studied objective function in the optimization literature of both

photonic and phononic crystals in two- and three-dimensions, Fig. 2.5 contains rather shocking
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Figure 2.3: (a) Pareto diagram for the maximization of stop-band attenuation at Ω∗ = 20 for
different number of layers at given ratio of ρ and E, (b) Surface plot of the same objective f1 as a
function of the ratio of material properties for 6, 10 and 12 layers.
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Figure 2.4: (a) Pareto diagram for the minimization of transmissibility for a broadband pulse
spanning 0 ≤ Ω∗ ≤ 50 for different number of layers at given ratio of ρ and E, (b) Surface plot of
the same objective f2 as a function of the ratio of material properties for 6, 10 and 12 layers.

and counter-intuitive results. Both (a) and (b) subplots show no significance of the number of layers

on f3 across all the different material ratios. In some cases, the 2-layer designs are better than the



30

ones with more design variables (i.e., n). Therefore the obtained designs with only two-layers are

global optima. This means that two layers can open the widest band gap, normalized to its central

frequency. When we try to add more layers to the design, this requires reducing the width of the

layers, which decreased the affected wave length and the band gap width in the same time.
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Figure 2.5: (a) Pareto diagram for the maximization of the width of the first stop-band normalized
to its central frequency for different number of layers at given ratio of ρ and E, (b) Surface plot of
the same objective f3 as a function of the ratio of material properties for 2, 6 and 10 layers.

The optimization results of objective function f4, given in [Eq. 2.23], is presented in Fig.

2.6. Both Youngs modulus and density ratios appear to have similar effect on the objective value.

This time the optimizer was able to discover better designs with bigger n and the number of layers

begin to have a profound effect at ratios bigger than 5 to 6.

2.8 Conclusion

The problem of unit cell topology optimization for multi-phase layered phononic materials

has been formulated and a novel localized scale-preserving, repair-free representation has been im-

plemented. The results show an improvement in the band gap width at a fixed frequency value of

17% compared to [68]. For the second objective considered here (i.e., transmissibility), an improve-
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and E, (b) Surface plot of the same objective f4 as a function of the ratio of material properties
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ment of 48% was achieved with the localized operators compared to [12, 64]. Surprising results were

obtained for f3. The results for f4 showed a consistent increase due to adding more layers to the

design space. This representation efficiently characterizes the design of layered phononic materials

consisting of two or more material phases. The objectives considered dealt with frequency isolation

of both single harmonic and broadband waves. Finally, series of large-scale evolutionary optimiza-

tion computations have been conducted to explore the dependence of the optimal objective value

upon the ratio of Young’s modulus and density for phononic materials.



Chapter 3

Topology optimization of two- and three-dimensional phononic crystals1

3.1 Abstract

We consider two-dimensional phononic crystals formed from silicon and voids, and present

optimized unit-cell designs for the following modes of elastic wave propagation: (1) out-of-plane,

(2) in-plane, (3) combined out-of-plane and in-plane, and (4) flexural (on the basis of Mindlin plate

theory). To feasibly search through an excessively large design space (∼1040 possible realizations)

we develop a specialized genetic algorithm and utilize it in conjunction with the reduced Bloch

mode expansion method for fast band-structure calculations. Focusing on high-symmetry plain-

strain square lattices, we report unit-cell designs exhibiting record values of normalized band-gap

size for all four categories. For the case of combined polarizations, we reveal a smoothened design

with a normalized band-gap size exceeding 60%. For the thin-plate problem, a manufacturable

design is presented with a normalized band gap in excess of 57%.

3.2 Introduction

Phononic crystals (PnCs) are periodic materials that exhibit distinct frequency characteris-

tics, such as the possibility of the formation of band gaps. Within a band gap, wave propagation

is effectively prohibited. This inherent dynamical phenomenon can be utilized in a broad range of

technologies at different length scales. Applications of PnCs include elastic or acoustic waveguid-

1 This chapter is drawn from Refs. [62, 36, 69] and has been adapted to suit the style and the notation of the
dissertation.
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ing [15] and focusing [18], vibration minimization [70], sound collimation [20], frequency sensing

[71, 72], acoustic cloaking [25], acoustic rectification [73], opto-mechanical waves coupling in pho-

tonic devices [74], thermal conductivity lowering in semiconductors [75, 66, 76, 77], among others

[78].

In general, it is most advantageous to have the frequency range of a band gap maximized

while pulling its midpoint as low as possible in order to keep the unit-cell size to a minimum.

Selecting the topological distribution of the material phases inside the unit cell provides a powerful

means toward reaching this target, and this has been the focus of numerous research studies not

only on PnCs but also photonic crystals (PtCs).

The exploration for optimal unit-cell designs was initiated by Cox and Dobson in 1999 [79] (in

the context of PtCs). The articles by Burger et al. [80] and Jensen and Sigmund [81] provide reviews

of subsequent studies concerned with band-gap widening in PtCs. In the area of PnCs, the problem

has been treated in a variety of settings and by using several techniques. For example, unit cells

have been optimized in one dimension [26, 12] and in two dimensions (2D) [27, 28, 29, 30, 31, 32] by

using gradient-based [27, 28, 29, 30] as well as non-gradient-based [12, 31, 32] techniques. Interest

in band-gap size maximization has also been treated outside the scope of the unit-cell dispersion

problem [28, 82]. In all these optimization studies the focus has been primarily on PnCs based on

an infinite thickness model and a material composition consisting of two or more solid (or solid

and fluid) phases, with the exception of a few investigations that considered thin-plate single-phase

models [29, 30, 83]. Recognizing the practical significance of solid-and-air PnCs with relatively large

cross-sectional thicknesses, some studies considered the configuration of a 2D solid matrix with

periodic cylindrical voids–modeled under 2D plain-strain conditions [84] or as a three-dimensional

continuum with free-surface boundary conditions [85]–and investigated the dependence of band-gap

size upon the void radius. For combined out-of-plane and in-plane waves in 2D infinite-thickness

PnCs formed from silicon and a square lattice of circular voids, it has been shown that the band-

gap size normalized with respect to the mid-gap frequency cannot exceed 40% [84]. On the other

hand, for thin-plate flexural waves, the largest normalized band-gap size reported for a practical
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(i.e., manufacturable) unit cell is approximately 16% [30]. In this paper we utilize a specialized

optimization algorithm in pursuit of the best unit-cell solid-void distributions for the 2D plain-

strain and thin plate problems considering high-symmetry square lattices [86]. We cover the cases

of (1) out-of-plane waves, (2) in-plane waves, (3) combined out-of-plane and in-plane waves, and

(4) flexural waves on the basis of Mindlin plate theory [87, 88].

3.3 Governing equations

The governing continuum equation of motion for a heterogeneous medium is

∇.C :
1

2
[∇u+ (∇u)T] = ρü, (3.1)

where C is the elasticity tensor, ρ is the density, u is the displacement vector, x = {x, y, z} is the

position vector, ∇ is the gradient operator, “:” is the double contraction operation, and (.)T is the

transpose operation. We assume the wave propagation to be confined to the x-y plane only, that

is, ∂u/∂z = 0. As such, we have two independent sets of equations, one for out-of-plane motion

and the other for in-plane motion. To obtain the band structure for a given PnC unit-cell design

we assume a Bloch solution to the governing equations in the form u(x,k; t) = ũ(x,k)ei(k.x−ωt),

where ũ is the Bloch displacement vector, k is the wave vector, ω is the frequency, and t is the

time.

The governing equation of motion for thin plates based on Mindlin theory [87, 88] is:(
∇2 − ρ

µκ

∂2

∂t2

)(
D∇2 − ρh3

12

∂2

∂t2

)
w̄ + ρh

∂2w̄

∂t2
= 0 (3.2)

where h is the plate thickness, µ is the shear modulus, D = (Eh3)/[12(1−ν2)] is the plate stiffness,

E is the Young’s modulus, ν is the Poisson’s ratio, κ is the shear correction factor and w̄ = w̄(x, y, t)

is the plate’s transverse displacement.

Due to lattice symmetry the analysis is restricted to the first Brillouin zone. We consider

square lattices and furthermore impose C4v symmetry at the unit-cell level. Subsequently, design

representation is needed in only a portion of the unit cell and the band-structure calculation is
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limited to the corresponding irreducible Brillouin zone (IBZ). Furthermore, we model only the

solid portion of the unit cell. The void portion is not modeled since we permit only contiguous

distribution of solid material. In this manner the PnCs considered to exhibit geometric periodicity

(with free internal in-plane surfaces) and not material periodicity. In practice, the voids will be

either in a vacuum or filled with air. Our model presents an adequate representation of both cases

because the elastic waves propagating in the solid will have the dominating effect [85]. In fact,

this also suggests that the results we show are practically independent of the choice of the solid

material. We numerically solve the emerging eigenvalue problem using the finite-element (FE)

method utilizing four-node bilinear quadrilateral elements. In addition, the reduced Bloch mode

expansion (RBME) method [89, 90] is applied to the FE model to substantially speed up the band-

structure calculations throughout the optimization process. In the RBME implementation we use

a two-point expansion scheme. The final reported results, however, are based on full (non-reduced)

calculations.

3.4 Unit cell analysis

We represent a square unit cell Y, of side length a, by nÖn pixels forming a binary matrix

G. This matrix is then reduced to a vector, g, following the underlying unit-cell symmetry. Each

of the pixels can be assigned to either a no-material (void) or a material (silicon), i.e., gs ∈ {0, 1}.

Throughout all the intermediate steps of the optimization process, we treat the void pixels as a

highly compliant medium as this enables us to conveniently manipulate the unit-cell designs. Once

the optimization is complete, we assess the final designs by modeling only the silicon portion of the

unit cell as described above.

