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Abstract

Generational techniques have been very successful in reducing the impact of garbage collection algo-
rithms upon the performance of programs. However, it is impossible for designers of collection algorithms
to anticipate the memory allocation behavior of all applications in advance. Existing generational col-
lectors rely upon the applications programmer to tune the behavior of the collector to achieve maximum
performance for each application. Unfortunately, because the many tuning parameters require detailed
knowledge of both the collection algorithm and the program allocation behavior in order to be used
effectively, such tuning is difficult and error—prone. We propose a new garbage collection algorithm that
uses just two easily—understood tuning parameters that directly reflect the maximum memory and pause
time constraints familiar to application programmers and users.

Like generational collectors, ours divides memory into two spaces, one for short-lived, and another
for long-lived objects. Unlike previous work, our collector dynamically adjusts the boundary between
these two spaces in order to directly meet the resource constraints specified by the user. We describe
two methods for adjusting this boundary, compare them with several existing algorithms, and show
how effectively ours meets the specified constraints. Our pause-time collector saved memory by hold-
ing median pause times closer to the constraint than the other pause—time constrained algorithm and,
when not over—constrained, our memory—constrained collector exhibited the lowest CPU overhead of the
algorithms we measured yet was capable of maintaining a maximum memory constraint.

1 Introduction

As object—oriented languages such as C++ become more popular, more programmers are making heavier
use of dynamic storage allocation. Garbage collection is a useful feature of programming languages because
it allows the programmer to allocate storage dynamically without having to worry about reclaiming the
storage omnce it is no longer being used. Although program development is easier with garbage collection,

the resulting programs may have unacceptable performance when the memory usage patterns do not match
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those anticipated by designer of the garbage collection algorithm used. The result is that programs may fail
to complete because of memory exhaustion, excessive CPU overhead, or unacceptably long disruptive pauses
while the garbage collector runs.

Generational garbage collection algorithms provide a partial solution to these performance problems. By
making use of the observation that most dynamically allocated objects cease to be used very shortly after
their creation [16, 8, 17, 3], generational collectors reduce pause times by reclaiming storage for recently
allocated objects more often than older objects. The success of generational collection algorithms is evinced
by their frequent use in language environments that require automatic storage reclamation [7, 1, 9, 4].

Despite their success, generational collectors must be tuned for applications that use memory differently
than anticipated by the collector’s designer. Typically tuning functions are provided that are expressed in
terms of the operation of the garbage collector rather than the resource constraints and requirements of the
application. For programmers not familiar with them, tuning generational garbage collectors is complex
and time—consuming because determining how each of the tuning parameters affect resource consumption
is difficult. To make matters worse, the application’s programmer may not know the resource constraints
under which the final program may be run by the user. For example, a compiler developer often knows
neither the size of the program being compiled nor the memory available, nor even the relative importance
to the user of speed versus memory consumption.

We propose a new garbage collection algorithm that is easily tuned to directly meet the resource con-
straints specified by the programmer or user. Like generational collectors, ours divides memory into two
spaces, one for short-lived, and another for long-lived objects. Unlike previous work, our collector dy-
namically adjusts the boundary between these two spaces depending upon how well the specific resource
constraints are being met.

For example, generational garbage collection trades increased space for reduced pause times by reclaiming
only the portion of memory containing short-lived objects. The smaller this portion, the shorter the pause
times, and the more memory is wasted by unused long-lived objects that are not reclaimed (tenured garbage).

We would like to allow the user to select which is more important, reduced memory use, or shorter pause



times. Our algorithm does this by taking either a memory or pause—time constraint, and using it to select
the size of the short-lived memory area based upon how well the constraint has been met so far during the
current execution of the program.

This paper will describe our Dynamic Threatening Boundary algorithm, compare it to previous work, and
present performance measurements. First, we discuss the previous work upon which this algorithm is based.
Next, we introduce our model of garbage collection and use it to describe the details of our algorithm. Then,
after discussing simulation methods, we present performance comparisons against other algorithms and show
how well our algorithm met imposed resource constraints. Finally, we conclude with some observations about

how these results may be used to improve future garbage collection technology.

