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Abstract

Hale, Katherine (M.A., Geography)

Streamflow sensitivity to climate warming and a shift from snowfall to rainfall

Thesis directed by Dr. Noah Molotch

As the climate warms, the fraction of precipitation falling as snow is expected to

decrease. In snow-dominated mountainous regions, where reliance on snowpack and

snowmelt is great, a reduction in snowfall fraction prompts us to examine downstream

changes in streamflow and water resources. Shifts in precipitation phase are expected to

alter the magnitude of ecosystem productivity, the timing of water resource availability,

and, ultimately, the amount of annual streamflow. Here, I focus on the upper montane

zone, which, in mid-latitude mountain ranges like the Rocky Mountains, is large and most

vulnerable to changes in climate and warming. The objective of my study is to under-

stand how climate warming, and associated shifts in evaporative demand, precipitation

phase, and snowmelt timing will alter streamflow generation in the upper montane zone

of the mid-latitude Rocky Mountains. The Distributed Hydrology Soil Vegetation Model

is used to simulate streamflow within Gordon Gulch of the Boulder Creek Critical Zone

Observatory, a watershed within the upper montane zone of the Colorado Front Range. I

discover that streamflow decreases an average annual 37% under the influence of warm-

ing. But, on a seasonal time frame, streamflow increases in winter and spring months

and decreases in summer and fall months. The presence of snow reveals a buffer-effect,

decreasing the magnitude of streamflow loss compared to a snow-free environment. This

buffering effect occurs because warming induces a shift in the timing of terrestrial wa-

ter inputs from snowmelt and rainfall. In this context, terrestrial water inputs increase
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during a time of year when atmospheric water demand is relatively low, increasing the

partitioning of terrestrial water inputs to streamflow. As a result, streamflow increases

by 13% during winter and spring months, off-setting the net decrease in streamflow as-

sociated with warming. This off-setting effect has large implications for hydrological and

ecological processes, and for water resource management across Earth’s mountainous re-

gions.
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Chapter 1

Introduction

A warming climate is a catalyst for hydrologic change in the mountains. In the West-

ern United States, the upper montane zone experiences an annual snow fraction of about

0.25-0.60 [Foster et al., 2016; Kormos et al., 2014]. Dependent on relative humidity and air

temperature, snow falls when the temperature is roughly below 2.6C in the arid Rocky

Mountains [Jennings et al., 2018]. A warming climate increases mean annual tempera-

tures across the United States [Portmann et al., 2009], causing more precipitation to fall

as rain instead of snow, decreasing the annual snow fraction [Kunkel et al., 2009; Mote et

al., 2018]. The upper montane zone is particularly vulnerable to this change, as mean an-

nual air temperature is above 0.0C and snowpack temperatures are typically around 0.0C

[Klos et al., 2014; Marks et al., 1996]. Only small increases in temperature and energy are

needed to force precipitation to fall as rain or to initiate melt [Marks et al., 1996]. Under

warmer climate conditions, the total western U.S. is predicted to experience a decrease in

area from 53% to 24% [Klos et al., 2014].

In the higher elevations of the Colorado Front Range, precipitation falls consistently

as snow through the winter months, coinciding with snow water equivalent (SWE) ac-

cumulation. SWE, the amount of water contained within the snowpack, is highest at
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the end of the snow accumulation season [Sturm et al., 2010]. As spring air tempera-

tures warm and precipitation shifts to rain, we see snow ablation and snowmelt [Marks

et al., 1998; Barnett et al., 2005]. Together, the rain and snowmelt events generate terres-

trial water input (TWI), the water supply to a catchment [Marks et al., 1998; Kormos et

al., 2014]. Figure 1.1a portrays theoretical time-series of a present-day upper montane

zone. Here, the storage of precipitation in the mountain snowpack acts to enhance the

seasonality of TWI, where a relatively long winter dry period is followed by a relatively

large pulse of TWI from snowmelt in the spring [Luce et al., 1998] Concurrently, potential

evapotranspiration (PET), the potential rate at which a given climate will evaporate water

from the soil-vegetation system, is low during winter months and high during summer

months [Scheff and Frierson, 2014; Milly and Dunne, 2016]. Under this conceptualization

of baseline TWI and PET phenology, time periods with low PET (i.e. low catchment water

demand) coincide with low relatively low TWI (i.e. catchment water supply), and as PET

increases in spring TWI also increases.

Under a warmer climate we expect air temperature to increase and snow fraction to

decrease [Knowles et al., 2005]. SWE accumulation is shallower and less persistent and

snow-covered area is reduced throughout the winter [Musselman et al., 2017; Kormos et

al., 2014; Regonda and Rajagopalan 2004, Cayan et al 2001]. Snowfall shifts to rainfall

earlier in the winter and spring, and snowmelt occurs intermittently during the winter

and spring [Knowles et al., 2005; Musselman et al., 2017; Rasmussen et al., 2014; Barn-

hart et al., 2016]. The catchment no longer experiences one significant snowmelt event in

the springtime, but instead intermittent melt events occur throughout the snow season.

Figure 1.1b presents a theoretical conceptualization of the impacts of warming on snow

fraction, TWI and PET in the upper montane zone. TWI echoes the intermittent patterns
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of winter melt and rain, changing the catchment TWI seasonality. The seasonal alignment

between water supply to the terrestrial system (TWI as rainfall and snowmelt) and water

demand (PET) is altered with unknown effects to catchment hydrology.

Additional environmental changes are expected to occur in a catchment under warmer

conditions, as hydrology inherently connects the vegetative, soil and geologic systems

in a catchment. I attempt to control such interactions throughout my study by using a

hydrologic model to explore the impacts of warming on streamflow production.
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FIGURE 1.1: The theoretical hydrologic and evaporative trends across both
a current and warmed upper montane catchment in one water year. Magni-
tudes (in mm) on the y-axis are relative to one another and the water year
begins in October. The tick mark on the x-axis represents April 1. (a) In
a present-day rain upper montane catchment, precipitation falls as snow
throughout the winter, generating a greater annual snow fraction and re-
sulting in a larger SWE accumulation. SWE increases into the spring until
snowmelt begins. TWI coincides with rain and melt events, portraying a sig-
nificant pulse during the snowmelt period. PET is low in the wintertime and
high in the summertime. Highlighted in blue is the wintertime water sup-
ply (TWI as rainfall and snowmelt) and water demand (PET). Water supply
is low when water demand is low. (b) In a warmer upper montane catch-
ment, precipitation falls as both snow and rain throughout the winter, gener-
ating a lower annual snow fraction and resulting in a smaller SWE accumu-
lation. Snowmelt occurs intermittently throughout the snow season, elimi-
nating one large snowmelt pulse. TWI reflects this mixing of rain and melt
events throughout the wintertime. PET is relatively higher, as the warmer
air holds more water vapor. Here, highlighted in blue, water supply is high

when water demand is low.
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1.1 Hydrologic Modeling

Climate and streamflow predictions rely on hydrologic models to estimate future catch-

ment conditions. The type of prediction relies on the selected hydrologic model and

its capabilities. Broadly, hydrologic models can be classified as theoretical or empiri-

cal [Chow et al., 1988]. Theoretical models are physically-based, derived from physical

laws and assumptions, whereas empirical models are derived from experimentation or

observed input-output [Shaw, 1983; Chow et al., 1988; Cunderlick, 2003]. Empirical mod-

els can be further divided into stochastic and deterministic models [Jajarmizadeh et al.,

2012]. Stochastic models are statistically based, applying probability equations to describe

model parameters. Deterministic models have governing equations for every model un-

der a given condition [Jajarmizadeh et al., 2012]. Types of deterministic models include

lumped, semi-distributed and distributed models [Shaw, 1983; Cunderlick, 2003]. Spa-

tial variability is assumed homogeneous in lumped models, whereas distributed models

explicitly resolve spatial variability in model forcings and states throughout a catchment

[Jajarmizadeh et al., 2012]. And while deterministic models require significant computa-

tional resources, they present a process-view of a catchment. A semi-distributed model

overcomes the logistical requirements of a fully distributed model by using the observed

average of many physical characteristics in a catchment to represent spatial heterogeneity

[Gosain et al., 2009]. In this study, we wish to fully represent spatial variability within a

catchment and therefore employ a fully distributed hydrologic model.