The objective function is formulated in terms of the size of a particular band-gap width

normalized with respect to its midpoint frequency:

f(g) =
max(minnk

j=1(ω
2
i+1(kj , g))−maxnk

j=1(ω
2
i (kj , g)), 0)

(minnk
j=1(ω

2
i+1(kj , g)) +maxnk

j=1(ω
2
i (kj , g)))/2

, (3.3)

where minnk
j=1(ω

2
i (kj , g)) and maxnk

j=1(ω
2
i (kj , g)) denote the minimum and maximum, respectively,
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of the ith frequency ωi over the entire discrete wave-vector set, kj , j = 1, . . . , nk, tracing the border

of the IBZ. The band gap exists only when the minimum of the (i+ 1)th branch is greater than the

maximum of the ith branch; otherwise no band gap exists.

3.5 Unit cell optimization

We employ a genetic algorithm (GA) to maximize f(g). A GA is a nature-inspired opti-

mization technique that mimics biological evolution. It generally starts with a pool of candidate

solutions (i.e., designs) according to a certain objective (fitness) function, then applies a group of

operators, namely, selection, crossover, and mutation, in order to evolve to more fit designs (i.e.,

with higher objective function values). Compared to gradient-based methods, GAs are less likely to

get trapped into local minima, especially for problems with vast search spaces, hyper dimensions,

and a large number of variables [91], as is the case in our unit-cell optimization problem.

In our GA, the initial population of unit-cell designs is set up to be random to avoid any

initial bias that might negatively affect the search. Since it is unlikely to have a band gap at the

onset, we define the fitness function Fl, of the unit-cell design as follows:

Fo = Ho + ϕ1fo(g), (3.4)

Fi = Hi + ϕ1fi(g), (3.5)

Fc = Ho + ϕ1fo(g) + ϕ2Hi + ϕ3fc(g), (3.6)

Ff = Hf + ϕ1ff (g), (3.7)

where the subscript l is equal to o, i or c to denote the wave type (i.e., either out-of-plane, in-plane,

or combined), ϕ1−3 are constants equal to 104, 108, 1015, respectively, introduced to set priorities

during the evolution process, and Hl is a step function defined as:

Hl =

 0 if fl(g) > 0 (band gap exists)

A if fl(g) = 0 (no band gap)

(3.8)
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In Eq. (3.6) fc denotes the objective function modified to represent the normalized band-gap size

for the combined waves case. In Eq. (3.8) A represents a measure of the “area” in frequency-

wavenumber space between the two consecutive dispersion branches of interest:

A =

nk∑
j=1

[
(ω2

i+1(kj , g))− (ω2
i (kj , g))] (3.9)

The only condition enforced in the initial population is that adjacent pixels of the same material

type appear in pairs in each row. Throughout the evolution, tournament selection and single-

point crossover are the two types of operations applied on any given pair of “parent” unit-cell

designs. Following the unit-cell symmetry constraint, the “offspring” mutates according to a specific

probability using the following rule: Select random pixel x; if
∑1

r=−1 gx+r > 1, set each of the

three pixels to one, otherwise, to zero. The GA terminates when no further improvement in the

objective function value is noted for a prescribed number of generations. At the end of the search,

the final unit-cell topology passes through a simple one-point flip local search for fine tuning and

smoothening.

3.5.1 Lead-follow algorithm

The combined out-of-plane and in-plane optimization problem poses a challenge in setting

up the objective function because it is based on two sets of independent equations. Here we adopt

a unique strategy, which we refer to as a lead-follow algorithm, whereby the search for a combined

band gap is tackled in a two-stage fashion during the evolution process. The algorithm starts with

a set of random designs and searches for a band gap for out-of-plane waves (the leader) between two

prescribed branches guided by Eq. (3.9) for indication of design quality. Once the GA opens a gap,

it shifts its focus to the in-plane waves (the follower), but now the branch numbers encompassing

the band gap are not prescribed–they are determined by the same frequency range that spans the

band gap of the leader wave type. The objective function for the follower wave type is also guided

by the “area” as given by Eq. (3.9). This lead-follow process continues until a combined band gap

is found, at which point the objective function effectively switches to being the actual value of the
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normalized combined band gap. This process is automated through a generalized fitness function

given in Eq. (3.6). We note that, in principle, the identity of the leader and the follower may be

reversed.

3.6 Results

In applying the specialized GA we considered the following properties for isotropic silicon (λ

and µ denote Lame’s coefficients): ρs = 2330 kg/m3, λs = 85.502 GPa, µs = 72.835 GPa, and we

used a resolution of n = 32. At this resolution, the total number of possible material distributions

within the unit-cell domain is 8.7Ö1040. This highlights the tremendously large search space that

the GA needs to navigate through. At the end of each complete GA run, we doubled the resolution

of the emerged topology to become 64Ö64 pixels, and then smoothened the topology (while keeping

it pixelated) by following a few simple rules. For the third case (i.e., combined waves) a splines-

based solid material distribution has been subsequently generated to represent a manufacturable

design. Figure 1 presents the unit-cell topologies and band structures of the optimized unit cells for

the four cases, and Table I lists the objective values obtained. In our results we identify a band-gap

number by the number of the optical branch that borders it from the top.

Table 3.1: Normalized band-gap (BG) size for the optimized unit cells

Wave Type Out-of-Plane In-Plane Combined Flexural

BG number 1st 2nd 2nd Lowest 1st

Representation Pixels Pixels Pixels Pixels Splines Pixels

Norm. BG size 1.2270 1.1132 0.7696 0.6259 0.6021 0.5758

The optimized unit-cell topologies for out-of-plane waves [Figs. 1(a) and (b)] show contiguous

solid media approaching the limiting case of isolated square or circular inclusions. This limiting

case represents the optimal conditions for sonic crystals which admits only pressure waves [92].

For the presented case, the thin connections shown are needed to support the propagation of the

shear elastic waves. The optimized topology for the in-plane waves problem [Fig. 1(c)], on the

other hand, shows a mostly solid material with delicately shaped voids. This is consistent with
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the understanding in the literature that solid material with isolated voids represents the optimal

conditions for band-gap opening for in-plane waves [92]. We note that no band gap appeared below

the first optical branch due to the difficulty in preventing this branch from crossing through the

acoustic branches. The optimal design for the combined case [Fig. 1(d)] appears to be a blend

(although non-intuitive in shape) among the out-of-plane and in-plane design traits. We also note

that for this design the band gap for in-plane waves is of size fi = 1.0979, which is higher than

the value we obtained in Fig. 1(c). This suggests that the lead-follow algorithm has utility for also

single-wave type optimization. Upon appropriate size scaling to the frequency range of interest, all

designs are amenable to fabrication by splines-based smoothening with minimal loss in objective

value [as demonstrated in Fig. 1(e)]. For the thin-plate flexural waves case [Fig. 1(f)], the optimized

design for the first band gap features a frame-like topology that is simple and manufacturable. To

compare the performance of this design with the optimized, and manufacturable, thin plate unit

cell configuration reported by Halkjaer et al. [30], we recomputed the frequency band structure

using the same material (ρp = 1200 kg/m3, Ep = 2.3 GPa, νp = 0.35) and geometric (h = 0.0909a)

properties they used. We found the normalized band gap size to be 0.5639 which is more than

three times higher in value despite that fact that the present design is based on a square lattice

and the design provided in Halkjaer et al. [30] is based on a hexagonal lattice (which is generally

known to give larger band gaps).

3.7 Conclusions

We have conducted phononic crystal unit-cell topology optimization for the following modes

of elastic wave propagation: (1) out-of-plane, (2) in-plane, (3) combined out-of-plane and in-plane,

and (4) flexural (on the basis of Mindlin plate theory). When compared to corresponding solid-

void PnC unit-cell configurations reported in the literature, each of the designs shown in [Fig. 1]

represent a record value of normalized band-gap size in its category. While the focus in this work

has been on phononic crystals, our search methodology is also applicable to the parallel problem of

2D PtCs optimization, where transverse-electric and transverse-magnetic waves may be considered
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Figure 3.1: Optimized unit cell design and band structure for out-of-plane waves: (a) First band
gap, (b) second band gap; in-plane waves: (c) second band gap; combined out-of-plane and in-plane
waves, lowest band gap: (d) pixels, (e) splines; and (f) thin-plate flexural waves: first band gap.
The minimum feature size, d, and minimum radius of curvature, r, are identified in (e). For the
thin plate problem, the plate thickness is h = 0.09a as shown in (f). All band gaps are shaded in
gray.

separately [93] or in combination [94] .
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Chapter 4

Trampoline metamaterials: Local resonance enhancement by springboards1

Abstract: We investigate the dispersion characteristics of locally resonant elastic metamate-

rials formed from the erection of pillars on the solid regions in a plate patterned by a periodic array

of holes. We show that these solid regions effectively act as springboards leading to an enhanced

resonance behavior by the pillars when compared to the nominal case of pillars with no holes.

This local resonance amplification phenomenon, which we define as the trampoline effect, causes

subwavelength band gaps to increase in size by roughly a factor of 4. This overcome facilitates the

utilization of subwavelength metamaterial properties over exceedingly broad frequency ranges.

4.1 Introduction

Phononic crystals and locally resonant acoustic/elastic metamaterials have been the focus of

extensive research efforts in recent years due to their attractive dynamical characteristics, such as

the possibility of exhibiting band gaps. In a phononic crystal, band gaps are generated by Bragg

scattering for which an underlying constraint is that the wavelength has to be on the order of the

lattice spacing. [7, 9] In a locally resonant acoustic/elastic metamaterial, on the other hand, band

gaps may be generated by the mechanism of hybridization between local resonances and the dis-

perion properties of the underlying medium, and this in turn may take place at the subwavelength

regime. [8]

1 This chapter is drawn from Ref. [63] and has been adapted to suit the style and the notation of the dissertation.
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While in principal periodicity is not a necessity in a metamaterial, the introduction of the

locally resonant elements in a symmetric fashion enables intrinsic, unit-cell based, description of the

wave propagation characteristics, in addition to attaining the benefits of order and compactness.