2 Related Work

Generational algorithms [12, 14, 13] have proven successful at reducing the pause times and page fault rate
of garbage collection [4, 6, 14]. Our work is based upon a formalization developed by Demers et al [6]. Their
generational Collector II used a threatening boundary to divide memory into a threatened space for new
objects, and an immune space for old objects, which were collected less frequently. In order to compare with
non—generational algorithms, their collector modeled only classic generational collection by always setting
the threatening boundary to the time of the previous collection. Our algorithm expands upon theirs by using
a new policy which dynamically adjusts the threatening boundary to limit resource consumption.

One important policy for all generational collectors is when to promote objects from threatened space to
immune space. Typically objects are promoted only after a fixed number of collections, specified as one of the
tuning parameters made available to the application programmer. Ungar and Jackson [15] found that object
lifetime distributions vary from one program to the next and often change as a program executes, showing
that a fixed-age promotion policy will often be inappropriate. Instead, their Feedback Mediation collector
promoted a number of objects only when a pause—time constraint was exceeded. Their simulations showed
Feedback Mediation was successful at limiting pause times and how memory usage increased as the pause—

time constraint was reduced. This increased memory use, called tenured garbage, is caused by premature



promotion of objects into the immune space when the collector must maintain a given pause-time. Unlike
their algorithm, ours reduces tenured garbage by allowing objects to be demoted back into threatened space
later when the pause—time falls. Additionally, we allow a memory—constraint policy to be used instead if the
user so desires.

Wilson and Moher’s Opportunistic Collector [16] allocates objects created since the last collection in
chronological order in memory. By selecting an appropriate address, only objects allocated since a specific
time may be selected for promotion. However, once their collector has reclaimed objects from this new—object
area, a different promotion policy must be followed because surviving objects are no longer in chronological
order. Our algorithm preserves the object’s allocation time for all objects, not just new ones, so ours may
select ages among the surviving objects as well.

Like generational collection, our algorithm uses age as an indicator of when objects are most likely to
die. When age is not a reliable indicator of garbage other methods must be used. Hudson and Moss [10]
describe a Mature Object Space that is collected incrementally based upon object connectivity rather than
age. Likewise, Hayes [8] showed that when certain Key Objects die, they may indicate other unused ones as
well. Like generational collectors, ours could remove objects from age—based collection by promoting them

to Mature or Key Object Space, where they would be collected by other algorithms once they age enough.

3 Background

A program initially has a number of live objects contained in an allocated set which grows as new objects
are created as the program runs. Each object is created by allocating storage from the heap, and storing a
pointer to it in one of the existing live objects. Eventually, all pointers to a set of objects may be overwritten
and they become unreachable. When it is desirable to reclaim storage, a garbage collection is invoked and we
say the collector scavenges the allocated set to find unreachable objects by tracing them and then reclaims
the unreachable ones.

Tracing begins by identifying the root set, the set of all non-heap pointers into the heap. Root pointers

may be stored in global variables, on the stack, or in registers; that is, in all objects directly reachable by the



program. Next, all heap objects pointed to by the root set are added to a set of reachable objects, either by
marking them, or copying them to a reachable object space. Then, each new reachable object is examined for
heap—pointers that are added to the original root set and the process repeats. Once all the reachable objects
have been visited, the collector removes all the unreachable objects from the allocated set and reclaims their
storage either by scanning storage for all unmarked objects, or by reclaiming all the storage at once in the
case of a copying collector.

Generational collectors minimize the number of times each reachable object is traced during its lifetime
by tracing old objects less frequently than young ones; once an object survives a few scavenges, it is likely to
survive many more. Storage surviving several scavenges is promoted to the next older generation and only
the youngest generation is scavenged at every collection. Successively older generations are scavenged less
frequently because they grow more slowly and so longer-lived objects have more time to become unreachable.
Tuning parameters select when to scavenge each generation and then number of scavenges an object must
survive before being promoted.

In order to avoid having to trace objects in older generations for pointers into the scavenged generation,
generational collection assumes that pointers from older objects to younger objects are rare. Such forward-
in—time pointers into each generation are maintained explicitly in a collector data structure, the remembered
set, that becomes an extension of the root set when that generation is scavenged. When a pointer store
occurs to an object in a generation and points to an object in a younger one, the pointer location is added to
the remembered set for the younger generation. Tracking such stores is called maintaining the write barrier.
Stores from young objects to old ones are not explicitly tracked. Instead, whenever a given generation is
collected, all younger generations are also collected.