Impacts of climate warming on hydrology have been empirically investigated and

modeled to show both decreases and increases in streamflow across a wide range of land-

scapes, elevations, and spatial/temporal scales [Gupta et al., 1998]. Historical trends in

the nearby Upper Colorado River basin revealed 2% decreases in runoff efficiency, the
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amount of precipitation that becomes streamflow, for every 1oC of warming [Nowak et

al., 2012]. Goulden and Bales [2014] found that decreases in mountainous runoff occur

due to increases in evapotranspiration in the Sierra Nevada, California. Bosson et al.

[2012] saw similar trends in periglacial systems in Sweden. Luce et al. [2013] discov-

ered decreases in streamflow in the U.S. Pacific Northwest were attributed to decreasing

precipitation. Christensen et al., [2004] modeled the Colorado River Basin with the Vari-

able Infiltration Capacity model, simulating "business-as-usual" climate warming and

predicted streamflow decreases up to 17% by 2100. Both Milly et al. [2005] and Chris-

tensen and Lettenmaier [2007] used an ensemble of climate models to show a 10-30%

decrease in runoff in the mid-latitude western North America by the year 2050 [Milly

et al., 2005] and a 20% increase in the number of years with water shortages in the Col-

orado River Basin [Christensen and Lettenmaier, 2007]. Conversely, increases in regional

precipitation revealed consistent empirical [Frans et al., 2013] and modeled [McCabe and

Wolock, 2016] increases in streamflow generation. Streamflow change and magnitude

differed geographically and temporally across the Colorado Rocky Mountains, greater

United States, and internationally.

The majority of the aforementioned studies have focused on the effects of warming

on annual streamflow. Fewer studies have identified the seasonal impacts of warming

with regard to streamflow generation. One such study by Hamlet and Lettenmaier [1999]

showed consistent increases in winter streamflow associated with increases in winter rain.

As more rain events occurred in the wintertime months, water was immediately entering

the catchment as direct precipitation as opposed to remaining stored within the snow-

pack until the snowmelt season [Hamlet and Lettenmaier, 1999]. Hamlet and Lettenmaier

[1999] also simulated earlier snow melt, earlier spring peak streamflow, reduced runoff
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volumes and higher evapotranspiration in the summer months. Recent modeling efforts

isolated mechanistic effects of warming on streamflow through coupled modeling [Fos-

ter et al., 2016]. Annually-based and event-based model simulations were run to iden-

tify streamflow responses to increased evapotranspiration and changes in precipitation

phase [Foster et al., 2016]. Results showed that streamflow decreases are most influenced

by increased evapotranspiration. These model results suggest that future increases in re-

gional air temperature may have profound impacts on hydrological processes and water

available and highlight TWI seasonality effects on streamflow [Kormos et al., 2014; Chau-

vin et al., 2011; Kapnick et al., 2018]. However, the impacts of changing TWI associated

with warming have not been explored in detail. There remains a need to investigate wa-

ter input seasonality influences on streamflow generation within mountainous domains

[Foster et al., 2016; Berghuijs et al., 2014; Kapnick et al., 2018].

1.2 Budyko framework and hypotheses

I analyze output from my hydrologic modeling experiment through the Budyko frame-

work, an empirical relationship relating catchment evaporative fraction to an index of

its aridity Figure 1.2. Here, the catchment aridity index is defined as the ratio of poten-

tial evapotranspiration to precipitation (PET/P) and the evaporative fraction is defined

as the ratio of actual evapotranspiration to precipitation (ET/P) [Budyko, 1974]. The

Budyko framework is based on over 1200 long-term observations of the quantities noted

from catchments around the globe [Budyko, 1974]. The framework can be used to pre-

dict the fraction of precipitation that will be partitioned to evaporation and streamflow

(as a runoff ratio, 1-ET/P) based on a long-term average of aridity index. The Budyko
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framework assumes that catchment evapotranspiration (ET) is limited by energy in wet

conditions (PET/P < 1) and by water in dry conditions (PET/P > 1) [Zhang et al., 2004].

Additionally, arid catchments (PET/P > 1) tend to evaporate a greater fraction of precipi-

tation than humid catchments (ET/P < 1), but evaporative partitioning is more sensitive

to changes in aridity within humid landscapes than arid landscapes [Budyko, 1974]. I

relate these sensitivities to catchment hydrologic partitioning in the upper montane zone,

assuming that changes in ET cause compensatory changes in streamflow (Q) [Berghuijs

et al., 2014].

Anomalies from the predicted Budyko curve shed light on unexpected catchment be-

havior. Catchments experience over or underproduction of ET or Q if the evaporative

fraction does not respond to the aridity as expected. These anomalies from the Budyko

curve are associated with water and energy misalignment, where Q and ET are overpro-

duced or underproduced in an environment [Barnhart et al., 2016]. For example, Fig-

ure 1.2 portrays a red point, the hypothetical aridity and evaporative indices of an upper

montane catchment. If the catchment aridity index were to increase, like in a warmer

climate, this point will move right on the x-axis. The Budyko framework predicts an ex-

pected change in the evaporative fraction, moving the point upwards on the y-axis. If the

evaporative fraction changes as expected to a change in the aridity index, the behavior of

the catchment will shift to the green point. However, if the evaporative fraction deviates

from the expected curve, the catchment behavior may shift to the blue point. The blue

point indicates a smaller change in the catchment evaporative fraction than the expected

value. This underproduction in ET is analogous to an equivalent overproduction in Q,

given that the runoff fraction (Q/P) is equivalent to 1 minus the evaporative fraction (i.e.
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1-ET/P) [Budyko, 1974]. Previous work has used the Budyko framework and its rela-

tionship to Q, to show that watersheds with a lower snow fraction produce less annual

streamflow than watersheds with a higher snow fraction [Berghuijs et al., 2014]. I look

to further interrogate this result by determining the mechanism of hydrologic change. I

ask: how does warming, and subsequent changes in timing of TWI and PET, affect an-

nual streamflow generation within an upper montane catchment? I predict that a shift

in TWI seasonality will decouple water supply and water demand and therefore produce

relatively more streamflow in the winter and early spring months, alleviating the overall

decrease in streamflow.
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FIGURE 1.2: I place my research question within the framework of the
Budyko curve [1974]. On the x-axis is the aridity index, the fraction of PET
and P. On the y-axis is the evaporative fraction, the fraction of ET and P,
and the runoff ratio, the fraction of Q and P (1-ET/P). The red line indicates
Budyko’s hypothesis of a regional relationship between aridity and evapo-
rative indices. For every aridity index value, there is a corresponding and
expected evaporative fraction. The red point symbolizes a present-day up-
per montane zone. The green point symbolizes expected movement along
the Budyko curve due to warming. The blue point symbolizes reduced sen-
sitivity, where an increase in PET leads to an increase in ET and a decrease in
Q, but at a lower magnitude. Decreased sensitivity is attributed to a shift in