The presence of periodicity, in itself, produces direction-dependent frequency bands and band gaps

(caused by Bragg scattering). These unique dispersion properties may sufficiently be utlized in

numerous applications involving wave filtering, [10, 11, 12] localization, [13, 14] guiding, [14, 15]

focusing, [16, 17, 18] collimation, [19, 20] among others. The added feature of local resonance,

however, gives rise to a qualitatively different type of dynamical behavior, such as negative ef-

fective elastic moduli and/or density, [95, 96, 97, 98] along with the possibility of generation of

subwavelength band gaps.[8] The applications of locally resonant acoustic/elastic metamaterials

are, in turn, far from conventional, e.g., subfrequency wave isolation, [21] subwavelength focusing

and imaging, [22, 23] and cloaking, [25] to name a few. Crossing the boundaries of acoustics and

elasticity, our group at CU-Boulder has recently proposed the utilization of locally resonant meta-

materials for the control of heat in a semiconducting thin-film. [99] Regardless of the application,

one of the generally desirable characteristics is for the metamaterial to exhibit a large band gap.

While the problem of unit-cell optimization for maximum band-gap size has been actively pursued

for phononic crystals, [28, 12, 62] less work has been done in exploring new approaches for band-gap

enlargement in locally resonant acoustic/elastic metamaterials.

One of the practical realizations of locally resonant elastic metamaterials is the construction

of a periodic array of pillars on a plate [100, 101]. In this configuration, the pillars by virtue of

their dynamic stiffness serve as the local resonators as they are essentially rod/beam-like structures

laid out on a flexural foundation. The diameter and height of the pillars determine their resonant

frequencies, and the extent of coupling of the pillar modes with the foundational plate modes is

dependent primarily on the plate stiffness and thickness as well as the lattice spacing of the pillars.
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Figure 4.1: Illustration of the concept of a trampoline metamaterial. The top row displays schemat-
ics of (a) a standard phononic crystal (consisting of a periodic array of holes in a plate), (b) a
standard pillared elastic metamaterial (consisting of a periodic array of pillars on a plate), and (c)
a trampoline metamaterial (consisting of a periodic array of pillars on a plate intertwined with a pe-
riodic array of holes). The frequency band structure of the three configurations in the ΓX direction
is shown in the bottom row. In the frequency range displayed, the phononic crystal has no band
gaps (d), the standard pillared metamaterial exhibits a subwavelength band gap with a relative size
of 0.19 (e), and the proposed trampoline metamaterial exhibits an enhanced subwavelength band
gap with a relative size of 0.48.

4.2 Proposed concept

Driven by the desire for band-gap amplification, in this work we propose a configuration

formed by merging a periodically pillared structure, based on a plate foundation (Fig. 4.1b), with

a standard phononic crystal formed by removal of a periodic array of holes in a plate (Fig. 4.1a).

The emerging configuration is a locally resonant elastic metamaterial consisting of pillars erected

on the solid regions of a phononic crystal plate (Fig. 4.1c). In this configuration, each pillar is

now rooted in a more compliant base due to the presence of the holes. This base effectively acts

as a springboard that allows the pillars’ resonant motion to be enhanced. Due to the analogy to a
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recreational trampoline, we refer to this hybrid configuration as a trampoline metamaterial and to

the underlying mechanism as the trampoline effect.

To examine the behavior of the proposed trampoline metamaterial, we investigate the band

structure characteristics for the propagation of Lamb waves in the three types of periodic materials

shown in Figs. 4.1a-4.1c. We choose silicon as the constitutive material (ρ = 2330 Kg/m3, λ =

85.502 GPa, µ = 72.835 GPa) and for all configurations consider a plate thickness of t = a/5 where

a is the lattice spacing. We set both the hole and pillar diameters as dh = dp = 5a/8, and the

pillar height as hp = 3a/5. Using the theory of elasticity, we set up the equations of motion for all

three models in the form ∇ ·C : ∇Su = ρü where u is the displacement vector, C is the elasticity

tensor, ρ is the density, ∇S is the symmetric gradient operator defined as ∇S =
(
∇u+∇(u)T

)
/2

and the dot is the inner product symbol. Denoting the position vector by x, the wavevector by k,

the frequency by ω and the time by t, we apply Bloch’s theorem, u(x,k; t) = u(x,k)ei(k
Tx−ωt), to

the equations of motion and obtain [89]

∇.C :

[
∇Sũ+

i

2
(kT � ũ+ k � ũT )

]
= −ρω2ũ, (4.1)

where ũ is the Bloch displacement vector and the symbol � denotes the outer product. With the

application of periodic boundary conditions on ũ, Eq. 4.1 forms the Bloch eigenvalue problem. We

solve this problem using the finite element method and obtain the band structure for each of the

three configurations, which we show also in Fig. 4.1 for the standard phononic crystal (Fig. 4.1d),

the standard pillared elastic metamaterial (Fig. 4.1e) and the proposed trampoline metamaterial

(Fig. 4.1f). In all our dispersion diagrams, the frequency is expressed as ωa/c where c =
√

E/ρ.

We observe that the relative size of the locally resonant subwavelength band gap (along the ΓX

direction) gets enlarged in size by a factor of approximately 2.5 when we compare the results of

the trampoline metamaterial to the standard pillared elastic metamaterial. When examining the

presence of a complete band gap along the ΓXMΓ path of the irreducible Brillouin zone, we find that

the standard pillared elastic metamaterial has no band gap, whereas the trampoline metamaterial

exhibits a band gap with a relative size of 0.026 (see Fig. 4.2). This outcome, for both the partial
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and complete band gaps, is due to the increased compliance of the pillar foundation (i.e., the pillar’s

plate base) due to the presence of the holes. The holes cut through the elastic foundation, reducing

its area, and consequently allow not only the main body of the pillars to resonate but also portions

of the foundation—or root—that each pillar is attached to. As such, the segments of the plate

material between the holes effectively act as springboards that allow each pillar to resonate more

intensely as they themselves contribute to the resonant motion.

(a) (b)

Γ X M Γ

∆ω/ωc= 0.026

ω
a

/c

0

0.4

0.8

1.2

1.6

Γ X M Γ

k k

TrampolinePillars Only

Figure 4.2: Band structure along the entire ΓXMΓ path of the irreducible Brillouin zone for cases
shown in Figs. 4.1b and 4.1c. The standard pillared elastic metamaterial has no complete band
gap, while the trampoline metamaterials has a band gap with a relative size of 0.026.

4.3 Parametric optimization

To further examine the trampoline effect, we analyze the problems shown in Figs. 4.1b and

4.1c but now for a range of values of pillar height and hole diameter. Figure 4.3a presents a map

of the size and location of the lowest band gap (also along the ΓX direction) as a function of pillar

height for dh = 5a/8. The same results are again presented in Fig. 4.3b but in the form of a plot of

relative band-gap size, ∆ω/ωc, versus pillar height, where ωc the band-gap central frequency. We

focus our attention to dp/a ≥ 0.4 because at lower pillar heights the lowest resonance frequency is

high enough to interact with the Bragg scattering regime (which is outside the scope of this Letter).

The blue solid line in Fig. 4.3b is for the standard pillared elastic metamaterial. We observe that
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Figure 4.3: Map of absolute (a) and relative (b) band gap as a function of normalized pillar height
for a trampoline metamaterial compared to a standard pillared metamaterial. The trampoline
effect results in a magnification of the subwavelength locally resonant band gap by a factor ranging
from roughly 2 to 4 for geometries where the original ∆ω/ωc is greater or equal to 0.1.

as the pillar height for this “pillars only” case increases, the relative band-gap size also increases

but only up to the point where hp/a = 0.65, after which it descends in value. This non-monotonic

behavior is due to the coupling of the pillar vibrations with the flexural motion of the base plate,

which becomes more profound as hp/a increases. The dotted, dashed and solid red lines repre-

sent the relative band-gap size for the trampoline metamaterial configuration for different values

of dh. In addition to dh = 5a/8, two other hole diameters are considered, namely, dh = 3a/8 and

dh = 4a/8 (noting a constant increment of a/8 between the three diameters). We observe that for

the two additional trampoline metamaterial cases, the relative band-gap size is larger than the case

of “pillars only”. This shows that the trampoline effect is present also in the lower hole diameter

cases. It is noteworthy, however, that the incremental enlargement of relative band-gap size is

more significant at higher values of hole diameter, which is explained by the quadratic decrease in
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springboard area as dh is increased. We also observe that all three cases display a monotonic trend

suggesting that the coupling between the pillars and the base plate is significant across the entire

range of hp/a considered, which is a characteristic of the trampoline effect. At hp/a values less

than 0.4, the relative band gap size for the trampoline metamaterials decreases, with this backward

descend initiating at different points depending on dh.

Most noticeable in Fig. 4.3 is the remarkable values of relative band gap size that are attain-

able by the trampoline metamaterials. For the parameter set of dh = 5a/8 and hp/a = 0.4, the size

of the relative band gap is close to 0.6 (i.e., 60%). This is a significant improvement over reported

relative band gap sizes in the literature for acoustic/elastic metamaterials in general and specifi-

cally for pillared metamaterials, which usually fall within the range of 20%−30% for a partial band

gap. [100, 101] Concerning the entire ΓXMΓ wavevector path, we note that for all the hp/a values

considered in Fig. 4.3, there is a complete band gap for the standard pillared metamaterial, but

only within the range of 0.40 ≤ hp/a < 0.50 with a maximum relative size of 0.11 at hp/a = 0.40.