Designers of generational collectors must also establish the appropriate size, and number of generations.
The collector must determine how frequently to scavenge each generation; more frequent collections reduce
memory requirements at the expense of increased CPU time because space is reclaimed sooner but live objects

are traced more frequently. The space required by each generation is strongly influenced by the promotion



and scavenge policies. The effectiveness of all of these policies depends strongly upon the assumptions made
by the designer about the allocation behavior of the programs using the collector.

The success of generational collection depends upon many aspects of program behavior. If older gener-
ation objects consume lots of storage, their lifetimes are long, they contain few pointers to young objects,
pointer stores into them are rare, and many objects die at a far younger age, then generational collectors
will be very effective. But, for some programs, which violate the policy decisions made by the collector
implementor, performance may be unacceptable. Only the application programmer (or worse, the user) can
identify these specific cases, and then he or she must learn about all the policy decisions described in the

previous paragraph in order adjust each tuning parameter appropriately for their application. ®

4 A Dynamic Threating Boundary Collector

Demers et al [6] have provided a useful formal framework for modeling generational garbage collection algo-
rithms. As mentioned, their model partitions the object space into threatened and immune sets. Threatened
objects are those that the collector traces to find unreachable objects and reclaim them. Immune objects
are ones that will not be traced on this collection. The selection criteria for these sets distinguishes various
collection algorithms.

Consider how a traditional generational collector selects its threatened and immune sets. The threatened
set contains those objects that have survived fewer than a specified number of collections—typically one or
two [16, 1, 7]. The root objects and all objects in older generations are immune. The threatening boundary
divides the young threatened objects from the old immune objects. Each time the garbage collector is
invoked, its policy sets the threatening boundary to the time of the kth previous collection, where k is a small
integer constant determined by a tuning parameter supplied by the application programmer. Scavenging the

mth older generation corresponds to temporarily choosing a threatening boundary to the age corresponding

1 One LISP manual [7] uses 27 pages to describe how to use various tuning parameters such as: auto-step, newspace, oldspace
initial_oldspace, current-generation, tenure-limit, generation-spread, free-bytes-new-pages, free-percent-new, quantum, tenure,
and tenured-bytes-limit.



to a the mth previous generation boundary. Generation boundaries simply constrain the set of allowable
threatening boundaries.

Our algorithm eliminates generation boundaries. Instead, an explicit threatening boundary is established
at the beginning of each collection. This boundary allows the collector to be much more flexible in choosing
policies for selecting the threatened set. If the collector can arrange to be more effective, scavenging only

objects that are most likely to be garbage, collection costs may be reduced.
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root
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Figure 1: Dynamic Threatening Boundary vs Generations
The generational collector above divides memory into two generations, one young and one old. The dynamic
threatening boundary collector adjusts a threatening boundary that may move between scavenges, say from

TBpmin to TB. Objects are shown ordered by age for exposition only; the actual implementation may
maintain object locations in any order.

Figure 1 illustrates how the dynamic threatening boundary collector compares with generational collec-
tors. This figure shows a memory space divided into two generations. Time proceeds from youngest objects
at the top of the page to the oldest at the bottom; the objects (in rectangles) are labeled in sequence of their
allocation time. Arrows (labeled in lower case), indicate pointers between objects; heavy arrows indicate

forward—in—time pointers.



For a generational collector, only pointer f must be recorded by the remembered set for Generation 0
because otherwise object F' would be incorrectly deallocated by a scavenge of Generation 0. While the
garbage objects B and E would be scavenged, objects I, J, and F would not; they are tenured garbage. Object
F illustrates the phenomenon of nepotism: it remains alive even though it is threatened and unreachable
because the tenured garbage points to it. Notice that once promoted, tenured garbage requires a complete
scavenge of its generation to be reclaimed, in this case, Generation 1. A non-generational collector always
collects all generations and so would collect all the garbage objects (B, E, F, I, and J) at the cost of tracing
the entire memory space.