TWI and a decoupling of water supply (TWI) and water demand (PET).
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Chapter 2

Methods and Study Area

To simulate controlled and warming scenarios and to explore the mechanistic effects of

warming, I use the Distributed Hydrology Soil Vegetation Model (DHSVM). I calibrate

DHSVM to our study area by comparing model output to a variety of observations includ-

ing: streamflow, snow depth, snow covered area, and soil moisture. I run a simulation

with historical climate data over the period April 2010 – October 2013. This timeframe

captures the longest streamflow record available, a high snow year and a significant mon-

soon season. The historically forced simulation represents my controlled scenario and the

present-day upper montane zone with baseline conditions for snow fraction, SWE, TWI

and PET. I next run a simulation based on a climate-warming scenario, representing the

upper montane zone at the end of current century. This warming scenario reflects the to-

tal simulated change in snow fraction, SWE, TWI, PET, and the total hydrological impacts

of climate warming in the upper montane zone. My analysis of warming influences in-

cludes a thorough annual and monthly comparison between the controlled and warmed

simulation output, contrasting differences in PET, ET and Q. I use the Budyko curve to

determine the specific influences of warming through due to changes in aridity index

(PET/P), evaporative fraction (ET/P), and runoff ratio (Q/P). I assume that a change in
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ET and Q in a simulated warmer climate is the sum of the effects of increased PET and

changing precipitation phase linked to TWI seasonality. I subsequently analyze anoma-

lies from the Budyko curve, assuming an anomaly is the effect of changing precipitation

phase and TWI seasonality.

2.1 Distributed Hydrology Soil Vegetation Model

The Distributed Hydrology Soil Vegetation Model (DHSVM) is a spatially distributed nu-

meric model, simulating the effects of topography, weather, soils, geology and vegetation

on the hydrologic cycle [Wigmosta et al., 1994]. DHSVM is physically based, scalable to

spatial and temporal resolution. Watershed energy balance and water balance are solved

at each timestep. Set to user-defined input parameters, DHSVM serves as a predictive

model to simulate future hydrologic conditions resulting from changes in land use or

climate.

DHSVM has been applied across varying topography within North America to inves-

tigate climate, vegetation, disturbance and hydrology analyses at both the watershed and

sub-watershed scales [Wigmosta and Lettenmaier, 1999; Yao and Yang, 2009; Westrick et

al., 2002; Livneh et al., 2015; Raleigh et al., 2016]. Unlike the macroscale Variable Infiltra-

tion Capacity (VIC) model, its ability to capture high resolution, topographic complexity

while perpetually solving for water and energy balance makes it the most suitable option

for our modeling needs. I run DHSVM at a 20m resolution and at an hourly timestep.

DHSVM contains the following modules for calculating state and flux variables: an

energy and mass balance model for snow accumulation and melt, a two-layer canopy
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model for evapotranspiration from vegetation overstory and understory, a two-layer root-

ing zone model and a saturated subsurface flow model [Wigmosta, 1994; Zhao et al.,

2009]. The energy balance portion of the snow module calculates freeze, melt and heat

content, whereas the mass balance portion calculates accumulation and ablation, snow

water equivalent and water production [Wigmosta, 2001; Zhao et al., 2009]. Interaction

between grid cells does occur, where water exchange and convergence occur as surface

slope flow, route flow and soil moisture flow. Figure 2.1 portrays the flow of data, inputs

and outputs required for and produced from DHSVM.

FIGURE 2.1: Input files required to run DHSVM to produce model output.
Modules calculating state and flux variables for each timestep are not listed

here.

2.2 Study Area: Gordon Gulch, Boulder, Colorado

Gordon Gulch of the Boulder Creek Critical Zone Observatory (BcCZO) outside of Boul-

der, Colorado is the ideal location to test our hypotheses within the semi-arid upper mon-

tane zone. Gordon Gulch (Figure 2.2) is located in the Colorado Front Range of the Rocky

Mountains. The Gordon Gulch catchment includes an east-west oriented valley, carved
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by the east flowing Gordon Gulch stream, with north-south aspects. The catchment area

is 2.6 km2 with an average elevation of 2500 meters and total relief of 291 meters [Diek

et al., 2014]. Gordon Gulch is largely covered by evergreen forest. The north-facing slope

consists of dense Lodgepole pines, and the south-facing slope consists of widely-spaced

Ponderosa pines among grasses and shrubs [Diek et al., 2014]. Gordon Gulch experiences

large seasonal temperature differences, with a yearly mean temperature of 5.1oC. Precip-

itation totals, on average, 520mm per year, with an average snow fraction of 0.60 [Cowie,

2010; Burns et al., 2016] and annual runoff ratios between 0.08-0.23 [Boulder Creek CZO,

2011]. The valley is underlain by 0.5-1.2 meters of soil, categorized as sandy loam, loamy

sand and sand. Porosity of the soil ranges between 0.45 and 0.55 [Hinckley et al., 2012].

Below resides an intrusive igneous rock layer, consisting of granite, with gneiss outcrop-

pings [Diek et al., 2014]. Depth to saprolite is between 30-35cm on the south facing slope

and 40-45cm on the north facing slope [Diek et al., 2014; Hinckley et al., 2012; Befus et al,

2011].

One of most notable characteristics of the Gordon Gulch catchment is its prominent

aspect control. Previous and ongoing investigations have credited aspect control as the

underlying cause for differences in micro-topography, ecosystem dynamics, biogeochem-

istry, regolith thickness, soil composition, geologic weathering fronts, and melt season

preferential flow paths [Hinckley et al., 2012; Langston et al., 2015; Anderson et al., 2011;

Anderson et al., 2013; Gordon Gulch, 2011]. This known phenomenon allows for valida-

tion in natural differences between north and south facing hydrology.
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FIGURE 2.2: Gordon Gulch, the upper montane sub-catchment of the Boulder
Creek CZO located just west of Boulder, CO. Gordon Gulch has two on-site
meteorological stations and one streamflow gage. Surrounding the east-west
flowing stream are prominent north and south facing aspects, differing in

vegetation type and precipitation regime.

2.3 Data Inventory

2.3.1 Streamflow

Hourly and sub-hourly streamflow is reported in L/s from April 2010 to October 2013

[Zhang et al., 2018]. These data are determined from salt discharge injections ["Salt dis-

charge measurement", 2016] and corresponding stage data. Discrete streamflow measure-

ments are based off of Hongve [1987] and Kite [1993] due to low flows, where a known

mass (M) of salt (NaCl) is mixed with water until dissolved and injected into the stream.