For the trampoline metamterial, on the other hand, a complete band gap exists within the range

0.40 ≤ hp/a < 0.62 with a maximum relative size of 0.17 at hp/a = 0.40. Thus the trampoline effect

both increases the size of the complete band gap and extends the hp/a range of its existance−an

outcome that is favorable for many subwavelength applications that require wave attenuation both

at a broad frequency range and along all spatial directions.

The trampoline effect can be further examined by viewing the Bloch mode shapes. A thor-

ough analysis on the changes to the Bloch mode shapes when pillars are added to a uniform plate

has been done by Wu and coworkers [101]. Here we focus only on the effects of adding holes to an

already pillared plate. Figure 4.4 displays Bloch mode shapes for the standard “pillars only” case

(Fig. 4.4a) and the trampoline case (Fig. 4.4b) at kx = 0.62π/a (where kx denotes the wavenumber

along the ΓX direction) for the third acoustic branch shown in Figs. 4.1e and 4.1f. In the figure,

the total displacement is normalized by its own maximum value and the colormap represents the

spatial distribution of the von Mises stress (in log scale). It can be noticed that in the case of the

standard pillared elastic metamaterial (Fig. 4.4a), the stress is concentrated within the main body
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Figure 4.4: Bloch mode shapes at kx = 0.62π/a for (a) standard pillared metamaterial and (b)
trampoline metamaterial. The colormap represents the spatial distribution of the von Mises stress
(in log scale).

of the pillar with very moderate stress levels in the base plate. This implies that there is little

motion in the pillar foundation, and that the resonant motion is taking place mostly in the main

body of the pillar. On the other hand, in the case of the trampoline metamaterial (Fig. 4.4b),

the stress distribution is high within both the main body of the pillar and in its foundation. This

contrast in response confirms that the introduction of the holes indeed renders the plate base to

act as a springboard, and this induces the trampoline effect and causes the band-gap enlargement

observed in Fig. 4.1f and in Fig. 4.3.

4.4 Conclusion

The proposed concept of a trampoline metamaterial provides promising opportunities for

the many applications that require large band gaps. While the focus here has been on pillared

elastic metamterials and subwavelength band gaps, the concept is in principle applicable to other

configurations (e.g., replacing the pillars with heavy inclusions) and to superwavelength band gaps.

For higher frequency band gaps, a mixing between the hybridizaton and Bragg scattering mecha-

nisms could lead to even larger amplifications in band-gap size. Furthermore, topology optimiza-

tion [28, 62] of the trampoline foundation for different lattice symmetries could be utilized to incur

yet further increases in band-gap size.
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Chapter 5

Flow control using phononic materials1

5.1 Abstract

In this chapter, a new application of phononic materials is investigated, namely, flow control.

The goal is to utilize a phononic material to induce a change in a flow field in a desired manner.

The phononic material model, the fluid model (provided by professor S. Biringen’s group) and the

coupling scheme between both are outlined. The ability to control disturbances in a flow field

is demonstrated for three different case studies: (1) single frequency two-dimensional disturbance

control (2) multiple-frequency two-dimensional disturbance control and (3) three-dimensional non-

linear disturbance control.

5.2 Introduction

Flow control is the ability to manipulate and alter a flow field in a favorable manner [37]. The

potential impact for a passive, inexpensive and practical technology for flow control is substantial.

It can facilitate the delay/advancement of transition, prevention/provocation of separation and the

suppression/enhancement of turbulence. By controlling one or more of these flow phenomena, it is

possible to achieve lift enhancement, mixing augmentation, noise suppression and drag reduction

among other benefits. In particular, realizing drag reduction can bring about a significant decrease

1 The results and figures presented in this chapter are drawn from Refs. [102, 103, 104] with appropriate adaptation
to suit the style and the notation of the dissertation. O. R. Bilal’s contributions are in performance of research and
analysis of data following the advising of Professor Mahmoud I. Hussein with a focus mostly on the phononics
aspects. The collaborating team of Professor Sedat Biringen was mostly responsible for the fluid dynamics aspects
of the research.
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in transportation costs.

Numerous approaches have been studied in the literature to provide an effective flow control

technology such as heating or cooling of surfaces, addition of ribs on the surface [105], suction and

blowing [106, 107, 108], surface coating with a compliant material [40, 109, 43], among others [37].

Regardless of the approach for stimulating a change in flow behavior, successful control may be

realized when particular desirable/undesirable flow structures and mechanisms are identified and

clearly understood. One such mechanism is flow transition in a boundary layer or a channel flow,

where unstable modes/disturbances are introduced and permitted to grow.

Owing to their wave-like nature, obstruction of the growth rate of these flow disturbances

(i.e., their stabilization) is possible and may be induced by wave interferences. In low disturbance

environments, the transition in channel and boundary layer flows begins when a two-dimensional

(primary) instability, also known as the Tollmien-Schlichting (TS) wave [110], is triggered and

becomes susceptible to three-dimensional disturbances at some finite amplitude. This is known as

a secondary instability and is characterized by the appearance of three dimensional disturbance

patterns that typically scale on the frequency and wavelength of the TS wave.

In this work, a condensed-matter physics treatment to fluid-structure interaction is introduced

and a phononic material is utilized for flow control. The validity of this approach of passive flow

control is demonstrated by replacing a portion of the rigid wall of a channel with an elastic periodic

medium (e.g., a phononic crystal), located at one or more points or regions of interest along the

fluid-structure interface, as shown in Fig. 5.1. The proposed approach is shown to effectively

control both two-dimensional and three-dimensional disturbances.

5.3 Methodology

Numerous analyses are conducted on a 1D phononic crystal in order to realize an adequate

design prior to conducting a coupled fluid-structure simulation. Different unit cell configurations

composed of aluminum and ABS polymer are utilized. Following an uncoupled solid-model analysis,

a coupled fluid-structure simulation is conducted to assess the performance of the phononic crystal
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Figure 5.1: Schematic of plane flow channel with phononic subsurface covering a segment of the
bottom wall. For comparison, replacement with a rigid wall or other materials are also considered.

in altering the flow characteristics as desired. To follow is a description of the solid and fluid

models. In Section 5.4, the design approach and analyses are presented for the three different case

studies considered. At the end of each case study, the design search space for the problem at hand

involving the phononic crystal unit-cell design is presented.

5.3.1 Solid domain

The same modeling schemes outlined in Ch. 1, for dispersion, steady-state vibration and

elastic wave propagation are implemented for a continuous periodic rod. The governing equation

of motion for longitudinal wave propagation in a 1D heterogeneous linear elastic solid is

ρsη̈ = (Eη,s),s + f, (5.1)

where η = η(s, t), f = f(s, t), ρs = ρ(s) and E = E(s) denote longitudinal displacement, external

force, solid density and elastic modulus, respectively. The position coordinate and time are denoted

by s and t, respectively. The operation (.),s denotes differentiation with respect to position, while a

superposed dot denotes differentiation with respect to time. The density, ρs and Youngs modulus,

E, for each of these two constituent materials are: ρAl = 2700 Kg/m3, ρABS = 1040 Kg/m3, EAl

= 68.8 GPa, EABS = 2.4 GPa.
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To obtain the band structure for a given phononic subsurface unit-cell configuration, f = 0

is set in Eq. (5.1) and a Bloch solution in the form η(s, t;κ) = η̃(s;κ)ei(κs−ωt) is assumed, where

η̃ is the Bloch displacement function, κ is the wavenumber, ω is the frequency, and i =
√
−1, and

periodic boundary conditions are applied, η̃(s+LUC, κ) = η̃(s, κ), where LUC is the unit-cell length.

For the finite structure problem, a boundary value problem (BVP) following Eq. (5.1) is set up

for a finite phononic subsurface structure composed of nc repeated unit cells of the type considered

in the unit cell problem. The boundary conditions chosen are η,s(0, t) = 0 and η(l, t) = 0 for the top

and bottom ends, respectively, where l = ncLUC. A harmonic forcing function is applied only at

the top end, i.e., f(0, t) = f̄(0)eiω
∗t and f(s, t) = 0 for s > 0, where ω∗ is the excitation frequency

and f̄ is the forcing amplitude. The harmonic displacement response is given by η(s, t) = η̄(s)eiω
∗t ,

where η̄(s) is the response amplitude. Upon incorporation of the boundary conditions and the

excitation function, and after substitution of the response function into Eq. (5.1), a frequency

response function that describes the steady-state forced response of the structure is obtained. In

this work, the number of unit cells is nc = 10.

In addition, the finite structure is analyzed once again, but now as an initial boundary value

problem (IBVP) whereby no assumptions are made on the temporal dependency of the displacement

field. First, as an uncoupled system, the initial conditions η(s, 0) = 0 are considered and a harmonic

force f(0, t) = f̄sin(ω∗t) is applied for the time interval 0 ≤ t ≤ tT, where tT is the total simulation

time. As in the BVP, f(s, t) = 0 for s > 0. Second, for the coupled simulations, the same initial

conditions are considered but no external force is applied; the forcing is induced by the interacting

flow.

The 1D solid domain representing the phononic subsurface is numerically analyzed using the

finite element (FE) method utilizing 1D 2-node iso-parametric elements. Upon discretization of

the unit cell problem, a mass matrix, M̃, and a stiffness matrix, K̃(κ) are obtained. Following the

Rayleigh proportional damping model, the unit-cell damping matrix is defined as C̃ = q1M̃+ q2 K̃

where q1 and q2 are damping constants. The dispersion band structure is obtained by solving the

eigenvalue problem [−ω2M̃ + iω(q1M̃ + q2 K̃(κ)) + K̃(κ)]D̃ = 0, where D̃ = [d̃1 d̃2 . . . d̃nm−1]
T is
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the Bloch vector, for values of wavenumber in the range 0 ≤ κ ≤ π/LUC. The number of nodes in

the unit cell is denoted by nm.