For the dynamic threatening boundary collector, a threatening boundary (shown by a dashed line at
T Bumin), divides the memory into threatened and immune spaces. Because the threatening boundary can
be changed at the beginning of each scavenge, all forward-in—time pointers must be maintained in a single
remembered set (pointers d, k, and f). At scavenge time only pointers that cross the threatening boundary
are traced (pointer d). Pointer @ need never be recorded because the threatening boundary will never be
placed younger than T By, (it makes no sense for the collector to make almost all the objects immune). On
a later scavenge, the collector is free to choose a different threatening boundary to any time desired, say at
TB. Unlike the generational collector, objects I, J and F become untenured, and will be reclaimed. Object
K remains alive because pointer k references it from the remembered set.

As mentioned earlier, several policy decisions must be made by any generational collector: which gener-
ations to scavenge, the sizes of the generations and when objects are promoted from one generation to the
next. The complex tuning parameters of generational collectors ultimately serve to answer just one question:
what to collect. Once you establish what to collect, you must still decide when to collect.

These two issues are orthogonal, but since both cause time/space tradeoffs of a similar nature, they
are easily confused. Increasing what is scavenged increases pause-times whereas scavenging more frequently
reduces pause—times. Increasing either reduces garbage and increases CPU overhead. Wilson’s Opportunistic
Collector provides an answer for when to collect; our collector provides an answer for what to collect by

mapping user constraints into a policy for selecting the appropriate threatening boundary.



4.1 How to Select the Threatening Boundary

Choice of the threatening boundary affects both the CPU time spent scavenging and the memory wasted by
tenured garbage. For a given collection interval, a young threatening boundary results in short trace times
at the expense of more tenured garbage. An older threatening boundary wastes more CPU time tracing live

objects multiple times, but saves memory because older unreachable objects are reclaimed sooner.
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Figure 2: Garbage Collector Memory Use

A non-generational full garbage collector collects all garbage at periodic intervals as shown by curve Full
falling to curve L at time ¢,. Like any generational collector, the dynamic threatening boundary collector
saves tracing time by following curve DT B leaving some tenured garbage above the Full curve. Notice that
DT B reduced tenured garbage after time ¢, by selecting T'B,, to trace older objects than T'B,,_; did at time

tn_1.

Figure 2 shows how these values are related. The vertical axis is storage consumed (in bytes) and
the horizontal axis is execution time (CPU instructions executed). Consider how a full garbage collection
behaves. Periodically, at time ¢;, a scavenge is triggered. The collector traces all the live storage and reclaims
the rest. For example, at time ¢;, Mem; bytes of storage were in use before the scavenge; the collector traced
Trace; bytes, which included all the live bytes L;. All the remaining bytes were reclaimed as shown by the

curve dropping vertically to L, 2.

2For this discussion, we ignore memory fragmentation and time spent during garbage collection.



| Collector | Threatening Boundary Policy

FuLL TB, «—0
Fixep1 TB, «—tn_1
Fixep4 TB, «—tn_a
FEepDMED | If Trace,_1 > Tracemqs,
TB, «— least({tx|0 < k <nand ty >TB,_ 1
and Tracemas > E;‘;kl Born;}) where:
Born; = storage allocated after ¢; but
before ;.1, and live at %,
else TB, «— TB,_1
DTBFM If Tracep—1 > Tracemqe, use FEED MED
else TBy, — tn — (tn_1 — TBp_1)pratimes

DTBMEM | TB, — min(t, X m#;;l’”‘,tn_l),where:
Lest = %(S‘n—l + Tracen_l)
Mem, = total storage used just before scavenge n

Sp_1 = surviving storage just after scavenge n-1

Table 1: Threatening Boundary Policy for Various Collectors
The Dynamic Threatening Boundary collector can model other collectors simply by altering the policy
for setting the threatening boundary. Before the nth scavenge, at time ¢,, the policy sets the appropriate
threatening boundary, T'B,,, which then traces T'race, amount of storage. DTBFM and DTBMEM correspond
to our collector where T'race,,q; is the maximum amount of storage to trace, or Memy, . is the maximum
amount of memory to use. For a given implementation, pause-times are directly proportional to storage
traced, so that a user—specified maximum pause—time is easily converted to Tracemqs.