Streamflow, Q, is then solved for using the following equation:
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M = Q
∫ 0

T
(Cr − C0)dt

M = mass of NaCl (in g)

Q = discharge in stream (m3/s)

T = duration of the salt slug in the of stream water (long enough to see concentration

or electrical conductivity of the stream rise to a peak, then fall back to baseline)

Cr = the concentration of NaCl in the river water

C0 = the background concentration of salts in the river water

These discharge data have corresponding stage data. The stage and discharge data are

used to create a rating curve for each water year. The rating curve is then used to convert

subsequent stage measurements to discharge measurements throughout the year. This

methodology inherently introduces uncertainty, as hydraulics in the stream channel can

cause the salt injections to become trapped and discharge to appear higher than actuality.

Channel sinuosity, vegetation, and the length of the chosen injection area affect stage

readings as well. I account for streamflow uncertainty by bounding the observed time

series by annual 95% confidence intervals [Surfleet et al. 2010; Kiang et al., 2018].

2.3.2 Meteorology

There are two meteorological stations within Gordon Gulch, one on the north and an-

other on the south facing slope. Additionally, there is a National Atmospheric Deposition

Program [NADP] station with a heated precipitation gage. The Gordon Gulch meteoro-

logical dataset spans from June 2012 to August 2018. I focus my work on water years

2011 through 2013, requiring data collection from nearby sources to gap-fill. Precipitation
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is reported as a combination of Sugarloaf NADP, Betasso met station, Gordon Gulch south

facing met station and Niwot Ridge C1 met station data. I create a linear relationship be-

tween C1 and Sugarloaf NADP data and gap-fill Sugarloaf data with precipitation values

informed by C1. Gap-filled Sugarloaf data are reported in the wintertime, from October

to May. Gordon Gulch south facing precipitation data are reported in the summertime,

from June to September, and gap-filled with Betasso met station data. I prioritize National

Land Data Assimilation System (NLDAS) data due to erroneous time series in the Gor-

don Gulch met station data. But I inform NLDAS with Gordon Gulch station data when

possible. NLDAS air temperature, wind speed, shortwave radiation, longwave radiation

and relative humidity are used and bias corrected against Gordon Gulch and Betasso met

station observations. I correct NLDAS air temperature with Gordon Gulch lower north

facing met station air temperature data. I correct NLDAS wind speed and shortwave ra-

diation with Gordon Gulch lower south facing met station data. I correct NLDAS relative

humidity with Betasso met station data. NLDAS longwave radiation is considered suffi-

cient for Gordon Gulch, given lack of additional observations. These data are reported on

an hourly timestep.

My warming simulation is forced with 10-year average end-of-century climate anoma-

lies generated by the Weather Research Forecasting (WRF) model [Gochis et al., 2013;

Powers et al., 2017]. WRF output is an average of 19 global climate models, simulating

“business as usual” warming. Based on historical data, WRF produces forecasting output

based on geographic information at a 4km grid resolution [Powers et al., 2017; Gochis

et al., 2013]. I combine change values from nine WRF output pixels. One pixel contains

the Gordon Gulch sub-catchment and eight pixels surround Gordon Gulch. Each pixel

represents a 10-year average of change values, and I take the average change value of the
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nine pixels. Change values for air temperature, relative humidity (derived from specific

humidity) and longwave radiation have been added to the historical meteorological file

to reflect warming. I hold precipitation constant in this experiment in order to isolate the

hydrologic mechanism of changing TWI seasonality. I calculate change values by:

Twrf = Thist + ∆Twrf

Where, Twrf is the predicted future air temperature, Thist is the historic air tempera-

ture, and delta Twrf is the change value between the 10-year average end-of-century WRF

simulation and historic data. This equation is applied to relative humidity and longwave

radiation as well (Figure 2.3).
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FIGURE 2.3: Air temperature, relative humidity and longwave radiation val-
ues generated from WRF end-of-century output. I gather change values from
nine WRF pixels. One pixel includes the Gordon Gulch basin and eight pixels
surround this central pixel. Time is on the x-axis and change values for each
variable are on the y-axis. Each gray line represents a 10-year change average
for one geographic pixel. The black line is an average of the 9 pixels. These
change values have been added to the historical meteorological file to reflect

warming.
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2.3.3 Snow depth

Eight Judd ultrasonic snow depth sensors are located within the Gordon Gulch sub-

catchment, four on the lower north facing slope and four on the lower south facing

slope. These sensors measure snow depth, relative to a snow-off depth measurement.

Sub-hourly data, every 15-minutes, are available from April 2010 to October 2013, with

gaps in time due to sensor malfunction. These data have been used to assist with de-

termining soil water content, snow distribution and snow water melt paths in the upper

montane zone [Hinckley et al., 2012; Langston et al., 2014; Williams et al., 2009]. I use

these depth data to compare modeled SWE timing and snow-on and snow-off days. I

overlay DHSVM SWE and average observed snow depth to look at trends between in-

creasing and decreasing snow presence. One average depth time series is calculated for

the sensors on the north facing slope and another time series is calculated for the sensors

on the south facing slope. I am limited in comparing SWE and depth, as Gordon Gulch

lacks consistent and spatially relevant snow pit density data to convert observed snow

depth to SWE. Similarly, DHSVM does not calculate snow density to convert simulated

SWE into snow depth. To objectively assess SWE and depth discrepancies, we calculate

snow persistence, the percent of days with snow over the entire timeframe. I calculate

an error of omission (number of simulated snow-off days where snow is observed) and

an error of commission (number of simulated snow days where no snow is observed) to

compare snow persistence between our simulation and the Gordon Gulch observations.

Lastly, one snow pole course exists across upper Gordon Gulch, where snow depth is re-

ported on weekly time steps [Williams et al., 2009]. I use these data for similar DHSVM

SWE and observed depth temporal comparisons at a higher elevation.
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2.3.4 Snow covered area

I use Landsat thematic mapper (TM) and ETM+ (Enhanced TM Plus) images to assess

snow covered area (SCA) during April 2010-October 2013. ETM+ has a swath width of

185 km, with a typical photo covering an area of about 34,000 km2. The sensor system

collects data in seven bands at resolutions of 30m for the visible, NIR and mid-infrared

spectral regions [Gul et al., 2017; Huang et al., 2011]. The wavelength range is from 0.45 to

12.5m. After May 2003, there was a scan line problem with ETM+ images, limiting their

use for image analysis [Gul et al., 2017]. Landsat imagery has been used to validate the

accuracy of the MODIS daily snow products and Landsat registered DEM data in moun-

tainous areas [Hall et al., 1995; Gul et al., 2017]. Most images were covered by clouds,

especially during winter. Only cloud-free images were used for snow covered area anal-

ysis. A total of 21 Landsat images were downloaded for snow covered area observation.

Six of these images have been used for higher detail analysis, one day from each winter

month was selected to compare with spatially distributed DHSVM SWE maps.