In the finite structure problems (BVP and IBVP), the FE method is used to spatially dis-

cretize the entire 10-unit-cell structure. For the IBVP, the second order Newmark scheme (pre-

sented in Ch. 1) is used for the time integration, with the incorporation of damping. The modified

equations read as follow:

D(i+1) = D(i) +∆tV(i) + (∆t)2
[(

1

2
− β

)
A(i) + βA(i+1)

]
, (5.2)

V(i+1) = V(i) +∆t
[
(1− γ)A(i) +A(i+1)

]
, (5.3)

A(i+1) = T−1

[
−KD(i+1) −CV(i) − ∆t

2
CA(i) + F(i+1)

]
, (5.4)

where D(i), V(i), A(i), and F(i) represent the displacement, velocity, acceleration, and force vectors

at the ith time-step, respectively. ∆t is the time step increment, and T = M + ∆t
2 C. Here,

D(i) = [d
(i)
1 d

(i)
2 . . . d

(i)
ns ]

T and F(i) = [f
(i)
1 f

(i)
2 . . . f

(i)
ns ]

T. For the BVP, F(i) = [f̄1 0 . . . 0]Tsin(ω∗i∆t);

for the IBVP, f
(i)
1 is obtained from the flow solution and all other terms in the F(i) vector are set

to zero.

Due to the incorporation of damping, T is generally not a diagonal matrix and thus obtaining

T−1 is computationally expensive and introduces numerical errors, especially for large size matri-

ces. However, utilizing the property that T is a tridiagonal matrix, the compact-storage Thomas

algorithm is utilized – this is an efficient form of Gaussian elimination suited for tridiagonal sys-

tems. Finally, Eq. 5.3 is used to obtain the updated velocity. This process is repeated, allowing

the simulation to march forward in time until it reaches tT.

5.3.2 Fluid domain

Direct numerical simulations (DNS) have been executed to model the fluid domain and to

examine the behavior of the proposed concept and its performance in altering the flow response.

The initial flow excitation wave has been incorporated as a spatially evolving disturbance in a

fully-developed plane Poiseuille (channel) flow driven by a mean pressure gradient. The channel is
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formed by parallel walls at the bottom and at the top with periodic boundary conditions applied

in the spanwise z-direction, and a buffer (sponge) layer is used to model the outflow. The base flow

is an exact solution of the Navier-Stokes equation. Unstable spatial solution (eigenfunction) of the

Orr-Sommerfeld equation is superimposed at the inflow boundary of the channel to perturb the

parabolic base velocity, precisely modeling the conditions in typical laboratory experiments. Water

is considered as the working fluid, a Reynolds number Re = 7500, and a range of non-dimensional

unstable frequencies ωR for each case study.

This work considers the time-dependent, three dimensional, incompressible continuity and

the Navier-Stokes equation nondimensionalized by the channel half-height δ and the centerline

velocity Uc. These equations read,

∂ui
∂xi

= 0 (5.5)

∂ui
∂t

+
∂ujui
∂xj

=
2

Re
− ∂p

∂xi
+

1

Re

∂ui
∂xjxj

(5.6)

Here, Re = Ucδ/ν, ν is the kinematic viscosity, and the vector u = ⟨u, v, w⟩ represents the velocity

components in the streamwise (x), wall-normal (y), and the spanwise (z) directions, respectively;

also, p is the nondimensional pressure and t is nondimensional time. In Eqs. 5.5 and 5.6, the

velocity vector can be decomposed into a base ub and a fluctuating component û such that

u = ub + û (5.7)

Using this decomposition, the initial/boundary conditions can be written as

ub(x = 0, 0 ≤ y ≤ 2, z, t) = ⟨1− (1− y)2, 0, 0⟩ (5.8)

û(x = 0, y, z, t) = A2DReal[ue2D(y)e
−iωrt] (5.9)

u(x, y = 0, 2, z, t) = 0 (5.10)

where periodic boundary conditions are applied in the spanwise (z) direction. Equation 5.8 is

the exact solution of the governing equations for laminar Poiseuille flow, where the dimensional

channel height spans from 0 → 2δ. For the spatially-evolving channel flow under consideration, the
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outflow boundary conditions are imposed in the nonreflective buffer domain [111, 112, 108] where

streamwise perturbations in the governing equations are smoothly brought to zero to ensure strictly

outgoing waves.

In Equation 5.9, A2D is the amplitude of the two-dimensional disturbance, i =
√
−1, ωr is

the real frequency and ue2D is an eigenfunction obtained from the solution of the Orr-Sommerfeld

equation, given as

(ub − c)(v̂′′ − α2v̂)− u′′b v̂ +
i

αRe
(v̂′′′′ − 2α2v̂′′ + α4v̂) = 0 (5.11)

where ()′ represents differentiation in the wall-normal direction. In addition, the complex wave-

speed, c = −ωR/α and α = αR + iαi represents the complex wavenumber.

Equation 5.11 constitutes an eigenvalue problem and is obtained from the linearized Navier-

Stokes equation with the assumption of small disturbances. For spatially evolving channel flow,

given real circular frequency ωr and Re, Eq. 5.11 is solved for the complex eigenvalue α [113] where

−αi is the amplification rate of the corresponding eigenfunctions, u and v (Eq 5.9) which, in turn,

are imposed as initial disturbances at the inflow boundary in the present simulations. Accordingly,

disturbances will be unstable (growing in space) if −αi > 0.

A time-splitting procedure [111, 112, 108] is implemented to numerically integrate the gov-

erning equations where the Crank-Nicolson implicit method is used for the wall-normal direction

diffusion term; all the other terms are treated explicitly with the Adams-Bashforth method. Spatial

discretization is done by fourth-order central differences on a rectangular mesh system staggered

and stretched along the wall-normal direction to accurately capture the fast flow field gradients.

The time-splitting procedure first advances the velocity field, lagging the pressure gradient term.

The corrector step then computes the pressure field satisfying continuity at the advanced time

level. Using this method, excellent agreement with the linear theory is obtained, with a maximum

deviation of 0.05% in the predicted perturbation energy growth [108].

In the coupled simulations, the structure extends in the spanwise, z, direction across the

whole length of the computational domain without any spanwise variations, thus maintaining the
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periodicity of the boundary conditions in that direction. At every time step, the dimensional

wall pressure pw = pρfU
2
c (where ρf is the fluid density) is calculated on the midpoint along the

slot length on the fluid-structure interface. This pressure acts on the structure as a force and

the resultant displacement, η(0, t), and velocity, η̇(0, t), obtained from the integration of the solid

domain model are imposed as flow field boundary conditions at the interface such that

û(xs ≤ x ≤ xe, y = 0, z, t) = −η(0, t)
dub
dy

, (5.12a)

v̂(xs ≤ x ≤ xe, y = 0, z, t) = η̇(0, t). (5.12b)

These boundary conditions are obtained assuming small displacements and allowing wall motion

only along the wall-normal y-direction. Hence, it is critical that η << δ must be maintained

throughout the computations. Additionally, the spanwise velocity, w, is zero at the fluid-structure

interface.

5.4 Case study 1: single frequency two-dimensional disturbance control

In this case study, a two-layer unit-cell phononic crystal is used to reduce the amplitude of

the primary mode in a channel undergoing transition when a single unstable TS wave is introduced.

The entire structure is composed of 10 unit cells. For the results that follow, the physical domain

lengths in the fluid are Lx = 12δ, Ly = 2δ, Lz = 2πδ. The buffer domain extends from 12 ≤ x ≤ 20

and encompasses 30% of the total channel length. The resolution for the rigid wall and control cases

is 225 × 8 × 65 in the streamwise (x), spanwise (z), and wall-normal (y) directions, respectively.

The location of the phononic subsurface spans from xs = 6.96δ to xe = 8.57δ on the lower wall at

y = 0. Outside of these bounds, the wall is assumed rigid and the boundary conditions on the wall

then are no-slip.

The phase relation at a given excitation frequency ω∗ between the force acting on the PnC

subsurface, f , and the displacement of the boundary between the solid and the fluid domains, d,

is used as an indicator of the degree of destruction (or construction) interference in the flow. The
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Figure 5.2: (a) Dispersion curves for the 1D phononic crystal from which the subsurface is com-
posed. (b) Steady-state vibration response of phononic crystal top surface. (c) Time-averaged
phase between force and displacement at the phononic crystal top surface. (d) Performance metric
combining amplitude and relative phase between the force and the displacement at the phononic
crystal top surface. Results from the coupled fluid-structure simulations are represented by red
dots. In the coupled simulations, the phononic crystal top surface serves as the fluid-structure
interface.

phase indicator is defined as the mean of the dot product between the two signals:

ϕ(ω∗) =

i=n∑
i=1

(fi(ω
∗)).(di(ω)

∗)/n (5.13)

where fi is the force vector at time i, di is the displacement vector at time i, and n is the total

number of time steps in the simulation time interval t̃ = [0, tT]. The scalar value ϕ at a prescribed

frequency, ω∗, is independent of tT if n has a large enough value (i.e., the simulation time is long
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enough to show the pass/stop band effect on the fluid field).

A performance metric, defined as P = ⟨ϕ⟩ · η̄(0)/max [η̄(0)] is established, that incorporates

both the phase and the intensity of the interface motion. Merging the isolated structure results given

in Figs. 5.2(b) and 5.2(c), a prediction of the performance metric is obtained, namely, P = PP, which

is plotted as a function of ω∗ in Fig. 5.2(d). It is noticeable that the value of P is most negative at

the truncation resonance frequency and retains its strong negative value over a substantial frequency

range on the right side of ωTruncation. The left side, to the contrary, experiences immediate positive

P values that rise sharply and subsequently oscillate as the frequency decreases. While truncation

modes are usually undesirable in conventional phononic crystals applications, here they provide a

favorable effect. If the interest is to have a large frequency range for stabilization, then the unit

cell should be designed to (1) exhibit the largest stop band possible encompassing the TS waves

frequency range, and (2) have a truncation resonance located to the left of the TS waves frequency

range and hence furthest to the left within the stop band to cover as wide a range as possible. If

the interest is in destablization, then the unit cell should be designed to exhibit the highest possible

value of P−in the positive domain−at or near the TS wave frequency (or frequency range).