A generational collector scavenging at time £,_; would only trace objects born after a fixed—age threat-
ening boundary 7B, _;. This results in shorter pause times due to less storage traced, Trace,_1, at the cost
of more storage surviving, S,_1. The difference between S, _; and L, _; is the tenured garbage.

At time t,,, the dynamic threatening boundary collector must select a threatening boundary 7T'B,, before
initiating scavenge n. The farther back in time T'B, is, the more storage will be traced, and the more
garbage reclaimed.

Depending upon which is more important to the user, we provide two policies for setting the threatening
boundary, one for limiting maximum memory use to Memy, 4, and another for limiting median pause times
to Tracemqs- Pause times are proportional to storage traced, so without loss of generality we represent
pause times by the amount of storage traced. The following discussion describes the reasoning behind the

formulas used for our collector policies as shown by the last two entries of Table 1.
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Before each scavenge, at time {,, our pause—time constrained collector, DTBFM, checks to see if the
constraint was exceeded by the previous scavenge. If so, tracing is reduced to the desired value, Tracenqz,
by advancing the threatening boundary according to Ungar and Jackson’s Feedback Mediation collector
policy as shown by the FEEDMED entry in Table 1. Otherwise, since it has an opportunity to reduce
tenured garbage by tracing older objects, it will increase the number of bytes traced, T'race,. It increases
traced object age by lengthening the distance between the threatening boundary and the scavenge time
by an amount proportional to the ratio of the desired storage traced, Tracenq, to the storage last traced,
Trace,_1 as shown by the DTBFM entry in Table 1.

Similarly, before each scavenge, our memory—constrained collector, DTBMEM, sets the threatening bound-
ary to achieve the maximum memory constraint, Mem,,q4,, by controlling the desired amount of tenured
garbage, Mem, 4, minus the live data, L,_;. A conservative assumption is that the amount of garbage
decreases linearly as the threatening boundary moves backward in time. The ratio of garbage to memory
used (Mem,) provides the suitable slope for this line. Unfortunately, without doing a full collection, the
collector cannot determine precisely what L, _; is, so it makes an estimate, L., by taking the average of
the previous surviving storage, S,_i, and the previous traced storage, Trace,_1; it must lie somewhere
between them. Since we always want to trace an object at least once, it sets the threatening boundary no
later than the time of the previous scavenge, ¢,,_;. This policy is shown by the DTBMEM entry in Table 1.

Both collectors do a full collection on the first scavenge by setting the initial threatening boundary to 0.

4.2 Implementation Issues

The implementation of the dynamic threatening boundary collector relies upon technology already available
for other generational collectors. Object birth times must be available in order to determine the threatened
set and to allow a write—barrier to maintain the remembered set containing pointers to threatened objects.

Typically, a remembered set is maintained for each generation; since our collector has only two gen-
erations, and the boundary between them moves, it uses a single remembered set instead. Generational

collectors record only forward-in—time pointers that cross generation boundaries whereas ours records all
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forward—-in-time pointers. Like generational collectors, we assume that such pointers are a small fraction
of all pointers, which ensures the remembered sets remain small. Our remembered set will be larger by an
amount proportional to the ratio of forward-in-time pointers to inter—generational pointers. The sizes of
remembered sets have not proven to be a problem for existing generational collectors.

Generational collectors use the generation containing each object to encode an approximation of its age.
If you know the generation containing an object, and the promotion policy for moving an object to the
next generation, you can derive the object’s age from its generation. The precision with which you know
an object’s age is determined by the number of generations. If the allocation time is kept for each object,
our collector can model a generational collector with an arbitrarily large number of generations. During a
scavenge, only objects that are born after the threatening boundary are traced or reclaimed. If less precision
is desired, (e.g., to maintain the write barrier using virtual memory) ages can be constrained arbitrarily and
the same techniques used to implement multiple generations for other collectors apply to ours (e.g., Caudill’s

Smalltalk—80 implementation [5]).

5 Methods

In order to determine the effectiveness of the dynamic threatening boundary collector, we instrumented a
set of four allocation-intensive C programs using Larus’ trace generator QPT [11, 2]. The programs are
described in detail in Tables 5 and 6 in Appendix A. We used memory allocation and deallocation events
in these programs to drive a simulation of the different garbage collection algorithms. The output from the
simulation consisted of memory and CPU usage patterns that were then processed to produce performance
data.