2.3.5 Soil moisture

CS616 water content probes have been installed at various depths on lower Gordon Gulch

north and south facing slopes [Hinckley et al., 2012]. Water content probes have been

placed on the north facing slope and two on the south facing slope. Each probe has been

installed to collect water content at roughly 5cm and 25cm into the ground surface at 10-

minute intervals. The probes collect data as volumetric water content (VWC) [Hinckley

et al., 2012; Diek et al., 2014]. Water content has been used to assess soil properties and

aspect control of water movement within Gordon Gulch [Hinckley et al., 2012; Diek et

al., 2014] and provide us with quality observed data for DHSVM comparison. I convert
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simulated percent soil saturation to volumetric water content by porosity, assigned as

0.46 for all three simulated soil layers [DHSVM, 2006; Hinckley et al., 2012]. I compare

the average simulated VWC for soil depths of 10cm, 25cm and 40cm against the average

observed soil VWC on the north and south facing slopes of Gordon Gulch.

2.3.6 Model input and output

A configuration file houses the path to several environmental input files, originating

from regional and national datasets. My historical meteorological dataset, described

above, forces long term climate and daily weather conditions within DHSVM. A 20-meter

Digital-Elevation-Model (DEM) is derived from a 2010 1-meter LiDAR dataset encom-

passing the entire Boulder Creek CZO [Gordon Gulch, 2011]. This dataset is up-scaled to

20-meters, cropped to the Gordon Gulch sub-catchment and represents the topography

of the catchment within DHSVM [Sharma et al., 2016]. The DEM provides the template

for hillshade, soil depth, watershed boundary and stream network input files, which use

topographic peaks and valleys to determine shading, depth and flow paths. Natural Re-

sources Conservation Service (NRCS) provides soil type classifications at a 30-meter res-

olution [Natural Resources Conservation Service Soils, 2018]. These classifications are

manually converted from the 18 NRCS soil classes to the predetermined 9 DHSVM soil

codes. The U.S. Geological Survey has developed a similar database for geology across

the U.S. The Colorado state geology shapefile has been reclassified to fit DHSVM specific

geology codes [USGS, 2018]. PRISM climate data is a set of 30m gridded data products

that informs DHSVM with spatial distribution patterns of meteorology [PRISM, 2018]. I

input monthly PRISM maps to spatially distribute our forcing file within Gordon Gulch.
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The input files combine to represent the makeup of Gordon Gulch within DHSVM.

The output files represent the inner-workings of the catchment, including mass balance

components, aggregated values and streamflow. For every timestep, DHSVM generates

all energy and water balance variables and fluxes within the catchment. These output

files are what we compare between control and warming simulations when I manipulate

the input files to simulate a warmer climate.

2.3.7 Parameters

DHSVM includes physical parameters that are both fixed and unfixed in the defined wa-

tershed space. Parameters unfixed in space include soil and vegetation characteristics,

which are defined differently across soil and vegetation type and depth to bedrock. Wig-

mosta et al. [2002] determined that roughly half of the unfixed model parameters are

sensitive within hydrologic simulations. Yao and Yang [2009] focused on five of these

parameters that most readily influence simulated evaporation, snow melt and run-off.

Of these five, my simulations were initially sensitive to four parameters, listed in Table

2.1. Minimum resistance is the minimum stomatal resistance for passing water to the

leaf sur- face for each vegetation layer (in s/m) [Wigmosta et al.,1994; Kaufmann, 1982;

Alexander et al., 1985; Hunt et al.1991]. Greater minimum resistance suggests less water

volume exiting the leaf and less water available for ET. Lateral conductivity is the rate of

water movement through a saturated soil (in m/s) [Brooks and Boll, 2004]. The greater

the lateral conductivity value, the greater the lateral water movement through the soil

surface. Decreased lateral conductivity suggests little movement through the soil surface

and more runoff above the surface [Brooks and Boll, 2004]. Exponential decrease is an

exponent for change of soil conductivity at depth within a soil [Brooks and Boll, 2004].
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A greater exponent indicates conductivity increases more rapidly with depth [Wigmosta

et al., 1994]. Lastly, porosity is a measure of the void spaces in a soil, the fraction of the

volume of voids to the total soil volume [Wigmosta et al., 2002]. The greater the soil

porosity, the more water flows through the soil volume. These four parameters effect wa-

ter availability on the vegetative or soil surface for ET or Q. Since I calibrate DHSVM to

streamflow, correct water allocation is imperative to capture Gordon Gulch streamflow

dynamics. From previous soil work in Gordon Gulch [Hinckley et al., 2012], vegetative

explorations in shrub and forested areas [Antonarakis et al., 2010; Pope and Treitz, 2013;

Brooks and Boll, 2004], and previous DHSVM calibration efforts [Wigmosta et al., 1994;

Yao and Yang, 2009], I have selected baseline values for our four parameters of interest.

TABLE 2.1: Optimized DHSVM parameters for Gordon Gulch sub-
catchment.

Parameter Unit Selected Value Typical value ranges
Minimum Resistance s/m 0.280 200 – 800
Lateral Conductivity m/s 0.001 10−5˘10−2

Exponential Decrease m−1 3.0 0 – 5
Porosity m3/m3 0.46 0.46 – 0.6

2.3.8 Calibration

I first perform a local sensitivity test, changing model vegetation and soil parameters in a

single, stepwise manner for the April 2010 to September 2013 timeframe [Du et al., 2014;

Song et al., 2015]. I test sensitivity by running full simulations with parameter values

ranging between 0.25 and 4 times the baseline value [Kuzmin et al., 2008]. I determine the

optimal parameter value by calculating the Nash–Sutcliffe model efficiency co-efficient
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between (NSE) simulated and observed streamflow [Nash and Sutcliffe, 1970]. NSE is a

normalized statistic that determines relative magnitude between simulated residual vari-

ance compared to observed variance, giving me a value between negative infinity and

1 [Krause et al., 2005; Nash and Sutcliffe, 1970]. The closer to 1 the NSE statistic, the

more identical the variance values and better performing the model simulation. NSE is

calculated using the following equation:

NSE = 1 − [∑
i=1

(Yi
obs − Yi

sim)2/ ∑
i=1

(Yi
obs − Yi

mean)
2]

Where Yi
obs is the ith observed streamflow value, Yi

sim is the ith simulated streamflow

value, Ymean is the mean of observed data for streamflow and n is the total number of

observations.

My stepwise sensitivity analysis allows me to narrow the range of parameter values.

I next complete Latin hypercube sampling (LHS) with near-randomly selected parameter

values [Muleta and Nicklow, 2005]. LHS, a type of stratified Monte Carlo sampling, se-

lects n random values for each parameter within a given range [van Griensven et al., 2005;

McKay et al., 1979; McKay, 1988; Manache and Melching, 2004]. I run 10,000 model sim-

ulations, each with a different combination of the four parameters, to further investigate

parameter sensitivity and optimal parameter values [Du et al., 2014].