Figure 5.2 shows the dispersion curves (a), the frequency response function (FRF) of the tip

displacement (b), the phase between the forcing and tip displacement (c), and the time-averaged

multiplication of the FRF normalized values with the phase values for the phononic crystal (d)

(length = 0.4m, 90% ABS and 10% Al) – this provides a performance metric for the overall fluid-

structure configuration. The black lines are obtained from uncoupled solid models, while the red

dots represented the data acquired from coupled fluid-structure simulations at different frequencies

(3 within a stop band 1690Hz, 1700Hz and 1800Hz and 1 in a pass band 1600Hz). Figure 5.2

demonstrates an excellent agreement between the coupled vs. the uncoupled models.

In Fig. 5.3, we show average quantities of the total energy, defined as:

Ψ(ω∗; s, t) =
1

2

(
E(

dη

ds
)2 + ρsη̇

2

)
in the phononic subsurface from the coupled simulations. Figures 5.3a and 5.3b present a space-
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Figure 5.3: Average quantities of the total energy in the phononic subsurface for Case B (ωTS = 1690
Hz in a stop band) and Case A (ωTS = 1600 Hz in a pass band). The space-averaged total energy,

defined as {Ψ(ω∗, t)} =
∫ s=l
s=0 [Ψ(ω∗, t)] ds ≈

∑j=ns

j=1 Ψ
(i)
j , is shown in (a) for Case B and in (b) for

Case A. The time-averaged total energy, defined as ⟨Ψ(ω∗, t)⟩ =
∫ t=tT
t=0 [Ψ(ω∗, t)] dt ≈

∑i=n
i=1 Ψ

(i)
j , is

shown in (c) for Case B and in (d) for Case A. The unit cells are marked by vertical lines.

averaged total (kinetic and potential) energy for Case B (stop band) and Case A (pass band),

respectively, displaying oscillating patterns and a two-orders of magnitude larger overall response for

Case B as anticipated. Also noticeable is that in both cases the motion of the phononic subsurface,

including the top end which interfaces with the flow, is stable−i.e., there is no occurrence of flutter.

Figures 5.3c and 5.3d present a time-averaged total (kinetic and potential) energy for Case B and

Case A, respectively, for the top half of the structure and over the full simulation time. The energy

profile for Cases B and A are attenuating and non-attenuating, respectively, which is perfectly

consistent with the stop-band/pass-band behavior, as predicted.

For the fluid analysis two quantities are plotted, the space-averaged time-dependent per-

turbation kinetic energy, T ∗
f [in units of J (Joules)] and the time-averaged position-dependent

perturbation kinetic energy, K∗
f [in units of J/m (Joules per meter)]. The former quantity, which
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is based on a volume-integration, is given by:

T ∗
f (t

∗) = ρf

∫ Lz

0

∫ δ

0

∫ Lx

0

1

2

(
û∗2 + v̂∗2 + ŵ∗2) dx∗dy∗dz∗, (5.14)

where the vector u = (u, v, w) represents the velocity components in the streamwise, x, wall-normal,

y, and the spanwise, z, directions, respectively, ρf is the fluid density, Lx and Ly are the channel-

base dimensions, and δ is the channel half-height. The symbols (̂) and ()∗ are used to represent a

fluctuating component of the velocity field and a dimensional quantity, respectively (see Appendix

A for the detailed velocity decomposition formulation). The term T ∗
f (t

∗) directly quantifies the

instability wave kinetic energy in the bottom half of the channel as a function of dimensional time

t∗ (an asterisk is added here for convenience). The volume of integration over the bottom half of

the channel is bounded by its physical domain, that is, the buffer domain is excluded from the

integration. The K∗
f , on the other hand, is based on a time-area integration and is a function of

the dimensional streamwise coordinate x∗. It is defined as:

K∗
f (x

∗) =
ρf

(t∗end − t∗beg)

∫ t∗end

t∗beg

∫ Lz

0

∫ δ

0

1

2

(
û∗2 + v̂∗2 + ŵ∗2) dy∗dz∗dt∗, (5.15)

where t∗beg denotes the beginning of the time-averaging window and t∗end denotes the end of the

time-averaging window. In the calculations, t∗beg = 0.03s and t∗end = 1.17s which represents a

relatively long integration time (corresponding to approximately 1500 Tollmien-Schlichting-wave

periods).

The T ∗
f quantity is plotted in Figs. 5.4a and 5.4b. In the stop-band frequency case (Fig. 5.4a),

the perturbation kinetic energy, while oscillating, is predominantly lower in value when a phononic

subsurface is installed compared to all-rigid walls. In contrast, the two extreme arrangements of

an all-ABS and all-aluminum subsurface display negligible effect. Fig. 5.4b show the corresponding

results for the pass-band frequency case where we observe a predominantly positive increase in the

perturbation kinetic energy (due to a positive P ) and generally a significantly smaller effect overall

(due to a low |P |). Also of significance is that neither the stop-band or the pass-band responses
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Figure 5.4: Time history of the kinetic energy of the disturbance field within the bottom half of
the channel for (a) Case B (ωTS = 1690 Hz in a stop band) and (b) Case A (ωTS = 1600 Hz
in a pass band). (c) Relative phase between flow vertical velocity when a phononic subsurface is
installed compared to all-rigid walls (Rigid). Each velocity quantity is normalized with respect to
its maximum value.

are decaying in time, thus the control mechanism takes effect in a steady-state and sustainable

fashion. To explicitly examine the role of phase in the phenomenon observed, Fig. 5.4c monitors

the relative phase between the flow vertical velocity right above the control segment at y = 0.0108δ

when a phononic subsurface is installed compared to all-rigid walls. It can be see that in the stop-

band case, the introduction of the phononic subsurface alters the phase significantly compared to

the pass-band case where the phase is preserved on average. This result confirms the existence of

destructive interferences in the vertical velocity components of the flow near the interface for Case

B, and conversely, the existence of constructive interferences for Case A. 2 Hence the influence of

2 The wave interferences subsequently also affect the horizontal components of the flow due to the inherent coupling
between the components.
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the band structure of the phononic subsurface is shown to have extended to the flow.
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The time-averaged disturbance kinetic energy (KE) for (a) case B (stop band) and (b) case

A (pass band) is presented in Fig. 5.5. The green line is the base case for an all-rigid bottom of the

channel. The vertical dashed lines represent the position of the phononic subsurface with respect

to the channel. The black and blue lines show the KE of the unstable frequencies incorporating a

phononic subsurface. In the stop band case, a strong desired reduction is achieved as predicted.

The phononic subsurface single slot stimulated a 13% reduction in perturbation ke and 24% is

recorded by using two slots. In the pass band case, the expected destabilization is also shown to

occur for both one and two slots.

5.4.1 Design search space

Case study 1 shows the ability of the phononic subsurface to effectively control a two-

dimensional disturbance occurring at the most critical (i.e., least stable) frequency in the flow

field. In principal this could be achieved either in a pass or stop band. The key is to position the

targeted frequency to the left of the resonance frequency, when destabilization is desired or to the

right of the resonance, if stabilization is the objective. Although the concept works for the entire

frequency spectrum, resonance frequencies are sensitive to boundary conditions and fabrication
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imperfections in pass bands. Therefore stop bands represent a robust and unique design target, as

they emerge at the unit cell level.

Figure 5.6 presents the evolution of the 1st band gap in a two-layer unit cell design as the

relative width of the plastic layer varies. The percentage of the band gap relative width is defined

as:

BG % =
1

2
∗ max(ωUE − ωLE , 0)

(ωUE + ωLE)/2
, (5.16)

where ωUE and ωLE denotes the frequencies of the upper and the lower edge of the band gap,

respectively. The band gap exists only when the ωUE is greater than ωLE ; otherwise no band gap

exists. The relative BG equation is multiplied by 1/2 to ensure that the percentage lies between 0

and 1. The plot also shows the stabilization and the destabilization regions within the band gap

calculated by:

BGstab % =
1

2
∗ max(ωUE − ωTrunc, 0)

(ωUE + ωTrunc)/2
, (5.17)

BGdestab % =
1

2
∗ max(ωTrunc − ωLE , 0)

(ωTrunc + ωLE)/2
, (5.18)

Since case study 1 considers controlling one unstable frequency at a time, any design with

(BGstab and/or BGdest) > 0 should perform the desired function.

5.5 Case study 2: multiple-frequency two-dimensional disturbance control

The study described above is concerned with the control of a single unstable TS wave in-

tentionally introduced to the flow field. However, in a more natural transition environment, a

continuous range of unstable frequencies may be present in the flow field. In this case, it would

be desirable to affect a desired range of frequencies that may be present in the flow for a given

Reynolds number. That is, knowing the (approximate) Reynolds number of the flow, is it possible

to design a phononic subsurface that can reduce the amplitude of a continuous range of unstable

modes, without introducing other undesirable modes into the flow field. Here, the ability of using

properly designed phononic subsurfaces to reduce the amplitude of a number of unstable modes

artificially introduced in the flow field is demonstrated.
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Figure 5.6: Design space for 1D phononic crystal composed of two layers. The y-axis shows the
percentage of the band gap as the first layer of ABS plastic width vary within the unit cell.