We simulated several garbage collection algorithms by setting the threatening boundary policy of our
collector according to Table 1. We measured the CPU overhead, memory consumption, and pause times
of the different collectors, assuming a machine that executes 10 million instructions per second, where
the collector could trace 500 kilobytes per second. These simulation parameters were selected because they

approximate those used by Ungar and Jackson to measure their Feedback Mediation collector [15]. Scavenges
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were triggered after every 1 million bytes of allocation. The maximum pause—time was set to 100 milliseconds
(50 thousand bytes traced) and the maximum memory constraint for DTBMEM was 3000 kilobytes.

We are primarily interested in comparing the relative performance of the algorithms and measuring how
well our algorithms tracked the pause—time or memory constraints. We assumed that the collectors had
no memory fragmentation and that their CPU overhead was proportional to the number of bytes traced.

Memory consumed for maintaining the remembered sets of the collectors was ignored for these measurements.

6 Results

In this section, we describe the results of simulating the six collection algorithms specified in Table 1 in
each of the four test programs. In two of the programs, GHOST and ESPRESSO, we present results from two
different inputs. One goal of our evaluation is to compare the performance of the two dynamic threatening
boundary algorithms we have proposed, DTBMEM and DTBFM, with other existing algorithms. A second
goal is to determine how well our algorithms met the programmer-specified maximum memory or pause-time
constraints

We evaluate collector performance with respect to mean and maximum memory usage (assuming no
fragmentation), median and 90th percentile pause times, and estimated CPU overhead due to tracing (see
Tables 2, 3, 4). Table 2 also shows the mean and maximum memory usage of both the No GC algorithm
(i.e., one that never invokes the collector) and LIVE, which reflects exactly how many live bytes exist during
the program execution.

At first glance, it is clear that for the purpose of comparing the algorithms, Sis and CFRAC are less
interesting than GHOST and EsPREsso. In particular, Sis has the behavior that much of what it allocates
remains alive throughout its execution (i.e., compare the LIVE and No GC rows in Table 2). At the opposite
extreme, CFRAC retains very little live data throughout its execution. In both cases, the program’s behavior

tends to reduce the differences in performance between the collectors.
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GHosT (1) GHoOST (2) EspPrEsso (1) | EsPREsso (2) S1s CFRAC
MEaAN / MEaN / MEaN / MEaN / MEaAN / MEaN /
Collector Max Max Max Max Max Max
FuLL 1262 2065 1807 3033 564 1076 640 1188 | 4524 6980 497 992
Fixepl 1465 2453 2130 3632 667 1226 1577 2837 | 4691 7166 498 993
Fixep4 1262 2065 1807 3033 576 1088 760 1372 | 4524 6980 497 992
DrsMEM 1460 2393 1984 3242 667 1226 1481 2365 | 4552 6980 498 993
FEEDMED 1316 2125 1891 3168 620 1137 1095 1748 | 4691 7166 497 992
DrsFM 1265 2066 1839 3078 569 1111 695 1612 | 4691 7166 497 992
No GC 24601 | 49004 | 44243 | 87681 | 7874 | 14852 | 45428 | 104338 | 8346 | 14542 | 3853 | 7813
Live 77 1118 1323 2080 89 173 160 269 | 4197 6423 10 21
Table 2: Mean and Maximum Memory Allocated (Kilobytes)
GHosT (1) | GHosT (2) | EsprEsso (1) | EsPrEsso (2) S1s CFRAC
%ILE %ILE %ILE %ILE %ILE %ILE
COLLECTOR 50 90 50 90 50 90 50 90 50 90 50 90
FuLL 1743 | 2130 | 2720 | 4108 | 164 197 | 333 387 | 8165 | 11787 | 15 | 37
Fixepl 31 102 27 139 12 111 18 68 726 1609 5 7
Fixep4 120 334 150 409 20 192 28 137 | 2901 4545 | 15 | 22
DreMEM 34 112 200 | 1345 12 111 19 68 | 8165 | 11787 5 7
FeEDMED 104 143 90 188 16 111 40 93 726 1609 | 15 | 37
DtsFM 106 168 97 234 53 178 93 364 726 1609 | 15 | 37
Table 3: Median and 90th Percentile Pause Times (Milliseconds)
GHosT (1) GHOST (2) EsPrEsso (1) | EsPrEsso (2) S1s CFRAC
Traced / Traced / Traced / Traced / Traced / Traced /
COLLECTOR Overhead Overhead Overhead Overhead Overhead Overhead
FuLL 40153 | 179.2 | 119011 | 203.7 | 1236 4.1 | 16389 14.0 | 57015 | 385.5 | 73 0.7
Fixepl 1373 6.1 2456 4.2 209 0.7 1615 1.4 6610 44.7 | 19 0.2
Fixepn4 4610 20.6 8590 14.7 487 1.6 2878 2.5 | 24001 | 162.3 | 57 0.6
DrsMEM 1489 6.6 23689 40.5 209 0.7 1662 1.4 | 50776 | 343.3 | 19 0.2
FEEDMED 2641 11.8 4377 7.5 231 0.8 2642 2.3 6610 44.7 | 73 0.7
DrtsFM 3026 13.5 5585 9.6 684 2.3 8201 7.0 6610 44.7 | 73 0.7