2.3.9 Limitations

The complexity of DHSVM inherently introduces uncertainty by exceeding the available

data to force and validate the model. Fixed and unfixed parameters attempt to repre-

sent an intricate and dramatic landscape and capture environmental micro-dynamics and
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interactions. However, each parameter introduces an assumption about the landscape,

where I often lack observed data [Stewart et al., 2017; Wigmosta, 1994; Du et al., 2014;

Zhao et al., 2009]. This is particularly true with soil parameters, where porosity and field

capacity are often known only to a range of values.
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Chapter 3

Results

3.1 Model Performance

Of my four parameters of interest, lateral conductivity proves most sensitive within my

step-wise model calibration simulations. The catchment becomes highly sensitive to wa-

ter input as I incrementally increase and decrease lateral conductivity. Only slight in-

creases in lateral conductivity create subdued responses in streamflow where the majority

of the incoming water is absorbed into the soil. Alternatively, slight decreases in lateral

conductivity create flashy responses, where incoming water immediately runs off the sur-

face and does not enter the soil. I see this reflected in NSE values. In Figure 3.1,higher

NSE values on the y-axis cluster toward the center of the x-axis. I further investigate

this trend through Latin-hypercube sampling and narrow the parameter value range Fig-

ure 3.2. Here, I find that 0.001 (m/s) is the most optimal lateral conductivity value. Model

simulations appear otherwise insensitive to the remaining parameters, suggesting large

uncertainty within the forcing data (Figure 3.1).
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FIGURE 3.1: The results of my step-wise sensitivity test. NSE, on the y-axis,
provides a metric for model performance: the higher the NSE value, the bet-
ter the model performance and thus the more optimal the parameter value
(x-axis). The combination of highest performing individual values results in
the overall best performing version of DHSVM. Lateral conductivity is the

only sensitive parameter I have tested.
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FIGURE 3.2: The results from narrowing the range of parameter values for
lateral conductivity within Latin-hypercube sampling. I find that a lateral
conductivity value of 0.001 creates the local the regional maximum NSE

value.
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After completing the calibration process, I move forward with a version of DHSVM

that generates an NSE value, between observed and simulated streamflow, of 0.643. This

statistic is consistent, if not higher, than previous work with DHSVM. Surfleet et al. [2010]

used DHSVM for forest road and streamflow modeling in western Oregon, exceeding an

NSE of 0.5 only 12% of the time. Van Wie et al. [2013] used the model for agricultural

investigations in Washington and Idaho, obtaining NSE values of 0.5-0.69. Model per-

formance was highest, 0.91, in watersheds where the model originated [Wigmosta and

Burges, 1997] and was comparable to my output modeling work in surrounding moun-

tainous regions, 0.57-0.88 [Beckers and Alila, 2004; Thyer et al., 2004). Surfleet et al. [2010]

stated an NSE greater than 0.5 is acceptable for DHSVM calibration, to which I exceed and

accept with known limitations.

These experimental limitations include previously mentioned forcing data uncertainty,

methodology uncertainty, as well as a relatively short dataset for comparison (three wa-

ter years) in an extremely small catchment with low streamflow [Surfleet et al., 2010].

Figure 3.3 shows the stage discharge data used to generate 95% confidence intervals

around the observed streamflow data, where there is high uncertainty at both low and

high observed flows (Figure 3.4) [Kiang et al., 2018]. Generally, DHSVM captures timing

of Gordon Gulch peak flows but not magnitude. DHSVM simulates lower peak flows

than observed. Additionally, the model simulates rising peak streamflow earlier than ob-

served and falling peak streamflow later than observed. Flashy rain events, those that

generate high and immediate runoff, are captured in both observed and simulated data.

Overall, DHSVM generates more streamflow than is observed, despite missing peak flow

height. Observed runoff ratio is 0.16, simulated is 0.32. Much of the overestimation is
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captured through observed streamflow uncertainty, where runoff ratios range from 0.11-

0.23. I seek non-numerical validation and ensure that, despite streamflow uncertainty, the

model captures topographic controls between the north and south aspects.

FIGURE 3.3: Annual relationships between Gordon Gulch stage, the height of
water, on the x-axis and discharge, the rate of streamflow, on the y-axis. Gen-
erally, as stage increases, discharge increases, portraying a positive relation-
ship. The scatter among these data suggest uncertainty, to which I quantify

as annual 95% confidence intervals in Figure 3.4.
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FIGURE 3.4: A streamflow time series with time on the x-axis and stream-
flow (in m3/day) on the y-axis. Observed Gordon Gulch streamflow (black)
bounded by 95% confidence intervals (gray) and DHSVM simulated stream-
flow (red). The NSE value comparing bounded observed streamflow and
simulated streamflow is 0.643. The observed runoff ratio is 0.16, with an un-

certainty range from 0.11 to 0.23. The simulated runoff ratio is 0.32.

3.1.1 SWE and SCA

It is known that SWE and SCA differ across the north and south facing aspects of Gordon

Gulch [Hinckley et al., 2012; Williams et al., 2009; Anderson et al., 2011; Anderson et al.,

2013]. Figure 3.5 shows differences in simulated SWE and observed depth between the

north and south facing slope. Greater SWE and depth persist on the north facing slope

than the south facing slope. Both slopes show similar trends in snow presence between

observed and simulated data. For example, on the south facing slope a snow event occurs

in February 2011 where both SWE and depth increase quickly, persist for a few days and

decrease at a slower rate. The same trends occur during snow events in November and

December 2011. On the north facing slope, snow trends align between simulated SWE
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and observed depth during a February 2011 snow event and throughout the 2012 snow

season (November 2011 to April 2012). The same trends occur during snow events in

November and December 2011. On the north facing slope, snow trends align between

simulated SWE and observed depth during a February 2011 snow event and throughout

the 2012 snow season (November 2011 to April 2012).

Similarly, snow persistence is greater on the north facing slope than the south facing

slope in both the simulated and observed data. Snow persistence is greater within ob-

served data on both the south and north facing slopes than simulated data. South facing

simulated snow persistence is 21% , observed is 33% . North facing simulated snow per-

sistence is 36%, observed is 58%. Our south facing error of omission is 16% of all snow

days and error of commission for 10% of all non-snow-cover days. Our north facing error

of omission is 25% of all snow days and error of commission is 4% of non-snow-cover

days. Collectively, these data reveal that simulated SWE trends follow those of observed

snow depth in timing and magnitude. Consistent discrepancies appear as the model un-

derestimates snow presence. While I do not calculate snow persistence for discrete snow

pole data, we do see similar temporal alignment between north and south facing snow

pole observations and DHSVM output at this location (Figure 3.6).
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FIGURE 3.5: A time series of observed snow depth and modeled SWE in
Gordon Gulch. Average snow depth sensor observations (black) are overlaid
with simulated SWE output (blue) on both south and north facing slopes of
Gordon Gulch. The x-axis of each plot is time (April 2010 to October 2013)
and the two y-axes represent depth in cm (snow depth on the left, SWE depth
on the right). Snow presence, accumulation and melt trends appear similar
between both datasets. With insufficient observed or simulated snow density
data, I compare only temporal patterns here. The north facing slope, in both
simulated and observed data, has more snow accumulation than the south
facing slope. Generally, a snowpack persists on this slope, versus intermit-
tent accumulation and ablation on the south facing slope. On the south facing
slope, we see similar increases and decreases in snow depth and SWE dur-
ing snow events in February 2011 and November and December 2011 into
February 2012. Similarly, we see corresponding increases and decreases in
snow between simulated SWE and observed depth on the north facing slope

during February to April of 2011 and the entire 2012 snow season.
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FIGURE 3.6: Observed south and north facing snow depth and DHSVM sim-
ulated SWE at Gordon Gulch upper snow pole site. The x-axis represents
time and the y-axes represent depth (upper two panels) and SWE (bottom
panel) in cm. Within observed depth measurements, points represent the dis-
crete depth measurements and the line represents average depth. This site is
higher in elevation than the previous snow depth sensors. Consequently, we
see slightly higher observed depths and simulated SWE values here than on
the lower north and south facing slopes. The 2012 snow season in particular,
November 2012 to May 2012, temporally aligns in accumulation and ablation
with the north facing snow pole measurements. Despite very discrete depth
observations limiting our temporal comparison, we see general alignment in

timing and magnitude within the simulated SWE.