The disturbances are introduced at the inflow using a linear superposition of modes that span

the unstable range of frequencies for a fixed laminar Reynolds number. These disturbances are the

eigenfunctions corresponding to the solution of the Orr-Sommerfeld equations, given previously in

Eq. 5.9. This is illustrated in figure 5.7, where the span of unstable non-dimensional frequencies

ranges between 0.205 < ωr < 0.285 for a Reynolds number Re = 7, 500. Note that the curve in

figure 5.7 represents the neutral curve (αi = 0), where any frequency that lies inside the curve is

unstable, and any frequency that lies outside the curve is stable. The unstable frequencies and

their growth rates are summarized in table 5.1, and their location on the stability diagram is shown

in figure 5.7.

ω∗ [Hz] ωr αr −αi

1487 0.22 0.9167 0.003733

1690 0.25 1.0003 0.006168

1893 0.28 1.0828 0.001307

Table 5.1: Selected unstable frequencies for Re = 7, 500
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In table 5.1, the dimensional frequency ω∗ is obtained as

ω∗ =
ωr

2π

Uc

δ
(5.19)

where either Uc or δ is prescribed for a given fluid viscosity ν and Re. For this particular simulation,

Uc = 17.8 m/s, δ = 4.2× 10−4 m, and ν = 1× 10−6 m2/s (water). These dimensional frequencies

are used to design a phononic subsurface that mitigates a portion or all of the unstable frequencies

in the flow field. Here, two different unit-cell designs are implemented. The band gap of the first

design covers only half of the unstable frequency range, while the second design has a band gap

that covers the entire unstable frequency range. The characteristics of theses two designs are shown

in figures 5.2 and 5.9 respectively, with the range of unstable fluid frequencies superimposed on the

frequency diagrams.

A summary of the two phononic subsurface designs is shown in table 5.2
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Figure 5.8: (a) Dispersion curves for the layered unit cell A composed of 2 layers (90% ABS and 10%
Al). (b) Steady-state vibration response of design B. (c) Time-averaged phase between force and
displacement at the phononic crystal top surface. (d) Performance metric combining amplitude and
relative phase between the force and the displacement at the phononic crystal top surface. Excited
frequencies in the coupled fluid-structure simulations are marked with dots. Structural analysis in
(b),(c) and (d) is limited to the frequency range of interest

Design Band Gap (Hz) Unstable Fluid (Hz) Truncation (Hz)

A 1652 → 2102 1383 → 1927 1684

B 1498 → 2493 1383 → 1927 1480

Table 5.2: Summary of the phononic subsurface designs
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Figure 5.9: (a) Dispersion curves for the layered unit cell B composed of 4 layers with widths
included in the inset. (b) Steady-state vibration response of design B. (c) Time-averaged phase
between force and displacement at the phononic crystal top surface. (d) Performance metric com-
bining amplitude and relative phase between the force and the displacement at the phononic crystal
top surface. Excited frequencies in the coupled fluid-structure simulations are marked with dots.
Structural analysis in (b),(c) and (d) is limited to the frequency range of interest

Figure 5.10 shows the perpetration KE in the flow for each of the excited frequencies. The

dashed lines represent the rigid wall solution, and the solid lines represent the solution where

the phononic subsurface replaces part of the rigid wall. The vertical dashed lines indicate the

boundaries of the phononic subsurface. It is expected from figure 5.2(d) that any disturbance with

a frequency falling to the left of the truncation frequency (1487 Hz) should grow in amplitude and
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that any disturbance frequency to the right of the truncation frequency (1690 Hz and 1893 Hz)

should decrease in amplitude as the disturbances pass over the phononic subsurface.

This prediction is in agreement with the results of the coupled simulations shown in figure

5.10(a), where both the 1690 Hz and 1892 Hz disturbance frequencies experience a decrease in am-

plitude and the 1487 Hz disturbance frequency experiences an increase in amplitude. As mentioned

before, the strength of the effect is dictated by the placement of these frequencies relative to the

truncation frequency (Fig. 5.2(d)), where the modes closest to this frequency will experience the

greatest attenuation when the performance metric P is at a minimum.

Spectra for phononic subsurface B is presented in figure 5.10(b). The spectra behaves similar

to figure 5.10(a), where 1690 Hz and 1892 Hz experience attenuation. However, 1487 Hz also

experiences attenuation due to the design of this particular subsurface, where the band gap spans

the entire range of unstable frequencies present in the fluid. That is, all three modes interact

independently and favorably with the structure such that the phase between force and displacement

at the fluid/surface interface ensures the attenuation of these disturbance waves.

The last figure in this section shows the aggregate perturbation KE for the different designs

tested. Figure 5.11 demonstrates the ability of the two designs arranged consecutively downstream

of one another to induce higher maximum reduction in the total integrated kinetic energy Kf (x).

5.5.1 Design search space

Case study 2 shows the ability of the phononic subsurface to effectively stabilize a number of

two-dimensional disturbances occurring within a range of critical (i.e., unstable) frequencies in the

flow field. In contrast to case study 1, designing the unit cell to incorporate the entire range within

the stabilization band gap is not straightforward. Given the range of frequencies for this particular

Reynolds number, the relative BG stabilization percentage should exceed 22% to encompass the

entire critical spectrum. Design A (90% ABS, 10% Al) cannot effectively cover the entire range as

it has ≈ 11% effective stabilization BG. Although, numerous designs with 2 layers posses the BG

width needed for the problem defined in case study 2, the relative width of the BG for stabilization
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Figure 5.10: Streamwise modal spatial distribution of the kinetic energy of the disturbance field
within the bottom half of the channel with different excitation frequencies for (a) Design A (single
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Figure 5.11: Streamwise total spatial distribution of the kinetic energy of the disturbance field
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of design A, design B and A&B. The plotted quantity represents the spatial intensity of the flow
instability. Green lines represent a rigid wall case. Vertically dashed lines indicate the upstream
and downstream boundaries of the phononic subsurfaces.

is bounded by ≈ 30%. Therefore designs with more complex topologies (number of layers) are

explored.

Figure 5.12 presents the evolution of the stabilization effective relative first band-gap in two

and four-layer unit cell design as the percentage of the ABS plastic varying within the unit cell.

For the four-layer designs, a minimum layer width is assumed (0.2%) with a discrete increment to

each layer thickness. All the possible combinations that lead to a design with width = 1 are plotted

in Fig. 5.12, with a few of them exceeding 50% effective operating frequency range.
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Figure 5.12: Design space for 1D phononic crystal composed of two layers (black) and four layers
(red). The y-axis shows the percentage of stabilization effective band gap relative width as the
percentage of ABS plastic content vary within the unit cell. The black dashed line represents the
minimum relative width needed to cover the range of the unstable frequencies in the flow.

5.6 Case study 3: three-dimensional nonlinear disturbance control

In this section, the two-dimensional (primary mode) fluid instability problem is expanded to

become susceptible to three-dimensional disturbances (secondary mode) at some finite amplitude

[108]. The modes are defined as multiples of the real fundamental frequency ωr and real spanwise

wavenumber βr = 2π/Lz such that ω = nωr and β = mβr. This allows for defining modes as a pair

(n,m) (e.g., a fundamental mode can be (1,m), its subharmonic is (0.5,m) and its superharmonic

(2,m)). This means exciting the flow at a certain frequency ω∗ and expecting a harmonic generation

of nω∗ excitation as harmonics. Therefore, the phononic subsurface is designed to have two effective

stabilization regions (i.e., falling within a band gap and to the right of the truncation resonance).

Table 5.3 summarizes the range of the effective frequency ranges of the utilized design for this case

study (design C). The layout of its unit cell is [0.48,0.02,0.42,0.08] with the first layer being ABS

plastic.
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Design Band Gap (Hz) Unstable Fluid (Hz) Truncation (Hz)

C 1st BG 1672 → 1932 1690 1684

C 2nd BG 3236 → 4052 3380 3364

Table 5.3: Summary of the phononic subsurface design C

Figure 5.13.a presents the dispersion curves of design C with the band gaps highlighted in

gray. The frequency response function for the structure composed of 10 unit cells is shown in

Fig. 5.13.b. Two truncation resonances are present within the first and the second band gaps. In

order to effectively control both the primary unstable frequency and its harmonic, both truncation

resonances should be to the left of the critical frequencies, in the same time not too far away from

it. This guaranties a negative value of the time averaged phase < Φ > at the critical frequencies

Fig. 5.13.c. In addition, the value of the performance metric P is favorable (i.e., negative and is

relatively large in the absolute sense) at both frequencies as reported in Fig. 5.13.d.

Similar to the previous case studied, the evolution of the perturbation KE over time is plotted

in Figure 5.14. Since spanwise disturbances are allowed to vary in this model, the plotted quantity

is integrated for each plane in the spanwise separately across the channel. For a clear comparison

with the rigid wall case, the energy is subtracted from the base case of the rigid wall. The surface

plot is mostly below zero, which translates to reduction in the total perturbation kinetic energy.

Although the plotted energy fluctuates during the simulation time above the rigid wall values,

the aggregate behavior is favorable. In other words it is inducing a stabilizing effect (i.e., mostly

negative).

The streamwise evolution of selected modal contributions of perturbation kinetic energy (KE)

is shown in Fig. 5.15(a). Compared to the reference all-rigid-wall case (dashed lines), it is observed

that the perturbation KE decreases across the length of the phononic crystal interface for the

primary mode (blue) However, this effect is reversed for the three other modes presented and may

be explained by nonlinear interactions. This reversed effect is somewhat negligible, however, owing
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Figure 5.13: (a) Dispersion curves for the layered unit cell C composed of 4 layers with widths
included in the inset. (b) Steady-state vibration response of design C. (c) Time-averaged phase
between force and displacement at the phononic crystal top surface. (d) Performance metric com-
bining amplitude and relative phase between the force and the displacement at the phononic crystal
top surface. Red dots represent the excited frequency in the flow where purple ones represent its
harmonic. Structural analysis in (b),(c) and (d) is limited to the frequency range of interest.

to the difference in the orders of magnitude of the modal energies. By stabilizing the primary

mode only, a reduction of maximum 8% in the total perturbation kinetic energy (summed over all

modes) is shown in Fig. 5.15(b). These results show the ability of the subsurface phononic crystal to

stabilize the three-dimensional flow field via synchronized frequency-dependent wave interferences,
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Figure 5.14: Difference in Kinetic energy as a surface plot for time history of the disturbance field
within the bottom half of the channel when a phononic subsurface is installed.

even in the presence of nonlinearities.