Table 4: Total Bytes Traced (Kilobytes) and Estimated CPU Overhead (%)
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6.1 Meeting the Memory Constraint

Garbage collectors constantly trade memory usage for CPU overhead. Consider, for example, the FuLL,
Fixep1, and FiXED4 collectors in Tables 2 and 4. FULL always traces all objects, and thus has the lowest
memory usage and the highest CPU overhead. FIXED1, on the other hand, tenures objects after just one
collection, and thus has the lowest CPU overhead but uses the most memory. FiXED4 tenures after four
collections, a more conservative tenuring policy, and thus falls between the FULL and FIXED1 on memory
usage and CPU overhead.

If CPU overhead were the sole concern of users, the FIXED1 policy would be the obvious choice because
it has the lowest overhead. Unfortunately, this algorithm has the property that tenured garbage accumulates
(fairly rapidly in GHOST, for example) and its memory usage becomes unbounded. The goal of the DTBMEM
collector is to provide the CPU performance of the FIXED1 collector without letting the program memory
usage grow without bound.

The DTBMEM collector attempts to match a maximum memory usage constraint supplied by the user.
When the user supplies such a constraint, the collector is free to allow memory usage to grow until the
constraint is met. In these programs, the collector was told to use a maximum of 3000 kilobytes of memory.
Table 2 shows how well the DTBMEM met this constraint. In the two cases where it used more than 3000
kilobytes, GEOST (2) and Sis, the 3000 kilobyte limit was an over-constraint—that is, even the memory-
optimal FULL algorithm was not able to operate with less than 3000 kilobytes. In both cases, the memory
usage of the DTBMEM algorithm came within 7% of the FULL algorithm.

Table 4 shows that providing the maximum memory constraint allowed the DTBMEM algorithm to reduce
its CPU overhead. In the cases where the 3000 kilobytes was not an over-constraint, the CPU overhead of
the DTBMEM algorithm was quite similar to that of the fast FIXEDp1 algorithm. In the cases where 3000
kilobytes was an over-constraint, the CPU overhead of the DTBMEM algorithm increased as was necessary
to try to meet the impossible constraint. In the case of Sis, we see that a much over-constrained DTBMEM

algorithm degrades to the performance of the FULL algorithm.
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6.2 Meeting the Pause-time Constraint

Users may want to limit the length of garbage collection pauses due to the nature of their application. Both
the FEEDMED and DTBFM algorithms allow users to specify a target pause-time and attempt to make
collections take approximately that amount of time. In both cases, the algorithms react to pauses longer
than the specified limit in the same way. Also in both cases, the best measure of whether the collector met
the constraint is to look at the median pause time. Since the collectors are reactive to long pauses, a median
that is close to what the user specified shows that the algorithm zeroed in on the specified value (i.e., half
the collections took longer and half took less time).

The collectors differ when pauses take less than the user-specified amount of time. Where the FEED MED
algorithm leaves the threatening boundary at the same place, the DTBFM algorithm attempts to move the
boundary further back in time. As a result, the DTBFM algorithm should be better at making the median
pause-time match the user-specified constraint. At the same time, the DTBFM collector should require
less memory than the FEEDMED collector because it will scavenge more older objects than the FEEDMED
collector.