Figure 3.7 shows discrete Landsat7 TM and ETM+ SCA observations and simulated

SWE distribution maps from winter months during our timeframe of interest. The SCA

and SWE data reveal greater snow accumulation in the upper portion of Gordon Gulch.

This can be seen across the first three winter dates. Modeled SWE shows obvious con-

trasts between north and south facing slopes of Gordon Gulch that are also seen in ob-

served SCA on March 20, 2013. Generally, the comparisons between Landsat and DHSVM

output are difficult to make, though some qualitative similarities in the spatial patterns

indicate that the model is capturing portions of the snow spatial variability in Gordon

Gulch.
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FIGURE 3.7: Landsat SCA imagery (left column) and DHSVM SWE output
(right column) for coinciding winter dates. Each image is a discrete obser-
vation. Darker shading indicates greater SCA or SWE. Error lines exist in
LandSat7 data. While comparisons are limited to qualitative assessments,
we see trends in snow on and off, especially between the upper portion of

Gordon Gulch and the lower portion.
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3.1.2 Soil moisture

I assess soil moisture as my next form of model validation. Figure 3.8 shows soil moisture

at three simulated soil depths with the average observed soil moisture of four soil plots

across Gordon Gulch. Observations and model estimates of volumetric water content

(VWC) on north and south facing aspects exhibited significant similarity. Across both

aspects of Gordon Gulch, simulated VWC increases earlier in the winter to spring seasons

compared to the observed VWC, particularly at 10cm and 25cm. The 40cm simulated soil

layer appears to emulate deeper base flow. At this depth, seasonal increases occur far

later than observed soil layers. However, the magnitudes of VWC across observed and

simulated soils are similarly very dry, with VWC values below 0.2, throughout the year

[Hinckley et al., 2012].
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FIGURE 3.8: Average volumetric water content between three simulated soil
layers (colored lines) and various depths across four soil plots within Gordon
Gulch. Magnitude of VWC and dryness are similar between simulated and

observed soils, though timing of moisture peaks differs seasonally.

3.2 Control and WRF simulations

The first step in investigating streamflow response to warming through DHSVM is to

evaluate the differences between the control and warming simulations. Figure 3.9 por-

trays a time series of modeled SWE, TWI, cumulative TWI, and PET for the control and

warming scenarios. In the control simulation Figure 3.9a, the snow fraction is 0.36 with

a prominent SWE accumulation every snow season. Maximum SWE is 49mm in 2011,

81mm in 2012 and 53mm in 2013. TWI seasonality reflects direct precipitation events and

snowmelt. PET also reflects seasonality and is low during the wintertime and high during

the summertime. PET averages 647mm per year. The warming simulation, Figure 3.9b,

reflects a decreased snow fraction of 0.31 with significantly decreased SWE accumulation.

Maximum SWE is 42mm in 2011, 22mm in 2012, and 31mm in 2013. TWI seasonality and

PET seasonality are still present. PET averages 955mm per year.
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FIGURE 3.9: The DHSVM hydrologic output from the controlled and warm-
ing simulations. On the x-axis is time and on the y-axes are mm of precipi-
tation, SWE, TWI, cumulative TWI and PET. (a) reflects the controlled simu-
lation. Incoming precipitation reflects a snow fraction of 0.36 over the entire
time period. SWE accumulation is prominent over every snow season. TWI
reflects rainfall and melt events and cumulative TWI is a sum of all TWI over
the time period. PET reflects seasonality, with the higher PET values in the
summertime. In our control simulation, high water supply (TWI as rainfall
and snowmelt) corresponds with high water demand (PET) in late spring and
summer months. Conversely, (b). reflects the warming simulation. Under
warmer conditions, there is a reduced snow fraction of 0.31. SWE accumu-
lation is less prominent than the controlled simulation. TWI still reflects the
rainfall and snowmelt events, but these events are shifted toward earlier in
the water year. PET remains seasonal. In the warming simulation, high water
supply (TWI as rainfall and snowmelt) now occurs more evenly throughout

the year and is no longer aligned with high water demand (PET).

Total TWI in control and warming scenarios were the same, yet TWI seasonality changes

as shown in Figure 3.10. A shift in TWI seasonality is apparent in the warming scenario

with increased TWI in winter and spring months; more rain and melt events occur earlier
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in the water year. This is also a time of relatively low PET. In the spring and summer, the

control simulation experiences a large input of TWI from snowmelt and TWI increases

more rapidly than the warming simulation. The timing of this spring TWI pulse is also

a time of year with relatively high PET. This temporal shift in TWI between control and

warming scenarios occurs across all three water years.

FIGURE 3.10: The top panel portrays daily TWI in the controlled (light green)
and warming simulations (dark green). TWI is greater in the warming simu-
lation during winter and spring months. The increase coincides with greater
rain and melt events occurring in the wintertime. Conversely, TWI is much
greater in the control simulation during late spring, when a large snowmelt
event occurs. The bottom panel shows this difference in TWI by subtract-
ing control TWI from warming TWI. When TWI difference is positive (dark
green), warming TWI is greater than control TWI. When the TWI difference
is negative (light green), control TWI is greater than warming TWI. Similarly
to the top panel, areas of positive difference are concentrated in the winter
months and areas of negative difference are concentrated in the late spring

months.
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Figure 3.11 reflects the monthly differences in the water balance between the control

and warming scenarios. During all months, the difference between warming and control

PET is a positive value, revealing a continual increase in PET under warmer conditions.

During most months, the difference between warming and control ET is also positive,

with exceptions in June 2010, July 2010, August 2010, June 2011, July 2011, August 2011,

May 2012, June 2012, August 2012, June 2013, and August 2013. These months, primar-

ily summer months, reveal decreases in ET in the warming simulation. During most

months, the difference between warming and control Q is negative, reflecting an overall

decrease in streamflow. Exceptions to this behavior occurred in February 2011, March

2012, February 2012, January 2012, and March 2013. These months, primarily winter and

spring months, reveal increases in Q in the warming simulation. On an annual average,

the warming simulation decreases Q by 31mm, 37% of total annual runoff. However, an-

nual increases in Q average 11mm, 13% of total annual runoff. Monthly increases in Q,

under warming conditions, were associated with increased seasonal TWI, water supply,

during winter months when evaporative demand (i.e. PET) was relatively low.
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FIGURE 3.11: The differences in PET, ET and Q between control and warm-
ing simulations. By subtracting the PET, ET and Q values of the control sim-
ulation from the warming simulation, there is a continual increase in PET,
general increase in ET and general decrease in Q. However, ET decreases in
summer months and Q increases in winter and spring months. These trends
coincide with differences in seasonal TWI, when rain and melt events are oc-
curring more regularly during the winter in the warming simulation. The
overall Q decrease is lessened by seasonal increases from high water supply