5.6.1 Design search space

Case study 3 presents a challenge in the design process of the phononic subsurface unit-cell.

In contrast to the previous case studies, the objective here is not limited to opening a band gap

(from the dispersion curves) with a truncation resonance inside of it (from the frequency response

function). The objective is not only to have two band gaps with two truncation resonances both
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Figure 5.15: Streamwise spatial distributions of the kinetic energy of the disturbance field within
the bottom half of the channel; the dotted lines represents the base model (i.e., with no control)
and the continuous lines represent the model with the phononic crystal. The plotted quantity
represents the spatial intensity of the flow instability.

falling to the right of the excitation frequency ω and its double 2ω but also to have the truncation

resonances as close as possible to ω and 2ω. Figure 5.16.(top) shows the design search space for

unit cells composed of 2 and 4 layers. The bottom part of the figure shows a zoom-in for the range

where the designs can induce an effective control.

5.7 Conclusion

A direct numerical simulation of the fully time-dependent, three-dimensional Navier-Stokes

equation in a spatially evolving plane-channel flow is performed to simulate the growth of instability
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disturbances (top) and a zoom-in for the effective design range (bottom). Truncn is the frequency
of the truncation resonance in the nth band gap.

mechanisms. By replacing a part of the channel wall with a carefully designed phononic crystal, the

kinetic energy of the unstable waves is shown to decrease. Computational experiments are carried

out for three case (1) 2D single frequency disturbance (2) 2D multi-frequency disturbance (3) 3D

nonlinear disturbance. These results open the way for the entry of phononics into the field of flow

control.



Chapter 6

Conclusions and future work

6.1 Summary of dissertation

The contributions of this thesis are classified into three main subcategories; optimization of

phononic crystals, design of elastic metamaterials and investigation of using phononic materials

for flow control. Chapter 1 introduces the basic classification of phononic materials and highlights

where the present work fits within the broader literature. Realizations of phononic materials in dif-

ferent scales and dimensions are illustrated. Mathematical models for simplified phononic systems

-in the form of springs and masses- are formulated. The most important tools needed to analyze

and elucidate the behavior of phononic materials, namely, the dispersion relation, the steady-state

forced response and the wave propagation are presented. The challenges and benefits of the unit-

cell topology optimization problem are discussed, as well as the potential impact of using phononic

materials for flow control. The chapter then provides a literature synopsis pertaining to phononics

and flow control in general. The chapter concludes with the thesis objectives and organization.

Chapter 2 starts by introducing the problem of 1D layered phononic crystal optimization. A

deeper look into the relevant literature is presented. The dispersion calculation framework using

the transfer matrix method is presented, and so is the optimization mathematical model. The

unit-cell representation and its advantages are highlighted. Four different objective functions are

then considered; these are defined as (1) maximum attenuation at a given frequency, (2) minimum

transmissibility for a given frequency range, (3) maximum width of the first band gap relative to

its central frequency, and (4) maximum sum of the width of the first ten band gaps relative to their
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central frequencies. To follow, new genetic algorithm operators that better suit the given problems

are developed and shown to produce better performing designs, compared to the literature, for

the first two objectives. No relevant comparisons are conducted in the literature for objectives 3

and 4, particularly for a layered 1D phononic material. However, the results reported for objective

3 are surprisingly and qualitatively unexpected. The results of objective 4 follow a trend similar

to objectives 1 and 2, which provide insights and raise interesting questions about the results of

objective 3.

As a logical evolution of the work presented in Chapter 2, the problem of unit-cell optimization

is investigated for both two and three-dimensions in Chapter 3. The related literature to the

problem is discussed and a motivation for the selected objectives functions is drawn. A description

of the models considered is then followed. The plane-strain and Mindlin plate models are used

and attention is focused on high-symmetry square lattices. The governing equations for waves

propagating in-plane, out-of-plane and flexural modes are provided. A newly developed lead-follow

genetic algorithm, one that is optimized for the problem in hand, is thoroughly explained. Record

values are obtained for relative band gap size for (1) in-plane waves, (2) out-of-plane waves, (3)

combined in-plane and out-of-plane waves, and (4) flexural waves.

Chapter 4 addresses the second part of the thesis that relates to the design of elastic meta-

materials with superior band-gap characteristics. The chapter starts with an introduction to the

shortcomings of existing concepts to band gap opening in the subwavelength regime, followed by

a brief survey of the literature on acoustic/elastic metamaterial in general. The proposed design

concept, a trampoline metamaterial , is then introduced. This concept is based on increasing the

compliance of the base of a pillared plate by adding holes to significantly increase the relative band-

gap size. The advantage of this design approach is that it avoids the need to increase the total

mass of the system, as mostly done in earlier studies based on plate-based locally resonant elastic

metamaterials. Different hole sizes and pillar heights are investigated to compare the trampoline

metamaterial performance to a conventional locally resonant elastic metamaterial. The proposed

novel, yet simple, design concept leads to the opening of a full band gap in frequency ranges where
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no band gap exists in the equivalent conventional metamaterials. It also increases the band gap

size by a factor of four along a certain direction.

The third part of the thesis presents a new application for phononics. Chapter 5 investigates

the use of phononic materials to induce a desirable change in the behavior of a wall-bounded

fluid flow. This work is conducted as part of a collaboration between the groups of Professors

M. I. Hussein and S. Biringen. The study consisted of two parts. The first is to design and

analyze a phononic crystal in isolation from the flow following a criterion pertaining to the phase

response within a stop band versus a pass band and the influence of symmetry breaking as the

crystal is truncated. The main tenet of the criterion requires that a stop-band to be utilized for

flow stabilization and a pass-band for flow destabilization. The second is to couple the designed

phononic crystal to a channel flow via an elastic interface, and simulate the response of intentionally

introduced unstable waves within the flow. Using direct numerical simulations and a conventional

serial staggered approach for the coupling, excellent agreement between the uncoupled and coupled

results is observed. The advantage of offline design and tunability provides a profound savings

in computational cost which opens the door for practical research and development for industrial

applications.

To demonstrate the validity of the approach, three cases regarding channel-flow instability

control are investigated. In all three, a portion of the bottom wall of the channel is replaced

with a phononic subsurface. The performance of each configuration is subsequently measured by

the amount of reduction/increase in perturbation kinetic energy against a control case where the

rigid wall is kept. In the first case, a 2D unstable disturbance (a Tollmien-Schlichting wave) is

injected into a flow at a given frequency. A significant reduction of up to 24% in the perturbation

KE is recorded when a phononic subsurface (design A) is installed following the prior specified

design criterion. The ability to destabilize is also demonstrated. The second case extends the

first problem to 2D multi-frequency control to mimic more realistic situations, where more than

one unstable frequency is present. To account for the wide range of these unstable frequencies a

new phononic crystal is designed (design B). Various combinations of designs A&B are tested and
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their performance emerged exactly as predicted, demonstrating robustness in the analysis/design

methodology. Case 3 is a natural progression of the previous two cases: three-dimensional nonlinear

instability control. In this case, a variation of disturbances along the span of the channel is allowed

thus making profound nonlinear frequency harmonic generation inevitable. Here, a new phononic

crystal design is created to encompass the primary and the secondary unstable modes. Although,

the secondary modes showed some spatial destabilization, an overall, aggregate reduction in the

perturbation kinetic energy is observed. This collaborative study presents a road map for the

utilization of phononic materials in flow control.

6.2 Future work

Although the work accomplished in this thesis fills some voids in the literature, it opens the

door wide open for future work in different disciples and scales.

� The layered 1D optimization framework is highly applicable to both photonic and phoXonic

crystals. After formulating the problem in a manner that produces globally optimal results,

one can draw new conclusions about the physics of the problem.

� Although the 2D and 3D optimization studies revealed designs with record values, discrete

representations of decision variables are subsets of the continuous design space. Therefore,

combining a global optimization method with continuous variables has the potential to

reveal the globally optimal unit cell design for each of the considered objectives.

� To prove the optimality of the emerged designs, one needs to formulate the mathematical

bounds of the problem. One way to do so is to use the Rayleigh-Ritz approach and the

method of intermediate eigenvalue problems.

� The proposed trampoline concept shall facilitate the utilization of metamaterials in mass-

sensitive applications (e.g., aerospace industry). Therefore, for commercial implementation,

a trade-off optimization study relating mass/load-bearing capacity/band gap size is a logical

next step.
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� The trampoline metamaterial configuration can serve as a fertile base model to study

and understand the coupling and dispersion hybridization within different types of lattice

symmetries, e.g., square versus hexagonal, and the possibility to influence Bragg-scattering

and thus possibly open band gaps that mix with those associated with local resonances.

� The work presented in Chapter 5 only scratches the surface of flow control using sub-

surface phononic crystals. From the solid prospective, the problem is begging for two-

and three-dimensional unit cell designs. One natural step towards the commercialization

of this approach is to use smaller designs by incorporating metamaterials concepts (e.g.,

trampoline). This should facilitate changing the designs in both the span- and streamwise

directions.

� On the fluid side, different problems related to separation and turbulence control should

be investigated. In addition, boundary layers and different configurations of the channel

are viable problems to be explored. Finally, experimental verification will be needed and

highly anticipated.
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