Tables 3 and 2 show that the DTBFM collector was successful at achieving each of these goals. Table 3
shows that the median pause-time for the DTBFM collector was almost always closer to the 100 millisecond
user-specified limit than the FEEDMED collector. The ESPRESSO application is an excellent illustration of
the weakness of the FEEDMED algorithm. In that program, the FEEDMED pause-times were consistently
less than 100 milliseconds, but because the algorithm was unable to push the threatening boundary back in
time, it was unable to reclaim as much garbage as the DTBFM collector. As a result, the memory used by
the FEEDMED collector was often greater than that of the DTBFM collector, and sometimes significantly
greater (e.g., in ESPREsso (2)).

Table 3 also shows the 90th percentile pause-times of the FEEDMED and DTBFM collectors. In general,

Jjust as the medians are larger, the 90th percentile pause-times of the DTBFM algorithm are larger than
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those of the FEEDMED algorithm. However, the 90th percentiles are not so much larger in the DTBFM

algorithm that the interactive response would be significantly worse than for the FEEDMED algorithm.

7 Summary

Generational garbage collection is a powerful concept that has proven successful in a number of commercial
language implementations. However, it is impossible for implementors of generational collection algorithms
to anticipate the memory allocation behavior of all applications in advance. As a result, users are required
to tune generational collection implementation parameters to meet the needs of their application. Unfortu-
nately, in existing systems, correctly tuning algorithm parameters requires extensive knowledge of both the
collection algorithm and the user program behavior.

In this paper, we present two variants of a garbage collection algorithm that each use a tuning parameter
that directly reflects an easily-understood maximum memory or pause—time constraint. Like generational
collectors, ours divides memory into two spaces, one for short-lived, and another for long-lived objects.
Unlike previous work, our collector can arbitrarily select the boundary between these two spaces in order to
directly meet the resource constraints specified by the user.

Based on the formal framework defined by Demers et al [6], we have shown how a dynamic threatening
boundary collector can be used to meet a user—specified maximum memory or median pause—time constraint.
Using trace—driven simulation we compared the two variants of the dynamic threatening boundary algorithm
with existing algorithms, including Ungar and Jackson’s Feedback Mediation [15]. We also show how the
other algorithms we considered fit easily into the general dynamic threatening boundary framework.

Our results show that our memory—constrained threatening boundary algorithm meets the user-imposed
memory constraint and uses available memory to reduce CPU overhead. We also show that the pause—time—
constrained threatening boundary algorithm extends Feedback Mediation to exploit available pause-time
and reduce memory overhead. In conclusion, our algorithms more accurately reflect user-imposed resources
constraints and at the same time provide better performance than existing generational garbage collection

algorithms.
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A Program Information

GHOST

GhostScript, version 2.1, is a publicly-available interpreter for the PostScript page-
description language. The inputs used were a large reference manual and a masters
thesis. These executions of GhostScript did not run as interactive applications as it
is often used, but instead were executed with the NODISPLAY option that simply
forces the interpretation of the PostScript program without displaying the results.

EspPRrESsso

Espresso, version 2.3, is a logic optimization program. The inputs used were exam-
ples provided with the release code.

Si1s

SIS, Release 1.1, is a tool for sythesis of synchronous and asynchronous circuits.
It includes a number of capabilities such as state minimization and optimization.
The input used in the run was one of the examples provided with the release (is-
cas89/s5378.blif). The operation performed was a verification with 1024 random
input vectors.

CFRAC

Cfrac is a program that factors large integers using the continued fraction method.
The input was a 25-digit number that was the product of two primes.

Table 5: General information about the test programs.

Program

Lines of
Source

Execution
Time

(sec)

Total
Allocation
(megabytes)

Allocation
Rate
(kbtyes/sec)

Number
of

Collections

GHosT (1)
GHOST (2)
EsprEsso (1)
EsPRrEsso (2)
S1s

CFRAC

29500
29500
15500
15500
172000
6000

31
71
62
240
30
8

49
88
15
104
15
3

1068
733
240
435
480
402

51
90
16
107
15
4

Table 6: Allocation Behavior of Programs Measured.
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