(TWI) during a time of low water demand (PET).
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I return to the Budyko framework to assess my annual and monthly results from Fig-

ure 3.11.The control simulation has an aridity index of 1.0, evaporative fraction 0.60 and

runoff ratio of 0.36. The warming simulation has an aridity index of 1.4, evaporative

fraction of 0.66 and runoff ratio of 0.28. Figure 3.12 shows that response in evaporative

fraction due to a change in the aridity index from the control simulation to the warming

simulation does not follow the slope of Budyko’s expectation. The expectation is depicted

as a hollow point in Figure 3.12. Instead, the evaporative fraction of the warming simu-

lation falls below the expectation, increasing the anomaly from the Budyko curve. This

evaporative fraction within the warming simulation reveals a reduced overall increase in

ET and reduced overall decrease in Q, relative to the expected value based on the Budyko

framework. As discussed in the next section, a reduced sensitivity results from a shift in

TWI timing associated with warming.
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FIGURE 3.12: The evaporative fraction and aridity index of the control simu-
lation (black), expected warming behavior (hollow) and warming (red) sim-
ulation. The hollow point represents an increase in ET due to PET, induced
by a simulated warming, along the expected Budyko curve. The red point
reveals a dampened increase in ET and, in turn, a reduced decrease in Q.
The reduced movement of the warming simulation creates an anomaly from
the Budyko curve. These reductions in hydrologic partitioning are associated

with misalignment of water supply (TWI) and water demand (PET).
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Chapter 4

Discussion

Overall, there is an increase in ET and a decrease in Q between the control and warming

simulations within Gordon Gulch from April 2010 to October 2013. This reveals, hold-

ing all other environmental variables constant, an annual average streamflow decrease of

31mm, or 37% of total streamflow. This result is consistent with several previous studies:

"business as usual" climate warming is predicted to decrease Q up to 17% by 2100 in the

entire Colorado Basin [Christensen et al., 2004]. The entirety of western North America

is predicted, by climate model ensembles and VIC, to decrease in runoff by 10-30% by

2050 [Milly et al., 2005; Christensen and Lettenmaier, 2007]. Conversely, global climate

models have predicted a mean runoff increase of 2.9% per 1oC of warming [Zhang and

Tang, 2014]. However, streamflow increases in the climate and earth system models at

global [Zhang and Tang, 2014] and regional [McCabe and Wolock, 2016] scales incorpo-

rate additional independent variables, including changing precipitation and vegetation

properties [Schilling et al., 2008]. Furthermore, these previous assessments of streamflow

change under warming conditions do not additionally assess mechanisms for streamflow

change.

Monthly analyses and isolation of climate warming effects isolate the mechanism for
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streamflow change in warming environments. Foster et al. [2016], separated mechanisms

of increased ET and precipitation phase change and determined that increased ET de-

creases Q at a larger magnitude. Hamlet and Lettenmaier [1999] saw overall decreases

in streamflow but with wintertime increases, consistent with our monthly analysis of

streamflow change in Gordon Gulch. And Berghuijs et al. [2014] suggested that annual

decreases in streamflow across hundreds of watersheds in the United States correspond

to decreased snow fraction [Berghuijs et al., 2014]. Yet within snow-dominated catch-

ments, there remains a need to decipher the quantitative effects of individual climate

warming components. This is a particularly critical need within the upper montane zone,

where there is a high sensitivity to hydrologic change induced by warming [Marks et al.,

1998]. The upper montane zone remains vulnerable to small changes in energy creating

large changes in annual hydrologic resources [Marks et al., 1998]. My analysis in Gor-

don Gulch, of the Colorado Rocky upper montane zone, isolates the mechanistic effects

of warming and subsequent changes in precipitation phase to understand future changes

in hydrologic partitioning under increased atmospheric demand (PET) and altered TWI

seasonality (the timing of rainfall and snowmelt).

Monthly changes in PET, ET and Q, fluctuating in sign and magnitude over different

seasons, and reduced vertical change along the Budyko curve suggest reduced sensitiv-

ity in ET and Q between the control and warming simulations relative to rain-dominated

catchment. In the warming simulation, streamflow increases in winter and spring months,

when the snow season has shortened, the snow fraction has decreased, and rainfall and

melt events are occurring more frequently during these seasons. Instead of a large pulse

of water input after the snowmelt season, direct precipitation and melt events spread the

water input across a longer period of time. The original presence of snow in the control
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simulation allows for a change in precipitation phase, thereafter changing TWI timing,

the timing of rain and snowmelt events. With climate warming, streamflow is sensitive

to both increased PET and changing TWI timing, where increased PET acts to decrease

Q but earlier TWI pulses acts to increase Q. Under warmer conditions, TWI increases in

the winter when PET is low, decoupling water supply (TWI) and water demand (PET),

and increasing winter and springtime runoff. Snowfall and the presence of a persistent

snowpack buffers and offsets the overall decrease in Q due to simulated warming.

This outcome is echoed within the Budyko framework, where we see a smaller in-

crease in ET due to a change in PET than expected along the Budyko curve. Instead of

following the Budyko curve, represented by the hollow point in Figure 3.12, the warming

simulation (red point) increases along the vertical axis at a reduced magnitude. This

suggests that ET is less sensitive than expected to changes in PET. I associate the lower

than expected increase in ET to a shift in the timing of TWI which acts to increase Q in

winter and early spring, and decrease ET in summer months due to water limitation.

This behavior occurs because TWI inputs, the catchment water supply, are shifted earlier

in the spring when PET, the catchment water demand, is relatively low and hence the

partitioning of TWI to Q during this time period is relatively high.

I determine that streamflow generation will decrease under simulated warming con-

ditions, as a sum of the effects of increasing PET and changing TWI, consistent with pre-

vious studies focused on runoff and evapotranspiration sensitivity to climate warming

[Foster et al., 2016; Berghuijs et al., 2014; Goulden and Bales, 2014]. I isolate the effects of

changing TWI seasonality on streamflow generation through monthly ET and Q analysis

and comparison within the Budyko framework, while holding all remaining environ-

mental model variables constant. This simulated shift in TWI timing predicts significant
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changes in timing and amount of water resources within the upper montane zone: a re-

sult unique to snow-dominated systems and therefore with important implications for

snow-dominated systems globally.
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Chapter 5

Conclusion

Mountain snow is as an essential hydrologic resource for downstream communities glob-

ally. Within a warming simulation, the upper montane zone snow-fraction decreases,

changing the hydrologic partitioning, rain events and snowmelt events, of the catchment.

In Gordon Gulch, this means an annual decrease in streamflow of 37% with a seasonal

13% increase in streamflow during winter and spring months. I use DHSVM to simu-

late the sensitivity of evapotranspiration and streamflow under climate warming. Using

the Budyko framework to reveal the effect of warming on hydrologic partitioning I show

that reduced increases in ET and reduced decreases in Q are expected relative to rain-

dominated systems. In this context, I show that hydrologic partitioning of Gordon Gulch

is affected by increases in PET and changes in precipitation type and TWI associated

with warming. Warming acts to both increase PET and ET and reduce the seasonality in

TWI. Reduced TWI seasonality, in turn, acts to increase Q during winter and early spring.

Hence, the presence of snow and associated changes in TWI offset the overall decrease in

Q compared to a rain-dominated system, where TWI seasonality would not change with

warming. This buffering effect has large implications for water resource management.

Further modeling and observation-based studies are needed.
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